
Amadeus ProjectEi�el**: An Implementation of Ei�el onAmadeus, a Persistent, DistributedApplications Support EnvironmentColm McHugh and Vinny Cahillmail:fdcmchugh,vjcahillg@cs.tcd.ieDistributed Systems GroupDepartment of Computer ScienceUniversity of DublinTrinity College, Dublin 2, Ireland.Fax: +353-1-6772204
Document Status PublishedDistribution PublicDocument # TCD-CS-93-36Publication TOOLS Europe '93 Conference Proceedings, pages 47-62c
 1993 University of DublinPermission to copy without fee all or part of this material is granted provided that the copyright notice, and the titleand authors of the document appear. To otherwise copy or republish requires explicit permission in writing from theUniversity of Dublin.

Ei�el**: An Implementation of Ei�el on Amadeus, a Persistent,Distributed Applications Support EnvironmentColm McHugh and Vinny Cahillmail:fdcmchugh,vjcahillg@cs.tcd.ieAbstractEi�el�� is an implementation of Ei�el whichprovides support for distribution, persistence,concurrency and transactions. All objects in anEi�el�� system are global (i.e. accessible fromnodes other than that at which they are currentlylocated) and persistent (i.e. their lifetimes arenot bounded by the duration of the program thatcreated them). Some objects may also be atomic(i.e. accesses to these objects within atomictransactions provide the well-known transac-tional properties of atomicity, consistency, iso-lation and durability in the face of concurrentexecution and partial failures). Ei�el�� is sup-ported by the Amadeus distributed applicationsupport platform. In this paper we describethe Ei�el�� language and its implementation onAmadeus. We believe that the combination ofthe Ei�el programming model and the supportprovided by the Amadeus platform provide a use-ful environment for the construction of sophisti-cated distributed applications.1 IntroductionEi�el�� is an implementation of Ei�el which pro-vides support for distribution, persistence, con-currency and transactions. Ei�el�� is supportedby the Amadeus distributed application sup-port platform [Horn 91] [Cahill 91]. Amadeusis intended to support the use of existing(object-oriented) languages for the construc-tion of persistent, distributed applications. Todate, Amadeus supports an extended version ofC++ [DSG 92] (which we call C��) and Ei�el��.Work is underway to support the E program-ming language [Richardson 89] for data inten-sive applications. A prototype of the Guide[Decouchant 88] language for distributed pro-gramming is also supported.

Amadeus consists of two main components:the Generic Runtime (GRT), which providescommon, generic support for the manage-ment of distributed and persistent objects, andthe kernel which provides the underlying sup-port for the GRT including persistent storage,distributed processes, remote invocation, andnested transactions. Rather than forcing eachsupported language to adopt a common objectmodel and execution structures in order to ex-ploit the platform, the GRT provides the sup-port required in common by a range of lan-guage implementations and uses upcalls to re-quest language-speci�c information or actionswhere these are necessary. Language-Speci�cRuntimes (LRTs) can then be built above theGRT for each language to be supported.All objects in an Ei�el�� system are global(i.e. accessible from nodes other than that atwhich they are currently located) and persistent(i.e. their lifetimes are not bounded by the du-ration of the program that created them). Someobjects may also be atomic (i.e. accesses to theseobjects within atomic transactions [Berstein 87]support the well-known transactional propertiesof atomicity, consistency, isolation and durabil-ity in the face of concurrent execution and par-tial failures). The control of concurrency andtransactions is supported through the use of li-brary classes. Overall our approach was moti-vated by the desire to support reuse of existingsoftware.The implementation of Ei�el�� involved ex-tending the Ei�el runtime (ERT) and providinga preprocessor for Ei�el�� programs. The ex-tensions to the ERT were necessary to adaptthe support provided by Amadeus to the Ei�ellanguage and object model and to make avail-able the language-speci�c information requiredby the Amadeus GRT. The preprocessor is usedto generate supplementary code used by the1

GRT to trap accesses to remote and atomic ob-jects. The implementation of Ei�el�� has beenpossible without making changes to the Ei�ellanguage, enabling persistence and distributionto be transparent to the programmer. Moreoveronly minimal changes and extensions to the ERTwere necessary. No changes have been made tothe Ei�el compiler. This has been made possibleby the extent of the run time type informationprovided by Ei�el, which enables all objects tobe treated in a uniform manner.1.1 OutlineThe remainder of the paper is organised as fol-lows. Section 2. describes the GRT and givesan overview of its interface. Section 3. providessome background concerning the ERT whichis necessary to appreciate the requirements forsupporting the ERT on top of the GRT. Section4. presents the Ei�el�� language, describing theprogrammer's view of distribution, persistence,concurrency and transactions and giving somesimple examples. Section 5 discusses the imple-mentation of Ei�el��. Finally, Section 6. pro-vides a summary and some conclusions.2 The Amadeus Generic Run-timeThe GRT is the part of Amadeus concernedwith the management of global, persistent andatomic objects. The GRT supports object cre-ation and naming, mapping (loading) and un-mapping (storing) of objects, marshalling anddispatching of invocation requests and garbagecollection. It performs these actions in a lan-guage independent manner. Whenever languagespeci�c information or actions are required, theGRT makes an upcall to code supplied by thelanguage. The following sections give a briefoverview of the GRT. The interested reader isreferred to [Cahill 93] for further details.2.1 GRT ObjectsA GRT object consists of a GRT header and ablock of memory. GRT objects can be global,persistent and/or atomic as required. A lan-guage may use GRT objects to enclose language

level objects. As far as the GRT is concerned,an object is a block of memory which can beuniquely identi�ed. The GRT knows nothingabout the internal structure or semantics of anobject. Where language objects are enclosed inGRT objects, the layout of the object is gov-erned by the language's runtime system andcompiler. The format of object references usedto access language objects is dictated by the lan-guage and need not be changed from the for-mat usually used by the language to referenceobjects. This is particularly important sinceit means that the language's native invocationmechanism can be used to invoke such an objectfrom another object located in the same context(address space).In Amadeus a global object mapped on agiven node may have a reference to it in a con-text on another node. In this case the referencewill actually refer to a G proxy for the object.Invoking on this proxy will usually result in aRemote Procedure Call (RPC) to the real ob-ject being carried out. The code bound to theG proxy is responsible for initiating such RPCsand must be provided by the language. Thisproxy class should provide the same public in-terface as the real class code.Persistent GRT objects are grouped togetherin clusters when on secondary storage. A ref-erence to a persistent object which is not cur-rently mapped refers to a P proxy (i.e. essen-tially an area of access-protected memory) forthe object's cluster1 All attempts to access suchan object will then result in its cluster beingmapped and overlaying its P proxy before theaccess proceeds.Accesses to atomic objects must also be re-ported to the GRT so that concurrency andrecovery control operations can be carried outbefore the access proceeds. For example, thenecessary locks must be acquired. This can beachieved by using an alternate version of theclass code for atomic instances - the so-calledatomic class code - which reports the access be-fore carrying out the operation as normal.Each GRT header contains a stub for the ob-ject which contains a system-wide unique namefor the object, its cluster identi�er and infor-1Accesses to objects which are both global and per-sistent are trapped using G proxies whenever the objectis not located in the current context.

mation to allow the creation of a proxy for theobject. Also contained in the GRT header is anupcall structure which points to the code imple-menting each of the upcalls for that object.The GRT maintains a class descriptor for ev-ery class in an application which contains a copyof the upcall structure to use for instances of theclass, as well as the class name, the size of in-stances of the class and a class identi�er. Thecreation of a class descriptor for each class usedin an application takes place in regclasses, alanguage-speci�c function that is called by theGRT as part of its initialisation. The class de-scriptor is used when creating new GRT objects.2.2 The GRT/LRT InterfaceThe GRT supplies the routine to allocate a newglobal or persistent object which should be usedin place of a language's object allocation mech-anism. The GRT also provides a routine topromote a global or persistent object from non-atomic to atomic. Other downcalls are providedto control concurrency and transactions as wellas to manage transparency and control the stor-age and clustering of objects.In addition to this interface, the LRT mustsupply a set of upcalls for each object which theGRT calls through the object's upcall structure.The full set of upcalls which may be requiredincludes:� create() { Invoked when an object is cre-ated. Initialises language-speci�c bindingsfor the object (e.g. setting up of the func-tion table).� activate() { Invoked when an object isbeing made active, i.e. going from beinga proxy object to being the real object. Itperforms this transformation by binding thereal class code to the object. Usually in-voked when an object is being mapped intoa context.� deactivate() { Invoked when an object isbeing made inactive. It binds the proxyclass code to the object. Will be invokedwhen an object is being unmapped.� nextptr() { Returns a pointer to the nthreference in the object. Invoked when the

object is being mapped or unmapped so theGRT can swizzle any pointers contained inthe object.� norefs() { Returns the number of pointersin the object. Invoked when the GRT isallocating space for the object in its cluster.� onuse() { Same function as the create up-call. Invoked as the �nal step in making anobject active.� dispatch() { Invoked when an incomingRPC for the object is received. This up-call invokes the object speci�c dispatchfunction (which must be provided by thelanguage) which unbundles the parametersand invokes the target operation.� make atomic() { Binds the atomic code(responsible for trapping access to atomicobjects whether local or remote) to the ob-ject. Upcalled by the GRT as part of theprocess of making an object atomic.As can be seen a language supporting globalobjects must provide a G proxy class for eachclass with global instances and add a dispatchroutine to every such class. A language support-ing atomic objects must also provide the atomicclass code. Depending on whether global, persis-tent or atomic objects are to be supported somesubset of the upcalls create, onuse, nextptr,norefs, dispatch and make atomic are re-quired for each object. activate and onuse arealso required for G proxies.3 The Ei�el RuntimeEi�el is a strongly typed language. Every entityis declared to be of a certain type. An entity canbe an instance of a class type or an instance ofan expanded type. The run time value of an en-tity of a class type is a reference to an object ofthat class. The run time value of an entity of anexpanded type is an actual object, rather than areference to an object. An entity of an expandedtype can be of one of the Ei�el simple types, orit can be an expanded (i.e. inline) instance ofa class type. All objects, except those declaredto be of simple types, contain information in theform of an object header which is used by the

ERT to manage the object and which is trans-parent to the Ei�el programmer. Contained inthis information is a number, known as the Dy-namic Type (DT) of the object, which is thesame in all objects of a given class.3.1 Object Layout
ERT
header

NULL

234

info field

link field

of class type

of expanded
class type

void of class
type

of type
integer

Inline
objectFigure 1: An Ei�el objectFigure 1 shows a snap-shot of an Ei�el objectduring system execution. Note that there aretwo �elds in the header. The info �eld, con-tains the DT of the object and, amongst otherthings, indicates if the object is expanded or is aso-called special object (discussed below). Thelink �eld points to the last object allocated bythe ERT and is used by the Ei�el garbage col-lector. In Ei�el, an object reference always givesthe virtual address to the info �eld of the objectbeing referenced, or is void.The instance data consists of a number of�elds which in turn are made up of one or moreunits called datums. A single datum can bea reference to another object, in which case itwill contain a virtual address, or can containan INTEGER, REAL, BOOLEAN or CHARACTER. Anumber of datums can go to make up an ex-panded object or value of type DOUBLE or BITS.If the expanded object is an instance of a classtype, its ERT header will appear in the instancedata of the enclosing object. If a class B inheritsdata from a class A, then instances of class B willbe structured so that the ERT header will come

�rst, then the data inherited from A, followed bythe data for B.
1

3

ARRAY[INTEGER] object
with bounds 1..3

1234

1

SPECIAL object for
the array’s data. DT = 3.

info

link

info

link

100Figure 2: Special object in an Ei�el arrayThe ERT provides special objects, which areused to implement variable sized or generic ob-jects. Figure 2 shows a snap-shot of an objectof type ARRAY[INTEGER]. The array object has�elds for the upper and lower bounds, as wellas a pointer to the array elements, contained ina special object. The special object consists of�elds for each of the elements in the array. Thisexample shows how Ei�el implements genericitythrough the use of special objects, as special ob-jects can contain objects of any type. Specialobjects are transparent to the programmer andare always associated with another object suchas a STRING or an ARRAY.3.2 ERT Data Structures for A ClassThe following list details the data structuresthat are set up for each class in the system onERT initialisation. Given the DT of the objectto which a reference points, the following infor-mation about the object can be obtained:� Class names[DT] { The name of the ob-ject's class.� Object size[DT] { The number of �elds inthe object.

� Num routines[DT] { The number of rou-tines in the object's class.� Routines[DT] { Gives a pointer to a func-tion table for the object's routines. Invok-ing on an object always results in an indi-rection through this table.� Routine names[DT] { The names of the ob-ject's routines.� Attributes[DT] { The types of the object'sattributes. Attributes[DT][i] gives thetype of the ith �eld of the object using pos-itive numbers for attributes of class types,giving the DT of the class, and negativenumbers for inline objects. Note that in thecase of attributes of generic and expandedtypes, it is necessary to look in the info�eld of the actual object to determine thatattribute's DT.� Attr names[DT] { The names of the ob-ject's attributes.� Create Array[DT] { A pointer to theCreate function for the object's class.All classes in the system have entries inthese tables. The range of DT goes from 0to num classes - 1, where num classes is thenumber of classes in the system. The Ei�el codethat the programmer writes for a class compilesinto C code with functions for all the routinesof the class, plus initialisation functions for theclasses entries into the ERT structures describedhere. Ei�el compilation also generates a C main-line which invokes these initialisation functionsbefore invoking the Create routine of the sys-tem's root class.3.3 Object Creation, Access and In-vocationThis section describes how object creation, dataaccess and invocation take place at run time.3.3.1 Object Creation.At the language level, an Ei�el object is createdand initialised as follows (where x is an attributeof the current object):x.Create (args) ;

At the ERT level the DT of x is obtained bylooking up the Attributes table for the cur-rent object's class. The space for the object isthen created by passing the DT to Allocate.Allocate is an ERT function which, given aDT, will return a pointer to an initialised ERTheader for the object, as well as the requiredmemory space for the data. The invocation ofthe object's Create function is carried out byindirecting through the Create array using theDT for x. The Create function will initialisethe data space appropriately. If x is declared tobe of an expanded class type, there is no need tocall Allocate, as the space has already been al-located when the enclosing object was created.Special objects are allocated using a functioncalled spAllocate which is given the numberof datums required for the special object ratherthan the DT.3.3.2 Object Access.At the language level, the data members of anEi�el object are accessed like so :x.y ;The data member y in x is located at some o�setos from the start of the instance data for x whereos is determined at compile time. At runtime,this o�set is added to the address of the instancedata to give the address of the required �eldwhich can then be accessed.3.3.3 Object Invocation.At the language level, an Ei�el routine is invokedas follows :x.y(args) ;At the ERT level the invocation involves indi-recting through the routines table for the targetobject's class using the DT obtained from itsheader, to locate the appropriate routines table,and an o�set in this table for the required func-tion which is determined at compile time. Theroutine is passed a reference to the target objectas well as the actual arguments.

4 The Ei�el��Language4.1 PersistenceEi�el already provides support for persistencethrough its class library. In particular, objectpersistence can be obtained in one of two ways,in the current implementation of Ei�el.Class STORABLE o�ers a simple explicit facil-ity to store an object (and its dependents) to anamed �le. Any class can make use of this fa-cility simply by inheriting from class STORABLE.An instance x of such a class is explicitly storedvia the call:x.store_by_name("some_file") ;and can subsequently be retrieved viax.retrieve_by_name("some_file") ;where these routines are inherited fromSTORABLE.Alternatively persistence may be obtained byuse of an Ei�el environment. An Ei�el envi-ronment is a set of objects. Individual objectsmay be identi�ed by a key with respect to theenvironment. Such objects, and all their directand indirect dependents, are the persistent ob-jects of the environment. An environment maybe opened. All objects created thereafter willbelong to the environment (until it is closed).Hence, class ENVIRONMENT provides an implicitfacility to store a collection of arbitrary objects.The environment as a whole is made to persistbetween Ei�el sessions, by storing an externalrepresentation of all the objects in a named �le.Note that, in both cases, when an object be-comes persistent, all of its dependents are alsostored or otherwise object references would, onretrieval, be meaningless. Both shared refer-ences and cyclic dependencies are handled prop-erly. Object dependency highlights the orthogo-nality that exists between type and persistence.All classes have potentially persistent instances.In Amadeus, all persistent GRT objects tran-sitively reachable from a root object, an ob-ject that has been explicitly registered with theAmadeus environment, will automatically per-sist across successive program executions.

Three di�erent approaches to exploiting thepersistence facilities o�ered by the Amadeusplatform in Ei�el�� programs are immediatelyapparent.� All Ei�el�� objects are created as GRT ob-jects and thus all objects reachable from aroot (e.g. the Amadeus name service) auto-matically persist between di�erent sessions.The support provided by an Amadeus sys-tem could allow the explicit object storingprovided by Ei�el to become redundant.Any Ei�el�� object which remains reach-able from a root would then survive acrossprogram runs. The Ei�el�� programmerwould then no longer have to worry aboutexplicitly ensuring that particular instancespersist. Coupled with the generic garbagecollection facilities provided by Amadeusthis o�ers an elegant approach to long termsafe object management.� Incorporate into the Ei�el�� (language-speci�c) runtime, routines to emulate theper-formance of STORABLE and ENVIRONMENT.Consequently, from the Ei�el�� program-mer's viewpoint, there would be no di�er-ence between Ei�el�� and Ei�el with re-spect to persistence. This has the advan-tage that normal language semantics arepreserved, but the added functionality in-herent to Amadeus is not fully exploited.� A mixture of the above, i.e. provide modi-�ed Amadeus implementations of STORABLEand ENVIRONMENT which essentially mimicthe simple naming service that these pro-vide while using the standard Amadeus fa-cilities to provide persistence of individualinstances. This would provide the Ei�el��programmer with conventional Ei�el persis-tence support and permit Ei�el�� applica-tions to directly use Amadeus transparentpersistence.In fact the third method outlined above was cho-sen since it combines the advantages of both ofthe other alternatives. In Ei�el�� all objects arecreated as persistent GRT objects. This meansthat an Ei�el�� object is potentially persistentand will persist if reachable from some root ob-ject.

As an example, the following code shows howto create a (potentially) persistent integer inEi�el��:class EXAMPLE_INT export inc, valfeaturev : INTEGER ;Create (i : INTEGER) isdo v := i end ;inc isdo v := v + 1 end ;val : INTEGER isdo Result := v end ;end ; --Class EXAMPLE_INTclass ROOTinheritAMADEUSfeaturep : EXAMPLE_INT ;Create isdoif reset = 1thenp.Create (1) ;record ("p.ns", p)end ;p ?= lookup ("p.ns") ;io.putstring("p is ") ;io.putint (p.val) ;io.newline ;p.incend ;end ; --Class ROOTNote the use of standard routine reset, inher-ited from AMADEUS, which tests if the -resetoption has been passed to the program. By con-vention -reset is used to indicate the �rst ex-ecution of an application which expects to usepersistent objects which may not have alreadybeen created. record and lookup are used toregister and lookup an object in the Amadeusname service provided by the platform. recordalso designates the speci�ed object as a persis-tent root.When this is run several times (with an in-stance of ROOT as the Ei�el system root object)the following output is produced:

$root -resetp is 1$rootp is 2$rootp is 3$root -resetp is 1No additional code is generated to supportpersistence. Once a persistent object has beenmapped in from secondary storage, there is noadditional overhead attached to manipulatingthe object beyond that of Ei�el. An Ei�el�� pro-gram that does not make use of any Amadeusfacilities incurs no additional overhead beyondthe equivalent Ei�el program, except for someextra space taken up by the headers attached toeach GRT object in the system.4.2 DistributionThe approach to distribution adopted allows allobjects in an Ei�el�� system to be remotely ac-cessible. Thus, distribution, like persistence, istransparent to the Ei�el�� programmer. AllEi�el�� objects are created as persistent andglobal GRT objects.Hence, the class EXAMPLE INT in the previoussection not only describes objects which are po-tentially persistent but which are also remotelyaccessible. Many users could run the integerprogram at the same time, possibly on di�erentnodes, and it is completely transparent wherethe integer object is actually mapped. In thisway, the integer object acts as a server capable ofhandling multiple client requests. Note however,that the Amadeus approach to supporting dis-tribution through the use of RPCs means that itis not possible to access the exported data itemsof an object remotely. Access to a remote objectcan only be through the exported routines of itsinterface.While distribution is normally transparent,the programmer can also exercise some controlover the placement of objects and clusters at runtime by specifying a preferred node at which ob-jects and clusters are to be placed using routinesexported by the class AMADEUS.

4.3 ConcurrencyIn Amadeus a job is a distributed process con-sisting of a set of activities. A job may bethought of as a distributed heavyweight processand an activity as a distributed lightweight pro-cess. A job may be executing in several contextsat the same time, on the same or di�erent nodes.An activity may be active in only one context atany point in time.During the execution of an operation by an ac-tivity, an asynchronous invocation may be per-formed by creating a new activity to carry outthe invocation, in parallel with the current ac-tivity. The new activity will terminate whenthe invocation which it was created to carry outcompletes. A job is created for each applicationrun by a user and terminates when all of the ac-tivities created within the job have completed.The Ei�el�� programmer's interface to con-currency is through a set of classes. The usercan invoke an operation on an object asyn-chronously, and at some later stage test for thetermination of the invocation, recover the resultsof the invocation and suspend and resume thecall. The following example shows how an ac-tivity can be created in Ei�el��. Consider:class EXMPL export calcfeaturecalc(a,b:INTEGER;c:SOME_CLASS):INTEGER is--Do some calculationsend ; --Class EXMPLThe following is a class that includes an in-stance of an EXMPL and invokes its calc routineboth synchronously, and asynchronously as anactivity:class USE_EXMPLfeatureact : ACTIVITY ;e : EXMPL ;call_calc(A_ref:SOME_CLASS) islocali : INTEGER ;doe.Create ; -- Create EXMPL objecti := e.calc(1, 2, A_ref) ;-- Normal synchronous invocation

act.Create (e, "calc", 1, 2, A_ref) ;-- Create activity to do invocationi := act.wait_int ;-- and wait for the resultend ;end ; --Class USE_EXMPLThe activity is created by calling the Createroutine for the ACTIVITY class passing it theobject on which the routine is to be executed,the name of the routine to be invoked, and �-nally the argument list for the routine, which isa variable-sized list of arguments, any of whichcan be a reference to an object.The full interface of the ACTIVITY class in-cludes routines to kill, suspend and resume anactivity as well as to wait for results of varioustypes.The JOB class interface is similar: suspendingor killing a job suspends or kills all of its activ-ities, while the wait routines wait for all of thejob's activities to complete before returning theresult of the initial activity.4.4 Atomicity and TransactionsTransactional systems guarantee atomicity, con-sistency and permanence of e�ect for opera-tions carried out within the scope of a trans-action. Applications which have strong require-ments for consistency can use atomic transac-tions to ensure consistency of data in the pres-ence of concurrency and node or context failures[Berstein 87].Amadeus provides support for transactionsthrough the use of the RelaX [Kroger 90][Schumann 89] transaction manager and li-braries. In Amadeus a distinction is drawn be-tween atomic and non-atomic objects. Transac-tional properties only apply to operations car-ried out on atomic objects carried out withina transaction. This distinction between atomicand non-atomic instances of a class is moti-vated by the desire to avoid the additional over-heads associated with access to atomic objectsfor instances of a class for which strong consis-tency guarantees are not required. The modelof atomic objects and transactions supported byAmadeus and RelaX, and its implementation isdescribed in detail in [Mock 92].

Since all Ei�el�� objects are global and per-sistent, any object can be promoted to beingatomic at any time using:make_atomic (i) ;-- inherited from AMADEUSAtomic code is generated by the preprocessorfor every class in the system, which is used totrap access to atomic objects. Because access toatomic objects are trapped through functions,a similar restriction to distribution applies inthat access to an atomic object should only bethrough its exported routines.The Ei�el�� programmer's interface for trans-action management is provided through theTRANSACTION class. The transaction interface issynchronous, but in other respects it is similarto the job and activity interfaces, especially withregards to creating a transaction to perform aninvocation on an object.T : TRANSACTION ;e : EXMPL ;e.Create();-- Create EXMPL objectmake_atomic(e) ;-- Make instance of EXMPL atomicT.Create(e, "calc", 1973, 56, some_ref) ;-- Create transaction to invoke calc-- routine from class EXMPL.5 Implementation of Ei�el��The following sections describe the implementa-tion of Ei�el�� on Amadeus.5.1 PersistenceTwo matters must be addressed in implementingpersistence; supporting object creation so thatEi�el�� objects are created as GRT objects, andproviding the necessary upcall code for Ei�el��objects.5.1.1 Object Creation

2. ALLOCATE initialises
the ERT header, explicitly
zeroes the data area and
returns a pointer to the
info field of the object.

INFO field
Dynamic Type = DT

LINK field ; pointer to
previously allocated
object.

GRT
Header

GRT_HEADER
cid = DT
size = ert_size (DT) +
size_of_ERT_header

UPCALL
OBJECT

ERT
Header

Eiffel object
data area
(uninitialised)

Eiffel object
data area
(explicitly zeroed)

1. GRT_create is invoked.
This allocates space for the
object and its GRT header
and returns a pointer to the
object. Figure 3: Persistent object creationTo ensure that Ei�el** objects are createdwith a GRT header, a call to the GRT objectcreation routine replaces the call to the existingERT memory allocation function. This functionallocates memory for the object and its GRTheader, initializes the GRT header and returnsa pointer to the uninitialized object space to theERT. The ERT then initializes the objects ERTheader and explicitly zeroes the objects dataarea before returning a pointer to the object tothe calling object. Figure 3 shows the steps in-volved in persistent Ei�el�� object creation.5.1.2 Implementing the UpcallsWith the support provided by the ERT it hasbeen possible to write generic, class independentversion of the upcalls required which are com-mon to all Ei�el�� applications; all objects in thesystem use the same generic upcall code. Thiscontrasts with our C++ implementation whichrequired that the upcalls be generated individu-ally for each class. To support persistence, onlythe nextptr and norefs upcalls are required.These functions make calls to the ERT. All theother upcall functions take default actions.A generic regclasses can also be used forall Ei�el�� applications which registers classdescriptors with the GRT for each class inthe application. For every DT in the system,0..num classes - 1, it makes calls to the ERT

to determine the corresponding class name andobject size, the information necessary to registera class descriptor with the GRT. The class iden-ti�er in the class descriptor is set to the DT ofthe class. Each class descriptor contains a copyof the generic upcall object.Ei�el�� special objects also have a class de-scriptor and are allocated as GRT objects.The following functions have been added tothe ERT to provide information from its variousdata structures which is used to implement thenecessary upcalls.� int sp nfields (o) { Get the number of�elds in a special object.� char* ert class name (o) { Get thename of an object's class.� int ert DT by name(class name) { Getthe DT assigned to a given class.� void ert set DT(o, DT) { Set the DT ofan object.� char* ert name by DT(DT) { Get name ofclass with given DT� int ert size by DT(DT) { Determine thephysical size of objects with the given DTwhen they are created.� int ert rout index(o, func name) { Return the index of thegiven named function in the given objectsclass's routines table.� int ert spnorefs(o) { Determine num-ber of references in a special object.� void* ert spnextptr(pc, o) { Returns apointer to the pcth reference of special ob-ject.� int ert norefs(o) { Returns the numberof references in an Ei�el object.� void* ert nextptr(pc, o) { Return areference to the pcth object pointer in anobject.Given these functions, it is possible to de-�ne generic upcall functions and a genericregclasses function.

� void *nextptr(int pc) {Invoke ert next ptr on the encapsulatedEi�el object to return a reference to thepcth reference within the Ei�el object.� int norefs() Return number of referencesin the encapsulated Ei�el objects instancedata using ert norefs.All other upcalls take default actions.5.1.3 Supporting STORABLEIn Ei�el�� STORABLE has been altered to use thefunctionality of Amadeus to implement namestorage. An Ei�el�� object stored by name be-comes an Amadeus persistent root ensuring thatit and its dependents will persist. It is impor-tant also to note that this has been done onlyfor name storage. STORABLE in Ei�el�� stillpermits persistence through �le descriptor andFILE storage, but this is unchanged from Ei�el.5.1.4 Problems in Implementation ofPersistenceThe problems outlined in this section were en-countered during the implementation of persis-tence, but are common to the implementationof Ei�el�� in general.GRT and ERT initialization. An Amadeusapplication can be thought of as having twostages; Amadeus initialization and applicationmainline. The former is invisible to the applica-tion programmer, who would view their programas having only the latter stage. The register-ing of class descriptors with the GRT is calledas part of Amadeus initialization. This causesa problem with an Ei�el�� application, whereERT initialization, the setting up of all thestructures described in Sect. 3.2 for each class,is called in the application mainline stage. Thegeneric regclasses function cannot be calleduntil all the ERT information on the classes isavailable, so regclasses is called after ERT ini-tialization. This is an interleaving of the twostages, Amadeus initialization and applicationmainline.

Special Objects and heterogeneity. A po-tential problem with special objects is that onecan determine whether they contain embeddedobjects or references, but if they contain em-bedded objects and these are instances of ob-jects that carry no run-time information (e.g.INTEGER) it is not possible to determine the typeof the object. This would have serious implica-tions for heterogeneity, one of the goals of theAmadeus project. For transferring and storingan object such as an array of integers on a het-erogeneous network, it is necessary to convert itto a machine-independent form. To do so, onemust be able to determine the types of its con-stituent parts. This is not currently supportedin Ei�el**.Garbage Collection. An Ei�el�� applicationmust be compiled with Ei�el garbage collectionturned o� (which is the Ei�el default) so as toavoid interference with GRT garbage collection.Thus the link �eld in an Ei�el�� object's ERTheader is ignored.Compilation To make use of all Amadeus fa-cilities, the Ei�el�� programmer must use theAMADEUS class, an Ei�el class which is basicallyan interface to the GRT downcalls. An Ei�el��program must �rst generate a C package. Thiscan be done by editing the Ei�el system descrip-tion �le. The C package consists of C code forall the classes in the system and C code for theERT. This is necessary because ERT �les mustbe altered in order to interface to Amadeus. Themake�le produced is also edited to compile andlink with Amadeus.5.2 DistributionThe implementation of distribution requiresthat a proxy routine is generated for eachexported routine in each class, as well as adispatch routine for each class to handle in-coming operations that have been initiated re-motely. In addition invocations on proxy objectsmust be directed to the correct code.A draw-back of this distribution mechanismis that remote access to an Ei�el�� objects ex-ported data items is not supported. The data-space of a proxy object remains uninitializedand therefore unde�ned. Remote access to an

Ei�el�� object should be through its exportedroutines. This makes the type-model of Ei�el��weaker than the Ei�el type model.5.2.1 Trapping Invocations on ProxyObjectsFor each class a routines table for its proxy rou-tines is set up that mirrors the true routines ta-ble of the class. The routines array describedin Sect. 3.2 is expanded to include entries forthe proxy code of all the classes in the system.The DT of the proxy code for a class C can beobtained by the simple rule:DTproxy = DTC + num classesgiving the position of the proxy code for class Cin the routines array.When an object is already in use in anothercontext, attempting to map the object into an-other context will result in a proxy object beingcreated in that context. The proxy object is thesame size as the real object. Its data area isuninitialised, resulting in some memory wastagebut making it very easy to overlay the proxywithout invalidating existing pointers to the ob-ject in that context should the real object be-come available to be mapped. The DT of theproxy object is set to ensure that invocations onthe proxy object will indirect through the cor-rect proxy function table, as shown in �g. 4.During routine calls between objects in dif-ferent contexts, parameters are passed by ref-erence, except for instances of the basic typeswhich are passed by value. When passing anobject, a stub (which contains the global namefor the object and information to allow creationof a proxy for the object) for the object is pushedon the transmission block. The passing of arbi-trarily large objects between contexts is possibleby simply passing the stub for the object.5.2.2 Proxy Code generationAs already stated, the code for each exportedroutine of a class C must have a proxy routinewhich is positioned in the proxy routines table atthe same o�set as the routine it remotely invokesis positioned in the real routines table. All proxyroutines are generated from the following proxyroutine template:

* => this routine
 is exported.

 −−−

dispatch()

Routines table

0

Proxy Routines Table

ROUTINES ARRAY

R1*

R2*

R3

R4*

P_R1

P_R2

P_R4

Routines[DT] Routines[DT+num_classes]

Figure 4: Routines arrayDATUM <name>(void* curr <arg_list>) {<return_decl>int opid = ert_rout_index(curr,FUNCNAME);aon_oo *t = ((aon_oo *)curr)->hdr();if (!amadeus.resolve (t)) {marshal aon_m (t,opid,<args>,<stubs>);<push>if (aon_m.rpc()) {<pop>return <return_id>;}}return(*Routines[<DT>][opid])(curr <names>);}<name> -> CLASSNAME_FUNCNAME_pr<arg_list> -> nil-> ,datum IDENT <arg_list><return_decl> -> nil-> datum RETURN_NAME;<args> -> size of items in <arg_list>+ size of return item.<stubs> -> No. objects in arg_list + 1<push> -> nil

-> aon_m.push(IDENT); <push><pop> -> nil-> aon_m.nargs_reset() ;RETURN_NAME = aon_m.pop() ;<DT> -> ert_dynamic_type (curr)<return_id> -> nil-> RETURN_NAME<names> -> nil-> <id_list><id_list> -> IDENT-> <id_list>,IDENTFor each exported routine F in class de�nitionC there will be a proxy function F C pr. Thebasic mechanism is that if the object cannot bemapped, the parameters plus the stub for theproxy (which will be identical to the stub forthe real object, and which enables the GRT atthe remote side to locate the object) and theoperation identi�er are all packaged and an RPCis performed to the remote context where thereal object is located. On completion of the call,return data (if any) is popped and returned tothe caller.Parameters are treated in a uniform fashion.A check is made to see if the parameter be-ing pushed is a reference to an object, and ifso a stub for the object is pushed and a
agis set to indicate that this parameter is an ob-ject reference. When popping parameters at thedispatch side is taking place, the dispatch willbe able to distinguish between parameters thatare object references and parameters that areinstances of basic types.5.2.3 Dispatch code generationEach class's routines table must be augmentedwith a dispatch routine which is responsible forperforming incoming remote invocations.pblock* <disp>(pblock *b, void* curr) {marshal aon_m(((aon_oo*)curr)->hdr(),b);int DT = ert_dynamic_type (curr) ;switch(aon_m.which()) {

<cases>default:;} return b ;}<disp> -> CLASSNAME_dispatch<cases> -> <case_i><more_cases><more_cases> -> <cases>-> nil<case_i> -> case <i>: {<return_decl><param_decl> <pop><func_invoke> <push>} break ;<i> -> 0..ert_routine_count(curr)-1<return_decl> -> nil-> datum RETURN_NAME ;<param_decl> -> nil-> datum <id_list><pop> -> nil-> IDENT = aon_m.pop() ;<pop><func_invoke> -> <func_assign><func><func_assign> -> nil-> RETURN_NAME =<func> -> (*Routines[DT][i])(curr,<names>)<push> -> nil-> aon_m.reset();aon_m.nargs_reset() ;aon_m.push(RETURN_NAME);5.2.4 Upcalls for Proxy ManagementThis section outlines the upcalls the GRT in-vokes to ensure the correct code binding for anobject. All objects in the system use the sameupcall code, while all proxy objects use the sameproxy upcall code.The following upcall functions (in addition tothose outlined in Sect. 5.1.1) are required to sup-

port distribution:� void deactivate () Switch class identi-�er in GRT header to that of the proxycode.� void onuse () Set the DT of the objectto be equal to the class identi�er from theGRT header, i.e. the real DT.� pblock *dispatch (pblock *t) Upcallthe object's dispatch routine.Proxies must provide the following upcalls:� void activate () Switch the class identi-�er in the GRT to that of the true code.� void onuse () Set the DT of the object tobe the class identi�er from the GRT header,i.e. the proxy DT.All proxy objects will have a copy of this up-call structure in their GRT headers. activateis called when the object is being mapped in,while onuse is called after an attempt to accessthe object has resulted in a proxy being created,so the DT in the ERT header must be set to thatof the proxy code, ensuring that subsequent in-vocations on this object will result in an indirec-tion through the proxy routines table.5.2.5 Problems in DistributionThe following section outlines some problemsthat have arisen in relation to implementing dis-tribution:Heterogeneity The treatment of parametersat the ERT level means it is impossible to distin-guish between basic type instances, i.e. if a givendatum is an INTEGER or a FLOAT or a CHARACTERat the proxy code level. This has serious impli-cations for heterogeneity, whereby it is neces-sary to determine the type of the given datumin order to package it for transferring betweenheterogeneous nodes. An upcall mechanism todetermine the type of a given datum if it is notan object reference would be necessary in orderto support heterogeneity.

Dynamic Linking The current scheme forthe dynamic typing of proxy code depends onthere being a �xed number of classes in the ap-plication at compile time. This scheme would beinconsistent if dynamic linking was introduced,whereby classes are linked in during executionof the program, rather than all being linked to-gether at compile time which is currently whathappens with Ei�el and Ei�el**.5.3 ConcurrencyThe implementation of concurrency in Ei�el�� isstraightforward: the classes JOB and ACTIVITYsimply make calls to the appropriate routinesimplemented by the Amadeus kernel.One complication in Ei�el�� is the lack of vari-able sized parameter lists. The Create functionsof the concurrent classes should be able to takea variable number of parameters. The Ei�el��preprocessor captures all occurrences of JOB andACTIVITY creation in an Ei�el�� �le and replacesthe variable parameter list in the Create callwith an argument object reference. The argu-ment object is declared immediately after theJOB or ACTIVITY declaration, and code producedto push each of the parameters onto the argu-ment object. For example, after preprocessing,the code:act : ACTIVITY ;-- Somewhere in the code of some class-- a reference to an ACTIVITY objectact.Create (e, "calc", 1, 2, A_ref) ;-- Create activity to do invocation.-- invoking routine calc of object e.becomes:act : ACTIVITY ;a : ARG_OBJ ;-- An argument object for storing-- the parameters to an asynchronous-- object invocationa.PushINTEGER (1) ;a.PushINTEGER (2) ;a.PushOBJECT (A_ref) ;-- Insert each of the parameters

-- into the argument object.act.Create (e, calc, a) ;-- Variable sized argument-- list stored in aThis is basically a translation from incorrectEi�el code to Ei�el code that will be acceptableto the Ei�el compiler.5.4 Atomicity and TransactionsAt the language level supporting transactionsinvolves generating atomic code for each class,and at execution time, when an object is madeatomic, switching the binding in the object sothat subsequent invocations on the object willuse the atomic code.Atomic code is generated by the preprocessorfor every class in the system. As in the case ofdistribution, the Ei�el�� preprocessor generatesan atomic routine for every exported routine ina class's de�nition, and sets up a routine tablefor these atomic routines. This table will be ac-cessed at run time by a DT for the atomic code.Making an object atomic involves switching itsDT to the DT for the atomic code, so subsequentinvocations will indirect through the atomic rou-tines table.When an invocation is made on an atomic ob-ject, the atomic routine locates the actual rou-tine (by calculating the true DT), invokes it andreturns results to the caller.Distribution and transactions imply that aclass will have three dynamic types, one for ac-cessing the class methods (i.e. the real dynamictype as assigned by by the Ei�el runtime), onefor the proxy code and one for the atomic code.The dynamic type of the Atomic code can beobtained by the following simple rule:DTatomic code = DT + 2 � num classesThe consequence of this is that in the Ei�el��run time, the Routines table is three times asbig as the equivalent one in Ei�el, due to thefact that each class in Ei�el�� has proxy code tosupport distribution and atomic code to supporttransactions.One addition upcall is required from atomicobjects:

� void make atomic { Set the DT of the en-capsulated Ei�el object to the DT for theatomic code.which is upcalled by the GRT as part of themake atomic downcall. It sets the DT of theobject to the DT for the atomic code to ensurethat further invocations on the object will indi-rect through the atomic routines table.The means of starting a transaction on an ob-ject is similar to that in starting an activity onthe object, and the same complication exists aswith the JOB and ACTIVITY classes with the needto be able to pass variable sized parameter liststo the transaction's Create feature. Transac-tion creations are caught by the preprocessorand edited the same way ACTIVITY and JOB cre-ations are.6 ConclusionOur goals in undertaking this work were to pro-vide a programming environment for the con-struction of sophisticated distributed applica-tions using the Ei�el language as well as to eval-uate the ease with which a new language couldbe supported above Amadeus while maintain-ing that language's syntax and object model.We intended that existing Ei�el programs andsoftware components could be reused in our en-vironment without any alteration, a feature thatis consistent with Ei�el's philosophy of softwarereusability and modularity. We believe that ourgoals have been largely achieved.Ei�el�� provides an Ei�el programming envi-ronment enhanced with support for distributedand persistent programming including concur-rency and transactions. This environment pro-vides a high degree of transparency for the pro-grammer and, in particular, its implementationrequired no changes to the syntax of the Ei�ellanguage. Moreover, since the usual Ei�el runtime mechanisms are maintained for access toobjects located in the current context, there isno time overhead incurred for accesses to ob-jects which are not remote, stored or being ac-cessed within a transaction. Additional over-head is incurred at compilation time - to gener-ate proxy and atomic class code - and in termsof the space used by the headers of GRT objects.The main restriction imposed is the requirement

that global and atomic objects only be accessedvia exported routines. In the future, Amadeusmay support use of distributed shared memoryallowing this restriction to be relaxed.The implementation of Ei�el�� on Amadeuswas facilitated by the structure of the ERT and,in particular, the amount of run time type infor-mation available. The main e�ort was devotedto the implementation of the generic - class in-dependent - upcalls and the implementation ofthe preprocessor. A number of library classeswere also provided to allow the programmer tointeract with the underlying Amadeus environ-ment.Our current work is concerned with the im-plementation of a number of distributed appli-cations using Ei�el�� in order to more fully eval-uate the environment. In future we expect towork on interworking between the C++ andEi�el�� environments supported by Amadeus inorder to allow invocations between objects pro-grammed using these di�erent languages.References[Berstein 87] P.A. Berstein, V. Hadzilacos andN. Goodman; Concurrency Controland Recovery in Database Systems.Addison-Wesley, 1987.[Cahill 91] V. Cahill, C. Horn and G. Starovic;Towards Generic Support for Dis-tributed Information Systems. InProceedings of the InternationalWorkshop on Object-Orientation inOperating Systems, Palo Alto, Octo-ber 1991.[Cahill 93] V. Cahill, S. Baker, C. Horn andG. Starovic; The Amadeus GRT -Generic Support for Distributed per-sistent Programming Submitted forpublication, January 1993.[Chase] J. Chase, F. Aamdor, E. Lazowaka,H. Levy and R. Little�eld ; TheAmber System: Parallel Program-ming on a network of multiproces-sors. Proceedings of the 12th ACMSymposium on Operating SystemsPrinciples, pp211-223.

[Decouchant 88] D. Decouchant et al; Guide:an Implementation of the ComandosObject-Oriented System. In Proceed-ings of the EUUG Autumn Confer-ence, October 1988[DSG 92] Distributed Systems Group, Dept. ofComputer Science, Trinity CollegeDublin; C** Programmers Guide1992.[Horn 91] C. Horn and V. Cahill; Support-ing Distributed Applications in theAmadeus Environment. ComputerCommunications, July-August 1991.[ISE 89] Interactive Soft-ware Engineering Inc; Ei�el : TheLanguage. Interactive Software En-gineering Inc.[Kroger 90] R. Kroger et al; The RelaX Trans-actional Object Management Sys-tem. In Proceedings of the Inter-national Workshop on ComputerArchitecture to support Securityand Persistence of Information.Springer-Valeg, May 1990.[Liskov 83] B.Liskov and R. Schei
er; Guardiansand Actions: Linguistic support forrobust, Distributed Programs. ACMTransactions on Programming Lan-guages and Systems, July 1983, vol.5, No 3, pp381-404.[Meyer 88] B. Meyer; Object-oriented SoftwareConstruction. Prentice Hall, 1988.[Mock 92] M. Mock, R. Kroeger and V. Cahill;Implementing Atomic Objects withthe RelaX Transactional Facility.Computing Systems vol 5, no. 3,USENIX, 1992.[Richardson 89] J.E.Richardson and M.J. Carey; Persis-tence in the E Language: Issues andImplementation, SWPE, vol. 19 no.12, December 1992.[Schumann 89] R. Schumann et al; Recov-ery management in the RelaX Dis-tributed Transaction layer. In Pro-

ceedings; 8th Symposium on Reli-able Distributed Systems, pages 21-28. IEEE, October 1989.

