
1

Pattern Recognition Letters
journal homepage: www.elsevier.com

Forward-Stagewise Clustering: An Algorithm for Convex Clustering

Mimi Zhanga,∗∗

aSchool of Computer Science and Statistics, Trinity College Dublin, Dublin 2, Ireland

ABSTRACT

This paper proposes an exceptionally simple algorithm, called forward-stagewise clustering, for con-
vex clustering. Convex clustering has drawn recent attention since it nicely addresses the instability
issue of traditional non-convex clustering methods. While existing algorithms can precisely solve
convex clustering problems, they are sophisticated and produce (agglomerative) clustering paths that
contain splits. This motivates us to propose an algorithm that only produces no-split clustering paths.
The approach undertaken here follows the line of research initiated in the area of regression. Specif-
ically, we apply the forward-stagewise technique to clustering problems and prove that the algorithm
can only produce no-split clustering paths. We then modify the forward-stagewise clustering algorithm
to deal with noise and outliers. We further suggest rules of thumb for the algorithm to be applicable to
cases where clusters are non-convex. The performance of the proposed algorithm is evaluated through
simulations and a real data application.

c© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

The field of clustering is crowded with diverse methods that
make particular assumptions about data and address differ-
ent issues. One limitation of traditional clustering methods is
the non-convexity of the corresponding optimization problems.
Another common challenge comes from the hyper-parameter
deciding in terms of the number of clusters. Recently, sev-
eral convex clustering methods have been proposed (Hocking
et al., 2011; Lindsten et al., 2011). Convex clustering leverages
sparsity-inducing norms and enjoys many attractive theoretical
properties. Particularly, convex clustering applies convex re-
laxations on traditional non-convex clustering criteria and does
not need the cluster number a priori or careful initializations.
Speed and scalability of these algorithms make them increas-
ingly popular for clustering analysis of big data.

Let XXX ∈Rn×p denote the data matrix: XXX ′= [xxx1, . . . ,xxxn], where
the prime represents the transpose operator, and each object xxxi
(i = 1, . . . ,n) is described by p features. Hocking et al. (2011)
formulate the clustering of {xxx1, . . . ,xxxn} as a convex optimiza-

∗∗Corresponding author: Tel. +353-1896-2726.
e-mail: Mimi.Zhang@tcd.ie (Mimi Zhang)

tion problem:

min
UUU∈Rn×p

Fλ (UUU) = min
UUU∈Rn×p

1
2
‖XXX−UUU‖2

F +λ ∑
i< j

wi j‖uuui−uuu j‖q,

(1)
where ‖ · ‖F is the Frobenius norm, and ‖ · ‖q is the `q norm
with q ∈ {1,2,∞}. UUU ′ = [uuu1, . . . ,uuun], where uuui (i = 1, . . . ,n) is
the centroid of the cluster that object xxxi belongs to. Two objects
xxxi and xxx j with uuui =uuu j are said to belong to the same cluster. λ is
a nonnegative tuning parameter, and the wi j’s are nonnegative
weights. The weights {wi j : 1≤ i < j ≤ n} are usually defined
to be distance-dependent, e.g. wi j = exp(−γ‖xxxi−xxx j‖2), in or-
der to make the estimates of the centroids enjoy asymptotic con-
sistency, in the manner of the adaptive lasso (Zou, 2006). The
second term in (1) is a regularizer, putting a constraint on the
number of distinct cluster centroids. If λ = 0, the minimum is
attained when UUU =XXX , and each point xxxi occupies a unique clus-
ter uuui. As λ increases, the cluster centroids begin to coalesce.
For sufficiently large λ , all related points will coalesce into a
single cluster.

The objective function Fλ (UUU) is strictly convex and coercive,
and hence problem (1) has a unique minimum for each value of
λ . The well-known alternating direction method of multipliers
(Boyd et al., 2011), abbreviated as ADMM, can be applied to
solve problem (1). Specifically, the ADMM solves the equiva-

2

lent problem

min
UUU ,ZZZ

1
2
‖XXX−UUU‖2

F +λ ∑
i< j

wi j‖zzzi j‖q +
ρ

2 ∑
i< j
‖uuui−uuu j−zzzi j‖2

2,

subject to uuui−uuu j−zzzi j = 0, 1≤ i < j ≤ n.

ρ is a nonnegative tuning parameter. Define a matrix ZZZ ∈
Rp× n(n−1)

2 , with the zzzi j’s being its columns. The corresponding
Lagrangian is

Lρ(UUU ,ZZZ,{vvvi j}) =
1
2
‖XXX−UUU‖2

F +λ ∑
i< j

wi j‖zzzi j‖q

+
ρ

2 ∑
i< j
‖uuui−uuu j−zzzi j‖2

2 +∑
i< j

vvv′i j(uuui−uuu j−zzzi j),

where each vvvi j is a vector of Lagrangian multipliers. For t =
0,1,2, . . ., the (t+1)st iteration of the ADMM algorithm consists
of the following 3 steps:

UUU t+1← argmin
UUU

Lρ(UUU ,ZZZt ,{vvvt
i j});

ZZZt+1← argmin
ZZZ

Lρ(UUU t+1,ZZZ,{vvvt
i j});

vvvt+1
i j ← vvvt

i j +ρ(uuut+1
i −uuut+1

j −zzzt+1
i j).

For many problems of interest, the updates of UUU and ZZZ can be
evaluated by either an explicit formula or an efficient algorithm.
Moreover, the minimization can be carried out separately in
parallel. Further algorithmic developments can be found in Chi
and Lange (2015), Hallac et al. (2015), Chen et al. (2015) and
Han and Zhang (2016).

In this paper, we propose an extremely simple algorithm for
problem (1) with q = 1, utilizing the idea of forward stagewise.
The forward-stagewise algorithm developed in Section 3 may
take many more iterations than existing convex clustering algo-
rithms. However, the computation of each iteration is excep-
tionally simple. Furthermore, compared with existing convex
clustering algorithms, the forward-stagewise approach gives a
smoother clustering path; that is, the clustering path does not
have any split. Under the `1 norm penalty, problem (1) is a
fused lasso (Tibshirani et al., 2005). The lasso has undergone
intense study, and many of its properties cast the lasso in a fa-
vorable light. The equivalence between the (limiting) forward-
stagewise and lasso paths lends credibility to forward stagewise
as a regularized estimator. At a high level, forward stagewise, in
spite of being simple, can produce estimates that stand along-
side those defined by the relatively sophisticated optimization
problem (Tibshirani, 2015).

The rest of this paper is organized as follows. Section 2
briefly discusses related work from the literature, focusing on
the theoretical aspect. Section 3 presents the forward-stagewise
algorithm and its properties. Section 4 discusses how to deal
with noise and outliers. In Section 5, we conduct a detailed em-
pirical analysis of our approach. Finally, the paper concludes
in Section 6 with a summary of new insights and recommenda-
tions for future research.

2. Related Work

Theoretical properties of convex clustering have been inves-
tigated for the particular case wi j = 1 (Zhu et al., 2014; Tan
and Witten, 2015; Radchenko and Mukherjee, 2017). Zhu et al.
(2014) show that if all samples are drawn from two clusters,
each being a cube, then problem (1) is guaranteed to success-
fully recover the cluster membership provided that the distance
between the two cubes is greater than a threshold; the thresh-
old depends on the cube size and the ratio between the num-
bers of the samples in each cluster. Tan and Witten (2015)
give the range of the tuning parameter λ such that convex clus-
tering yields a non-trivial solution with more than one cluster.
They also provide an unbiased estimator of the degrees of free-
dom and establish finite sample bounds for the prediction er-
ror (assuming that the elements in the difference matrix XXX −UUU
are independent sub-Gaussian random variables). Radchenko
and Mukherjee (2017) develop a computationally efficient sam-
ple merging procedure (for producing a path of solutions) and
an equivalent sample splitting procedure (which can recover
all the corresponding cluster splits by solving a sequence of
maximization problems). From the sample splitting procedure,
Radchenko and Mukherjee (2017) further develop a population
splitting procedure, showing that under some very mild regu-
larity conditions the sample splitting procedure consistently es-
timates its population analog. On the basis of new perspectives
gained from the population splitting procedure, they propose
a post-processing modification of the original sample merging
procedure by keeping only the merges with significant empiri-
cal sizes.

Wang et al. (2016) and Sui et al. (2018) point out that the
Euclidean metric treats each feature equally, and hence the per-
formance of a convex clustering algorithm can deteriorate sig-
nificantly in the presence of outlier features. Wang et al. (2016)
assume that the data matrix can be decomposed into two parts:
XXX = UUU +QQQ, where the clustering component UUU captures the
clustering structure, while the robust component QQQ identifies
the outlier features in the data. The convex clustering is per-
formed on the purified data (XXX −QQQ). The objective function
is

min
UUU ,QQQ

1
2
‖(XXX−QQQ)−UUU‖2

F +λ1 ∑
i< j

wi j‖uuui−uuu j‖q +λ2‖QQQ‖2,1,

where the group-lasso penalty is used to regularize QQQ and
achieve the desired column-wise sparsity. ‖ · ‖2,1 is the `2,1
norm, i.e., the sum of `2 norm. If a feature is useful, the cor-
responding column in QQQ will be zero; if a feature is outlier, the
corresponding column in QQQ will be non-zero for all elements.
Wang et al. (2016) iteratively fix one of the {UUU , QQQ} matrices
and optimize w.r.t. the other, until certain convergence criteria
are achieved. Sui et al. (2018) modify problem (1) by introduc-
ing a positive definite matrix QQQ:

min
UUU ,QQQ

1
2

n

∑
i=1

(xxxi−uuui)
′QQQ(xxxi−uuui)+λ ∑

i< j
wi j‖uuui−uuu j‖q,

subject to logdet(QQQ)≥ 0.

3

The structure of the matrix QQQ shows which features are more
congruent with the cluster assignment. In particular, when QQQ is
diagonal, the larger diagonal values of QQQ correspond to the fea-
tures that are of higher relevance or of lower noise corruptions.
To solve the above optimization problem, Sui et al. (2018) pro-
pose an alternating procedure that alternates between minimiz-
ing over UUU and minimizing over QQQ. More specifically, for a
fixed QQQ, the optimization problem can be solved in the ADMM
framework, while for a fixed UUU , the optimization problem ad-
mits a closed-form solution.

Define ÛUU(λ)′ = [ûuu1(λ), . . . ,ûuun(λ)], where ÛUU(λ) =
argminUUU Fλ (UUU). A convex clustering algorithm usually starts
with λ = 0, corresponding to the hierarchical agglomerative
clustering. However, for existing algorithms, the solution path
to (1) generally can split: ûuui(λ1) = ûuu j(λ1), yet ûuui(λ2) , ûuu j(λ2)
for certain λ2 > λ1. Indeed, this phenomenon is ubiquitous in
the lasso regression, where a coefficient path can pass through
zero. The splitting of the solution path in convex clustering
implies that a merged cluster then splits into two sub-clusters.
If this is the case, the corresponding agglomerative structure
is no longer a tree and difficult to interpret. Hocking et al.
(2011) propose different algorithms for the three types of
norms: ‖ · ‖1, ‖ · ‖2 and ‖ · ‖∞. They prove that, when wi j = 1
and q = 1, the solution path contains no split, and hence the
inferred structure is a tree. Chiquet et al. (2017) prove that, for
any `q norm, the solution path contains no split if wi j = ni×n j,
where ni is the size of cluster uuui. However, for such weights,
the recovered tree structure is often unbalanced: two centroids
initially close to one another at λ = 0 fuse relatively late in the
path of solutions. Distance-dependent weights should ensure
that close neighbors fuse quickly. Hence, Chiquet et al. (2017)
further prove that, for the `1 norm, the solution path contains
no split if wi j = ni × n j × h(|x̄xxc(i) − x̄xxc(j)|), where h(·) is a
decreasing positive function, and x̄xxc(i) is the average of the
objects in cluster c(i) – the cluster that object xxxi belongs to.

The forward-stagewise strategy for regression is a “slow
learning” method. However, it turns out that this “slow fitting”
is a form of regularization and can present considerable benefits
in terms of the generalization error of the fitted models. Efron
et al. (2004) show that the sequence of forward-stagewise es-
timates and the solution path of the lasso are both piece-wise
linear. Hastie et al. (2007) show that the infinitesimal forward
stagewise fits a monotone version of the lasso, which optimally
reduces at each step the loss function for a given increase in
the arc length of the coefficient path. Even in situations where
stagewise estimates differ from lasso solutions, the former esti-
mates can still perform competitively with the latter. By modern
computational resources, forward stagewise is computationally
cheap: to trace out a path of regularized estimates, we repeat
very simple iterations which could be trivially parallelized. In-
spired by the stable feature of forward-stagewise solution paths,
this paper proposes the forward-stagewise strategy for cluster-
ing, with the aim of obtaining merging-only clustering paths.

3. Forward-Stagewise Clustering

When q = 1, the objective function Fλ (UUU) is separable, and
hence the minimization can be carried out separately in parallel

for each dimension. We might let the generic vector xxx represent
an arbitrary column of XXX , and uuu the corresponding column of
UUU . Solving (1) amounts to solving p minimization problems of
the following form:

ûuuλ = argmin
uuu∈Rn

1
2
‖xxx−uuu‖2

2 +λ ∑
i< j

wi j|ui−u j|. (2)

Define a (sparse) matrix DDD ∈ R
n(n−1)

2 ×n:

DDD =

w12 −w12 0 0 0 · · · 0 0
w13 0 −w13 0 0 · · · 0 0
...

...
...

...
... · · ·

...
...

w1n 0 0 0 0 · · · 0 −w1n
0 w23 −w23 0 0 · · · 0 0
0 w24 0 −w24 0 · · · 0 0
...

...
...

...
... · · ·

...
...

0 w2n 0 0 0 · · · 0 −w2n
...

...
...

...
... · · ·

...
...

0 0 0 0 0 · · · w(n−1)n −w(n−1)n



.

Then problem (2) can be rewritten as

ûuuλ = argmin
uuu∈Rn

1
2
‖xxx−uuu‖2

2 +λ‖DDDuuu‖1, (3)

which is a generalized lasso problem (Tibshirani and Taylor,
2011). Problem (3) is difficult to analyze directly because the
nondifferentiable `1 penalty is composed with a linear transfor-
mation of uuu. Hence, we turn to the dual problem of (3) and
recover the primal solution ûuuλ from the dual solution.

Problem (3) is equivalent to

min
uuu∈Rn,zzz∈R

n(n−1)
2

1
2
‖xxx−uuu‖2

2 +λ‖zzz‖1, subject to DDDuuu−zzz = 0,

for which the dual problem is

β̂ββ λ = argmin

βββ∈R
n(n−1)

2

f (βββ)=
1
2
‖xxx−DDD′βββ‖2

2, subject to g(βββ)= ‖βββ‖∞≤ λ .

(4)
While (3) is strictly convex, its dual problem (4) is not strictly
convex, since DDD is not of full rank. Therefore, the solution to
(4) is not unique. It is easy to prove that the primal and dual
solutions satisfy the relationship

ûuuλ = xxx−DDD′β̂ββ λ . (5)

Equation (5) implies that, given a dual solution, the correspond-
ing primal solution can be uniquely determined.

Tibshirani (2015) develops a general stagewise algorithm, in
Algorithm 1, for problems of the form:

min
βββ

f (βββ), subject to g(βββ)≤ λ ,

with the assumptions that f (·) and g(·) are convex, and f (·) is
differentiable. Algorithm 1 can be treated as gradient descent:

4

Algorithm 1 General Stagewise Algorithm

1: Fix ε > 0 and λ = 0.
2: Initialize βββ 0 = β̂ββ 0 = 000.
3: for k = 1,2,3, . . ., do
4: ∆ ∈ argmin

zzz
〈∇ f (βββ k−1), zzz〉 subject to g(zzz)≤ ε;

5: βββ k = βββ k−1 +∆;
6: end for

f (βββ k−1) decreases fastest if one goes from βββ k−1 in the direction
−∇ f (βββ k−1). However, we want to counterbalance the greedi-
ness by forcing the increment g(βββ k)− g(βββ k−1) to be small. If
g(·) satisfies the triangle inequality (e.g., when g(·) is a norm),
then the increase in the value of g(·) between successive iterates
is bounded by ε:

g(βββ k)−g(βββ k−1) = g(βββ k−1 +∆)−g(βββ k−1)≤ g(∆)≤ ε.

To obtain the solution path of the primal problem (3) for var-
ious values of λ , we can apply Algorithm 1 on the dual problem
(4) to obtain the dual solution path {βββ k}. Then the primal so-
lution path {uuuk} can be readily determined from {βββ k} via (5);
the λ value for uuuk is ‖βββ k‖∞. The idea is represented succinctly
by forward-stagewise clustering in Algorithm 2, which is ex-

Algorithm 2 Forward-Stagewise Clustering

1: Fix ε > 0.
2: Initialize βββ 0 = 000 and uuu0 = xxx.
3: for k = 1,2,3, . . ., do
4: βββ k = βββ k−1 + ε× sign(DDDuuuk−1);
5: uuuk = xxx−DDD′βββ k;
6: end for

plained as follows. For problem (4), we have

∇ f (βββ k−1) =DDD(DDD′βββ k−1−xxx) =−DDDuuuk−1,

where we have utilized the relationship (5). Hence, step 4 in
Algorithm 1 reduces to

∆ ∈ argmax
zzz
〈DDDuuuk−1, zzz〉, subject to ‖zzz‖∞ ≤ ε

It is easy to prove that: if [DDDuuuk−1]i < 0, then ∆i = −ε; if
[DDDuuuk−1]i > 0, then ∆i = ε . If [DDDuuuk−1]i = 0, we set ∆i = 0, which
makes the dual solution unique. Hence, step 5 in Algorithm
1 becomes βββ k = βββ k−1 + ε × sign(DDDuuuk−1). Here, sign(·) is to
be interpreted componentwise with the convention sign(0) = 0.
Step 5 in Algorithm 2 calculates the corresponding primal so-
lution.

The computational load of Algorithm 2 depends mainly on
the two matrix multiplications: one by DDD and one by DDD′. Since
DDD is sparse, the computation of steps 4 and 5 is cheap. It
may seem that the memory requirement for the matrix DDD is
high, and the algorithm will deplete all available memory when
dealing with big data. However, as DDD has a particular struc-
ture, it can be parsimoniously stored in the form of a vector
(w12,w13, . . . ,w(n−1)n), which reduces the storage from O(n3)

to O(n2). Finally, assuming ûuu is the limit of the sequence
{uuuk}, the number of iterations until convergence is bounded by
O(max{ |ui−ûi|

ε×min{wi j>0:1≤ j≤n} : 1≤ i≤ n}).
The primal update can be expressed succinctly from steps 4

and 5 of Algorithm 2:

uuuk = uuuk−1− ε×DDD′sign(DDDuuuk−1).

Write DDD′ = [ddd1,ddd2, . . . ,dddη], where η = n(n−1)
2 and ddd′i (i =

1, . . . ,η) is the ith row of DDD. The above primal update is equiv-
alent to

uuuk = uuuk−1− ε×
η

∑
i=1

sign(ddd′iuuuk−1)dddi. (6)

If ddd′iuuuk−1 > 0 (i.e., the ith row of DDD is active), then the algorithm
adds −εdddi to uuuk−1 in forming uuuk. Likewise, if ddd′iuuuk−1 < 0, then
the algorithm adds εdddi to uuuk−1. Hence, Equation (6) implies
that Algorithm 2 iteratively shrinks along directions opposite to
the active rows of DDD.

3.1. Identical Weights

It is intuitive that the solution path {uuuk} is piecewise linear.
We below prove that, when the weights {wi j} are identical, the
forward-stagewise clustering path has no splits. Without loss of
generality, assume wi j = 1 for 1≤ i< j≤ n. Then we only need
to prove that |ddd′luuuk| ≤ |ddd′luuuk−1|, ∀ l = 1, . . . ,η . From Equation
(6) we have

ddd′luuuk = ddd′luuuk−1− ε×
η

∑
i=1

sign(ddd′iuuuk−1)ddd′ldddi. (7)

We illustrate the proof through the case dddl = ddd1 =
(1,−1,0, . . . ,0)′. When dddl = ddd1, most of the products ddd′1dddi are
zero, except when dddi ∈ {ddd1, . . . ,ddd2n−3}. Hence we have

u1
k−u2

k =u1
k−1−u2

k−1− sign(u1
k−1−u2

k−1)×2ε

− ε[
n

∑
i=3

sign(u1
k−1−ui

k−1)−
n

∑
i=3

sign(u2
k−1−ui

k−1)].

If u1
k−1 > u2

k−1, then ∑
n
i=3 sign(u1

k−1−ui
k−1)≥∑

n
i=3 sign(u2

k−1−
ui

k−1) and

0 < u1
k−u2

k ≤ u1
k−1−u2

k−1−2ε < u1
k−1−u2

k−1,

given that ε is sufficiently small. Likewise, if u1
k−1 < u2

k−1, then
∑

n
i=3 sign(u1

k−1−ui
k−1)≤ ∑

n
i=3 sign(u2

k−1−ui
k−1) and

0 > u1
k−u2

k ≥ u1
k−1−u2

k−1 +2ε > u1
k−1−u2

k−1.

If u1
k−1 = u2

k−1, then u1
k = u2

k . Combining all the three cases,
we have |ddd′1uuuk| ≤ |ddd′1uuuk−1|. Therefore, all the points will be
grouped into one cluster, and the clustering path does not have
any split.

5

3.2. Non-identical Weights

In the general case when the weights are non-identical, Equa-
tion (7) for dddl = ddd1 = (w12,−w12,0, . . . ,0)′ is equivalent to

u1
k−u2

k = u1
k−1−u2

k−1− sign(u1
k−1−u2

k−1)×2w12ε

− ε[
n

∑
i=3

sign(u1
k−1−ui

k−1)w1i−
n

∑
i=3

sign(u2
k−1−ui

k−1)w2i].

Define Ψ
k−1
12 = ∑

n
i=3 sign(u1

k−1 − ui
k−1)w1i −∑

n
i=3 sign(u2

k−1 −
ui

k−1)w2i, and hence Equation (7) can be further simplified:

u1
k−u2

k = u1
k−1−u2

k−1− ε

[
sign(u1

k−1−u2
k−1)×2w12 +Ψ

k−1
12

]
.

If u1
k−1 > u2

k−1, it is not necessary that Ψ
k−1
12 ≥ 0. Specifically,

with ε being small enough, we have

(1) if −2w12 < Ψ
k−1
12 < 2w12, then |u1

k−u2
k |< |u1

k−1−u2
k−1|;

(2) if Ψ
k−1
12 ≥ 2w12 and u1

k−1 < u2
k−1, then u1

k − u2
k ≤ u1

k−1 −
u2

k−1 < 0;

(3) if Ψ
k−1
12 ≤ −2w12 and u1

k−1 > u2
k−1, then u1

k − u2
k ≥ u1

k−1−
u2

k−1 > 0;

(4) if Ψ
k−1
12 ≥ 2w12 and u1

k−1 > u2
k−1, or if Ψ

k−1
12 ≤ −2w12 and

u1
k−1 < u2

k−1, then |u1
k−u2

k |< |u1
k−1−u2

k−1|.

The above cases imply that (1) the distance |u1
k−u2

k | could fluc-
tuate up and down due to the changes of the order of the data
{u1

k−1,u
2
k−1, . . . ,u

n
k−1}; (2) the elements in the final uuuk may not

be identical. Equation (6) implies that the number of different
elements in the final uuuk depends on the structure of the matrix
DDD. Specifically, we can define an undirected graph G from DDD,
for which the nodes are the n data points {xxx1, . . . ,xxxn}, and the
edges are {(i, j) : wi j > 0}. If the graph is fully connected, the
final uuuk will have identical elements; otherwise, if the graph
contains m isolated sub-graphs, the final uuuk will have m distinct
elements.

We now prove that, if u1
k−2 , u2

k−2 and u1
k−1 = u2

k−1, then
u1

s = u2
s for any s≥ k, which means that the forward-stagewise

clustering path cannot have any split. Define ttt i = sign(dddi) and
πi: dddi = πisign(dddi). Equation (6) can be written as u1

k
u2

k
...

=

 u1
k−1

u2
k−1
...


− ε

η

∑
i=1

πi

 t1
i

t2
i
...

sign(
(

t1
i t2

i · · ·
) u1

k−1
u2

k−1
...

).

Define ϑ 1

ϑ 2

...

= ε

η

∑
i=1

πi

 t1
i

t2
i
...

sign(
(

t1
i t2

i · · ·
) u1

k−2
u2

k−2
...

).

We have  u1
k−1

u2
k−1
...

=

 u1
k−2

u2
k−2
...

−
 ϑ 1

ϑ 2

...

 .

We might assume that the difference ξ = |u1
k−2−u2

k−2| is small
enough such that sign(u1

k−2 − ui
k−2) = sign(u2

k−2 − ui
k−2) for

any i = 3, . . . ,n. Now that u1
k−1 = u2

k−1, we have sign(u1
k−1−

ui
k−1)= sign(u1

k−2−ui
k−2) and sign(u2

k−1−ui
k−1)= sign(u2

k−2−
ui

k−2) for any i = 3, . . . ,n. Therefore, we have u1
k

u2
k
...

=

 u1
k−1

u2
k−1
...

−
 ϑ 1

ϑ 2

...

 ,

and

|u1
k−u2

k |= |u1
k−1−ϑ

1−u2
k−1 +ϑ

2|= |ϑ 1−ϑ
2|.

Recall that u1
k−2−ϑ 1 = u1

k−1 = u2
k−1 = u2

k−2−ϑ 2, and hence
|ϑ 1−ϑ 2| = |u1

k−2− u2
k−2| = ξ . Therefore, |u1

k − u2
k | = ξ and

sign(u1
k −ui

k) = sign(u2
k −ui

k) for any i = 3, . . . ,n. By analogy,
we have |u1

s −u2
s |= ξ or u1

s −u2
s = 0 for any s≥ k. Therefore,

{|u1
s − u2

s | : s ≥ k} fluctuates within a narrow range ξ , and we
can claim that forward-stagewise clustering paths cannot split.

4. Noise and Outliers

Convex clustering can be guided by external information
through appropriately defined weights {wi j : 1 ≤ i < j ≤ n},
and hence is more robust to noise and outliers. For example,
we can define data-dependent weights in the following manner:

wi j =I(xxx j is among the k nearest neighbors of xxxi or vice versa)
× exp(−‖xxxi−xxx j‖2), 1≤ i < j ≤ n.

The adaptive weights indicate that, if a sample xxxi is far away
from its neighbours, then wi j will be small for all j (1≤ j , i≤
n); when minimizing (2), the centroid uuui will be distant from
the other centroids.

We can further introduce adaptive weights into the 1st term
in (2):

min
uuu∈Rn

1
2
‖ΛΛΛ(xxx−uuu)‖2

2 +λ ∑
i< j

wi j|ui−u j|

= min
uuu∈Rn

1
2
‖x̃xx−ΛΛΛuuu‖2

2 +λ ∑
i< j

wi j|ui−u j|, (8)

where x̃xx = ΛΛΛxxx. For example, ΛΛΛ can be a diagonal matrix with
the ith diagonal element being

∑
j=1,...,n

j,i

exp(‖xxxi−xxx j‖2)I(xxx j is among the k nearest neighbors of xxxi).

If a sample xxxi is far away from its neighbours, then the ith di-
agonal element will be large and force the centroid uuui being
adjacent to xxxi.

6

The forward-stagewise clustering algorithm for problem
(8) is still extremely simple. Particularly, it can be proved
that the primal and dual solutions satisfy the relationship
uuuλ = (ΛΛΛ′ΛΛΛ)+(ΛΛΛ′x̃xx−DDD′βββ λ), where (ΛΛΛ′ΛΛΛ)+ denotes the Moore-
Penrose inverse of ΛΛΛ′ΛΛΛ. If ΛΛΛ is a diagonal matrix, then the
Moore-Penrose inverse reduces to matrix inverse and can be
quickly calculated. The algorithm for problem (8) is only one
more line than Algorithm 2:

1: Calculate the Moore-Penrose inverse MMM = (ΛΛΛ′ΛΛΛ)+.
2: Fix ε > 0.
3: Initialize βββ 0 = 000 and uuu0 =MMMΛΛΛ′x̃xx.
4: for k = 1,2,3, . . ., do
5: βββ k = βββ k−1 + ε× sign(DDDuuuk−1);
6: uuuk =MMM(ΛΛΛ′x̃xx−DDD′βββ k);
7: end for

5. Numerical Experiments

We first give two simple clustering examples in two dimen-
sions to demonstrate the feasibility of forward-stagewise clus-
tering. The weights are defined as wi j = exp(−‖xxxi−xxx j‖2), and
ε is set to be 0.001. Data in Figure 1 are 150 points falling

−2 −1 0 1 2

−
2

−
1

0
1

X[,1]

X
[,

2]

Fig. 1: Scatter plot of the simulated data, with each color representing one
cluster.

in three clusters of 50 points each. The points are generated
from three Gaussian distributions, with one distribution repre-
senting one cluster. Figure 2 plots the solution path for each
dimension. Figure 3 represents the 3-D view of the solution
path profile in which the x-axis and y-axis are for locating the
data points, and the z-axis is for indicating the λ value. Figure
3 gives a clear view of the corresponding agglomerative tree
structure and shows that the proposed algorithm can correctly
identify the underlying three clusters.

Figures 4-6 illustrate another example where the data are in
the form of two interlocking half-moons composed of 50 points
each. Both the 2-D solution path plots in Figure 5 and the 3-D
solution path plot in Figure 6 indicate that the proposed algo-
rithm can correctly group the data into two clusters.

The preceding two examples give some additional insights
into forward-stagewise clustering. Firstly, as is expected, there
is no split in any of the solution paths. Therefore, each clus-
tering path corresponds to an agglomerative tree. Secondly,

0.00 0.05 0.10 0.15

−
2

−
1

0
1

2

λ

û
λ

X[,1]

0.00 0.05 0.10 0.15

−
2

−
1

0
1

2

λ

û
λ

X[,2]

Fig. 2: Left: solution path for the first dimension. Right: solution path for the
second dimension.

Fig. 3: 3-D plot of the solution path profile. With the λ value (vertical axis)
increasing, all data points are grouped into one cluster.

−2 0 2 4 6

−
3

−
2

−
1

0
1

2
3

X[,1]

X
[,

2]

Fig. 4: Scatter plot of the simulated data, with each color representing one
cluster.

if a cluster can be correctly identified (that is, no point from
this cluster is wrongly grouped into another cluster), then there
should exist at least one coordinate on which the projections of
the data from this cluster are separated from the projects of the
other data. For example, the left panel of Figure 2 shows that,
on the first coordinate, the projections of the data from the red
and blue clusters can be separated. The right panel of Figure
2 shows that, on the second coordinate, the projections of the
data from the black cluster can be separated from the projec-
tions of the other data. Likewise, in the second example, Figure
5 shows that the red and blue clusters can be separated in terms

7

Fig. 5: Left: solution path for the first dimension. Right: solution path for the
second dimension.

Fig. 6: 3-D plot of the solution path profile. With the λ value (vertical axis)
increasing, all data points are grouped into one cluster.

of the second coordinate. Consequently, in the above two ex-
amples, forward-stagewise clustering can successfully identify
the underlying clusters before finally merging them.

In the case where there exists at least one cluster whose
projection on any coordinate cannot be separated from the
projects of the other clusters, we suggest taking either a
data-level strategy or a graph-level strategy. The data-level
strategy aims to project/transform the original data into a new
space in which the clusters are separable. For example, as with
spectral clustering, one can apply forward-stagewise clustering
on the eigenvectors of the unnormalized graph Laplacian. The
graph-level strategy attempts to control the clustering path
through the edge set {(i, j) : wi j > 0} of the graph G. Hocking
et al. (2011) and Lindsten et al. (2011) point out that the choice
of the weights can significantly affect the clustering path and
propose to define the weights as wi j = exp(−‖xxxi − xxx j‖2

2)×
I(xxx j is among the k nearest neighbors of xxxi or vice versa),
which means that a node (data point) in the graph G is directly
connected only to its k nearest neighbors. If the graph contains
several isolated communities (no edge connecting any two
of the communities), then the points within each community
will finally be grouped into one cluster, but the communities
will not be merged. Figures 7-9 illustrate another example

−4 −2 0 2 4 6

−
4

−
2

0
2

4
6

X[,1]

X
[,

2]

Fig. 7: Scatter plot of the simulated data, with each color representing one
cluster.

Fig. 8: Forward-stagewise clustering path when wi j = exp(−‖xxxi−xxx j‖2).

Fig. 9: Forward-stagewise clustering path when wi j = exp(−‖xxxi − xxx j‖2)×
I(xxx j is among the 10 nearest neighbors of xxxi or vice versa).

in which the data are 450 points falling in three non-convex
clusters of 150 points each. The clustering path in Figure 8
corresponds to wi j = exp(−‖xxxi − xxx j‖2), while the clustering
path in Figure 9 corresponds to wi j = exp(−‖xxxi − xxx j‖2)×
I(j is among the 10 nearest neighbors of i or vice versa). It is
clear that the graph-level strategy makes forward-stagewise

8

clustering successfully identify the underlying three clusters.
As a final example, we apply forward-stagewise clustering

to the classical Iris data, which can be downloaded from the
UCI machine learning repository (Dheeru and Karra Taniski-
dou, 2017). The dataset contains three classes of 50 in-
stances each, where each class refers to a type of iris
plant. The weights are defined as wi j = exp(−‖xxxi − xxx j‖2)×
I(j is among the 5 nearest neighbors of i or vice versa). Figure
10 shows the clustering path profile. It can be inferred from Fig-

Fig. 10: Clustering of the Iris data. Each panel plots the clustering path for one
coordinate.

ure 10 that the blue and black clusters (respectively representing
Iris-versicolor and Iris-virginica) are non-separable w.r.t. any
coordinate. If we set the number of clusters to be 3, then 14
Iris-virginica specimens will be misclassified as Iris-versicolor
for an overall error rate of 14/150=0.093. The Rand index is
0.892, higher than the results obtained by Hocking et al. (2011).

6. Conclusion

This paper investigated the feasibility and competence of the
forward-stagewise strategy for convex clustering. We proved
that, under the `1 norm penalty, forward-stagewise solution
paths cannot have any split, irrespective of the values of the
weights {wi j}. The numerical studies performed here further
demonstrate that forward-stagewise clustering has exceptional
performance in that it can correctly identify the underlying clus-
ters. Moreover, two alternative approaches were suggested for
forward-stagewise clustering to deal with the case when clus-
ters are non-convex.

Forward-stagewise clustering can be readily modified to
solve problems of the more general form: min

uuu∈Rn
f (uuu)+λ‖DDDuuu‖1,

where f (uuu) is formulated to address different issues (e.g., robust
to outlier features). We leave to future work the investigation of
the possibility of combining forward-stagewise clustering with
real-time processing and the analysis of big data.

References

Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., 2011. Distributed op-
timization and statistical learning via the alternating direction method of
multipliers. Foundations and Trends in Machine Learning 3, 1–122.

Chen, G.K., Chi, E.C., Ranola, J.M.O., Lange, K., 2015. Convex clustering:
An attractive alternative to hierarchical clustering. PLOS Computational
Biology 11, 1–31.

Chi, E.C., Lange, K., 2015. Splitting methods for convex clustering. Journal of
Computational and Graphical Statistics 24, 994–1013.

Chiquet, J., Gutierrez, P., Rigaill, G., 2017. Fast tree inference with weighted
fusion penalties. Journal of Computational and Graphical Statistics 26, 205–
216.

Dheeru, D., Karra Taniskidou, E., 2017. UCI machine learning repository.
URL: http://archive.ics.uci.edu/ml.

Efron, B., Hastie, T., Johnstone, I., Tibshirani, R., 2004. Least angle regression.
The Annals of Statistics 32, 407–499.

Hallac, D., Leskovec, J., Boyd, S., 2015. Network lasso: Clustering and opti-
mization in large graphs, in: Proceedings of the 21th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, pp. 387–
396.

Han, L., Zhang, Y., 2016. Reduction techniques for graph-based convex clus-
tering, in: 13th AAAI Conference on Artificial Intelligence.

Hastie, T., Taylor, J., Tibshirani, R., Walther, G., 2007. Forward stagewise
regression and the monotone lasso. Electronic Journal of Statistics 1, 1–29.

Hocking, T.D., Joulin, A., Bach, F., Vert, J.P., 2011. Clusterpath: An algorithm
for clustering using convex fusion penalties, in: Proceedings of the 28th
International Conference on International Conference on Machine Learning,
pp. 745–752.

Lindsten, F., Ohlsson, H., Ljung, L., 2011. Just Relax and Come Clustering!:
A Convexification of k-Means Clustering. Technical Report. Linkping Uni-
versity, The Institute of Technology.

Radchenko, P., Mukherjee, G., 2017. Convex clustering via l1 fusion penaliza-
tion. Journal of the Royal Statistical Society: Series B (Statistical Method-
ology) 79, 1527–1546.

Sui, X.L., Xu, L., Qian, X., Liu, T., 2018. Convex clustering with metric learn-
ing. Pattern Recognition 81, 575 – 584.

Tan, K.M., Witten, D., 2015. Statistical properties of convex clustering. Elec-
tronic journal of statistics 9, 23242347.

Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., Knight, K., 2005. Sparsity
and smoothness via the fused lasso. Journal of the Royal Statistical Society:
Series B (Statistical Methodology) 67.

Tibshirani, R.J., 2015. A general framework for fast stagewise algorithms.
Journal of Machine Learning Research 16, 2543–2588.

Tibshirani, R.J., Taylor, J., 2011. The solution path of the generalized lasso.
The Annals of Statistics 39, 1335–1371.

Wang, Q., Gong, P., Chang, S., Huang, T.S., Zhou, J., 2016. Robust convex
clustering analysis, in: 2016 IEEE 16th International Conference on Data
Mining (ICDM), pp. 1263–1268.

Zhu, C., Xu, H., Leng, C., Yan, S., 2014. Convex optimization procedure for
clustering: Theoretical revisit, in: Advances in Neural Information Process-
ing Systems 27, pp. 1619–1627.

Zou, H., 2006. The adaptive lasso and its oracle properties. Journal of the
American Statistical Association 101, 1418–1429.

http://archive.ics.uci.edu/ml

	Introduction
	Related Work
	Forward-Stagewise Clustering
	Identical Weights
	Non-identical Weights

	Noise and Outliers
	Numerical Experiments
	Conclusion

