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Ab initio electron theory for magnetism in Fe: Pressure dependence of spin-wave energies,
exchange parameters, and Curie temperature

S. Morán, C. Ederer, and M. Fa¨hnle*
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~Received 26 September 2002; published 27 January 2003!

The spin-wave spectra for bcc Fe at various lattice constants are calculated by theab initio density functional
electron theory for various lattice constants, and the exchange parameters of a Heisenberg model are deter-
mined from the data. The spin-wave energies increase with decreasing lattice constant, and the behavior of the
exchange parameters can by no means be described by the Bethe-Slater curve for an effective nearest-neighbor
Heisenberg model. From the spin-wave frequencies the pressure dependence of the Curie temperature is
derived in mean-field and random-phase approximation, yielding]Tc

MF/]p'1.6 K/kbar and ]Tc
RPA/]p

'1.8 K/kbar, in contrast to the experimental result]Tc /]p'0. Possible reasons for this discrepancy are
discussed.
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The exchange interactions in 3d transition metals and
their compounds are often discussed within the framewor
an effective nearest-neighbor Heisenberg model and
Bethe-Slater curve~see, e.g., Ref. 1! which represents a con
jecture on the variation of the nearest-neighbor exchange
rameterJ(R) with the interatomic spacingR. According to
this curve,J(R) increases with decreasingR for Co and Ni,
whereas it decreases for Fe and changes sign from positi
negative for smallR. As an example for the application o
the Bethe-Slater curve, the temperature dependence o
magnetization of an amorphous ferromagnet was explain2

by a mean-field approach with spatial fluctuations ofJ esti-
mated by use of this curve. If this simple nearest-neigh
Bethe-Slater model was correct, then the critical tempera
Tc of body-centered-cubic Fe as calculated in mean-fi
theory would be expected to decrease strongly when pres
is exerted on the sample. Experimentally, however, nearly
change ofTc was found3 at pressures up to the structur
transition from body-centered to face-centered.

Indeed, calculations based on theab initio density-
functional electron theory have revealed~Table I! that the
simple nearest-neighbor Heisenberg model fails badly for
Instead, an effective Heisenberg model with long-range p
interaction parametersJi j is proposed,

H52
1

2 (
i , j

iÞ j

Ji j ei•ej , ~1!

whereei andej are the unit vectors pointing in directions o
the local magnetic moments at sites (i , j ), respectively. The
exchange parameters remain non-negligible over a very
range, and they oscillate in sign~Table I!. It is the objective
of this paper to calculate, byab initio density-functional
theory, the change of the spin-wave spectrum with decre
ing lattice constant. From this information we then obta
related modifications ofJi j , and predictions of the mean
field theory and random-phase approximation for the pr
sure dependence ofTc .

For the determination of the spin-wave spectra we use
method of Grotheeret al.,10 which is an alternative to the
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so-called frozen-magnon method introduced by Halil
et al.11 Thereby, a spiral external field is applied, which for
monatomic unit cell has the form

BT
x1 iBT

y5B exp~ i q•T!, ~2!

whereq is the wave vector of the spiral andT denotes the
translation vectors of the atomic lattice. The field is const
within each atomic sphere. The linear response has the f
of a spin spiral,

MT
x1 iM T

y5M ~q! exp~ i q•T!, ~3!

with

M ~q!5x'~q!B5A21~q!B. ~4!

Here

A~q!5(
t

A~t! exp~ i q•t! ~5!

is the Fourier transform of the transverse coupling cons
A(t). This quantity is related to the exchange parameterJi j
of the Heisenberg model@Eq. ~1!# via

Ji j 5M0
2 A~Ti2T j !, ~6!

whereM0 is the atomic magnetic moment in the ferroma
netic ground state. The magnon frequencyv(q) is given by

\v~q!5
2mBM0

x'~q!
, ~7!

wheremB denotes Bohr’s magneton. This equation may
derived from the eigenvalue problem@Eq. ~2! of Ref. 10#
defined by inserting a plane-wave ansatz into the equatio
motion for adiabatic spin-waves, thereby using Eq.~4! i.e.,
A21(q)5x'(q).

The calculations are performed byab initio density func-
tional theory in the local-spin-density approximation12 in the
parametrization of Ref. 13 and by our recently develop
version14–16 for noncollinear spin systems of the tigh
binding linear-muffin-tin-orbital method in the atomic sphe
©2003 The American Physical Society07-1
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approximation~ASA!.17 We thereby apply the ASA approxi
mation to the structure and also to the spin direction,18 i.e.,
we take into account for the calculation of the exchan
correlation energy for each atomic sphere around an ato
siteT only the projectionse T•mT of the magnetization den
sity m T on the local spin quantization axis described by
unit vectore T ~Note: the magnetic momentM T is just the
volume integral overm T). Because the choice ofe T has an
influence on the directions of the induced moments, the
rections of the moments and of the spin quantization a
have to be determined self-consistently. We thereby se
after each iteration step of this self-consistency cycle,
spin quantization axese T in such a way that they are parall
to ]E/]e T evaluated according to Ref. 15. It has be
shown16 that by this choice the error in the total energy orig
nating from the ASA approximation is minimized. Whe
choosing the spin quantization axes in the conventio
way18 parallel to the moments after each iteration step, v
large errors forx'(q) ~factors 2–3! may arise. To handle the
spiral spin configuration we use Sandratskii’s extend
Bloch theorem.19 The results for\v(q) have to be con-
verged very carefully with respect to the magnitudeB of the
applied transverse field and with respect to the paramete
the Brillouin zone integration. The value ofB has to be large
enough to exclude numerical uncertainties but sufficien
small to guarantee a linear response of the spin system
turns out that this is achieved forB values which lead to a
canting of the induced spin spiral described by azimut
angles 1028 rad<q<1023 rad. Concerning the Brillouin
zone sampling it turns out that ak-point grid with N3N
3N lattice points,N540, in combination with a Gaussia
smearing procedure20–22 with a smearing parameters with
sN5160 mRyd is sufficient.

The spin-wave spectra are calculated for the lattice c
stants a55.53a0 , 5.48a0 , 5.455a0 , 5.43a0 , 5.405a0 ,
5.38a0, and 5.33a0 wherea0 is Bohr’s radius. The results fo
the spin-wave spectra along the high-symmetry lines in
Brillouin zone are shown in Fig. 1 for a reduced lattice co
stant (a55.53a0) and for an expanded lattice constanta
55.33a0). The experimental lattice constant at room te
perature is 5.416a0. From the compressibility of Fe we est

TABLE I. Values for the first four exchange parameters~in
meV!, J15J0 j with j denoting one of the nearest neighbors,J2

5J0 j with j denoting one of the next-nearest neighbors, etc.
Ref. 6 two different sets of values are given, one obtained by
Korringa-Kohn-Rostocker method~KKR!, and one by the LMTO
method. The data of Ref. 8 are taken from their Fig. 1. The pre
calculations are for a lattice constant ata55.43a0. The lattice con-
stants used for the other calculations are not given explicitly in
papers, but they are probably close to this value.

Jj present 4 5 6 6 7 8 9
work KKR LMTO

J1 26.80 38.91 32.65 53.60 33.20 25.85 25.03 40.9
J2 22.86 22.18 18.77 17.01 17.28 20.41 22.9926.80
J3 21.08 20.41 20.81 23.53 0.13 20.95 2.17
J4 23.94 23.40 22.72 24.49 22.86 24.08 21.77
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mate a pressure of 83 kbar which would be required to ob
a55.33a0, which is experimentally accessible. Figure
shows that the spin-wave energies increase when the la
constant decreases. The Kohn anomalies especially aro
the H point are clearly visible for all considered lattic
constants.

For the cubic symmetry of Fe the spin-wave energ
around theG point may be written as

\v~q!5Duqu21E8uqu41E9~qx
2qy

21qy
2qz

21qx
2qz

2!1•••.
~8!

Representing\v(q)/uqu2 as a function ofuqu2 and approach-
ing theG point from various directions yields straight line
The intersection of these lines with the ordinate axis yie
the spin-wave stiffnessD, and the slopes are given byE8
when approaching alonĝ100&, E81 1

4 E9 when approaching
along ^110&, andE81 1

3 E9 when approaching alonĝ111&.
Table II represents the fitted data forD, E8, andE9 as func-
tions of the lattice constanta. The spin-wave stiffnessD
increases with decreasinga, and there is an indication tha
the influence of the quartic terms becomes smaller at
same time.

We determine real-space couplingsA(t) by inverting Eq.
~5!. In the following we just represent the exchange para
eters related to the real-space couplings by Eq.~6! for the
four closest near-neighbor pairs, because they are defin
numerically stable with respect to the details of the inv
sion. Whereas our method thus is able to determine explic
only a limited number of real-space couplings, all couplin
are accounted for in the calculation of the spin-wave energ

n
e

nt

e

FIG. 1. The calculated spin-wave spectra along high-symm
directions of the Brillouin zone for bcc Fe at the lattice consta
a55.33a0 ~full line! anda55.53a0 ~dashed line!. The experimen-
tal lattice constant at room temperature isa55.416a0.

TABLE II. The spin-wave stiffness constant~in meV Å2) and
the coefficientsE8 andE9 ~in eV Å4) of the quartic terms in Eq.~8!
for various lattice constantsa ~in a0).

a 5.53 5.48 5.455 5.43 5.405 5.38 5.33
D 88 145 159 173 202 205 233
E8 0.3 0.2 0.2 0.2 0.1 0.2 0.1
E9 20.9 20.8 20.8 20.8 20.8 20.8 20.7
7-2
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\v(q) because periodic boundary conditions based on
extended Bloch theorem are used.

Figure 2 shows the exchange parameters for the four c
est near-neighbor pairs as a function afa. The parameterJ1
.0 for the nearest-neighbor pair is the largest for smala,
and decreases monotonically with increasinga. The next-
nearest-neighbor parameterJ2.0 increases with increasin
a and exceedsJ1 for largea, whereas the absolute values
J3 ,J4,0 increase essentially with increasinga. Altogether,
it is obvious that the situation is much more complicat
than the one suggested by the Bethe-Slater curve. It is in
esting to compare these results with those given in the p
of Sabiryanov and Jaswal.23 In that paper one single atom
displaced toward or away from one of the nearest-neigh
atoms or toward or away from one of the next-neare
neighbor atoms, whereas the position of all the other ato
are fixed. In that situation~which is of course in detail dif-
ferent from our situation! bothJ1 andJ2 decrease monotoni
cally with increasing interatomic distance.

In the following we calculate the Curie temperatureTc by
use of the Heisenberg Hamiltonian@Eq. ~1!#. The Heisenberg
model accounts only for the transverse thermal spin fluc
tions which are described by fluctuations ofei but not for
longitudinal spin fluctuations, i.e., fluctuations in the mag
tudes of the atomic moments. For the calculation ofTc we
use the mean-field result derived from the Heisenberg mo

kBTc
MF5

1

6

M0

mB

1

N (
q

E~q!, ~9!

and the random-phase approximation24

~kBTc
RPA!215

6mB

M0

1

N (
q

1

E~q!
. ~10!

Here the sums run over theq values on a grid in the firs
Brillouin zone,N is the number of grid points. AlthoughTc

MF

is expressed in terms of the spin-wave energies, it is w

FIG. 2. The exchange parametersJj ~in meV! for the four clos-
est near-neighbor pairs as function of the lattice constanta ~in a0).
Filled circles:J1; unfilled squares:J2; filled triangles:J3; unfilled
triangles:J4.
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known that the mean-field theory is based on the notion
single-spin excitations and thus is strictly valid only forT
@Tc . In the random-phase approximation it is assumed t
the thermal disordering is achieved by the excitation of
dependent spin waves. In reality there are also other type
excitation modes, and the critical behavior is determined
a coupling of spin excitations on all length scales. In t
following, when estimating the dependence ofTc on the lat-
tice constant by the mean-field approximation or by t
random-phase approximation for the Heisenberg model,
assume implicitly that the critical temperature and its dep
dence on the lattice constant are determined by transve
fluctuations of single-spin or spin-wave character.

The numerical calculation ofTc
RPA requires special care

because 1/\v(q) diverges forq approaching zero. To handl
this problem, we replace the sum over the grid points in
small sphere aroundq50 by an integration, representin
\v(q) by the quadratic term in Eq.~8!. An influence of the
higher terms in Eq.~8! was excluded by converging the re
sults with respect to decreasing size of the sphere. Ther
the surface of the sphere cuts through the Wigner-Seitz c
around the grid points, and for the summation over the g
points outside the sphere we therefore associate weigh
the cut Wigner-Seitz cells according to their volumes ins
the first Brillouin zone and outside the sphere. Alternative
we integrate numerically over a small cube aroundq50,
now also using the quartic terms in Eq.~8!. This integration
requires much care, but the remaining summation over
grid points is simple because a cut of the cells by the c
can be avoided by choosing the size of the cube appro
ately. The results of the two methods agree within the
merical error limit forTc of each method which we estimat
to be610 K.

The data forTc
MF(a) andTc

RPA(a) are given in Table III,
showing thatTc

MF.Tc
RPA. Thereby, the value ofTc

MF inter-
polated for the experimental lattice constant at room te
perature,a55.416a0, is very close to the experimentalTc of
1044 K. BothTc

MF andTc
RPA increase more or less linearl

with decreasing a, with ]Tc
MF/]a'21275 K/a0 and

]Tc
RPA/]a'21450 K/a0, in contrast to the prediction

]Tc /]a.0 obtained by use of the Bethe-Slater curve.
should be noted that instead of using Eq.~9! Tc

MF can also be
calculated by the equivalent relationkBTc

MF5 1
3 ( j Þ0J0 j .

Within our present theory it is of course awkward to use t
latter relation because we can accurately determinate on
small number of parametersJ0 j , whereas for the calculation
of \v(q) entering Eq.~9! all parameters are accounted f
~see above!. Nevertheless, we used this alternative formu
tion to figure out which exchange parametersJ0 j are respon-

TABLE III. The calculated Curie temperatures~in K! for vari-
ous lattice constants~in a0). For the RPA we give the data obtaine
by the cube integration, see text.

a 5.53 5.48 5.455 5.43 5.405 5.38 5.33
Tc

MF 900 967 1001 1035 1066 1097 1150
Tc

RPA 490 595 635 675 710 735 790
7-3
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sible for the increase ofTc with decreasinga, and it turns out
that we have to go far beyond the nearest-neighbor and n
nearest-neighbor parameters to obtain the correct magn
of ]Tc /]a.

For the pressure derivative]Tc /]p5(]Tc /]a)(]a/
]p)ua(T5Tc(p),p) we obtain, by extrapolating the isobaric the
mal expansion coefficient and the isothermal compressib
required for the calculation of]a/]p from the available lit-
erature data, values of ]Tc

MF/]p'1.6 K/kbar and
]Tc

RPA/]p'1.8 K/kbar. These values are so large that
should be possible to measure them without any probl
however, the experiment3 yielded ]Tc /]p'0. Therefore, if
we assume that the experimental results are correct, we
conclude that the pressure dependence ofTc in Fe cannot be
described correctly by the Heisenberg model in the me
field or random-phase approximation; this means that
pressure dependence ofTc in Fe is not dominated by the
behavior of the transverse fluctuations of single-spin or sp
wave type. Other types of transverse fluctuations which
neglected in the two approximations, or longitudinal sp
fluctuations which are totally neglected in the Heisenb
model, are more relevant. For anab initio calculation ofTc ,
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