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Abstract

Background: Bovine tuberculosis (BTB) caused by Mycobacterium bovis continues to cause
substantial losses to global agriculture and has significant repercussions for human health. The
advent of high throughput genomics has facilitated large scale gene expression analyses that present
a novel opportunity for revealing the molecular mechanisms underlying mycobacterial infection.
Using this approach, we have previously shown that innate immune genes in peripheral blood
mononuclear cells (PBMC) from BTB-infected animals are repressed in vivo in the absence of
exogenous antigen stimulation. In the present study, we hypothesized that the PBMC from BTB-
infected cattle would display a distinct gene expression program resulting from exposure to M.
bovis. A functional genomics approach was used to examine the immune response of BTB-infected
(n = 6) and healthy control (n = 6) cattle to stimulation with bovine tuberculin (purified protein
derivative — PPD-b) in vitro. PBMC were harvested before, and at 3 h and 12 h post in vitro
stimulation with bovine tuberculin. Gene expression changes were catalogued within each group
using a reference hybridization design and a targeted immunospecific cDNA microarray platform
(BOTL-5) with 4,800 spot features representing 1,391 genes.

Results: 250 gene spot features were significantly differentially expressed in BTB-infected animals
at 3 h post-stimulation contrasting with only 88 gene spot features in the non-infected control
animals (P < 0.05). At 12 h post-stimulation, 56 and 80 gene spot features were differentially
expressed in both groups respectively. The results provided evidence of a proinflammatory gene
expression profile in PBMC from BTB-infected animals in response to antigen stimulation.
Furthermore, a common panel of eighteen genes, including transcription factors were significantly
expressed in opposite directions in both groups. Real-time quantitative reverse transcription PCR
(qRT-PCR) demonstrated that many innate immune genes, including components of the TLR
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pathway and cytokines were differentially expressed in BTB-infected (n = 8) versus control animals

(n = 8) after stimulation with bovine tuberculin.

Conclusion: The PBMC from BTB-infected animals exhibit different transcriptional profiles
compared with PBMC from healthy control animals in response to M. bovis antigen stimulation,
providing evidence of a novel gene expression program due to M. bovis exposure.

Background

Mycobacterium bovis infection is the cause of bovine tuber-
culosis (BTB), an important health problem in cattle that
also has zoonotic potential for transmission to humans.
The eradication of M. bovis infection in cattle is proving
difficult in some developed countries, including the UK
and Ireland [1] due to limitations in the sensitivity of cur-
rent diagnostics, leading to a failure to detect all infected
animals [2,3]. It is also unclear what role exposure to envi-
ronmental mycobacterial antigens play in the generation
of non-specific immune responses, giving rise to difficul-
ties with test interpretation and reliability. Furthermore,
some cattle with advanced disease become anergic, with
suppressed cellular immune responses in both the periph-
eral blood and at the site of the infection [4], and remain
undetected as reservoirs of disease.

The immune response to tuberculosis is a complex proc-
ess and studies in the bovine model have primarily
focused on the adaptive response. The outcome of tuber-
culosis infection depends on T cell interaction with mac-
rophages [5], and progression of infection with M. bovis is
thought to develop after a shift in the immune system
from a protective proinflammatory, cytotoxic T cell
response towards a non-protective antibody-mediated
response [6,7]. The timing and potency of the cellular and
immunological events that occur immediately post-infec-
tion are crucial determinants governing infection [6] and
innate immune responses are considered important for
the generation of early, and appropriate adaptive
responses to resolve infection [8-11]. Therefore, central to
the development of improved or novel diagnostics is
increased understanding of the early immune response to
tuberculosis in cattle.

At the most basic level, the interplay between the host and
pathogen involves changes in gene expression [12]. High-
throughput genomics technologies, which offer the ability
to survey changes in expression for a large number of
genes simultaneously, have been widely used to discern
patterns of host gene regulation during infection. Microar-
ray technology has emerged as the method of choice for
large-scale gene expression studies that have increased our
understanding of host-pathogen interactions [13-20,12].
These functional genomics studies have also identified
new avenues of research for potential control strategies
against pathogens [21]. Using this approach we have

aimed to gain a better understanding of the molecular reg-
ulation of the immune response following M. bovis expo-
sure and infection in cattle, with the expectation of
significant benefits in development of new practical tools
applicable to disease control [6].

We have previously used a bovine targeted immunospe-
cific cDNA microarray to study gene expression changes in
bovine peripheral blood mononuclear cells (PBMC) from
BTB-infected cattle cultured in wvitro in the presence of
bovine and avian tuberculins [22]. PBMC are an accessi-
ble tissue for the development of robust novel diagnostics
and previous studies have shown that for bovine tubercu-
losis, immune responses occurring in the peripheral
blood reflect those at the site of disease [23]. In our previ-
ous study, antigen stimulation induced significant and
specific expression changes in many immune genes that
revealed different gene expression patterns in stimulated
and non-stimulated PBMC. Although IFNG gene expres-
sion was increased in response to antigen stimulation,
several other genes were highly expressed earlier in the
time course [22], suggesting that these genes may repre-
sent valuable targets for the development of novel diag-
nostics of M. bovis in cattle early post-infection.

A subsequent comparative study between BTB-infected
cattle and healthy control animal PBMC showed that the
expression of innate immune genes is repressed in heavily
infected cattle in vivo; it also demonstrated that the expres-
sion changes for many of these genes represent a BTB-sig-
nature of infection [24]. Additional expression profiling
using real time qRT-PCR verified that a number of innate
immune genes including TLR2 and TLR4 had reduced
expression in BTB-infected animals [24]. Failure of M.
bovis to activate these immune genes may have resulted
from an antigen-induced suppression, or alternatively
from a general failure of the immune system in the
advanced diseased cattle.

For the present study, we compared PBMC gene expres-
sion profiles from natural M. bovis-infected animals with
those from control non-infected animals after stimulation
with bovine tuberculin (purified protein derivative -
PPD-b) antigens. We hypothesized that the PBMC from
BTB-infected cattle would display a distinct gene expres-
sion program resulting, at least in part, from previous
exposure to M. bovis. These data provide evidence for a
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novel gene expression program in PBMC from infected
animals and highlight the value of large-scale genomics
approaches to understand immune regulatory mecha-
nisms that in future may form the basis for novel diagnos-
tics and therapeutics.

Results

Distinct microarray gene expression profile in PBMC from
BTB-infected cattle at 3 h and 12 h post-stimulation with
bovine tuberculin

Microarray analysis of mRNA expression levels was used
to investigate the immune response differences between
PBMC from M. bovis infected animals, compared to PBMC
from control animals in response to stimulation with
bovine tuberculin antigens (PPD-b). Gene expression pro-

http://www.biomedcentral.com/1471-2164/9/447

filing was performed on PBMC from six M. bovis infected
cattle and six non-infected controls at three time points
(pre-infection, and at 3 and 12 hours post-stimulation
with bovine tuberculin), using a reference hybridization
design and a common reference RNA (CRR) pool assem-
bled as described previously [24] (Fig. 1). It is widely rec-
ognised that that a reference design is the most efficient in
terms of resources and statistical flexibility for compari-
sons among different groups in multi-treatment experi-
ments using dual colour microarrays [25-27]. The
expression data generated was deposited in the NCBI
Gene Expression Omnibus (GEO) repository [28] with
experiment series accession [GEO:GSE12835]. Fold
change values for all gene expression comparisons
obtained from the microarray data were calculated as the

T, hours

T; hours

T412 hours

RNA samples from six
uninfected control cattle

RNA samples from six
uninfected control cattle

RNA samples from six
uninfected control cattle

L

Common T, reference RNA pool

1]

TT1111

1]

RNA samples from six
BTB-infected cattle

RNA samples from six
BTB-infected cattle

RNA samples from six
BTB-infected cattle

Ty hours

T3 hours

T42 hours

Figure |

Experimental design for BOTL-5 micro array hybridizations. Common reference experimental design showing micro-
array hybridizations for six BTB-infected animals and six control non-infected animals across the |2-hour bovine tuberculin
stimulation time course. In all cases, the test sample was labelled with Cy3 fluorescent dye (base of the arrow) and the com-
mon reference RNA (CRR) pool was labelled with Cy5 dye (arrow head). The CRR pool consisted of equal amounts of total
RNA from the BTB-infected and control animal groups at TO (0 h pre-stimulation) assembled as described previously [24].
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mean of the two duplicate spots on the BOTL-5 microar-
ray used for this study.

BTB-infected animals

Of the 1,391 duplicated genes (2,782 gene spot features)
on the BOTL-5 microarray, 250 gene spot features (9.0%)
showed significant differential expression in PBMC from
BTB-infected animals after 3 h stimulation with bovine
tuberculin, at the P < 0.05 level (see Additional file 1). A
substantially smaller number of gene spot features (80)
were differentially expressed in BTB-infected samples
between 3 h and 12 h post-stimulation (Fig. 2a). Among
the 250 differentially expressed spot features at 3 h post-
stimulation, 164 were significantly increased in expres-
sion and 86 were decreased in expression relative to 0 h (P
< 0.05 level). At 3 h post-stimulation with bovine tuber-
culin, the number of spot features showing increased
expression outnumbered those with reduced expression
by a ratio of 2:1. However, at 12 h post-stimulation the
trend was reversed and there were seven-fold more spot
features decreased in expression than increased, relative to
3 h post-stimulation (10 spot features showing increased
expression versus 70 spot features showing decreased
expression) [Fig. 2a; P < 0.05 level|.

Inspection of these data revealed that the 250 early differ-
entially expressed spot features included 83 unique genes
where two replicate gene spot features were found to be
significantly differentially expressed (6% of the 1,391
duplicated genes represented on the array). Fifty-three of
these genes were identified as BOTL clones, ESTs derived
from genes whose function(s) in cattle are unknown, but
were inferred from evolutionary sequence homology with
gene orthologs in rodents and humans (see Additional file
1). Similarly, between the later two time points, 18 genes
were represented by significantly differentially expressed
duplicate significant spot features (P < 0.05).

Control animals

In contrast to the differential gene expression profile
observed in BTB-infected animals in response to bovine
tuberculin stimulation, initial gene expression changes in
the control PBMC samples were moderate with 88 spot
features significantly differentially expressed between 0 h
and 3 h (P < 0.05) [see Additional file 2|. These were
almost evenly divided between increased (41) and
decreased (47) expression at the later time point (Fig. 2b).
Between 3 h and 12 h of stimulation, 56 spot features
were differentially expressed (see Additional file 2), again
almost equally balanced between repression and activa-
tion (26 spot features increased in expression and 30
decreased in expression) [Fig. 2b]. The initial 88 spot fea-
tures and the later 56 spot features significantly differen-
tially expressed represented only 14 and five unique genes
represented by duplicate spot features (P < 0.05).

http://www.biomedcentral.com/1471-2164/9/447

Fold changes for significantly differentially expressed
genes on the microarrays ranged from a decrease of 4.38
fold (colony stimulating factor 2 receptor, alpha gene
[CSF2RA] in the control animal group after 12 h stimula-
tion with bovine tuberculin) to an increase in expression
of 5.58 fold (the major histocompatability complex, class
I, A gene [BOLA] in the BTB-infected animal group after 3
h stimulation with bovine tuberculin).

Inversely correlated gene expression changes between
BTB-infected and control PBMC after 3 h stimulation with
bovine tuberculin

Comparisons of the 250 significantly differentially
expressed spot features in the BTB-infected animal group
and 88 features from the control animal group identified
18 genes (represented by duplicate significant spot fea-
tures) that were significantly differentially expressed in
both groups in response to bovine tuberculin (P < 0.05,
Fig. 3 and Table 1).

The expression of 15 of these 18 genes was increased in
the BTB-infected animals in response to bovine tuberculin
stimulation relative to the unstimulated samples. All 18
genes were expressed in the opposite direction in the con-
trol animal group in response to bovine tuberculin stimu-
lation, suggesting a common, but reversed mechanism
affecting the regulation of expression or transcriptional
trajectory of these genes in the two groups (Fig. 3 and
Table 1). Among the 15 genes with significantly increased
mRNA levels in PBMC from BTB-infected animals, and
significantly decreased expression in PBMC from the con-
trol animals post-stimulation, were transcription factor
genes (TLE3, TAF6, HCFC1 and GATA4) and genes coding
for proteins involved in mRNA processing (SFRS2), nucle-
otide binding (GIMAP1), amino acid metabolism (SDS),
amino acid phosphorylation (LYN), protein binding
(PKM2), and translational elongation (EEF1G). Other
genes with well-characterised roles in the immune
response were also differentially expressed. These
included the colony stimulating factor 2 receptor, alpha
gene (CSF2RA), involved in the production, differentia-
tion and function of myeloid cells, which was increased
by 3.76 fold (P = 0.0057). The expression of the chemok-
ine (C-C motif) ligand 1 gene (CCL1) was increased by
5.13 fold (P = 0.0009). The protein encoded by CCL1 is
secreted by activated T cells and displays chemotactic
activity for monocytes [29]. Three genes, an RNA binding
gene (synaptotagmin binding, cytoplasmic RNA interact-
ing protein—-SYNCRIP), a phosphatase activity and stress
response gene (dual specificity phosphatase 10-DUSP10)
and a signal transduction gene (AXL receptor tyrosine
kinase-AXL) were all reduced in their expression in PBMC
from BTB-infected animals, but significantly increased in
PBMC from control animals in response to bovine tuber-
culin stimulation (Table 1).
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Differentially expressed gene spot features between time points for the BTB-infected and control animal
groups (P < 0.05). Significant differentially expressed gene spot features (P < 0.05) between time points (0 h, 3 h and 12 h)
within the BTB-infected animal group (A) and the control non-infected animal group (B). The direction of the fold change,
whether up or down, indicates a fold change difference between the first time point relative to the second time point.
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Figure 3

Fold change

Eighteen genes displaying a converse pattern of gene expression between control and BTB-infected animals
[T; relative to T,] (P < 0.05). Eighteen genes represented by duplicate significant microarray features (P < 0.05) that were
differentially expressed between T; (3 h post-bovine tuberculin stimulation) and T, (0 h — no stimulation) for both the control
and BTB-infected animal groups. Error bars show the standard error of the mean for each fold-change estimate.

Rapid but transient proinflammatory response to bovine
tuberculin in PBMC from BTB-infected animals detected
at 3 h post stimulation

Of the 1,391 genes on the BOTL-5 microarray, 250 spot
features showed significant differential expression
between the BTB-infected animals at 0 h and 3 h post
stimulation at the P < 0.05 level (see Additional file 1).
Conversely, only 80 spot features were differentially
expressed between the later two time points (Fig. 2a). It is
clear from the number of genes differentially expressed in
PBMC from BTB-infected samples that the majority of dif-
ferential gene expression occurred early, within 3 h of
stimulation with tuberculin antigens. This response was
both immediate and transient (Fig. 2a). In contrast, the
magnitude of gene expression changes in control animals
was significantly different than in the PBMC from BTB-

infected samples in response to bovine tuberculin stimu-
lation. Furthermore, the profile of expression indicated
that the majority of differential expression occurred
between 0 h and 12 h in PBMC from the control animals
(Fig. 2b).

A number of genes with well characterised roles in infec-
tion and immunity were found to be significantly differ-
entially expressed in the BTB-infected animal group after
stimulation with bovine tuberculin. Some of those that
were significantly increased in expression by 3 h were the
fibroblast growth factor receptor genes (FGFRI1) and
(FGFR2) [2.27 and 1.91 fold respectively], the colony
stimulating factor 2 receptor, alpha gene (CSF2RA) [3.76
fold], the lymphotoxin alpha gene (LTA) [1.76 fold], and
a number of kinase genes: AKT1 (2.38 fold), MAP2K1
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Table I: Microarray gene expression fold change values for 18 significant genes within the non-infected control animal group (n = 6)

and the BTB-infected animal group (n = 6) between Tyand T,.

Gene symbol Gene name BOTL clone ID

Gene ontology (GO) Fold change Fold change

SDS Serine dehydratase BOTLO100002XA02R
GLTSCR2 Glioma tumor suppressor ~ BOTLO0100002XB07R
candidate region gene 2
TLE3 Transducin-like enhancer BOTLO100003XGO8R
of split 3
DUSPIO Dual specificity BOTLO100004XGO06R
phosphatase 10
LYN v-yes-| Yamaguchisarcoma BOTLOI100006XHO06R
viral related oncogene
homolog
Unknown - BOTLO100008_A05
SYNCRIP Synaptotagmin binding, BOTLO100009_EO8
cytoplasmic RNA
interacting protein
PKM2 Pyruvate kinase BOTLOI00010_CO03
GIMAP| GTPase, IMAP family BOTLO10001 |1_BO7
member |
TAFé6 TAF6 RNA polymerase Il,  BOTLO100012_GO05
TATA box binding protein
(TBP)-associated factor
Unknown - BOTLOI000I3_FOlI
HCFCI Similar to Host cell factor BOTLOI00013_G06
Cl
GATA4 GATA binding protein 4 GATA binding protein 4
(GATA4)
CSF2RA Colony stimulating factor 2 colony stimulating factor
receptor, alpha 2 receptor, alpha)
SFRS2 Splicing factor, arginine/ NBFGC_BE721857
serine-rich 2 chemokine (C-C motif)
receptor 7 (CCR7)
AXL AXL receptor tyrosine NBFGC_BE722178 AXL
kinase receptor tyrosine kinase
EEFIG Eukaryotic translation NBFGC_BF230159
elongation factor | gamma  EEFIG eukaryotic
translation elongation
ccLi Chemokine (C-C motif) Small inducible cytokine

ligand |

Al

function/s infected cattle control cattle
Amino acid metabolism +1.72 £ 0.20 -1.85+£0.26
Unknown +1.98 £ 0.24 -1.92 £ 0.34
Regulation of gene +1.69 £0.13 -1.86 £ 0.30
transcription

Phosphatase activity and -1.44£0.18 +1.57 £ 0.25
response to stress

Amino acid +1.98 £ 0.21 -1.70 £ 0.34
phosphorylation and

receptor signalling

Unknown +1.80 £ 0.19 -1.73 £ 0.16
RNA binding -1.36 £ 0.09 +1.58 £ 0.23
Protein binding and +1.63 £0.21 -1.47 £ 0.52
alternative splicing

Control of cell survival and +1.40 £ 0.18 -1.49 £0.13
nucleotide binding

Regulation of transcription +1.87 £ 0.31 -142 £0.17
Unknown +1.52 £0.13 -1.38 £ 0.12
Regulation of transcription +1.78 £ 0.15 -1.76 £ 0.21
Regulation of transcription +2.49 £+ 0.29 -3.56 +0.20
Production, differentiation, +3.76 £ 041 -2.46 + 0.26
and function of

granulocytes and

macrophages

mRNA processing +2.52 £ 0.24 -1.63 £0.19
Signal transduction -1.36 £0.13 +1.87 £ 0.31
Translational elongation +2.24 £ 0.15 -1.46 £ 0.24
Chemokine activity +5.13+0.34 -2.57 £ 0.36

Relative expression fold change values are shown with standard errors.

Clone IDs were obtained from the Center for Animal Functional Genomics (CAFG) website: http://www.cafg.msu.edu.

(1.59 fold), MAP2K7 (2.58 fold), MAPKAPK2 (1.71 fold),
MAP4K2 (1.62 fold), MLK3 (3.80 fold), PIK3R5 (1.53
fold) and KSR1 (2.44 fold). The results from the microar-
ray data also highlighted the involvement of a number of
genes encoding components of the TLR signalling path-
way including CD14 (2.48 fold), IKBKB (1.98 fold) and
NFKB1 (2.32 fold), all of which were significantly
increased in expression (P < 0.05). A significant increase
in a gene involved in antigen presentation (BOLA major
histocompatibility complex-class I, A-BOLA-A) was also
detected (5.43 fold, P <£0.05).

Among those differentially expressed genes that were
expressed at lower levels at 3 h post-stimulation with
bovine tuberculin were a number of BOTL clones with
homology to known genes. These included PPIA (-1.68
fold) and the protein phosphatase genes, PPP2CA (-1.44
fold), PPP6C (-1.41 fold) and PTPRF (-1.26 fold).

In contrast, 88 gene spot features were significantly differ-
entially expressed in response to bovine tuberculin stimu-
lation in the control animals, 41 of these with increased
expression levels and 47 expressed at lower levels (P <
0.05, Fig. 2b). Only 14 genes within this group were rep-
resented by duplicate spot features. Among the genes that
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were significantly increased in expression in response to
bovine tuberculin stimulation were AXL (1.87 fold) and
MAPK13 (1.84 fold). Genes with significantly decreased
expression in response to stimulation were GATA4 (-1.83
fold), MIF (-1.40 fold), and CCR7 (-1.63 fold).

Real-time quantitative reverse transcription PCR (qRT-
PCR) supports a differential role for TLR-associated
molecules in the early response of BTB-infected animals to
bovine tuberculin

An extended panel of 48 PBMC mRNA samples (repre-
senting eight infected and eight non-infected control ani-
mals, unstimulated and at 3 h and 12 h post-stimulation
with bovine tuberculin) were used for real time qRT-PCR
validation studies. The differentially expressed genes that
were detected were classified using gene ontology (GO).
Selected genes supplemented with others from relevant
literature in human and murine models of TB, including
those encoding molecules involved in pathogen recogni-
tion (TLR2, TLR4 and IL1R), signal transduction (MYD88,
TOLLIP, and TICAM?2), gene transcription (NFKB1) and
cytokine production (IFNG, IL8 and IL10) were all inves-
tigated by real time qRT-PCR. The results from the 41
genes used for these single gene expression studies are
detailed in Tables 2 and 3 and corroborate the results
obtained from the BOTL-5 hybridisations.

http://www.biomedcentral.com/1471-2164/9/447

Expression levels of CD14 (from the BOTL-5 microarray
data) and TLR4 in the BTB-infected animal group were
increased by 2.48 and 2.24 fold respectively (P = 0.0333
and P = 0.0037). Genes encoding downstream compo-
nents of the TLR pathway were also examined by real time
gRT-PCR, and increased mRNA abundance for CHUK and
IKBKB, further verified the array data (1.38 and 3.64 fold
respectively; P = 0.0009 and P = 0.0000). This also sug-
gested a mechanism to explain the increased expression of
NFKB1 by 1.4 fold (P = 0.0082). A significant 16.62 fold
increase in the mRNA expression of the proinflammatory
cytokine gene, IFNG (P = 0.0012) was also detected (Fig.
4 and Table 2).

In contrast, for the control animal group, increased
expression of TLR2 by 1.37 fold (P = 0.0000) and MYD88
by 1.23 fold (P = 0.0489) was noted (Fig. 5 and Table 3).
In addition, TLR2 and MYD88 were examined in the
infected group by real time qRT-PCR and TLR4 in the con-
trol group; all three genes were found not to be differen-
tially expressed (data not shown). Genes involved in the
interleukin 1o receptor signalling pathway were also dif-
ferentially expressed in both treatment groups. Increased
expression of the interleukin 1o gene (IL1A) and the inter-
leukin 1 receptor type I gene (ILIRI) was detected in the
control animal samples by 0.83 and 1.61 fold respectively
(P =0.0367 and P = 0.0182). The IL-1R antagonist gene
(IL1RN) was also increased in expression by 1.53 fold (P

Table 2: Gene expression fold change differences for the BTB-infected animal group (n = 8) between T; and T, validated using real

time qRT-PCR.

Gene symbol Gene name

Gene ontology (GO) function/s

Fold change difference P-value

IFNG Interferon y Cytokine activity +16.62 £ 8.74 0.0012
AKTI V-akt murine thymoma viral oncogene homolog  Protein kinase activity +4.12 £ 0.46 0.0000
|
IKBKB Inhibitor of kappa light polypeptide gene Transcription activator activity +3.64 £ 0.61 0.0000
enhancer in B-cells, kinase beta
NCORI Nuclear receptor co-repressor | Transcriptional repression +2.80 £ 0.46 0.0001
ILIRN Interleukin | receptor antagonist Signal transduction +2.79 £ 0.60 0.0012
TOLLIP Toll interacting protein Signal transduction +2.33 £ 0.34 0.0002
LTA Lymphotoxin alpha Cytokine activity +2.27 £ 0.75 0.0135
(TNF superfamily, member I)
TLR4 Toll-like receptor 4 Bacterial binding and signal transduction +2.24 + 0.36 0.0037
MAPKAPK2 Mitogen-activated protein kinase-activated Signal transduction +2.12 £0.28 0.0001
protein kinase 2
L8 Interleukin 8 Cytokine activity +2.09 £ 0.19 0.0000
ILIA Interleukin la Cytokine activity +1.73 £0.22 0.0021
NFKBI Nuclear factor k3 Transcriptional activation +1.40 £ 0.42 0.0082
CHUK Conserved helix-loop-helix ubiquitous kinase Signal transduction +1.38 £ 0.09 0.0009
TICAM2 Toll-like receptor adaptor molecule 2 Signal transduction +1.28 £ 0.07 0.0006
ILI0 Interleukin 10 Cytokine activity +1.24 £ 0.09 0.0095
TGFBI Transforming growth factor, beta | Protein binding +1.19 £ 0.34 0.0021
TNF Tumor necrosis factor Cytokine activity +0.94 + 0.48 0.0314
(TNF superfamily, member 2)
ILIR2 Interleukin | receptor 2 Cytokine activity -1.56 £ 0.63 0.0012
Relative expression fold change values are shown with standard errors.
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Table 3: Gene expression fold change differences for the control non-infected animal group (n = 8) between T; and T, validated using
real time qRT-PCR.

Gene symbol Gene name Gene ontology (GO) function/s Fold change difference P-value
TOLLIP Toll interacting protein Signal transduction +4.32 + 1.87 0.0094
IRAK | Interleukin-| receptor-associated kinase | Transcription activator activity +3.89 + 1.91 0.0492

ILI0 Interleukin 10 Cytokine activity +2.00 + 0.69 0.0091

ILIRI Interleukin | receptor, type | Protein binding and signal transduction +1.61 £ 0.55 0.0182

ILIRN Interleukin | receptor antagonist Protein binding and signal transduction +1.53 £ 0.62 0.0067

TLR2 Toll-like receptor 2 Bacterial binding and signal transduction +1.37 £ 0.06 0.0000

MYD88 Myeloid differentiation primary response gene  Signal transduction +1.23 £0.78 0.0489
(88)

ILIA Interleukin la Cytokine activity +0.83 £ 0.45 0.0367

Relative expression fold change values are shown with standard errors.

IFNG -
AKT1 -
IKBKB -
NCOR1 -
IL1RN -
TOLLIP -
LTA -
TLR4 A
MAPKAPK2 -
IL8 -
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NFKB1 -
CHUK -
TICAM2 -
IL10
TGFB1 -
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IL1R2 *x
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Fold change

Figure 4

Genes validated using real time qRT-PCR for the BTB-infected animal group (T; relative to T,). Eighteen genes
validated using real time qRT-PCR for the BTB-infected animal group between T; (3 h post-bovine tuberculin stimulation) and
T, (0 h — no stimulation). Error bars show the standard error of the mean for each fold change estimate. Statistical significance
for each gene is shown as follows: *P < 0.05; **P < 0.01; ***P < 0.001.
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Figure 5

Genes validated using real time qRT-PCR for the control animal group (T; relative to T). Eight genes validated
using real time gRT-PCR for the control animal group between T; (3 h post-bovine tuberculin stimulation) and T, (0 h — no
stimulation). Error bars show the standard error of the mean for each fold change estimate. Statistical significance for each

gene is shown as follows: *P < 0.05; **P < 0.01; ***P < 0.001.

= 0.0067). While IL1A and ILIRN were also significantly
increased in the BTB-infected animal samples (1.73 and
2.79 fold respectively; P = 0.0021 and P = 0.0012), the
decoy receptor IL1R2 was differentially expressed by -1.56
fold (P = 0.0000, Fig. 5). Expression of the IL-1R1 gene
(IL1R1) was not significantly increased (data not shown).

Toll interacting protein (encoded by TOLLIP) is a negative
regulator of the TLR pathway and has been characterised
in humans and mice [30]. When examined by real time
gRT-PCR, it was found to be significantly increased in
expression in PBMC of both BTB-infected animal (Fig. 4)
and the control samples (Fig. 5) after bovine tuberculin
stimulation by 4.32 and 2.33 fold respectively (P = 0.0094
and P = 0.0002). Expression levels of the gene encoding a
TLR4-specific molecule, Toll-like receptor adaptor mole-
cule 2 (TICAM?2) [31], were estimated in both groups and
although not differentially expressed in the control ani-
mal group (data not shown), it was significantly increased
by 1.28 fold in the BTB-infected animal group (P =
0.0006, Fig. 4).

The gene encoding interleukin-10 (IL10) was significantly
differentially expressed in both groups (Figs. 4 and 5). In
the BTB-infected animal group, IL10 expression was
increased by 1.24 fold (P = 0.0135). However, in the con-
trol animal group, IL10 was significantly increased in
expression by 2.00 fold (P = 0.0091). In addition, it was
noted that neither NFKB nor IFNG were differentially
expressed in the control animal group when tested by real
time qRT-PCR (data not shown).

Discussion

Bovine tuberculosis is the fourth most important livestock
disease worldwide [32]. The benefits of developing,
applying and maintaining improved control and eradica-
tion strategies for BTB are manifold, and directly impact
on human and animal health [33]. The specific immune
cell signalling pathways involved in the immune response
to BTB are highly complex and poorly characterised in cat-
tle. This has obvious limitations for the understanding of,
and design of improved diagnostics and effective thera-
peutics. However, studies on tuberculosis in the human
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and murine models have highlighted the involvement of
cell regulatory signalling pathways in the immune
response that are also likely to be relevant in BTB. Whereas
traditionally, studies of BTB have focused on adaptive
immunity, the findings from these studies are pointing
toward a critical role for signalling via the innate immune
system, including TLRs in initiating and directing the sub-
sequent immune response and determining the outcome
of infection [8-10].

The timing and potency of the cellular and immunologi-
cal events that occur immediately post-infection are cru-
cial determinants governing infection [6]. Pathogen-
induced phenotypic changes in host cells are often accom-
panied by marked changes in gene expression due to host-
and/or pathogen mediated reprogramming of the tran-
scriptome during infection [34]. Previous work by our
group compared the gene expression differences between
bovine tuberculin-stimulated and non-stimulated PBMC
from BTB-infected animals [22] and demonstrated that
stimulation with bovine tuberculin induced significant
gene expression changes that can be useful for dissection
of the immune response to BTB. Subsequently we identi-
fied a novel gene expression profile indicative of innate
immune gene repression in heavily infected cattle in vivo
[24]. Expression clustering of these data yielded a gene
infection signature for disease and highlighted genes and
regulatory pathways, including the TLR cell signalling
pathway [24].

In the present study we have shown that after overnight
recovery in vitro, PBMC from BTB-infected cattle are signif-
icantly more responsive to bovine tuberculin stimulation
than control animal PBMC. Gene expression levels were
estimated in PBMC from BTB-infected and healthy con-
trols either non-stimulated or at 3 h and 12 h after bovine
tuberculin stimulation using a common reference micro-
array approach (Fig. 1). Significant gene expression
changes were observed in response to bovine tuberculin
stimulation for both animal groups over a 12 h time
course. The microarray data indicated that substantially
different gene expression profiles were evident in the BTB-
infected animals relative to the control animals (Fig. 2a
and Fig. 2b). Following a 12 h incubation with bovine
tuberculin, these analyses also showed that the immune
response in the infected animal group was both rapid and
transient (Fig. 2a). Analysis of gene expression differences
across the time course showed that differences between
groups were most evident in the period between 0 h and
3 h after bovine tuberculin stimulation-indicating that
the early response to bovine tuberculin is substantially
different between the two animal groups.

Comparative analysis of the PBMC gene expression pro-
gram in response to bovine tuberculin identified a panel
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of 18 genes that were significantly differentially expressed
in both animal groups. Interestingly, all of these genes
were expressed in opposite directions in the two groups.
Expression of 15 of the 18 genes was increased in PBMC
from BTB-infected animals including genes encoding pro-
teins involved with transcriptional regulation (TLE3,
TAF6, HCFC1 and GATA4), a chemokine (CCL1), and a
chemokine receptor(CSF2RA). In contrast, only three
genes were decreased in expression in the BTB-infected
group. Conversely, the opposite pattern was observed in
PBMC from the control animals with 15 genes decreased,
and three genes increased in expression relative to the
BTB-infected group (Fig. 3 and Table 1). These data sug-
gest a number of important gene targets for further study,
as well as identifying cell regulatory pathways that may be
differentially regulated in BTB-infected animals.

Of the 250 microarray spot features that were differen-
tially expressed in the BTB-infected animals, those dis-
playing increased expression in response to bovine
tuberculin outnumbered those with decreased expression
by a factor of two. We have previously shown that the
expression of a number of the genes represented by these
spot features, including TLR2, TLR4 and NFKB, was signif-
icantly repressed in heavily infected cattle in vivo [24]. The
transformation associated with gene repression in vivo to
gene activation detected in the same animals in vitro was
evident in the reversal in direction of expression of a
number of well characterised genes including those
encoding TLRs, MHC molecules, and cytokines. Further-
more, the 41 genes examined by real time qRT-PCR con-
firmed the BOTL-5 microarray results and supported a
trend towards a proinflammatory immune response to
bovine tuberculin in PBMC from BTB-infected cattle.
Expression of a gene encoding the key transcription factor
and mediator of the immune response (NFKB1) indicated
a distinctive proinflammatory gene expression program
characterised by a significant two-fold increase in IL8
expression and 16-fold increase in IFNG expression (Fig.
4 and Table 2).

While the differentially expressed genes detected in this
study provide evidence of a pre-existing gene expression
program most likely caused as a result of M. bovis infection
in the diseased cattle, other confounding factors could be
responsible for some of the changes detected. Changes or
fundamental differences in cell subpopulations between
animals and the separation of PBMC from an in vivo
immunosuppressive environment [24] into culture media
may have affected some gene expression patterns.
Although there was no evidence at post-mortem examina-
tion of clinical disease in the cattle caused by other infec-
tious agents, the presence of undetected pathogens may
have generated host immune responses in either group of
cattle that could have accounted for some of the transcrip-
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tional changes detected. In addition, it is important to
acknowledge that the control and infected cattle were
sampled from different herds, and that this may represent
a confounding factor in the analysis of gene expression
differences between the groups.

Genes encoding adaptor and mediator molecules of the
TLR activation pathway were also profiled by real time
qRT-PCR to examine cellular pathways contributing to the
differential response between BTB-infected and control
animal groups. The gene encoding the Toll-interacting
protein (TOLLIP), a negative regulator of TLR signalling
[30] was examined and gene expression was significantly
increased in both the control and BTB-infected animal
groups (4.32 fold and 2.33 fold, respectively) in response
to bovine tuberculin stimulation. TOLLIP has previously
been found to impair TLR-2 and TLR-4 activation of NF-
kB [30]; therefore, it might be expected to prevent the
downstream signalling from TLR-2 and TLR-4 in healthy
control and BTB-infected cattle samples respectively.
However, significant increased expression of NFKB1 and
genes encoding mediators of NF-xB (CHUK and IKBKB,
Fig. 4 and Table 2), coupled with differential expression of
over 250 spot features on the microarrays suggested that
proinflammatory signalling was not inhibited in the BTB-
infected animal samples. Interestingly, another TLR-4-
specific accessory molecule, Toll-like receptor adaptor
molecule 2 (TICAM2)[31], discovered in studies of M.
tuberculosis infection in mice can bypass the inhibitory
effects of TOLLIP to transmit cell signals [35] leading to
increased expression of the NFKB1 gene [31]. Expression
of the TICAM?2 gene was examined using real time qRT-
PCR and was found to be increased in the BTB-infected
animal samples only (1.28 fold, Fig. 4 and Table 2). The
increased expression of TICAM2 may possibly provide a
mechanism through which proinflammatory gene activa-
tion is regulated in BTB-infected animals (Fig. 2a).

Our results are consistent with proposed mechanisms that
drive an ineffective T;;2 type response and contribute to
the outcome of BTB infection in cattle. It has been sug-
gested that the T};1/T};2 bias of the immune response can
be determined by specific TLRs [36]. Furthermore, TLR-2
activation is a less efficient method of proinflammatory
gene activation and may play a role in TLR-2 mediated
immunosuppression [37].

In the present study, increased expression of the IL10 and
TGFB1 genes was detected in the BTB-infected group in
response to bovine tuberculin stimulation (Fig. 4) and
elsewhere this has been associated with decreased ability
of PBMC and macrophages to restrict mycobacterial
growth in both humans [38,39] and mice [40,41]. Fur-
thermore, IL-10 has been implicated in the suppression of
the proinflammatory immune response and subversion of
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the host bacteriocidal immune response [42]. The results
of the present study suggest that the 16-fold increased
expression of the IFNG gene (Table 2) may drive the
changes in gene expression detected in the BTB-infected
animal group. In addition, although the IL10 gene is sig-
nificantly increased in expression by 1.23 fold (Table 2),
this may be insufficient to compete with the proinflam-
matory effects of IFN-y. In this regard, it has been previ-
ously shown that the ratio of pro- and anti-inflammatory
cytokines will determine the overall outcome of the
immune response and subsequent correlated gene activa-
tion and/or repression [43,11].

In many countries the presence of M. bovis-infected wild-
life can act as reservoirs of BTB infection for livestock and
there is increased information available on the host
response to infection in a variety of these species [44,45].
In our previous study [24], transcriptional profiling of
infected and non-infected control animals in the absence
of exogenous antigen stimulation demonstrated
decreased expression of MHC class II molecules, and sim-
ilar findings have been reported in deer in response to nat-
ural TB infection [46].Thacker and colleagues
characterised the immunological responses of peripheral
blood leukocytes (PBL) from M. bovis-infected and non-
infected white-tailed deer to infection by monitoring
cytokine gene expression after exogenous antigen stimula-
tion [44]. The infected deer displayed a significant 75-fold
increase in the expression of the proinflammatory
cytokine, IFN-y, comparable to the response detected in
cattle during the present study. One notable difference
was that the increase in IL10 and TGFB1 gene expression
in response to bovine tuberculin stimulation of PBMC
from infected cattle was not detected in infected deer.
However, post-stimulation time points differed between
the two studies and this could account for the differences
observed.

The results of the present study are consistent with work
carried out on Johne's disease in cattle caused by M. avium
subsp. paratuberculosis (MAP) [47,48]. Those studies also
detected a novel gene expression profile in PBMC from
MAP-infected animals that was both rapid and transient
across time [47,48]. In a separate study, stimulation of
PBMC with MAP was shown to suppress the proinflam-
matory immune response [49], and the authors also
found evidence of a dynamic T,;1/T;2 type response,
which eventually gives way to a predominantly T2 like
response in MAP-infected animals [50]. Such a temporal
expression pattern, where peak production of IL-10 lags
behind that of IFN-y, has also been demonstrated in rela-
tion to MAP stimulation of bovine PBMC [50]. An impor-
tant outcome from these studies involving both MAP-
infected and BTB-infected cattle, is that the host gene
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expression profiles resulting from infection by these two
related mycobacteria are remarkably similar.

Conclusion

The outcome of infection with M. bovis is determined by a
complex and dynamic interaction between the host
immune system and the pathogen [51]. The cellular sig-
nalling events governing the immune responses that form
the basis of cell-mediated immune BTB diagnostic tests
remain incompletely understood. We hypothesized that
the PBMC from BTB-infected cattle would display a dis-
tinct gene expression program resulting, from previous
exposure to M. bovis. The gene expression program
observed in PBMC from BTB-infected cattle was substan-
tially different than in PBMC from control animals sug-
gesting that BTB infection can modulate the immune
response to bovine tuberculin. To the best of our knowl-
edge, this work is also among the first to report the
involvement of TLRs and TLR accessory molecules in this
immune response.

The results demonstrate that PBMC from BTB-infected
animals are highly responsive to bovine tuberculin stimu-
lation in wvitro, due possibly to their removal from an
immunosuppressive environment in vivo [24]. Specific
genes are commonly involved in the differential response
of both control and BTB-infected animals indicating coor-
dinated regulation of the innate immune response to anti-
gen stimulation. The differential responses of a number of
genes involved in cell signalling pathways regulating both
the innate and adaptive immune response is indicative of
a pre-existing gene expression program. The results are in
agreement with other human and mouse models using M.
tuberculosis [52-55] and bovine studies using MAP. The
specific genes activated in response to mycobacterial
infection have yet to be fully elucidated, but the overall
response profiles seem to be similar among different
mammalian hosts (Homo sapiens, Mus musculus and Bos
taurus) infected with mycobacterial pathogens (M. tuber-
culosis, M. bovis and M. avium subsp. paratuberculosis). The
results also demonstrate the usefulness of employing the
natural host for M. bovis infection as a model to investi-
gate the immune response to tuberculosis using func-
tional genomics technologies.

Future work will concentrate on the elucidation of cell sig-
nalling pathways detected during the immune response to
bovine tuberculin and their potential roles in the immune
repression detected in vivo [24]. It is clear that a pre-exist-
ing immune program in PBMC from BTB-infected ani-
mals influences the response to bovine tuberculin
stimulation and may affect the outcome of infection.
Understanding the causes and consequences of this novel
gene expression program should ultimately lead to a more
complete understanding of the immune response to BTB
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and inform the development of novel or improved future
diagnostics and vaccines.

Methods

Experimental animals and infection status

Sixteen cattle were used for this study. The eight infected
animals were chosen from herds with a history of M. bovis
infection. The animals were selected on the basis of the
skin-fold thickness response to bovine and avian tubercu-
lin in the single intradermal comparative tuberculin test
(SICTT). The SICIT reactor animals were selected where
the skin-fold thickness response to PPD-bovine exceeded
that of PPD-avian by at least 12 mm. All of these animals
were also measured positive in a whole blood IFN-y assay
[56]. The cattle were confirmed positive for tuberculosis
following detailed post-mortem pathological examination
and/or culture. There was no evidence at post-mortem
examination that any of the BTB-infected animals had
clinical diseases caused by other infectious agents. Bron-
chial, mediastinal, submandibular, retropharyngeal,
mesenteric and hepatic lymph nodes and lungs were
examined macroscopically for tuberculosis lesions. Sus-
pected lesions were cultured on Stonebrinks and Lowen-
stein-Jensen media at 37°C for eight weeks to detect M.
bovis [57]. The eight non-infected control animals were 2—
3 year old unrelated females selected from a Holstein Frie-
sian herd without a recent history of tuberculosis and
were SICTT and IFN-y test negative. This control animal
group also underwent comprehensive testing for the fol-
lowing infections: Brucellosis (Brucella abortus), Johne's
disease (Mycobacterium avium subsp. paratuberculosis),
infectious bovine rhinotracheitis (bovine herpesvirus-1),
salmonella (Salmonella typhimurium) and bovine viral
diarrhoea (Pestivirus).

Blood sampling and analysis

400 ml of blood was collected from each animal in sterile
heparinised bottles. Five ml of blood was used for haema-
tological analysis and leukocyte cell population subsets
were compared between infected and control groups as
previously described [24].

PBMC separation, culture, RNA extraction and quality
control

PBMC were isolated using the Percoll™ gradient method
as previously described [58]. PBMC were seeded at 107 per
flask and cultured in RPMI 1640 culture medium supple-
mented with 5% FBS, 0.1% mercaptoethanol and 0.1%
gentamicin. A total of 48 tissue culture flasks represented
16 individual PBMC samples (BTB-infected [n = 8] and
healthy control [n = 8]) per time point at 0 h (pre-stimu-
lation), 3 h and 12 h post-stimulation with bovine tuber-
culin. Previous work in our laboratory using PBMC from
BTB-infected cattle indicated that these time points would
be the most appropriate for further analysis [22]. All
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PBMC samples were cultured overnight at 37°C in 5%
CO, to minimize noise in gene expression measurements
potentially introduced by the mechanical disruption of
cells associated with PBMC isolation. After cells were har-
vested for time point 0, remaining flasks were stimulated
using 50 pug/ml bovine tuberculin and incubated for 3 h
and 12 h at 37°Cin 5% CO,. Residual cells not seeded for
culture in either treatment were immediately dissolved in
3 ml TriReagent® (Molecular Research Centre Inc., Cincin-
nati, OH) and frozen in 1.5 ml cryotubes at -80°C for use
as a common reference RNA (CRR) pool. Total RNA was
extracted from PBMC harvested after 3 h and 12 h post-
stimulation using a combined TriReagent®, DNase treat-
ment and Qiagen RNeasy® method (Qiagen Ltd., Crawley,
UK) according to the manufacturers' instructions. The
integrity and stability of RNA samples is crucial for gene
expression analyses using microarray technology; there-
fore, RNA yield and quality were assessed using an Agilent
2100 Bioanalyzer (Agilent Technologies Ireland Ltd.,
Dublin, Ireland). The two-step method for RNA extraction
described above was found to produce RNA of high yield
and quality (ratios of 18S to 28S ribosomal RNA averaged
> 1.6).

Microarray experimental design

The 3,888 feature BOTL-5 immunogenetic microarray sys-
tem used has been described previously [59]. The NCBI
GEO platform accession for the BOTL-5 microarray is
GPL5751. The immunobiology-targeted BOTL-5 array
contains 1,391 genes or ESTs spotted in duplicate with
multiple additional control features (blank spots, nega-
tive spots, housekeeper genes) and is an expanded version
of the BOTL-4 array described previously by our group
[60,22]. A reference design was used for microarray
hybridizations, such that all RNA samples were labelled
using Cy3 and co-hybridized with Cy5 labelled common
reference RNA (CRR) pool as described previously [24].
Thirty-six arrays were hybridized in total, representing six
individual animal PBMC samples from each treatment
group pre-stimulation, and at 3 h and 12 h post-stimula-
tion with bovine tuberculin, as shown in Fig. 1. It was
hypothesized that the CRR pool would display similar
mRNA expression levels and gene coverage as the target
samples, therefore allowing flexible, accurate and consist-
ent comparison of gene expression data across a time
course without arbitrarily pairing animals from different
groups [61]. The CRR pool contained equal amounts of
total RNA from the treated and control animal groups.

cDNA labelling, hybridisation and scanning

c¢DNA synthesis, Cy3 and Cy5 labelling and microarray
hybridizations were performed as previously described
[24]. Each labelling reaction contained a total of 8 ug total
RNA per sample and 10 pg total RNA from the CRR. Puri-
fied labelled samples were combined (either an infected
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or a control sample combined with a CRR sample) and
co-hybridized on the BOTL-5 microarrays using SlideHyb
Glass Array Hybridization Buffer #3 (Ambion Ltd.).
Microarray hybridizations were performed using a Tecan
HS400 hybridisation station (Tecan Ltd.) with the proto-
col as previously described [24]. Microarrays were
scanned immediately using a GenePix 4000B microarray
scanner (Molecular Devices Ltd.).

Data processing, normalization and analysis

The working signal intensities were generated using the
mean foreground intensity values minus the median
background intensity values as outputted from the Gene-
Pix Pro 5.0 results file. Two methods of data pre-process-
ing were used to flag unreliable data as previously
described [24].

Median-based normalization, which corrects the data
such that all arrays have the same median [62] was used
as previously described [24]. Microarray data analysis
(including analyses of the microarray-platform specific
false discovery rate) was carried out using class compari-
sons between experimental groups (parametric t-tests) as
implemented in BRB ArrayTools version 3.0 [63] as previ-
ously described [24]. Each gene on the BOTL array is rep-
resented by duplicate gene spot features. Analyses of the
false discovery rate (FDR) according to methods described
previously [24] demonstrated that the differentially
expressed gene spot feature lists were robust and reliable.
Therefore, to maximise information from these experi-
ments we refer to numbers of differentially expressed gene
spot features in the Results section.

Real time qRT-PCR validation of within group differential
gene expression profiles

Replicate spot features on the BOTL array were used as a
check for the quality control of gene expression data. Each
spot was analyzed individually thereby allowing the indi-
vidual genes to be flagged if expression results from two or
more replicates were statistically different. This enabled
the identification of differentially expressed genes that
had a low probability of being false positives and expe-
dited the choice of target genes for real time qRT-PCR val-
idation of the microarray results.

The H3 histone family 3A gene (H3F3A) was used as a
qRT-PCR reference gene for the present study. This gene
displayed the least gene expression differences among the
12 control and BTB-infected samples analyzed using the
BOTL microarray platform across the time course (data
not shown). Gene expression differences detected from
total RNA samples from each of the 48 samples (repre-
senting eight animals per treatment group) using the
BOTL microarray platform were validated using a
MX3000P™ fluorescence detection real-time PCR system
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Table 4: Real time qRT-PCR primer sequences, optimum primer concentrations and amplicon sizes for all validated genes.

Gene symbol

Forward primer (5'-3")

Reverse primer (5'-3")

Amplicon size (bp) Primer conc. (nM)

AKTI GGTGATCCTGGTGAAGGAGA GAGTACTTCAGGGCCGTCAG 159 900
CHUK CCGGAAGCTACTCAACAAACCA CATGCAAATATCGGATCCCAG 101 900
H3F3A CATGGCTCGTACAAAGCAGA ACCAGGCCTGTAACGATGAG 136 100
IFNG TGATGGCATGTCAGACAGCA GGCACAAGTCATATAGCCTGACA 51 300
C
IKBKB CCTGAAGATTGCGTGTAGCA ACTCTGGTCCTGCTCCTTCA 229 300
ILio CTTGTCGGAAATGATCCAGTTTT  TCAGGCCCGTGGTTCTCA 66 300
ILIA GCTATGAGCCACTTCGTGAGGA TGCCACCATCACCACATTCTC 110 300
ILIRI GAATCCTTTAAACAGAAGAA TGGATGTATTAGTTGTATGTAT 145 300
ILIR2 CCTGTGATCATCTCTTCCCACC GCAGAGTGGTTGTGTGTATGCC 106 300
ILIRN CCCCACAACCCTTTCATCAA GGTCAGGAGAAGCCACATTTG 68 300
IL8 AGGTGGTGTTTGAAGCCCAT CACAACCTTCTGCACCCACTT 123 900
IRAK | TCAGCGACTGGACATCCTTCT GGACGTTGGAACTCTTGACATC 101 300
LTA CCGAGGAGGACTCAGAAACTGA  ACGCCTCTTCTTTCTTCGCCT 1 300
MAPAPK2 GGACGTCAAGGAGGAGATGA CTTCAGAAGCAGAGGGTTGG 106 300
MYD88 TGCCTCTGTGTGCCTGTACATC AGATATGGACCATGGCTGCA 134 300
NCORI CCTGTGAGAACGAAAACATCAAA TTGAGCCTGGTCTCTGATGGT 79 900
C
NFKBI ATACTGAACAATGCCTTCCGG CACGTCAATGGCCTCAGTGTAG 135 300
TGFBI TGCTTCAGCTCCACAGAAAAGA AGGCAGAAATTGGCGTGGT 116 300
TICAM2 TGGAGAAGACCCACCTTTGTTT TAGATCCTCAGCTCTGCTTCGG 163 300
TLR2 CCATTGACAAGAAGGCCAT AACCCTTCCTGCTGAGTCTCAT 106 900
TLR4 CGAGAGCACCTATGATGCCTTT ATGGCCACCCCAGGAATAAA 144 900
TNF TCTACCAGGGAGGAGTCTTCCA GTCCGGCAGGTTGATCTCA 68 300
TOLLIP AAATGAGAACACAGTGCGCTCT CATCCCATTAAGCCTACGTGG 186 300

(Stratagene Europe) as previously described [24]. Gene-
specific oligonucleotide primer pairs were designed using
Primer Express®version 2.0 software (Applied Biosystems)
and synthesized commercially (Invitrogen Ltd.). Experi-
mental details for these primer pairs are shown in Table 4.
Further analysis of specific cell regulatory pathways using
real-time qRT-PCR concentrated on downstream media-
tor molecules of TLR signalling to complement those dif-
ferentially expressed on the microarray. All reactions were
performed in duplicate and amplicons for the H3F3A ref-
erence gene mRNA transcript were used to normalize
expression data for the target genes. Real time qRT-PCR
data were analysed using the 2-44Ct method [64] within
each group, and not between to minimize stochastic error
due to cell subpopulation differences between BTB-
infected and control animals as previously described [24].
Real time qRT-PCR gene expression log, values from both
groups were compared using Student's t-test.
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Additional file 1

Table S1, BOTL-5 microarray spot features that showed significant differ-
ential expression for the BTB-infected animal group (n = 6) between Tj
and T, (3 h versus 0 h), and between T,, and T; (12 h versus 3 h) post-
stimulation with PPDb. Green shaded rows detail 250 BOTL-5 microar-
ray spot features that showed significant differential expression for the
BTB-infected animal group (n = 6) between T;and T, (3 h versus 0 h)
post stimulation with bovine tuberculin. Yellow shaded rows detail 80
BOTL-5 microarray spot features that showed significant differential
expression for the BTB-infected animal group (n = 6) between T;, and T;
(12 h versus 3 h) post stimulation with bovine tuberculin. [NB. Spot fea-
tures are ranked by fold-change for each time point comparison].

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-

2164-9-447-S1.pdf]
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Additional file 2

Table S2, BOTL-5 microarray spot features that showed significant differ-
ential expression for the non-infected control animal group (n = 6)
between T;and T, (3 h versus 0 h), and between T,, and T, (12 h versus
3 h) post-stimulation with PPDb. Green shaded rows detail 88 BOTL-5
microarray spot features that showed significant differential expression for
the non-infected control animal group (n = 6) between T;and T, (3 h ver-
sus 0 h) post stimulation with bovine tuberculin. Yellow shaded rows
detail 56 BOTL-5 microarray spot features that showed significant differ-
ential expression for the non-infected control animal group (n = 6)
between T, and T; (12 h versus 3 h) post stimulation with bovine tuber-
culin. [NB. Spot features are ranked by fold change for each time point
comparison].

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-9-447-S2.pdf]
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