Implementing an Intuitive Mutation Operator for
Interactive Evolutionary 3D Design

Jonathan Byrne, James McDermott, Edgar Galvan-Lopez, and Michael O’Neill

Abstract— Locality - how well neighbouring genotypes corre-
spond to neighbouring phenotypes - has been described as a key
element in Evolutionary Computation. Grammatical Evolution
(GE) is a generative system as it uses grammar rules to derive a
program from an integer encoded genome. The genome, upon
which the evolutionary process is carried out, goes through
several transformations before it produces an output. The aim
of this paper is to investigate the impact of locality during
the generative process using both qualitative and quantitative
techniques. To explore this, we examine the effects of standard
GE mutation using distance metrics and conduct a survey of
the output designs. There are two different kinds of event that
occur during standard GE Mutation. We investigate how each
event type affects the locality on different phenotypic stages when
applied to the problem of interactive design generation.

I. INTRODUCTION

How an algorithm explores and exploits a landscape is a
key element during evolutionary search. Rothlauf [19], [20]
has described and analysed the importance of locality in
performing an effective evolutionary search of landscapes.
Locality refers to how well neighboring genotypes correspond
to neighboring phenotypes. Rothlauf’s research distinguished
two degrees of locality: low and high locality. A representation
has high locality if all neighbouring genotypes correspond
to neighbouring phenotypes. On the other hand, a represen-
tation has low locality if many neighboring genotypes do
not correspond to neighboring phenotypes. Low locality is
undesirable in an operator as it is akin to random search.
Rothlauf demonstrates that a representation that has high
locality is necessary for efficient evolutionary search.

One area where locality is beneficial to search is interactive
design. If the user wants to indirectly influence a design
through the use of an operator it must perform in an intuitive
manner. This type of interactivity in the evolutionary process
is categorised as active intervention [23]. If the user applies a
small change to the genotype then they expect a small change
in the phenotype. Low locality can also increase user fatigue as
the user perceives it as a random search and will stop using the
operator. In this study we examine the locality of the mutation
operator when applied to designs in Grammatical Evolution
(GE).

GE is a form of Genetic Programming where there is
a mapping process from genotype to phenotype, similar to
how our DNA encoding is transformed into our physical
characteristics. This mapping process makes it different from
standard GP as it goes though several transformations before

Natural Computing Research & Applications Group, Complex and Adaptive
Systems Lab, University College Dublin, jonathanbyrn@gmail.com

978-1-4244-8126-2/10/$26.00 ©2010 IEEE

it is finally output. This means that there are several different
stages during the process i.e, where neighbours are mapped to
non-neighbours. We will investigate the locality using distance
metrics on different stages of the generative process.

This paper is organised as follows. Section II is a summary
of the related research in this area. A brief overview of
Grammatical Evolution is given in Section III. The genera-
tive process involved in GE is discussed in Section IV. In
Section V we describe the different components of standard
GE mutation. In Section VI, we describe the distance metrics
that will be used to analyse the different phenotypic stages
in GE. We present and discuss our findings in Section VIII.
Finally, in Section IX we discuss our conclusions and future
work.

II. RELATED RESEARCH

Understanding of how well neighbouring genotypes cor-
respond to neighbouring phenotypes is a key element in
evolutionary search [17], [20]. In the abstract sense, a mapping
has locality if neighbourhood is preserved under that mapping.
In EC this generally refers to the mapping from genotype
to phenotype [17]. Rothlauf [17] is perhaps the authoritative
work on the topic of locality in EC. It and other work [20],
[18] has shed new light on several problems. The definition
of locality assumes that a distance measure exists on both
genotype and phenotype spaces, and that for each there is
a minimum distance, and that neighbourhood can defined in
terms of minimum distance.

There has already been some investigations into locality
in GE. Rothlauf and Oetzel’s locality study on binary mu-
tation [20] investigated how binary changes in the genome
impacted the derivation tree. This study was extended to
compare the performance of binary and integer forms of
mutation [7]. There is also our previous work examining the
locality of components of standard GE mutation [2].

The study of locality also has relevance to interactive
evolutionary computation. Hart allowed the user to specify
which type of mutation (and mutation rate) to apply because
of the assumption that users sometimes have an intuition
about what type of change is required to an individual [6].
The purpose of defining nodal and structural operators stems
from our study of interactive design evolution [13]. During
this study it was found that the user applied the mutation
operator to explore areas of the design space that had produced
interesting aesthetic designs. For mutation to be useful in this
circumstance, it requires locality to be maintained from the
genotype to the output.

<exXpr> ::= (<Op><expr><exprs) (0)
| <vars (1)
<op> = + (0)
| - (1)
<vars =X (0)
|y (1)

Fig. 1. A simple BNF grammar

III. GRAMMATICAL EVOLUTION

Grammatical Evolution is an evolutionary algorithm that is
a grammar based form of GP [15]. It differs from standard
GP by replacing the parse-tree based structure of GP with
a linear genome. It generates programs by using a list of
integers (also called a chromosome) to select rules from the
grammar which are then applied to generate a program. The
chromosome is made up of codons. Each codon in the string
is used to select a production rule from a Backus Naur Form
(BNF) grammar. The BNF represents a language in the form
of production rules. Each rule is comprised of non-terminals
that map to either terminals, non-terminals or both, depending
on the production rules. A simple example BNF grammar that
could be used for symbolic regression is given in Figure 1.
<expr> is the start symbol from which all programs are
generated. The grammar states that <expr> can be replaced
with either one of <expr><op><expr> or <var>. An <op> can
become either +, or -, and a <var> can become either x, or y.

The integer codons decide which rule is chosen by simply
calculating the modulus of the codon value with the number
of rules. This can be represented with the following formula:

Rule(idx) = Codon Value % Num. Rules €))

By iterating through the codons the BNF rules are applied
and a derivation tree is built. This in turn generates a string
from the grammar which represents the program.

IV. GENERATIVE PROCESSES IN EC

The genotype to phenotype mapping is a terminology that
has been adapted from the field of biology. A genotype is an
encoding upon which the evolutionary operators of mutation
and recombination act. An example of this would be human
DNA. Changes in the genotype are translated into changes
in the phenotype. A phenotype is an observable characteristic
of an individual. An example of this in humans would be
eye-color or height. Selection is performed on the phenotype.
This biological concept was introduced to the field of EC as
a method for separating the search and solution space [1] and
as a metaphor for describing the representations and mapping
processes.

It could be argued that in traditional GP there is no gener-
ative process. The trees that define the programs are directly
manipulated by the operators, therefore there is no generative
stage. Although, this is not the complete picture. The tree
itself could be viewed as a genotypic encoding and the output

of the program as the phenotype. Furthermore, in Genetic
Algorithms there is a mapping of the evolved integer string
translating it into a meaningful application. This highlights
that a genotype to phenotype to fitness mapping exists in all
forms of evolutionary computation except the most basic.

In GE there are several stages in the mapping process, each
with its own observable characteristics. As each stage also
contains a version of the final instantiation, it can be classified
as a phenotype. The three main phenotypic stages are shown
in Figure 10. The integer list is translated into a derivation
tree using a BNF grammar defined in Figure 1 and the mod
rule. The terminal rules that make up the finished string are
shaded. The string is then evaluated to produce the final output
phenotype, in this case a 3 dimensional plot of a plane.

[42]76]43]23]98]56] 15]19]32]52][47]28]21{ Gen=0(t3ype

[+
/ / \ \ﬁ Derivation
[- [/<v> [o>[<e]<eh[+] <] <I> tree = Po
X] e Ple N] [] [x
' String
=P
Output
=P

Fitness

Fig. 2. stages of derivation in GE

To study locality, it is necessary to define a metric on the
search space. In a genotype-phenotype mapping representa-
tion. In his work, Rothlauf claimed that for two different
search spaces (e.g., genotypic and phenotypic search space)
it is necessary to define two different metrics. As we are
examining three different phenotypic stages we need to use
different metrics for each one.

We are interested in determining how locality is affected on
the different phenotypic stages of the generative process. In
this study we apply a single change on the genotypic stage,
the equivalent of a hamming distance of one, and observe the
corresponding locality on each stage of derivation.

V. A COMPONENT-BASED VIEW OF MUTATION IN GE

Standard GE mutation can be divided into two types of
events, those that are structural in nature and those that are
nodal. A nodal mutation changes a single leaf of the derivation
tree. A structural mutation changes one or more internal nodes
of the derivation tree (and zero or more leaves). This can
result in a change to the length of the phenotype. This work
was originally shown in [3]. In order to expose the impact of
mutation on derivation tree structure we will use the binary
grammar as shown in Figure 1. This allows us to condense
codons (elements in the string representing the individual) to
single bits.

We can then construct genomes with binary valued codons
to construct sentences in the language described by the above
grammar. Consider all genomes of length two codons (2> of
them) and draw an edge between genomes that are a Hamming
distance of one apart. If we then present the corresponding
partial derivation trees resulting from those genomes we see
the arrangement outlined in Fig. 3. In this particular example
we see that a mutation event at the first codon impacts a
non-terminal rule that corresponds to a new derivation tree
structure. Here we define a new derivation tree structure as
being one that has changed in length, that is, it contains more
non-terminal symbols than its neighbour. Mutations from 00
to 10 (and vice versa) and from 01 to 11 (and vice versa) result
in these structural changes. Whereas the remaining mutation
events result in node relabelling.

<g>

<y>

Fig. 3. The 2D neighbourhood for the example grammar (i.e., using the first
two codons).

Extending the genomes by an additional codon we can vi-
sualise the Hamming neighbourhood between the 23 genomes
both in terms of codon values and partial phenotype structures.
These are illustrated in Fig. 4. Again, we see a clear distinction
between mutation events that result in structural and non-
structural modifications.

Mapping these codons back to the grammar we see that
structural mutations occur in the context of a single non-
terminal symbol, <e>. We can see from this grammar that this
non-terminal alone is responsible for structural changes, as it
alone can change the size of the developing structure. The rules

<y>

Fig. 4. The 3D neighbourhood for the example grammar (i.e., using the first
three codons).

for the <o> and <v> non-terminals are non-structural as they
simply replace an existing symbol without changing structural
length.

Effectively we can now decompose the behaviour of mu-
tation into two types of events. The first are events that are
structural in their effect and the second are those which are
nodal in their effect. By logical extension we could consider
both types of events as operators in their own right, and
therefore define a structural mutation and a nodal mutation.
It should be noted, however, that these events are only a
specialisation of standard GE mutation, as it is possible for
both types of events to occur during standard application of
GE mutation to an individual’s genome. In order to understand
the impact of change arising from mutation events in GE we
need metrics of distance between the different stages of the
mapping as outlined earlier in Section IV.

VI. DISTANCE MEASURES FOR GRAMMATICAL
EVOLUTION

In this section we review and provide motivation for three
distance measures, namely, (a) tree edit distance, (b) lev-
enshtein distance, and (c) normalised compression distance.
Traditionally different metrics are used to analyse different
types of operators but as we are studying different effects
caused by the standard mutation operator and we intend to
compare those effects, the same metric was used for both. We
will later use these in our analysis reported in Section VIII.

A. Tree Edit Distance

O’Reilly [16] proposed an approach, called edit distance,
with the main goal of having a metric that specifies the degree
of dissimilarity between two individuals in the form of tree-
like structures. The idea of edit distance is to calculate the
minimum cost (number of moves) that is required to transform
a given tree to a target tree step by step. For this purpose, the
author defined the use of three types of edits: (a) Substitution:
changing a node into another, (b) Insertion: adding a node
within the tree and (c) Deletion: removing a node from the
tree. O’Reilly’s approach was inspired by the work reported
in [21], [22]. This distance is notable because it is closely

aligned with a mutation operator defined in the same paper.
In GE this metric is applied to calculate a distance at the
derivation tree stage of the mapping.

B. Levenshtein Distance

Levenshtein distance is a metric for comparing two strings,
or in our case, generated computer programs. This has been
used as a metric to compare representations in GP [9] [8].
The Levenshtein distance between two strings is defined as the
minimum number of edits needed to transform one string into
the other, with the allowable edit operations being insertion,
deletion, or substitution of a single character. In our study the
output string is tokenised and the levenshtein metric is applied
to phenotype symbols.

C. Normalised Compression Distance

The NCD has been used as a distance measure for linear
structures within EC [5]. The so-called “universal similarity
metric” is a theoretical measure of similarity between any
two data structures (for example strings), defined in terms of
Kolmogorov complexity [10]. This is defined as the length of
the shortest program which creates the given string. Informally,
two strings are very similar if the Kolmogorov complexity of
their concatenation is close to the complexity of just one of
them. This idea was made practical by [4]: they approximated
the (uncomputable) Kolmogorov complexity of a string by the
length of its compressed version, as calculated by off-the-shelf
compression software. The “normalised compression distance”
or NCD is defined as follows:

Clxy) —min(C(x),C(y))
max(C(x),C(y))

where x and y are two strings, xy is their concatenation, and

the function C gives the length of the compressed version of

its argument. This metric is applied to calculate a distance

between phenotype strings.

d(x’y) =

VII. EXPERIMENTAL PROCEDURE

In this section we examine the locality of phenotypic
changes using the metrics described in Section VI and describe
the setup that was used for the design survey. The experiment
was implemented using GEVA [11], [12], this is an open
source framework for Grammatical Evolution in Java designed
by the NCRA group in UCD. We used a grammar which
generates designs through the use of higher order functions.
The designs are then rendered using Blender, an open source
3D modelling software. This allowed us to produce designs
which could then be subjectively evaluated by users. The
grammar used to generate the objects is shown in Figure 14
and may be downloaded from the GEVA website [11]. We
may then use this to compare similarity at the output stage
of the evolved program. Instead of executing runs in the
traditional sense we carried out single mutation events (ie;
a hamming distance of one on the genotype) on randomly
generated individuals and recorded the change in output. As
we required a large sample size of the mutation events where

there was a phenotypic change, the experiment was allowed to
run until 5000 non-neutral mutation events occurred. During
the run nodal mutation produced 953 neutral mutation and
structural mutation produced 2803, a ratio of nearly 3 to 1.

The distance metrics were then applied to record changes
on the derivation and string stages of the phenotypes. We also
randomly sampled 100 of the mutation events where both
a structural and nodal change occurred. These designs were
then rendered in Blender and a survey was taken as to how
closely the mutated designs resembled the original. Survey
participants are shown the original image and then presented
with the same design after both a nodal mutation event and a
structural mutation event (Figure 5). The participant evaluated
100 individuals and were given as much time as needed to
complete the task The order that these images were shown
was randomised so as to avoid bias. There was also the option
to pass on a selection if no clear preference was presented.
Although a users interpretation of similarity is a somewhat
subjective metric, the survey allowed us analyse the semantic
stage of the generated program

Question10f 100

I don't know

Fig. 5. User screen for design survey

VIII. RESULTS AND DISCUSSION

The experiment set out to investigate whether a small
change at the genotypic level would translate into a small
or large change at the output stage. A randomly selected
sample of the output is shown in Figures 6, 7, 8 and 9. The
images suggest that there was a significant difference between
a nodal and structural mutation event. The results from the
survey also showed a high degree of agreement that the nodal
mutations produced an output more similar to the original than
a structural mutation.The results for the survey are shown in
Table 1. Despite the subjective nature of the survey, the result
implies that nodal mutation is a high locality operator whereas
structural mutation is a low locality operator.

The results from the distance metrics also support the
hypothesis that nodal mutation has high locality whereas
structural mutation has low locality. The distance results were
only recorded when both a structural and nodal mutation

A\

Fig. 6. The original design (left) and the same design after nodal (middle)

and structural (right) mutations

Fig. 7. 'The original design (left) and the same design after nodal (middle)

and structural (right) mutations

DL
P

Fig. 8. The original design (left) and the same design after nodal (middle)

and structural (right) mutations

Fig. 9. The original design (left) and the same design after nodal (middle)
and structural (right) mutations

occurred. The results for the three distance metrics are shown
in the in the violin plots in Figs. 10, 11 and 12. The violin plot
is a combination of a standard box plot (in black) and a kernel
density estimation (shaded area). This shows the distribution
of the results and can be thought of as a continuous histogram
that has been smoothed by a weighted kernel and reflected
through the Y axis. As can be seen from these results the nodal
mutation produced more localised changes than structural
mutation on both the derivation tree stage and the string stage.
By definition, nodal mutation will only change one terminal

TABLE 1
RESULTS FOR SIMILARITY SURVEY

Preference Total Percentage
Nodal 1313 82%
Structural 247 15.5%
Did not know 40 2.5%

on the derivation tree so it will always have a tree edit distance
of one. The normalised compression distance also showed
a non-normal distribution for the structural mutation events.
A structural event either caused a small change or a large
change but few intermediate changes as shown in Figure 13.
We hypothesise that small changes were caused by structural
mutation substituting one non-terminal for another that leaves
the subtree size the same. The large changes, on the other
hand, could have been caused by substituting a non-terminal
that changes the size of that derivation subtree. This means that
it would either add or remove codons to the following subtrees
and cause a “ripple” event. This would have a consequence of
changing the following codons and so redefine the meaning
of the remaining chromosome. A ripple event has previously
been discussed in [14].

Tree Edit Distance between derivation trees

300
1

250
|

200
1

Distance
150
|

50

Nodal Structural

Fig. 10. Tree Edit Distance for HOF grammar.

The results highlight that nodal and structural mutation
events have distinctive locality on the different stages in the
derivation process. The results from the survey also highlight
that this locality translates into similarity in designs at the
subjective user level. Our interactive design software contains
buttons on the GUI to allow the user to apply the mutation
operator to an individual when they think it is appropriate.

Normalised Compression Distance between phenotype strings

¢‘

Nodal

0.6 0.8
1

Distance
0.4
1

Structural

Fig. 11. Normalised Compression Distance for HOF grammar.

Levenshtein (String-Edit) Distance between phenotypes

-4

Nodal

150
I

Distance

50
I

Structural

Fig. 12. String Edit Distance for HOF grammar.

This is an implementation of the active intervention described
in [23] and [6]. The feedback that we have received from
architectural students that have used our interactive design
software states that this was a desirable quality for exploring
an aesthetically pleasing area of the design space. By creating
operators that the user can intuitively use, it enables the
users themselves to act as the search operators, driving the

Histogram for structural NCD

5000
|

3000 4000
I

Frequency

2000
I

i

r T T T 1
0.0 0.2 0.4 0.6 0.8

distance

Fig. 13. Histogram of NCD for structural mutation.

evolutionary process into more fruitful regions of the design
space.

IX. CONCLUSIONS

This study set out to analyse locality on the successive
phenotypic output generated by GE. We defined the different
phenotypic stages and described the components within stan-
dard GE mutation that were being investigated. Experiments
were carried out to show how the different mutation events
compared in their locality. Our results showed that it was
possible to generate both high and low locality events during
standard mutation that maintained their locality throughout
the mapping process. The results will enable us to give users
control over how much change they expect on a phenotypic
level and increase the efficiency of their search. It also allows
the user to search the design space exclusively with high
locality operators and optimise designs that appeal to the user.
This paper distinguished two different components of standard
mutation in GE that each have different scales of change.
By making this distinction it opens up the possibility of a
dynamically changing operator. The operator would change
the granularity of it’s search as it was carried out, something
we hope to address in future work.

X. ACKNOWLEDGMENTS

We would like to thank Erik Hemberg for his support.
This research is based upon works supported by the Science
Foundation Ireland under Grant No. 08/IN.1/11868.

REFERENCES

[1] W. Banzhaf. Genotype-phenotype-mapping and neutral variation — A
case study in genetic programming. In Y. Davidor, H.-P. Schwefel, and
R. Ménner, editors, Parallel Problem Solving from Nature IlI, volume
866 of LNCS, pages 322-332, Jerusalem, 9-14 Oct. 1994. Springer-
Verlag.

[2] J. Byrne, J. McDermott, M. O’Neill, and A. Brabazon. An analysis
of the behaviour of mutation in grammatical evolution. In Genetic
Programming, Proceedings of EuroGP’2010. Springer-Verlag, 2010.

[3]

(4]
[3]

(6]

(7
(8]

9]

[10]
[11]
[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

(23]

J. Byrne, M. O’Neill, and A. Brabazon. Structural and nodal mutation in
grammatical evolution. In Proceedings of the 11th Annual conference on
Genetic and evolutionary computation, pages 1881-1882. ACM, 2009.
R. Cilibrasi and P. M. B. Vitanyi. Clustering by compression. /EEE
Transactions on Information theory, 51(4):1523—1545, 2005.

F. J. Gomez. Sustaining diversity using behavioral information distance.
In Proceedings of the 11th Annual conference on Genetic and evolu-
tionary computation, pages 113—120, Montréal, Canada, 2009. ACM.
D. A. Hart. Toward greater artistic control for interactive evolution of
images and animation. In M. Giacobini, editor, Applications of Evolu-
tionary Computing, volume 4448 of LNCS, pages 527-536. Springer,
2007.

J. Hugosson, E. Hemberg, A. Brabazon, and M. ONeill.
representations in grammatical evolution., 2007.

C. Igel. Causality of hierarchical variable length representations. In
Proceedings of the 1998 IEEE World Congress on Computational
Intelligence, pages 324-329, Anchorage, Alaska, USA, 5-9 May 1998.
IEEE Press.

R. E. Keller and W. Banzhaf. Genetic programming using genotype-
phenotype mapping from linear genomes into linear phenotypes. In J. R.
Koza, D. E. Goldberg, D. B. Fogel, and R. L. Riolo, editors, Genetic
Programming 1996: Proceedings of the First Annual Conference, pages
116-122, Stanford University, CA, USA, 28-31 July 1996. MIT Press.
M. Li and P. Vitanyi. An introduction to Kolmogorov complexity and its
applications. Springer Verlag, 1997.

M. O’Neill, E. Hemberg, E. Bartley, A. Brabazon, and C. Gilligan. Geva
- grammatical evolution in java. ncra.ucd.ie/GEVA, 2008.

M. O’Neill, E. Hemberg, C. Gilligan, E. Bartley, J. McDermott, and
A. Brabazon. GEVA: grammatical evolution in Java. ACM SIGEVOlu-
tion, 3(2):17-22, 2008.

M. O’Neill, J. McDermott, J. M. Swafford, and J. Byrne. Evolutionary
design using grammatical evolution and shape grammars: Designing a
shelter. In International Journal of Design Engineering., volume In
Press. 2010.

M. O’Neill and C. Ryan. Crossover in grammatical evolution: A
smooth operator? In R. Poli, W. Banzhaf, W. B. Langdon, J. F. Miller,
P. Nordin, and T. C. Fogarty, editors, Genetic Programming, Proceedings
of EuroGP’2000, volume 1802 of LNCS, pages 149-162, Edinburgh, 15-
16 Apr. 2000. Springer-Verlag.

M. O’Neill and C. Ryan. Grammatical Evolution: Evolutionary Au-
tomatic Programming in an Arbitrary Language. Kluwer Academic
Publishers, 2003.

U.-M. O’Reilly. Using a distance metric on genetic programs to
understand genetic operators. In [EEE International Conference on
Systems, Man, and Cybernetics: Computational Cybernetics and Sim-
ulation, volume 5, 1997.

F. Rothlauf. Representations for Genetic and Evolutionary Algorithms.
Physica-Verlag, 2nd edition, 2006.

F. Rothlauf. On the bias and performance of the edge-set encoding.
IEEFE transactions on evolutionary computation, 13(3):486-499, June
20009.

F. Rothlauf and D. Goldberg. Redundant Representations in Evolution-
ary Algorithms. Evolutionary Computation, 11(4):381-415, 2003.

F. Rothlauf and M. Oetzel. On the locality of grammatical evolution. In
P. Collet, M. Tomassini, M. Ebner, S. Gustafson, and A. Ekart, editors,
Proceedings of the 9th European Conference on Genetic Programming,
volume 3905 of Lecture Notes in Computer Science, pages 320-330,
Budapest, Hungary, 10 - 12 Apr. 2006. Springer.

D. Shasha and K. Zhang. Fast Parallel Algorithms for the Unit Cost
Editing Distance Between Trees. In SPAA '89: Proceedings of the
First Annual ACM Symposium on Parallel Algorithms and Architectures,
pages 117-126, New York, NY, USA, 1989. ACM.

M. Tacker, P. F. Stadler, E. G. Bornberg-Bauer, 1. L. Hofacker, and

Genotype

P. Schuster. Algorithm Indepedent Properties of RNA Secondary
Structure Predictions. European Biophysics Journal, 25(2):115-130,
1996.

H. Takagi. Interactive evolutionary computation: Fusion of the capa-
bilities of EC optimization and human evaluation. Proceedings of the
IEEE, 89(9):1275-1296, Sept. 2001. Invited Paper.

<scene> ::=
<shapes> ::=

<shapes>
<list_of_ shapes>

Given a list of functions and a list of points, return a list of shapes
<list_of_shapes> ::= map(<list_of point_to_shape funcs>, <list_of_points>

Only one method of creating a list of points.
<list_of_points> ::= map(<scalar_point_func>, make_scalar_list(<n>))

Functions which return a point, given a scalar.
<scalar point func> ::= <unitcircle> | <ellipse> | <diagonal> | <beziers |
<spiral> | <add_scalar point_funcs> | <sinusoid>

Given a scalar t, return a point on the spiral around a bezier curve.
The radius, initial phase, and number of revolutions can be specified.
<spiral> ::= spiral(t, <radius>, <phase>, <revs>, <scalar point_ func>

Given a scalar t, return a point on a diagonal between two points.
<diagonal> ::= interpolate(t, (<pt>, <pt>))

Given a scalar t, return a point on a circle with given radius and centre

in the plane indicated by <dimensions.

<unitcircle> ::= circlePath(t, <radius>, <pt>, <dimensions)

<ellipse> ::= ellipsePath(t,<radius>,<radius>,<pt>,<dimension>)

<add_scalar point funcs> ::= pt plus pt((<scalar_point func>) (t),
(<scalar_point_func>) (t))

<sinusoid> ::= (0.0, 0.0, <xcos>) \ (0.0, <xcos>, 0.0)
| (<xcos>, 0.0, 0.0

use 1.0 + cos() to keep it positive, avoid negative z values
use 4pi * t so that we get 2 full revolutions, for t in [0, 1]
<xcos> ::= <x> * (1.0 + cos(<ndoublerevs> * 4 * pi * t))

Given a scalar t, return a point on a cubic bezier curve.
<bezier> ::= bezier form(t, (<pt>, <pt>, <pt>, <pt>))

Functions which return a shape, given a point.
<point_shape func> ::= [connect (<pt>, x)]

\ [dropPerpendicular (x, 2)]

| connect3(x, <dimensions)
<list_of point_to_shape funcs> ::= [<point_shape funcs>]
<point_shape_ funcs> ::= <point_shape_ func>

| <point_shape funcs>,<point shape func>
<ndoublerevs> ::= 1 | 2 | 3 | 4
points are represented as tuples

<pt> ::= (<x>, <X>, <X>)

<x> is used for point coordinates
<x> ::= [0, 15]

<dimension> indicates x, y or z
<dimension> ::= 0 | 1 | 2

<radius> ::= <x>

<phase> ::= [0.0, 1.0

<revs> ::= [1, 7]

Fig. 14. Shape Grammar for GEVA Blender

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

