
On Object Orientation as a Paradigm for General PurposeDistributed Operating SystemsVinny Cahill �, Se�an Baker, Brendan Tangney, Chris Horn and Neville HarrisDistributed Systems Group, Dept. of Computer Science, Trinity College, Dublin, Ireland.Proceedings of the 1992 ACM SIGOPS European WorkshopDecember 9, 1992AbstractIn the Amadeus project we have been considering the construction of a general purposedistributed support environment for object oriented programming. In this paper we tackle anumber of key areas whose interaction must be addressed in the design of such a general purposeobject support system: 1) integration of support for (object oriented) database systems; 2)integration of security mechanisms suitable for objects; and 3) operating system support toallow object oriented applications exploit the inherent parallelism of the underlying distributedenvironment.1 IntroductionA number of recent projects have considered the construction of operating systems { particularlydistributed operating systems { which support the object oriented paradigm. Such systems havetypically supported a single programming language and have been targeted at particular applicationenvironments. In the Amadeus project we have been considering the construction of a generalpurpose support environment for object oriented programming.In this paper we identify a number of key areas whose interaction must be addressed in thedesign of such a general purpose system, and describe the approaches which we have taken insupporting each. The areas considered are 1) integration of support for (object oriented) databasesystems, including managing associative access to large collections of objects and the integrationbetween programming languages and database systems; 2) integration of protection mechanismssuitable for large numbers of (potentially) small objects using only conventional hardware and 3)operating system support, in the form of load balancing and clustering of objects1, to allow objectoriented applications to exploit the inherent parallelism of the underlying distributed environment.We begin by giving a brief overview of Amadeus.�email vjcahill@cs.tcd.ie1Explicit allocation of processors is also supported but is not addressed here.1



2 AMADEUS OVERVIEW 22 Amadeus OverviewThe Amadeus model is based on passive objects which are accessed by distributed processes. AnAmadeus system may include processes running on behalf of many di�erent users sharing objectsin a secure way. The basic unit of computation in Amadeus is a job which is a distributed processconsisting of a set of activities . Activities are distributed threads of control i.e. analogous tolightweight processes but with the possibility of executing in several address spaces or contexts atthe same or di�erent nodes at di�erent times.In Amadeus, clusters are used to store groups of related objects. Clusters are the fundamentalunits of data managed by the system. In particular, clusters are the units of storage and mapping.Finally, Amadeus supports atomic transactions as a means of ensuring consistency of data inthe presence of concurrency and (partial) failure, through the use of the RelaX transaction managerand libraries [6, 5].3 Security in AmadeusAn object support system such as Amadeus must provide access control for objects in order to ensurethat only authorized users can invoke operations on a given object. Moreover, when (authorized)users invoke an operation on some object they have no guarantee that there will not be side e�ectsif they did not write the code for the invoked object themselves. This will be a common occurrencein object oriented environments characterized by high degrees of code reuse and sharing. In e�ect,an object may act as a Trojan horse, allowing damage to be in
icted upon other objects accessibleto the invoker and providing an unauthorized access path to con�dential information.Amadeus provides access control at the level of individual operations { using operation basedaccess control lists and isolation of untrustworthy objects (code) at runtime. Key to the provisionof security is the notion of an extent .Abstractly an extent is a group of objects belonging to a common owner. Each user may ownmany extents but an object may belong to only one extent at any time. This mechanism allowsobjects which are not trusted to be isolated in a separate extent.At runtime, each extent is represented by a set of contexts. Objects of a given extent are onlymapped into the context(s) belonging to that extent and never into the context of another extent.Thus it is impossible for an object in one extent to read or interfere with an object in another extentwithout an authorization check being performed { since objects belonging to di�erent extents arealways separated by a hardware protection boundary.An activity can access objects in its current extent directly without an access check, and poten-tially without using their code, that is, by direct access to virtual memory. However if an activityattempts to access an object in a di�erent extent, it can only do so by performing a cross-extentinvocation via the Amadeus kernel, resulting in an authorization check being performed by the tar-get extent using the target object's access control list. If the invocation is accepted by the targetobject (extent) then, before the invocation returns, the activity can invoke further operations onobjects in the same extent without an access check. In e�ect, objects with access control lists actas controlled gateways into an extent. Authorization checking can be based on either the identityof the invoking user or of the source extent (e�ective user identi�er).Contexts are created for a given extent as required. The allocation of contexts to extents isdetermined by the activation policy for the extent. The default activation policy is that one context



4 DATABASE SUPPORT IN AMADEUS 3is allocated to each extent at each node at which objects of the extent are in use. Currently fourdi�erent activation policies are supported,2 as follows:� Distributed shared : the default case. There is at most one context for each extent ateach node. All objects of that extent which are in use at that node are mapped into thatcontext.� Centralized shared : the extent is represented by a single context (at one node). Allobjects of the extent that are in use are mapped into that context.� Distributed unshared : each object of the extent that is in use is mapped into a di�erentcontext. Contexts representing the same extent may be located on di�erent nodes.� Centralized unshared : as in the distributed unshared policy each object belonging tothe extent that is in use is mapped into a di�erent context, however all the contexts for agiven extent are located on the same node.For each of the distributed policies it is possible to specify a subset of the nodes in the systemat which contexts can be created for the extent. For the centralized policies it is possible to specifythe node at which the context(s) for the extent should be created.The choice of activation policy for an extent is made by the owner of the extent and will typicallydepend on knowledge of the semantics of the objects belonging to the extent as well as local securitypolicy. For example, a centralized policy may be used where an object is used to represent theinterface to some device. An unshared policy may be used where an object represents a serverproviding a service to many clients. Local security policy may control the set of nodes available toa particular user.4 Database support in AmadeusOne of the factors which determines the implementation techniques used within an object orientedprogramming language (oopl) is whether or not it aims to support large volumes of data andlarge collections of objects, and in particular, whether or not it aims to support dbms functionsother than just storage and retrieval. If an oopl is to support the implementation of a dbms, orobject level access to a database, then it must support access to volumes of objects in excess of thesize of virtual memory, and it must e�ciently handle the low locality of reference typical of thesesystems. In addition, it must manage collections of objects which can be queried, necessitating themaintenance of indices when objects are updated, and the acquisition of intent locks [1, 2] whenobjects are accessed. Since Amadeus aims to support a wide range of oopls, it must support suchlanguages. The following are some of the ways in which the implementation of such languages di�erfrom persistent oopls which access smaller, non-database, persistent stores:� Where the locality of reference is high, there will be no signi�cant cost in using logical oids{ oids for which a lookup of a disk based table is required in order to locate and map in thetarget objects. The low locality of reference typical of database applications makes the useof physical oids attractive { allowing the page number of an object, or a cluster of objects,to be built into an oid , as a hint. Amadeus will support both mechanisms, allowing the2We are currently investigating a replicated policy.



5 EXPLOITING PARALLELISM IN AMADEUS 4language level to choose whichever is more appropriate. The main component of the solutionis a mechanism for preventing low level applications from fabricating physical oids in orderto access other users' objects.� To support access to large volumes of data, clusters of objects must be easily unmapped fromvirtual memory. This is di�cult where a persistent oopl swizzles its references into virtualmemory pointers { since the unmapping of a cluster then requires a scan of the context todetermine if any object is referencing an object in the cluster. This is very expensive andit mitigates against access to more data than will �t into the relatively small (by databasestandards) virtual memory size of a process. The Orion dbms [3] swizzles each referenceinto a pointer to an indirection structure, allowing the target objects themselves to be easilyunmapped. The E programming language [4] does not swizzle references, thereby allowinge�cient unmapping of objects, and less overhead associated with the mapping in of an object.On the other hand, the swizzling of references to virtual memory pointers has e�ciencyadvantages where virtual memory is rarely exhausted. Therefore, Amadeus provides thesystem level support needed to handle a wide range of swizzling policies within its oopls.� To maintain indices and intent locks on collections of objects, operation invocations must bevisible to a component of the system responsible for dbms functions. Amadeus allows thisto be done without changing the normal representation of an object { by using a code imagewhich communicates with a controller object at the start and/or end of each operation, inaddition to implementing the object's normal behaviour. This is optional for any object, sonon-database objects are not a�ected, and di�erent controllers can be provided by di�erentdbmss, rather than providing a �xed way to handle these important dbms functions.� For e�ciency, the members of some dbms collections should be stored by the collections them-selves { so that they can be clustered, and possibly vertically and horizontally fragmented,to improve the e�ciency of queries or scans. This cannot be done by the Amadeus storagesystem, since it must remain independent of application semantics, and di�erent dbmss mayrequire di�erent mechanisms. Instead, members of these collections are stored in such a waythat they can only be accessed through an access object associated with their collection, andthis access object can control and use specialised storage mechanisms. This is done trans-parently to the invoking object { without a�ecting its operation invocation mechanism. It isalso transparent to the oopl, since it is handled by the generic layers within Amadeus.The last two points support alternative mechanisms for implementing a collection: either it canhold references to its members, or it can act as a storage container collection.5 Exploiting parallelism in AmadeusThis section looks at how load balancing is incorporated into Amadeus. As a concrete exampleit shows how a program to perform ray tracing was structured to run on Amadeus. Before goingon to discuss the details of load balancing, it must be noted that our system does not (currently)support the replication of objects in memory, nor does it allow objects to be migrated from onenode to another once they are mapped into memory.As a �rst and obvious step it can be seen that the conventional technique of load balancing onprocess creation used in many systems, maps onto load balancing on activity creation in the caseof Amadeus.



5 EXPLOITING PARALLELISM IN AMADEUS 5If all of the objects used by an activity are mapped at the node, to which the activity wasassigned, then straight forward load balancing on activity creation will be e�ective. However, inthe case of activities which share objects with other activities, extra steps are required. Take forexample an application which is structured as a number of co-operating activities. For the mostpart, the activities operate on private objects but occasionally, for example for synchronisationpurposes, they need to invoke on other objects. In the absence of any other action by the application,all of its objects will be assigned to the same cluster. Thus, no matter what placement decisionsit makes about the activities it creates, these will e�ectively all return to the parent node toexecute { thus eliminating any possibility of performance improvement due to parallel execution.Accordingly, it is necessary for the application to explicitly partition the data (objects) it usesduring its execution, as well as functionally partitioning its activities.The solution adopted in Amadeus is for the application programmer to explicitly use clus-ter management primitives3 to partition the objects into clusters. Load balancing assigns a(preferred) node to each activity when it is created. When the activity subsequently faultsobjects (clusters) into memory they are placed at the preferred node. When an activity invokes onobjects that are already mapped, these objects are not moved, but instead the activity di�uses tothe appropriate node.Thus Amadeus assigns activities to nodes uses load balancing and puts the responsibility forpartitioning the problem on the application programmer. The following section shows how a sub-stantial real world problem is structured to run on Amadeus.5.1 An Example ApplicationRay tracing is essentially an exercise in data parallelism with the program being structured alongclassic master slave lines. The image can be broken up into a number of subsections (rectangles) eachof which can be processed in parallel (by a slave worker) without any reference to its neighbours.Once a worker completes its rectangle, this can be sent back to the master to be stored in �le { oras was done in our case displayed, directly on a colour graphics screen.Initialize;FOR I = 1 to NumberOfWorkersNewCluster();SetDefaultCluster();Create worker I and associated objects;ENDFOR I := 1 to NumberOfWorkerslaunch worker I;ENDDisplay results;As workers activities are created, load balancing will spread them around the system. Theclustering of objects will ensure that activities do not have to di�use too often.3Namely, NewCluster() and SetDefaultCluster()



6 SUMMARY AND CONCLUSIONS 66 Summary and ConclusionsIn a short paper such as this it is impossible to cover the central ideas and their rami�cation in anygreat detail. However, it can be seen even from this brief overview that the Amadeus philosophyof aiming to be a general purpose object oriented platform is a fruitful area of research, and onewhich shows some of the strengths and generality of the object oriented approach.References[1] J.N. Gray, R.A. Lorie, G.R. Putzolu, and I.L. Traiger. Granularity of locks and degrees ofconsistency in a shared data base. In Proc. IFIP Working Conf. on Modelling of Data BasesManagement Systems, pages 695{723, Freudensadt, Germany, January 1976.[2] Gray J.N. Notes on database operating systems. In Operating systems an advanced course -LNCS vol. 60, chapter 3, pages 393{481. Springer-Verlag, 1978.[3] Won Kim. Introduction to Object-Oriented Databases. Computer Systems. MIT Press, 1990.[4] J.E. Richardson and M.J. Carey. Persistence in the E language: issues and implementation.Software - Practice and Experience, 19(12):1115{1150, December 1989.[5] R.Kroger et al. The RelaX transactional object management system. In Proceedings Interna-tional Workshop on Computer Architectures to support Security and Persistence of Information.Springer-Verlag, May 1990.[6] R.Schumann et al. Recovery management in the RelaX distributed transaction layer. In Pro-ceedings 8th Symposium on Reliable Distributed Systems, pages 21{28. IEEE, October 1989.


