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Conical diffraction and the dispersion surface of hyperbolic metamaterials
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Hyperbolic metamaterials are materials in which at least one principal dielectric constant is negative. We
describe the refractive index surface, and the resulting refraction effects, for a biaxial hyperbolic metamaterial,
with principal dielectric constants €; < 0, 0 < €, # €3. In this general case the two sheets of the index surface
intersect, forming conical singularities. We derive the ray description of conical refraction in these materials
and show that it is topologically and quantitatively distinct from conical refraction in a conventional biaxial
material. We also develop a wave optics description, which allows us to obtain the diffraction patterns formed
from arbitrary beams incident close to the optic axis. The resulting patterns lack circular symmetry and hence
are qualitatively different from those obtained in conventional, positive index materials.
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I. INTRODUCTION

Hyperbolic metamaterials (HMMs), materials which have
a negative dielectric constant in at least one direction, are
attracting attention due to their interesting physics and myriad
applications. They can be manufactured relatively simply from
alternating layers of metal and dielectric, or by embedding
metal rods in a dielectric background [1,2]. HMMs have
recently been shown to have unique properties, described by
effective medium theory [3], including a broadband infinite
density of states [4], arbitrarily large values of the wave
vector [5], and negative refraction [2,6]. This has led to many
proposed applications, from imaging [7,8], sensing [9], and
wave guiding [10,11] to information processing [12].

The most common HMMs considered are uniaxial mate-
rials for which €; < 0 < €; = €3 where ¢; are the principal
dielectric constants. This leads to a hyperboloid isofrequency
surface (refractive index surface) for the extraordinary ray.
The change in topology from an ellipsoid to a hyperboloid
is responsible for many of the important properties of these
materials [13]. The general case, however, is a biaxial HMM,
where €; < 0 < €, < €3. Such a material could be realized as
layers of metal and dielectric, where the dielectric material has
uniaxial isotropy in the plane, or as rods of metal embedded
in a dielectric with different rod spacings in the x and
y directions [14]. The isofrequency surface for the extraor-
dinary ray is then an asymmetric hyperboloid [15].

In this paper we present the full two-sheeted isofrequency
surface of a HMM, which describes the propagation of
both the ordinary and the extraordinary rays with orthogonal
polarizations, and show that it contains conical singularities.
These singularities are degenerate points where the two sheets
intersect at a point in k space. Similar conical singularities
occur in conventional biaxial materials, i.e., 0 < €] < € <
€3 [16,17], and lead to the phenomenon of conical refraction,
in which a beam of light is refracted into two concentric
hollow cones [17,18]. We describe these intersections in the
case of a HMM and derive a geometrical optics description of
refraction for rays with wave vector close to the degeneracy,
including establishing the polarization and the Poynting vector,
or energy flow. This predicts refraction into two intersecting
rather than concentric cones, an effect topologically distinct
from that in a conventional biaxial crystal and completely
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lacking from a uniaxial HMM. We then extend this theory to
develop a paraxial wave optics description of the propagation
of light through these materials. This allows us to calculate the
diffraction patterns formed from arbitrary beams incident on a
biaxial HMM close to the optic axis. We find these patterns to
be qualitatively different from those obtained in positive index
materials, in particular lacking circular symmetry.

These conical singularities are, in some respects, similar
to the Dirac points [19] that are of growing importance in
solid-state physics. These points, where bands cross linearly
at a particular frequency and wave vector, are best known in
graphene [20,21]. Graphene has attracted huge theoretical and
applied interest [22-24], with many new features attributable
to the linear dispersion near a Dirac point, which means that the
low-energy excitations are massless chiral Dirac fermions [21].
They thus provide a model of quantum electrodynamics with
the limiting speed given by the Fermi velocity rather than the
speed of light [21,25]. They also lead to effects such as the
anomalous integer quantum Hall effect [26,27] and mean
that electrons are immune to localization, propagating over
large distances without scattering [20,28] . Tilted Dirac cones,
which are not circularly symmetric around the degenerate wave
vector, are similar to the skewed-cone intersections reported
here and have previously been predicted in mechanically
deformed graphene [29]. Dirac points in optical systems have
been found in photonic crystals, as a result of the same lattice
symmetry [30,31], or in materials with a frequency dependent
permittivity, which may pass through zero at a particular
frequency, leading to a degeneracy [32-34].

In these cases, however, a degeneracy occurs at a particular
frequency, due to fine tuning the frequency to match the
sublattice periodicity, or to match a zero of the frequency
dependent dielectric constant. At other nearby frequencies
there is generally no singularity. In contrast, biaxial materials
have conical singularities in the isofrequency surface in
k space, which is directly comparable to a Fermi surface. The
presence of these singularities depends on the symmetry of
orthogonal polarizations in a crystal and does not rely on
fine tuning of any parameter. In particular, we show that
they occur within effective medium theory and argue that
their presence is required on topological grounds. Since this
implies that they occur over a finite range of frequencies
they correspond to line, rather than point, degeneracies in
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the dispersion relation (which describes a three-dimensional
surface in the four-dimensional space of w and k).

The remainder of this article is structured as follows. In
Sec. II we describe the two-sheeted dispersion surface in a
biaxial HMM and compare it to the case of positive €. In Sec. III
we derive the ray optics description of refraction, for incident
rays with initial wave vector close to the optic axis, in a biaxial
HMM. In particular, we present the polarization and Poynting
vector, i.e., the direction of energy flow, of the refracted rays.
In Sec. IV we extend the theory to include small absorption in
the material and show explicitly that the conical intersections
persist. In Sec. V we develop a wave optics description of
propagation near the optic axis of a biaxial HMM and present
the diffraction pattern formed with a Gaussian input beam. In
Sec. VI we discuss further the connection between conical
singularities in optics and singularities in solid-state band
structures. We make an explicit connection between the conical
singularities described here and Dirac points by reformulating
the diffraction theory in terms of the paraxial wave equation.
Finally, in Sec. VII we summarize our conclusions.

II. DISPERSION SURFACES

We can describe a nanostructured metamaterial in the effec-
tive medium theory by a three-dimensional dielectric tensor
€;j or by the principal dielectric constants, ¢;, which are its
components in the frame in which it is diagonal [35]. Effective
medium theory describes the subwavelength patterning of
different materials by an average anisotropic dielectric tensor
according to the Maxwell-Garnett formulas [36]. Plane-wave
solutions to Maxwell’s equations in the medium lead to the
Fresnel equation for the refractive index:

>
> =, (1)
n- —e¢;

i

where 7 is a unit vector in the direction of the wave vector
k [35]. The two solutions for n? for a given direction 7
form a two-sheeted dispersion surface [35], also known as
an isofrequency surface or refractive index surface. At a
fixed frequency, these surfaces give the phase velocity, or
equivalently the wave vector magnitude, in the medium, for a
given wave-vector direction. The ray or energy flow direction
will be orthogonal to the dispersion surface at the point defined
by that wave vector [37]. In the following we assume without
loss of generality that € < €; < €3.

Figure 1 shows sections of the dispersion surfaces for a
variety of materials. These surfaces are polar plots where the
radial distance represents the refractive index experienced by a
ray propagating in that direction in k space. Equivalently, they
are three-dimensional cuts of the full four-dimensional space
of w and Kk, taken at a constant w. In the approximation where
the dielectric constants depend weakly on frequency, these
surfaces will simply contract or expand as w is decreased or
increased, respectively, meaning the critical points will trace
out lines. Outside of this approximation the dispersion surface
will change shape but the basic features will remain until the
dielectric constants cross each other or zero. Hence, assuming
a smooth dependence on frequency, there will always be a
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FIG. 1. (Color online) Isofrequency surfaces for various ef-
fective index materials: (a) isotropic, (b) uniaxial, (c) biaxial,
(d) uniaxial-hyperbolic, (e) biaxial-hyperbolic type 1, and (f) biaxial-
hyperbolic type 2. Shading is for perspective only. Additional cases
not shown include €; = €; < 0 < €3, which is identical to (f) but with
circular cross sections, and €3 < 0, in which case there are no real
solutions. These surfaces are polar plots of the refractive index as a
function of ray direction 5. In the case of (b) and (d) the surfaces
intersect at two points, at which they are parallel. In the case of (c)
and (e) the surfaces have four conical intersections. Insets in (c) and
(e) show cutaway closeups of the intersection points. Cuts through
these intersections are presented in Fig. 2.

continuous range of frequencies for which these singularities
exist.

The classical cases, 0 < ¢;, are shown in the first row
and are the subject of conventional crystal optics. The
surfaces have positive curvature and finite area. The hyperbolic
cases, €; < 0, shown in the second row, are the result of
nanostructured materials which have properties not found in
nature at optical frequencies. They have dispersion surfaces
which are unbounded in |k| at any frequency and feature both
positive and negative curvature [1].

The possible classical materials fall into three categories.
Figure 1(a) shows an isotropic material which has a single
spherical dispersion surface. Once isotropy is broken, the
surface splits into two as the two orthogonal polarizations
experience different dielectric constants. For a uniaxial ma-
terial, with two indices equal, these surfaces intersect at two
points, along a single optic axis as shown in Fig. 1(b). However,
the surfaces are parallel at the degenerate points, and so the
normals remain well defined [38]. For a biaxial crystal, shown
in Fig. 1(c), rotational symmetry is broken completely. The
surfaces intersect at four points along two optic axes. The
gradient of the surfaces is singular at the degenerate points
and the normal is not well defined.

These singularities lead to the unique phenomenon of
conical refraction [16]. For a general angle of incidence in
an anisotropic medium, the two orthogonal polarizations of
an incident ray are refracted into two rays with different
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FIG. 2. (Color online) The transition from biaxial to biaxial-hyperbolic type 1 material as €, passes through zero. One of the dispersion
surfaces changes topology from an ellipsoid to a hyperboloid. The intersection points move from the x.-z. plane to the x.-y,. plane. The first
row shows the surfaces in the x.-z. plane (y. = 0). The second row shows the surfaces in the x.-y. plane (z. = 0).

wave vectors, called the ordinary and extraordinary rays.
In conical refraction, when the incident wave vector coin-
cides with the optic axis, the two orthogonally polarized
incident rays are refracted into two concentric cones which
contain all polarizations at different points around each
cone [18,35].

When one of the dielectric constants becomes negative,
leading to a hyperbolic metamaterial, there is a topological
transition of one of the surfaces, from an ellipsoid to a
hyperboloid. Figure 1(d) shows a uniaxial HMM. The surfaces
again intersect at two points where they are parallel. In the
case of a biaxial HMM, shown in Fig. 1(e), linear crossings
occur. The hyperboloid and the ellipsoid intersect at four
degenerate points. We describe for the first time these conical
singularities in the dispersion surface of a biaxial HMM, and
their associated refraction and diffraction effects. In the final
case, where two of the three indices are negative, Fig. 1(f),
there is again a single dispersion surface which is a type two
hyperboloid [1] with no singularities. This single dispersion
surface describes one polarization which can propagate in
the material. For the orthogonal polarization the material is
metallic, and absorbing, and hence there is no second real
solution to the Fresnel equation.

In both Figs. 1(b) and 1(d) the two sheets have a quadratic
degeneracy. Including the perturbation €, # €3 will clearly
either open a gap or cause the quadratic intersection to
split into two linear intersections, in line with general band
theory. If a gap were to open, however, it would leave at
least one closed surface which described the propagation
of a different linear polarization at each point. The field
of polarization directions described by this surface would
form a tangential vector field on a closed two-dimensional
surface. This is forbidden by the hairy ball theorem, unless
the linear polarization vanishes at least once. Comparing with
the Poincaré sphere representation for the polarization, we see
that such points, if they occurred, would correspond to points
with circular polarization. However, in the presence of chiral
symmetry the two circular polarizations cannot have different
refractive indices, so that there cannot be a gap at these points.
Thus, in the presence of chiral symmetry, the existence of
conical singularities in the isofrequency surface is required
on topological grounds. In its absence, however, a gap does
indeed appear [39].

The transition from a conventional biaxial material to a
biaxial type | HMM is shown in Fig. 2 as €| goes from positive
to negative. As rotational symmetry in the y.-z, plane is broken
(note we use the subscript € to denote the basis in which € is
diagonal), the degenerate points are free to move around the
Xc axis as €; varies. The points start in the x.-z. plane and
move closer to the x, axis as €, — 0. Then as the topological
transition occurs the critical points change direction and move
away from the x. axis into the x.-y¢ plane.

The topological transition between the conical singularities
of positive and negative index materials can be seen by
calculating the solutions to the Fresnel equation, Eq. (1), which
are degenerate. We find two sets of solutions:

= €3(€2 — €1)
1 —’
e (€3 —€1)
n =0, ()
ns = €1(e3 —€)
= C1ies = 2)
e (e3 — €1)
and
= €(€3 — €1)
1 - —’
€3(e2 — €1)
—ei(€3 — €)
M=t 2 3)
€3(ex — €1)
n3 = 0.

The first solution Eq. (2) is real, and therefore physical,
when all the ¢; are positive. As €; becomes negative, 13 in
Eq. (2) becomes imaginary. The second solution, Eq. (3),
then becomes the real, physically relevant, . In this way the
transition through €; = 0 separates topologically distinct sets
of degenerate solutions.

Figure 3 shows the cross sections of the dispersion surfaces
at the degenerate points, in the case of a conventional biaxial
crystal and a biaxial hyperbolic material. For a conventional
material, both surfaces have similar curvatures. The normals
to the surfaces close to the optic axis, i.e., the axis which
passes through one of the degenerate points, are shown. These
normals indicate the direction of refraction for rays which
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FIG. 3. (Color online) Cross sections of the isofrequency sur-
faces through the degenerate points for (a) a conventional biaxial
material and (b) a hyperbolic biaxial material. The optic axis is shown
by the straight line, and the approximate normals to the surfaces for
a k vector passing close to this axis are shown by the arrows and are
suggestive of the expected conical refraction. In the hyperbolic case
the cone points toward rather than away from the x, axis.

approximately coincide with the optic axis. In the positive
€ case, one points close to the optic axis while the other
points away from the x, axis. In the case of a biaxial HMM
the surfaces have opposite curvatures. This leads to one of
the normals pointing towards the x. axis. When the full
two-dimensional surface is considered, the normals shown
here contribute to a cone which is skewed away from the
optic axis, in a different direction in each case. In Fig. 3(b),
one of the normals points downward, below the horizontal. If
the material is cut so the interface is the y.-z. plane, i.e., the
normal is parallel to the x, axis, then this results in part of the
cone being refracted back on the same side of the normal to
the incoming ray, a phenomenon sometimes known as negative
refraction. However, this term is also used to refer to negative
phase velocity, which is not present in this case.

III. GEOMETRICAL OPTICS

We now turn to describing the refraction of light incident
on a biaxial HMM, when the incident wave vector lies close to
the optic axis, as shown in Fig. 3. To achieve this we calculate
the refractive index surface experienced by the ray and the
resulting Poynting vector of the refracted ray. We describe the
ray by polar coordinates in a frame where the x axis coincides
with the optic axis, and the z axis coincides with the z. axis,
as illustrated in Fig. 4. 6 is the angle between the ray and the
optic axis, while ¢ is the azimuthal angle from the y axis in
the y-z (transverse) plane. Expressing 5 in terms of 6 and ¢
and solving Eq. (1) we find the refractive index to first order
in @ is

n* = e3 — Oes(cos p £ 1), 4)
where
€ = 63\/(63 —€1)(e2 — €3) 5)
€1€

is a measure of the anisotropy of the medium. The surface
described by Eq. (4) consists of two cones touching at their
points, which is the linear approximation to the surface
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FIG. 4. (Color online) The coordinate system used to describe
refraction near the optic axis in a biaxial HMM. The x axis
corresponds to the optic axis through the direction given by Eq. (3)
while the z axis corresponds to the z. axis. 6 is the angular
displacement of the ray from the optic axis while ¢ is the azimuthal
angle of the ray in the transverse plane.

portrayed in Fig. 1(e) around one of the intersection points.
Furthermore, we find the polarization of the two refracted rays
is

Z

Dy, cospE1’

D.  sing

(6)

where D is the electric displacement field.

The results, Egs. (4) and (6), describe the refractive index
experienced by an incoming ray. A ray which comes from an
azimuthal angle ¢ can be decomposed into the two orthogonal
polarizations given by Eq. (6). These two polarizations experi-
ence the refractive indices given by Eq. (4). The polarizations
are independent of 6, as long as 6 is small. Thus, for any ray
not exactly coincident with the optic axis, there are two distinct
polarization modes. As ¢ varies, the direction of polarization
described by a given dispersion surface rotates, so that a ray
with one linear polarization and azimuthal angle ¢ undergoes
the same refraction as a ray with the orthogonal polarization
and azimuthal angle ¢ + 180°. However, Eq. (6) is undefined
when 6 = 0. Hence there is also a polarization degeneracy at
the conical singularity where all polarizations experience the
same refractive index.

Equation (4) differs from the usual case of conical refraction
in a biaxial crystal in two noteworthy ways. First, €3 plays the
role of the average dielectric constant, despite being the largest
of the three indices, while for a conventional biaxial crystal
the median index €, plays this role. Second, the parameter €5
depends on /€3 — €], which is a large parameter since € is
negative. In the conventional, €; > 0, case of conical refraction
the corresponding form is €5 = €,4/(e2 — €1)(e3 — €2)/€1 €3,
which is usually small. The polarization modes given by Eq. (6)
are identical to the positive € case. Thus we do not expect
the polarization profiles generated by conical refraction and
diffraction to change.

We now calculate the Poynting vector using Eqs. (4) and (6)
for the two orthogonal polarizations associated with each
incident wave vector. The Poynting vector is, up to an overall
constant, given by

P=E* xH. (7

E and H can be expressed in terms of D, and D,, given
by Eq. (6), using Maxwell’s equations and the constitutive
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FIG. 5. (Color online) The loci of the Poynting vector of the two
modes in a conventional biaxial material and a biaxial hyperbolic
metamaterial, for wave vectors making angles 6 and ¢ to the optic
axis, as ¢ varies from zero to 2. In the conventional case the cones
are concentric, while in the hyperbolic case they intersect. For 6 — 0
the cones are degenerate. As 6 increases they move further apart.
Parameters used are ; = 3 and €3 = 4. Toprow, €; = 2:(a)0 = 0.01,
(b) 6 = 0.05, and (c) & = 0.1. Bottom row, €; = —3: (d) 6 = 0.01,
(e) & = 0.05, and (f) & = 0.1. The solid black line indicates the optic
axis, while the shading is for perspective only.

relations. The result,

Py

3/2 5/2(cos¢j:1)
€3

P, (I £cos¢p)+ —0

EReE
+l Ly
2 €1

1 2
P,=4+—— & singp + ——0 —53(cos¢:|:1)sm¢
27 4¢}

NG

1<1 1)_ }
+=|—+—)sin¢g|,
2 €1 €

is compared with the ¢; > 0 case in Fig. 5 for three values
of 6.

Equations (6) and (8) together describe the refraction of an
incoming ray with wave vector at a small angle 6 to the optic
axis and an azimuthal angle ¢ in the perpendicular plane. As ¢
is varied, the resulting rays sweep out two intersecting cones
while the polarization component which is refracted into each
cone also varies. For 6 = 0 a single ray of any polarization
is refracted into a complete cone, containing all polarizations.
However, any realistic incoming beam will be a superposition
of rays with the 6 = 0 ray contributing an infinitesimal amount
to the resulting pattern [18].

Figure 5 shows the loci of the Poynting vectors at different
fixed angles 0 as the azimuthal angle ¢ is varied, for a biaxial

&2
‘33 (cos¢ £ 1)?
€3

®)
1 1
— J(cosp £ F — |,
€ €3
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conventional material and a biaxial HMM. This is indicative
of the paths taken by refracted rays in the material. The figures
show that the usual result of two concentric cones [ 18] changes
to the topologically distinct case of two intersecting cones. At
6 ~ 0 the cones are degenerate and skewed away from the
optic axis. The degeneracy is clear from Eq. (8). For § = 0 the
terms which depend on ¢ take the same value for one mode
at a given ¢ as for the other mode at ¢ + 7. As 6 increases,
the cones move in opposite directions along the y axis, so that
they intersect and for large enough 6 will separate entirely. We
note that this is due to a particular term in the Poynting vector,

Eq. (8),

P, x +911
Y 261

which is the dominant term for the movement of the cones as 6
increases. For €; &~ —e;, the first term in Eq. (9) is small, and so
the two modes have terms ~F6/¢; in P, of opposite sign with
little dependence on ¢. This means the entire cones will move
in opposite directions as 6 increases. There is a corresponding
term in the conventional case, but there if €] &~ €; ~ €5 itis the
constant terms £1/2¢; £ 1/2¢, F 1/€3 which approximately
cancel, leaving a term which is dominated by cos ¢. Thus the
centers of the cones do not move in this case.

+i) (cos¢:t1):|:ii|, ©)]
€ €3

IV. ABSORPTION

So far it has been assumed that although the permittivity
may be negative it will always be real. Since hyperbolic
metamaterials contain a large proportion of metal, they will
always have some absorption, leading to an imaginary part of
the effective permittivity. Although metals generally have high
absorption, it is possible to design hyperbolic metamaterials
with a small imaginary part of € over a range of frequencies [3].
Nevertheless it is important to consider how losses will affect
the basic theory. Previous figures have plotted the real solutions
of the Fresnel equation. In directions in which only one real
solution exists, the other solution is completely imaginary
and thus evanescent. When the permittivity is complex, all
solutions are complex and represent waves which travel with
some absorption, which depends on the size of the imaginary
component.

Figure 6 shows the isofrequency surface in the x.-y. plane
when each principal dielectric constant has an imaginary part
of 0.3. This corresponds to an isotropic absorption; anisotropic
absorption does not qualitatively change the results. Note that
an isotropic material with € = 2 4 0.3i would have an imag-
inary refractive index of « = 0.1, meaning the decay length
of the intensity A/(4mx) would be less than a wavelength.
Hence the imaginary part we are considering is small but not
negligible. We see from Fig. 6 that the crossings identified
in the absence of absorption remain and are not destroyed
by the introduction of a complex permittivity. Furthermore
the wave vector at the crossings has a small imaginary
component, relative to its real component, meaning that these
crossings correspond to (mostly) propagating solutions with
some absorption. The persistence of intersections is ensured
by the topological argument given previously, as the absorption
does not break the symmetry between left and right circular
polarizations.
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FIG. 6. (Color online) Isofrequency surface in the x.-y. plane
(ze = 0) showing conical intersection in the presence of loss, with
€ =—2+0.3i,, =2+0.3i, and €3 =5+ 0.3/, similar to the
bottom right panel of Fig. 2. This is a polar plot of the real part of the
refractive index with direction, with color representing the imaginary
part of the refractive index, i.e., the absorption. White represents
solutions with large absorption, and black represents those which
are fully propagating. The original intersection remains a mostly
propagating solution. An additional intersection appears which is
mostly imaginary. The inclusion of an imaginary component to
the effective medium theory is enough to prevent the dispersion
surface becoming infinite. The dashed line shows the continuation
of hyperbola in case of real €.

We also note, from Fig. 6, that in the case of complex
dielectric constants the refractive index no longer goes to
infinity: the open hyperboloid becomes closed and finite. This
is purely a result of including losses, without leaving the
effective medium theory. The hyperboloid dispersion surface
bends back at finite k, intersecting the ellipsoidal surface again.
This second intersection has a large imaginary component,
meaning that rays in this direction will decay quickly. These
new intersections also occur in other directions of y, where
they are also mainly evanescent. As the imaginary component
of € is increased, this finite hyperboloid shape will decrease in
size, until the mostly real and mostly imaginary intersections
approach each other and finally disappear. However, mostly
imaginary intersections also appear in the x.-z. plane and
remain for large imaginary components, in keeping with our
previous topological argument.

V. DIFFRACTION

A complete treatment of optics near the conical singularities
in a HMM must allow for diffraction of the incident and
refracted beams. Here we develop such a treatment and obtain
formulas for the diffraction patterns generated by arbitrary
beams, incident on a biaxial HMM, with wave vectors close to
the optic axis. We follow the method of [17]; in particular
we use the angular spectrum representation to calculate
the contribution of each input ray to the beam at a fixed
propagation distance. Describing beams propagating close to
the optic axis, which we will continue to label as the x axis,
the field at a position x in the crystal consists of a sum of
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plane-wave components which pick up a phase on propagating:

Eout = /:/ dkvdkz Ein(kyvkz) eXP[i(kyy + kzz)]

X €Xp (ix,/k% - kf - kf), (10)

where E;y(ky,k;) is the two-dimensional Fourier transform of
the input field in the plane x = 0. However, the magnitude
of the total wave vector in the crystal ky is nky, with n
depending on the direction of the ray, i.e., on k, and k.. We can
express the refractive index given by Eq. (4) in terms of the
relative transverse momentum p = ky /k, where k = \/e3kg
is the magnitude of a wave vector lying directly along the
optic axis. For small 6 the transverse momenta are related to
the angles defined in Fig. 4 by p, = 0 sin(¢), p, = 0 cos(¢),
and p = |p| = 6. The lowest-order terms, linear in p, lead to
refraction into a simple cone which dominates the diffraction
pattern. To reveal the fine structure we expand to second order,
giving
&2

n’ ~ e —es(py £ p)+ <€AP + im) (P F py)

= &[1 + u(py,p)l, (11)
where
2
€3
ea = —"—2e3 — €1 — ). (12)
€1€2

Letting k% = nzkg =k’[1+ u(py,p)] we can expand the
square root in the final exponent of Eq. (10), again to O(p?),
giving

S =2 = w2 e p?
= k\/l +u(p.py) — p*

~ k(14 tu(p.py) — t(p.py)* — 3p%).
(13)

where we keep terms up to O(p?) in u?.

The integral Eq. (10) with the approximation given in
Eq. (13) gives the paraxial approximation to the electric
field at a plane x > 0, valid for small transverse momentum
p K 1 or equivalently k; < k. The term in the exponent
proportional to xp, leads to a skew away from the optic
axis in the cone, as suggested by Fig. 5, which can be
included in the definition of a new transverse coordinate which
follows the center of the cone 1, =r; + Axé, such that p -
r, + Axp, =p-(r. + Axé,) = p - r|. The remaining terms
which depend on p, cannot be absorbed in this way and
lead to a noncircular asymmetry in the diffraction pattern.
For simplicity we focus on the case of a circularly polarized,
or unpolarized, input beam. For each wave vector the two
orthogonal eigenpolarizations, given by Eq. (6), will then be
present in equal amounts and will not interfere with each other.
We consider a crystal of finite length / < x, so that the field
propagates a length / through the crystal before propagating a
length x — [ in free space. Propagation beyond the crystal is
described by an identical integral to Eq. (10) with the input
field taken at the plane x = [ and with k7 = k. The intensity at
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a point (x,r’l) can then be written as the sum of the diffracted
intensities from each eigenpolarization:

I =|by >+ |b_|°. (14)
Expressing Eq. (10) in terms of p and using Eq. (13) gives

/ k ikx . /
bater) = 5t [ [ apawrexpiikp 1))

X exp {—ikpz[ﬂl + %@(x - l)]}

x exp (—iklapy])
x exp[Likip(y + dpy)l, (15)

where a(p) is the Fourier transform of the input field and
a,B,y, and § are all expressed in terms of ¢;; the explicit
forms are given in the Appendix. These parameters control
the diffraction patterns and have the following interpretations:
B is a propagation constant, y is proportional to the angle of
the cone opening, and « and & control the fine structure of the
diffraction pattern leading to circular asymmetry.

As a specific application of the diffraction formulas,
Egs. (14) and (15), we show in Fig. 7 the conical
diffraction pattern formed for a Gaussian beam, a(p) =
kw? exp(—k? p>w?/2). The beam waist w is taken as the unit
length scale. The resulting intensity profile is plotted in the
focal image plane, x = [ — 281/ /€3, where the resulting ring
structure is sharpest. This position corresponds to the image
of the input beam waist in an isotropic crystal of index /€3,
and the pattern here can be imaged with a lens if it occurs
inside or before the crystal [17]. As «,8,y, and § all appear
multiplied by / for propagation inside the crystal; the length
of the crystal is only important relative to the overall scale
of these parameters; e.g., a short, strongly diffracting crystal
will have the same effect as a long, weakly diffracting one.
The parameter y! is chosen to give a ring radius ry ~ 50w
to ensure well-developed rings while the other parameters are

FIG. 7. The intensity profile formed by conical diffraction of
a Gaussian beam in a hyperbolic metamaterial, in the focal image
plane (see text). The pattern is generated from the paraxial diffraction
integral, Eq. (15), with @/ = 10 and § = 0.
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al = 10,61 = 0. This choice allows us to show the asymmetry
of the beam on the same scale as the overall conical refraction.

Like the positive € case, the diffraction pattern consists of
two rings. In contrast to that case, however, the diffraction
pattern is not circularly symmetrical. The rings are broadened
in the y direction but remain tight in the z direction. This is in
agreement with Fig. 5, which shows the cones moving apart
in the y direction with increasing p. The diffraction pattern
is bounded approximately on the inside and the outside by
the arcs of two intersecting circles, also in agreement with the
ray diagram. In addition there is a dark ring. This is purely
an effect of diffraction and is not predicted by geometrical
optics [18]. A similar dark ring, known as the Pogendorff ring,
also appears in the conventional positive € case.

VI. DISCUSSION

As discussed in the introduction, a key feature of our results
is the existence of linear intersections in the isofrequency
surface in HMMs. These resemble the Dirac points that are
of great interest in both condensed-matter physics and optics.
It is therefore important to consider the relation between these
phenomena carefully.

The dispersion surfaces describing the propagation of light
in a biaxial material can be related to a band structure in
two ways. The most straightforward is to consider the full
dispersion relation w(k) of light, which is a surface in the
four-dimensional space of w and k, and compare it with the
corresponding dispersion relation for electrons in a periodic
lattice. In this case, the isofrequency surfaces described here
are directly equivalent to a constant energy surface like the
Fermi surface, and not directly to the dispersion relation as
usually plotted. Both are, of course, cross sections of the full
dispersion relation in the four-dimensional space of w and K,
but in different directions.

For electrons there are two spin states related by time
reversal, so that if time-reversal symmetry is present w4 (K) =
w_(—K). If there is spatial inversion symmetry then we further-
more have w_(K) = w_(—k). Hence if these two symmetries
are present there is only one, doubly degenerate, sheet to the
Fermi surface. This is a case of Kramer’s degeneracy. If one
of these symmetries is broken then the spin-up and spin-down
electrons can have different Fermi surfaces which may have
conical intersections analogous to those described here, with
the most common example being ferromagnetism [40].

For photons there are also two states, corresponding to the
two polarizations, but these are related not by time-reversal
symmetry, but by electromagnetic duality. This symmetry is
present if the electric and magnetic fields can be interchanged.
In most materials it is broken, because € # w, and this
allows full frequency gaps to open, for example in a photonic
crystal [41]. In terms of the isofrequency surfaces the (usual)
breaking of this symmetry lifts the polarization degeneracy for
most directions, leaving only the isolated point singularities
described here.

There is, however, a less immediate but stronger connection
between conical singularities and Dirac points, based on the
well-known equivalence between the Schrodinger equation
in two plus one dimensions and the paraxial Helmholtz
equation. To demonstrate this connection in the present case,
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we construct the paraxial Helmholtz equation describing
conical diffraction in a biaxial HMM. We begin by writing the
electric field as a plane wave times a slowly varying envelope
function:

E(r) = A(r)exp(ikx), (16)

where A(r) varies slowly with x. The diffracted field given by
Eq. (15) can be expressed as the two-dimensional transverse
input field evolving in the x direction as

E(r,,x)=exp (—ik/x dx’ H(p,x/)) E(r.,0), 17)
0

where for conical diffraction in a HMM we find that the
Hamiltonian is

H =ap; + Bp> + (v +8p,)s-p (18)

for x < [ and is the free Hamiltonian p?/2 for x > [. Here s =
{o3,01} is a vector of Pauli matrices in a Cartesian basis and
p is formally represented by —iV, / k. The envelope function,
thus, obeys the paraxial Helmholtz equation, which takes the
form

i 0A
HA=-——.

k 0x
Since this is equivalent to the Schrodinger equation [42], the
propagation with x of the two-dimensional transverse beam
is equivalent to the evolution with time of the wave function
for a spin-1/2 particle. The birefringence of a biaxial material
appears as a spin-orbit coupling, whose explicit form, close to
the optic axis for a HMM, can be seen in Eq. (18). This form,
with different definitions of the constants, also applies to a
conventional biaxial material, but in that case the anisotropic
terms proportional to o and & are negligible and can be
dropped [17].

Since light (of a fixed frequency) propagates in space
according to Eq. (19), with x playing the role of time, the
propagation constant k, can be interpreted as the energy.
The isofrequency surfaces can thus be seen as a dispersion
relation, giving the propagation constant as a function of the
two transverse momenta ky,k.. The point intersections in the
isofrequency surfaces then correspond to Dirac points for two-
dimensional electrons; specifically, the point intersections dis-
cussed here are the Dirac points of the Hamiltonian, Eq. (18).

Dirac points in two-dimensional materials have been of
interest for their role in topological insulators and topologically
protected edge states [43,44]. In a hexagonal lattice such
as graphene, subject to time-reversal symmetry and spatial
inversion symmetry, the electronic band structure must contain
Dirac points. These degeneracies can be lifted by breaking
spatial inversion symmetry, leading to a trivial insulator, or
by breaking time-reversal symmetry, leading to a topolog-
ical insulator [45]. Hence, work on topological effects in
photonic systems has focused on Dirac points, primarily in
the full frequency dispersion w(k) [41,46,47]. More recently,

19)
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however, attention has shifted to the analogous Dirac, or
conical, intersections in the paraxial propagation constant
surface [39,48,49]. Understanding the effects of different sym-
metries on these two dispersion surfaces could therefore help
progress toward topologically protected photonic systems.

VII. CONCLUSIONS

These results illustrate the unique singularities found in
hyperbolic metamaterials when all three indices are allowed to
vary independently. By examining the full dispersion surface
of a general, biaxial, hyperbolic metamaterial, we have identi-
fied conical singularities at which the refraction direction is not
defined. We have found the approximate dispersion surface and
the refracted Poynting vector for aray traveling close to the axis
of these singularities. We have shown that this leads to a new
form of refraction which does not appear in the usual uniaxial
HMMs and is topologically and quantitatively different from
the phenomenon of conical refraction which occurs in ordinary
biaxial materials. These propagating solutions remain when
a small imaginary component is included, leading to a small
amount of absorption, with additional mostly evanescent
singular solutions also appearing. We have also calculated
the diffraction pattern for a beam traveling through such a
material. We have found that the diffracted beam is generally
not circularly symmetric and that, similar to the positive €
case, a dark ring appears where ray optics predicts the largest
intensity.
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APPENDIX

We provide the parameters used in the diffraction theory in
terms of the dielectric constants of the material:

€& X 1 1
x= o ﬂZE(EA_1)+§€6,
: (A1)
1 e§ €5 €A
Yy =56 8="—+4+———,
2 2¢5 4 2
recalling from Eqgs. (5) and (12) that
\/(63 —€1)(e2 — €3)
€ =€, | ——mmm
€1€2
(A2)
€
EA = ;(263 — €] — 62).
€1€2
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