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ABSTRACT

In the last two decades, many reports of proteins under positive selection have
brought the neutral theory into question. However, the methods used to detect
selection have ignored the evolvability of amino acids within proteins, which is
fundamental to distinguishing positive selection from the relaxed constraints
caused by genetic drift. Disentangling these two counterbalancing forces is
essential to test the Neutral theory. Here, we calibrate rates of amino acid
divergence by using structural information from the full set of crystallised
proteins in bacteria. In agreement with previous reports, we show that rates of
amino acid evolution correlate negatively with the number of per-amino acid
atomic interactions. Calibration of the rates of evolution allows identifying
signatures of selection in biological systems that evolve under strong genetic
drift, such as endosymbiotic bacteria. Application of this method identifies
different rates and evolutionary dynamics of evolution for highly-connected
amino acids in the structure compared to sparsely-connected ones. We also
unearth patterns of Darwinian selection in fundamental cellular proteins in
endosymbiotic bacteria including the co-chaperonin GroES, ribosomal proteins,
proteins involved in cell cycle control, DNA-binding proteins and proteins
involved in DNA replication and repair. This is, to our knowledge, the first
attempt to distinguish adaptive evolution from relaxed constraints in biological

systems under genetic drift.



INTRODUCTION

“That natural selection will always act with extreme slowness I fully admit”

- The Origin of Species (1857). With this statement, Darwin acknowledged the
relative slowness of natural selection. This remark remains generally true,
although exceptions highlight the occasionally saltational nature of evolution.
For example, protein evolutionary rates usually shift between groups of
organisms with different biological properties or distinct population dynamics.
These shifts are generally correlated with functional changes in proteins that
enable organisms to adapt to new environments. However, changes in
environmental conditions are also accompanied by non-selective processes
induced by genetic drift such as gene loss or accelerated rates of evolution in no-
longer important (functionally redundant) genes (16). Although many studies
have been conducted to identify adaptive evolution, little effort has been
invested in disentangling the variation in protein’s evolutionary rate caused by
adaptive processes from that due to genetic drift. Resolving this question is
fundamental to shedding light on the evolvability of proteins and hence in
evaluating the potential of proteins to generate functional innovation.

Different methods based on the ratio between the rates of non-
synonymous and synonymous nucleotide substitutions (o = dn/ds) have been
devised to identify selection indiscriminately in all types of biological systems.
Although such conservative measures of the intensity of selection can in theory
distinguish between adaptive evolution (o > 1), neutrality (o = 1) and purifying
selection (w < 1), they are subject to limitations. In particular, these methods
systematically ignore the capacity of amino acids to evolve given their structural

constraints. For example, the high conservation of amino acids that are confined



to the core of a protein makes it difficult to identify punctual events of adaptive
evolution using w because such events are generally masked by strong purifying
selection that operates at these sites during most of their evolution. Conversely,
residues with little functional importance can show high rates of amino acid
substitutions that, when the number of synonymous changes is small, can lead to
inflated w values erroneously supporting adaptive processes. Rather than being
an exception, this problem underlies many biological systems that present
complex population dynamics resulting from a change in their lifestyle. Accurate
identification of selection in these biological systems may shed light on the
molecular mechanisms enabling ecological innovation. Symbiosis is one of the
most striking examples of biological innovation. Indeed, insects that have
established symbiosis with proteobacteria have colonized a myriad of ecological
niches, leading to the astonishing diversity of insect species (Price 1991).
Buchnera aphidicola, the primary symbiotic bacterium of aphids, and Candidatus
Blochmannia sp, the primary symbiotic bacterium of carpenter ants, are among
the best-characterized endo-cellular symbiotic bacteria of insects. These bacteria
experience strong population bottlenecks (Mira and Moran 2002) and they lack
DNA-repair genes (Shigenobu et al. 2000; Moran, McCutcheon, and Nakabachi
2008). In the case of aphids, their endosymbiotic bacteria contain no prophages,
a single rRNA operon, no long repeated sequences, and have lost genes involved
in recombination or incorporation of foreign DNA (Suyama and Bork 2001;
Tamas et al. 2002). This has resulted in the rapid fixation of slightly deleterious
mutations by genetic drift, as has been extensively demonstrated (Lynch and
Gabriel 1990; Moran 1996; Lynch 1997; Fares et al. 2002b). The average

mutational load of endosymbiotic bacteria therefore increases between host



generations in an irreversible fashion, a phenomenon previously recognized as
an example of Muller’s ratchet (Muller 1964). The strong effect of genetic drift in
these bacteria makes it difficult to identify positively selected molecular changes
that may have been beneficial for adaptation to the endo-cellular lifestyle.

The extent to which genetic drift dominates the selection-drift balance
during the evolution of endosymbiotic bacteria remains the subject of many
studies. Conflicting reports show either the action of selection (Fares et al.
2002a; Fares, Moya, and Barrio 2005) or genetic drift (Funk, Wernegreen, and
Moran 2001; Herbeck et al. 2003) to be the main driving force in the fixation of
mutations. Further, novel approaches have shown that selection for proteins
robust to mistranslation errors as well as functional divergence have been
operating throughout the evolution of endosymbiotic bacteria (Toft and Fares
2009; Toft, Williams, and Fares 2009). The fact that adaptive evolution and
genetic drift both increase the rate of fixation of mutations makes identifying
real patterns of selection in these endosymbiotic systems extremely challenging.
The identification of the signature of selection is also hindered by the codon and
nucleotide bias in endosymbiotic bacteria (Rispe et al. 2004) and by the
saturation of synonymous sites or the action of selection at these sites, which
may inflate the non-synonymous-to-synonymous rate ratio (Mayrose et al.
2007). In this manuscript we address the problem of identifying selection in
systems that present high mutational loads by using a novel approach in which
selection signatures are corrected by calibrating the rate of evolution at the
molecular level. We show that: /) Amino acids within proteins are quantitatively
constrained by their inter-residue interactions; ii) Amino acid mutational

dynamics are determined by their location in the protein structure; iii)



Accounting for the evolvability of amino acids in the context of structures allows
a more precise identification of Darwinian Selection; and iv) Endosymbiotic
bacteria present evidence of strong selection despite the genetic drift underlying

their population dynamics.



MATERIALS AND METHODS

Genomes and Alignments

We used four genomes of Buchnera aphidicola (hereafter Buchnera), the primary
symbiotic bacterium of aphids, including strains Acyrthosiphon pisum (BAp:
NC_002528), Schizaphis graminum (BSg: NC_004061), Baizongia pistaciae (BBp:
NC_004545) and Cinara cedri (BCc: NC_008513). We did not use the two
recently sequenced BAp genomes (Moran, McLaughlin, and Sorek 2009) to avoid
biased results due to over-representation of one of the endosymbiotic genomes.
In addition, these two new BAp genomes only represent intra-population
variability at the very recent time scale while we were more interested in the
variability at the species level. We also used the genomes of the endosymbiotic
bacterium of carpenter ants Blochmannia, including Candidatus Blochmannia
pennsylvanicus (Bp: NC_007292) and Candidatus Blochmannia floridanus (Bf:
NC_005061). We used 85 complete genomes of gamma-3 proteobacteria to
compare the evolutionary dynamics between free-living and endosymbiotic
bacteria (see table 1 of Supplementary Information). These 85 genomes were
those containing orthologs for the genes present in the endosymbiotic bacteria
studied in this work. With each of the genes from the genomes of endosymbiotic
bacteria we performed Blast searches to find their homologs in other genomes.
We considered homologous genes only those showing reciprocal top best Blast
hits with scores of less than or equal to 104 For each one of the genes we built
protein multiple sequence alignments using the ClustalW program with the

default parameters (Thompson, Higgins, and Gibson 1994).

Protein structures



All available protein structures for gamma-3 proteobacteria (mainly in
Escherichia coli: Ec) were downloaded from the protein data bank (PDB:

http: //www.rcsb.org/pdb/). In total, we downloaded 1,000 (but 1075 different

chains) structures (Accession numbers in Table 4 of Supplementary
Information). In those protein structures with several chains or subunits we
blasted each of the subunit amino acid sequences against the representative
sequence in gamma-3 proteobacteria and stored that chain of the protein
structure sequence with the highest score. These structures represented
approximately 20% to 25% of the proteome of Ec. This set of structures also
contained 221 proteins in Buchnera (about 50% to 80% of the remaining genes
in BAp and BCc, respectively) and 335 proteins from Blochmannia (constituting
about 50% to 60% of the proteins set conserved in Blochmannia genomes). None
of the main functional categories contained in the cluster of orthologous groups
(COG), were over-represented (we found no significant enrichment of any of the
categories for any of the structures, and the proportion of represented proteins
in the three main categories varied only between 28% and 37%). Despite this,
we found significant differences in the rates of evolution of crystallized proteins
versus non-crystallized ones in Buchnera (T-test of independent samples: t =
3.319, df. = 156, P = 0.001) and in Blochmannia (t = 2.470, d.f. = 454, P = 0.013),
with crystallized proteins being the most variable. Highly conserved proteins
therefore do not bias our analyses, and we have a sufficient amount of

evolutionary noise in our proteins so as to put our approach to the test.

Calibrating Natural Selection Using Structural Constraints



Amino acids within a protein do not contribute equally to protein’s function or
structure and are therefore under different constraints. It has been shown that,
in general, amino acid residues exposed to the surface of the protein evolve
faster than those within the core of the protein (Thorne, Goldman, and Jones
1996; Goldman, Thorne, and Jones 1998; Bustamante, Townsend, and Hartl
2000; Mintseris and Weng 2005; Bloom et al. 2006b; Conant and Stadler 2009).
Here, we explore the relationship between the number of amino acid atomic
contacts and their evolutionary divergence. We then use this information to
calibrate the rates of amino acid evolution and identify those residues that
present selection signals beyond the stochastic error caused by genetic drift and
beyond the intrinsic evolvability of amino acids. We hypothesise that amino
acids with greater number of contacts are structurally more constrained because
their mutation is likely to affect many residues in the protein, and that they
therefore evolve slowly. This means that, under genetic drift, amino acids with
low number of contacts may present artifactual signals of selection and
accelerated rates due to relaxed constraints rather than to adaptive processes.
To demonstrate the precise relationship between structural constraints and
divergence, we subdivided protein alignments from gamma-3 proteobacteria
into different divergence categories. We did that by estimating the average
amino acid variability for each of the proteins in Ec. These categories were
named 10%, 20%, 30% and 40% and comprised proteins with 0 to 10% average
pairwise protein sequence divergence, 11 to 20% divergence, 21 to 30%
divergence and 31 to 40% divergence, respectively. We then measured the

number of amino acid interactions with other residues (hereafter called amino



acid density) within each of the proteins by measuring the structural distance

among all pairs of amino acid sites using the Euclidean distance:
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Here N is the number of atoms in amino acid i while K is that number in amino
acid j. X, Y and Z represent the three-dimensional coordinates of the atoms
corresponding to each of the amino acids. We considered two amino acids to
contact each other when the distance between their closest atoms was 4A.

We categorized amino acid densities into classes that included interactions, 3 to
56t08,9to11,12to 14, 15to 17 and 18 to 20 interactions. We determined the
classes and their limits using Stutgarts equation. For each of the sets of proteins
with divergence belonging to one of the levels (10% to 40%), we had 7
categories of amino acid densities. The number of data per category is
summarized in supplementary table 3 of supplementary information. Finally, we
subdivided protein sequence alignments into sub-alignments comprising amino
acid sites that shared similar amino acid density - that is, we picked from the
alignment those amino acids with similar densities and built a sub-alignment
containing them - and stored such sub-alignments in the different density
categories. This was further performed in the case of alignments including
endosymbiotic sequences that were classified into the categories of divergence
levels according to the divergence of their orthologous free-living bacterial
alignments. That is to say, within each of the 28 categories endosymbiont sub-
alignments are a subset of free-living sub-alignments that are within the same
category, so that the proteins within each of the categories in free-living bacteria

are being compared with the same proteins in endosymbiotic bacteria.
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For each one of the 28 categories of protein sequence sub-alignments we
measured the average pairwise amino acid distance corrected for multiple hits
using Poisson. Then we plotted Poisson-corrected distances against the classes
of amino acid densities. This allowed us to construct curves that provided a
background protein evolutionary divergence against which we could compare
individual sub-alignments. Using this evolutionary background signal we tested
and identified signatures of selective constraint deviating from expectation at

individual amino acid site categories within proteins.

Identifying Calibrated Selection Constraints in Endosymbiotic Proteins

We built multiple sequence alignments for all those endosymbiotic proteins for
which a crystal structure is available. The final set of proteins for which we built
alignments consisted of 221 proteins for Buchnera and 335 proteins for
Blochmannia. After classifying proteins into the different divergence levels
according to the divergence of their orthologs in free-living bacteria, we
classified amino acid sites within these alignments into the different density
categories and measured their evolutionary divergence as the pairwise Poisson-

corrected amino acid distance in the multiple sequence alignment at that site.
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RESULTS

The number of residue interactions constrains amino acid evolution

Does the numbers of residue interactions constrain amino acid evolution?
Although many other authors have partially addressed this question, the
quantitative relationship between these two parameters remains unexplored.
We first examined the dynamics of evolutionary rates in free-living bacteria (the
85 genomes from the gamma-3 proteobacterium group). To carry out these
analyses, we first calculated the structural density for each amino acid in Ec
protein structures. Then we classified amino acids within bins of densities (see
Material and Methods for details) and measured their evolutionary divergence
using the average Poisson-corrected pairwise amino acid distances. We
therefore calculated two numbers for each amino acid: structural density and
mean evolutionary divergence. As predicted, our analysis of the full set of
crystallized proteins demonstrated a negative correlation between amino acid
density and evolutionary rate: the greater the amino acid density of a residue,
the lower is its divergence (Figure 1A). This relationship is reproducible
regardless of the divergence levels of the proteins considered (Figure 1A), and it
remains true in Buchnera and Blochmannia (Figure 1B and C) despite the effects
of genetic drift. We repeated this analysis controlling for the overall divergence
level of the proteins (that is, we analyzed the relationship between divergence
measured as mean Poisson distance and amino acid density in the structure for
the set of proteins with average divergence levels of 10%, 20%, 30%).
Correlation coefficients were low due to the high number of data points,
although they were highly significant in all the correlation curves of Figure 1

(Table 1). Unlike free-living bacteria, the variance of the relationship between
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the structural density of amino acids and their divergence in endosymbiotic
bacteria is better explained by a curvilinear (quadratic) rather than linear model
(Figure 1A and B). In this model, the slopes of the curves are only slightly
negative at amino acids presenting low numbers of interactions (for example,
low amino acid density) and increase sharply at higher amino acid densities
(Figure 1B and C). A plausible explanation for this pattern is that endosymbiotic
bacterial genomes have fixed mutations neutrally at amino acids with low
densities (possibly due to lower constraints) that became quickly saturated over
time. This may have led to a slope that becomes insensitive to the variance of
amino acid density when density values are low. This result was not biased by
the codon or nucleotide composition because there was no correlation between
the structural location of the amino acid and its nucleotide composition
(Spearman Correlation: r = 0.087; P >> 0.2).

We investigated the relationship of the evolutionary dynamics and
structural constraints in proteins from the different functional categories of the
Clusters of Orthologous Genes (COG). We ran the same analyses on the set of
genes that were classified within the categories of metabolism (met),
information storage and processing (isp) and cellular processes and signalling
(cps) (Table 4 of Supplementary Information). Free-living bacteria presented the
same dynamics in each of the functional categories, with amino acid densities
correlating negatively with their divergence (Figure 2A). The variance between
these functional categories was very low. Indeed, the boundaries between the
divergence levels were clear and the difference in divergence among protein
divergence curves remained significant, such that there was no significant

overlap between error bars at different divergence levels for the three COG
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categories (Figure 2B). In the case of the endosymbiotic bacteria Buchnera and
Blochmannia, the results were slightly different because, despite the
reproducibility of negative correlation between rates and amino acid densities in
all COG categories, the high variance between the curves resulted in the overlap
of divergence rates among the different protein divergence levels (Figure 2C to
F). This supports the fact that amino acid sites in these systems have become
saturated by replacements. Interestingly, the met comprised the most highly
evolving proteins, while isp compiled the slowest evolving proteins in Buchnera
and Blochmannia (Figure 2C to F). The same pattern was not observed in free-
living bacteria, where the amount of contributed variation within each
divergence category varied randomly among the COG classes (Figure 2A and B
and Table 4 of Supplementary Information). It was also noteworthy that, in
Buchnera and Blochmannia, residues with the highest amino acid densities
presented substantially lower divergence levels in the 30% divergence category
compared to the 10% and 20% divergence categories (Figure 2C to F). In other
words, amino acids in the protein core seemed more constrained in proteins
with 30% divergence than in those with 10% or 20% divergence. This may
indicate functional divergence at these amino acids followed by strong
constraints to preserve their new functional roles, as previously suggested (Toft,

Williams, and Fares 2009).

Heterogeneous evolutionary dynamics of amino acids across protein
structures
In the previous section we showed that amino acid sites are constrained by the

number of interactions they establish. Here we sought to determine whether the
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mode of evolution of amino acid sites with high structural densities is equivalent
to that of surface-exposed amino acids despite their different divergence levels.
We addressed this in free-living bacteria and endosymbiotic bacteria separately
because they experience different population structures and selection patterns.
To test the correlation between the mode of evolution and the structural density
we studied possible changes throughout the phylogeny in the evolutionary
dynamics of amino acids falling within particular density categories. We
examined whether the average evolutionary rate of amino acids belonging to one
density category changes between different phylogenetic levels (that is, we
compared the rates of evolution estimated from closely-related organisms to
those obtained from distantly related organisms in the same phylogeny) and
whether these changes (which we call Phylogenetic Selection Shifts, PhSS) are of
the same magnitude in the different density categories. To compare PhSS in
evolutionary rates between density categories, we calculated the increments in
evolutionary divergence across the phylogeny for each density category. Due to
the fact that for some genes, distance between the two sister taxa can be greater
than the mean tree divergence, we assumed both these divergence levels follow
a binomial distribution. Therefore, the increment of divergence for each of the

amino acids within a sub-alignment and density category was:

AD - 1 _ I_)tree - PEc—Sz
Rree + PEC—SZ

Here AD is the increment of the Poisson-corrected distance for each amino acid

within a particular amino acid density category, P, , is the average pairwise

Poisson-corrected amino acid distance for the entire free-living bacterial tree for

that amino acid, while Pgcs: is that distance between Escherichia coli (Ec) and
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Salmonella typhimurium (St). It is noteworthy that in the tree Ec and St are the
closest possible species and hence P should be greater than Pgc.s.. Accelerated
evolution between Ec and St in a particular density category will imply that Pgc.s:

approaches P, the ratio will decrease, and hence AD will approach 1. The

inverse situation will lead to increments closer to 0. We then conducted the same
approximation in Buchnera and calculated the ratio for Ppsp-psy (the closest
endosymbiotic bacterial species in the tree) and the average distance for the four
Buchnera genomes along the phylogeny, Ppuchnera. The results in figure 3 show
that free-living bacteria present regression models with changing slopes, going
from a positive slope in the 10% and 20% divergence curves to a negative slope
in the 30% divergence curve (Figure 3A and Table 2). At low protein divergence
levels, therefore, proteins behave as expected: amino acids with high structural
densities evolve slowly regardless of the phylogenetic level (for example, they
present similar number of fixed mutations when we compare closely related
species or distant species, respectively) and hence the ratio is close to 0 and AD
close to 1. The inverse situation occurs with amino acids at low densities. At high
protein divergence levels, such as the curve of 30% divergence, however, it is the
amino acids with high densities that display greater shifts in their divergence
rates, yielding AD values closer to 0 (Figure 3A). In contrast, the Buchnera curves
all had positive slopes, indicating that when the divergence level between
species increases, the residues with high amino acid densities evolve
proportionally slower than those with low densities (Figure 3B). The results
obtained for Buchnera were also reproduced in Blochmannia (results not
shown). These results lead to two conclusions: i) that amino acids experience

different evolutionary dynamics depending on the structural constraints; and ii)
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that despite their population dynamics, endosymbiotic bacteria display
evolutionary patterns strongly suggesting the action of natural selection at

highly constrained amino acids.

Identifying calibrated Darwinian selection in endosymbionts

We used the evolutionary divergence curves as a starting point for identifying
selection in endosymbiotic bacteria. To do so, we subdivided the multiple
sequence alignments for each of the proteins for which a crystal structure was
available into different sub-alignments that each contained residues with similar
amino acid densities. We then estimated the average Poisson distance for these
sub-alignments and compared this distance with that estimated for the full
dataset (full dataset as available in Figure 1). The comparison was done using the
divergence level curve appropriate to each protein (for instance, we compared
the sub-alignments derived from proteins at the 10% divergence level to the
curve of the proteins with 10% divergence levels in Figure 1). Those sub-
alignments falling within the curve and its confidence interval were considered
to evolve neutrally. Outliers were considered to be proteins that were evolving
either under adaptive/accelerated evolution (if falling above the curve) or under
strong selective constraints (falling below the curve). This is a very convenient
way of identifying selection because it is not subject to the assumptions of
parameters used to measure selection, such as neutrality at synonymous sites or
lack of codon bias, which are mostly violated in the case of endosymbiotic
bacteria. This approach identified several outlier proteins, some of which
presented one category of amino acid density under either strong constraints or

accelerated evolution, while other proteins included residues from different
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categories under distinct constraints (Figure 4). We subdivided the proteins
identified as outliers into those showing unexpected evolutionary patterns at
amino acids with high structural densities and those with low structural
densities (Table 3). We identified accelerated evolution in highly dense residues
in proteins related to the translational and transcriptional machinery (Table 3).
We also found accelerated rates of evolution in signal recognition particle
receptors and excretion systems, as well as in proteins related to the metabolism
of amino acids (Figure 4 and Table 3). Importantly, these proteins mediate the
endosymbiotic lifestyle of these bacteria, which experience low replication rates
and synthesize essential amino acids that are later exported to the host (Gray,
Burger, and Lang 1999; Shigenobu et al. 2000). We also detected accelerated
evolution at amino acids with low densities (therefore exposed on the surface of
the protein) in proteins from the ribosomal system and in many enzymes and
nucleotide binding proteins (Figure 4 and Table 3). This hints at the possibility
that this acceleration may be affecting the ability of these proteins to bind other
proteins or nucleotides. Among the highly constrained proteins we identified
ribosomal proteins and the essential chaperonin cofactor GroES that, in
conjunction with the chaperonin GroEL, is involved in the protein folding cycle.
Other essential proteins were also identified such as the cell division protein
FTSZ, ssDNA-binding protein SSB and the mechanosensitive ion channel protein
MSCS (Figure 4 and Table 3). Interestingly, while FTSZ showed constraints at
buried amino acids, proteins involved in interactions with other proteins or with
DNA displayed constraints at surface-exposed residues as well as at buried sites.
Taken together, these results suggest new functional roles in proteins that either

buffer the effects of intra-cellular life in endosymbionts, such as ameliorating the
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effects of destabilizing mutations through GroEL/S (Moran 1996; Fares et al.
2002a; Fares, Moya, and Barrio 2004; Fares, Moya, and Barrio 2005), or that
slow down cell division in order to adapt to intra-cellular life (Toft, Williams, and
Fares 2009).

We examined the distribution of the genes that showed accelerated or
constrained evolution in the different categories of the cluster of orthologous
groups (COG) and we identified Fast-evolving and slow-evolving genes in all
three COG categories (met, isp and cps). However, unlike in other COG
categories, , we did not find evidence of enrichment for constrained (or slowly-
evolving) genes in met (Figure 5 and Table 5 of supplementary information). In
Blochmannia we also identified a significant impoverishment for slow-evolving
genes in met (Figure 5). Conversely, fast-evolving and slow-evolving genes were

present in the other two categories in Buchnera and Blochmannia (Figure 5).

Identification of calibrated constraints in two case studies

To determine the biological significance of the information obtained from
selection analyses, we focused on two essential protein-coding genes. These two
genes were infB, which encodes the prokaryotic translation initiation factor (IF2)
(Laursen et al. 2002) and ssb, which is the single-stranded DNA (ssDNA) binding
protein. ssDNA is a transient state in DNA metabolic processes such as
replication, recombination and repair (Lohman and Ferrari 1994; Wold 1997).
Both proteins are essential for cell viability under normal conditions. The
binding sites for SsB protein are known to include residues at positions 55 to 61
(highlighted in green in figure 6a). Analysis of selection patterns in SsB after

calibrating amino acid evolvability by structural constraints identifies several
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amino acids as being under strong purifying selection (spheres in the structure
of figure 6a). From the perspective of structural constraints, we would expect
these residues to evolve more quickly than core-protein residues because they
are involved in a low number of residue interactions. However, the function of
these residues is essential and they are therefore expected to evolve slowly
despite their low structural densities. Identification of amino acid sites with low
densities and high constraints reveals that residues from the binding region as
well as those surrounding it are evolving slowly (figure 6a).

In the case of the InfB protein, accelerated evolution at highly structurally
constrained amino acids was detected (for example, at residues with amino acid
densities of 15 or greater, figure 6b). In endosymbiotic bacteria, replication and
translation are constrained by the cell space because these bacteria live within
specialized host cells called bacteriocytes. These functions, therefore, may have
shifted to adapt to the new space limitations. Accelerated evolution at important
regions in InfB may be related with these shifts and may have been accompanied
by structural modification given the location of the affected amino acids in the

protein core.
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Discussion

The factors governing the rate of protein evolution remain to be elucidated. This
task is difficult because the evolutionary rate of a protein is the result of the
interactions between many parameters, including gene expression (Jovelin and
Phillips 2009), number of per-protein interactions, modularity (Fraser et al.
2002; Fraser, Wall, and Hirsh 2003; Fraser 2005) and translational robustness
(Drummond et al. 2005; Drummond, Raval, and Wilke 2006). In contrast to inter-
protein rate variation, the effects of expression level, translational robustness,
and other interaction factors are equally felt by all amino acids within a protein.
Therefore, differences in evolvability among amino acids within a protein may be
due to their unequal contribution to the structural stability and/or function of
that protein. The rates at which amino acids evolve vary greatly across protein
structures. Epistatic interactions between amino acids belonging to interacting
proteins may contribute substantially to this variation. Evidence in support of
the importance of epistatic interactions between proteins in the evolution of
amino acids has been previously reported (Fraser et al. 2002; Fraser, Wall, and
Hirsh 2003). Nonetheless, the effects of these amino acids on general patterns of
evolution should be negligible because only a very few amino acids generally
participate in the interaction between proteins. In this report, we have analyzed
the constraints that structure imposes on the evolvability of amino acid sites in
proteins. We show that, indeed, structural constraints can be defined as the
number of atomic interactions that amino acids establish within the protein.
Here we assumed that amino acids within 4A contact one another. The number
of atomic contacts is negatively correlated with divergence level as we show in

group 3 of the gamma-proteobacteria. The negative correlation between the
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solvent accessibility of amino acids and their evolutionary rate has been
previously addressed (Thorne, Goldman, and Jones 1996; Goldman, Thorne, and
Jones 1998; Bustamante, Townsend, and Hartl 2000; Mintseris and Weng 2005;
Bloom et al. 2006a; Conant 2009; Conant and Stadler 2009). In spite of the clear
inter-dependence between these two factors, no formal correlation analyses
have been carried out to quantify this relationship across protein structures. In
our study we assumed that number of atomic interactions is a greater
determinant of amino acid evolutionary rate than solvent accessibility - these
properties are not necessarily correlated because, in small proteins, amino acids
may have low solvent accessibility and yet establish a low number of atomic
interactions. We also used our quantitative measure of the relationship between
divergence levels and atomic interactions to build curves of evolution in order to
calibrate the evolutionary constraints operating within proteins. The importance
of these curves stems from the potential they confer to tease apart adaptive
evolution from genetic drift in biological systems under strong drift effects. Using
o in these systems would be useless because both drift and positive selection
provide similar signatures, especially at the population level. In our study we
assume protein structures are conserved from Ec to endosymbionts, and
although this is likely to be generally true for the proteins analysed here,
exceptions may exist. However, the effect of any such exceptions is likely to be
minimal since we expect most protein structures to be conserved. An additional
limitation is that crystal structures are only static images of the real protein that
fail to capture important conformational changes during the binding to cofactors
or other proteins. This means that amino acids far apart in the crystal structure

may contact transiently after a protein conformational change. Again, we expect
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this to have a negligible effect on our conclusions, because the number of amino
acids involved is likely to be very limited. Indeed, if this were a general
phenomenon we would expect the resulting stochastic noise to hide the patterns
observed in our study and therefore our results are, overall, conservative.

The endosymbiotic bacteria of insects are often under strong bottlenecks during
their intergenerational transmission, and their genomes are characterized by
high AT-content and saturation of synonymous sites (Rispe et al. 2004). Proteins
from these bacteria are therefore very likely to violate the assumption of
neutrality at synonymous sites. Synonymous sites may also be under selection
(Chamary, Parmley, and Hurst 2006; Mayrose et al. 2007). This poses difficulties
in using o as a measure of the intensity of selection in these systems. Using
calibrating curves we identified several proteins, involved in fundamental
processes in the cell, which present evidence of selection beyond the background
noise of slightly deleterious fixed mutations. We also showed that not only can
amino acids evolve under different rates but that they can also present different
mutational dynamics depending on their structural location. For instance,
different structural regions of the GroEL protein are evolving under different
constraints, so that the entire protein experiences evolutionary dynamics more
complex than those previously reported (Fares et al. 2002a; Herbeck et al. 2003;
Fares, Moya, and Barrio 2004; Fares, Moya, and Barrio 2005). This is a good
example of the fact that even in drifting systems such as the endosymbiotic
bacteria of insects, a delicate balance between selection and drift is at work in
essential proteins. Only accounting for the forces shaping the evolvability of

amino acids allows these signatures to be distinguished.
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In summary, unlike many authors we use the link between structure and
evolvability to identify signatures of selection. This allows the identification of
selection signatures against a neutral background enhanced by drift. Our work
demonstrates that we need to account for the structural constraints on amino
acid evolvability to accurately infer selection. We propose using calibrated
curves of evolution as a new approximation for identifying adaptive Darwinian

selection regardless the system under study.

24



Acknowledgements

We thank the Evolutionary Genetics and Bioinformatics lab members for a
careful review of the manuscript and useful suggestions. We especially thank
Tom A. Williams for reading the manuscript and making useful suggestions on
the writing. This work was supported by Science Foundation Ireland under the
President of Ireland Young Researcher Award [04/YI1/M518] to MAF. Part of the
research carried out in this study was supported by grant number (BFU2009-

12022) from the Spanish Ministerio de Ciencia e Innovacion.

References

Bloom, J. D., D. A. Drummond, F. H. Arnold, and C. O. Wilke. 2006a. Structural
determinants of the rate of protein evolution in yeast. Mol Biol Evol
23:1751-1761.

Bloom, . D., S. T. Labthavikul, C. R. Otey, and F. H. Arnold. 2006b. Protein stability
promotes evolvability. Proc Natl Acad Sci U S A 103:5869-5874.

Bustamante, C. D., J. P. Townsend, and D. L. Hartl. 2000. Solvent accessibility and
purifying selection within proteins of Escherichia coli and Salmonella
enterica. Mol Biol Evol 17:301-308.

Chamary, J. V., ]. L. Parmley, and L. D. Hurst. 2006. Hearing silence: non-neutral
evolution at synonymous sites in mammals. Nat Rev Genet 7:98-108.

Conant, G. C. 2009. Neutral evolution on mammalian protein surfaces. Trends
Genet 25:377-381.

Conant, G. C., and P. F. Stadler. 2009. Solvent exposure imparts similar selective
pressures across a range of yeast proteins. Mol Biol Evol 26:1155-1161.

Drummond, D. A, . D. Bloom, C. Adami, C. O. Wilke, and F. H. Arnold. 2005. Why
highly expressed proteins evolve slowly. Proc Natl Acad Sci U S A
102:14338-14343.

Drummond, D. A,, A. Raval, and C. 0. Wilke. 2006. A single determinant
dominates the rate of yeast protein evolution. Mol Biol Evol 23:327-337.

Fares, M. A, E. Barrio, B. Sabater-Munoz, and A. Moya. 2002a. The evolution of
the heat-shock protein GroEL from Buchnera, the primary endosymbiont
of aphids, is governed by positive selection. Mol Biol Evol 19:1162-1170.

Fares, M. A., A. Moya, and E. Barrio. 2005. Adaptive evolution in GroEL from
distantly related endosymbiotic bacteria of insects. ] Evol Biol 18:651-
660.

Fares, M. A., A. Moya, and E. Barrio. 2004. GroEL and the maintenance of bacterial
endosymbiosis. Trends Genet 20:413-416.

25



Fares, M. A.,, M. X. Ruiz-Gonzalez, A. Moya, S. F. Elena, and E. Barrio. 2002b.
Endosymbiotic bacteria: groEL buffers against deleterious mutations.
Nature 417:398.

Fraser, H. B. 2005. Modularity and evolutionary constraint on proteins. Nat Genet
37:351-352.

Fraser, H. B, A. E. Hirsh, L. M. Steinmetz, C. Scharfe, and M. W. Feldman. 2002.
Evolutionary rate in the protein interaction network. Science 296:750-
752.

Fraser, H. B, D. P. Wall, and A. E. Hirsh. 2003. A simple dependence between
protein evolution rate and the number of protein-protein interactions.
BMC Evol Biol 3:11.

Funk, D. ], ].]. Wernegreen, and N. A. Moran. 2001. Intraspecific variation in
symbiont genomes: bottlenecks and the aphid-buchnera association.
Genetics 157:477-489.

Goldman, N,, J. L. Thorne, and D. T. Jones. 1998. Assessing the impact of
secondary structure and solvent accessibility on protein evolution.
Genetics 149:445-458.

Gray, M. W,, G. Burger, and B. F. Lang. 1999. Mitochondrial evolution. Science
283:1476-1481.

Herbeck, J. T., D. J. Funk, P. H. Degnan, and ]. ]. Wernegreen. 2003. A conservative
test of genetic drift in the endosymbiotic bacterium Buchnera: slightly
deleterious mutations in the chaperonin groEL. Genetics 165:1651-1660.

Jovelin, R., and P. C. Phillips. 2009. Evolutionary rates and centrality in the yeast
gene regulatory network. Genome Biol 10:R35.

Laursen, B. S., A.S. S. A. de, ]. Hedegaard, ]. M. Moreno, K. K. Mortensen, and H. U.
Sperling-Petersen. 2002. Structural requirements of the mRNA for
intracistronic translation initiation of the enterobacterial infB gene. Genes
Cells 7:901-910.

Lohman, T. M., and M. E. Ferrari. 1994. Escherichia coli single-stranded DNA-
binding protein: multiple DNA-binding modes and cooperativities. Annu
Rev Biochem 63:527-570.

Lynch, M. 1997. Mutation accumulation in nuclear, organelle, and prokaryotic
transfer RNA genes. Mol Biol Evol 14:914-925.

Lynch, M., and W. Gabriel. 1990. Mutation load and the survival of small
populations. Evolution 44:1725-1737.

Mayrose, 1., A. Doron-Faigenboim, E. Bacharach, and T. Pupko. 2007. Towards
realistic codon models: among site variability and dependency of
synonymous and non-synonymous rates. Bioinformatics 23:i319-327.

Mintseris, J., and Z. Weng. 2005. Structure, function, and evolution of transient
and obligate protein-protein interactions. Proc Natl Acad Sci U S A
102:10930-10935.

Mira, A., and N. A. Moran. 2002. Estimating population size and transmission
bottlenecks in maternally transmitted endosymbiotic bacteria. Microb
Ecol 44:137-143.

Moran, N. A. 1996. Accelerated evolution and Muller's rachet in endosymbiotic
bacteria. Proc Natl Acad Sci U S A 93:2873-2878.

Moran, N. A,, J. P. McCutcheon, and A. Nakabachi. 2008. Genomics and evolution
of heritable bacterial symbionts. Annu Rev Genet 42:165-190.

26



Moran, N. A, H. J. McLaughlin, and R. Sorek. 2009. The dynamics and time scale of
ongoing genomic erosion in symbiotic bacteria. Science 323:379-382.

Muller, H. J. 1964. The relation of recombination to mutational advance. Mutation
Research 1:2-9.

Price, P. W. 1991. The web of life: development of over 3.8 billion years of
trophic relationships. In symbiosis as a Source of Evolutionary
Innovation: Speciation and Morphogenesis. MA: MIT Press, Cambridge.

Rispe, C., F. Delmotte, R. C. van Ham, and A. Moya. 2004. Mutational and selective
pressures on codon and amino acid usage in Buchnera, endosymbiotic
bacteria of aphids. Genome Res 14:44-53.

Shigenobu, S., H. Watanabe, M. Hattori, Y. Sakaki, and H. Ishikawa. 2000. Genome
sequence of the endocellular bacterial symbiont of aphids Buchnera sp.
APS. Nature 407:81-86.

Suyama, M., and P. Bork. 2001. Evolution of prokaryotic gene order: genome
rearrangements in closely related species. Trends Genet 17:10-13.
Tamas, I, L. Klasson, B. Canback, A. K. Naslund, A. S. Eriksson, J. ]. Wernegreen, |.
P. Sandstrom, N. A. Moran, and S. G. Andersson. 2002. 50 million years of

genomic stasis in endosymbiotic bacteria. Science 296:2376-2379.

Thompson, ]. D., D. G. Higgins, and T. ]. Gibson. 1994. CLUSTAL W: improving the
sensitivity of progressive multiple sequence alignment through sequence
weighting, position-specific gap penalties and weight matrix choice.
Nucleic Acids Res 22:4673-4680.

Thorne, J. L., N. Goldman, and D. T. Jones. 1996. Combining protein evolution and
secondary structure. Mol Biol Evol 13:666-673.

Toft, C., and M. A. Fares. 2009. Selection for Translational Robustness in
Buchnera aphidicola, Endosymbiotic Bacteria of Aphids. Mol Biol Evol.

Toft, C., T. A. Williams, and M. A. Fares. 2009. Genome-wide functional divergence
after the symbiosis of proteobacteria with insects unraveled through a
novel computational approach. PLoS Comput Biol 5:e1000344.

Wold, M. S. 1997. Replication protein A: a heterotrimeric, single-stranded DNA-
binding protein required for eukaryotic DNA metabolism. Annu Rev
Biochem 66:61-92.

27



Figure Legends

Figure 1. Amino acid evolution correlates with atomic interactions. In this figure
we analyze the correlation between the mean Poisson distance calculated for the
amino acids and their number of atomic interactions. We calculated the number
of atomic interactions for a particular residue as the number of amino acids
within 4 Angstroms radius of the residue using the Euclidean distance.
Correlation analyses between these two parameters were carried out for free-
living bacteria (A), endosymbiotic bacteria of aphids Buchnera aphidicola (B) and
endosymbiotic bacteria of carpenter ants Blochmannia sp. (C). We performed
three sets of correlation analyses per organism, one for proteins with up to 10%
average divergence level between orthologs (blue colour), one for proteins with
divergence levels ranging from more than 10% and up to 20% (red colour) and
one for proteins with levels of divergence between 20% and 30% (green colour).
Figure 2. Preserved correlation of density and divergence among functional
categories. We calculated the correlation between average evolutionary rate of
amino acids and the number of their contacts with other residues within the
protein for each of the functional categories as represented in Cluster of
Orthologous Genes (COG). We calculated the number of atomic interactions for a
particular residue as the number of amino acids within 4 Angstroms radius of
the residue using the Euclidean distance. We did this for the three main COG
categories, including metabolism, cellular processes and information storage and
processing. The analyses were carried out for free-living bacteria (A and B),
endosimbiotic bacteria of aphids Buchnera aphidicola (C and D) and
endosymbiotic bacteria of carpenter ants Blochmannia sp. (E and F). This

analyses was done with three sets of proteins that showed divergence levels of
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up to 10%, between 10% and 20% divergence and between 20% and 30%
divergence levels. All the different correlation analyses are colour coded.

Figure 3. Amino acid structural contacts determine their evolutionary dynamics.
To identify the evolutionary dynamics at different categories of amino acid
contacts, we estimated the proportional increment of evolutionary rate in free-
living bacteria (A) and endosymbiotic bacteria of aphids (B) and compared it
between different density categories. We estimated the density of amino acids as
the number of residue contacts. We considered two residues to contact in the
structure if they were within 4 Angstroms distance from one another. We
calculated the proportional increments focusing in the pairs Buchnera
Acyrthosiphon pisum (BAp) and Schizaphis graminum (BSg) for endosymbionts
and Escherichia coli (Ec) and Salmonella typhimurium (St) for free-living bacteria
because both these two pairs present similar divergence times (50 to 75 million
years). The increment of distance in these sub-trees was calculated in
comparison with the total trees for Buchnera and for free-living bacteria,
respectively. Distance were calculated using Poisson correction. Numerators
were transformed into the absolute values of the differences (abs). This analyses
was done with three sets of proteins that showed divergence levels of up to 10%
(blue), between 10% and 20% (red) divergence and between 20% and 30%
(green) divergence levels. All the different correlation analyses are colour coded.
Figure 4. Identification of constraints in endosymbiotic bacteria. We calibrated
selection signatures by the structural constraints and identified three types of
evolutionary dynamics in endosymbiotic proteins. These included protein
regions evolving under neutrality (grey cells), under accelerated evolution (red

cells) and under strong purifying selection (blue cells). The distribution of the
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amino acids under constraints in the different atomic density categories is
shown. Density categories are represented as the number of amino acids that are
in contact with a residue within the structure. We estimated the distance
between residues using Euclidena distance and considered two residues to
contact if they were within 4 Angstroms from one another. The analyses were
carried out for each of the categories of the Cluster of Orthologous Genes (COGs).
Figure 5. Enrichment analysis of functional categories for constrained amino
acids. We counted the number of outliers within each of the functional categories
of metabolism, information storage and processing and cellular processes and
signalling. The significance of the enrichment for constrained or relaxed genes
was calculated using chi-square test. We indicate enriched categories by a * (P <
0.05) or ** (P < 0.01). The different functional categories are colour coded.

Figure 6. Case study of proteins with calibrated selection constraints. We
present two examples where calibration helps to elucidate the main undergoing
constraints once calibrated by amino acid evolvability. (A) Analysis of the ssDNA
binding protein (SSB) permits identifying strong constraints around (spheres)
and in binding regions (green spheres). (B) The infB that encodes the
prokaryotic translation initiation factor (IF2) presents strong purifying selection
at amino acids with high atomic interactions (spheres). Only amino acids with
spheres structure representation show significant constraints patterns once

corrected by their evolvability.
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Table 1. Evolutionary rates correlate with amino acids contacts density.

Divergence Organisms  Prearson® tb d.f.c Probability
10% Free-Living -0.191 -57.422 87,534 < 2.2x10-16
Buchnera -0.183 -28.088 22,828 < 2.2x10-16
Blochmannia -0.056 -10.037 31.336 < 2.2x10-16
20% Free-Living  -0.227 -98.777 179,775 < 2.2x10-16
Buchnera -0.165 -30.118 32,268 < 2.2x10-16
Blochmannia -0.060 -14.239 57,812 < 2.2x10-16
30% Free-Living  -0.245 -40.356 25,491 < 2.2x10-16
Buchnera -0.185 -10.620 3,173 < 2.2x10-16
Blochmannia -0.040 -2.563 4,705 0.010
40% Free-Living  -0.095 -2.877 911 0.004

Buchnera

Blochmannia

aPearson correlation coefficient was utilised, although Spearman coefficient

rendered approximately the same significance levels.

b Student ¢ value for independent samples.

¢ Degrees of freedom.
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Table 2. Regression of the increments of rates of evolution over categories of

amino acid contact densities.

Divergence Amino acid Density?

Free-living | 5 8 11 14 17 20 Rb Probability
10% 0.419 0.441 0.502 0.599 0.700 0.746 | 0.984 0.001

20% 0.259 0.277 0.279 0318 0.429 0.379 | 0.871 0.008

30% 0.282 0.244 0.202 0.189 0.224 0.148 | -0.856 4.66x10+*
Buchnera

10% 0.641 0.701 0.735 0.817 0.839 0.843 | 0.968 1.98x10-"
20% 0.616 0.634 0.669 0.711 0.763 0.816 | 0.988 3.45x10-°
30% 0.593 0.613 0.614 0.635 0.923 0.923 | 0.867 0.013

aAmino acid density is calculated as the number of amino acids within 4

Angstroms radius of the residue. We calculated distances between amino acids

using the Euclidean distance.

bRegression Coefficient.
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Table 3. Proteins evolutionarily accelerated (A) or constrained (C) identified

after structural calibration of evolutionary rates.

Gene? Biological Process (Function)b Density®
InfB (A) Translation initiation factor & interacts with H
ribosome

rpIM (A) 50S ribosomal subunit protein L13 H
rplL (A) 50S ribosomal subunit protein L7 /L12 H
rpmB (A) 50S ribosomal subunit protein L28 H
rpmE (A) 50S ribosomal subunit protein L31 H
rpsO (A) 15S ribosomal subunit protein L
greA (A) Transcription elongation factor H
dnaN (A) Component of DNA polymerase III, B subunit H

nfo (A) Endonuclease IV, involved in DNA repair L
mutY (A) Adenine glycosylase mismatch repair enzyme L
recC (A) DNA helicase, recombination and repair H
yeaZ (A) Peptidase L
ftsY (A) Signal Recognition Particle Receptor H&L
secA (A) Component of SEC protein secretion system H
yidC (A) Inner membrane protein insertion factor H
fdx (A) Oxidized ferrodoxine L

Ipd (A) Dihydrolipoyl dehydrogenase H
pta (A) Subunit of phosphatase acetyltransferase H
talA (A) Transaldolase, Carbohydrate metabolic process L
iscS (A) Cystein desulfurase, Fe-S cluster assembly H
ilvH (A) Regulatory subunit of acetolactate synthase III H
thrA (A) aspartate kinase I, K biosynthetic process H
cyaY (A) Protein complex assembly H&L
rplY (C) 50S ribosomal subunit protein L25 H&L
rpmF (C) 50S ribosomal subunit protein L32 H&L
rpsB (C) 30S ribosomal subunit protein S2 L
rpsN (C) 30S ribosomal subunit protein S14 H&L
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rpsT (C) 30S ribosomal subunit protein S20 L

ssb (C) ssDNA binding protein, DNA recombination L

ftsZ (C) Essential cell division protein, Cytokinesis H

groS (C) GroEL co-chaperone, protein folding H&L

mscS (C) Mechanosensitive channel, cellular water L
homeostasis

era (C) GTP binding protein, cell cycle L

aGene name

bProtein product and its biological function.

¢ Amino acid density calculated as the number of amino acids within 4 Angstroms
of the constraints outlier residue in the structure. High densities (H) are those
residues with equal or greater than 11 amino acids within 4 Angstroms in the
structure. Low densities (L) refer to residues with less than 11 amino acids

closeby in the structure.
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