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The magnetic and structural properties of MnAs are studied with ab initio methods and by mapping total
energies onto a Heisenberg model. The stability of the different phases is found to depend mainly on the
volume and on the amount of magnetic order, confirming previous experimental findings and phenomenologi-
cal models. It is generally found that for large lattice constants the ferromagnetic state is favored, whereas for
small lattice constants different antiferromagnetic states can be stabilized. In the ferromagnetic state the
structure with minimal energy is always hexagonal, whereas it becomes orthorhombically distorted if there is
an antiferromagnetic alignment of the magnetic moments in the hexagonal plane. For the paramagnetic state
the stable cell is found to be orthorhombic up to a critical lattice constant of about 3.7 Å, above which it
remains hexagonal. This leads to the second-order structural phase transition between paramagnetic states at
about 400 K, where the lattice parameter increases above this critical value with rising temperature due to the
thermal expansion. We also evaluate the magnetic susceptibility as a function of temperature, from which a
semiquantitative description of the MnAs phase diagram emerges.
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I. INTRODUCTION

MnAs is an extremely promising material for magneto-
electronics, since it can grow epitaxially on GaAs �Ref. 1�
and Si �Ref. 2�, forming clean and atomically sharp
interfaces.2 MnAs/GaAs heterojunctions have been exten-
sively studied experimentally,1,3–5 and spin injection from
MnAs into GaAs has been demonstrated.6 However, one of
the major drawbacks for the use of MnAs in devices is the
fact that bulk MnAs has a phase transition at 318 K, where
the magnetic state changes from ferromagnetic to paramag-
netic. Moreover, when grown on GaAs, this temperature
changes depending on the growth direction. This is mainly
attributed to the induced strain.1,3,7,8 The aim of this paper is
to use ab initio density functional theory �DFT� calculations
to develop an understanding of the phase transitions of
MnAs, which can be compared with experiments and with
existing phenomenological models.

First a review of the experimental properties of MnAs is
presented and a brief description of the existing phenomeno-
logical models is given. Then the results of our ab initio
calculations are presented and compared to experiments and
models. Within the scope of a Heisenberg model the ex-
change coupling constants are calculated for different dis-
torted unit cells, and the Curie temperature and its depen-
dence on the lattice parameters are evaluated in the mean-
field approximation. We also predict the ground-state volume
and lattice structure for the paramagnetic state, demonstrat-
ing that the phase transitions of MnAs can indeed be ex-
plained by ab initio calculations. Finally a simple model for
the susceptibility as function of temperature is given and a
qualitative description of the phase diagram of MnAs will
emerge.

II. EXPERIMENTAL PROPERTIES AND EXISTING
MODELS

MnAs is a ferromagnetic metal at low temperature but it
becomes paramagnetic at Tp=318 K, when the magnetic mo-

ment abruptly vanishes �Fig. 1�, the resistivity increases
discontinuously,9 the volume is reduced by 2.1%, and the
lattice structure changes from hexagonal B81 �NiAs type� to
orthorhombic B31 �MnP type�.10–14 A latent heat of
7490 J /kg is associated with this transition.11 Hysteresis is
present with a phase transition temperature of 307 K upon
cooling and of 318 K upon heating.13 All these properties
clearly indicate a first-order phase transition.

Above Tp the distortion reduces continuously, until it van-
ishes at Tt�398 K,10 where the crystal structure changes
back to B81. There is no latent heat, but only a discontinuity
in the heat capacity of the material; i.e., this phase transition
is of second order. For temperatures between Tp and Tt the
paramagnetic susceptibility has an anomalous behavior. It
increases with increasing temperature until it reaches a maxi-
mum at Tt. Above Tt it decreases and has a Curie-Weiss
behavior �Fig. 1�. Moreover, at Tt there is a � point in the
specific heat.15 Application of a magnetic field transforms the
B31 structure back to B81 above a critical field.9,16–19

Figure 2 shows the phase diagram. If pressure is applied,
Tp is lowered while Tt increases. Above the critical pressure

FIG. 1. Magnetization per Mn atom as a function of temperature
for ferromagnetic MnAs below 318 K and inverse susceptibility for
paramagnetic MnAs above 318 K as a function of temperature
�schematically after Ref. 14�.

PHYSICAL REVIEW B 74, 024429 �2006�

1098-0121/2006/74�2�/024429�14� ©2006 The American Physical Society024429-1

http://dx.doi.org/10.1103/PhysRevB.74.024429


of 4.6 kbar the ferromagnetic B81 structure becomes un-
stable, and the material remains in the B31 structure for all
temperatures below Tt. At high pressures and low tempera-
tures different types of ordered magnetic structures are
found, with a reduced saturation magnetic moment with re-
spect to the zero-pressure ferromagnetic phase. Canted spin
structures, similar to the helimagnetic structures of MnP,20

are found at a pressure of 4.75 kbar below 210 K, with a
local magnetic moment of about 3�B. A hysteresis region
lies between the ferromagnetic and canted regions, where
both states can be stabilized.

When the magnetic order breaks down and the system
becomes paramagnetic, MnAs maintains the B31 structure
for all pressures. As the temperature is further increased the
structure of the cell continuously changes back towards B81,
until at Tt it has again the B81 structure, with �Tt /�P�0,
where P is the pressure.

The magnetocrystalline anisotropy is quite strong in
MnAs, with the c axis being the hard axis, so that the mo-
ments prefer to lie in the hexagonal plane.12 Measurements
of the magnetoelastic coupling21 indicate that the coupling is
stronger in the hexagonal plane than perpendicular to it.

Figure 3 shows the unit cells of MnAs in the hexagonal
B81 and in the orthorhombic B31 crystal structures and it
defines the unit cell vectors a, b �bh for the B81 structure�,

and c. The B81 structure consists of stacked hexagonal layers
of Mn and As atoms, and the unit cell contains two Mn and
two As atoms. The B31 structure has twice the volume of
B81 due to symmetry lowering and contains four Mn and
four As atoms. The lattice is nearly hexagonal and the atoms
are moved out of the hexagonal symmetry points along the b
and c directions �Fig. 3�b��.

The Mn atoms are mainly displaced in the hexagonal
plane along the b direction forming chains �Fig. 4�, while the
As atoms are displaced along the c axis. In each unit cell one
of the planar As atoms is moved upwards and the other
downwards with respect to the original position in the B81
structure, so as to keep the Mn-As distance nearly constant.
The displacement u of the Mn atoms in the hexagonal plane
lies between 0 and 0.05b �b= �b��, depending on the tempera-
ture and pressure, and the displacement v of the As atoms
along the c axis lies between 0 and 0.05c �c= �c��. The B81

structure is a special case of the B31 structure, where b
=�3a and u=v=0. Therefore we choose the unit cell vectors
in such a way that a and c have the same direction for both
the B81 and B31 structures. In contrast the directions of the
vectors bh ��bh�= �a�=a� for the hexagonal cell and b for the
orthorhombic cell are different.

The lattice parameters of MnAs as a function of
temperature10,18,22,23 are shown in Fig. 5. They increase with
temperature due to normal thermal expansion, although the
in-plane parameter a decreases when the temperature gets
near Tp and it jumps from 3.717 Å to 3.673 Å. The perpen-
dicular parameter c increases continuously with temperature.
At Tt there is an inflection in the slope of a and c as a
function of temperature, and at about Ts=450 K �410 K in
other measurements23� the slope changes discontinuously.

The exact temperature at which the distortion disappears
is somewhat uncertain, and fluctuations may play a role for
small distortions. The given temperature for the disappearing
of the distortion corresponds to Tt=398 K.10,23 However,
measurements for small distortions are difficult and such a
temperature can only be inferred. As pointed out in Ref. 24
the distortion should appear at temperatures slightly above
Tt. Throughout this work we assume that the disappearing of
the distortion occurs at Ts, which is the temperature where
the thermal expansion coefficient of MnAs changes abruptly.

FIG. 2. Temperature �T� versus pressure �P� phase diagram of
MnAs �adapted from Ref. 14�, indicating also Tp and Tt as functions
of pressure.

FIG. 3. �a� B81 unit cell con-
taining two Mn and two As atoms,
�b� B31 unit cell containing four
Mn and four As atoms.
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Early theories25 believed that the phase transition at Tp
was between ferromagnetic and antiferromagnetic order.
This, however, was not supported by experiments23 and led
Bean and Rodbell �BR� to propose a model where the ex-
change interaction is ferromagnetic for both the B81 and B31
structures, although it is much smaller in B31.11,26 The BR
model neglects the microscopic details of the exchange in-
teraction and expresses the Curie temperature TC only as a
function of the volume V:

TC = T0�1 + �
�V − V0�

V0
	 , �1�

where T0 is the Curie temperature at the volume V0, which is
the volume in the hypothetical absence of exchange interac-
tion �here the volume of the B31 structure above Tp�. For
certain values of the parameter �, Eq. �1� predicts a first-
order phase transition between a ferromagnetic and paramag-
netic state; however, the model does not explain the second-
order phase transition at Tt and neither does a refinement of
the theory introducing a term proportional to �V−V0�2.27

The first attempt at explaining the second-order phase
transition is from Goodenough and co-workers, who postu-
lated a high-spin to low-spin transition associated with the
change of lattice structure from B81 to B31.13,14 This, how-
ever, is not supported by neutron scattering, which measures
little variation of the moment with the volume.28 The MnAs

unit cell volume in any phase is too big to justify a high-spin
to low-spin transition. In MnAs1−xPx the change from high
spin to low spin is observed,10,29,30 for volumes around
120 Å3, while the unit cell of MnAs remains always larger
than 130 Å3. Another possible explanation of the second-
order phase transition assumes a random distribution of dis-
tortions over the main B81 phase.31 Again neutron diffraction
invalidates this since regular B81 is found above Tt.

23

Several phenomenological Landau-type models have been
proposed.24,32,33 In this case the correct thermodynamic be-
havior is obtained by construction but the theory contains a
number of parameters to fit from experiments. The idea24 is
to expand the free energy � as a function of the the relative
magnetization � ��=1 ferromagnetic state, �=0 paramag-
netic state� and the orthorhombic distortion d,24

��d,�;T,H� = �0 + c1�T − T0�1 − 	1d2���2 + c2�4 + c3�6

+ c4�T − TD�d2 + c5d4 − M0�H�1 − 	2d2� ,

�2�

where ci and 	i are coefficients, H is an external magnetic
field, M0 is the saturation magnetization, T0 is the extrapo-
lated Curie temperate of the low-temperature phase, and �0
is a constant. Here the distortion d plays the same role as the
relative change in volume �V−V0� /V0 of the BR model and
the terms proportional to d2 and d4 drive the second-order
phase transition. Variations over this scheme yield similar
results.32–34

Spin fluctuation theory was also used for explaining the
anomalous behavior of the susceptibility between Tp and
Tt.

35,36 This qualitatively predicts an increase of the suscep-
tibility when going from the B31 to the B81 structure, mainly
associated with the fact that TC increases with increasing
temperature.

More recently tight-binding37,38 and first-principles39–47

calculations have been performed for MnAs in the B81 struc-
ture showing a general good agreement with experiments.
We are aware of only two studies dealing with the B31
structure.48,49 In Ref. 48 a description of the paramagnetic
state of the B31 structure is given by assuming that it coin-
cides with zero local magnetic moment of the Mn atoms.
This in fact describes a low-spin state for Mn and not para-
magnetism, which rather corresponds to constant magnetic
moments randomly oriented by spin fluctuations.

The present work investigates the magnetic interactions
across the various phase transitions of MnAs. An explanation
of the magnetostructural properties in terms of first-
principles calculations is given, thereby illustrating the origin
and providing a justification of the parameters used by the
different models.

III. RESULTS

A. DFT calculations

First-principles calculations within density functional
theory are performed using the pseudopotential code based
on localized atomic orbitals SIESTA.50 The generalized gradi-
ent approximation �GGA� as parametrized in Ref. 51 is used
for the exchange correlation potential, since it has been

FIG. 4. Two-dimensional representation of one layer of Mn at-
oms in the B31 structure. dij represent the various Mn-Mn dis-
tances. The first index i=2 indicates that all the Mn are second
nearest neighbors to each other in the B81 structure. The second
index j=1,2 ,3 labels the three distances arising from the B31
distortion.

FIG. 5. Lattice parameters a and c �see Fig. 3� as a function of
temperature �after Ref. 10�.
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shown to give good structural properties for hexagonal
MnAs.39,41,42 In the valence we consider 4s, 4p, and 3d or-
bitals for Mn and 4s, 4p, and 4d for As. For both Mn and As
double-
-polarized local orbitals are used for the s and p
angular momenta, whereas for the d orbitals double-
 is
used. The number of k points in the Brillouin zone is speci-
fied by a grid cutoff of 20 Å. This corresponds to a 11
�11�8 mesh for the B81 unit cell, giving approximately
1000 k points in the full Brillouin zone. For the B31 unit cell
such a cutoff yields a 8�11�7 mesh. The real-space mesh
cutoff, which determines the density of the real-space grid, is
300 Ry.

After full relaxation of the unit cell to a pressure below
0.1 kbar and of the atomic positions to a force smaller than
0.01 eV/Å the B31 unit cell in the ferromagnetic configura-
tion relaxes to a B81 structure with a=3.72 Å and c
=5.58 Å. The experimental values at room temperature are
a=3.724 Å and c=5.707 Å. Therefore the relative error is
below 1% for a and −2% for c. The lattice parameters at
110 K can be extracted from Fig. 5 and are a=3.733 Å and
c=5.677 Å. This demonstrates that GGA-DFT reproduces
rather well the zero-temperature ground state.

For a fixed c /a ratio of 1.54, which is close to the experi-
mental value at the first-order phase transition, the energy is
minimized for a=3.695 Å, which compares well with the
results of other ab initio calculations.39,41,42 Also the band
structure and the density of states are similar to previous
calculations. The magnetic moment per Mn atom is 3.4�B
and compares well with the measured value of 3.4�B.

The unit cell of the B31 structure contains four Mn atoms,
allowing for three possible independent antiferromagnetic
configurations of the local moments of the Mn atoms. The
different antiferromagnetic states are ����, ����, and
����. As a matter of notation ���� means that atoms 1
and 2 in the unit cell have opposite magnetic moment than
that of atoms 3 and 4. The indices of the Mn atoms in the
unit cell are defined in Fig. 3�b�. A cell relaxation is per-
formed for those three antiferromagnetic configurations.
Table I lists the obtained relaxed structures together with the
total energies per Mn atom as compared to the ferromagnetic
ground-state energy �E−EFM�. The structure remains of the
B81 type if the local moments are ferromagnetically aligned
in the hexagonal plane, whereas it changes to the B31 type if
the moments are antiferromagnetically aligned, with u�v� of
the order of 0.05b�c�. There is also a slight displacement of
the Mn atoms along c of at most 0.01c and of the As atoms
along b of at most 0.01b. Generally it can be observed that
the in-plane lattice parameters contract and the c parameter
expands for the antiferromagnetic states, resulting in a net
reduction of the volume V.

The calculated lattice parameters are similar to those
given in Ref. 48, although the absolute value of the magnetic
moments differs. This is probably due to the fact that we use
a Mulliken population analysis to determine the local mag-
netic moment, while in the reference it is obtained by inte-
grating the magnetization density over a sphere around the
Mn atoms.

The total energy for the ferromagnetic alignment is the
lowest, although the ���� configuration is higher of only
17 meV/Mn. This indicates that the system should evolve to
one of the antiferromagnetic states under pressure, since
those have a much smaller volume but only a slightly higher
energy.

Table I gives also the distances between a Mn atom and
its first three nearest-neighbor Mn atoms in the hexagonal
plane d2,1, d2,2, and d2,3 �see Fig. 4�. Note that d2,2=a and it
is not given explicitly. While these distances are all equal in
the hexagonal case, they differ by as much as 1 Å in the B31
structure. Large changes in the distance between the Mn at-
oms are possible since the nearest-neighbor Mn-Mn separa-
tion in MnAs is well above the interatomic distance 2.61 Å
of bulk Mn,52 which can be regarded as the minimal possible
distance between Mn atoms. The distance between nearest-
neighbor Mn and As atoms lies between 2.46 Å and 2.62 Å
for all the different configurations and changes therefore
much less than the Mn-Mn distance.

The local magnetic moment on the Mn ��Mn� and As
��As� atoms, calculated using the atomic Mulliken
population,53 is also given in Table I. The local moment on
the Mn atoms ranges between 3.43�B for the ferromagnetic
configuration to 3.01�B for the ���� configuration. This
reduction in the local moment is mainly due to the decrease
of the cell volume and the consequent increase of the hybrid-
ization between the Mn-d and As-p orbitals.

In summary these calculations show that the distortion to
the B31 structure is caused by an antiferromagnetic align-
ment of the local magnetic moments in the hexagonal plane.

B. Fit to the Heisenberg energy

In order to extract the various exchange parameters, cal-
culations are performed for three different B31 supercells in
different local magnetic configurations. These supercells
contain eight Mn atoms and are obtained by doubling the
B31 unit cell along the a lattice vector �supercell 1�, along b
�supercell 2�, and along c �supercell 3�. The calculated total
energies are then fitted to a model Heisenberg energy

TABLE I. Relaxed lattice parameters, local magnetic moment of the Mn and As atoms, and total energies per Mn atom for different spin
configurations.

a �Å� b �Å� c �Å� V �Å3� u /b v /c d2,1 �Å� d2,3 �Å� �Mn ��B� �As ��B� E−EFM �meV�

� � � � 3.72 6.47 5.58 134.27 0.00 0.00 3.73 3.73 3.43 −0.24 0

� � � � 3.56 6.18 5.81 127.93 0.00 0.00 3.56 3.57 3.10 0.00 62

� � � � 3.55 6.24 5.62 124.54 0.05 0.05 3.10 4.10 3.01 −0.08 17

� � � � 3.62 6.29 5.70 129.83 0.04 0.04 3.12 4.17 3.33 −0.03 35
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Es1,s2,. . . = E0 −
1

2

i,j

sis jJij , �3�

where si is the magnetic moment normalized to 1��si � =1�
and the J’s are coupling parameters. Here we neglect four-
moment coupling constants Jijkl and the small induced mag-
netic moment over the As atoms. E0 is a constant that can be
associated with the energy of a paramagnetic phase. In fact,
if all the local magnetic moments are randomly aligned, the
contribution coming from 
i,jsis jJij vanishes.

In mean-field theory the Curie temperature TC for classi-
cal Heisenberg exchanged magnetic moments is

kBTC = 

j

J0j/3 = J0/3, �4�

where kB is the Boltzmann constant. The quantity J0=
 jJ0,j
is the sum of the exchange coupling constants of a given
magnetic moment with all the other moments. In the follow-
ing sections Eq. �4� is always used to extract Curie tempera-
tures, although it is well known that the mean-field approxi-
mation overestimates TC.54

Calculations are performed for all the independent spin
configurations of the supercell 1 and for a randomly chosen
subset of those of supercells 2 and 3. Thirty-five different
configurations of the magnetic moments are used in total.
The energies are then fitted by a least-mean-squares fit to the
coupling parameters of Eq. �3�. Since the system is metallic
with the d orbitals having finite density of states at the Fermi
level, the magnetic interaction is expected to have a long-
range character. For the chosen supercells it is possible to
extract coupling constants up to the ninth nearest neighbor.
The lattice parameters used are approximately those for fer-
romagnetic MnAs in the B81 structure at the phase transition
temperature Tp=318 K �a=3.71 Å, c /a=1.54�.

We carefully tested the convergence of our results with
the range of the Heisenberg exchange interaction. Figure 6
shows the standard deviation � of the energies resulting from
Eq. �3� as compared to the calculated DFT energies per Mn
atom, the value of E0 per Mn atom, the mean-field Curie
temperature TC, and J0 as a function of the number of cou-
pling coefficients, Nmax, included in the fit. The standard de-
viation � decays monotonically, remains roughly constant
for Nmax
3, and then reaches a minimum value of around
5 meV for Nmax=9. This can be considered as the error re-
sulting from neglecting high-moment coupling constants.
The value of E0 changes less over the whole range, being
something like an average of the energies of the different
magnetic configurations. TC reaches a constant value of ap-
proximately 633 K for Nmax
3. This indicates that the main
contribution arises from the first three nearest-neighbor cou-
pling constants. The experimental value of TC for the low-
temperature phase lies between Tp=318 K and Tt=400 K.
This means that our mean-field TC overestimates the experi-
mental one by a factor between 1.6 and 2.

Figure 7 shows the calculated exchange coupling con-
stants as a function of the distance for two different fits
counting, respectively, third- and ninth-nearest-neighbor cou-
pling. The first three exchange constants J1, J2, and J3 �see
Fig. 8�a�� remain nearly unchanged when going from third-

to ninth-nearest-neighbor coupling. Interestingly the cou-
pling parameters are positive and therefore ferromagnetic up
to d�6.5 Å �fifth-neighbor interaction�. In what follows we
consider only coupling parameters up to third nearest neigh-
bors, as they give the main contribution to the properties of
the material.

C. B81 to B31 distortion at Tp

The B81 to B31 structure phase transition at Tp is inves-
tigated by calculating the Heisenberg coupling constants for
different distorted cells. We start from B81 with the experi-
mental lattice parameters near Tp �a=3.71 Å, b=�3a, c
=1.54a, u=v=0� and distort the cell linearly to the B31
structure. The amount of distortion d is given in percent,

FIG. 6. Variation of the various exchange quantities as function
of the number of coupling coefficients, Nmax, included in the fit. �a�
Standard deviation � of the energies resulting from Eq. �3� as com-
pared to the calculated DFT energies per Mn atom. �b� E0 per Mn
atom �Eq. �3��, where the zero of energy is chosen as the energy of
the ferromagnetic state. �c� Mean-field Curie temperature TC.

FIG. 7. Exchange coupling parameters for Nmax=3 and Nmax

=9 as a function of the distance between the magnetic moments.
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where d=0% stands for the lattice parameters of the ferro-
magnetic B81 cell just below Tp and d=100% for the para-
magnetic B31 cell above Tp �a=3.676 Å, b=1.01�3a,
c=1.556a, u=2.71�10−2b, v=2.45�10−2c�.23 Calculations
are done for distortions between 0% and 220%. Note that the
volume decreases with increasing distortion. For these calcu-
lations only supercells 1 and 2 are used with a total of 26
different spin configurations. The standard deviation of the fit
is approximately constant for all the distortions and is of the
order of 5 meV/Mn.

Figure 8�a� shows the Mn atoms of the B81 structure
coupled by first- �J1�, second- �J2�, and third- �J3� nearest-
neighbor interactions. In the distorted B31 structure the three
coupling constants J1, J2, and J3 are split into six different
constants due to symmetry loss. While there is still only one
J1 coupling, the in-plane J2 splits into three different cou-
pling constants J2,1, J2,2, and J2,3, corresponding to different
distances between the Mn atoms in the hexagonal plane �see
Fig. 4�. Moreover, also the third-nearest-neighbor coupling
J3 splits into three different constants, although two of them
are between Mn atoms separated by approximately the same
distance at Tp, and so they are assumed to be identical.
Hence J3 effectively splits only into J3,1 and J3,2.

Figure 9 shows the calculated values for the exchange
parameters as a function of the distortion. For 0% distortion
the values of J2,1, J2,2, and J2,3 are approximately equal,
reflecting the hexagonal symmetry. The values of J3,1 and
J3,2 also should be identical although they differ by about
2 meV �note that in the fit we do not force the B81 symmetry,
when determining the J’s for the undistorted structure�. This
can be assumed to be the error over the fit. Additional control
fits were also performed for different subsets of the 26 spin
configurations. The variation over the J was of 20%, whereas
the variation of J0 was always smaller than 6%.

The value of J1 remains approximately constant for all the
distortions, reflecting the fact that the distance between the
quasihexagonal layers remains roughly constant. In contrast
the in-plane J’s change and eventually become antiferromag-
netic. In particular the coupling becomes strongly antiferro-
magnetic for J2,1—i.e., for those Mn atoms that get closer in

the hexagonal plane under distortion. Also J2,3, which
couples the Mn atoms increasing their separation, is reduced
and becomes antiferromagnetic for large distortions. Finally
the coupling parameters J3,1 and J3,2 have only minor
changes, with J3,1 becoming weakly antiferromagnetic for
large distortions.

The evolution of the coupling constants with the distor-
tion indicates why for the ���� and ���� spin con-
figurations �see Table I�, where the spins are antiferromag-
netically aligned in the hexagonal planes, the lowest energy
is found for the B31 structure. The relaxed structure for both
spin configurations is similar to a distortion of about 200%.
At this distortion the in-plane coupling constants J2,1 and J2,3
become antiferromagnetic, resulting in a reduction of the to-
tal energy as compared to the B81 structure for those spin
configurations. In contrast for the ���� and ���� con-
figurations, which have a ferromagnetic alignment of the mo-
ments in the hexagonal plane, the B81 structure is stable,
since for that structure J2,1 and J2,3 are positive.

Figure 10 shows the relative change of the mean-field
Curie temperature TC�d� /TC�0� for the ferromagnetic state.
TC decreases monotonically with increasing distortion. For
100% distortion �B31 structure at Tp� TC�100% � /TC�0�
=0.67, demonstrating that when the phase transition from the
B81 to the B31 structure occurs, the system in the B31 cell is
already paramagnetic with very little magnetic order. The
experimental Curie temperature TC

expt for the hexagonal cell
at T=Tp is not known, since the structure changes.

Figure 10 also shows the total energy per B31 unit cell as
a function of the distortion in the ferromagnetic �FM� and in
the ���� antiferromagnetic �AF� configurations. This lat-
ter is the antiferromagnetic configuration giving the lowest
total energy at its minimum among all the ones calculated
along the considered distortion. The figure also shows the

FIG. 8. Schematic representation of the atomic positions of the
Mn atoms together with the exchange constants for the B81 �a� and
B31 �b� structures.

FIG. 9. Evolution of the exchange coupling constants when dis-
torting the unit cell linearly from the B81 structure to the B31 struc-
ture. d=0% represents the B81 structure at Tp=318 K, d=100%
represents the B31 structure at Tp. A positive �negative� value of J
means ferromagnetic �antiferromagnetic� coupling.
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value of E0, the energy of the paramagnetic state �see Eq.
�3��. The zero in the energy scale is the energy of the ferro-
magnetic state for d=0%.

The ferromagnetic state has its energy minimum for d
=0% and increases parabolically for increasing distortion.
This means that the B81 structure is the one with lowest
energy in the ferromagnetic state. In contrast the competing
antiferromagnetic configuration has a minimum for about
180% distortion, where the energy is lower than the ferro-
magnetic phase. The crossing between the two energy curves
occurs at about d�142%. The ground state of the system is
therefore expected to be ferromagnetic below this distortion
and to become antiferromagnetic above this distortion.

E0 has a very flat minimum for distorted cells, reflecting
the fact that the total energy increases for the ferromagnetic
state, but decreases on average for the antiferromagnetic
states. The minimum is found to be at about d�100%,
which corresponds indeed to the lattice parameters of the
paramagnetic state above the phase transition. This is sug-
gestive of a structural change from the B81 to B31 structure
in correspondence with the onset with the paramagnetic
state.

D. B31 to B81 distortion at Tt

For temperature in between Tp and Tt the MnAs crystal
structure continuously changes from B31 to B81. As men-
tioned in Sec. II the phase transition temperature Tt is usually
identified as the temperature where the susceptibility and
specific heat have a maximum. This is at about 398 K. How-
ever, the distortion should disappear at slightly higher tem-
peratures as pointed out in Ref. 24. Therefore, since the exact
temperature for this second-order structural phase transition
is not known exactly, we introduce an operative definition
and assume that the distortion disappears at a temperature Ts,
at which the slope of the in-plane lattice constant as a func-

tion of temperature a�T� changes discontinuously �see Fig.
5�. According to Fig. 5 the lattice constant at Ts is a�Ts�= ã
�3.699 Å and ��a /�T�Ts

�0. At Tt the same lattice param-
eter is a�Tt��3.697 Å, so that the difference in ã is very
small.

The main reason for the second-order phase transition at
high temperatures is related to the lattice thermal expansion.
The idea is that upon volume expansion, the ground state of
the paramagnetic phase moves towards the hexagonal struc-
ture. We verify this hypothesis by calculating the minimum
of E0 �E0

min� along a distortion of the cell transforming B81 to
B31. In the calculation the volume of the cell is kept constant
and we repeat the calculation for different volumes. This
allows us to evaluate both E0

min and the corresponding distor-
tion as a function of the volume. Since for T�Tp MnAs is
always paramagnetic, then the minimum of E0 corresponds
to the stable distortion d0 at a given volume. In practice the
change in volume can be described simply by the change in
the planar lattice constant a, since both b /a and c /a do not
deviate much from their value at Tp. Thus we always con-
sider b=�3a and c=1.556a and the phase transition is inves-
tigated as a function of a only.

The equilibrium distortion d0 as a function of a is pre-
sented in Fig. 11. Indeed the distortion decreases with vol-
ume and it disappears for a between a=3.695 Å and a
=3.71 Å. Moreover, we find 100% distortion for a
�3.66 Å. These values agree rather well with the experi-
mental ones, where the distortion disappears at about a�Ts�
=3.699 Å and 100% distortion is found at a�Tp�=3.673 Å.

In order to interpret these results consider that the distor-
tion is symmetric for ±d �E0�d�=E0�−d��, and therefore E0

can be expanded in even powers of the distortion, E0�d�
=r0+r1 d2+r2 d4. Here ri are parameters to fit to the DFT
calculations. In particular note that r0 corresponds to the en-
ergy of the paramagnetic phase when the crystal is undis-
torted; i.e., it has hexagonal structure. In this way the mini-

mum of the E0�d� curve is obtained for d0=�−
r1

2r2
if r1�0,

and for d0=0 for r1
0. We now define ã as the lattice con-
stant where r1=0. For small distortions the parameters r1 and
r2 can then be further expanded around ã as r1=r1,1�a− ã�
and r2=r2,0+r2,1�a− ã�+r2,2�a− ã�2. In order to obtain the
leading terms in this expansion, we calculate the values of r0,

FIG. 10. Top figure: relative change of the mean-field Curie
temperature �TC�d�−TC�0�� /TC�0� for the ferromagnetic state. Bot-
tom figure: total energy for one B31 unit cell for the ferromagnetic
configuration �FM�, for the ���� antiferromagnetic configura-
tion �AF�, together with E0 �Eq. �3��, as a function of the distortion
d. d=0% and d=100% represent, respectively, the B81 and B31
phases at Tp�318 K.

FIG. 11. Distortion d0 for the minimum of the paramagnetic
ground state as a function of the lattice constant a. The dots are
calculated values; the dashed line is a fit with Eq. �5�.
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r1 and r2 for different lattice constants �a=3.656, 3.676,
3.695, 3.71, 3.74 and 3.78 Å�. We then first calculate ã and
r1,1 by mapping r1 onto the expansion r1�a�=r1,1�a− ã�, and
with the obtained value of ã we can then in the same way
also calculate the expansion coefficients of r2. The so calcu-
lated values for the leading terms are ã=3.706 Å, r1,1
=62.4�10−3 meV/Å, and r2,0=1.29�10−7 meV �d is given
in percent�. The equilibrium distortion d0 up to first order in
a is then

d0�a� = �� ã − a

ã
��ã − a�, � =�ã

r1,1

2r2,0
, �5�

where ��x� is the Heaviside function. With the values of ã,
r1,1, and r2,0 given above �=947 is obtained. The resulting
distortion is presented in Fig. 11.

Interestingly, if we use Eq. �5� to fit the experimentally
determined distortions at a�Ts�=3.699 Å �d0=100% � and
a�Tp�=3.673 Å �d0=0�, we obtain �=1184 and ã=3.699,
both in good agreement with our calculated values. This sug-
gests that the main effects of the distortion to the B31 struc-
ture arise from the atomic displacement from the symmetry
positions and that small changes of the ratio of the lattice
vectors, neglected in our calculations, play only a secondary
role. Using the values �=1184 and ã=3.699 Å of the two
parameters the evolution of the distortion as a function of
temperature T can be obtained by inserting the data for a�T�
from Fig. 5 in Eq. �5�. The result is shown in Fig. 12. It also
shows the experimental distortion dexpt obtained from v�T�
extracted from Fig. 3 of Ref. 10. The main difference be-
tween the two curves is that the distortion dexpt becomes zero
at 398 K, whereas in our results this happens only at 450 K.
This is due to our choice of Ts=450 K, which by definition
sets the temperature where the distortion disappears. Close to
the phase transition temperature fluctuations play an impor-
tant role, so that for very small distortions close to the phase
transition the description may not be valid.

By using the computed values of r0, r1, and r2 the mini-
mum of E0 �E0

min=E0�d=d0�� is calculated as a function of

the volume of the unit cell, and it is shown in Fig. 13 to-
gether with r0. Recalling that r0 is the energy of the para-
magnetic hexagonal phase, it also can be expanded as a func-
tion of the lattice constant r0=�0+�1 �a−a0�2, where a0 is the
equilibrium lattice constant of the hexagonal phase. This,
combined with Eq. �5�, gives an expression for the energy
minimum as a function of the lattice constant a:

E0
min�a� = �0 + �1�a − a0�2 − �2�a − ã�2��ã − a� ,

�2 =
r1,1

2

4r2,0
= 7546

meV

Å2 , �6�

where �0, �1, and a0 are to be fitted from the calculations of
r0 �Fig. 13�. The fitted values are �0=264 meV, �1
=15 935 meV/Å2, and a0=3.65 Å. From Eq. �6� the energy
minimum is easily found,

amin = a0�1 −
�2

�1 − �2

ã − a0

a0

 , �7�

and by using the calculated parameters we estimate amin
=3.60 Å. Since amin�a0, we derive the important result that
the distortion allows the volume to be further reduced as
compared to the hexagonal phase. Furthermore, the curvature
of the energy as a function of a is

�2E0
min�a�
�a2 = 2�1 − 2�2��ã − a� , �8�

which is also reduced by a factor of 2�2 when the structure is
distorted.

The effect of the thermal expansion on the lattice param-
eter can now be modeled as a temperature-dependent posi-
tion of a0, a0=a0�T�. The change of the lattice constant with
temperature for the distorted phase can therefore be written
as

�amin

�T
=

�1

�1 − �2

�a0

�T
. �9�

Since �2 is smaller than �1, the lattice expands with tempera-
ture faster for the distorted phase than for the undistorted
phase. If the calculated values for �1 and �2 are used, the

FIG. 12. Solid line: distortion d0 for the minimum of the para-
magnetic ground state as a function of temperature calculated with
Eq. �5� �with �=1184 and ã=3.699 Å� using a�T� taken from Fig.
5. Dashed line: experimental distortion extracted from v�T� of Fig.
3 in Ref. 10.

FIG. 13. Energy expansion coefficient r0 and E0,min as a func-
tion of the lattice constant. The dashed line shows �0+�1 �a−a0�2;
the solid line shows �0+�1 �a−a0�2−�2 �a− ã�2 �see Eq. �6��.
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ratio �1 / ��1−�2� is found to be 1.90, which agrees well with
the value of 2.25 extracted from Fig. 5. Near the phase
transition—i.e., where d�0—phononic effects due to the
different curvatures of the energy and fluctuations should be
considered. It is especially interesting that the change of the
lattice constant with temperature goes to zero near the phase
transition temperature.

In the same way as E0 also TC can be expanded as a
function of the lattice constant and of the distortion:

TC�a,d� = TC�ã��1 + Kv
a − ã

ã
− Kdd2	 , �10�

where Kv and Kd are parameters and TC�ã� is the Curie tem-
perature for the cell with lattice parameter ã and where the
atoms are in the hexagonal positions. The parameters are
fitted by a least-mean-squares fit to the calculated values of
TC obtained for six lattice constants ranging between
3.656 Å and 3.78 Å and for different distortions. We obtain
TC�ã�=573 K, Kv=6.80, and Kd=2.62�10−5. At d=100%
the relative change of the Curie temperature is TC�ã ,d
=100% � /TC�ã�=0.74 and corresponds roughly to the value
of Fig. 10. In this case it is slightly larger due to the fact that
the volume is kept constant, whereas for the calculations of
Fig. 10 it shrinks with increasing the distortion.

Next we calculate the dependence of the magnetic mo-
ment on the distortion and on the unit cell volume. The de-
pendence is again expanded to lowest order in a and d:

��a� = ��ã��1 + ��

a − ã

ã
+ ��,dd2	 . �11�

We now have different ways of extracting the magnetic mo-
ment of the Mn atoms from our DFT calculations. One pos-
sibility is to take the total moment of the cell for the ferro-
magnetic spin configuration and divide it by the number of
Mn atoms. In this way, however, the small induced moments
of the As atoms are subtracted from the moment on the Mn.
A second possibility is to take the average Mulliken spin
population for the Mn atoms. The advantage of this method
is that also antiferromagnetic configurations can be used to
determine the average moment and the induced moments of
the As atoms are accounted for. The drawback, however, is
that Mulliken populations are somewhat arbitrary as they
depend on the basis set.

By setting ã to 3.699 Å, the values obtained using the cell
moment are ��ã�=3.28�B, ��=3.28, and ��,d=−1.15
�10−6. Similarly from the average Mulliken population over
all the magnetic configurations we obtain ��ã�=3.42�B,
��=3.48, and ��,d�0. These results are rather similar to
each other. With ��=3.28 and ��,d=−1.15�10−6 a reduc-
tion of the lattice constant of 1%, as approximately found at
Tp, results in a reduction of the magnetic moment of about
3% and a distortion of d=100% results in a reduction of � of
about 1%. Both effects therefore reduce the magnetic mo-
ment and are of the same order of magnitude.

E. Small distortions of the B81 structure

In this section the dependence of TC on the individual
lattice parameters and on the distances between the atoms is
investigated for the B81 structure. Our approach is to distort
the cell orthorhombically but to leave the atoms in their
high-symmetry positions. Apart from a general understand-
ing of the phase diagram of MnAs this analysis is useful for
predicting the behavior of MnAs when grown on a substrate.
For instance when grown on GaAs�001� the substrate in-
duces strain in MnAs, and the unit cell is slightly orthorhom-
bically distorted.1 This distortion does not correspond to the
orthorhombic B31 structure, since the atoms do not move out
of the high-symmetry positions. Moreover, different growth
orientations are possible and the Curie temperature varies
accordingly.7 In addition Ref. 8 presents experimental results
showing that the phase transition temperature Tp changes
when strain is applied to the MnAs film. In that article we
have compared our theoretical predictions for the depen-
dence of Tp on the lattice distortion with the experimental
findings. In this section we refine and expand our previous
analysis.

When the cell is orthorhombically distorted the first three
nearest-neighbor coupling constants split into five different
constants, corresponding to the ones of the B31 cell �Fig. 8�
and with the only exception that now J2,1=J2,3. The number
of total energy calculations for the fit of the coupling param-
eters is 16. The change of TC for each different distortion can
be expressed as a function of the change of each single
Mn-Mn and Mn-As distance in the unit cell. This gives

	TC

TC
=

	J0

J0
= 


�=1

5

K�N�

	d�

d�

, �12�

where the sum goes over all five independent distances in the
orthorhombic unit cell as defined in Fig. 14. The dependence
on the angles between the atoms is neglected. N� are the
multiplicities of each distance d� within one unit cell and
have the values NMn,1=4, NMn,2=4, NMn,3=8, NAs,1=4, and
NAs,2=8. For the evaluation of the coefficients K�, 21 differ-
ent distortions are considered, including changes of volume,
changes of the ratio of the different axes, and different dis-
placements of the As atoms. For all the distortions the ortho-

FIG. 14. Diagram of the positions of Mn and As atoms in ortho-
rhombic MnAs.
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rhombic symmetry, however, was preserved. The best fit for
K� gives

KMn,1 = 6.6, KMn,2 = 6.2, KMn,3 = 5.9,

KAs,1 = − 7.5, KAs,2 = − 7.5. �13�

The values of KMn,1 and KMn,2 are almost identical, as one
should expect from the symmetry and similarly for KAs,1 and
KAs,2.

Equation �12� describes the fact that the change of TC is
the result of an interplay between the change of the Mn-Mn
and Mn-As distances. The calculated K� show that, while an
increase in the distance between Mn atoms increases TC, an
increase of the Mn-As distance decreases it. However, note
that the two distances cannot be changed independently;
thus, the net change in TC depends on the details of the
distortion.

J0 can also be expanded over the orthorhombic lattice
parameters

	J0

J0
= 


i=1

3

Ki
	ai

ai
, �14�

with

Ki = 

�=1

5

K�N�

ai

d�

�d�

�ai
,

where a1=a, a2=b, and a3=c. The change of the distances
between Mn and As atoms is not exactly known for the
orthorhombic cell. However, it is easy to show that in first
approximation the position of the As atom in the cell does
not influence J0, since up to first order 	dAs,2=2	dAs,1 when
moving the As atom inside the cell. Therefore the As atoms
can be assumed to remain in the high-symmetry position.
Assuming now KMn,2=KMn,3 and KAs,1=KAs,2 �as imposed by
symmetry�, the general form of the Ki is

Ka = Kb = 6KMn,2 +
96KAs,1

16 + 3c̃ 2 ,

Kc = 4KMn,1 +
36KAs,1c̃ 2

16 + 3c̃ 2 , �15�

where c̃=c /a. Using the average between KMn,2 and KMn,3
and c̃=1.533 this gives

Ka = Kb = 4.9, Kc = − 1.0. �16�

Our results clearly show that stretching the unit cell along
the basal plane raises Tp �since Ka�0�, while stretching
along the c axis lowers Tp �Kc�0�. An increase of the vol-
ume without distorting the cell results in an increase of the
ferromagnetic exchange interactions and therefore of TC,
since Ka is positive and larger in magnitude than Kc. The
results for Ka and Kb differ slightly from the ones given in
Ref. 8, since in that case we did not constrain Ka to be equal
to Kb. If the cell changes only its volume, the expansion
corresponds to the one of Eq. �10� with a factor Kv=2Ka
+Kc=8.8. We note that this value is somewhat different from

the value of Kv=6.8 given in Sec. III D. This is due to the
different type of analysis performed in this section, which
starts from the dependence of TC on the distances between
the single atoms. The difference is, however, small and can
be considered a measure for the error in our results.

IV. DISCUSSION

It is now possible to analyze two peculiar properties of
MnAs. The first is the anomalous behavior of the suscepti-
bility � as a function of temperature between Tp and Tt. The
second is the fact that although the Curie temperature for
ferromagnetic MnAs has to be larger than Tp, the TC extrapo-
lated from the susceptibility above Tt is only 285 K.13 In this
section both these features are explained using the depen-
dence of the susceptibility on the Curie temperature ��
=��TC�� and the strong dependence of the Curie temperature
on the lattice parameters found in the previous sections �TC

=TC�a ,b ,c ,d��. TC�T� and ��T� are therefore determined us-
ing the experimentally measured temperature dependence of
the lattice vectors a�T�, b�T�, and c�T� and of the distortion
d�T�. This analysis also provides a tool for extracting the
parameters Kv and Kd from experimental data.

By generalizing Eqs. �10� and �14� the Curie temperature
TC�a ,b ,c ,d� can be written as

TC�a,b,c,d� = TC,0�1 + Ka�a − ã

ã
+

b − b̃

b̃



+ Kc
c − c̃

c̃
− Kdd2	 , �17�

where we use the fact that Ka=Kb and we take the values for
Ka and Kc from Eq. �16�, while Kd=2.62�10−5 and TC,0
=TC�ã�=573 K are calculated in Sec. III D. The reference
lattice parameters are chosen to be the lattice vectors at Ts

�ã=3.699 Å, b̃=�3ã, c̃=1.56ã�.
Similarly to the Curie temperature also the susceptibility

is calculated in the mean-field approximation. This is justi-
fied for T�TC, a condition which is satisfied for paramag-
netic MnAs. The molar susceptibility �M is then given by

�M
−1 =

1

C0
�T − TC� ,

C0 =
NA�B

2 g2

3kB
s�s + 1� . �18�

NA is the Avogadro’s number, g�2 is Lande’s factor for the
free electron spin, kB is the Boltzmann constant, and s is the
atomic total spin. Note that the susceptibility has an addi-
tional temperature dependence since TC and s depend on the
temperature through the lattice distortion. However, in what
follows we neglect the dependence of s on the lattice param-
eters so that C0 is constant over all temperature. An analysis
performed by relaxing this approximation gives similar re-
sults.
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Similarly to Sec. III D the model is further simplified by
assuming that b /a and c /a are constant above Tp. As indi-
cated in Eq. �5�, d is a function of the lattice constant, d�a�
=���ã−a� / ã��ã−a�. Moreover, we have shown that the ex-
perimental distortion as a function of the lattice constant is
well reproduced when �=1184. Therefore it is now possible
to express TC and �M

−1 as a function of the lattice constant a
only:

�M
−1�a� =

1

C0
�T − TC,0�1 + �Kv + Kd�2��ã − a��

a − ã

ã

	 ,

�19�

where Kv=2Ka+Kc=8.8. This equation shows that if the lat-
tice expands strongly with temperature, �M

−1 decreases.
For temperatures between Tp and about 390 K, as well as

above Ts, a increases approximately linearly with tempera-
ture �see Fig. 5� and can therefore be written as

a�T� = a�T0��1 + �
T − T0

T0
	 , �20�

where the experimental values for the coefficients are T0,+
=Ts=452 K, a�Ts�= ã=3.699 Å, and �+=0.0126 for tem-
peratures above Ts �the index+denotes the high-temperature
region above Ts� and T0,−=Tp=318 K, a�Tp�=3.673 and �−

=0.0284 for temperatures between Tp and about 390 K �the
index “�” denotes the intermediate temperature region�. By
inserting Eq. �20� into Eq. �19� we obtain for the high-
temperature region above Ts:

�M
−1�T� =

1

Ceff
�T − TC,eff� , �21�

with

Ceff =
1

1 − Kv�+
TC,0

Ts

C0,

TC,eff =
1 + Kv�+

1 − Kv�+
TC,0

Ts

TC,0. �22�

TC,eff and Ceff are the experimentally accessible quantities for
the high-temperature susceptibility, and due to the expansion
of the lattice, they are different from TC,0 and C0. The ex-
perimentally measured values are TC,eff=285 K and Ceff
=3.12�10−5 m3 K,14 which corresponds to an effective
magnetic moment of 3.57�B. From Ceff and TC,eff the values
of TC,0=TC�ã� and C0 can now be obtained:

C0 =
1 − Kv�+

1 − Kv�+�1 −
TC,eff

Ts

Ceff,

TC,0 =
1

1 − Kv�+�1 −
TC,eff

Ts

TC,eff. �23�

All the variables on the right-hand side of Eq. �23� can be
obtained from experiments except Kv. For small Kv the dif-
ference between TC,0 and TC,eff is proportional to Kv. Since
Ts is larger than the experimental value of TC,eff, the effect of
the thermal expansion of the hexagonal structure is a reduc-
tion of the slope of the inverse susceptibility as a function of
temperature, as well as a reduction of the extrapolated Curie
temperature as compared to the real Curie temperature.

In the region where linear expansion holds the slope of
the inverse susceptibility above Tt is

��M,+
−1

�T
=

1

C0
�1 − Kv�+

TC,0

Tt

 , �24�

whereas for in the intermediate temperature region above Tp
it is

��M,−
−1

�T
=

1

C0
�1 − �Kv + Kd�2��−

a0

ã

TC,0

T0,−

 . �25�

In both regions there is a reduction of the slope due to the
expansion of the lattice. However, the reduction is much
larger for �M,− than for �M,+, since there is the additional
term proportional to Kd due to the distortion and also �−
��+. As a rough approximation it can be assumed that

�a0TC,0� / �ãT0,−��1, so that
��M,−

−1

�T becomes negative for

�Kv + Kd�2��− � 1. �26�

The values of �− and � are determined experimentally and
describe how the structure changes with temperature,
whereas Kv and Kd describe how TC varies for distorted cells.
By using our calculated values for Kv and Kd we obtain
�Kv+Kd�2��−=1.29. This is indeed larger than 1. Therefore
we do predict a negative slope for the inverse susceptibility
in the intermediate-temperature region. With the value for
�=947 estimated in Sec. III D we obtain �Kv+Kd�2��−

=0.92, which is still smaller than 1. This is due to the under-
estimation of the distortion as compared to experiments by
using �=947. With �=1186 the reduction of the distortion
with increasing lattice constant is large enough to obtain a
negative slope of the inverse susceptibility, whereas �=947
underestimates the reduction of the distortion, and so the
slope of the inverse susceptibility is reduced but not to the
point to make it negative.

Finally we will extract the values for Kv and Kd from the
experimental behavior of the Curie temperature. Since the
ratio between Ka and Kc cannot be obtained from the thermal
properties of MnAs, it is therefore assumed that Kc /Ka
=−1/4.9�−0.2 is fixed and corresponds to our calculated
value. For the hexagonal cell �d=0�, Eq. �17� reads

TC�a,c� = TC,0�1 + Kv�ka
a − ã

ã
+ kc

c − c̃

c̃

	 , �27�

where ka=2/ �2+Kc /Ka�=1.11 and kc= �Kc /Ka� / �2+Kc /Ka�
=−0.11. This has to be valid for all temperatures where the
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cell is hexagonal; therefore, it cannot be assumed that the
ratio between c and a is constant since it changes abruptly
from 1.533 to 1.556 at Tp. By using the expression for TC,0

from Eq. �23� we obtain Kv:

Kv =

TC�a,c�
TC,eff

− 1

�+�TC�a,c�
TC,eff

−
TC�a,c�

Ts

 + ka

a − ã

ã
+ kc

c − c̃

c̃

. �28�

As reference Curie temperature the extrapolated value to
room temperature is used, which can be estimated to be
about TC�a=3.724 Å,c=1.533a�=360 K. By inserting the
experimental values for the parameters on the right-hand side
of Eq. �28� we obtain Kv=18.1. This is about twice as big as
our predicted value. The disagreement may partly be due to
the fact that the ratio between Kc and Ka has been fixed for
our calculated value. By inserting this value for Kv in Eq.
�23� we obtain TC,0=311 K, the Curie temperature for the
lattice parameters at T=Ts.

In order to extract Kd from experiments we use the rela-
tive change in the slope of the inverse susceptibility around
Tt. This is, according to Eqs. �24� and �25�,

��M,+
−1

�T
−

��M,−
−1

�T

��M,+
−1

�T

= 1 −

1 − �Kv + Kd�2��−
a0

ã

TC,0

T0

1 − Kv�+
TC,0

Tt

, �29�

and increases with increasing Kv and Kd. All the variables in
this equation can be derived from the experimental measure-
ments, except Kv and Kd. Experimentally different values are
found for the relative change of the slope �left-hand side of
Eq. �29��.24,55–57 These are all of the order of 1.44. By using
this value for the relative change of the slope and the previ-
ously calculated value Kv=18.1, Kd is found to be 1.78
�10−5. This value agrees approximately with our predicted
value of 2.62�10−5.

In conclusion, Table II summarizes the parameters calcu-
lated in this article, by comparing our ab initio results ob-
tained from the DFT calculations and the Heisenberg model,

with the results obtained by fitting to the experimental data.
In general the value obtained from the ab initio calculations
agrees with the best fit to experiments, although the DFT
results underestimate Kv and overestimate Kd.

V. CONCLUSIONS

We have investigated, by means of ab initio electronic
structure calculations, the magnetostructural properties of
MnAs. The stable structure for the ferromagnetic state is
found to be the B81 structure. However, if antiferromagnetic
alignment in the hexagonal plane is imposed, the B31 struc-
ture becomes more stable. By fitting the DFT total energies
of different magnetic configurations to a Heisenberg-type en-
ergy it is shown that the main contributions to the physical
properties originate from the exchange coupling parameters
up to the third nearest neighbor. The Curie temperature was
calculated in the mean-field approximation, with values ap-
proximately twice as large as the experimental ones.

The main assumption of the phenomenological model of
Bean and Rodbell11 that the ferromagnetic exchange cou-
pling parameters increase when the volume is increased has
been confirmed �Eq. �16�� using this analysis. However, it
has been shown that the exchange interactions depend not
only on the volume, but that the orthogonal distortion to the
B31 structure plays an important role. For the experimentally
observed distortions some of the in-plane exchange coupling
coefficients become antiferromagnetic. This is the reason for
the stability of the B31 structure for those configurations of
the magnetic moments that have an antiferromagnetic com-
ponent in the hexagonal plane.

Furthermore, it has been shown that for paramagnetic
states the B31 structure is stable at small volumes, while the
B81 structure is stable above a critical lattice constant of
about 3.7 Å. This explains the second-order phase transition
at Tt, since at that temperature the lattice constant crosses
this critical value.

The Curie temperature has been expanded as a function of
the lattice vectors and of the amount of distortion. An in-
crease in the volume leads to an enhancement of the Curie
temperature, while an increase of the distortion leads to a
reduction. With these results in hand the increase of the sus-
ceptibility between Tp and Tt has been explained as the result
of the increase of the Curie temperature due to the change of
the structure from B31 to B81 and to the increase of the
volume. By using the experimental variation of the lattice
parameters with rising temperature the susceptibility is

TABLE II. Main parameters used in the description of the phase diagram of MnAs. We compared results
obtained from ab initio calculations and Heisenberg model �DFT�, with those of the best fit of the experi-
mental properties �FIT�.

TC,0

�K�
Kd

�10−5� Kv Ka Kc �
ã

�Å�

DFT 579 2.62 8.8 4.9 −1.0 947 3.706

FIT 311 1.78 18.1 10.1 −2.1 1184 3.699

IVAN RUNGGER AND STEFANO SANVITO PHYSICAL REVIEW B 74, 024429 �2006�

024429-12



indeed found to increase between Tp and Tt.
A fit of the dependence of the Curie temperature on

the lattice parameters to best reproduce the experimental be-
havior is also given. The calculated values agree within a
factor of 2 with the values obtained from ab initio calcula-
tions. Our results are in agreement with the various phenom-
enological models based on the Bean-Rodbell idea. In this
work the various parameters used in those models for the

magnetostructural properties of MnAs have been derived
from first principles and therefore validated.
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