
LEABHARLANN CHOLAISTE NA TRIONOIDE, BAILE ATHA CLIATH TRINITY COLLEGE LIBRARY DUBLIN
OUscoil Atha Cliath The University of Dublin

Terms and Conditions of Use of Digitised Theses from Trinity College Library Dublin

Copyright statement

All material supplied by Trinity College Library is protected by copyright (under the Copyright and
Related Rights Act, 2000 as amended) and other relevant Intellectual Property Rights. By accessing
and using a Digitised Thesis from Trinity College Library you acknowledge that all Intellectual Property
Rights in any Works supplied are the sole and exclusive property of the copyright and/or other I PR
holder. Specific copyright holders may not be explicitly identified. Use of materials from other sources
within a thesis should not be construed as a claim over them.

A non-exclusive, non-transferable licence is hereby granted to those using or reproducing, in whole or in
part, the material for valid purposes, providing the copyright owners are acknowledged using the normal
conventions. Where specific permission to use material is required, this is identified and such
permission must be sought from the copyright holder or agency cited.

Liability statement

By using a Digitised Thesis, I accept that Trinity College Dublin bears no legal responsibility for the
accuracy, legality or comprehensiveness of materials contained within the thesis, and that Trinity
College Dublin accepts no liability for indirect, consequential, or incidental, damages or losses arising
from use of the thesis for whatever reason. Information located in a thesis may be subject to specific
use constraints, details of which may not be explicitly described. It is the responsibility of potential and
actual users to be aware of such constraints and to abide by them. By making use of material from a
digitised thesis, you accept these copyright and disclaimer provisions. Where it is brought to the
attention of Trinity College Library that there may be a breach of copyright or other restraint, it is the
policy to withdraw or take down access to a thesis while the issue is being resolved.

Access Agreement

By using a Digitised Thesis from Trinity College Library you are bound by the following Terms &
Conditions. Please read them carefully.

I have read and I understand the following statement: All material supplied via a Digitised Thesis from
Trinity College Library is protected by copyright and other intellectual property rights, and duplication or
sale of all or part of any of a thesis is not permitted, except that material may be duplicated by you for
your research use or for educational purposes in electronic or print form providing the copyright owners
are acknowledged using the normal conventions. You must obtain permission for any other use.
Electronic or print copies may not be offered, whether for sale or otherwise to anyone. This copy has
been supplied on the understanding that it is copyright material and that no quotation from the thesis
may be published without proper acknowledgement.

USER-ORIENTED ACCESS

TO A

MULTILINGUAL DATABASE

Ruth Clarke, B.A. (Mod)
Department of Computer Science,

Trinity College, Dublin.

March 31st, 1995.

This thesis is submitted to the University of Dublin, Trinity College, in fulfilment of the

requirements for the degree of M.Sc. (Computer Science).

I, the undersigned, declare that this work has not previously been submitted to this or

any University, and that unless otherwise stated, it is entirely my own work.

Trinity College Library may lend or copy this thesis on request.

Signed:

Date:

ACKNOWLEDGMENTS

‘Cead Mile’ thanks to my supervisor, Professor J.G. Byrne for his infinite support and

interest in the project. Among the many things I have learned under his supervision is to

‘never blame the machine’.

A special thanks to all the staff of the Computer Science Department - in particular

Rosemary Welsh and Willie O’Connor who provided unlimited technical support, and

the AI Lab for adopting me as one of their own.

Finally thanks to my family, friends and Stephane for their support and encouragement

throughout this thesis.

ABSTRACT

This thesis describes the development of a system that provides user-oriented access to a
multilingual database. The database concerned is the 1872 Printed Catalogue of Trinity
College, Dublin, which lists many rare and valuable books in over fourteen languages.
Computerization of the Printed Catalogue began in 1989 and in 1993 a search and
retrieval system was developed to search the catalogue.

The aim of this project was to improve access to this database by supporting the
information seeking strategies of the user and by providing tools to facilitate the user in
his query formulation. These tools include automatic and interactive query expansion
techniques - which alter the user’s query to better reflect his information need and the
vocabulary of the database while hiding the effects of errors created during Optical
Character Recognition; term frequency information and previous search results - which
determine important search terms and effective search strategies, and a comprehensive
help facility to aid the user during the searching process.
Subject access to the database is achieved using ‘knowledge trees’ of information which
are built up by expert users on their areas of specialisation. Fellow users can view the
subject trees and use them to automatically formulate search statements and to enhance
queries.
Multilingual access is achieved by enabling users to search the catalogue by language of
title. Language recognition of the catalogue entries was required before a search by
language could be developed. An author name translation tool is also described which
provides multilingual access to the database by automatically translating author names,
principally to and from Latin.
In addition the user interface has been redesigned to support the naive, novice and
skilled users of the system. A bibliography manager is introduced which enables these
users create personal files to which they can save any relevant material encountered
while searching the database.

The thesis concludes with an evaluation of the new 1872 Search System to determine
whether or not access to the catalogue has been improved from a user’s perspective.

The Long Room, Trinity College Dublin,

where the books listed in the 1872 Catalogue are housed.

CONTENTS

1. INTRODUCTION 1

1.1 Introduction 1

1.2 History of the 1872 Printed Catalogue 1

1.3 Background 7

1.4 User-Oriented Search System 9

1.5 Thesis Overview 12

INFORMATION RETRIEVAL 14

2.1 Introduction 14

2.2 Search Strategies in Information Retrieval 15

2.2.1 Traditional Search Strategies - The Boolean Model 16

2.2.2 Best Match Model 17

2.2.2.1 Limitations of Best-Match Model 18

22.2.2 Elimination of Best-Match Model 18

2.3 The Move from Traditional to User-Oriented Information Retrieval 19

2.4 Information Retrieval in the 1872 Library Database 20

2.4.1 The Boolean Model 20

2.4.2 The User Interface 21

2.4.2.1 The Interface Builder 22

2.4.2.2 Interface Features 23

2.4.3 Sample Searches 24

2.4.4 The User 24

2.4.5 Improving Access to the 1872 Library Database 25

QUERY EXPANSION 27

3.1 Introduction 27

3.2 Representing Query Expansions 28

3.3 Effects of OCR-Generated Text on Query Expansion 29

3.4 Hidden Query Expansion 30

3.4.1 OCR Error Types 30

3.4.2 Expanding Queries using OCR Errors 31

3.4.3 Expanding Queries to Cater for Latin Alphabet 32

3.5 Automatic Query Expansion 34

3.5.1 Expanding Author Titles 34

3.5.2 Expanding Places of Publication 37

3.5.2.1 Synonym Lists 38

3.5.2.2 Mappings 38

3.6 Interactive Query Expansion 40

3.6.1 Proximity Searching 40

3.6.2 Term Frequency Information 41

3.6.3 Previous Search Results 42

3.7 Information Retrieval Interaction 43

4. EXPERT SUBJECT ACCESS 45

4.1 Introduction 45

4.2 Expert Systems 46

4.2.1 Human Experts Versus Expert Systems 47

4.2.2 The Expert System Bottleneck 47

4.3 Knowledge Representation 49

4.3.1 Choosing a Knowledge Representation Technique 49

4.3.2 Knowledge Representation Techniques 50

4.4 The 1872 Catalogue Subject Trees 53

4.4.1 Knowledge Acquisition 53

4.4.2 Knowledge Representation 55

4.4.2.1 Implementation 56

4.4.3 Using the Knowledge trees to Search the Catalogue 58

4.4.3.1 Automatic Search Formulation 59

5. MULTILINGUAL ACCESS 61
5.1 Introduction 61

5.2 The Origin of Language 62

5.3 Language Change 63

5.31 Phonetic Changes 64

5.3.2 Morphological Changes 65

5.3.3 Lexical Changes 65

5.3.4 Semantic Changes 66

5.4 Language Families 67

5.4.1 Romance 68

5.4.2 Germanic 69

5.5 Author Names in the 1872 Catalogue 69

5.5.1 Soundex Code 70

5.5.1.1 Soundex Algorithm 71

5.5.1.2 Using the Soundex Code 71

5.5.2 Cognates 72

5.5.2.1 Author Name Cognates 72

5.5.2.2 Translation Rules 73

5.5.3 Multilingual Author Translation Tool 74

6. LANGUAGE RECOGNITION 76

6.1 Introduction 76

6.2 Language Recognition 76

6.2.1 Human Recognition 77

6.2.2 Machine Recognition Algorithms 78

6.2.2.1 Ingle’s Method 78

6.2.2.2 Cavner & Trenkle’s Method 79

6.2.2.3 Kulikowski’s Method 79

6.2.2.4 Clarke’s Method 79

6.2.3 Language Recognition in the 1872 Database 80

6.2.3.1 Function Words 80

6.2.3.2 Morphology 81

6.3 Language Recogniser 84

6.4 Language Table Size 85

6.5 Updated Language Recogniser 86

6.6 Results 89

6.6.1 Function Words Versus Suffixes 89

6.6.2 A New Weighting Scheme 91

6.6.3 Systematic Extraction of Function Words and Suffixes 93

6.7 Searching the Database By Language of Title 96

7. THE USER IMPROVED INTERFACE 98

7.1 Introduction 98

7.2 Interface Design 98

7.2.1 Design Issues 99

7.3 The New Interface for the 1872 Catalogue 100

7.3.1 Design Styles 101

7.3.1.1 Menus 102

7.3.1.2 Icons 102

7.3.2.3 Windows 103

7.4 Design Features 104

7.4.1 Information on Users 105

7.4.2 Modes of Entering Queries 105

7.4.3 Lexical Information / Database Terminology 107

7.4.4 Relations between Terms 108

7.4.5 Multilingual Processing 109

7.5 Design Features Specific to the 1872 Catalogue 110

7.5.1 Bibliography Manager 111

7.5.2 Editor 112

7.5.3 Librarian’s Notes 113

7.5.4 Help Facility 113

7.6 Interface Evaluation 115

CONCLUSIONS 116

8.1 Introduction 116

8.2 A User-Oriented System 116

8.3 Improved Access to the 1872 Catalogue 117

8.3.1 General Access 118

8.3.2 Subject Access 1 18

8.3.3 Multilingual Access 119

8.3.4 Interactive Access 119

8.4 Future Work 120

8.4.1 System Administration 120

8.4.2 Reducing OCR-Generated Misspellings 121

8.4.3 Improving Multilingual Access 121

8.4.3.1 Improving Language Recognition 122

8.4.3.2 Providing Translation on Keywords 122

8.5 User-Oriented Evaluation 123

8.6 Concluding Remarks 123

124BIBLIOGRAPHY

FIGURES

1.1 Sample 1872 Catalogue Page 6

2.1 Information Retrieval System 14

2.2 The 1872 Search System User Interface 21

2.3 Title Search Window 22

3.1 Old Author Search Window 36

3.2 New Author Search Window 36

3.3 Proximity Search Results 41

3.4 Term Frequency Count Window 42

3.5 Previous Search Results Window 43

4.1 Knowledge Acquisition 48

4.2 Example of a Frame 51

4.3 Example of a Frame Representing a Subject 52

4.4 Tree Structure of Subjects 53

4.5 Building a Subject Tree 54

4.6 Viewing the Subject Tree 55

4.7 Implementation of a Semantic Network 57

4.8 Find Subject Window 59

4.9 Automatic Search Formulation 60

5.1 Results of‘Latinizing’the Name‘Kepler’ 75

6.1 How the Size of the Language Tables

Affects the Language Recognition Results 85

6.2 Function Words Versus Suffixes 90

6.3 How Weighting of Function Words Affects Recognition 91

6.4 Search by Language of Title 97

7.1 The New 1872 Search System User Interface 101

7.2 Editor Window 104

7.3 Browsing through the French Lexicon 108

7.4 Printing a User File HI

7.5 Display Entry Window 112

7.6 Editor Window 113

7.7 Help Index for the 1872 Search System 114

TABLES

2. A Menu Option in the User Interface 23

3. A Common OCR Errors 31

3.B Results of Query Expansion using OCR Errors 32

3.C Results of Query Expansion using Latin Alphabet Substitutions 33

3.D Author Description Expansions 35

3.E Results of Query Expansion using Synonyms 38

3.F Country of Publication Expansions 39

3.G Results of Query Expansion using Country of Publication 39

5.A French Borrowed Words in English 66

5.B Extract from Katzner’s Classification of Indo-European Languages 67

5.C Soundex Code Examples 71

5. D List of Frequently Occurring Translation Rules 73

6. A Sample Function Words 80

6.B Sample Language Tables listing Function Words and Morphemes

and their Frequency Counts 83

6.C Language Recognition Results obtained for 100 page corpus 94

6. D Language Recognition Confusion Matrix 95

7. A Menu Options in the New User Interface 102

APPENDICES

APPENDIX A

List of Author Title Abbreviations used in Automatic Query Expansion 135

APPENDIX B

Extracting Translation Rules from Author Names (Snobol4 Program) 138

List of Rules Produced 141

APPENDIX C

Language Tables used in Language Recognition Program 143

APPENDIX D

Interface Evaluation Questionnaire 145

APPENDIX E

Source Code Listing - C++ 147

APPENDIX F

Source Code Listing - Snobol4 190

CHAPTER 1 - INTRODUCTION

1.1 INTRODUCTION

This chapter describes the history behind the “Catalogus Librorum impressorum qui

in Bibliotheca Collegii sacrosancte et individuae Trinitatis, reginae Elizabethae,

juxta Dublin, adservantus” hereafter referred to as the 1872 Printed Catalogue. This

catalogue lists all the books acquired by Trinity College Library before 1872 and

contains very many rare and ancient books. However access to this catalogue is limited.

There is no subject index present, and so without knowing the author, it is practically

impossible to locate a book. Indeed it has happened that librarians ordered copies of

books they already had as they could not locate them in the catalogue! To overcome

these access limitations, computerization of the catalogue began in 1989 which

eventually led to the production of the 1872 Search System. The limitations of the initial

search and retrieval mechanism led to the development of a user-oriented search and

retrieval system for the database - the goal of this thesis.

1.2 HISTORY OF THE 1872 PRINTED CATALOGUE

Shortly after the foundation of Trinity College Dublin in 1592, its’ library came into

existence and began acquiring books. Early-seventeenth-century sources provide

evidence that by 1601 the nucleus of the college library was formed. Substantial

purchases were made during the early years of the seventeenth century when two of the

Fellows - James Ussher and Luke Challoner, went on book buying expeditions to

1

London, Oxford and Cambridge but these expeditions were followed by a period of

slow growth in the library for the next half century. In 1656 Usher died and his personal

collection consisting of some 10,000 books became the first of the library’s great

benefactions. This acquisition along with donations of book collections notably from

William Palliser (archbishop of Cashel) in 1796, Dr. Claudius Gilbert (vice-provost of

Trinity College) in 1735 who donated 13,000 volumes and Dr. John Stearne (vice-

chancellor and bishop of Clogher) in 1745, marked major developments in the growth of

the library.

In 1802 the size of the library was increased by nearly 50% with the purchase of the

private collection of Hendrick Fagel who had been Chief Minister of the Netherlands at

the time of Napoleon’s invasion. This collection is a significant acquisition as it

contains mainly continental works which had been poorly represented in the library up

until then. The library became a copyright library in 1801 which entitled it to claim a

copy of every book published in the British Isles. Since then the size of the library has

grown annually. By the end of the nineteenth century, the library’s collection had risen

to one quarter of a million volumes. Today, the total collection numbers three million

volumes and the annual intake of books and periodicals require one mile of additional

shelving every year.

The initiation of the Printed Catalogue in the 1830’s, came at a time of reform within

the college, mirroring the reforms in society at large (Catholic Emancipation 1829,

Reform Bill 1831). The catalogue is referred to as the 1872 Printed Catalogue because it

lists all the books acquired by the college before 1872 - the cutoff date chosen for

publication.

Bartholomew Lloyd, who was appointed provost of the college in 1831, scrutinized

every aspect of college life and reorganized what he found wanting. Hence the

cataloguing of the library was undertaken, a task that might not have been tackled in a

more conservative period. The then part-time librarian - James Henthorn Todd

embarked on this project and in 1849 the printing of the first of eight volumes was

undertaken. He based the model of the 1872 Printed Catalogue on the Bodleian

2

Catalogue of 1843 so as may be found in the Bodleian Catalogue, latinized forms of

names predominate. Also, the order of the catalogue was based on the Latin alphabet

which results in the letters I/J and U/V being interfiled. Thus ‘JACKSON’ comes before

‘IRELAND’, ‘NEWTON John’ before ‘NEWTON Isaac’ and ‘VOLTAIRE’ before

‘USSERUS’. Needless to say, this can be very confusing for the modern user and

considerable experience is required to use the catalogue effectively.

Discussions were going on in cataloging circles at the time as to whether a catalogue

should be a finding-list or a complete bibliographic database. When the Public

University Commission described Todd’s catalogue as the latter, he responded angrily

by saying:

“The present catalogue aims only at giving the titles of all books
under their authors...no attempt at a ‘complete description’ or a ‘perfect
arrangement’ has been made. ”

For this reason anything other than finding a book in the catalogue is a difficult task.

There is no real subject index and so without knowing the author of a book, locating its

whereabouts becomes impossible. Even though some headings such as ‘IRELAND’

(230 entries), ‘PARLIAMENT’ (1107 entries) and ‘BIBLIA’ (825 entries) are present in

the catalogue, the number of entries listed under these headings suggest that the

headings are too general and a time-consuming process of sifting through them would

be required before any relevant material is located.

Todd had to reorganize the process of cataloguing in 1835 as up until then, the

cataloging had been carried out by scholars of the college who left as soon as their

scholarship expired and hence caused great inconsistencies in the compilation of the

catalogue. The catalogue slips were checked and filed in alphabetical order by Todd

himself. In 1846 he claimed that the whole library had been catalogued.

In 1848 printing got under way but progress was extremely slow. It took five years to

complete the printing of the A pages and over a decade for the B pages. This was due to

the fact that each of the catalogue slips had to be revised before printing and the lack of

assistance slowed down the process considerably. Other reasons for the delay included

3

financial difficulties and the appalling condition of the library roof which was in danger

of collapse. During 1859 and 1860 the roof was replaced and the Long Room, which

stored all the books, remodeled. In 1869 Todd died and no attempt to regalvanise the

project was taken until 1872 when Henry Dix Hutton was appointed editor of the

catalogue with J.H.Hessels as his assistant. These men had a stormy working

relationship however which further slowed the printing process. Hutton complained to

the Library Committee in 1873 that:

“A considerable portion of the slips were abridged imperfectly.... he
[Hessels] omitted to mark all the slips which he verified by reference to the
books, although he had agreed to do so...”

Hessels was more frank in his criticism of Hutton:

“Slips are in no condition to be printed at all... I regard [this] as the
incompetency of the so-called editor who seems to be only troubled by commas
and dots.... all the defects of the catalogue cannot be charged to Hutton but I
wish he had some knowledge of old books, literature, which constitute the chief
part of the catalogue..”

In 1878 Hessels was dismissed and T.V.Keenan was employed in his stead. Keenan was

much more amenable to the editor’s policy but this unfortunately did not change the rate

of printing and the project staggered on slowly to completion in 1887, by which time it

had taken fifty years to complete.

This brief history of the 1872 Printed Catalogue serves to illustrate that with so many

different employees, various disputes between cataloguers and poor conditions in the

library - the process of cataloguing was bound to incorporate an enormous amount of

inconsistencies. These inconsistencies reduced users’ access to the books contained in

the catalogue and provided obstacles in the computerization process.

4

User’s access was further restricted as there are over 14 languages contained in the

catalogue - some modern European languages (English, French, Italian, French,

German, Dutch, Portuguese, Irish, Danish, Norwegian, Swedish) and other languages

with non roman alphabets (Russian, Arabic, Hebrew and Syriac). Figure 1.1 shows one

of the 1872 Catalogue pages with a number of the above languages appearing in the

entries.

5

CLA (29') CLA
CLARUS (Idacius), episc. Hispanus.—Liber adversus

Varimadum [tom. rv. p. 620 Magn. bibl. vett.
patrum per M. de la Bigne]. bb. cc. 2.

— et [tom. v. p. 726 Max. bibl. vett. patrum per
eundem]. D. b. 8.

— et [p. 250 Haereseolog. Jo. Heroldi]. C. ee. 16.

CLARUS (Julius), J. C.—De testamentis [tom. viii.
part. I. f. SoTractt. univ. Juris]. I. a. to.

CLARY, ou CLARI (Francois de).—Remontrance
faite au grand consetl du roi, sur le retablissement
requis par les officiers qui ont suivi la ligue
[tom. IV. p. 633 M6moires de la ligue, par S.
Goui-ARX]. Fag. R. 8. 42.

CLASEN (Daniel).—De religione politica liber unus
secundum editus, accessis certis paragraphis.
Scrrestit, 1681. 8°. Fag. p. 9. 56.

— Theologia gentilis, seu demonstratio, qua probatur
gentilium theologiam (ceu tenebras) Deos, sacri-
ficia et alia ex fonte Scriptura (ceu luce) originem
traxisse, 3 partt. [tom. VII. p. 1 Thes. Grtec. antiqq.
Jac. Gronovii]. n. b. 7.

— Lettre sur Daniel Clasen, par le marquis du Roure
[p. 221, 6* sir.. Bulletin du BIBLIOPHILE, par J.
Techener]. Gall. 5. d. 10.

CLASENIUS (Nathanael).—Theses theologies de
statu animat separatae a corpore post mortem.
Lvgd. Bat. 1600. 43. bb. hh. t8. N°. 74.

CLASON (Patrick), D. D.—Two sermons, preached
in the Free high church, Edinburgh, after the
funeral of Robert Gordon, D. D. By P. Clason
and W. Cunningham, D. D.
Edinb. 1853. 8°- Gall. NN. 11. 22. N°. 15.

CLASSENUS (Joannes). — Dexippi, Eunapii, &c.,
historiarum qua; supersunt, cum vers. Lat. Jo.
Classeni.— Vid. excerpta de LEGATIONIBUS.

R. ss. 36.
— Theophanis chronographia, Gr. Lat. ex recens.

Jo. Classeni. R. ss. 34, 35-
CLASSES (provident).—Exposition of the conspiracy

against the . . . provident classes by poor life
oifices, banks, icc.
[Land. s. a.'] 8°. Gall. p. 1.41.

CLASSICS.—The classical collector's vade mecum:
an introduction to the knowledge of the best edi
tions of the Greek 5c Roman classics.
Land. 1822. it0. G. nn. 72.

— “ Classical" instruction : its use and abuse. Repr.
from the Westminster review, for Oct., 1853.
Land. 1854. a”. [Chapman's libr. for the people].

Gall. N. 4. 12. N'A 6.
— Bibliografia od elenco ragionato deile opere

contenute nella collezione de' ciassici Italian).
CC. q. 19.

CLATER (Francis).—Every man his own farrier.
Land. 1810. 8J. aisled. N. o. 68.

— by him and his son John Clater.
Loud. 1849- 123. 20th ed. Gall. B. 8. 72.

— 31st ed.. by E. May hew.
Land. 1861. 123. Gall. L. 19. 88.

— Every man his own cattle doctor.
Lend. 1832. 8°. 7th ed. pp. o. 66.
Land. 1848. 123. 10th ed. Gall. B. 3. 65.

— entirely re-written to the present date by G.
Armatage.
Land. 1870. 8°. Gall. P. 3. 26.

— Reponse aux deux traitez inL La perpetvit6 de la
foy de 1'eglise catholique touchant I'eucharistie.
Parts, 1668. 4“. 7me 6d. c. e. 43.

— R6ponse au livre de [Ant.] Arnaud, int. La per
petuity de la foy de Teglise catholique touchant
I’eucharistie defendue [anan.j
RmUn, 1671. 8°. 2 tom. LL. 00. 8, 9.
Paris, 1671. 8°. 2 tom. [tom. 1. car. ri/.] G. f. 30,31.

— in English, by J. R. R., ent. “ The catholick doc
trine of the eucharist in all ages : in answer to
what M. Amaud, doctor of the Sorbon, allcdges
touching the belief of the Greek, Moscovite, Arme-

• nian, Jacobite, Nestorian, Coptic, Maronite and
other eastern churches.” [With] an account of the
book of the body and blood of our Lord. Published
under the name of Bertram.
Land. 1684. fol. RK. ce. 20.

— La parabole des noces, expliquee en cinq sermons
sur le chap. 22, de S. Matthieu jusqu’ au verset
i4me.
Charenton, 1676. 8°. Fug. Y. 8. 50.

— Explication de la section 53 du catechisme.
Charenton, 1682. 8°. Gall. C. 11. 19. N°. 1.

— Defence de la reformation, contre le livre int.
“ Prejuges legitimes contre les calvinistes."
Lcevzoarde, 1743. 8°. 2 tom. nouv ed.

w. p. So, 81.
— transl. into English by T. B.

Land. 1683. 43. LL. 1. 14. LI- 1. 49.
— Answer to monsieur de Meaux’s book, int. A con

ference with M. Claude. With his letter to a friend :
wherein he answers a discourse of M. de Condom,
now bishop of Meaux, concerning the church.
Land. 1687. 4“. GG. i. 6. N”. 1.

LL. k. 33. N°. 12. LL. m. 2. N°. 2.
— Second part of his answer to M. de Meaux's book,

int. A conference with M. Claude, &c., cont. an
examination of M. de Meaux's Thirteen reflections
on a writing of M. Claude's.
Land. 1688. 4’. GG. i. 6. N3. 2. LL. m. 2. M3. 3.

— L’examen de soy-mesme pour bien se preparer a
la communion. Demiere ed., augmentee d'un
discours touchant le veritable sens de ces paroles
de Jesus Christ, cecy est mon corps rompu pour
vous. Avec deux sermons, et les pseaumes des
jours de Cene.
La Haye, 1693. 24’. Fag. D. u. 63.

— Les plaintes des protestans cruellcment opprimez
dans le royaume de France [avec une preface par
M. Renew] [amm.]
Londres, 1707. 123. Gall. N. 20.3.

— nouv. ed., augmentee d'une preface [par Basnagej.
Cologne, 1713. S'3. Fag. x. 0. 47.

— Account of the persecutions and oppressions of the
protestanu in France [anon.]
Dual. 1686. 43. LL. o. 12. N*. 4.

RR. pp. 10. N3. 11.
[A great part of the original of Claude is omitted

in this translation].
— His life and death [by Abel Rodolph de la Devise].

Done out of French by G. P.
Land. 1688. 4’. P. gg. 26. N3. 7. LL. m. 2. N\ 4.

CLAUDERUS (Gabriei).—Methodus balsamandi cor
pora humana, aliaque majora sine evisceratione et
sectione hucusque solita.
Lena [1679]. 4'. 00.I.3.

CLAUDIANUS (SA martyr Hieropolitanus.—De
SS. Severe . . . Claudiano, &c. [tom. x. Oct. p. 635
Actt. SS. Bollandi 1. 11. aa. 27.

CLAVASIO (Angelas de).— Vid. Ang. Carletus.

CLAUBERGIUS ijohannesi.—De cognitione Dei et
nostri. exercitationes centum.
Hariinga:, 1085. V. ed. noviss. E. m. 13.

CLAUBRY Gaultier de'. — Vid. CrAULTIER-de- j
Claubry.

CLAUDE 'Jeani.—Oeuvres posthumes.
.imst. 1038-0. 3’. 5 tom. LL. 00. 10-14. i

Fag. z. 9. 1-5. 1

CLAUDIANUS (Andreas).—Mavors Irlandicus sive
historia de bello Hibernico biennium in Hibernia
gesto: chartis consignata. P4A4.5 7-- 1. S’S
Uatnuc, 1718. S°. P-ess 4, t;

CLAUDIANUS (Claudiust. — In Rurfinum lib. ;t.
De bello Gildonico lib. I. Epithalamium in nuntiis
Hononi et Manse. Panegynci vu. In Eutrnnium
lib. II. De hello Getico lib. I. Kpigramm.ua
qumdam. De raptu Proserpime lib. III.
Elorentice 'hteredes Phil. Juntmu isto. 3’.

IT. .1. 10.

Figure 1.1: Sample 1872 Catalogue Page

6

1.3 BACKGROUND

In 1989 it was decided to convert the catalogue into machine readable form - not only to

preserve the catalogue and the information contained therein but also to provide access

to some of Europe’s rarest books using keyword searches on all fields of the records.

• The first phase of the project consisted of converting the scanned catalogue pages

into their ASCII equivalent. The fact that the pages of the catalogue were printed in

a reasonably structured format with a restricted number of fonts prompted the use of

Optical Character Recognition (OCR). OCR uses a variety of algorithms to

recognise the characters contained in an image file and to convert them into their

ASCII equivalents. Glynn Anderson [Anderson '92] wrote the OCR software used in

this project which was written in C and used template matching to recognise the

characters. Some of the catalogue pages were scanned and the OCR software was

developed and tested using these pages as samples. The algorithm used had a

success rate of 95.9% and was written specifically for the catalogue, using features

like the dash occurring in front of each of the titles to separate the entries {Figure

1.1}.

When this software became usable - another student, Brendan Culligan wrote both

scanning and compression software for the catalogue pages. The 5155 catalogue

pages were then scanned using a Microtek scanner and the new scanning software.

The scanned images were 1000K in size but were reduced by 90% with the

compression code which employed arithmetic coding. Once all the pages were

scanned and compressed, he used the OCR software to convert the image pages to

ASCII pages, modifying the OCR software where necessary in the light of the

experience gained in using it.

However the 95.9% recognition rate claimed by the OCR software meant that 4.1%

of the characters were misrecognised causing spelling errors in approximately 20%

of the words (since the average word contains around 5 letters). These errors were

7

not only due to the fact that the OCR software was not perfect but due also to the

age of the catalogue and the printing techniques used in the nineteenth century.

Whatever the cause, in order to access the information in the catalogue, an attempt

was made to correct as many of the errors as possible.

• The second phase of the project began with the correction of errors produced by the

OCR software. A corpus of 50 ASCII catalogue pages was examined manually and

it was observed that a small percentage of the errors were context free. For example

the number ‘10’ was often interpreted to be ‘1 o’ by the OCR software and hence

could be corrected throughout, without the interaction of a user.

Software written in the Spitbol version of Snobol4 [Griswold '71] to automatically

correct these context free errors was run on all the pages. The remaining errors were

context sensitive however and could only be corrected interactively. An example of

such an error is where the letters ‘fl’ were often, but not always recognised as ‘n’ - to

produce, for example, the word ‘renections’ instead of ‘reflections’. Since the

recognition was not consistent an interactive spelling corrector was written (again in

Snobol4) to detect misspellings in English text resulting from misrecognised

characters, and to produce candidate corrections for these misspelled words. This

program was to be run on the titles of all the entries of the catalogue so each of the

entries in the catalogue were first broken down into a number of fields - author, title,

place of publication and date - again using software written in Snobol4.

With a view to applying this spelling corrector program to text in all of the

languages of the catalogue, it was necessary to recognise the language of each entry

so that an appropriate dictionary could be applied in the interactive spelling

correction process. This prompted the development of a language recogniser

program which used function words and character patterns to deduce the language of

each entry. The language recogniser would enable the development of dictionaries in

the various languages from the catalogue itself. These dictionaries would be more

appropriate in the spelling correction process as the terms contained in them would

vary enormously from those contained in modern electronic dictionaries.

8

• The final phase of the computerization project lay in making the information in the

catalogue available to the modern user of the library. A free-text search and retrieval

system was developed in the C++ programming language which allows the user to

search on words and word stems contained in the various fields of each entry

[Culligan '93]. A fast response time was obtained by constructing an inverted file

which contains a four-letter key and information about all of the entries that contain

that key. Hash coding is used to look up this file. The first four letters of the word to

be searched for, provides the hash key for the inverted file. By using only the first

four letters of a word for the hash key and storing the complete word in the hash

location, searching both for exact matches and stem matches is possible. The ideas

used for the representation of text were based on those developed by Professor

F.J.Smith and his students in Queen’s University, Belfast [Smith & Devine '$3]. The

searching system allows searching on the author, title, place of publication and date

field and a comprehensive Boolean search is also available which allows searches on

a combination of the above fields.

1.4 USER-ORIENTED SEARCH SYSTEM

Today, fifty years of manual cataloguing is available at the touch of a button. However

the access to the historic works contained in the catalogue remains basic. A user enters a

keyword in a certain field - if there are entries with that word contained in the catalogue

then those titles are listed - if not, the search fails. The aim of this thesis is to develop

the search system currently available to provide user-oriented access to the library

database by guiding the user in his query formulation and encouraging him to try various

queries in order to retrieve as much information as possible. It is hoped to overcome the

following restrictions currently existing in the search and retrieval system.

9

• The entries appear in over fourteen languages and hence the loss of information

incurred in a query to the database where the user assumes the use of only one

language is vast. For example if the user wants to find all the books on

‘mathematics’ and he enters this keyword as a query then all the titles of books

containing the words ‘mathematique’, ‘Mathematik’, ‘mathematica’ etc. will be

ignored. He can overcome this restriction by using a wild card search e.g. ‘mathem*’

which will retrieve most of the titles containing the above keywords. However not

all words in the different languages show such similarities. If for example the user

wishes to find all the books on ‘houses’ the difficulty of the language situation is

heightened. English ‘House’, French ‘Maison’, Italian ‘Casa’, German ‘Haus’ are

very different in their structures. By providing some means of accessing keywords in

the various languages, titles of books in languages other then the native language of

the user could be retrieved.

• Due to the hash coding scheme used in the search and retrieval software, words less

than four characters in length may not be used in queries. This eliminates the use of

important three letter words in searching e.g. ‘war’ and also eliminates the use of

abbreviations. Unfortunately abbreviations in the catalogue are common and occur

most notably in the initials following an author’s name. To improve the system,

there should be a provision to access this information so that statistical analysis on

authors of the catalogue could be carried out. The following are some examples of

abbreviations found in the catalogue:

CAPANUS, (Andreas), U.J.D.

SWIFT, (Jonathan), D.D., dean of St. Patrick’s, Dublin.

CONRIUS seu CONRY (Florentius), O.S.F., archiep. Tuamensis.

• Errors remaining in the catalogue text files, produced by the OCR software should

be hidden from the user. A list of the most common OCR errors was produced in the

second phase of the computerization of the catalogue, e.g. ’rt’ is often recognised as

‘tt’. This list could be used to automatically map the keyword entered by the user to

its possible misrepresentations in the text files. Should the user enter the word ‘part’

10

then this would be mapped to ‘patt’ before the search is implemented so that the

titles containing that word would also be listed in the search results.

• A user-oriented system could perhaps provide an option for bibliography building.

In this way each user could create one or more personal files, add the titles he comes

across during the search process that interest him, and print this file on completion

of his search. The advantage of such a facility would be the reduction of idle time

each user spends in front of the search system taking down references to the books

that interest him.

• To guide the user in the process of forming his queries, dictionaries and perhaps

thesauri could be made available for browsing. Then certain terms could be selected

from these dictionaries and added to the user’s initial query to vary his search and

hence his results.

• Since the catalogue is domain independent, the knowledge contained in it covers a

diverse range of subjects. The average user might be competent in a number of

subjects but perhaps expert in only one. If he could create a knowledge-based system

containing relevant terms and information on his particular subject area, then a

novice user could avail of the knowledge built by the expert in the formulation of his

query. A user that is perhaps interested in ‘astrology’ but knows little or nothing

about the subject area, could refer to the knowledge base on that subject for help

regarding terms to use in his query.

The goal of this project is to improve user’s access to the 1872 Catalogue. This will be

achieved by improving the formulation of queries as described above so as to enhance

the information retrieval obtained by the user without much extra effort on his part.

Since the majority of the above facilities are interactive - the user can choose for himself

whether he needs help in his query formulation or whether he can adequately express his

search request. Multilingual access to the library database is another goal of this project.

There are two aspects of multilingual access relevant to this database - multilingual

interfaces where the user can choose the interface corresponding to his native language

and then input a query in that language and multilingual searches where a monolingual

11

user can gain access to titles pertaining to his language only. The latter facility is the

only technique currently provided for this database and it requires the languages of each

entry to be recognised.

1.5 THESIS OVERVIEW

Chapter 2 discusses the research area of Information Retrieval (IR) in relation to the

1872 Catalogue. The basic elements of an IR system are presented including the most

common search strategies currently in use. The shift from traditional Information

Retrieval to user-oriented Information Retrieval is then described. The chapter

concludes with a description of the IR system developed for the 1872 Catalogue and

outlines the aspects of this system that need to be altered in the development of a user-

oriented IR system.

Chapter 3 introduces the concept of query expansion as a method of improving

Information Retrieval. Query expansion is the process by which the user’s query is

altered to better reflect his information need and the vocabulary of the database. The

various query expansion techniques developed specifically for the 1872 search system

are presented.

Exposing users to new concepts and subjects will improve their ability to apply

knowledge. Chapter 4 explores this idea by enabling users to build their own trees of

domain knowledge. Once a subject tree has been built, it may be consulted by users at

any stage during the search process. The knowledge contained in the subject trees may

be used to create new search statements or improve previous search statements. In this

way, users can create complex searches in subject areas they are unfamiliar with,

thereby improving their retrieval of information.

In the development of a more user-oriented IR system, the native language of the user

has not been overlooked. Chapter 5 provides a brief history of language change with

12

specific attention to the language families present in the database, namely the Romance

and Germanic language families. A multilingual aid, which employs knowledge about

language change, is described. This tool was developed to help the user of any language,

search for authors in the 1872 library database.

Another technique of gaining multilingual access to the library database is described in

chapter 6. A language recognition algorithm is presented which uses function words and

affixes to determine the language of an entry in the database. This algorithm has been

run on the entire catalogue and has enabled the development of a language search. It is

now possible for the user to search for a book on the language of it’s entry.

Chapter 7 highlights the importance of a good user-interface in an IR system. Interface

design issues and design styles are discussed, and the design of the interface for the

user-oriented 1872 search system is described.

Chapter 8 concludes the thesis with an evaluation of the improved user-oriented system.

Future work suggestions are presented for the further improvement and development of

the 1872 Search System.

13

CHAPTER 2 - INFORMATION RETRIEVAL

2.1 INTRODUCTION

Most people are faced with a need for information at some stage or another, and more

often than not this need is translated into a formal search perhaps in a library or

information centre. To facilitate the task of the user in finding items of interest, libraries

and information centres provide a variety of aids. One such aid is an Information

Retrieval system. Information retrieval systems are concerned with the representation,

storage and retrieval of information [Salton '83]. In principle, the concept of

information storage and retrieval is simple.

There exists stores of documents and a person (user) formulates a question (query) to

which the answer is a set of documents satisfying the information need expressed by his

question. Figure 2.1 outlines the main processes carried out in Information Retrieval.

PROCESSOR

FEEDBACK

DOCUMENT

Figure 2.1: Information Retrieval System

14

Input: A representation for the documents and the queries is obtained by a

process known as indexing. Indexing assigns terms (index terms) to documents and

queries to describe their content.

Processor: Concerned with the retrieval of information. By examining a search

expression in response to a query, it determines which information items should be

retrieved and identifies information items that are potentially relevant to the request.

Output: Set of references or documents retrieved by the processor.

Feedback: Not all of the documents retrieved by the processor will be relevant to the

user. Hence the Information Retrieval system often provides a mechanism to allow a

user to redefine his initial query upon inspecting its sample retrieval for relevant

documents in the hope of improving the subsequent retrieval run.

Much of the research and development in Information Retrieval is aimed at improving

the effectiveness and efficiency of retrieval. Efficiency is usually measured in terms of

computer resources while effectiveness is measured in terms of the number of relevant

documents retrieved.

2.2 SEARCH STRATEGIES IN INFORMATION RETRIEVAL

All search strategies used in Information Retrieval systems are based on comparison

between the information items and the queries. The distinctions between these search

strategies can sometimes be found by looking at the query language, that is the language

in which the information need is expressed [van Rijsbergen '75]. For example, a query

language which allows search statements to be expressed in terms of logical

combinations of keywords dictates a Boolean search.

15

2.2.1 TRADITIONAL SEARCH STRATEGIES - THE BOOLEAN MODEL

For some two decades the Boolean search model has been employed in bibliographic

databases as a conventional Information Retrieval model. The Boolean model is

designed to retrieve all documents exhibiting the precise combination of keywords

included in the query. When two keywords are related by an AND connective, both

terms must be present in order to retrieve a particular record; when an OR connective is

used, at least one of the query terms must be present to retrieve a particular item [Salton,

Fox, Wu '93], These AND and OR operators are implemented by using set intersection

and set union respectively. An example follows.

Suppose a user wants to find a book in a library database on archaeology or history by a

particular author, this query could be expressed using the Boolean model as follows:

author = Jones and (title = history or title = archaeology)

The order in which the Boolean operators are carried out is vital in the interpretation of

the query by the system, and parentheses are usually provided to impose the standard

precedence order of Boolean operators. The Boolean model is a powerful one.

• It is possible to specify phrase like constructs in an explicit manner using the AND

operator. ‘‘Wind & Instruments”

• It is possible to specify synonyms explicitly using the OR operator.

“Implements or Tools”

• A trained searcher can specify a query in very precise detail using these logical

operators.

However this model is not without fault.

• It is difficult to formulate any but the simplest of queries using Boolean operators

without a fair degree of training.

16

• Boolean retrieval results in a simple partition of the database - those documents that

match the query and those that do not. All of the retrieved records are assumed to be

of equal importance to the user. There is no way of ranking the output in order of

decreasing probability of relevance.

Although Boolean searching has provided an effective way of accessing machine-

readable textual data for many years, its’ limitations mean that non-specialists may find

great difficulty in carrying out effective searches. Hence much research in Information

Retrieval is concerned with overcoming these limitations and tailoring search strategies

to the non-specialist [Willet, Ingwersen '94]. These new search strategies may be called

best-match search strategies.

2.2.2 BEST-MATCH MODEL

The best-match model functions by comparing a set of query terms with the sets of

terms corresponding to each of the documents in the database, calculating a measure of

similarity between the query and each document based on the terms they have in

common and then sorting the documents into order of decreasing similarity with the

query. The measure of similarity is calculated using:

1. Term Weighting Scheme which allocates numerical values to each of the index

terms in a query or document that reflects relevant importance.

2. Similarity Coefficient which uses these weights to calculate the overall degree of

similarity between a document and a query.

The output of the search is a ranked list and those documents appearing at the beginning

of the list are the documents the system deems most relevant.

17

2.2.2.1 Limitations of Best-Match Model

This best-match model, like its Boolean counterpart, has some limitations. It is

impossible to specify phrases explicitly using AND and synonyms using OR. More

importantly, the query needs to contain several terms if the matching algorithm is to be

able to provide a discriminating ranking of the database.

If the query contains only a few terms, the best-match search algorithm will divide the

database into only a small number of groups. For a query that contains two terms - there

will be just three groups identified by the system - documents that match with one query

term, documents that match with both query terms and documents that match with no

query term. The small number of groups identified means that the best-match search

algorithms will not be able to provide a finely honed ranking for the user’s inspection.

2.2.2.2 Elimination of Best-Match Model

Best-match search strategies are not feasible for use with the 1872 Search System for the

following reasons:

1. A best-match search strategy takes a set of index terms comprising the query and

compares them in turn with the sets of index terms that characterise each of the

documents in the database. This requires descriptions of each of the documents to be

constructed by choosing sets of index terms that reflect the document’s content. This

process of characterising documents is impractical with large databases - such as the

1872 database which contains approximately 207,000 book titles. In addition the

multitude of domains and the variety of languages present would make the task of

characterising the titles highly specialised.

2. As outlined in the limitations of best-match search strategies, the query needs to

contain a few terms if effective ranking of documents is to be made. Likewise the

terms that characterise each document need to be substantial for a matching

algorithm to be employed. In the 1872 database however, the users are searching for

book titles and hence tend to use few terms in their search statements. In addition the

average length of a title is thirteen words with some titles containing only one word -

18

examples of which are “Poems. ” and “Sermons. This means that ranking of the

titles in order of relevance would be ineffective.

For the reasons cited above, the best-match model was deemed to be inappropriate for

use with the 1872 database and so the traditional Boolean model was applied instead. In

the development of the 1872 Search System, an attempt was made however to reduce

the limitations of the Boolean search model by making it easy for the user to formulate

Boolean queries.

2.3 THE MOVE FROM TRADITIONAL TO USER-ORIENTED

INFORMATION RETRIEVAL

In 1983 Belkin states that IR research in general “appears to be moving from ad-hoc,

technical, mechanism and document oriented views of problems to principled,

integrated, interactive and human views of problems” [Belkin ‘SJ], This move to a more

user-oriented and cognitive form of IR was noted four years later by Saracevic, chief-

editor of one of the core IR research journals - Information Processing & Management.

For him, this new approach to IR “incorporates and merges into one context the research

approaches in IR within information science, on the one hand, with the research

approaches on expert systems within artificial intelligence on the other.” [Saracevic

'87].

Traditional IR stresses the importance of the capability for calculation of the various

techniques described above and the means to represent information in a controlled,

scientific manner. The aim of traditional / classic IR then is the maximisation of

retrieval performance by means of refinements of IR techniques within IR systems.

User-oriented IR differs from traditional IR in its aim and focus. User-oriented IR

focuses on user interaction with the IR system, and knowledge of user’s information

seeking behaviour. Its aim is maximisation via understanding of user behaviour and

information need during retrieval.

19

In recent years the traditional and the user-oriented IR models are being merged into

more complex and interactive solutions. The introduction of user-oriented IR brings

with it knowledge about the user and user interaction which leads to the development of

a more supportive user interface designed with users rather then the system in mind.

This thesis describes the development of such a user-oriented system which improves

users’ retrieval of information by providing support and interactive tools to aid in the

formulation of search statements. Query expansion techniques, improved subject access

and multilingual access are just some of the features that were added to the existing

1872 Search System in an attempt to create a user-oriented environment for the users of

the 1872 catalogue. To introduce the user-oriented system, an examination of the

existing search system is required.

2.4 INFORMATION RETRIEVAL IN THE 1872 LIBRARY

DATABASE

2.4.1 THE BOOLEAN MODEL

The 1872 Library Database makes use of the familiar Boolean Model and inherits its’

strengths and weaknesses. These strengths allow the librarians of Trinity College

Dublin, whose knowledge regarding the contents of the catalogue is substantial, to

formulate complex queries across a number of fields - author, title, series, date and place

of publication. The weaknesses make it difficult for users to formulate complex queries

without considerable experience with the system. The interface designed for the 1872

Catalogue aimed at hiding some of the Boolean Model weaknesses, thereby providing

easy access to the database.

20

2.4.2 THE USER INTERFACE

The interface developed to access the 1872 Catalogue was written in 1993 by Brendan

Cuiligan using a powerful interface builder called GPF [Culligan '93]. The interface is

shown in Figure 2.2.

Fite Search Display Help
Q:

Search Results Matching Entries: 69

His Olynthiac, and other public oration S; transl. with notes, &c., by C. R. Kennedy.
Philippics and Olynthiacs, with the orations on the peace and the Chersonesus; transl.
On the crown and on the embassy; transl., with notes, &c., by Ch. R. Kennedy. Lon
The orations of Demosthenes and Aristides against the taw of Leptines,. Gr., with Engl.
His oration against the law of Leptines, with Engl, notes, and a transl. of Wolf's proleg
His orations against the law of Leptines, Midias, Androtion, and Aristocrates; transl., wit
His orations against Timocrates, Aristogiton,&c.; transl., with notes and appendices, by
His orations against Macattatus, Leochares, &c., exordia, the epistles. Lond. 18f
Cinque orationi di Demosthene et una di Eschine tradotte di lingua Greca in Italiana.

AuthorName: Demosthenes

-- uaji. i. iu. iu. <
— The orations of Demosthenes and Aristides against J

the law of Leptines, • Gr., with Engl, notes, and a ;
transl. of Wolf’s prolegomena.
Cantbr. 1840. 120. tT. k. 34. N°. 1.

1872 Online Catalogue
Trinity College Dublin

sge; c„.d\D611 Entry:

Figure 2.2: The 1872 Search System User Interface

The menu at the top of the screen provides the user with the main search options. The

user may search by author, title, series or using a combination of these fields. The

Boolean Model of query formulation is hidden from the user except in the case of the

combination search where the user may specify any number of fields to be searched. By

selecting a search on author, title or series - a window appears displaying the appropriate

entry field and the user’s query is taken to apply to that field only. In the title search

window in Figure 2.3, the user has entered two query terms, ‘French’ and ‘Revolution’.

The system then evaluates this into a Boolean query as follows:

title = ‘French ’ and title = ‘Revolution ’

21

5£

Title word(s) FRENCH REVOLUTION

e.g. 'Egypt History1 searches for entries containing both
words in the title, 'theo*1 searches for all titles containing
words beginning with 'theo'.

Clear Cancel

Figure 2.3: Title Search Window

In this way the user can simply specify which field he wishes to search under and if his

query consists of two keywords an implicit AND is assumed. Wild card searches are

also available. In the example given in the title search window in Figure 2.3, we see that

‘theo*’ searches for all words beginning with ‘theo’ e.g. ‘theology’, ‘theory etc..

2.4.2.1 Interface Builder

GPF (Gui Programming Facility) is a commercial package written by Bernard Clerin to

simplify the design of Graphical User Interfaces [Clerin '91]. With this facility, the

programmer can design an interface in a manner similar to a paint package. The

programmer can add any number of windows and controls' to the parent window, there

being no practical limit to the number of windows and controls that can be added.

Actions may be associated with each of the controls so that they perform some task. To

take an example, an action may be associated with a push-button and consequently if

that push-button is clicked, a function, say ‘print’ (defined in a separate file) is called

automatically. An application can be created easily in this fashion and since the interface

definition is reentrant, the new GUI can be modified and improved as often as the

programmer wishes.

1 A control is a screen object that appears and behaves in a predetermined manner e.g. push-button

22

2.4.2.2 Interface Features

In the design of this interface, Brendan Culligan used common interface features such as

menus, icons and windows. A menu is a simple selection system and is used in this

interface to present the various options to the user. The menu is the first part of the

interface the user interacts with. The following are the menu options provided with the

interface:

FILE SEARCH DISPLAY HELP
Exit by Author

by Title
by Series
Combination
GotoPage

Entry Text Index
General
Using Help
Keys
Product Information

Table 2.A: Menu Options in the User Interface

Windows have also been used in the design of the interface. The window on the top of

the interface displays the search results i.e. the first line of all the entries that match the

user’s query {Figure 2.2}. By clicking on one of the rows in the search results window,

the corresponding image of that entry is displayed in the bitmap window - the window at

the bottom of the screen. Displaying the actual image of an entry is extremely useful.

The image of an entry is perfect - there are no OCR-generated spelling errors unlike in

the ASCII version. The entire entry including place of publication and shelf mark is

shown and librarian’s notes written on the catalogue pages themselves may be viewed.

The bitmap window provides the user with complete information with regard to a book

title.

Icons are also present in this interface. Icons are easy to use as the pictures usually

reflect the action they carry out. For example by clicking on the upward arrow icon in

Figure 2.2, the user can view the entry on the catalogue page above the one displayed in

the bitmap window and by clicking on the downward arrow, the user can view the entry

below the one displayed in the bitmap window.

23

2.4.3 SAMPLE SEARCHES

The following are some of the searches that are now possible with the 1872 Search

System. Prior to the development of this system, each of the book titles retrieved using

the search statements listed below, would have been inaccessible if the author name was

unknown to the user.

Title = actes and Title = apotres (1 hit)

Title = Irish and Title = parliament (33 hits)

Title = Trinity and Title = College and Location = Dublin

(27 hits)

Location - Madrid and FromDate = 1750 and ToDate = 1780

(16 hits)

Series = singer tracts (756 hits)

Title = storia and Title = italiana (8 hits)

Title = oorlog and FromDate = 1700 and ToDate = 1800

(10 hits)

Location = Cavan (1 hit)

Title = biblia and Title = sacra (41 hits)

Title = coinage and Title = parthians and Location = Cork

(1 hit)

2.4.4 THE USER

To develop any user interface, the user type must be taken into account. The user’s

information need is regarded as an incompleteness or gap in their current knowledge.

Taylor suggests that an information need is formed in three mentally intrinsic steps,

ending up in a fourth step - the compromised need which is represented as a request to

the Information Retrieval system [Taylor ’<58], It is called a compromised need as the

user’s expectations and intent are balanced against his verbalization of the need. This

results in the request not exactly mirroring the information need.

24

The complexity of the information need means that retrieving information cannot

succeed with research on Information Retrieval techniques alone but will require an

understanding on the information need of the user and methods for aiding the user to

express his request adequately.

User type also affects the information need - whether a user be an expert, a subject-

specialist, an Information Retrieval specialist or a non-specialist [Willet & Ingwersen

‘94], Some way of bridging the gap between the various user types and the Information

Retrieval system is required to aid the user in developing his queries.

2.4.5 IMPROVING ACCESS TO THE 1872 CATALOGUE

Due to the hash coding scheme used in the retrieval engine of the 1872 search system,

Brendan Culligan achieved a very fast response time to a query. In addition, the

interface he provided also simplified users’ access to the database and presented the

results to the user in a structured fashion.

However many obstacles remain for the users of this system. Complex queries remain

difficult to formulate for any other than expert users. No aid or guidance is provided for

the user in the reformulation of a query upon an unsuccessful search. Also the interface

was built with only one language in mind i.e. English and so providing interfaces in a

number of languages requires major alterations to the code. This means that users who

are not anglophones are forced to access the database through English.

When we consider the nature of the catalogue - the fact that it is a multilingual database

and hence records may appear in languages other than that of the user plus the fact that

the vocabulary used in the catalogue does not always coincide with that of a ‘modern’

user, the lack of support provided by the system becomes a major obstacle for the user.

If the move in Information Retrieval is towards user-oriented systems, then aiding the

user in his query formulation and reformulation becomes paramount.

25

The aim of this thesis is to improve Information Retrieval in the 1872 Library Database

by moving away from the traditional IR approach towards the more recent user-oriented

approach. This means that user interaction will play a strong role in the improvement of

retrieval effectiveness. The following chapters describe a variety of user-oriented tools

built for the database. These include automatic and interactive query expansion

techniques, expert subject access and multilingual aids. Query expansion improves

retrieval by adding synonyms and other relevant terms to users’ queries. Users can also

improve their search results interactively by 1) browsing through dictionaries and

picking out terms for queries, 2) by exploring knowledge built up by users who are

experts in certain domains and 3) by examining previous search strategies.

In this way, Information Retrieval can accommodate both users who feel their

information need is well-defined and hence only avail of one or two of the facilities

provided by the system and users who have ill-defined information needs and need to

interact regularly with the system to clarify and improve upon their request to the

system. After all, we should design Information Systems to conform to the needs and

character of the people using them [Belkin & Vickery '85],

26

CHAPTER 3 - QUERY EXPANSION

3.1 INTRODUCTION

Since Information Retrieval is concerned with the retrieval of documents from a

database in response to a user’s query, it is vital that the user’s query be well formed or

the search will fail. However, users of Information Retrieval systems may not always

know what their information need is and consequently their query is generally not an

exact representation of their information need. More specifically Information Retrieval

systems that use word matching as a basis for retrieval (like the 1872 library catalogue

retrieval system) require that users phrase their queries in the vocabulary of the

documents present in the system. Even if their information need is clear their query

terms may not match those terms present in the database - and the search will fail.

Peat & Willet have remarked that users’ queries will typically consist of just a few terms

germane to the topic and it is often necessary to add synonyms, variant spellings etc. of

the original set of search terms to achieve an effective search [Peat & Willet '91]. This

process of altering queries is known as query expansion. The aim of query expansion is

to improve information retrieval by adding relevant terms to the user’s query, deleting

irrelevant terms from the user’s query and altering terms in the query so that it correctly

reflects the information need of the user and the vocabulary and orthography of the

database. Query expansion is the topic of this chapter.

27

3.2 REPRESENTING QUERY EXPANSIONS

Knowledge relating to a given domain is used to expand users’ queries. The knowledge

used must be represented in a structured fashion so that the system can access it upon

receipt of a user’s query and alter the query where necessary.

The most common form of architecture used in knowledge-based systems is the

production system [Patterson '90], This type of system uses knowledge encoded in the

form of production rules or ‘if-then’ rules. The rule has an antecedent or condition part

and a conclusion or action part. E.g.:

IF condition

THEN action

If the condition is true, then the action is taken and the rule is said to have ‘fired’.

In the 1872 Search System, query expansion takes place in a variety of domains.

Production rules may be applied to those domains that require an expansion to be made

to a query should a certain condition be true. These domains comprise

1. expanding queries to cater for OCR errors in the Library Database;

2. expanding queries to cater for the Latin Alphabet used in the 1872 Catalogue;

3. expanding queries to cater for author titles;

4. expanding queries to cater for synonyms used in the place of publication field;

5. expanding queries to cater for the possibility of country of publication;

and are described in the following sections.

28

3.3 EFFECTS OF OCR-GENERATED TEXT

ON QUERY EXPANSION

Since the documents in the 1872 database are OCR-generated, we need to examine how

OCR will affect the retrieval system. A number of organizations feel confident enough

to use OCR directly with an Information Retrieval system regardless of the uncertain

effects the noisy data may have [Taghva et al '94],

Research by Taghva and his colleagues showed an insignificant difference in

Information Retrieval between an OCR-generated database and its corresponding 99.8%

correct version. The database used in Taghva’s case was scientific and the corrected

version of the databases was achieved using an automatic post processing system in an

attempt to correct the OCR-generated errors. Their experiment found that the percentage

of documents returned from the OCR-generated database was 97.6% of those returned

from the corrected database. This led to their conclusion that the effects of OCR on

Information Retrieval are insignificant. However Taghva remarks in another paper that

“although the average differences seem insignificant, individual queries can be greatly

affected by OCR text” [Taghva, Borsack, Condit '94].

What of the effects of OCR-generated text on Information Retrieval in the 1872 Search

System? It was felt that with this database the percentage of documents returned from

the OCR-generated database would be significantly lower than 97.6%. The reason for

this is that the OCR software, written especially for the 1872 database, achieved a

success rate of 95.9% which appears low when compared with other OCR products

(some vendors claim a 99% accuracy for their OCR products).

Yet this theory could not be tested as no ‘corrected’ version of the 1872 Library

Database exists. Some automatic post-processing was carried out on the database to

correct the OCR-generated errors but the majority of the OCR-generated errors

(83.43%) were context sensitive and would therefore need to be corrected interactively

[Clarke '93].

29

Dictionaries and spelling correctors for the many languages contained in the library

database would need to be incorporated for this purpose. Not surprisingly, this

interactive correction has not been carried out on the 1872 Library database due to the

size of the database (5155 pages) and the number of dictionaries required. Instead, the

OCR-generated errors have been tackled from a different angle.

3.4 HIDDEN QUERY EXPANSION

The aim of hidden query expansion is to expand the user’s query so that it caters for

characteristics specific to the database. In the case of the 1872 Library Database, these

characteristics include the fact the database is OCR-generated and will therefore contain

OCR-generated spelling errors and also the fact that a large proportion of the book titles

appear in Latin and the Latin alphabet contains only 24 letters as T / ‘j’ and ‘u’ / V are

considered equivalent.

3.4.1 OCR ERROR TYPES

In a previous work, the OCR generated errors of the 1872 Library Database were

examined and were found to consist, almost exclusively, of substitution errors (where

one of more letters in a word are replaced by an incorrect letter(s)) [Clarke '93], The

reason that substitution errors are most common is that every single character is

processed during OCR so deletions and insertions of letters are rare. The recognition

phase of OCR uses template matching where each character is compared with stored

templates and a probability of a match is calculated for that character.

30

Correct Recognised As
F [
fl fi
f] fn
H 11
I 1
L I
m nl
m ffi
u n
Q O
rt tt
W Vi

Table 3.A Common OCR errors

Feature extraction is also used - where features such as corners, straight lines, curves

etc. are examined and again a probability of a match is calculated. This suggests why

letters, which are physically similar, are misread by OCR and hence why substitution

errors occur. Table 3.A lists some of the most common OCR substitution errors.

3.4.2 EXPANDING QUERIES USING OCR ERRORS

So that the user can access all the documents in the database - including those with OCR

errors, the user’s query is examined for letters that are frequently misrecognised during

OCR and if a match is found, the query is expanded to include the OCR version of the

term. Table 3.A is used to provide the substitutions. This expansion can be represented

using the following production rule:

IF a term contains a string listed in the Correct column in Table 3.A

THEN the term is repeated with the string in the Correct column

substituted by the corresponding string in the Recognised As

column and an implicit OR is assumed between the query

terms.

31

An example illustrates this process:

Title - ‘various’ and ‘parts’

The user enters two query terms in the title search. The sequence of letters ‘it’ in the

word ‘parts’ is present in the OCR substitution table so that query term is repeated with

the appropriate substitution and an implicit OR is assumed.

The query becomes:

Title = ‘various ’ and (‘parts ’ or ‘patts ’)

The substitution is hidden from the user and the relevant documents are retrieved.

Retrieval of information is greatly improved with this form of expansion as the

following results demonstrate.

Query Term Before Expansion Hits After Expansion Hits

tartare tartares 8 tartares OR tattares 9

reflections life reflections life 0 reflections OR

renections AND life

9

beaux arts beaux arts 15 beaux OR beanx AND

arts OR atts

17

culinaria culinaria 3 culinaria OR cnlinaria 5

Table 3.B: Results of Query Expansion using OCR Errors

3.4.3 EXPANDING QUERIES TO CATER FOR LATIN ALPHABET

The Latin alphabet contains only 24 letters as ‘i’ / ‘j’ and ‘u’ / V are considered equal.

Hence in the 1872 library database, T , ‘j’ and ‘u’, V are interfiled so that in the

alphabetical listing of the authors, ‘VOLTAIRE’ comes before ‘USSERUS’. Needless

to say - this can cause huge problems for the searcher of the database.

32

Instead of confusing the user by instructing him to substitute ‘i’s for ‘j’ and ‘u’s for Vs

in his query should his search fail, this was done automatically in users’ queries - again

using a set of production rules of the form:

IF a term in the query contains ‘j’

THEN the term is repeated with ‘j’ replaced by T and an

implicit ‘OR’ is assumed between these terms.

In this way the query:

becomes

Author = ‘Johovah’

Author = ‘Johovah’ or Johovah’

Again, the implementation is hidden from the user and the titles retrieved increase

dramatically in number.

Query Term Before Expansion Hits After Expansion Hits

evangelicos evangelicos 15 evangelicos OR

euangelicos

20

ejusdem ejusdem 403 ejusdem OR

eiusdem

662

Table 3.C: Results of Query Expansion using Latin Alphabet Substitutions

The hidden query expansion techniques described above do not mask the condition of

the text from the user but they increase the user’s confidence in the system by improving

its’ Information Retrieval effectiveness.

33

3.5 AUTOMATIC QUERY EXPANSION

Automatic query expansion techniques utilize the text of a user’s question as input for

techniques to derive a set of search terms that retrieve additional relevant documents

[Spink '94]. Such query expansion techniques have been developed for the 1872 Search

System and are described below.

3.5.1 EXPANDING AUTHOR TITLES

The hash coding scheme employed in the 1872 library search and retrieval system make

use of the first four letters of words as a hash key. The complete word in then hashed to

a location accessed by the four-letter key. This means that the minimum length of a

word in the hash key tables is four letters and hence any word less than four letters in

length cannot be used in a search statement. Unfortunately there are many words and

abbreviations present in the catalogue that are less than four letters in length. ‘War’ is an

example of an important three-letter word and ‘B.C.’ an example of an important

abbreviation. This problem is accentuated in the author title field where author titles are

often used to distinguish between authors of the same name as the following example

demonstrates:

Author = ‘SWIFT’ retrieves

SWIFT, Daniel.

SWIFT, Deane

SWIFT, Godwin, M.A.

SWIFT, Jonathan, D.D., dean of St. Patrick’s, Dublin.

SWIFT, Richard Levinge

SWIFT, Theophilus

SWIFT, Thomas

34

If users were able to access this author title information in their searches, then time

spent browsing through irrelevant information could be reduced. The capability of

searching under author titles would also enable statistical information on the authors of

the catalogue to be carried out. E.g.:

• List all books written by doctors (M.D.) before 1600. (375 titles)

• How many books were written by judges (U.J.D.) (396 titles)

• List all books written by Jesuits (S.J.) on ‘science’ or ‘mathematics’. (17 titles)

In order to be able to search on author titles, the author titles were extracted from each

of the author fields in the entries and placed in a new author description field. An

automatic expansion program was then run on all the author description fields to expand

the abbreviations out to the appropriate descriptions. Table 3.B lists a sample of these

expansions and the full table used by the program may be found in Appendix A.

1 Abbreviation Expansion Common Name
1 | Artium Baccalaureus Bachelor of Arts

B,A. Baccalaureus in Artibus Bachelor of Arts
B.C.L. Bachelor of Civil Law
B.M. Bachelor of Medicine
CJ. Chief Justice

F.C.S.
Divinitatis Doctor
Fellow - Chemical Society

Doctor of Divinity

F.R.C.S. Fellow - Royal College of Surgeons
J,UJX - " Juris Utrisque Doctor Doctor of Canon and

Civil Law
LL.B. Legum Baccalaureus Bachelor of Laws

Magister in Artibus Master of Arts
M.P. Member of Parliament
G.S.B. Ordinis Sancti Benedicti Order of Saint Benedict
Ph.D. Philosophiae Doctor Doctor of Philosophy
S.J. Society of Jesus Jesuit
S.T.P. Sanctae Theologiae Professor Professor of Theology

Table 3.D: Author Description Expansions

35

rVith words instead of abbreviations contained in the author description fields, these

:’ields could then be indexed in the same way the author names and titles had been

indexed. Each of the words in the author description fields were extracted and hashed to

a table. This table is then searched in the retrieval process. A new author search window

was created to enable searches on author surname, author first name and author

description or a combination of the three. Figure 3.1 shows the original author search

window and Figure 3.2 the modified author search window.

Author Surname

Cancel

Figure 3.1: Old Author Search Window

Author Surname

Author FirstName

Author Description

Latinize ; Clear Cancel

Figure 3.2: New Author Search Window

When a user enters an author description, a production rule is used to check if one of the

author title abbreviations in Table 3.D has been entered.

IF term is contained in the author title abbreviation list

THEN term is replaced by corresponding expansion.

36

The search is then executed. The expanded author description is displayed in the entry

field so that the user is aware that an automatic expansion has been carried out.

3.5.2 EXPANDING PLACES OF PUBLICATION

Another area where automatic query expansion is required in the 1872 library database

is the place of publication search. The reasons for this are threefold:

• The places of publication in the database often appear in an abbreviated form. E.g.:

Dubl for Dublin and Edinb. for Edinburgh and users tend naturally to enter the full

word in their search statement, thereby eliminating all entries containing the

abbreviated form.

• Variant spellings of the place names are present in the database. E.g.: Leipzig,

Lipsiae, Leipsiae and Paris, Parrhis and again the user, by entering in the most

common or modern spelling of the word will fail to retrieve all the books published

in a particular city/town.

• No countries appear as places of publication in the catalogue. Instead the important

cities and towns of each country are contained in the place of publication field. This

means that users who do not know the correct place of publication of the book they

are searching for will be forced either to make various attempts at the search using

the various cities of the country they are interested in or will be unable to conduct a

successful search. The following example highlights the problem. Let’s say a user

wishes to find a book published in Ireland in 1830. The user is unsure as to where

exactly the book was published. He might first conduct a search with the place of

publication as ‘Dublin’ but if this fails what is to be tried next? If he knew that the

following Irish cities and towns are present in the database - Dublin, Limerick,

Waterford, Cork, Castlebar, Westport & Tralee he could repeatedly reformulate his

search until all searches have been exhausted or the book is found. But this is a very

time consuming process. If a search on country of publication was enabled which

37

expanded the country into the various cities and towns present in the database, then

this problem could be overcome.

By automatically expanding queries to deal with the above considerations, users’ search

results would improve dramatically with little effort, along with their confidence in the

system.

3.5.2.I. Synonym Lists

The abbreviations and variant spellings of the place names are expanded in the same

way - using synonym lists. The user enters a place of publication as a query term and

this query term is compared with a synonym list of abbreviations and a synonym list of

variant spellings using production rules. If the query term is found to have a

corresponding list of synonyms then these synonyms are implicitly OR’d to the query

term and the search is executed. Again this expansion results in a higher percentage of

search results {Table 3.E}.

Query Before Expansion Hits After Expansion Hits

geneva geneva 8 geneva OR geneve

OR genevae

371

hambourg hambourg 9 hambourg OR

hamburg OR hamb.

77

Cambridge Cambridge 1 11 Cambridge OR cambr. 1249

Table 3.E: Results of Query Expansion using Synonyms

3.S.2.2. Mappings

To enable a search on country of publication, a mapping between countries and their

cities was first constructed. Table 3.F displays a sample of the more common mappings

that were built through repeated searches of the database.

38

Dublin, Limerick, Waterford, Castlebar, Tralee, Westport, Cavan, Cork.
London, Bath, Birmingham, Bridgenorth, Cambridge, Chester, Oxford,
Durham, Eton, Exeter, Liverpool, Brighton, Bristol, Manchester,
Loughborough, Southampton.
Paris, Nantes, Rouen, Lille, Bordeaux, Rennes.
Aberdeen, Edinburgh, Dundee, Glasgow.

Table 3.F: Country of Publication Expansions

When the user enters a place of publication, it is first compared with the listed countries

using production rules. If a match is found, a search statement is automatically

constructed with the corresponding cities OR’d together. This search statement then

replaces the initial query and the search is executed. If the place of publication entered

by the user is not contained in the countries list, then it is tested for abbreviations and

variant spellings as described previously.

Query Before Expansion Hits After Expansion Hits

France France 0 Paris OR Nantes OR Rouen OR

Lille OR Bordeaux OR Rennes

5362

Italy Italy 0 Bologna OR Firenze OR Genoa

OR Napoli

105

Scotland Scotland 0 Aberdeen OR Edinburgh OR

Dundee OR Glasgow

3743

Table 3.G: Results of Query Expansion using Country of Publication

39

3.6 INTERACTIVE QUERY EXPANSION

Interactive Information Retrieval is an interactive communication process that occurs

during the retrieval of information by involving all the major participants in Information

Retrieval - i.e. the user, the intermediary (interface) and the Information Retrieval

system [Ingwersen '92]. It attempts to provide a supportive approach to information

retrieval by allowing the user to interact with the system in order to improve search

results. Interactive query expansion is one means of providing such support and differs

from automatic query expansion in that the user can choose whether or not to avail of

the expansion techniques.

The following are the interactive query expansion techniques, common to many

Information Retrieval systems that were developed for the 1872 Search System.

3.6.1 PROXIMITY SEARCHING

If the user enters a query consisting of more than one query term AND’d to another for

example:

a) Title = ‘French’ and ‘revolution’

b) Title = ‘Irish’ and ‘parliament’

the system will retrieve all the documents containing both words. However these words

may have no relation to each other in the documents retrieved. The following titles are

taken from the results of both of the above queries:

a) “....the revolution of the Roman government...written originally in

French. ”

b) “A letter from an English gentleman to a member of parliament; shewing

the hardships....with which the Irish nation has been treated. ”

In both the cases the query terms used in the search statement are unrelated in the

retrieved documents. These documents are called false drops.

40

The aim of proximity searching is to avoid false drops, thereby decreasing the number

of irrelevant documents retrieved. The user can inform the system that he wishes to use

proximity searching by placing an indicator (usually ‘&’ or ‘+’) between the query terms

of his query. The search statement becomes:

Title = ‘French ’ + ‘revolution ’.

The system then conducts the search as before by retrieving all documents in the

database that contain both query terms. There are 68 titles in the 1872 Catalogue that

contain the words ‘French’ and ‘revolution’. However, before the documents are

displayed on the screen, a post-processor selects those documents whose query terms

occur adjacently. In this case - 19 of the titles contain the word ‘French’ next to the

word ‘revolution’. Only these documents are listed as search results. The results of this

proximity search are given in Figure 3.3.

The French revolution of 1848 [p. 249, BECTHRES beh fore tfe Yonng men's Chr Hstian ass
.Review ofthe French revolution of 1848; from the 24th of Febr. to the election of the first pr
.The outbreak ofthe great French Revolution related by a peasant of Lorraine; by MM. ERCKM;

The French revolution of 1848. A sermon. Lond 1848
Social life in England and France, from the French revolution in 1789, to that of July, 1830.
Refiections on the French revolution in 1848, with suggestions on the foreign policy of Eng

.The outbreak of the great French revolution related by a peasant of Lorraine. Lond
Renections on the French revolution in 1848; with suggestions on the foreign policy of Engl
Narrative of the French revolution of 1848, by Walter K. KELLY.

Figure 3.3: Proximity Search Results

3.6.2 TERM FREQUENCY INFORMATION

Salton suggests that the frequency of use of a given term may correlate with some

indication of the importance of that term in the given subject area [Salton ’S3], A term

frequency tool is provided with the 1872 Search System to enable the user to check the

frequency of occurrence of their search terms before executing a search. A low term

frequency will indicate to the user that the search will provide only a small number of

documents to browse through and that perhaps an expansion of his query is required.

41

While a high term frequency (anything from 100-10000) will force the user to refine his

search if he does not wish to browse through a very large number of titles.

Cancel

revolutionT erm

Figure 3.4: Term Frequency Count Window

Lancaster & Payer claim that the success of the searcher depends on his ability to think

of alternative approaches to Information Retrieval [Lancaster & Layer '73], By

providing interactive access to term frequency, the system prompts the user to alter his

search statement where required.

3.6.3 PREVIOUS SEARCH RESULTS

Each search carried out by the system is logged in a file along with its’ search results.

This file can be opened by the user at any stage during the search process to help him

with his query formulation. If the user has no search statement in mind, he can just

browse through the previous searches to perhaps get ideas for queries or just to get a feel

for the contents of the database and the means of retrieving information. If, on the other

hand, the user has a query in mind, then he may extrapolate much information from the

previous searches executed by the system, such as:

1. the various strategies of formulating searches with his query terms.

2. the fields used in the searches e.g. author, title, series and more specifically the

combinations of fields used with his query terms.

3. the different search terms used in conjunction with his search terms.

42

AUTHOR = COLE, ;
Number of hits: 75

TITLE = HORSE AND LOCATION
Number of hits: 89

TITLE = HOROSCOP*
Number of hits: 3

TITLE = OROSCOP*
Number of hits: 1

TITLE = LOROSCOP*
Number of hits: 0

TITLE = ASTROLO*
Number of hits: 75

TITLE = ASTROLA*
Number of hits: 28

TITLE = ASTROLO*

BRIT 7

Figure 3.5: Previous Search Results Window

Previous search results give some idea of the specificity of search terms but also the

search strategies and various knowledge domains used. Such information leads to the

construction of effective query statements as users can interactively expand their search

by selecting relevant terms from the previous searches [Salton 'Si].

3.7 INFORMATION RETRIEVAL INTERACTION

In an attempt to move towards the user-oriented Information Retrieval approach where

interaction with the system is paramount, other interactive features were added to the

1872 Search System to improve retrieval effectiveness. Chapter 4 describes expert

subject access to the database where users are encouraged to encode information in a

domain that they are familiar with, while browsing through domain knowledge that they

are less familiar with. This interactive tool is very important since user’s seeking

behaviour seems to depend on background knowledge, the subject domain in question

and the extent to which their need or underlying problem is developed [Ingwersen '92].

43

Their seeking behaviour and hence success in searching will progress with interactive

access to the various domains contained in the catalogue. In this way - interactive

Information Retrieval may be seen as a vital and supportive process in problem solving

and decision making.

44

CHAPTER 4 -EXPERT SUBJECT ACCESS

4.1 INTRODUCTION

Recent studies have found that subject searches form a large proportion of on-line

catalogue use and that users have difficulty doing subject searches [Khoo & Poo '94\.

Users were found to have problems -

1. matching their terms with those indexed in the on-line catalogue;

2. identifying terms broader or narrower than their topic of interest;

3. increasing search results when too little or nothing is retrieved;

4. reducing search results when too much is retrieved.

The Council on Library Resources study carried out by Mathews [Mathews et al '88]

found that the reason for this was that the user’s query represented an inadequate or

incoherent state of knowledge, while the database represented a coherent state of

knowledge. So the users’ lack of knowledge concerning the contents of the database and

the search strategies to use, greatly affect their performance in searching the system.

Knowledge becomes the key, therefore, to intelligent subject access of the database.

Knowledge is continuously increased as a result of exposure to new perceptions, facts

and situations imprinted in the mind and manipulated by the reasoning ability [Beerel

'87], Hence the greater the exposure to new concepts and new areas of knowledge, the

better the reasoning ability and the more astute the ability to accumulate and apply

knowledge. Therefore by exposing the user of the database to new concepts and areas of

knowledge and by facilitating the formulation of a search, their expertise in accessing

information in the database will be improved.

In this chapter, knowledge trees are used to expose the user to knowledge in various

areas of specialization, thereby enhancing their ability to acquire and use knowledge

across diverse domains. Because the domains of interest in a library catalogue are so

45

numerous and often completely unrelated it was decided to allow users who specialize

in specific domains to build up their own expert trees of knowledge. A domain

independent knowledge tree construction tool is developed to allow users to achieve this

by structuring their knowledge in a predefined way. Subsequent users may then be able

to access ‘expert’ information in order to improve their search performance if required.

4.2 EXPERT SYSTEMS

The knowledge tree construction tool enables experts to represent their knowledge in a

structured way and provides easy access to this knowledge for users of the 1872

Catalogue. As with expert systems, knowledge acquisition and representation become

the most vital aspects of the knowledge trees and contribute to acceptance of the

knowledge tree tool by the user. Manipulating knowledge is not a trivial task however,

and the obstacles encountered in doing so are similar to those found in expert systems.

The following sections describe the process of knowledge acquisition and knowledge

representation in expert systems which may be applied directly to the knowledge tree

construction tool. First we will look at expert systems and their advantages over

humans.

An expert system is a computer based system that can perform some task that requires

expertise [Vadera 'S9], Knowledge obtained from experts is entered into the system in a

coded form. This knowledge is kept separate from the rest of the system and is called

the ‘knowledge base’. The knowledge in the knowledge base is represented with

symbols employing techniques such as frames, logic and semantic networks. These are

natural forms of representation and are hence easy to modify. Expert systems aim to

emulate human experts’ problem solving techniques in a narrow domain by using the

knowledge contained in their knowledge base to offer advice on request.

46

4.2.1 HUMAN EXPERTS VERSUS EXPERT SYSTEMS

Extracting information from an expert is a very time consuming task and it is common

practice to employ a knowledge engineer or intermediary to elicit the knowledge from

the expert. Weiss & Kulikowski suggest that this is the case because experts often lack

the skills necessary to organize and structure their knowledge [Weiss & Kulikowski '84].

Unfortunately experts are expensive, scarce, inconsistent, busy, mortal and are usually

expert in only one specific domain [Beerel '87], Expert systems on the other hand can

overcome some of these problems.

1. They can preserve valuable knowledge over an infinite amount of time.

2. They can be made available 24 hours a day.

3. They can be applied to various different applications without changing the software.

4. They are consistent in their knowledge representation.

5. They can improve the performance of non-experts.

The above properties apply also to the knowledge tree construction tool. However, as

with expert systems, the knowledge trees cannot be built without experts to provide the

knowledge and so some kind of compromise must be reached.

4.2.2 THE EXPERT SYSTEM BOTTLENECK

It is said that expert system technology is limited by the expert system bottleneck of

knowledge acquisition [Tuhrim et al 'SS]. A knowledge engineer is required to extract

the expert’s knowledge and transfer it into appropriate data structures in the knowledge

base so that it can be processed by the system {Figure 4.1 (A)}. To encode an expert’s

knowledge, the knowledge engineer needs to know:

• what concepts exist in the expert’s domain.

• how important these concepts are and the relationships between them.

• facts and heuristics about the expert’s domain.

• classificatory knowledge which enables the expert to distinguish between similar

items.

47

The techniques the knowledge engineer uses in the knowledge acquisition process

include

• Interviewing (which is particularly useful for acquiring basic knowledge about the

domain),

• Protocol Analysis (recording expert’s step by step information processing by asking

him to think aloud).

• Observation (of the expert at work)

• Multidimensional Techniques (where the expert attempts to form a map of his

specialized domain. This is often achieved by sorting cards of ‘concepts’ into groups

according to certain criteria. These criteria are then noted by the knowledge

engineer).

EXPERT

EXPERT

KNOWLEDGE
ENGINEER

EVOLVING
EXPERT
SYSTEM

EVOLVING
EXPERT
SYSTEM

Figure 4.1: Knowledge Acquisition

With all this work in mind - it is not surprising that Sowizral claims that one of the most

difficult tasks facing expert system developers is knowledge acquisition [Sowizral '55],

Yet there are ways of overcoming the vast workload of the knowledge engineer in the

knowledge acquisition phase of the expert system development. One such method

would be to allow the expert become the knowledge engineer {Figure 4.1 (B)}. Recent

efforts have been made to develop tools facilitating direct construction of the expert

system by the non-computer scientist.

The knowledge tree construction tool follows this trend by enabling expert users to

build knowledge trees themselves without the involvement of a knowledge engineer.

Some form of representing the knowledge in a structured format must be found so that

expert users can express their knowledge without difficulty and so the system can

48

process and manipulate the knowledge effectively and consistently in response to a

user’s request.

4.3 KNOWLEDGE REPRESENTATION

Knowledge representation is concerned with how the knowledge is organized and

represented in the knowledge base. Handling the knowledge is one of the most intricate

parts of system development. The power and the success of the system depends on how

this is carried out [Beerel '$7], The most common methods of representing knowledge

are logic, production rules, frames and semantic networks. Choosing which technique to

use for knowledge representation is not a trivial task. A technique is needed that will be

suitable for communicating with experts in specialized fields and will offer a format that

can be applied universally. In short we need a representation that is right for the domain

and right for the task [Shashtri '§§].

4.3.1 CHOOSING A KNOWLEDGE REPRESENTATION TECHNIQUE

What criteria need to be taken into account in the selection of an appropriate

representation tool?

1. The tool should have metaphysical adequacy - there should be no contradiction

between the facts we wish to represent and our representation of them.

2. It must have epistemic adequacy - we should have the ability to express the facts we

wish to express with the representation tool.

3. The tool must be heuristically adequate - so that it can express the reasoning behind

its problem solving.

4. It must be uniform - all different types of knowledge must be represented in the same

way, and finally

5. The tool must have computational tractability - it must be able to be easily

manipulated within the system.

49

4.3.2 KNOWLEDGE REPRESENTATION TECHNIQUES

There are three major ways of representing knowledge in an expert system - predicate

calculus, production rules and structured objects which include frames and semantic

networks.

Predicate Calculus:

Predicate calculus comes from logic and is a powerful means of transforming natural

language into a formal representation. Stylized patterns are developed called

‘predicates’ which reduce the number of ways to say the same thing. A predicate asserts

a fact about one or more objects but has to be unambiguous. Human(George) is an

example. Often more than one predicate is required to fully express an English sentence.

Search statements can also be expressed in this way:

author = ‘Swift ’ and title = ‘travels ’ and location = ‘Dublin ’

translates to:

Author(Swift) & Title(travels) & Location(Dublin)

Predicate calculus, like all logic languages, depends on the ability to draw inferences in

order to derive new facts from those that are given [Alberico & Micco '90]. However

the power of predicate calculus is not required in the representation of knowledge in the

subject trees as no inferences about the facts presented in the knowledge trees are called

upon during the search process.

Production Rules:

Production rules represent knowledge in English like conditional statements. The rules

describe condition-dependent actions of the form

IF condition, THEN Action.

The rule is applicable if the condition or antecedent is true. This is the most common

form of knowledge representation because the rules are easy to express and to

understand. This form of knowledge representation has already been used in the 1872

search System to represent query expansion rules, an example being:

50

IF author = S.J.

THEN author = Jesuit

However the knowledge in the subject trees cannot be represented in this fashion as

there is no action to take if some condition is true. Even if production rules could be

used, a new rule would have to be created for each new subject added to the tree. This

does not provide the flexibility required for the requisite addition and deletion of

subjects. Instead a representation is required which represents simple facts about

particular subject areas and which is easily manipulated.

Frames:

Frames are predefined data structures that contain objects or situations broken down into

their constituent parts {Figure 4.2}.

AUTHOR: BROWN, Robert

TITLE: Elements of Musical
Science.

PLACE: London

SHELF: FAG. m. 12. 33.

Figure 4.2: Example of a Frame

The parts, sometimes referred to as attributes, are held in ‘slots’ within each frame. Slots

may contain a variety of information such as default values, rules and pointers to other

frames. The pointers mean that frames can be linked together to form a hierarchy. The

reasoning process for frames involves trying to fill in the slots and selecting the most

likely frames that will result in a conclusion.

Frames could be used to represent knowledge in the subject trees in the 1872 Search

System as the pointers would enable a hierarchy of subjects to be built while the slots

51

could be used to store the subject name and its’ corresponding number of hits {Figure

4.3}.

SUBJECT: Trigonometry

HITS : 73

MATHS

Figure 4.3: Example of a Frame Representing a Subject

Semantic Networks:

Semantic Networks are graphical representations of concepts and relationships in a

particular domain. The nodes in the network correspond to concepts and the arcs or

links to relationships between these concepts. The concepts or nodes in the network are

atomic in the sense that they are never subdivided. Many different types of relationships

can be represented in a semantic network - ‘is_a’ (which means something is an instance

of something else), part-of (something is part of something else) and many others. There

is a semantic sense called ‘ordinality’ belonging to the relationships meaning that they

can only be applied in a particular direction.

E.g. Leg (part-of) Human A Human (part-of) Leg

Algebra (element of) Maths A Maths (element of) Algebra

The relationships between concepts may also be used to create inheritance hierarchies.

In these cases concepts or objects can inherit properties from other concepts.

Semantic networks like frames enable the representation of a hierarchical structure like

the subject trees. The semantic links would also make it possible to represent

relationships between subjects. Adding new nodes to the network and deleting nodes

from the network is a simple process which makes semantic networks an ideal candidate

for the representation of knowledge in the subject trees.

52

4.4 THE 1872 CATALOGUE SUBJECT TREES

The 1872 Catalogue subject tree construction tool aims at improving subject access by

exposing users to new and related information. This tool is developed to provide better

support for the conceptual moves made by the users. They may use the system to scout

the subject area they are interested in and can then modify their search strategy to

retrieve better results by narrowing a search that is too broad and broadening one that is

too narrow. They can also use the system to examine the vocabulary that exists in the

database that they would otherwise have missed. This is an important option as users

feel that on-line aids for finding, browsing and selecting controlled vocabulary are

imperative [Markey & VizinejGoetz '#$]. They are especially unfamiliar with the

controlled vocabulary used in this database - largely because the vocabulary employed

from the fourteenth to the nineteenth century often differs greatly from today’s

vocabulary.

4.4.1 KNOWLEDGE ACQUISITION

In an attempt to avoid the knowledge acquisition bottleneck described earlier, the

subject tree construction tool employed in the 1872 catalogue database enables experts

to author their own knowledge trees. In this way knowledge on a number of diverse

fields of interest can be made available to the user as an aid to query formulation.

To facilitate the development of this kind of system the subjects will need to be

classified using a tree type structure {Figure 4.4}. Moving up the tree will mean

broadening the search and moving down the tree - refining the search.

Calculus

ConicGeometricCalculation

Figure 4.4: Tree Structure of Subjects

53

This is a simple form of representation and was chosen because the tree structure is a

common one and hence thought easy to use for the experts building the subject

information. The expert must first structure his knowledge in a hierarchical form. Since

the knowledge he builds is aimed at assisting users searching for books in that particular

area, he can enter any information he deems relevant - subject headings, truncated words

(for wild card searches), relevant authors, common places of publication for that

particular subject area etc.. He may then ‘create’ a subject area on the system and may

fill his knowledge tree by adding children to the main subject heading (root node). As

each child subject is added to the tree, the system automatically determines how many

titles in the catalogue contains that subject and the resulting number of hits is appended

to the subject in the tree. Figure 4.5 shows the window designed for subject tree

development. In this window we see that the expert’s subject heading is ‘Mathematics’

and that he has added a number of children to this heading. Children may be added to

these children by selecting one of the existing children, for example ‘Geometry’, and

clicking on the downward arrow. The main subject heading is then changed from

‘Mathematics’ to ‘Geometry’ and children may then be added to ‘Geometry’.

algebra (89)
calculus (51)
geometry (119)

mathematics (71)
Child

trigonometry Add

Delete

_j_______________} ±. ^
\ Dismiss

Figure 4.5: Building a Subject Tree

54

At present there is no limit on the number of levels the expert can add to his tree. The

knowledge tree can be edited at a later stage using the same window by adding relevant

sub-headings where required and by deleting irrelevant headings.

Upon completion the tree may be viewed in the form shown in Figure 4.6. Initially only

the subject headings of the experts’ trees are displayed in this window but by selecting

one of the headings and clicking on the downward arrow, a subject tree appears. To

return to the main subject heading, the user must click on the upward arrow.

mathematics (71)
trigonometry (73)
geometry (119)

geometric (6)
conic (24)

calculus (51)
calculation (20)

algebra (89)

11

Query Exit

Figure 4.6: Viewing the Subject Tree

4.4.2 KNOWLEDGE REPRESENTATION

The existence of semantic networks is implied wherever information is conveyed in

node-arc graphical form, where those nodes and arcs are assigned meanings and the

topology of the graph is significant to those meanings [Griffith '82]. It is not surprising

that this technique of knowledge representation was chosen for the subject tree

construction tool of the 1872 catalogue, where the subject trees adhere strictly to this

form. The subject headings and sub-headings are the nodes with the very general

relationship HAS_MEMBER between them.

55

Mathematics HAS_MEMBER Algebra

Geometry HAS_MEMBER Geometric

The nodes themselves contain not only the subject heading but also the number of titles

in the database that contain that word. Each node therefore is represented using a frame

with two slots - one containing the name and the other containing the hits.

4.4.2.1 Implementation

The semantic network of knowledge is implemented using a powerful programming tool

called the Linked List. Knuth claims that the introduction of links to other elements of

data is an extremely important idea in computer programming, and provides the key to

the representation of complex structures [Knuth '§/]. In a linked list - each

node/concept points to at least one other node, whether that node be at the same level or

at an inferior level in the network. The power of linked lists lie in the easy addition and

deletion of nodes. Because the subject trees in the 1872 Catalogue may contain n levels,

each node in the network will point to the next node in that level and a node in the next

level (if one exists). Figure 4.7 shows how the linked list is used in the implementation

of the mathematics tree described above.

56

♦ Mathematics [71]

STEP 1

Calculus [51]

STEP 2

Trigonometry [73]

Geometry [119]Algebra [89]

STEP 3

Geometry [119]
Trigonometry [73]

Calculation [20]
Conic [24]Geometric [6]

Figure 4.7: Implementation of Semantic Network

57

When the expert creates a subject area - the root node (‘mathematics’) of the linked list

is created. Each node has two pointers - one sibling pointer, pointing to the next node

and one child pointer, pointing to the next node at the next level. In Step 1 both of these

pointers are null. When the expert adds a subheading (‘calculus’) to the list, a new node

is created and the child pointer of the root node points to it (Step 2). As the remaining

sub-headings are added, new nodes are created in turn. The child pointer of the root

node is set to point to the new node (‘algebra’) and the new node’s sibling pointer set to

point to the previous node (‘calculus’). Step 3 & Step 4 illustrate this process, with the

child pointers of the new node being null.

In order to move down a level, the expert may choose one of the sub-headings. This sub

heading (‘calculus’) then becomes the root node and the above procedure may be

repeated. Step 5 shows the concept ‘calculation’ being added to its parent node

‘calculus’. Step 6 shows the addition of new nodes to the concept ‘geometry’.

The expert may view his work upon completion as illustrated in Figure 4.6.

4.4.3 USING THE KNOWLEDGE TREES TO SEARCH THE CATALOGUE

If the user is looking for books on a particular subject, he may search

the available subject headings for a heading related to his subject of interest. So if he is

looking for books on ‘geometry’ he may browse through the subject areas listed (e.g.

‘history’, ‘geography’, ‘mathematics’, ‘medicine’) and may position himself in the

MATHEMATICS knowledge base (if one exists), and then be given access to a subset

of subjects - calculus, algebra, geometry, etc..

By selecting an appropriate subset, geometry in this case, he can again find a set of

subsets or a set of terms related to his area of interest that occur in the catalogue and

their frequency of occurrence. E.g. ‘Geometric’ 6 hits, ‘Conic’ 24 hits. Not only will this

allow for a better understanding of the contents of the catalogue, but it will guide the

user through information related to their subject of interest. In her design model for

subject access to an on-line catalogue. Bates emphasises the importance of user

58

orientation claiming that it enables the user to get a feel both for interacting with the

system and for the intellectual world of the system through exploration of vocabulary

and relationships between terms [Bates '§6],

Should the user be a little unsure of the subject heading to search with regard to his area

of interest - he may use the ‘FIND’ option in the system which, when you enter your

area of interest, will return the subject heading under which your subject appears. The

user is informed if his subject area is not present in any of the knowledge trees built by

the experts. Figure 4.8 illustrates the use of the ‘find’ option. Here the user wishes to

find the subject heading for ‘geometry’.

Subject

geometry

Find Dismiss

Heading

mathematics (71)

Figure 4.8: Find Subject Window

4.4.3.1 Automatic Search Formulation

Hildreth among others noted that Boolean logic appears to be one of the most difficult

aspects of information retrieval [Hildreth 'Si]. For this reason, an automatic search

formulation option was developed which constructs queries automatically from the

subject trees the user accesses. This option is best illustrated with an example.

If the user is viewing the ‘mathematics’ subject tree, as in Figure 4.6, and decides to

search the database, he has only to select an element in the tree and press the ‘query’

button in the window. This forces the system to automatically produce a query

59

containing the element selected by the user and the children of that element (if it has any

children).

*1 Create Search

Geometry (119)

Search Cancel

Figure 4.9: Automatic Search Formulation

Another window appears to receive confirmation from the user as to whether to execute

the search or not {Figure 4.9}. If, to take an example, the user selects the element

‘geometry’ in the ‘mathematics’ tree, then a search for all the books containing the word

‘geometry’ or ‘geometric’ or ‘conic’ is executed by the system and 145 entries are

output to the screen. In this way, not only is the obstacle of creating Boolean searches

avoided by the user but users may search on a number of topics with just one touch of a

button.

The subject tree construction tool described in this chapter has provided a unique way of

improving user’s subject access to the 1872 Catalogue. Users are encouraged to share

their knowledge in a way that will benefit both other users and the system itself. It is

hoped that over time, a comprehensive subject index will be built using these trees so

that users may improve their retrieval of information by referring to the subject index

present in the 1872 Search System.

60

CHAPTER 5 MULTILINGUAL ACCESS

5.1 INTRODUCTION

Multilingual access is a vital step in the improvement of users’ retrieval of information

in the 1872 Search System. Due to the nature of the catalogue - it being itself

multilingual, users searching the system will lose information if they are unable to

retrieve book titles in languages other than their own.

There are two aspects of multilingual access that can be addressed for use with the 1872

Search System. The first concerns the provision of multilingual interfaces which would

allow users to query the system through menus and screens in their own language. The

current system provides an English interface only. By translating the words in the

menus, information messages and error messages, a number of multilingual interfaces

could be developed with ease for the system. However the nature of the interface

builder requires that the system be developed from the interface. Toggling between a

number of languages in a uniform interface is not an option provided with GPF. The

entire system would have to be replicated for each new interface designed. For this

reason, this aspect of multilingual access was not pursued.

The second and more challenging aspect of multilingual access lies in the provision of a

system which would allow users to access titles in a number of different languages.

Since computers and computer systems are being used by people all over the world, in

developing software we cannot assume that users will be native speakers of any one

language [Yazdani '93], There are different levels of this problem but the most basic

lies in the lexical level which is concerned with the words used to interact with the

system. The problem of multilingual access arises in the context of the 1872 Catalogue

where A) author names are listed in languages other than that of the author, causing

confusion among users, and B) where entries can appear in any one of at least fourteen

languages. It is often the case that a book written in one language is listed in a different

61

language and since the author names are predominantly Latin - it often occurs that an

Italian or English author is listed under the Latin translation of his / her name. These

aspects of the catalogue make the need for multilingual access essential if the user is to

be satisfied with his retrieval of information. This chapter reviews language change

throughout the ages in order to capture the differences and similarities between the most

common languages of the 1872 Catalogue - i.e. those in the Romance and Germanic

language families. Understanding these differences and similarities leads to the

provision of effective multilingual tools to aid the user search the catalogue.

Since the search system is keyword based - the user can search for words in the

language(s) he is familiar with but will lose information contained in entries written in

other languages. By providing a search by language of title, the user could search for

entries in any of the languages contained in the 1872 Catalogue thereby reducing the

loss of information incurred in a monolingual search. This form of multilingual access is

described in the next chapter.

5.2 THE ORIGIN OF LANGUAGE

For as far back as we can trace in history, man has always spoken many different

languages. If, at one time, there was a single language from which all other languages

subsequently descended, there is no hard linguistic evidence to prove such a fact

[Katzner '90], However, inquiries into the existence of one proto-language began as far

back as the seventh century when an Egyptian pharaoh named Psamtik arranged for two

newborn babies to be reared in isolation until their first words could be recorded. Their

first utterance was ‘bekos’ which turned out to be the word for bread in Phyrgian (a

language of Antolia).

This led to the pharaoh’s conclusion that Phyrgian was the original language of the earth

[Renfrew '94]. Investigations into the origin of language continued up until the

nineteenth century when scholars exhaustively examined many contemporary languages

in the hope that some common elements would point to a primeval source. Today’s

62

linguists realize that a clear picture of what happened perhaps a million years ago cannot

be obtained and that the study of language will be confined to the more recent historical

period.

5.3 LANGUAGE CHANGE

Ferdinand de Saussure - the famous Swiss linguist - has made the claim that “time

changes all things: there is no reason why language should escape the universal law”

[Saussure '59], and this claim is not unfounded. Languages have been changing and

developing since the beginning of time. Research in historical linguistics is concerned

with the factors that cause this. Anyone who attempts to study historical linguistics must

be aware of the multiplicity of factors involved [Aitchison '91]. Language change is

triggered by a number of sociological and linguistic factors but may also be affected by

demographic movements such as:

1. Initial Migration: Humans spread from Africa to the rest of the world beginning

about 100,000 years ago.

2. Farming Dispersal: Populations expanded as farming developed in several places.

The original farmer’s language spread and differentiated to form language families.

3. Dominance: Incoming minorities conquered populations and imposed their language

upon them.

Sociological language change occurs when speakers alter the way they speak in an

attempt to imitate what they perceive to be a more prestigious variety of speech. The

history of English provides numerous examples of this - one being the loss of

postvocalic ‘r’ resulting in the word ‘far’ being pronounced as [fa]. Need is another

form of sociolinguistic change. Languages can alter as the need of it’s users alter.

Unneeded words are dropped from a language and new technical terms are added to a

language. These sociological changes in languages turn out not to be the ‘real’ causes of

language change however, but simply accelerating agents which utilize and encourage

63

trends already existing in languages [Aitchison '91], The ‘real’ changes are found within

the languages themselves.

Linguistic changes imply changes within the language itself. Phonetic, morphological,

lexical and semantic changes have been noted in a number of languages.

5.3.1 PHONETIC CHANGES are sound changes that occur in languages.

Articulation is often made easier by modifying a sound so that it is more like or unlike

its neighbouring sounds. Assimilation is the modification of a particular segment to

make it more like a neighbouring sound and is one of the most frequent sources of

sound change.

Old Italian Italian - Assimilation

/okto/ /otto/ ‘eight’ /kt/ -4 /tt/

/nokto/ /notto/ ‘night’

In Italian the ‘k’ was converted to ‘t’ under the influence of the neighbouring /t/, making

the above Italian words easier to articulate.

Other phonetically conditioned changes include dissimilation which is the modification

of a segment to make it less like its neighbours.

Latin Spanish - Dissimilation

/anma/ /alma/ ‘soul’ /nm/—»/lm/

The /nm/ in Latin is changed to /lm/ in Spanish to avoid consecutive nasal consonants.

Epenthesis or segment addition serves to break up a sequence of sounds that would

otherwise be difficult to pronounce.

Old English English - Epenthesis

/breml/ /brembl/ ‘bramble’ /ml/ —>/mbl/

64

Another phonetic change - lenition or weakening, weakens a consonant under the

influence of a vowel.

Latin Portuguese - Lenition

cippum cepo ‘stump’ /pp/ —> /p/

5.3.2 MORPHOLOGICAL CHANGES are changes which affect the structure of

words in a language. The most widespread morphological changes involve the loss and

addition of affixes. English has borrowed its most widely used suffixes from French.

Many French words containing the suffix ‘ment’ made their way into the language e.g.

‘commencement’. This suffix then became established in the English language and was

used with words that were not of French origin e.g. ‘merriment’.

Analogy is another morphological change. It involves the inference that if two elements

are alike in some respects, that they should be alike in others as well. The development

of the plural ending ‘s’ in English was influenced by analogy. The following examples

show the old English plural form of stone - ‘stanas’ changing from the ‘as’ ending to the

more familiar ‘s’ ending.

Old English English - Analogy

stan (sg.) stanas (pi.) stone (sg.) stones (pi.)

hund (sg.) hundas (pi.) hound (sg.) hounds (pi.)

5.3.3 LEXICAL CHANGES occur in the lexicon or words of a language. New words

are often formed in response to the need for new lexical items. The word ‘smog’ was

developed in English as a blending of two words - ‘smoke’ and ‘fog’. Besides the

formation of new words, borrowing words from different languages is a frequent lexical

change.

The almost universal use of the American idiom ‘O.K.’ is an example of borrowing.

Languages can borrow words from non-dominant languages present in the same area for

65

example the word ‘moose’ in English is borrowed from the Amerindian languages.

Historical events can also lead to the acquisition of foreign words. The Norman

conquest of England in 1066 is an example of this. The French-speaking conquerors

gradually learned the English language but retained many of their French terms. Table

5.A. shows some of the French loan words in English which pertain to areas of

officialdom [O’Grady et al ‘89].

tax, revenue, government, parliament, duke, authority

prayer, sermon, religion, chaplain

judge, defendant, jury, evidence, jail, crime

medicine, physician, science

art, sculpture, satin, ruby

army, navy, battle, soldier, enemy, captain

Table 5.A: French Borrowed Words in English

5.3.4 SEMANTIC CHANGES Changes in word meaning occur continually in all

languages however word meanings do not jump from one meaning to another

completely unrelated one. Semantic Broadening is the process where meanings of words

become broader while Semantic Narrowing has the opposite effect. Another semantic

change where a word loses its former meaning and takes on a new but related meaning

is called a Semantic Shift. Examples of these semantic changes are given below.

Word Old Meaning New Meaning

bird small fowl any winged creature - Broadening

hound any dog a hunting breed - Narrowing

immoral not customary unethical - Shift

66

5.4 LANGUAGE FAMILIES

For more than 200 years, linguists have recognised that some languages have such

similarities in vocabulary, grammar, the formation of words and the use of sounds that

they must stem from a common ancestor. These ancestral alliances are termed language

families [Renfrew '94],

FAMILY SUBGROUP BRANCH MAJOR
LANGUAGES

MINOR
LANGUAGES

Indo-
European

Germanic Western English, German,
Flemish, Dutch,
Afrikaans, Yiddish

Luxembourgian
Frisian

Northern
(Scandinavian)

Swedish, Danish,
Norwegian,
Icelandic

Faroese

Italic Latin

Romance Italian, French,
Portuguese, Spanish
Rumanian

Catalan, Provencal,
Sardinian, Moldavian
Rhaeto -Romanic

Celtic Brythonic Welsh, Breton

Goidelic Irish (Gaelic)
Scottish (Gaelic)

Hellenic Greek

Table 5.B: Extract from Katzner’s Classification of Indo-European Languages

The Indo-European family is the largest family of languages whose speakers embrace

approximately one half of the word’s population. This language family was first

classified by William Jones, a British judge and scholar living in India. In his 1786

address to the Royal Asiatic Society, he notes:

67

“The Sanscrit language, whatever be its antiquity, is of a wonderful structure;
more perfect than the Greek, more copious than the Latin, and more exquisitely refined
than either, yet bearing to both of them a stronger affinity, both in the roots of the verbs
and in the forms of the grammar, than could possibly have been produced by accident;
so strong indeed, that no philosopher could have examined them all three, without
believing them to have sprung from some common source, which, perhaps, no longer
exists: there is similar reason ... for supposing that both the Gothick and the Celtick....
had the same origin with the Sanscrit;”

The general consensus is that original Indo-European civilization developed somewhere

in eastern Europe about 3000 B.C.. About 2500 B.C. it broke up and people migrated to

many different sections - some headed north toward Russia others west through Europe

to Italy, France, Germany and the British Isles.

Wherever they settled they seem to have overcome the existing population and imposed

their language upon them. Table 5.B shows a section of the Indo-European family and

its subgroups, including the two great classical languages of antiquity - Latin and Greek.

The two most common subgroups of the Indo-European family are Romance and

Germanic.

5.4.1 ROMANCE

Romance languages are the modern descendants of the language of the Roman empire -

Latin. As the armies of Rome extended the boundaries of the empire into much of

Europe, Latin was introduced everywhere as the new language of administration. As the

empire began to crumble and the Roman administration began to disappear, the Latin of

each region began to develop in an individual way (except in the domains of science and

mathematics where it remained the principal language until the seventeenth century).

Each developed individual characteristics as they were influenced by the speech of the

surrounding peoples.

The evolution of Romance languages continued into modern times. Many words still

exhibit remarkable uniformity. The following example illustrates this uniformity for the

words ‘bread’ and ‘three’:

68

Latin Italian Spanish French

panis pane pan pain ‘bread’

tres tre tres trois ‘three’

5.4.2 GERMANIC

By the first century B.C., Germanic peoples speaking a fairly uniform language were

living on both sides of the Baltic Seas. In time, East, West and North Germanic dialects

were developed. In the fifth century A.D. three West-Germanic tribes - the Angles, the

Saxons and the Jutes crossed the North Sea into Britain, bringing with them a language

that would be later known as English. The Germanic languages, like other family sub

groups, show remarkable similarities:

English Dutch German Danish

man man man man ‘man’

mother moeder Mutter moder ‘mother’

5.5 AUTHOR NAMES IN THE 1872 CATALOGUE

As mentioned earlier, the author names in the 1872 database are listed predominantly in

Latin. However sometimes the translation of an author name in other languages such as

English, Italian French etc. appears alongside its Latin equivalent. Some examples

include:

CARTESIUS, seu DESCARTES (Renatus)

CLERICUS, seu CLARKE (Samuel), M.A.

FREDRICK seu FREDERICUS

ROSSUS,ROUS,ROUSE,seu ROWS (Johannes),

Interiorus Tempi! socius.

69

In addition some variant spellings for author names appear:

GRAY, or GREY (Zachary), LL.D.

SPENSER, or SPENCER (Edmund)

SMITH or SMYTH (Edward), bp. of Down and Connor.

CHAMILLARD, ou CHAMILLART (Stephanus), S.J.

Since searching by author name is a popular search with users of this system and since

users tend to express their query in their own language, numerous author names will not

retrieve documents even if the author name exists in the catalogue. Reasons for this

include the fact that the author name could be listed in Latin (and not the users native

language) and the fact that the name could be listed under a variant spelling. By

providing some means of mapping names to their variant spellings and Latin

equivalents, multilingual access to the author names of the 1872 Catalogue can be

achieved. How then can the knowledge of language change discussed above be used to

produce such a multilingual tool?

5.5.1 SOUNDEX CODE

Phonetic changes, which describe sound changes in a language, have prompted the use

of a technique called the Soundex Code. This technique is used to locate all similar

sounding names by mapping them to names that are phonetically alike. While there are

some minor variations, the following algorithm describes the process.

70

5.5.1.1 Soundex Algorithm

All nonalphabteic characters (‘,-blank) are eliminated.
All lowercase letters are set to uppercase.
The first letter is moved to the phonetic code.
The vowels (A,E,I,0,U ,H ,Y and W) are removed.
The following replacements are made:
Labials:
Gutterals, sibilants:
Dentals:
Long Liquid:
Nasals:
Short Liquid:

B, F,P,V -4 1
C, G,J,K,Q,S,X,Z -4 2
D, T -> 3
L —> 4
M, N —» 5
R -» 6

Two or more adjacent identical digits are combined. Thus, LL —> 4, SC —> 2, MN —> 5.
The first three digits are concatenated to the phonetic code.

Table 5.C: Soundex Code Examples

5.5.1.2 Using the Soundex Code

The surnames and their corresponding soundex codes shown in Table 5.C illustrate how

many name variations are merged using the Soundex Code.

However this method of mapping similar names is unsuitable for use with the 1872

Search System for the following reasons. In order to be able to search for similar author

names while maintaining the consistency of the search and retrieval engine, each author

71

name would be assigned a code and then those author names having the same code

would be hashed to the same location in a hash table. For each search by author name

therefore, both the author name hash table and the soundex code hash table would have

to be searched. Also, the soundex code for a name does not always yield the expected

results as seen in Table 5.C where ‘H2’ and ‘R2’ yield names that are not related. This

could lead to inconsistencies in the search results. For this reason, an alternative

approach to author name access was considered.

5.5.2 COGNATES

If we were unaware of the existence of the Indo-European family, we could still

determine that the Romance languages descended from a common source by

systematically comparing their vocabulary. It is obvious by examining the word for

‘bread’ in the Romance languages (Section 5.4.1) and the word for ‘mother’ in the

Germanic languages (Section 5.4.2) that the words are regularly derivable from one

another. The existence of similarities in the form, meaning and sound of words among

languages, point to the presence of a common ancestor. The name given to words in

languages that have descended from a common ancestor is a cognate.

5.5.2.1 Author Name Cognates

We can see from groups of author names like ‘Clericus’ / ‘Clarke’ and ‘Fredrick’ /

‘Fredericus’ that these names stem from a common ancestor. These groups of author

names can then be termed ‘cognates’. Like all cognates it is easy to see the relations

between author name cognates. Often the stem of the author name remains the same and

changes occur only at the beginning and the end of names.

72

Because of the very strong similarities between the author names of languages, it was

deemed feasible to extract translation rules from the author name cognates and use them

during the search process to translate author names - especially those not listed with

their cognates. Examples include:

Name Listed Under:

CARDANO CARDANUS (Joannes Baptista)
KEPLER KEPPLERUS sen KEPLERUS (Joannes)

5.S.2.2 Translation Rules

The list of author names and their cognates were examined and for each author name /

cognate pair, rules depicting the differences between the names were automatically

extracted and recorded in a table along with their frequency of occurrence.

Table 5.D: List of Frequently Occurring Translation Rules

73

So, for the following author name / cognate pairs:

DESCARTES CARTESIUS GREGORY GREGORIUS

SMITH -> SMYTHAEUS
the rules derived are as follows (where ’#’ is taken to be the null string):

DBS—># I—>Y Y—>IUS

ES#—>ESIUS #^AEUS

These rules were then sorted in descending order of frequency, to be used by the system

to translate author names {Table 5.D}.

The program used to extract the rules automatically was written in Snobold and may be

found in Appendix B along with its results.

5.5.3 MULTILINGUAL AUTHOR TRANSLATION TOOL

In the author search window, the user is given the option to translate his author name

into other languages with the ‘latinize’ tool. The reason the tool is called such is that

most of the translation that occurs involves translation either to or from Latin. By

selecting this option, the user forces the system to examine the author name for

substrings present in the translation rules. If a one or more such substrings are found in

the author name, then the corresponding rules may be applied to produce new author

names. Each of the new author names produced by the translation process are checked

for validity. This is achieved by automatically searching the catalogue for these new

names - those that are present in the catalogue are considered to be valid - those that are

not present are taken to be invalid and are discarded.

The valid author names produced by the translator are then displayed in a window in

decreasing order of probability (those containing more frequently occurring translation

rules are taken to be more probable).

74

Figure 5.1: Results from ‘Latinizing’ the Name ‘Kepler’

Figure 5.1. gives the translations that the system found for the author name ‘Kepler’.

The Latin translation of ‘Kepler’ is listed (‘Keplerus’) along with a spelling variation of

that translation (‘Kepplerus’). The user can then search for one of the new author names

by selecting it and clicking on the ‘change’ button in the translation window. This

button changes the author name in the author search window to be the author name

translation selected by the user and the search may then be executed.

This author translation tool is the first step towards multilingual access to this

multilingual database. It is particularly useful in overcoming the confusion arising from

author names appearing in Latin while providing easy access to variant spellings of

author names.

75

CHAPTER 6 - LANGUAGE RECOGNITION

6.1 INTRODUCTION

In the previous chapter, a multilingual tool for accessing author names was described. In

this chapter a more universal form of multilingual access - searching the database by

language of entry is explored. Before this type of multilingual access could be addressed

in the 1872 Search System however, the languages of the catalogue entries had to be

recognised. Language recognition for the entries in the library database began in a

previous work where an attempt to correct spelling errors resulting from OCR

misrecognitions necessitated the recognition of the languages of the entries so that the

correct dictionaries could be incorporated in the interactive correction of spelling errors

[Clarke '93], The language recognition technique used claimed a success rate of 70.38%

and is described below. Improvement on this success rate was deemed necessary if

multilingual access was to be attempted successfully. The language recognition

algorithm was hence altered and a success rate of 92.56% achieved.

6.2. LANGUAGE RECOGNITION

Language recognition involves determining the language of a text. It uses knowledge

about the structure and components of a language and requires intuitive data to

differentiate between a number of languages. Knowing how humans recognise

languages can aid in the development of a language recognition algorithm.

76

6.2.1 HUMAN RECOGNITION

To deduce to which language a word belongs, a human delves into diverse fields of

knowledge - pragmatic knowledge (knowledge about the world around us),

morphological knowledge (how the word is structured), phonetic and acoustic

knowledge (how the word sounds in a human’s pronunciation), contextual knowledge

(to which language the surrounding words could belong) and general perception. The

human’s recognition process is generally accomplished using one of three techniques

[Glantz. '57].

1. The data pattern will be the exact equivalent of a pattern stored in the memory

system. As a human gains more experience and education, his knowledge bank

increases in size. In the case of language recognition, when an anglophone sees the

word ‘the’ for example, he knows immediately that the word is an English word

because it is contained in his knowledge bank.

2. Associated or collateral information is used to recognise the information contained in

the subject data. In language recognition terms, this may be interpreted in the

following way. If a human sees the word ‘tellement’ and has not studied the French

language, then he could still recognise the language as being French both by

comparison with languages already studied and by deduction. Deduction involves

general knowledge about the world (pragmatic knowledge) such as whether a word

could belong to a romance language or whether the word is written in an alphabet

other than that of the human’s native language.

3. Further information is sought if the first two methods have failed. In language

recognition, the human who is unable to recognise the given language, seeks further

information as to what the language could possibly be. This could involve simply

looking up a book or perhaps further research and study.

Machine recognition has, to date, been concerned with the first of these techniques -

exact equivalence, while modeling the human’s search for further information remains a

futuristic dream.

77

6.2.2 MACHINE RECOGNITION ALGORITHMS

The aim of a machine recognition algorithm is to simulate the human’s recognition

processes in determining the language of a text. Prior to the development of a language

recognition algorithm for use with the 1872 Catalogue, a variety of machine recognition

algorithms were examined to test their suitability for use with the catalogue. The

machine recognition algorithms reviewed here, use exact equivalence to recognise

languages.

6.2.2.1 Ingle’s Method (1976)

Ingle compiled a list of one or two letters in alphabetical order, quoting after them

numbers indicating the various languages in which they occur.

‘at’ 9,13,15,16 9 = Danish 15 = Norwegian

13 = Turkish 16 = English

To determine the language of a text, he extracted one or two letter words from the text,

noted in which language they occurred and eliminated languages not applicable to all

the one or two letter words [Ingle '76].

This method was tested on the 50 page corpus of the 1872 Library Database and the

success rate of 30.45% achieved proves how unsuitable this method of language

determination is for this database. Catalogue entries often consist of less than five words

meaning that there are few one or two letter words available in an entry to use in the

elimination of incorrect languages. The one or two letter words that are present are more

than often found in a number of other languages making the elimination of incorrect

languages impossible.

78

6.2.2.2 Cavner & Trenkle’s Method (1994)

Cavner & Trenkle used n-grams of characters to determine the language of a text

[Cavner & Trenkle '94], They used the 100 most frequent n-grams of length 1-5 and

achieved a success rate of 97% on documents longer than 300 characters. This method

would be unsuitable for the 1872 Printed Catalogue because the n-gram tables built up

from modern electronic dictionaries would not adequately represent the vocabulary used

in the catalogue which spans five centuries. Orthography too has also changed over the

centuries and many old French, English and German spellings may be found in the

catalogue which would also cause inconsistencies between the n-grams contained in the

catalogue and the modern n-gram tables.

6.2.2J Kulikowski’s Method (1991)

Kulikowski used frequent 2-3 character words in a semi-automatic recognition of nine

languages [Kulikowski '91], He tested his method on a line of text (40-80 characters)

and claimed a success rate ranging from 63% to 85% across languages.

6.2.2.4 Clarke’s Method (1993)

The machine recognition algorithms examined were found to be unsuitable for use with

the 1872 Catalogue. More intuitive knowledge about languages is required in the

determination of languages if machine recognition algorithms are to model the human

recognition process. In an attempt to achieve this, a small table of intuitive data

containing frequently occurring function words and morphemes was built up for seven

of the languages in the catalogue (Latin, English, German, Dutch, Italian, French,

Spanish). Machine recognition was then carried out on the entries of the catalogue using

this data [Clarke '93].

79

6.2.3 LANGUAGE RECOGNITION IN THE 1872 DATABASE

The language recognition algorithms described below avoid the traditional dictionary

look-up technique, which would not only have involved importing several dictionaries

(which are not readily available) but also time consuming exhaustiveness in the

matching process. Instead they use exact equivalence in conjunction with morphological

knowledge about languages to distinguish one language from the other.

6.2.3.1 Function Words

Function words include articles, prepositions, pronouns, quantifiers and demonstratives

and are employed as a recognition technique because nearly every sentence in the seven

languages contains at least one of those words. Examples of function words taken from

the seven languages may be seen in Table 6.A.

English German Dutch Spanish French Italian Latin
the der ik el le la seu
that ein een nos que del per
of von van ese une quel de

which auf af un de i quo
a mit der che qui nella ejus

Table 6.A: Sample Function Words

However adding every function word to the language table for each of the seven

languages would have defeated the purpose of avoiding the classical look-up technique.

Instead, only the high frequency function words are recorded in the table. Determining

these high frequency function words involved analysis of text in each of the languages

(or more precisely those languages that the author was not familiar with i.e. Spanish,

Italian, Dutch and Latin). Those function words that appeared to be occurring frequently

in the texts studied, were compared against a word frequency count of the catalogue. If

the frequency count in the catalogue also displayed a high count for those words, then

the words were entered into the appropriate language tables. The function words that

were duplicated in more than one language were then removed from the language tables

80

to facilitate the differentiation between languages. The following are examples of

function words occurring in more than one language:

la occurs in French, Italian, Spanish.

il occurs in French, Italian.

in occurs in Dutch, English, Italian, German.

de occurs in Latin, French.

of occurs in Dutch, English.

est occurs in Latin, French.

Yet function words alone were not sufficient for language recognition as the following

example illustrates:

Lafille est pratique

Since duplicate function words were omitted from the language tables, ‘La’ and ‘est’

cannot be used to recognise the language of this sentence. So how can this sentence be

recognised as being French? Adding nouns and verbs to the language tables would be

equivalent to creating full dictionaries. Hence the idea of morphology or word structure

was addressed.

6.23.2 Morphology

According to Chomsky, certain restrictions on the laws which a language must in some

sense conform to, are genetically inherited as part of the normal make-up of the human

mind [Chomsky '90]. There are restrictions with regard to the sound and structure of

languages which guide and limit a person’s acquisition of language and enable him to

differentiate one language from another.

The aim of studying morphology is to elucidate certain principles that apply to the

structure of words in all languages. A morpheme is the minimal indivisible or primitive

unit of a word [Matthews '9/]. The word ‘being’ may be divided into two morphemes -

81

‘be’ and ‘ing’. An inflection may consist of plurals, adverbials, past tenses, nominals

and affixes, to name but a few. The above word contains only one inflection ‘ing’ (‘be’

is the root). Hence the morpheme ‘ing’ may be described as an inflectional morpheme.

Insight into what language text is written in, may be gained from the study of these

inflectional morphemes. In most languages there is a degree of consistency found in

inflectional morphemes. For example inflectional morphemes in English occur at the

end of words while those in the Athbaskan language occur at the beginning of words

(e.g. Navaho). There is a reason for this. If inflectional morphemes are always marked in

the same place, they are more easily perceived or more easily recognised by people

learning the language. Inflectional morphemes are hence motivated. Similar arguments

may be applied in accounting for the ways in which languages differ.

Capturing inflectional morphemes for each of the languages and adding them to the

tables of function words already compiled, should enable the language recogniser to

perform more efficient distinctions between languages.

In order to achieve this, morphological research on the structure of the words in each of

the languages was required. The consistency of the inflectional morphemes (occurring at

the end of words in all the languages studied) was confirmed, and the more common

morphemes identified for each of the languages. Examples include:

‘elle’, ‘ique’

‘ing’, ‘hood’

‘mus ‘arum'

‘ista’, ‘encia’

‘chi’, ‘iamo’

‘keit’, ‘ung’

‘inge’, ‘je ’

occurring at the end of a French word,

occurring at the end of a English word,

occurring at the end of a Latin word,

occurring at the end of a Spanish word,

occurring at the end of a Italian word,

occurring at the end of a German word

occurring at the end of a Dutch word.

82

A manual comparison of the resulting morphemes eliminated any possibility of

duplication and the morphemes were then tested for inflection to determine whether

they occurred at the beginning or end of a word. The inflectional morphemes of the

languages studied occurred at the end of words. This is one of the reasons why suffixes

and not prefixes were included in the language tables. The other reason stems from the

fact that languages in a language family (e.g. Romance, Germanic) have common

prefixes since they descend from a common source. For example the prefix ‘con’ is

common to Italian, Spanish, Portuguese and French since these languages stem from a

common source (Latin). Adding prefixes to the language tables would make

differentiation between languages more difficult.

A hyphen preceding the morphemes in the table was used to differentiate them from the

function words. The morphemes were than added to the language tables {Table 6.B}.

Table 6.B: Sample Language Tables listing Function Words and Morphemes and
their Corresponding Frequency Counts.

83

6.3 LANGUAGE RECOGNISER

Once the language tables were compiled, a recogniser was developed in Snobol4 using

pattern matching. Pattern matching is the process of comparing two items of

information to determine whether one is similar to the other [Gimpel '73]. It is an

extremely powerful tool for string processing and was used here due to the fact that one

can specify where in a word a pattern occurs. For example, if the recogniser is looking

for an inflectional morpheme occurring at the end of a word, it can specify comparison

at the end of the words in the entry.

The recognition process carried out by the recogniser followed the algorithm described

below for each entry in a catalogue page [Clarke '93].

Algorithm - Version 1

For each title Do
For each of the seven language tables Do

For each of the elements in the table Do
If element contains a hyphen

Then element is a morpheme.
Strip the hyphen.
Compare the element with morphemes occurring
at end of title words.
If there is a match

Then language of title = language of table.
Else element is a word.

Compare the element with each of the title words.
If there is a match

Then language of title = language of table.
End.

End.
End.

End.

This process is repeated until a match is found or all the language tables have been

checked, in which case the language is labeled unrecognised.

When tested on a 100 page corpus of catalogue pages selected randomly from the

database, this recognition method achieved a success rate of 70.38% which although

84

encouraging left room for improvement. Its’ deficiency lay in the elimination of

duplicate function words and morphemes which prevented the recognition of a number

of the entries.

e.g. La femme est heureuse

‘la’ and ‘est’ have been removed from the French language table

as they also occur in Spanish and Latin respectively.

6.4 LANGUAGE TABLE SIZE

If duplicated function words and morphemes are to be included in the language tables,

the size of these tables will increase. How would this increased table size affect the

language recognition?

To test the effect the size of the language tables have on language recognition, the

algorithm was run repeatedly on a 50 page corpus of catalogue pages with varying

numbers of function words and morphemes in the language tables. Initially the

algorithm was tested with the ten most frequent function words and morphemes added

to the table. The test was then repeated for every additional 15 most-frequently

occurring elements added. The findings of this experiment are shown in Figure 6.1.

Elements in Table

Figure 6.1: How the size of the Language Tables affect the Language

Recognition Results.

85

As the number of elements in the language tables increase from 10 to 25 to 40 to 55, the

success rate in language recognition increases simultaneously. However a saturation

point is reached between 55 and 70 elements where the difference in the recognition

success rate lies at only 1%. This indicates that once the number of elements in the

language tables exceeds 55, additional elements will have little effect on the success rate

of recognition. This suggests that a cutoff point for addition of elements to the language

tables can be taken to be between 55 and 70 elements.

6.5 UPDATED LANGUAGE RECOGNISER

For the purpose of providing multilingual access, an attempt to improve the language

recognition results was made. A new method of comparison was incorporated into the

language recogniser to reduce the 30% loss in the recognition rate incurred with the

previous algorithm. In addition Portuguese and Irish were added to the seven languages

listed earlier - as they were found to occur occasionally in the catalogue. The new

language recogniser searches for more evidence before selecting a correct language for a

title. Because more than one piece of evidence (function word / morpheme) is used to

determine the language of an entry, duplicate function words and morphemes, which

were eliminated from the previous algorithm, are included in the language tables.

The titles are processed word by word and for each piece of evidence found in a

language table, a score of 1 is assigned to that language. In addition, more experience

with the languages concerned resulted in additional hand-picked elements to be added to

the language tables. Yet even with these new elements and duplicated function words

and morphemes, the number of elements contained in the tables remained small -

approximately 70 elements on average.

Once enough evidence has been found to determine the correct language of an entry i.e.

once the highest_language_score_so_far has reached some predefined threshold, the

language is assigned to that entry and the next entry is processed. A threshold is

86

employed so that processing of an entry can stop once enough evidence to determine a

particular language has been found. Various threshold values were tested on the 100

page corpus and a threshold of 5 selected as safe in the determination of a language. The

algorithm given below and the subsequent examples illustrate the working of this new

language recogniser.

Algorithm - Version II

For each title Do
While highest_score_so_far < threshold Do

While there are still words in the title Do
Get next word
For each of the nine languages Do

If word e table for that language
Then language_score = language_score + I End.

Else
Extract 2,3 and 4 letter suffixes from word.
If any of these suffixes e table for that language

Then language_score = language_score + 1.
End.

End.
If language_score > highest_score_so_far

Then highest_score_so_far := language_score.
End.

End.
End.

End.
End.

Examples:

The following examples explain how the algorithm works in more detail.

TITLE 1

“Leo Belgians, hoc est, naratio exordii, progressus, &c., reipub. foederatarum Belgii
regionwn. ”

The word ‘Leo’ is first extracted. It exists in none of the language tables and its suffixes
exist in none of the tables. So the next word in extracted. Again it does not appear in any
of the language tables, however its 2 letter suffix ‘-us’ appears in both English and Latin

87

and so both of these languages are awarded a score of 1. The highest language score so
far is 1 and since this has not exceeded the threshold (which is 5), the next word is
extracted. Neither the word ‘hoc’ nor its suffixes appear in any of the tables, so the next
word ‘est’ is extracted. This word is found in French and Latin common word tables and
so both languages are awarded a score of 1. Latin now has a score of 2 and so the
highest score so far becomes 2. The scoring continues until the highest language score
(Latin) exceeds the threshold 5.
The following list displays the evidence found by the algorithm.

Evidence List Language

Suffix -us
Word est
Suffix -ii
Suffix -us
Suffix -arum
Suffix -um

English, Latin
French, Latin
Latin
English, Latin
Latin
Latin

Language Scores ENGLISH:2; LATIN:6; GERMAN:0; DUTCFhO;
FRENCFI: 1; SPANISFLO; ITALIANS; PORTUGUESE:0.

TITLE 2

“Iphigenia in Aulis: from the Greek of EURIPIDES. Adapted to the modern stage by
J. W. Calcraft, with music by R. M. Levey. ”

Evidence List Language

Word in
Word from
Word the
Word of
Word to
Word the

Dutch, Italian, English, Latin German
English
English
Dutch, English
English
English

Language Scores ENGLISH:6; LATIN: 1 ;GERMAN: 1, DUTCH:2;
FRENCH:0; SPANISFhO; ITALIAN: 1; PORTUGUESE^.

Notes: With eleven of the words in the title processed, the correct language has been
deduced and no further processing is required.

88

TITLE 3

“Romances N° 275, 275, 368 Romancero y cancionero sagrados, por J. de RANCH A]”

Evidence List Language

Word y
Suffix -ados
Word por
Word de

Spanish, French
Spanish
Spanish, Portuguese
Spanish, Dutch, Italian, Latin, French, Portuguese

Language Scores ENGLISH:!); LATIN: 1; GERMANS; DUTCH: 1;
FRENCH:2; ITALIAN:!; SPANISH:4; PORTUGUESE:!.

Notes: All the words in the title have been processed and the highest_score_so_far (4)
has not exceeded the threshold. If the highest_score_so_far applies to only one language
- which it does here, then it may be taken to be the correct language for that entry.

The updated algorithm was tested on the same 100 pages corpus and a success rate of

88.21% achieved, meaning that the new algorithm improved the performance of the

language recogniser by 17.83%.

6.6 RESULTS

This improvement in language recognition is significant, however there was still room

for improvement. From the experience gained in using the recogniser, it was felt that the

function words contributed more to the recognition of the catalogue entries. If this was

the case, then a weighting scheme could be developed for the algorithm where function

words would carry a heavier weighting then suffixes.

6.6.1 FUNCTION WORDS VERSUS SUFFIXES

This hypothesis was tested by applying the algorithm to the 100 page corpus with only

function words used for recognition and again with only suffixes used for recognition.

The results of this experiment may be seen in Figure 6.2.

89

Figure 6.2: Function Words VS Suffixes

In Figure 6.2, W&S denotes function words and suffixes, W denotes function words

only, S denotes suffixes only, W/S denotes the recognition that words alone got right and

that suffixes got wrong and finally SAV denotes the recognition that suffixes alone got

right that function words got wrong. There are two deductions that we can make from

the graph.

1. Function words alone achieve a lower success rate than function words and suffixes

together. Therefore both function words and suffixes are required for successful

language recognition.

2. Suffixes alone achieve a success rate that is 30% lower than that of function words

alone. Also the recognition that suffixes gets right which function words gets wrong

(SAV) is I 1.88% while the recognition function words gets right that suffixes gets

wrong (W/S) is 30% higher (42.09%).

This verifies the hypothesis that suffixes are less powerful than function words in

language recognition.

90

6.6.2 A NEW WEIGHTING SCHEME

A new weighting scheme could then developed with the function words carrying a

heavier weighting than suffixes. But how much heavier should the weighting assigned to

function words be?

Again an experiment was carried out on the 100 page corpus to choose which weighting

scheme to assign to the algorithm. Figure 6.3 displays the differences obtained in

language recognition rate when unique function words were given a heavier weighting

than common words and suffixes.

Figure 6.3: How Weighting of Function Words Affects Recognition

This graph displays the recognition rate obtained with suffixes only (white block), with

function words only (light grey block) and with both suffixes and function words (black

block) where suffixes were given a weight of 1 and unique function words were given a

weight of 1,2,3 and 4 respectively. It may be observed that the recognition rate does not

improve as the unique function words are given a higher weighting than suffixes to

infinity (where the weighting for suffixes is 0 and the weighting for unique function

words is 1). The graph demonstrates that the optimum weighting scheme to be used with

the algorithm gives unique words a weight of 2, common words a weight of 1 and

suffixes a weight of 1. The final version of the algorithm with the new weighting

scheme is given below.

91

Algorithm - Version III

For each title Do
While highest_score_so_far < threshold Do

While there are still words in the title Do
Get next word
For each of the nine languages Do

If word g only one language table
Then language_score = language_score + 2.

Elseif word e more than one language table
Then language score = language_score + 1.
(for each of the tables containing the word)

Else
Extract 2,3 and 4 letter suffixes from word.
If any of these suffixes e table for that language

Then language_score = language_score + 1.
End.

End.
If language_score > highest_score_so_far

Then highest_score_so_far := language_score.
End.

End.
End.

End.
End.

This version of the algorithm with the new weighting scheme achieved a success rate of

90.35%. The following entries, which the previous algorithms failed to recognise, have

been recognised with this algorithm.

TITLE 4

“trad, en Franc, par laques de Miggrede ”

Evidence List Language Weighting

Word en Dutch, French 1
Word par French 2
Word de Spanish, Dutch, Italian, Latin, French, Portuguese 1
Suffux -ede Dutch 1

Language Scores ENGLISH:0; LATIN: 1; GERMANS; DUTCH:3;
FRENCH:4; ITALIAN: 1; SPANISH: 1; PORTUGUESE: 1.

92

TITLE 4

“et cum notis mho. Crerii [tom. I, p.l Musei Philo log. et histor.]”

Evidence List Language Weighting

Word et French, Latin 1
Word cum Latin 2
Word et French, Latin 1

Language Scores ENGLISH:0; LATIN:4; GERMAN:0; DUTCH:0;
FRENCH:2; ITALIAN:0; SPANISH:0; PORTUGUESE:0.

6.6.3 SYSTEMATIC EXTRACTION OF FUNCTION WORDS AND SUFFIXES

There is a final step to be taken in the improvement of the language recognition. The

elements in the language tables, which were selected manually, were then compared to a

frequency list of words in the catalogue. However with 90.35% of the entries in the

catalogue correctly recognised - dictionaries for the various languages could be built up

from the entries themselves. A program in Snobol4 was written to select the words in

the titles for each of the recognised languages and place them in appropriate

dictionaries. From these dictionaries, the 70 most frequently occurring function words

and suffixes were selected and entered into the language tables'. The algorithm was run

once more on the 100 page corpus with the new weighting scheme and the new

language tables and a success rate of 91.32% achieved. One and two word titles were

then removed from the corpus which raised the success rate to 92.56%. Table 6.C lists

the search results obtained for the 100 page corpus.

1 The language tables may be found in Appendix C.

93

ENGLISH

LATIN

FRENCH

DUTCH

GERMAN

ITALIAN

SPANISH

PORTUGUESE

LATIN&FRENCH

LATIN&ENGLISH
! ■ : : : ::: :: : : ■: : :: : :::

LATIN &GERM AN

ENGLISH&GERMAN

ENGLISH&DUT<

ENGLISH&ITALIAN

DUTCH&FRENCH

2617

1221

251

102

73

52

24

2

12

6

2

4

1

1

1

1

4370

.56

.27

.095

.025

.025

.025

100%

Recogniser % Correct

2486 94.99

1118 91.56

219 87.25

97 95.09

68 93.15

43 89.58

12 50.00

2 100.00

: : :

265

4370

Table 6.C: Language Recognition Results obtained for 100 Page Corpus

The Actual column list the entries that occurred in the eight languages for the 100 page

corpus. Some of these entries contained two languages e.g. ‘English & Latin’. The

%Total column gives the percentage of entries occurring in the eight languages. The

languages determined by the language recogniser are given in the Recogniser column

and the %Correct columns displays the correct recognised entries. Those entries that

could not be recognised by the language recogniser are listed in the Unrec

(unrecognised) row. These unrecognised entries constitute 6.06% of the total number of

recognised entries.

94

The confusion matrix given below shows exactly which entries the recogniser

recognised both correctly and incorrectly {Table 6.D}.

TOTAL

122 2617

219 0 0 27

U D

L P 2 0

L&E

E&I

TOTAI

Table 6.D: Language Recognition Confusion Matrix

Reading from left to right, we see that 2486 of the English entries were recognised as

such, 5 of the English entries were recognised as Latin, 2 as Dutch, 2 as Portuguese and

122 were not recognised at all (‘unrec’). Most of the languages presented in the

confusion matrix follow suit in that few of the languages were recognised incorrectly.

Most of the errors occurred as a result of the recogniser not being able to determine the

language of an entry and hence marking the entries as unrecognised. This means that

95

although the user will be unable to retrieve the documents that have not been recognised

- at least they will retrieve few documents that have been recognised incorrectly.

The 92.56% success rate achieved by the language recogniser compares favourably with

the other machine recognition methods describe in section 6.2.2. - especially since the

100 page corpus consists of noisy OCR output and the titles of the entries are short

being 13 words (approximately 80 characters) in length on average.

6.7 SEARCHING THE DATABASE BY LANGUAGE OF TITLE

The 92.56% success rate of the language recognition algorithm enabled a major step to

be taken towards multilingual access to the database. The languages of each of the

entries were indexed in the same way the titles were indexed and a language hash table

was compiled with each language pointing to the entries containing that language. Then

a search was developed to allow users to search on entries in a particular language,

thereby providing the user with access to entries in different languages.

However, the number of hits returned for each of the languages was far too large for

users to browse through. For example, a search on ‘language = English’ returns 44,713

entries while a search on ‘language = Latin’ returns 121,357 entries.

How many users can afford the time to search that many entries?

It was for this reason that a language filter search was developed. The filter search

ensures that the language search be used only in conjunction with another search.

Examples are given below:

Author = Dura* and Language = French (21 hits)
Author = Goethe and Language = German (9 hits)

96

Title = euclid* and Title = geometr* and Language = Latin

(16 hits)

Location = Amsterdam and FromDate = 1600 and ToDate - 1750

and Language = Dutch (50 hits)

Location = Amsterdam and Language = English (8 hits)

In this way the number of documents retrieved is more manageable in size for the user

to browse through. Figure 6.4 displays the combination search window which now

enables the user to search by language of title.

Boolean Query

TITLE = EUCLID* AND TITLE = GEOMETR*

Date of publication
From

Language LATIN

Figure 6.4: Search by Language of Title

Language recognition has enabled an important step to be taken towards multilingual

access to the 1872 Library Database. Users have the choice of refining their searches to

their own native language or to the language of the book they are looking for. Users of

any of the recognised languages (English, Latin, French, Italian, Portuguese, Dutch,

Spanish, German) can now enjoy searching the catalogue for titles written in their own

language.

97

CHAPTER 7 - THE IMPROVED USER INTERFACE

7.1 INTRODUCTION

Learning to use a computerised system can be frustrating with users often contracting

such maladies as terminal terror, computer consternation and digital dismay! However,

help for the user comes in the form of a user interface. The interface is the part of the

system the user sees, hears and communicates with [Sutcliff '88], Therefore it can make

a substantial difference in learning time, performance speed and user satisfaction of any

system. In information retrieval, the interface combines with a retrieval engine to form

an IR system. The best retrieval engine is however useless without a good interface.

What then can be defined as a ‘good’ interface.

According to Sutcliff a good interface must match what the user wants to do, must be

easy to learn (and easy to remember after a period of disuse), must perform effectively

and must satisfy the user. How then, can an interface that satisfies these criteria be

designed?

7.2 INTERFACE DESIGN

Interface design is the process of designing interface software so that computer systems

are efficient, easy to use and do what people want them to do. The reason interfaces are

‘designed’ at all is that they are the only part of the system the user sees. If an interface

is poorly designed and difficult to use, it may result in user frustration, poor system

performance and perhaps even user rejection.

Users have, in the past, accepted poor interfaces but this is unlikely to happen either at

present or in the future as we become exposed to attractive and easy-to-use software. In

98

addition, computer systems are becoming more and more interactive, meaning that more

and more code is devoted to interface handling. For these reasons, good interface design

is regarded as essential in the development of interactive systems, if they are to be

accepted by today’s users.

7.2.1 DESIGN ISSUES

Every designer wants to build a high quality interactive system that is admired by

colleagues, celebrated by users, circulated widely and frequently imitated [Shneiderman

'87]. However, designing an efficient and user-friendly interface is a difficult task. After

all, design is not an intuitive process [Sutclijf \5#]. Sutcliff claims that design, for most

people, has to be taught and the following are some of the important qualities for

interface design that he outlines.

1. Consistency: is the similarity of patterns present in the interface. Consistency reduces

the amount of learning required by the user and since humans recognise similar

patterns easily, it improves usability of the system.

2. Compatibility: There should be compatibility between the interface and the user’s

expectation of it. This follows on from consistency. If the new interface design is

compatible with user’s previous interface experience then again learning is reduced

and the interface will be easier to use.

3. Adaptability: The interface should adapt to its user in various ways. It should allow

the user to be in control and hence to work at his own pace. It should also adapt to

users skill levels by providing extra support for novice users and more challenging

options for expert users.

4. Economy Interfaces should be designed so that they carry out an operation in the

minimum number of steps necessary.

5. Guidance Not Control The interface should guide users through their tasks but not

take control of these tasks.

6. Structure Structuring interfaces reduces complexity because humans process

information by classifying and structuring it within a framework of understanding.

99

These principles have been drawn from human psychology and can be adapted in the

design of any interface to improve effectiveness.

7.3 THE NEW INTERFACE FOR THE 1872

LIBRARY CATALOGUE

The interface for the 1872 Search System was first designed in 1993 [Culligan '93]. In

the design of the interface, Culligan has met some of the requirements outlined above in

the design issues. The interface is consistent and structured - all the main options are

presented to the user in a uniform fashion via menus; all data retrieved by the system is

also presented consistently using windows (search results window, bitmap window,

display entry window). The interface is also economical - it allows users to carry out a

very fast search in just three steps - the selection of a search type (author, title, series or

combination), the formulation of a search statement and the confirmation of the search

request (by clicking on the OK button in the search windows to execute the search).

However this interface fell short on some of the important design issues - namely

adaptability and guidance. The interface does not cater for users at different skill levels.

Instead all users are assumed to have the same high level of experience with the system.

No guidance or support is provided for the user either initially, in the formulation of a

search statement, or on completion of an unsuccessful search. In addition, no knowledge

about the catalogue characteristics - the fact that it is multilingual, uses a Latin alphabet

and contains a variety of orthographies is presented to the user. This makes it difficult

for users to carry out successful searches.

These limitations have led to the development of a user-oriented interface for the 1872

Search System. Although the basic layout of the interface has not been changed, many

new features have been added to provide the adaptability and guidance required by

today’s users {Figure 7.1}.

100

File Search Display View Diets Joels

Search Results Matching Entries: 21 Entry: 11
_ Works selected' xi Ih a. biography of the author, by D. L. Pur«es. Edinb 1869 p
_ His poetical works [ttiith a memoir of him by the rev, John Mi Iford], Lond 1866
_ His poems, with life, by Sam. John°on [rot. XI. p. 345 of the Works of the English poets, by j

A discourse of the contests and dissensions betxeen the nobles and commons in Athens a
A tale of a tub; [with! an account of a battel betaeeen the antient and modern books in St.
Les trois justaucorps: conte bleu, tire de t.anglois du rev. mr, J, Swif. [par Rene Mace! [dan.i
A key to the Tale of a tub; with some account of the authors, the ocasion and design of wrr~
Soaee remarks on the Tale of a tub; [aeith) Mully of Mountoaen, and Orpheus and Euridice.
The Swan tripe-club in Dublin; a satyr [anon.I Dubl 1706

Write One Write All

AuthorName: swift (Jooathan),

|
Johnson and Alex.. ChalmersJ. Q. g- TJ-

— A discourse of the contests and dissensions be
tween the nobles and commons in Athens and
Rome, with the consequences {1701} [aww.J [vol.
m. p. 2io, State Tracts on the revolution in 1688
and the reign of William III.] RR. cc. 14.

— A tale of a tuba fwithlan account of a battel be- 7 :

-
k

.................................. I
1872 Online Catalogue!

Trinity College Dublin

age: r__s\S695 Entry; 4

Figure 7.1: The New 1872 Search System Interface

7.3.1 DESIGN STYLES

There have been several design styles created for today’s interfaces - menus, icons,

form-filling, command languages, windows etc. Each design style has different qualities

and capabilities and so appropriate design styles must be chosen with care to match the

user population.

Most interfaces utilise more than one design style to achieve the required level of

sophistication for the user population. The design styles chosen for the 1872 Search

System are described below.

101

7.3.1.1 Menus

A menu is a simple dialogue type suitable for inexperienced users. Menu selection

systems are attractive because they can eliminate training and memorization of complex

command sequences and are typically activated by a single keystroke [Shneiderman

‘87], Yet using the menu selection style does not guarantee that the system will be easy

to use. Consideration and testing will be required so that the menu items fit logically

into categories and have readily understood meanings. The menu for the new 1872

interface is displayed below {Table 7.A}.1 The first row is all that appears on the main

window but by clicking on one of the elements in this row, the corresponding menu

appears.

FILE SEARCH DISPLAY VIEWDICTS TOOLS SUBJECTS HELP

Exit by Author Entry Text *English ♦Notes ♦View ♦Index

*Create by Title *Latin ♦TermFreq ♦Build General

*Open by Series ♦French ♦PrevSearch ♦Find Using

Help

*Save Combination ♦Dutch Keys

*Print GotoPage ♦German Product

♦Portuguese Info.

♦Italian

♦Spanish

Table 7.A: Menu Options in the New User Interface

7.3.1.2 Icons

Pictures or icons can be used to represent functions of a system. To select a function the

user points at an icon with the mouse and clicks the mouse button. Icons are very

effective techniques if the icon pictures are realistic because the learning time is reduced

and operation becomes very easy for inexperienced and experienced users alike [Sutclijf

1 New features are indicated with an asterisk.

102

88], Seeking to make the form of a symbol reflect its content or function is not a new

concept. Leibniz wrote:

“In signs one sees an advantage for discovery that is greatest when they express the exact nature of a thing

briefly and, as it were, picture it; then, indeed, the labour of thought is wonderfully diminished”

[Kreiling '68],

There are five icons present in the 1872 interface.

Move up an entry on a page

Move down an entry on a page

View entry surrounding current entries

Write one entry to a file

Write all entries to a file

The ‘write-one-entry’ and ‘write-all-entries’ icons display a page and a quill (in an

attempt to portray the era of the catalogue). To avoid user misinterpretation, text

describing the functions of these icons is placed under the icons. In addition,

information messages appear at the bottom of the main window for all five icons.

7.3.1.3 Windows

Windows subdivide the screen space so that different operations can be taking place on

the screen at the same time. There is evidence that people can work concurrently on

several tasks [Sutclijf '88] and windows enable this multitasking to take place. Windows

have many uses. They can be used for messages, work areas and help. They can remain

static on the screen or pop-up when initiated.

103

All the windows that have been added to the interface - term frequency window,

dictionary windows, notes window etc. are pop-up windows and disappear once the user

has finished working with them. The new editor window which displays the text version

of the entry {Figure 7.2}, once opened by the user, can remain open should the user

wish to edit text. With the bitmap window in view, the user can inspect the correct

version of the entry while correcting the mistakes in the corresponding text version.

A: SWIFT
F: (Jooathan),
E: D, D. (Doctor of Divinity), dean of St,
Patrick's, Dublin.
T: _ A discourse of the contests and
dissensions betxeen the nobles and
commons in Athens and *
Rome, with the consequences (1701)
[anon.) |vol.
III. p. 21 o, STATE.LRACTS on the
ro i ini i itirm in 1 RRfl

Dismiss Edit

Figure 7.2: Editor Window

7.4. DESIGN FEATURES

Once the design styles have been selected, decisions on the design features of an

interface may be addressed. In their review of on-line search interface design Vickery &

Vickery outline the design features found in today’s on-line search interfaces [Vickery &

Vickery '93], Some of these features have been used in the design of the interface for the

1872 Search System and are described below.

104

7.4.1 INFORMATION ON USERS

Knowledge on user characteristics is essential if a system is to cater for the needs of its

users. User characteristics include user’s search experience, knowledge of the search

area and user’s preferences. These characteristics largely depend on the type of user,

whether they be:

• naive - users who have not previously encountered computerised systems. These

users may show fear of computers and are usually unfamiliar with the search

operation.

• novice - users with some experience of computer systems, although they may be

unfamiliar with the current system. These users will have little knowledge or

experience with the new system and will be liable to make mistakes. Novice users

need a high level of support.

• skilled - users who have gained considerable experience with the system and are

proficient operators. Most skilled users become such over time and require rapid-to-

use interfaces.

Since the 1872 Search System was developed for use within the library at Trinity

College Dublin, most of its users would have had experience with other searching

systems e.g. DYNIX. For this reason the type of user considered in the design of the

interface excluded the naive user and included the novice and skilled user.

This meant that the support for searching provided by the interface had to be optional as

novice users require a high level of support while skilled users require support to a

lesser degree.

7.4.2 MODES OF ENTERING QUERIES

Vickery & Vickery outline two common modes of entering queries to on-line interfaces:

(a) The user may be asked to enter a query as a series of search terms. Each term is

processed and AND’d or OR’d with the next term until the entire query has been

105

processed. This mode of entering queries is present in the INSERM interface [Halpern

& Sargeant 'S8].

(b) A refinement to this mode is to present the user with the field names contained

in the database. The user can then attach his query terms to the appropriate fields. The

SHERLOCK interface displays this mode of query input [Fiz Technik '91}.

Since the 1872 Search System interface was designed with both the novice and the

skilled user in mind, ideas were taken from the two query input modes described above.

Templates reflecting the fields present in the 1872 catalogue are provided as search

windows to the database. For example, author, title and series windows are available

which conduct searches on the corresponding fields of the catalogue when the user

inputs query terms. This method of entering queries is extremely easy to use and is

hence suited to the novice user as the search field is automatically specified.

A combination search window is also available in the 1872 Search System interface

allowing the user to construct a Boolean query using a combination of fields. The user

must specify the field to be searched with each query term he enters. Each query term

and field is then AND’d or OR’d to the next query term and field until the query is

processed in full. The combination search allows the skilled user to specify complex

queries while the novice user may avail of it to construct simpler queries.

Combination Queries -

Simple: title = ‘Thames’ and location = ‘London’

Complex: (author = ‘Smyth’ or ‘author = ‘Smithe’) and (title = ‘engine’ or title

= ‘engineer’} and (location = ‘Cambridge’ or location = ‘Oxford’ or

location = ‘London’)

Now, the improved user interface provides an even simpler means of entering queries.

With the expert subject trees option, automatic query formulation is available. All the

user is required to do to input a query is to select a relevant term from a subject tree of

interest and click on the query button. A Boolean query statement is then formulated

106

containing not only the relevant term but all the terms lower than it in that subject

hierarchy.

7.4.3 LEXICAL INFORMATION / DATABASE TERMINOLOGY

A lexicon is any repository of information about words and terms in the database. It may

be presented to the user in alphabetical order, or in a hierarchical or even diagrammatic

form and provides both linguistic and domain knowledge about the database concerned.

Allowing users to browse through lexical information is important as it gives the user a

feel for the database and its contents. Even though concepts of browsing are becoming

more sophisticated, there is still a lingering tendency to see browsing in contrast to

direct searching - to see it as a casual, don’t-know-what-I-want behaviour that one

engages in separate from regular searching [Bates '59],

However others - including Ellis - see browsing as being a semi-structured searching

and recommend that it be available in automated systems [Ellis '89],

Browsing in the 1872 Search System is especially important for two reasons:

1. The vocabulary present in the database dates back to the fifteenth century. Not only

have the spellings of words changed such as the English word ‘catholic’ being

previously spelled as ‘catholick’ but also some of the words we use today did not

exist at the time the catalogue was compiled and are therefore missing from the

database. For example the word ‘sun-dial’ is not present in the catalogue, however

many books on sun-dials are present in the database and may be found by looking up

words such as ‘gnomon’ or ‘horologium solarium’.

2. The 1872 database consists of a number of languages yet users tend to be familiar

with just one or two of these languages. Making lexicons for the common languages

in the database available could encourage the user to browse through these lexicons

and conduct searches in languages he would otherwise have ignored.

107

avant 33
avantage 1
avantages 5
avantageux 1
avantessur 1
avantl'invasion 1
avantle 1
avantnotre 1
avantures 8
avarica 1
avaritia 1
avaritiam 1
avaux 1
avaytures 1
avcardinal 1
avctvm 1
avcvnes 1
avcvns 1
avcvpe 1
avdiance 1
avdite 1
avec 1G58

t aveeadditions 1

Dismiss

Figure 7.3 Browsing through the French Lexicon

For these reasons in particular, lexicons were constructed for each of the languages

recognised in the database i.e. English, Latin, French, German, Spanish, Italian, Dutch

and Portuguese. These lexicons were made available to the searcher in the ViewDicts

menu in the interface. From ViewDicts, users may select one of the languages and

browse through the lexicon that appears in that language window {Figure 7.3}.

7.4.4 RELATIONS BETWEEN TERMS

A display of semantic links between terms can aid the searcher in the initial choice of

search terms as well the modification of an unsuccessful or unsatisfactory search

statement. The most common relations used are those found in a standard thesaurus - the

synonym relation and the broader/narrower term relation.

Interfaces can use any set of these relations. The KIWI interface for example makes use

of the ‘part-of, ‘component-of, ‘cause-of and ‘application-of relations [Larsen '87\.

Other interfaces use the simpler ‘related-term’ relation which subsumes a number of

relations.

108

Related terms in the 1872 Search System interface are presented to the user in tree form

via semantic links as described in chapter 4. The general ‘related-term’ was chosen to

link the terms because 1) the expert user is allowed to build a tree of knowledge himself

and the aim of the tree construction option is to make it easy for him to do so. Reducing

the type of links to just one eases the expert’s task and increases the flexibility of the

subject tree. 2) One of the thrusts behind the provision of subject trees was not only to

relate terms within a language but also to relate terms across languages. The use of the

‘related’ term relation avoids incorporating additional relations for this purpose.

The provision of the subject trees option in the 1872 Search System interface helps the

user get a feel for the variety of domains present in the catalogue and the scope of

possible searches as well as aiding him in the formulation of a search statement.

7.4.5 MULTILINGUAL PROCESSING

There are many different levels of multilinguality present in today’s interfaces. These

include multilingual screens, acceptance of users’ queries in more than one language

and the translation of users’ queries into the language of the database [Vickery &

Vickery '93}.

The 1872 Search System differs from others in the fact that the database itself is

multilingual and since the retrieval system uses a free-text search, the user may enter a

query term in any of the languages contained in the database (except for those in a non-

Roman alphabet). In addition a multilingual tool to find translations of author names is

available in the author search window (see chapter 5). There is however no provision for

translating terms from one language to the other in this interface for a number of

reasons.

(a) Machine Translation Difficulties

The linguistic key to machine translation is the resolution of ambiguity [Bennet et al

'86], Lexical ambiguity arises where multiple senses for a single word are common in

all languages. For example the French word ‘garpon’ translates to either ‘boy’ or

‘waiter’ in English. Context would be required to select the appropriate translation.

Such ambiguities contribute to the reasons why we are still far from the day when

109

machines will be able to translate texts with the same fluency and accuracy as human

translators.

(b) Lack of Appropriate Dictionaries

The age and orthography of the 1872 database means that modern electronic dictionaries

are unsuitable for translation as many of the terms present in the database are absent

from modern dictionaries and visa versa.

(c) Number of Languages Present

Due to the numerous languages present in the database, transfer-based translation across

languages would be extremely time consuming. Even if appropriate electronic

dictionaries were available, for just seven of the languages in the database, 7*7

dictionaries would be required in the translation of keywords.

The European Commission investigated the use of an artificial language -

INTERLINGUA in an attempt to avoid incorporating so many dictionaries to translate

their documents. Documents in the source language were translated into

INTERLINGUA and then back into the target language. However INTERLINGUA

requires the definition of language-free interlingual representation and therefore poses

serious practical difficulties for use with the 1872 database [Bennet et al '86].

7.5 DESIGN FEATURES SPECIFIC TO THE

1872 CATALOGUE

In addition to the various design features suggested by Vickery & Vickery, specific

design features were developed for the interface of the 1872 Search System. Some of

these additional features were designed in the light of experience gained from using the

system. Others were prompted by suggestions from users and librarians.

110

7.5.1 BIBLIOGRAPHY MANAGER

This option in the interface provides facilities for both the building of a bibliography

and the printing and saving of bibliography files. These options may be found under the

File menu in the main window.

Users can create their own personal file and add individual entries from the search

results or the entire result of a search to this file by clicking on the ‘write one’ or ‘write

all’ icons in the main window respectively {Figure 7.1}. When one of these icons is

pressed, the full entry including author name, title, imprint and shelf mark is saved to

the file.

Any number of personal files may be created by the user and existing files may also be

opened should the user wish to add to them. On completion of his search session with

the system, the user may either print his file directly {Figure 7.4} or save it to a floppy

disk using the “print’ and ‘save’ options in the File menu.

Print File |

FileName cork.lib

aritht .lib
bosc.lib
compo.lib
compu.lib_________ |1|
Icork.lib
excheck.lib

Figure 7.4 Printing a User File

This bibliography manager reduces the amount of ‘idle time’ the user spends with the

system by eliminating the need to take down references to any relevant books found.

Instead records of relevant books may be kept in the user’s own personal files at the

touch of a button.

Ill

7.5.2 EDITOR

An editor was developed for the 1872 Search System interface with the goal of reducing

the effects Optical Character Recognition errors have on searches. Because of the letters

that have been misrecognised by OCR, some of the words and hence some of the books

titles will never be retrieved by the user. By providing an editor, the misspellings caused

by OCR errors may be corrected by the user, should he come across them while

searching the database. These corrections can then be saved resulting in a continuous

improvement in the database and hence in the retrieval of information.

There was an option already available in the interface which allowed the user to view

the entry selected. This option was originally provided so the user could see the entire

entry as only the first line of each entry appears in the search results {Figure 7.5}.

1^ > itr j

_ A discourse of the contests and
dissensions betxeen the nobles and
commons in Athens and
Rome, with the consequences (1701)
[anon.I Ivol.
III. p. 21 o, STATE.LRACTS on the
re1 iolution in 1688
and the reign of William III.]

Figure 7.5 Display Entry Window

The editor was built on top of this option to allow users to correct any OCR errors

present in the entry. Clicking on the ‘edit’ button in the new display entry window,

causes the entry to be broken down into its constituent fields - ‘A:’ for author name, ‘F:’

for first name etc.{Figure 7.6}. By scrolling up and down the window, corrections to

any one of these fields may be made by the user and then saved by clicking on the ‘save’

button. The changes are not saved to the actual file from which the entry originates, but

to a log file containing updated files only. This file is used by a system administration

file (written in Snobol4) to update the database files once a month, say. The

112

administration program searches through the database files for the entries listed in the

log file. Corrections are copied from the log file to the corresponding database files and

the system is then reindexed. Reindexing the system causes the misspellings in the

entries to be overwritten and their correct counterparts recognised for searching.

Eventually the errors produced by OCR will be erased by this process.

* Text of

A: SWIFT
F: (Jooathan),
E: D. D. (Doctor of Divinity), dean of St.
Patrick's, Dublin.
T: _ A discourse of the contests and
dissensions betxeen the nobles and
commons in Athens and *
Rome, with the consequences (1701)
[anon.] [vol.
III. p. 21 o, STATE.LRACTS on the
rci-1 ini i itirtn in 1 RRR i

Dismiss Edit

Figure 7.6 Editor Window

7.5.3 LIBRARIAN’S NOTES

Any comments about the system - how to use it effectively, what information is

contained in it, what subjects and periods it spans etc. may be recorded in the librarian’s

notes window. These notes may be viewed by the user under the Tools menu in the

interface and users are at liberty to add their own comments on the database. In this way

users and librarians can share their experience and advice with fellow users.

7.5.4 HELP FACILITY

There is a powerful help facility provided by GPF - the interface development tool. The

help pull-down option provided comprises a help index, general help, using help, keys

help and product information. The help index allows the programmer to write his own

help files for the various options he develops with the interface builder. The help index

113

for the] 872 Search System interface is illustrated in Figure 7.7. General help, keys help

and product information also provide space for the developer to add notes and help

about the system.

Add Entry To File
Bitmap Window
Building Subject Trees
File Create
File Open
File Print
File Save
Goto Page
Notes Window
Previous Search Results
Saving Entries
Search Results
Term Frequency

Figure 7.7 Help Index for the 1872 Search System

But the most powerful help tool provided by GPF is the information message. The

programmer can define an information message for controls, menu items, and windows

within the application. When the user passes the mouse over any of these items, the

information message appears in the bottom of the main widow. This means that the user

is constantly informed of the options available in the interface. The following are two of

the information messages that appear when using the Search System:

Display Entries Surrounding the Current Entry

Write all displayed entries to your personal file

114

7.6 INTERFACE EVALUATION

Evaluating an interface is considered an ongoing task. Search time, search accuracy,

learning time and ease of use are just some of the variables that need to be examined

over a period of time. Measures of evaluation may be either objective i.e. derived from

controlled collections of data - or subjective, based on intuitive judgements and opinions

gathered from users. Objective evaluation may be obtained by employing techniques

such as video recordings, system logs and questionnaires.

Subjective evaluation has been carried out on the 1872 Search System interface and

improvements to the interface have been made as a result of this evaluation. Such

improvements include the incorporation of an editor, a bibliography manager and a

more comprehensive help option. Although perfection is not attainable, percentage

improvements are possible and worth pursuing [Shneiderman '57], Once the 1872

Search System goes ‘live’ in the library at Trinity College Dublin, an objective

evaluation of the interface will be carried out. For this purpose, a questionnaire adapted

from Shneiderman will be used {Appendix D}. It is hoped that with user cooperation,

further improvements may be added to the interface to improve user satisfaction and

system performance.

115

CHAPTER 8 - CONCLUSIONS

8.1 INTRODUCTION

This thesis was aimed at providing user-oriented access to a multilingual database. In

this conclusion, an initial step towards the evaluation of the improved search system will

be taken to determine whether or not the goal of this thesis has been achieved. Complete

evaluation will be postponed until the system has gone ‘live’ in the library at Trinity

College Dublin. Two important questions will be posed in the evaluation of the system.

Is the system user-oriented? Does the system improve access to the 1872 Catalogue?

8.2 A USER-ORIENTED SYSTEM

The first step in the evaluation of the system is to determine whether it has been

designed with users in mind and if so, in what way. Rouse and Rouse conducted an

extensive survey of the literature on information seeking behaviour of users and noted:

“Because information needs change in time and depend on the particular information
seeker, systems should be sufficiently flexible to allow the user to adapt the information
seeking process to his own current needs.” [Rouse & Rouse '84].

If then, a system is to be user-oriented, it should provide flexible support for the users so

they can adapt the system and search strategies to their needs. In the 1872 Search

System, support for the user comes in the reduced effort required to use the system, the

tools provided to simplify the searching process and the attention paid to the various

user types utilising the system.

The naive user, whose knowledge of the system and search strategies is limited, may

avail of the comprehensive help facility. Modes of inputting queries on author name,

116

title and series are simplified while query formulation on subjects can be automatic with

the aid of the subject trees. This means that successful searches can be carried out with

little or no previous experience with the system.

The novice user can avail of some interactive tools to improve his retrieval of

information. Term frequency information proves useful in determining the importance

of query terms while previous search results highlight the various search strategies in

use. In addition to the search by author, title and series, the novice user may conduct

some combination searches which combine the above searches with searches by

language of entry and date of publication. Browsing through the subject trees built by

expert users can enhance the novice user’s search results by encouraging him to search

for titles in a variety of domains.

For the skilled user, the possibilities of creating complex searches are endless with the

combination search option. The interactive tools help the skilled user, who has

considerable experience with the system, predict the outcome of a search statement.

Skilled users may also observe the structure of the subject trees and are encouraged, in

doing so, to build up knowledge trees of their own - in their areas of specialisation.

The support provided for the user types has led to greater flexibility in their search

statements and better search results. Automatic and interactive support is provided so

that each user may choose the support required to adequately express his information

need. The system can therefore be described as user-oriented.

8.3 IMPROVED ACCESS TO THE 1872 CATALOGUE

The next step in the evaluation process of the 1872 Search System is concerned with

access to the database. Has this new improved system actually improved access to the

entries of the 1872 Catalogue?

117

Unlike other information retrieval systems the 1872 Search System addresses some of

the natural language processing problems in information retrieval and in this way,

provides better access to the database. Montgomery declares that:

“In theory, the relationship between linguistics and Information Science is clear and
indisputable.... In practice however, the relationship between the disciplines of
linguistics and information science has not been exploited” [Montgomery '72].

In the development of a new user-oriented 1872 Search System, the relationship

between linguistics and information science has been explored under the following

headings:

8.3.1 GENERAL ACCESS

Automatic and interactive query expansion techniques have improved access to book

titles listed in the 1872 Catalogue. The query expansion techniques have ensured that

OCR errors, variant spellings and synonyms are catered for in the user’s search

statement before it is executed. The user’s query is altered to better reflect the

vocabulary of the database, which gives the retrieval engine a better chance of retrieving

relevant documents.

8.3.2 SUBJECT ACCESS

Up until now, no subject index of the book titles contained in the catalogue has been

made available in the search system. Users have formulated queries without knowing

the scope of the titles in the catalogue. Now with the possibility of building subject trees

of information, a comprehensive subject index is in the making. Dictionaries of some of

the common languages in the catalogue have also been made available for browsing.

With both the subject trees and the dictionaries, the scope and coverage of the catalogue

can be presented to the user in a structured fashion. The user need no longer confine his

1 18

searches to areas he knows to exist in the catalogue but may broaden his searches to

include the variety of domains present.

8.3.3 MULTILINGUAL ACCESS

Multilingual access to the 1872 Catalogue has been provided for the first time with the

new 1872 Search System. The multilingual author translation tool provides translation

of author names to and from Latin, and also provides access to variant spellings of

author names. Being a nineteenth century catalogue with the author names listed

predominantly in Latin and often in a variant spelling from the modern day author name,

this tool is a valuable access aid to the 1872 Catalogue. Searching by language of entry

is another multilingual tool developed for the system. The 92.56% success rate in

language recognition enables users to search for book titles in English, Latin, German,

Dutch, Irish, Italian, French, Spanish and Portuguese.

Users can now refine their searches to their native language if required. This reduces the

amount of time users spend sifting through search results that are not in their own

language (and perhaps cannot be understood).

8.3.4 INTERACTIVE ACCESS

The improved user interface developed for the 1872 Search System provides a more

interactive environment for the user to search in. The help facility and information

messages make the interface easier to use. The addition of a bibliography manager

provides all users with the ability to create personal files to store search results of

interest while the editor provides the librarians with an oportunity of adding notes and

references and also a means of reducing the effects the OCR errors have on information

retrieval.

119

This system has provided a more user-oriented and flexible approach to searching the

1872 Catalogue. It is a system that will improve over time as the subject trees grow and

the OCR errors lessen in number. Since the improvement of the system will depend on

the users, the intelligence of the 1872 Search System must be attributed to its’ users.

8.4 FUTURE WORK

No system is without room for improvement and the 1872 Search System is no

exception. The following ideas outline areas of future work which should be considered

in the further development of this system.

8.4.1 SYSTEM ADMINISTRATION

By providing passwords for users and librarians, access to the various features of the

system could be controlled. Each user could have a unique username and password and

depending on his status (undergraduate, postgraduate, staff, librarian) would be allowed

to perform certain tasks. For example, user files created by students and staff can be

saved to floppy on completion of searching, and these files can be deleted by the system

at the end of the day. Librarians’ files however could be allowed to remain on the

system. Editing of the catalogue entries and of the subject trees could be restricted to

librarians only so that inconsistencies and corruption of catalogue entries may be

avoided. In their review of text retrieval software, Edmunds and Monckton note that

many of today’s text retrieval packages separate the administrative tasks of looking after

data from the reading and searching functions.

“This is a good idea, particularly in a networked environment when you don’t want

every user to have access to editing facilities.” [Edmunds & Monckton '95],

120

8.4.2 REDUCING OCR-GENERATED MISSPELLINGS

Information retrieval in the system will improve as the number of OCR errors decline.

Editing the catalogue entries to improve OCR is a lengthy process however and so to

speed up the effects of reductions in OCR errors, other methods of correcting the

spelling errors in the catalogue entries resulting from these errors could be explored. For

example n-grams could be used to detect and correct misspellings. The Roman alphabet

contains 282 (alphabet, apostrophe, blank) digrams and 283 trigrams, but many of these

n-grams are either rare or nonexistent. Words containing rare occurrences of n-grams

are considered to be misspellings. If words containing rare n-grams were matched to

similar words containing frequently occurring n-grams, then perhaps corrections of the

misspelled words could be deduced.

Heuristics could also be used in the detection and correction of spelling errors. Further

analysis of the languages contained in the catalogue would be required to develop

heuristic rules for spelling correction. Such rules could involve the sequence of letters in

a word as in English where ‘q’ must be followed by ‘u’ and T must precede ‘e’ except

after ‘c’. A run of consonants or vowels could also form the basis for a heuristic rule.

For example the run of greater than two consonants in English is considered a

misspelling. These rules could be used in conjunction with n-grams to correct

misspelled words in the catalogue entries.

8.4.3 IMPROVING MULTILINGUAL ACCESS

Multilingual access to the database could be improved by improving language

recognition and thereby increasing the number of relevant documents returned from a

language search. Providing some means of translating keywords would also improve

user’s access to documents in the various of languages contained in the catalogue.

121

8.4.3.1 Improving Language Recognition

The 92.56% success rate obtained by the language recogniser could be improved by

developing some rules to be used in the recognition process. The following rules for

example, could improve results:

A) If the language of an entry cannot be determined and if the author of the entry is that

of the preceding entry, then the language of the current entry could be assigned the

language of the preceding entry;

B) If the language of an entry cannot be determined and if a place of publication exists

for that entry, then the language of the entry could be assigned the language pertaining

to the place of publication (i.e. if the place of publication is Paris, then the language

assigned to the entry is French).

8.4.3.2 Providing Translation of Keywords

A crude short term solution to the problem of translating keywords would be to propose

that queries and responses be translated from one language to another [Montgomery

'72}. A long term solution would be to imply a high level of understanding - otherwise

much information will be lost in the transition from one language to another. Such a

solution would be difficult to achieve in the 1872 Search System due to the number of

languages present and the lack of appropriate dictionaries. Poor translation results have

an immediate negative psychological impact on the user. The reason for this is that

information retrieval users are not used to seeing ‘bad’ output because if an IR system

misses out on relevant documents, those documents simply do not appear in the output.

Perhaps a medium term solution could involve the translation of keywords in the subject

trees using not only modern dictionaries, but also dictionaries built up from the

catalogue itself. Those translations that cannot be found in the modern dictionaries can

perhaps be located in the catalogue’s own dictionaries with the help of expert users. In

this way - a subject index for a number of languages present in the catalogue would be

built over time.

122

8.5 USER-ORIENTED EVALUATION

Evaluation is of fundamental importance to any information system. User-oriented

evaluation further emphasizes this importance by examining the system within its

operational context rather than as a isolated entity [Bawden '90]. The user plays an

important role in the operational context of any system. Bawden suggests that if users

are not to become passive consumers of systems, then their involvement in evaluating a

system is essential.

Library catalogue evaluations have a very long history and have been generally carried

out by a combination of user surveys, observations of users and failure analysis [Hafter

'79, Lancaster '77, Seymour & Schofield '73]. It is intended to carry out user-oriented

evaluation of the 1872 Search System as the final step in the evaluation process with the

interface evaluation questionnaire in Appendix D.

8.6 CONCLUDING REMARKS

This thesis has improved acess to the 1872 Catalogue by expanding users’ queries to

better reflect their information need and the orthography of the databse; by providing

subject access via ‘knowledge trees’ of information built up by expert users on their

areas of sepcialisation; by providing multilingual access with the author name

translation tool and the search by language of title; and by supporting users in their

formulation of queries with the use of interactive tools such as the term frequency count

and previous search results.

It it hoped that users’ retrieval of information will continue to improve with this system

as the number of subject trees increase, the number of OCR errors decrease and the user

gains more experience with the system. In the meanwhile, the users of this system may

now enjoy enhanced access to some of Europe’s rarest and most valuable books.

123

BIBLIOGRAPHY

Aitchison, J. (1991) Language Change: Progress or Decay,

Cambridge University Press, Cambridge.

Alberico R., Micco M. (1990) Expert Systems for Reference and

Information Retrieval,

Meckler Corporation, London.

Ammeraal, L. (1991) C++ for Programmers,

John Wiley & Sons, Chichester.

Anderson, G. (1992) Computerising a Library Catalogue using Optical Character

Recognition,

M.Sc. Thesis.

Trinity College, Dublin.

Bates, M. (1986) Subject Access in On-line Catalogs: A Design Model,

Journal of the American Society for Information Science, Vol. 37, No. 6, pp. 357-376.

Bates, M. (1987) Book Review of Interaction in Information Systems: A Review of

Research from Document Retrieval to Knowledge Based Systems, Belkin N., Vickery

A..

Information Processing & Management, Vol. 25, No. 2, pp. 215-216.

Bawden, D (1990) User-Oriented Evaluation of Information Systems and Services,

Gower Publishing Company, Vermont.

Beerel, A. (1987) Expert Systems - Strategic Implications and Applications,

Ellis Horwood Ltd., Chichester.

124

Belkin, N. (1983) Recent Trends in Information Science Research in the UK, USA, and

Canada,

Overview of Research Development, Internal Report, 12p, Berlin.

Belkin N., Vickery A. (1985) Interaction in Information Systems,

British Library, London.

Bench-Capon, T. (1990) Knowledge Representation - an Approach to Artificial

Intelligence,

Academic Press Ltd., London.

Bennet P., Johnson R., McNaught J., Pugh J., Sager J., Somers H. (1986) Multilingual

Aspects of Information Technology,

Gower Publishing Company, Vermont.

Borgman, C. (1986) Why are On-line Catalogs Hard to Use? Lessons Learned from

Information Retrieval Studies,

Journal of the American Society for Information Science, Vol. 37, No. 6, pp. 387-400.

Buckley C., Salton G., Allan J. (1994) The Effect of Adding Information in a Relevance

Feedback Environment, In “Proceedings of the 17th Annual International ACM-SIGIR

Conference on Research and Development in Information Retrieval” Dublin, July 3-6,

pp. 292-302.

Springer Verlag, London.

Cavner W., Trenkle J. (1994) N-gram Based Text Categorization, In “Proceedings of the

3rd Annual Symposium on Document Analysis and Information Retrieval”, 11-13 April,

pp. 161-169.

Chomsky, N. (1990) Three Models for the Description of Language,

PGIT, pp. 113-124.

125

Clarke, R. (1993) Optical Character Recognition Output Corrector,

B.A. Final Year Project.

Trinity College, Dublin.

Clerin, B. (1992) GPF Manual,

GPF Systems, Inc..

Culligan, B. (1993) Design of an on-line Database Query System for the 1872 Printed

Library Catalogue,

B.A.I. Final Year Project.

Trinity College, Dublin.

Cunningham P., Veale T., Conway A. (1992) Knowledge Acquisition for Concept

Indexing in Document Retrieval,

Expert Systems for Information Management, Vol. 5, No. 1, pp. 25-41.

Cushman W., Pernundu O., Daniels D. (1991) Usable OCR - What are the Minimum

Requirements, In “CHI-90 Conference Proceedings, Special Issue of ACM SIGCHI

Bulletin”, Seattle, April 1-5, pp. 145-151.

Devitt M., Sterenly K. (1987) Language and Reality: an Introduction to the Philosophy

of Language,

Basil Blackwell, Oxford.

Edmunds N., Monckton P. (1995) Getting Your Own Back,

PC Magazine, Vol. 4, No. 4 , pp. 225-254.

Ellis, D.(1989) A Behavioural Approach to Infonnation Retrieval System Design,

Journal of Documentation, Vol. 45, No. 3, pp. 171-212.

126

Fiz Technik (1991) SHERLOCK - The New On-line Information System for Business

and Industry,

Fachinformationszentrum Technik, Frankfurt.

Fox, P. (1986) Treasures of the Library,

Trinity College, Dublin.

Fujisawa, H. (1994) Character Recognition Technologies and Applications - the

Current Status and the Luture,

Central Research Laboratory, Flitachi Ltd., Tokyo.

Fujisawa FI., Kato K., Kojima K., Tomohiro S., Wakayama S. (1994) Concept Centered

Document Management and Lull-text Search for Information Sharing, In “International

Federation for Information and Documentation, 47th FID Conference and Congress”

Sonic City Omiya, Saitama, Japan, Oct 5-8, pp. 1-8.

Fujisawa H., Shima Y., Masashi K. (1992) Automatically Organizing Document Bases

Using Document Understanding Techniques, In “Proceedings of the Second Far-East

Workshop on the Future Database Systems”, (Ed.) Chen,Q. Kyoto, Japan, April 26-28

pp. 244-253.

World Scientific, Singapore.

Gimpel, R. (1973) A Theory of Discrete Patterns and their Implementation on Snobol

CACM, Vol. 16, No. 2, pp. 91-100.

Glantz, H. (1957) On the Recognition of Information with a Digital Computer,

JACM, Vol. 57, No. 4, pp. 178-188.

Gotlieb C., Kuman S. (1968) Semantic Clustering of Index Terms,

JACM, Vol. 15, No. 4, pp. 493-513.

127

Griffith, R. (1982) Three Principles of Representation for Semantic Networks,

ACM Transactions on Database Systems, Vol. 7, No. 3, pp. 417-442.

Griswold R., Poage J., Polonsky I. (1971) The SnoboM Programming Language,

Prentice-Hall, London.

Hafter, R. (1979) The Performance of Card catalogue: A Review of Research,

Library Research, Vol. 1, pp. 199-222.

Halpern J., Sargeant H. (1988) A New End-User Interface for Bilingual Searching of

Medline,

Online Information, Vol. 2, pp. 427-444.

Hildreth C. (1983) To Boolean or Not to Boolean,

Information Techniques & Libraries, Vol. 2, No. 3, pp. 235-237.

Ingle, N. (1976) A Language Identification Table,

The Incorporated Linguist, Vol. 15, No. 4, pp. 98-101.

Ingwersen, P. (1992) Information Retrieval Interaction,

Taylor Graham, London.

Jackson, P. (1990) Introduction to Expert Systems,

Addison Wesley, Wokingham.

Katzner, K. (1986) The Languages of the World,

Routledge, London.

Khoo C., Poo D. (1994) An Expert System Approach to On-line Catalog Subject

Searching,

Information Processing & Management, Vol. 30, No. 2, pp. 223-238.

128

Kinane V., O'Brien A. (1988) The Vast Difficulty of Cataloguing : The Printed

Catalogue of Trinity College, Dublin (1864-1887),

Libraries & Journals: A Journal of Library History, Vol. 23, No. 4, pp. 427-453.

Knuth D. (1981) The Art of Computer Programming, 2nd ed.

Addison Wesley, London.

Kreiling, F. (1968) Leibniz,

Scientific American, Vol. 218, No. 5, pp. 90-100.

Kulikowski, S. (1991) Using Short Words: A Language Identification Algorithm,

Unpublished Technical Report,

Provided by Fuji Xerox Palo Alto Laboratory.

Lancaster, F. (1977) The Measurement and Evaluation of Library Services,

Information Resources Press, Washington D.C..

Lancaster F., Payer E. (1973) Information Retrieval On-Line,

Melville, California.

Larsen, H. (1987) KIWI - Knowledge Based User-Friendly System for the Utilisation of

Information Bases, In “Knowledge Engineering”, (Ed.) Wormell, I..

Taylor Graham, London.

Lee, J. (1994) Properties of Extended Boolean Models in Information Retrieval, In

“Proceedings of the 17th Annual International ACM-SIGIR Conference on Research

and Development in Information Retrieval”

(Dublin City University), Dublin, July 3-6, pp. 182-192.

Springer Verlag, London.

129

Markey K., Visine-Goetz D. (1988) Increasing the Accessibility of Library of Congress

Subject Headings in On-line Bibliographic Systems,

Annual Review of OCLC Research, pp. 32-34.

Martin J., Oxman S. (1988) Building Expert Systems - a Tutorial,

Prentice-Hall, London.

Matthews J., Lawrence G., Ferguson D. (1988) Using On-line Catalogs: A Nationwide

Survey,

Neal-Schuman, New York.

Matthews, P. (1991) Morphology,

Cambridge University Press, Cambridge.

Montgomery, C. (1972) Linguistics and Information Science,

Journal of the American Society for Information Science, Vol. 2, No. 3, pp. 195-219.

Morris, A. (1992) Overview of Expert Systems, In “The Application of Expert Systems

in Libraries and Information Centres”, (Ed.) Morris, A., pp. 1-34.

Bowker Sauer Ltd., London.

Nebendahl, D. (1980) Expert Systems,

John Wiley & Sons Ltd., Chichester.

Noreault T., Koll M., McGill M. (1977) Automatic Ranked Output from Boolean

Searches in SIRE,

Journal of the American Society for Information Science, Vol. 28, No. 6, pp. 333-339.

O’Grady W, Dobrovolsky M., Aronoff M. (1989) Contemporary Linguistics,

St. Martin’s Press, New York.

130

Patterson D. (1990) Introduction to Artificial Intelligence and Expert Systems,

Prentice-Hall, New Jersey.

Peat H., Willett P. (1991) The Limitations of Term Co-occurrence Data for Query

Expansion in Document Retrieval Systems,

Journal of the American Society for Information Science, Vol. 42, No. 5, pp. 378-383.

Price, C. (1990) Knowledge Engineering Toolkits,

Ellis Horwood Ltd., Chichester.

Renfrew, C. (1994) World Linguistic Diversity,

Scientific American, Vol. 270 , No. 1 (January), pp. 104-110.

Rouse W., Rouse S. (1984) Human Information Seeking and Design of Information

Systems,

Information Processing and Management, Vol. 20, No. 1-2, pp. 129-135.

Salton, G. (1971) The SMART Retrieval System,

Prentice-Hall, New Jersey.

Salton, G. (1975) Dynamic Information and Library Processing,

Prentice-Hall, Inc., London.

Salton, G. (1983) Introduction to Modern Information Retrieval,

McGraw-Hill, Inc., London.

Salton G., Lox E., Wu H. (1983) Extended Boolean Information Retrieval,

CACM ,Vol. 26, No. 12, pp. 1022-1036.

Saracevic T. (1987) Changing Agenda for Information Retrieval, (Editorial)

Information Processing & Management, Vol. 23, No. 5, pp. i-ii.

131

Saussure, F. de (1915/1959) Cours de Linguistique Generale, Paris.

English Translation by Baskin, W., “Course in General Linguistics”,

Fontana, London.

Sell, P. (1985) Expert Systems - a Practical Introduction,

Macmillan, Basingstoke.

Seymour C, Schofield J. (1973) Measuring Reader Failure at the Catalogue,

Library Resources and Technical Services, Vol. 17., pp. 6-24.

Shastri, L. (1988) Semantic Networks - an Evidential Formalization and its

Connectionist Realization,

Pitman, London.

Shneiderman, B. (1987) Designing the User Interface,

Addison-Wesley, Massachusetts.

Sibun P., Spitz A. (1994) Language Determination: Natural Language Processing from

Scanned Document Images,

Submitted to ANLP-94. Provided by the author.

Smeaton A., van Rijsbergen C. (1983) The Retrieval Effects of Query Expansion on a

Feedback Document Retrieval System,

Computer Journal, Vol. 26, No. 3, pp. 239-246.

Smith F., Devine K. (1983) QUILL - an On-Line Retrieval System,

Queen’s University, Belfast.

Sowizral, M. (1985) Expert Systems,

Annual Review of Information Sciences and Technology (ARIST), Vol. 20, pp. 179-

199.

132

Spink, A. (1994) Term Relevance Feedback and Query Expansion: Related to Design,

In “Proceedings of the 17th Annual International ACM-SIGIR Conference on Research

and Development in Information Retrieval”

(Dublin City University), Dublin, July 3-6, pp. 81 -91.

Springer Verlag, London.

Stroustrup, B. (1991) The C+ + Programming Language,

Addison-Wesley, Wokingham.

Sutcliff, A. (1988) Human-Computer Interface Design,

Macmillan, London.

Taghva K., Borsack J., Condit A. (1994) Results of Applying Probabilistic IR to OCR

Text, In “Proceedings of the 17th Annual International ACM-SIGIR Conference on

Research and Development in Information Retrieval”

(Dublin City University), Dublin, July 3-6, pp. 202-211.

Springer Verlag, London.

Taghva K., Borsack J., Condit A., Erva S. (1994) The Effects of Noisy Data on Text

Retrieval,

Journal of the American Society for Information Science, Vol. 45, No. 1, pp. 50-58

Taylor, R. (1968) Question Negotiation and Information Seeking in Libraries,

College and Research Libraries, Vol. 29, pp. 178-194.

Tseng, G. (1992) Expert Systems in On-line Information Retrieval, In “The Application

of Expert Systems in Libraries and Information Centres”, (Ed.) Morris, A., pp. 167-194.

Bowker Sauer Ltd., London.

133

Tuhrim S., Reggia J., Floor M. (1988) Expert System Development: Letting the Domain

Specialist Directly Author Knowledge Bases, In “Expert Systems - the User Interface”

(Ed.) Hendler, J., pp. 37-57.

Ablex Publishing Corporation, New Jersey.

Turk C, Powers D. (1989) Machine Learning of Natural Language,

Springer Verlag, London.

Vadera, S. (1989) Expert System Applications,

Sigma Press, Wilmslow.

van Rijsbergen C. (1975) Information Retrieval,

Butterworth & Co. Ltd., London.

Vickery B., Vickery A. (1993) On-line Search Interface Design,

Journal of Documentation, Vol. 49, No. 2, pp. 103-187.

Voorhees, E. (1994) Query’ Expansion using Lexical Semantic Relations, In

“Proceedings of the 17th Annual International ACM-SIGIR Conference on Research

and Development in Information Retrieval” (Dublin City University), Dublin, July 3-6,

pp. 61-71.

Springer Verlag, London.

Weiss S., Kulikowski C. (1984) A Practical Guide to Designing Expert Systems,

Rowman & Allenheld, New Jersey.

Willet P., Ingwersen P. (1994) An Introduction to Information Retrieval,

Tutorial for the 17th International Conference on Research and Development in

Information Retrieval, (Dublin City University), Dublin, July 4th.

Yazdani, M. (1993) Multilingual Multimedia - Bridging the Language Barrier with

Intelligent System.?,Intellect, Oxford.

134

APPENDIX A

List of Author Title Abbreviations used In Automatic Query Expansion.
(Taken from Chambers Twentieth Century Dictionary)

A. B. (Bachelor of Arts)
A. C. (Before Christ)
A. D. (anno domini)
A. M. (Master of Arts)
B. A. (Bachelor of Arts)
B. C. L. (Bachelor of Civil Law)
B. D. (Bachelor of Divinity)
B. L. (Bachelor of Law)
B. M. (Bachelor of Medecine)
c. c. c. (Corpus Christi College)
C. E. (Civil Engineer)
C. J. (Chief Justice)
D. C. L. (Doctor of Civil Law)
D. D. (Doctor of Divinity)
F. A. S. (Fellow of the Society of Arts)
F. C. S. (Fellow of the Chemical Society)
F. G. S. (Fellow of the Geological Society)
F. M. (Field Marshal)
F. R. A. S. (Fellow of the Royal Astronomical Society)
F. R. C. S. (Fellow of the Royal College of Surgeons)
F. R. G. S. (Fellow of the Royal Geographical Society)
F. R. S. (Fellow of the Royal Society)
F. S. A. (Fellow of the Society of Arts)
F. S. E. (Fellow of the Society of Engineers)
F. T. C. D. (Fellow of Trinity College Dublin)
G. C. B. (Grand Cross of the Bath; Knight)
G.C. H. (Grand Cross of Hanover; Knight)
J. C. (Jurisconsult)
J. P. (Justice of the Peace)
J. U. D. (Doctor of Canon and Civil Law)
K. C. B. (Knight Commander of Bath)
K. C. H. (Knight Commander of Hanover)
K. C. (King's Council)
L. P. (Lord Provost)
LL. B. (Bachelor of Laws)
LL. D. (Doctor of Laws)
LL. M. (Master of Laws)
M. A. (Master of Arts)
M. B. (Bachelor of Medicine)
M. D. (Doctor of Medicine)
M. P. (Member of Parliament)
M. R.C. C. (Member of the Royal College of Chemistry)
M. R. C. P. (Member of the Royal College of Physicians)
M. R. C. S. (Member of the Royal College of Surgeons)
M. R. G. S. (Member of the Royal Geographical Society)
0. S. A. (Order of Saint Agustine)
O. S. B. (Order of Saint Benedict)
O. S. F. (Order of Saint Francis)
P. P. (Parish Priest)

135

Ph. D. (Doctor of Philosophy)
ph. D. (Doctor of Philosophy)
ph. d. (Doctor of Philosophy)
Ph. d. (Doctor of Philosophy)
Q. C. (Queen's Council)
K. C. (King's Council)
R. (King \ Queen; Rex \ Regina)
R. A. (Royal Academy)
R. C. (Roman Catholic)
R. E. (Royal Engineers)
R. N. (Royal Navy)
SC. B. (Bachelor of Science)
SC. D. (Doctor of Science)
S. J. (Society of Jesus (Jesuit))
S. L. (Solicitor at Law)
S. M. (Sergeant Major)
s. s. (Saints)
S. T. B. (Bachelor of Theology)
S. T. D. (Doctor of Theology)
S. T. M. (Master of Theology)
S. T. P. (Professor of Theology)
T. C. D. (Trinity College Dublin)
T. D. (Territorial Decoration)
Th. D. (Doctor of Theology)
U. J. D. (Doctor of Canon and Civil Law)
abp. (Archbishop)
adm. (Admiral)
archb. (Archbishop)
archbp. (Archbishop)
archd. (Archdeacon)
archeveque (Archbishop)
archicp. (Archbishop)
archiepisc. (Archbishop)
archiepiso (Archbishop)
bp. (Bishop)
capt. (Captain)
card. (Cardinal)
coll. (College)
com. (Commander)
commr. (Commander)
dr. (Doctor)
doct. (Doctor)
doc. (Doctor)
due. (Duke)
dux. (Duke)
episc. (Bishop)
episcopus (Bishop)
eveque (Bishop)
esq. (Esquire)
facult. (faculty)
knt. (Knight)
kt.-bav. (Knight)
kt. (Knight)
lieut.-col. (Lieutenant Colonel)
lieut.-general (Lieutenant General)
lieut. (Lieutenant)
maj.-gen. (Major General)
maj. (Major)
marq. (Marquis)

136

mart. (Martyr)
med. pr. (Medical Practitioner)
med. (Medical)
miss. (Missionary)
ord. frat. min. (Order of Friars Minor; Franciscans)
ord. praed. (Order of Preachers; Dominicans)
ord. S. August. (Order of Saint Augustine)
ord. S. Bened. (Order of Saint Benedict)
ord. S. Franc. (Order of Saint Francis)
pari. (Parliament)
phil. (Philosophy)
phys. (Physiology)
presb. (Presbyterian)
prof. (Professor)
rex. (King)
regina. (Queen)
rom. cath. (Roman Catholic)
rt. bon. (Right Honourable)
sen. (Senior)
sr. (Sister)
vie. (Vicar)
viset. (Viscount)
col. (Colonel)
A. (Academician)
D. (Doctor)
J. (Judge)
S. (Saint)

137

APPENDIX B

Extracting Translation Rules from Author Names (Snobol4 Program)

♦-INCLUDE "D:\SPT\host.inc"
&TRIM = 1

♦This program searches the author field of each entry searching
♦for any author fields containing alternate author names
♦e.g. "WADDING seu WADDINGUS "
♦The program extracts rules from the alternate author names so
♦that one name can be mapped to the other
♦In the above example NULL -> "US"
♦A list of these rules is then compiled and stored in the file "srules.txt"

DEFINE('FINDRL(X,Y)')
DEFINE('CLERA(AUTHNME)')

TERMINAL = 'enter name of file containing file names'
ASK FILENAME = TERMINAL

INPUT('FLE\ 1, FILENAME)
INPUT('SEU', 2, "C:\SPT\SRULES.TXT")
OUTPUTCOUT, 4, "C:\SPT\SRULES.DAT") :F(NOOUT)
DIGIT = ('0123456789')
PUNCT = ’)
CAPS = &UCASE
CHARS = &LCASE &UCASE DIGIT PUNCT
LISTSEU = TABLE()
seul = (" sive" I" or" I" ou" I" seu" I" [hod.")
MATCH = BREAK(CAPS) SPAN(CAPS) I "") SEU I
MATCHLST = BREAK(CAPS) SPAN(CAPS)
SRNMS = MATCH . AUTHOR! (MATCH . AUTHOR2 I "")

+ (MATCHLST . AUTHORS I "")

* Start of processing *

♦Read in seu list so far
LIST1 ONE = SEU

LISTSEU<ONE> = 1
♦Read in file names to be processes
READ FILENAME I =FLE

EXTEN = LEN(3). EXT RPOS(O)
EXT = EXT
NME = RPOS(8) LEN(4). FN
FILENAME 1 EXTEN :S(RR1)

RRI FILENAME! NME :S(RR2)
RR2 FNEXT = FN V EXT

TERMINAL = FNEXT
♦Input each file

INPUT('INQ',3. FNEXT)

♦Produce an output file for each input file
RDLN ENTRY = INQ

ENTRY "A: " REM . AUTH

:F(READ)
:(LIST1)

:F(OUT)

:F(NOFILE)

:F(NXTF)
:F(RDLN)

138

*Check for seu in author surname field
AUTHSEU1
AUTH SRNMS
IDENT(AUTH0R2,NULL)
FINDRL(AUTHOR 1 ,AUTHOR3)

CHK12 FINDRL(AUTHOR 1 ,AUTHOR2)
IDENT(AUTHOR3,NULL)
FINDRL(AUTHOR I, AUTHORS)

CLR AUTHOR 1 = AUTHOR2 = AUTHOR3 =
NXTF ENDFILE(3)
OUT LISTSEU = CONVERT(LISTSEU, 'ARRAY')

LISTSEU = SORT(LISTSEU)
1= 1

AGAIN OUT = LISTSEU<I, 1> " : " LISTSEU<I,2> :F(CLSF)
1 = 1+1

CLSF ENDFILE(4)
NOOUT TERMINAL = "Cannot output to file"
NOFILE TERMINAL = 'File does not exist'

*This function finds rules for mapping one author name to the other
FINDRL AUTH1 =X

AUTH2 = Y
COMMON = ""
BEGIN = 'FALSE'
MIDDLE = 'FALSE'
ENDA = 'FALSE'
BEG1 = BEG2 = ""
END1 = END2 = ""
MIDI = MID2 = ""

*Clear author names of spaces
AUTH1 = CLERA(AUTHl)
AUTH2 = CLERA(AUTH2)
TERMINAL = "1 " AUTH1 " ; 2 " AUTH2

REST ONE = TWO =
AUTH1 TAB(l). ONE =
AUTH2 TAB(l) . TWO =

*Compare letter
IDENT(ONE,TWO)
COMMON = COMMON ONE
MIDDLE = TRUE’

*If there are no more letters in 1st string then map null to remaining
*characters in 2nd string to make a rule
DIFSTR IDENT(AUTHLNULL)

IDENT(AUTH 1, AUTH2)
ENDING 1 = ONE
ENDING2 = TWO
ENDA = 'TRUE'

EMPT1 ENDING! = ONE "#"
ENDA = TRUE'
ENDING2 = TWO AUTH2

TEST2 IDENT(AUTH2,NULL)

*If there are no more letters in 2nd string then map null to remaining
♦characters in 1st string to make a rule
EMPT2 ENDING2 = TWO "#"

ENDA = TRUE'
ENDING! = ONE AUTH1

DIFF2 IDENT(MIDDLE,TRUE')
*If there have been no letters in common then the first letters of

:F(RDLN)
:F(RDLN)
:F(CHK12)
:(CLR)

:S(CLR)

:(RDLN)
:(READ)

(AGAIN)
(END)
(END)
(END)

:F(DIFSTR)
:F(DIFSTR)

:F(DIFSTR)

:(REST)

:F(TEST2)
:F(EMPT1)

:(MKRL)

:(RULEE)
:F(DIFF2)

:(MKRL)
:S(MIDS)

139

*the author names are different and need to be recorded
BEG1 = BEG1 ONE
BEG2 = BEG2 TWO
BEGIN = TRUE'

MIDS MIDI = MID I ONE
MID2 = MID2 TWO
AUTH1 AUTH2
AUTH2 TAB(1). TWO =

REP1 AUTH1 TAB(1). ONE =
IDENT(ONE,TWO)
MIDI = MIDI ONE

OTHER AUTH2 AUTH1
AUTH1 TAB(l). ONE =

REP2 AUTH2 TAB(1) . TWO =
IDENT(ONE,TWO)
MID2 = MID2 TWO

MKMD RULE2 = MIDI " \ " MID2
RULE2B = MID2 "\" MIDI
IDENT(LISTSEU<RULE2>,NULL)
LISTSEU<RULE2> = LISTSEU<RULE2> + 1

SECB IDENT(LISTSEU<RULE2B>,NULL)
LISTSEU<RULE2B> = LISTSEU<RULE2B> + i

ENTER LISTSEU<RULE2> = LISTSEU<RULE2> + 1

ENDS ENDING 1 = ONE AUTH I
ENDING2 = TWO AUTH2
ENDA = TRUE'

MKRL LEQ(BEGIN,'TRUE')
RULE1 = BEG1 "\" BEG2
RULE IB = BEG2 "\" BEG I
IDENT(LISTSEU<RULE 1 >,NULL)
LISTSEU<RULE 1 > = LISTSEU<RULE1> + 1

SECB 1 IDENT(LISTSEU<RULE 1 B>,NULL)
LISTSEU<RULE 1 B> = LISTSEU<RULE1B> + 1

ENTR1 LISTSEU<RULE 1 > = LISTSEU<RULE 1 > + 1
RLEE LEQ(ENDA;TRUE')

RULES = ENDING! " \ " ENDING2
RULE3B = ENDING2 " \ ” ENDING!
TERMINAL = RULES
TERMINAL = RULE3B
IDENT(LISTSEU<RULE3>,NULL)
LISTSEU<RULE3> = LISTSEU<RULE3> + I

SECB3 IDENT(LISTSEU<RULE3B>,NULL)
LISTSEU<RULE3B> = LISTSEU<RULE3B> + 1

ENTR2 LISTSEU<RULE3> = LISTSEU<RULE3> + 1
ENDFR

*This function clears a string of spaces, commas and 'seu/sive' etc
CLERA WORD = AUTHNME

AUTHNME SEU1 =
SPSP AUTHNME " " =

AUTHNME =
BGSPS AUTHNME " " POS(O) =

CLERA = AUTHNME
END

:(REST)

F(OTHER)
F(MKRL)
F(MKRL)
S(MKMD)
(REP!)
F(ENDS)
F(MKRL)
F(MKRL)
S(MKMD)
(REP2)

S(SECB)
(ENDFR)
S (ENTER)
(ENDFR)
(ENDFR)

:F(RLEE)

S(SECBl)
(RLEE)
S(ENTRI)
(RLEE)
(RLEE)
F(ENDFR)

S(SECBS)
(ENDFR)
S(ENTR2)
(ENDFR)
(ENDFR)
(RETURN)

:S(SPSP)

:S(BGSPS)
: (RETURN)

140

List of Rules Produced in Descending Order of Frequency

IUS# : US# - 201
US# : - 139
IUS# : - 101
US# : E# - 90
US# : I# - 77
E : I - 72
Y.I-71
I: E - 66
A : E - 58
E : A - 56
#C : #CH - 55
INUS# : US# - 53
CK : K - 49
AE : E - 48
O : U - 42
SIUS# : S# - 42
C : K - 41
IUS# : E# - 41
ST : T - 41
US# : O# - 41
L : LL - 37
IO : O - 35
C : CH - 34
IUS# : I# - 32
T : TT - 30
ERUS# : ER# - 27
E: IE - 26
S# : Z# - 26
AEUS# : US# - 25
I : El - 24
LE : L - 24
A:AI - 23
T : R - 23
AEUS# : EUS# - 22
D : T - 22
E : AE - 22
S# : ES# - 22
TZ : Z - 22
#C : #K - 21
IA : A - 21
NS : S - 21
S : Z - 21
E : El - 20
O : E - 20
S : T - 20
T : TH - 20
S : SS- 18
K# : KE#- 16
E: Y- 15
EUS# : E#- 14
IUS# : ER# - 14
U : OU- 14
V : W - 14
A: AU- 13
IUS# : ES# - 13
C : CK - 12
C : G - 12

141

D : L- 12
LO : L - 12
N : NN - 12
F:P- 11
IUS# : Y# - 11
NUS# : NI# - 11
Y#:IE#- 11
C:CC- 10
CIUS# : TIUS# - 10
E:EA- 10
AEUS#:- 9
E : EE - 9
F : FF - 9
IUS# : EN# - 9
S:CH - 9
TA :TE- 9
#C : #G - 8
E# : I# - 8
F:PH - 8
IER#:ER#- 8
R:RR - 8
#E:#HE- 7
AL:OL- 7
C : QU - 7
CUS# : CK# - 7
ERIUS# : IER# - 7
IUS# : 10# - 7
M:MM -7
P : PP - 7
S : X-7
Z:ZZ - 7
#C :#Z - 6
ART# : ARD# - 6
CUS# : KE# - 6
DE:T- 6
G:GG- 6
IS# : ES# - 6
IS# : ISIUS# - 6

142

APPENDIX C

Language Tables used in the Language Recognition Program

ENGLISH LATIN FRENCH DUTCH GERMAN ITALIAN SPANISH PORTUGUESE
the de de van von di de pele
of et et de der de por pelo
by in des en und per el sua
and per par in die da la em
in ad la den des della del ao
to cum du ende in et espana hum
on ii les het vnd delle en ^am
with I at le een zu con los 9ao
from ex en tot uber del autores dos
an ibi sur der mit in su da
for libri roy door das la las ar
or vita dv op den gio nueva de
his acc avec vande ur le orden do
church ejus france met dem ramusio ribera delle
england jo es zee herm ii sancha por
ireland notis sa die dr roma primera nos
transl ab pour Staten ein sopra tratado os
sermon liber pans vanden vol iu -ana ou
rev scriptt lettre voor zur si -res si
history sive au ter an dei -ero na
letter jac ses uyt so gli -era no
at opera fran is oder alia -ria sobre
life actt ou dat einer citt -les nossa
notes quae un uit hagen dell -tio que
ofthe vett dans daer jahrg ital -ada para
new auctore trad haer ueber nella -tes e
john ac pr ofte leiden spagna -eca des
its pro ois verhael raumer viaggi -ica -ados
english hist paix aen herausg scriptt -ado
being aliorum voyage des im io -ico
into inter qui hem aus re -ano
lord seu lui zeelant fur col -tas
sir eo louis te man don -ini
as part ville alle san note -gio
him est moires heer abth isaac -rca
some steph lettres west luth nuoua -con
dr andr av heeft mart uiaggi -ura
th rer ce musch nach volume -las
account pars me stadt denen francia -ade
St rerum del graven marte lettere -ron
upon miscell une ghedaen stadt miscell -sas
letters duo vn utrecht unter pittura -nto
book germ aux na bucher ac -ial
that poett vie nu embden al -esi
irish ilHi hist of ersten ru -eva

143

ENGLSIH LATIN FRENCH DUTCH GERMAN ITALIAN SPANISH PORTUGUESE
state pauli mars als goethe che
law patrum povr toe jungen des
sermons bibl trait eene naturw nel
is thes flandre gene schulz piu
present etiam recueil jaar seiner sua
works notae se oude worden vera
their eiusdem cour copye beitrag degli
people an sacr haere carmina libro
great graec entre johan freuden nuova
french regum publi vader sprache -lla
prayer -rum saint vrede -hen -ella
two -orum autres deelen -ung -one
king -ium egypte eerste -ben -He
James -iae espagne -nde -chen -elle
italy -tis ont -den -gen -ione
other -bus que -ten -che -oni
answer -ibus roi -oor -den -ioni
-ing -tio -res -ende -eben -ica
-and -bid -ire -hen -ber -ato
-ons -arum -ent -ren -ten -ere
-ith -nis -que -che -her -ell
-land -ita -ires -tie -sche -gg'
-ent -atio -oire -sche -der -aggi
-ions -turn -tes -ert -nde -nti
-ers -nes -nee -nge -uch -tio
-rom -num -ues -inge -ner -ani
-ter -one -tre -eren -hte -bid
-ted -ica -les -len -chte -sio
-ment -ione -ant -ande -ers -pra
-ish -ones -ment -nden -ift -usio
-nee -ris -ance -gen -cher -ali
-the -tus -our -chen -ngen -oli
-ory -onis -ique -ers -rift -ita
-rch -lis -ques -ien -cht -ore
-mon -ius -ons -ndt -ler -tte
-tory -erum -urs -andt -sen -ata
-urch -sis -vec -ven -rrn -tto
-ies -ini -lie -aer -tung -ria
-cal -que -ions -aten -errn -imo
-tes -iis -ens -ste -sch
-ical -ers -ene
-ity -eurs -ken
-son -aire -ant
-ure -eur
-rmon -des

144

APPENDIX D

Interface Evaluation Questionnaire - adapted from Shneiderman '87.

EVALUATION OF 1872 SEARCH SYSTEM INTERFACE FORM

Please circle the numbers that most appropriately reflect your impressions about using
the 1872 search system.

You may add written comments on the extra sheet provided.

Your cooperation is appreciated.

On-line Help confusing clear
0123456789 10

Learning to Search difficult easy
0123456789 10

Use by Different Levels of Experience not accommodated /
accommodated

0123456789 10

Facilities Provided not useful useful
Bibliography Manager 0 12 3 4 5 6 7 8 9 10
Language Dictionaries 0 12 3 4 5 6 7 8 9 10
Term Frequency 0 12 3 4 5 6 7 8 9 10
Librarian’s Notes 0 12 3 4 5 6 7 8 9 10
Previous Searches 0 12 3 4 5 6 7 8 9 10
Subject Trees 0 12 3 4 5 6 7 8 9 10

Exploration of Facilities discouraged
0 12 3 4 5

encouraged
6 7 8 9 10

Screen Display confusing
0 12 3 4 5

clear
6 7 8 9 10

Menu Display confusing
0 12 3 4 5

clear
6 7 8 9 10

Error Messages Helpful never
0 12 3 4 5

always
6 7 8 9 10

145

Overall Reactions terrible wonderful
0123456789 10

frustrating satisfying
0123456789 10

uninteresting interesting
0123456789 10

difficult easy
0123456789 10

Thank you for your cooperation.

146

APPENDIX E

SOURCE CODE LISTING - C++

(All include Files are Available on Request)

Searching the Database - Search for Author, Title and Series Keywords
Author has been broken up into Surname, FirstName and Title (e.g.S.J.)

Srchwin.Hpp
#ifndef _SEARCHWIN_HPP_
ttdefine _SEARCHWIN_HPP_
#include "stdtyp.hpp"
ttinclude <gpfparms.h>
#include "entryfld.hpp"
#include "refer.hpp"
#include "stdwin.hpp"
#include "hash.hpp"
class SearchWindow
{

friend class LatWin;
friend class TreeWin;
friend class TermWin;
private:

EntryField efield, efield2, efieldl;
StdWin win;
int entryFieldID, entryFieldID2, entryFieldIDB;
HashTable *pHashTable< *pHashTable2, *pHashTable3;
Boolean authwin;
char *pText, *pText2, *pText3;

public:
Boolean adjacent;
int count;
char *remadj[5];
SearchWindow(int ID, HashTable &hashtable);
SearchWindow(int ID, HashTable &hashtable, int ID2,

HashTable &hashtable2, int ID3, HashTable &hashTable3);
void Init(HWND hwnd);
void InitAthWin(HWND hwnd);

// Called when Clear button is clicked
void Clear();

// Called when the OK button for the dialog
// is clicked - commences search

void OK();
void Completed!);

} ;

extern SearchWindow authorWindow;
extern SearchWindow titleWindow;
extern SearchWindow seriesWindow;
ttendif

147

SrchWin.Cpp
#include <iostream.h>
#include <math.h>
ttinclude <string.h>
#include "stdtyp.hpp"
#include "library.ext"
#include "hash.hpp"
#include "refer.hpp"
#include "document.hpp"
#include "aux.hpp"
#include "library.ids"
#include "elist.hpp"
#include "error.hpp"
#include "map.hpp"
#include "snode.hpp"
#include "parse.hpp"
#include "srchwin.hpp"
#include "glob.hpp"
#include "line.hpp"
#include "expand.hpp"
//declare instances of search window classes
SearchWindow authorWindow(ID_EFSEARCHSURNME, authorHash,
ID_EFSEARCHFIRNME, firnmeHash, ID_EFSEARCHATHWIN, autitleHash);
SearchWindow titleWindow(ID_EFSEARCHTITLE, titleHash);
SearchWindow seriesWindow(ID_EFSEARCHSERIES, seriesHash);
static char fileName[MAXPATHLEN];
//Constructor to set up variables
SearchWindow::SearchWindow(int ID, HashTable &hashTable)
{

pHashTable = &hashTable;
entryFieldID = ID;
pText = NULL;
authwin = false;

}
//Overloaded function to set up variables for author search window.
//Author search window has three entry fields unlike those of title
//search window and series search window
//The three fields are for surname, firstname and author title (D.D.)
SearchWindow::SearchWindow(int ID, HashTable &hashTable, int ID2,
HashTable &hashTable2, int ID3, HashTable &hashTable3)
{

pHashTable = &hashTable;
pHashTable2 = &hashTable2;
pHashTable! = &hashTable3;
entryFieldID = ID;
entryFieldID2 = ID2;
entryFieldID! = ID3;
pText = NULL;
pText2 = NULL;
pText3 = NULL;
authwin = true;

}

//Initialize titel and series windows
void SearchWindow::Init(HWND hwnd)
{

}

win.AttachHandle(hwnd);
efield.AttachID(hwnd, entryFieldID);
if (pText != NULL)

efield = pText;

148

//Initialize authro window with three entry fields
void SearchWindow::InitAthWin(HWND hwnd)
{

win.AttachHandle(hwnd);
efield.AttachID(hwnd, entryFieldID);
efield2.AttachID(hwnd, entryFieldID2);
efield3.AttachID(hwnd, entryFieldID!);
if (pText != NULL)

efield = pText;
if (pText2 != NULL)

efield2 = pText2;
if (pTextB != NULL)

efieldB = pTextB;
authwin = true;

}

//Clear entry fields
void SearchWindow::Clear()
{

efield = "";
efield2 = "";
efield3 = "";

//Execute Search
void SearchWindow::OK()
{

Boolean found,loopl;
Boolean one, two, three;
EntryLoc entryLoc;
Token token;
Token tokexp;
SearchNode *pRoot, *pRoot2, *pRoot3;
SearchNode *pNode, *pPlus;
char logs[150];
char *word;
char *savl, *sav2, *sav3;
char *stre;
pText = efield;
if (authwin == true)

{
pText2 = efield2;
pText3 = efield3;
}

int r = 0;
count = 0;
adjacent = false;
loopl = true;
one = two = false;

savl = (char *)new char[20];
//stores adjacent word variables

sav2 = (char *)new char[20];
sav3 = (char *)new char[20];
stre = (char *)new char[100];

//Log users search for Previous Search Results
//Attach labels to searches before they are logged

if (entryFieldID == ID_EFS EARCHSURNME)
{
strcpy(logs,"author = ");
strcat(logs, pText); //surname
strcat(logs, ", ");

149

//first namestrcatflogs, pText2);
strcat(logs, ");
strcat(logs, pTextB); //author title
}

else
{
if (entryFieldID == ID_EFSEARCHTITLE)

strcpy(logs,"title = ");
else

{
if (entryFieldID == ID_EFSEARCHSERIES)

strcpy(logsseries = ");
}

strcat(logs, pText);
}

strupr(logs);
expand.LogSearch(logs); //log users search

if (pText != NULL)
{

//Process each word of user's search.
Segment segment(pText);

// get first token in search string
word = segment.GetToken(token);
if (word != NULL)
{

one = true;
int i = strcmpfword, "+");

//adjacent keyword sign to avoid false drops
if (i == 0)

{
errorMsg.Warn("+ - cannot occur in ititial

position");
return;
}

strcpy(savl,word);
remadj[r] = savl; //store 1st word
count++;
r++;
pRoot = new WordNode(word, pHashTable);
assert(pRoot != NULL);
char *expword = expand.Ocrerrs(word);
Segment seg(expword);

// if token expands than 'or' the results
while ((expword = seg.GetToken(tokexp)) != NULL)

{
pNode = new WordNode(expword, pHashTable);
assert (pNode != NULL);
pRoot = new UnionNode(pRoot, pNode);
assert (pRoot != NULL);
}

// else get next token
while ((word = segment.GetToken(token)) != NULL)
{

i = strcmpfword, "+");
//check for adjacent sign

if (i == 0)
{
word = segment.GetToken(token);

//skip '+' sign
adjacent = true;
if (loopl == false)

{
strcpy(sav3,word);
remadj[r] = sav3;
//store next word

150

}

}
else

{
strcpy(sav2,word);
remadj[r] = sav2;

//store next word
}

count++;
r++ ;

}
else

{
if (adjacent == false)

{
if (loopl == false)

{
strcpy(sav3,word); //2nd loop
remadj[r - 1] = sav3;
}

else
{
strcpy(sav2,word); //1st loop
remadj[r - 1] = sav2;
}

}
}

pPlus = new WordNode(word, pHashTable);
assert (pPlus != NULL);
expword = expand.Ocrerrs(word);
Segment seg(expword);
while ((expword = seg.GetToken(tokexp)) != NULL)
{

pNode = new WordNode(expword, pHashTable)
assert (pNode != NULL);
pPlus = new UnionNode(pPlus, pNode);
assert (pPlus != NULL);

}
pRoot = new IntersectionNode(pRoot, pPlus);
assert (pRoot != NULL);
pPlus = 0;
loopl = false;

//end of first time through loop

if (pText2 != NULL && authwin == true)
{

Segment segment(pText2);
word = segment.GetToken(token);
if (word != NULL)

{
two = true;
pRoot2 = new WordNode(word, pHashTable2);
assert (pRoot2 != NULL);
char *expword2 = expand.Ocrerrs(word);
Segment seg(expword2);

// if token expands than 'or' the results
while ((expword2 = seg.GetToken(tokexp)) !=

NULL)
{
cout << "\n2 " << expword2;
pNode = new WordNode(expword2, pHashTable2);
assert (pNode != NULL);
pRoot2 = new UnionNode(pRoot2, pNode);
assert (pRoot2 != NULL);

151

}
while ((word = segment.GetToken(token)) != NULL)
{

pPlus = new WordNode(word, pHashTable2);
assert (pPlus != NULL);

}
pRoot2 = new IntersectionNode(pRoot2, pPlus);
assert (pRoot2 != NULL);

) //while
if (one == true)

{
pRoot = new IntersectionNode(pRoot, pRoot2);
assert (pRoot != NULL);
}

} //word
} //pText2
if (pTextl != NULL && authwin == true)

{
Segment seg(pText3);
char* expn = expand.ProcTitle(pText3);
cout « "endl " « expn «
strcpy(stre,expn);
int i = strcmp(expn,"");
cout << "i " << i;
if (i > 0)

{
strcpy(pText3,stre);
}

Segment segment(pText3);
word = segment.GetToken(token);
cout << "word " << word;
if (word != NULL)

{
three = true;
pRoot3 = new WordNode(word, pHashTable3);
assert (pRoot3 != NULL);
while ((word = segment.GetToken(token)) != NULL)
{
cout << "word2 " << word;
pPlus = new WordNode(word, pHashTable3);
assert (pPlus != NULL);
pRoot3 = new IntersectionNode(pRoot3, pPlus);
assert (pRoot3 != NULL);

) //while
cout << "one " << one;
cout << "two " << two;
if (one == true)

{
pRoot = new IntersectionNode(pRoot, pRoot3);
assert (pRoot != NULL);
)

else
{
if (one == false && two == true)

{
pRoot2 = new
IntersectionNode(pRoot2,pRoot3) ;
assert (pRoot != NULL);

}
}

} //word
} //pText3

cout << "\n one " << one;
cout << "\n two " << two;

152

token << endl;

if (token == TOK_ERROR)
cout << "Invalid character detected when reading

else
{
if (one == true)

elist.AsyncDisplayList(pRoot, &win);
else

{
if (two == true)

elist.AsyncDisplayList(pRoot2, &win);
else

{
if (three == true)

elist.AsyncDisplayList(pRoot3, &win);
}

}
)

Expanding Queries - to include OCR errors in users’ queries, to include
synonymns and mappings of place names in users’ queries, to expand author titles.

Expand.Hpp - Header File
ttifndef _EXPAND_HPP_
#define _EXPAND_HPP_

#include "stdtyp.hpp"
#include "hash.hpp"
#include "stdwin.hpp"
#include "refer.hpp"
#include <gpfparms.h>

class Expand
{

private:
FILE *fp;
HashTable *pHashTable;
StdWin win;
char *replce;
char *ocrerr;
char *ocrrpl;
int t ;

public:
int sofar;
char *refarrl[10];
char *refarr2[10];
char *Ocrerrs(char *query);
void LatAth();
char *Locating(char *srchstn);
char *ProcTitle(char *inits);
char *AuTitleCmb(char *cinbinits) ;
void LogSearch(char *searchl);

extern Expand expand;

#endif

153

Expand.Cpp
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
ttinclude
ttinclude
#include
#include
#include
#include

<iostream.h>
<ctype.h>
<string.h>
<stdio.h>
<stdlib.h>
<math.h>
"elist.hpp"
"error.hpp"
"stdtyp.hpp"
"library.ext
"library.ids
"glob.hpp"
"hash.hpp"
"line.hpp"
"parse.hpp"
"expand.hpp"
"snode.hpp"

Expand expand;

static char fileName[MAXPATHLEN];
static char fileName2[MAXPATHLEN];
static char fileName![MAXPATHLEN];
static char fileName4[MAXPATHLEN];

//OCR Errors
//This function expadns the query to include possible OCR errors
//It returns the query
char *Expand::Ocrerrs(char *query)
{

char *lne;
char *newlne;
char *newstr;
char *test;
char *p;
Boolean second;

strcpy(fileName, glob.IndexDir());
strcat(fileName, "ocrerrs");
if ((fp = fopen(fileName, "r")) == NULL)

{
perror(fileName);
return NULL;
}

newstr = (char *)new char[100];
test = (char *)new char[MAXQUERLN];
replce = (char *)new char[MAXQUERLN];
Ine = (char *)new char[MAXQUERLN];
newlne = (char *)new char[MAXQUERLN];
ocrerr = (char *)new char[5];
ocrrpl = (char *)new char[5];

strnset(newstr, 0, MAXQUERLN);
while ((Ine = line.GetLine(fp)) != NULL)
{

strcpy(test,query);
second = false;
if ((ocrerr = line.GetW(Ine)) != NULL)

{
p = strstr(test,ocrerr);
int lenl = strlen(ocrerr);

154

while (p != NULL)
{
t = 0;
while (test[t] != ocrerr[0])

{
replce[t] = test[t];
t++ ;
}

if (second == true)
{
replcett] = test[t];
t + + ;
while (test[t] != ocrerrfO])

{
replce[t] = test[t];
t + +;
}

}
int stp = t;
stp++;
newlne = line.RemWord(lne,ocrerr);
if ((ocrrpl = line.GetW(newlne)) != NULL)

{
int len2 = strlen(ocrrpl);

for (int i = 0; i < len2; i++)
{
replce[t] = ocrrpl[i];
t + + ;
}

if (lenl == len2)
{ //replacing same amount of letters
while (test[t] != 0)

{
replcett] = test[t];
t + + ;
}

}
else if (lenl < len2)

{ //replacing one letter
//with more than one
while (test[stp] != 0)
{
replcett] = testfstp];
t + +;
stp++;

}
} //replacing more than one

//letter with one letter
else

{
stp++;
while (test[stp] != 0)
{
replcett] = testtstp];
t++ ;
stp++;

}
}

replcett] = 0;
strcat (replce, " '') ;
strcat(newstr,replce);

if (second == false)
{
p = strstr(replce, ocrerr);
if (p != NULL)

155

}
fclose(fp);
return newstr;
}

{
second = true;
strcpy(test,query);
strnset(replce,0,MAXQUERLN);

}
}

else p = 0;
}

//Translation Rules for Latinizing Author Names
//This function reads in the translation rules to Latinize an Author
Name
void Expand::LatAth()
{

int i = 0;
char *lin;
lin = (char *)new char[20];
char *rules[10];

}

strcpy(fileName4, glob.IndexDir())
strcat(fileName4, "seurules");
if ((fp = fopen(fileName4, "r")) =

{
perror(fileName4);
return;
}

while ((lin = line.GetLine(fp)) !=
(
rules[i] = lin;
i + +;
}

return;

NULL)

NULL)

//Country of Publication Expansion
//This function tests to see if a place of publication is a country.
//If it is - the country is replaced with appropriate cities,
char* Expand::Locating(char *srchstn)
{

char *loc, *newloc;
char *expstr, *expqer;
char *city, *country, *lines;
char * found, *newfd;
char *reran;
char *locstr;
char finale[250];
char reff[10] ;
char reffl[10] ;
char spcr[50] = " ";
char *locat;
Boolean locbrak;
Boolean plcbrak;
Boolean set;
Boolean endr;
Boolean first;
FILE *file;

//allocate space for new variables
loc = (char *)new char[MAXSRCHLN];

156

locstr = (char *)new char[MAXSRCHLN];
newloc = (char *)new char[MAXSRCHLN];
expqer = (char *)new char[MAXSRCHLN];
city = (char *)new char[MAXQUERLN];
country = (char *)new char[MAXQUERLN];
lines = (char *)new char[MAXSRCHLN];
expstr = (char *)new char[150];
newfd = (char *)new char[150];
locat = (char *)new char[150];
reran = (char *)new char[MAXSRCHLN];

locbrak = plcbrak = set = false;
first = true;
strcpy(expstr,srchstn);
strcpy(locat, " OR LOCATION = ");
strcpy(expqer,expstr);
strcat(expstr, " @"); //mark end of string

//Clear variables
strnset(loc, 0, MAXSRCHLN);
strnset(locstr, 0, MAXSRCHLN);
strnset(newloc, 0, MAXSRCHLN);
strnset(newfd, 0, 150);
strnset(finale, 0, 250);

//Look for a location entry in the search string
if ((found = strstr(expstr, "(LOCATION = ")) == NULL)

found = strstr(expstr, "LOCATION = ");
while (found != NULL)

{
//Find place of publication - ie. word that follows 'location ='

strnset(newfd,0,150); //clear var
strnset(reran,0,MAXSRCHLN); //clear var
strcpy(reran,found);
endr = false;
char *p = strtok(found, " "); // skip 'location'
strcat(newfd, p);
strcat(newfd, " ");
//check for bracket around location
char *brk = strstr(p,"(");
if (brk != NULL)

locbrak = true;
p = strtok(NULL, " "); // skip = sign
strcat(newfd, p);
strcat(newfd, " ");
p = strtok(NULL, " "); //skip place name
strcat(newfd, p);
strcat(newfd, " ");
strcpy(loc,p); //save place name
//check for bracket around place name
brk = strstr(loc,")");
if (brk != NULL)

{ //if there remove it
int len = strlen(loc);
loc[len - 1] = 0;
plcbrak = true;

}
p = strtok(NULL, " ");
int ii = strcmp(p, "@"); //check for end of string
if (ii == 0)

{
endr = true;
}

else
{
strcpy(reff, p);

157

char *rtt = strstr(newfd,reff);
if (rtt == NULL)

p = strstr(remn,reff);
else

{
strcat(spcr, reff);
p = strstr(remn,spcr);
p = strstr(p,reff);

)
cout << "\nremstr" << p;

}
//Open file where countries are mapped to cities

strcpy(fileName2, glob.IndexDir());
strcat(fileName2, "country");
if ((file = fopen(fileName2, "r")) == NULL)

{
perror(fileName2);
cout << "can't open file";
}

//Get lines from 'country1 file
while ((lines = line.GetLine(file)) != NULL)

{
if (country = strtok(lines, " "))

{
int i = strcmp(country,loc);
cout << "country" << country << << endl;
cout << "location" << loc << << endl;

//If user's location and country are the same then expand the country
if (i == 0)

{
set = true;
cout << "matches " << endl;
if ((city = strtok(NULL, " ")) != NULL)

{
if (locbrak == true)

strcpy(newloc, "((");
else strcpy(newloc, "(");
strcat(newloc, "LOCATION = ");
strcat(newloc,city);
while ((city = strtok(NULL, " "))!= NULL)

{
strcat(newloc, locat);
strcat(newloc, city);

}
if (city = strtok(NULL, "\n"))

{
strcat(newloc, locat);
strcat(newloc, city);
}

if (plcbrak == true)
strcat(newloc, "))");

else strcat(newloc, ")");
cout << "newloc" << newloc << endl;
expqer=
line.ReplcWds(expstr,newfd,newloc);

strcat(finale,expqer);
} //if

} //if
} //if

} //while
if (endr == true)

{
if (set == false)

{
strcat(finale, " ");

158

strcat(finale, expqer);
}

int If = strcspn(finale, "@");
cout << "If " << If << endl;
if (If != NULL)

finale[If] = 0;
cout << "finall " << finale << endl;
strcpy(locstr,finale);
return locstr;
}

if (set == false)
{

if (first == true)
{
first = false;
strcat(finale,expqer);
strcpy(reffl,reff);
}

else
{
strcat(finale, reffl);
strcat(finale, " ");
strcat(finale,newfd);
}}

else
set = false;

strcpy(expqer,p); //process remainder of string
strcpy(expstr,p);
plcbrak = locbrak = false;
if ((found = strstr(expstr, "(LOCATION = ")) == NULL)

found = strstr(expstr, "LOCATION = ");
} //while
strcat(finale, expstr);
int lf2 = strcspn(finale, "@");
if (If2 != NULL)

finale[If2] = 0;
strcpy(locstr,finale);
return locstr;

//Author Description Expansions
//This function expand the author title field initials
// The author field contains the author description e.g. doctor
//However these are often in initials e.g. S.J. = Jesuit
//These initials are expanded in this function so that searching may
continue
//Called from author window search
char *Expand::ProcTitle(char *inits)
{

char store[20];
char *lnes;
char result[200];
char * found;
char *abbrev;
FILE * file;

Ines = (char *) new char[200];
strcpy(store, inits);
strnset(result,0,200);
strcpy(fileNamel, glob.IndexDir());
strcat(fileNamel, "autitle");

//open autitle file for reading
if ((file = fopen(fileNamel, "r")) == NULL)

159

{ //file contains expansions of initials
perror(fileNamel);
errorMsg.Warn("Cannot open autitle file in d:\indexdir");
return NULL;
}

while ((Ines = line.GetLine(file)) != NULL)
{
if (abbrev = strtok(lnes, " "))

{
int i = strcmp(abbrev,store);
if (i == 0)

{
while (abbrev = strtok(NULL, " 11

{
strupr(abbrev);
strcat(result, abbrev);
strcat(result, " ");
}

cout << "\n res " << result;
return result;
}

}
return
)

))

}

//This function expand the author title field initials
// The author field contains the author description e.g. doctor
//However these are often in initials e.g. S.J. = jesuit
//These initials are expanded in this function so that searching may
continue
//Called from combination window search
char *Expand::AuTitleCmb(char *cmbinits)
{

'store, *store2;
'Ines;

''retstr ;

char
char
char *result,
char * found;
char *abbrev,
char *atitle;
char autle[300] = "(AUTITLE
FILE * file;

'change;

Ines =
atitle
result
retstr
change
store
store2
strnset
strnset
strnset
strnset
strnset
strnset

(char *)
= (char
= (char
= (char
= (char
(char *

= (char
(result,
(retstr,
(store,0
(store2,
(atitle,
(change,

new char[200];
') new char[30]
*) new char[250
*) new char[250
*) new char[50]
) new char[250]
*) new char[250
0,250);
0,300);
,250) ;
0,250);
0,30);
0,50);

] ;

strcpy(store, cmbinits);
strcpy(store2, cmbinits);

if ((found = strstr(store,
{
char *p = strtok(found,
strcat(change,p);
strcat(change," ");

"AUTITLE = ")) != NULL)

" "); //skip 'autitle'

160

//skipp = strtok(NULL, " ");
strcat(change,p);
streat(change," ");
p = strtok(NULL, " "); //get author title
strcat(change,p);
strepy(atitle,p);

strepy(fileNamel, glob.IndexDir());
strcat(fileNamel, "autitle");

//open autitle file for reading
if ((file = fopen(fileNamel, "r")) == NULL)

{ //file contains expansions of initials
perror(fileName3);
errorMsg.Warn("Cannot open autitle file");
return store2;
}

while (fines = line.GetLine(file)) != NULL)
{
if (abbrev = strtok(Ines, " "))

{
int i = stremp(abbrev,atitle);
if (i == 0)

{
if (abbrev = strtok(NULL, " "))

//if one word append to result
{
strupr(abbrev);
strcat(result, abbrev);

}
if (abbrev = strtok(NULL, " "))

//if second word, add bracket
{
strupr(abbrev);
strcat(autle,result);
strcat(autle, " AND AUTITLE = ");
strcat(autle, abbrev);
while (abbrev = strtok(NULL, " "))

{
strupr(abbrev);
strcat(autle, " AND AUTITLE = ");
strcat(autle, abbrev);
}

strcat(autle, ")");
retstr =

line.Replclnits(store2,change,autle);
return retstr;

)
retstr = line.Replclnits(store2,atitle,result)
return retstr;

} //if (i)
} //if (abbrev)

} //while (Ines)
} //if (found)

return store2;
}
//Log Users Search for Use in Previous Search Results
void Expand::LogSearch(char *searchl)
{

FILE *fpl;
char *srchlne;
srchlne = (char *)new char[150];
strepy(srchlne, "\n");
strcat(srchlne,searchl);

161

if ((fpi = fopen("logsearch.txt", "a")) == NULL)
{
errorMsg.Warn("Cannot open file LOGSEARCH.TXT");
return;
}

fputs(srchlne, fpl);
fclose(fpl);
delete srchlne;

}

User Tools Code - Term Frequency / Previous Search Results
/ Librarians Notes
Tools.Hpp
#ifndef _TOOLS_HPP_
ttdefine _TOOLS_HPP_
#include "stdwin.hpp"
#include "stdtyp.hpp"
#include "entryfld.hpp"
#include "line.hpp"
#include "listbox.hpp"
#include "mle.hpp"
class TermWin
{

friend class TreeWin;
friend class LatWin;
private:

EntryField tfefield, htefield;
StdWin win;
Boolean inittf;
char *tfText;
char *htText;
int nmhits;

public:
TermWin() { inittf = false;)
void Init(HWND hwnd);
int TermFrq(char *term);
int AthTerinFrg(char *term) ;

) ;

extern TermWin termWin;
class NotesWin
{

private:
MLE mle;
ListBox pslbox;
StdWin win;
Boolean ntsinits;

public:
NotesWin() {ntsinits = false;}
void Init(HWND hwnd);
void InitPS(HWND hwnd);
void Show();
void ShowPS();
void Save();

} ;

162

extern NotesWin notesWin;
extern NotesWin prvsrchWin;

#endif

Tools.Cpp
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
ttinclude

<iostream.h>
<stdio.h>
<stdlib.h>
" library.ids
"elist.hpp"
"error.hpp"
"glob.hpp"
"tools.hpp"
"parse.hpp"
"snode.hpp"
"srchwin.hpp

TermWin termWin;
NotesWin notesWin;
NotesWin prvsrchWin;

//Initialize Term Frequency Window
void TermWin::Init(HWND hwnd)
{

win.AttachHandle(hwnd);
tfefield.AttachID(hwnd, ID_EFTERMFREQ);
htefield.AttachID(hwnd, ID_EFNUMHITS);
cout << "in init termf" << endl;
nmhits = 0;
tfText = NULL;
htText = NULL;
inittf = true;

int TermWin::TermFrq(char *term)
{

SearchNodePtr pNode, pRoot;
Token token;
char buffer[10];
char *word;
char *tText;

tText = (char *)new char[30];
strcpy(tText,term);

Segment segment(tText);
word = segment.GetToken(token);
if (word != NULL)

{
elist.nodisplay = true;
pRoot = new WordNode(word,authorWindow.pHashTable);
assert(pRoot != NULL); //in author field
pNode = new WordNode(word,authorWindow.pHashTable2)
assert(pNode != NULL);
pRoot = new UnionNode(pRoot,pNode);
assert(pRoot != NULL);
pNode = new WordNode(word,titleWindow.pHashTable);
assert(pNode != NULL); //in title field
pRoot = new UnionNode(pRoot,pNode);
assert(pRoot != NULL);
pNode = new WordNode(word,seriesWindow.pHashTable);

163

assert(pNode != NULL); //in series field
pRoot = new UnionNode(pRoot,pNode);
assert(pRoot != NULL);
elist.AsyncDisplayList(pRoot,&win);
if (elist.addentry == true)

{ //return number of hits found if any
nmhits = elist.freqcnt;
return nmhits;
}

)
return 0;
)
//This function looks for a term in author field only.
//It is used in latinizing names to see if translated names
// are legal - by checking to see if they are in the catalogue,
int TermWin::AthTermFrq(char *term)
{

SearchNodePtr pNode, pRoot;
Token token;
char buffer[10];
char *word;
char *tText;
tText = (char *)new char[30];
strcpy(tText,term);
Segment segment(tText);
word = segment.GetToken(token); //get word
if (word != NULL)

{
elist.nodisplay = true;
pRoot = new WordNode(word,authorWindow.pHashTable);
assert(pRoot != NULL); //lokk in author surname field
elist.AsyncDisplayList(pRoot,&win);
if (elist.addentry == true)

{
nmhits = elist.freqcnt;
return nmhits;
}}

return 0;
}

//Initialize Libraian's Notes Window
void NotesWin::Init(HWND hwnd)
{

ntsinits = true;
cout << "in init noteswin " << endl;
win.AttachHandle(hwnd);
mle.AttachID(hwnd, ID_MLENOTES);

}
//Show Notes on Catalogue
void NotesWin::Show()
{

FILE *nf;
char *lnes;
Ines = (char *) new char[500];
notesWin.mle.Clear();
if (ntsinits == false)

return;
//open notes file
if ((nf = fopen("notes.txt", "r")) == NULL)

164

{
errorMsg.Warn("Cannot open notes file1');
return;
}

while (fines = line.GetLine(nf)) != NULL)
{
notesWin.mle+=lnes;
cout << Ines << endl;
}

fclose(nf);
}

//Save any additional notes made
void NotesWin::Save()
{

FILE *nf;
char *nText;

//mle buffer size = 500
nText = (char *) new char [500];
if (ntsinits == false)

return;

if ((nf = fopen("notes.txt", "w")) == NULL)
{
errorMsg.Warn("Cannot open notes file");
return;
}

nText = notesWin.mle.GetText();
fputs(nText,nf);
fputs("\n", nf);
fclose(nf);

}
//Initialize Previous Search window
void NotesWin;:InitPS(HWND hwnd)
{

ntsinits = true;
cout << "in init previous srch " << endl;
win.AttachHandle(hwnd);
pslbox.AttachID(hwnd, ID_LBPRVSRCH);

}
void NotesWinShowPS()
{

FILE *nf;
char *lnes;
Ines = (char *) new char[500];
prvsrchWin.pslbox.Clear();
if (ntsinits == false)

return;

// open file that logs search results
if ((nf = fopen("logsearch.txt", "r")) == NULL)

{
errorMsg.Warn("Cannot open previous search file")
return;
}

165

//display contents of file in previous search window
while ((Ines = line.GetLine(nf)) != NULL)

{
prvsrchWin.pslbox+=lnes;
cout << Ines << endl;
}

fclose(nf);

Knowledge Tree Construction Tool code
TreeWin.Hpp
#ifndef _TREEWIN_HPP_
idefine _TREEWIN_HPP_

#include "stdwin.hpp"
#include "stdtyp.hpp"
ttinclude "entryfId.hpp"
#include "listbox.hpp"

struct tNode
{

char * label;
tNode *next_sib;
tNode *first_child;

} ;

class TreeWin
{

private:
ListBox treelistbox, viewlistbox;
EntryField refield, pefield, cefield;
EntryField frefield, fefield, bqefield;
StdWin win;
char *rText, *bqtext;
char *cText, *pText, *all;
tNode *arrles[20];
char *treecd[20];
tNode *mainroot, *at, *store;
int subj, t;
Boolean level2,found,parent,exist;
Boolean start;

public:

false;}
TreeWin() {rText = NULL; found = false; parent

Boolean initroot;
void Root();
void AddChild();
void InitR(HWND hwnd);
void InitAddC(HWND hwnd);
void AddNode(char *chdtext, tNode *parent);
void AddFirstNode(char *chdtext, tNode *parent)
void ChngParnt();
void Back();
void InitView(HWND hwnd);
void FindSubj();
void ListSubjsO;
void ViewTree(tNode *hdnode);
void FindCInit(HWND hwnd);
void FindConcept();

166

void FindNode(tNode *fNode, char *ftext);
tNode *FindPrev(tNode *fpNode);
tNode *FindPrnt(tNode *cdNode);
void DelNode();
void InitSearchWin(HWND hwnd);
void Query();
void GetSubj(tNode *sNode, int s);
void Search();
char *Remhits(char *ntext);
void Recursrch(tNode *rNode);
void GoSearch(char *text);

} ;

extern TreeWin treeWin;

#endif

TreeWin.Cpp
#include <iostream.h>
ttinclude <stdio.h>
ttinclude <stdlib.h>
#include "library.ids"
#include "elist.hpp"
#include "error.hpp"
#include "parse.hpp"
#include "snode.hpp"
#include "srchwin.hpp"
ttinclude "tools.hpp"
#include "treewin.hpp"
TreeWin treeWin;
//This function initializes the root window
void TreeWin::InitR(HWND hwnd)
{

win.AttachHandle(hwnd);
refield.AttachIDfhwnd,ID_EFSUBJHEAD);
initroot = true;
exist = false;

}

//This function takes the text in the efield and attaches it
//to a new root node
void TreeWin::Root()
{

char rhits[5];
char *reText;
rText = (char *) new char[30];
reText = (char *) new char[30];
tNode *froot;
reText = refield;
int len = strlen(reText);
if (len > 3)

{
int num = termWin.TermFrq(reText);
strcat(reText, " (");
itoa(num,rhits,10);
strcat(reText, rhits);
strcat(reText, ")");

}
strcpy(rText,reText);
if (mainroot == NULL)

mainroot = new tNode;

167

else
{
froot = mainroot->first_child;
cout << "tst " << froot->label << endl;
while (froot != NULL)

{
int i = strcmp(froot->label,reText);
if (i == 0)

{
errorMsg.Warn("This subject already exists
exist = true;
return;
}

else froot = froot->next_sib;
}

}
char *mText = refield;
AddFirstNode(mText,mainroot);
froot = mainroot->first_child;
cout << froot->label << endl;
cout << "trxt " << rText << endl;

}
//This function initializes the addchild window
void TreeWin::InitAddC(HWND hwnd)
{

win.AttachHandle(hwnd);
pefield.AttachID(hwnd,ID_EFSUBJPRNT);
cefield.AttachID(hwnd, ID_EFSUBJCHLD);
treelistbox.AttachID(hwnd, ID_LBCHLDRN);
tNode *cdNode;
pefield = rText;
treelistbox.Clear();
t = 1;
level2 = false;
if (exist == true)

{
exist = false;
cdNode = new tNode;
cdNode = mainroot->first_child;
int i = strcmp(cdNode->label,rText);
while (i != 0)

{
cdNode = cdNode->next_sib;
i = strcmp(cdNode->label,rText);
}

cdNode = cdNode->first_child;
while (cdNode != NULL)

{
treelistbox += cdNode->label;
cdNode = cdNode->next_sib;
}

}
}
//this function takes the childs name in the efield
//and calls a newprocedure to link that child to
//its parent,
void TreeWin::AddChild()
{

tNode *parent;
tNode *rtNode;
int cmp;
parent = new tNode;
rtNode = new tNode;

168

pText = pefield;
cText = cefield;
rtNode = mainroot->first_child;
cout << "rtnode " << rtNode->label << endl;
cout << "pText " << pText << endl;
int i = strcmp(rtNode->label,pText);
if (i == 0)

AddNode(cText,rtNode);
else

{
level2 = true;
parent = rtNode->first_child;
cmp = strcmp(parent->label,pText);
while (cmp != 0)

{
parent = parent->next_sib;
cout << parent->label << endl;
cmp = strcmp(parent->label,pText);
}

AddNode(cText,parent);
}

cefield =
}

//This function adds the label given by chdtext to the node parent
void TreeWin::AddNode(char *chdtext, tNode *parent)
{

tNode *child;
char *cldtxt;
char *chtext;
char hits[5];
char *sps = " ";
child = new tNode;
cldtxt = (char *) new char[30];
strcpy(cldtxt,sps);
if (level2 == true)

strcat(cldtxt,sps);
strcat(cldtxt,chdtext);
int len = strlen(chdtext);
if (len > 3)

{
int num = termWin.TermFrq(cldtxt);
strcat(cldtxt, " (");
itoa(num,hits,10);
strcat(cldtxt, hits);
strcat(cldtxt, ")");

}
child->label = cldtxt;
child->next_sib = parent->first_child;
parent->first_child = child;
child->first_child = NULL;
treelistbox += child->label;
treecd[t] = new char[strlen(cldtxt) + 1];
strcpy(treecd[t],cldtxt);
t++ ;

}
//This function adds the label given by chdtext to the node parent
void TreeWin::AddFirstNode(char *chdtext, tNode *parent)
{

tNode *chiId;
char *cldtxt;
char *chtext;
char hits[5];

169

child = new tNode;
cldtxt = (char *) new char[30];
strcpy(cldtxt,chdtext);
int len = strlen(chdtext);
if (len > 3)

{
int num = termWin.TermFrq(cldtxt);
strcat(cldtxt, " (");
itoa(num,hits,10);
strcat(cldtxt, hits);
strcat(cldtxt, ")");

}
child->label = cldtxt;
child->next_sib = parent->first_child;
parent->first_child = child;
parent->next_sib = NULL;
child->first_child = NULL;

//This function changes the parent node to one of the children
//to allow new children to be added to that child,
void TreeWin::ChngParnt()
{

int i = 0;
char *ndtext;
tNode *trnode;
tNode *rtNode;
ndtext = (char *) new char[30];
strnset(ndtext,0,30);
int rown = treelistbox.GetSelection();
if (rown == -1)

{
errorMsg.Warn("No entry selected-select to continue")
return;
}

rown++;
cout << "row " << rown;
rtNode = mainroot->first_child;
if (rown != LIT_NONE)

{
trnode = rtNode->first_child;
strcpy(ndtext,trnode->label);
i = strcmp(ndtext, treecd[rown]);
while (i != 0)

{
trnode = trnode->next_sib;
strcpy(ndtext,trnode->label);
i = strcmp(ndtext,treecd[rown]);
}

if (trnode != NULL)
{
pefield = trnode->label;
treelistbox.Clear();
}

}

170

//This function moves back up the tree to display a higher level
void TreeWin::Back()
{

tNode *tnode;
tNode *rtNode;
treelistbox.Clear();
rtNode = mainroot->first_child;
pefield = rtNode->label;
tnode = rtNode->first_child;
int tr = 1;
while (tnode != NULL)

{
treelistbox += tnode->label;
treecdftr] = new char[strlen(tnode->label) + 1];
strcpy(treecd[tr],tnode->label);
cout << "tr" << tr << treecd[tr] << endl;
tr++ ;
tnode = tnode->next_sib;
}

}

//This procedure initialises the view tree window
void TreeWin::InitView(HWND hwnd)
{

tNode *rtNode;
win.AttachHandle(hwnd);
viewlistbox.AttachID(hwnd, ID_LBVIEWLIST);
viewlistbox.Clear();
cout << "init view " << endl;
if (mainroot == NULL)

errorMsg.Warn("No subject tree has been created");
else

{
rtNode = mainroot->first_child;
while (rtNode != NULL)

{
viewlistbox += rtNode->label;
rtNode = rtNode->next_sib;
}

start = true;
}

}

//This function finds the subject heading for a given subject
void TreeWin::FindSubj()
{

tNode *rtNode;
rtNode = mainroot->first_child;
int where = viewlistbox.GetSelection();
if (where != LIT_NONE)

{
while (where != 0)

{
rtNode = rtNode->next_sib;
where--;
}

viewlistbox.Clear();
viewlistbox += rtNode->label;
at = rtNode;
rtNode = rtNode->first_child;

171

start = false;
ViewTree(rtNode);
}

}
//This procedure list all the subjec tress that have been built
void TreeWin::ListSubjs()
{

tNode *rtNode;
rtNode = mainroot->first_child;
viewlistbox.Clear();
while (rtNode != NULL)

{
viewlistbox += rtNode->label;
rtNode = rtNode->next_sib;
)

}

//This function uses a depth first search to traverse the tree
//displaying the labels of each of the nodes in the listbox,
void TreeWin::ViewTree(tNode *hdnode)
{

if (hdnode != NULL)
{
viewlistbox += hdnode->label;
ViewTree(hdnode->first_child);
ViewTree(hdnode->next_sib);
}

)
void TreeWin::FindCInit(HWND hwnd)
{

win.AttachHandle(hwnd) ;
fefield.AttachID(hwnd,ID_EFFINDCONC);
frefield.AttachID(hwnd,ID_EFFINDRSLT);

}

void TreeWin::FindConcept()
{

char *fText;
char *srchText;
char rhits[5];
tNode *fdNode;
char *pos = "Found!";
char *neg = "Not found";
if (mainroot == NULL)

{
errorMsg.Warn("The subject tree is empty");
return;
}

srchText = (char *) new char[30];
fdNode = new tNode;
found = false;
fText = fefield;
strcpy(srchText,fText) ;
cout << "ftext " << fText << endl;
int len = strlen(fText);
if (len > 3)

{
int num = termWin.TermFrq(fText);
strcat(srchText, " (");
itoa(num,rhits,10);
strcat(srchText, rhits);
strcat(srchText, ")");

172

<< srchText << endl;cout << "stext
}

fdNode = mainroot->first_child;
FindNode(fdNode, srchText);
if (found == false)

frefield = neg;
)

//This function checks to see if a subject already exists in the tree.
//It takes in a subject name and searches the tree breadth-first
//for a node with that label. If found - a boolean variable 'found' is
set
//to true and false otherwise.
void TreeWin::FindNode(tNode *fNode, char *ftext)
{

char *fdText;
char *spText;
char *sps = " ";
fdText = (char *)new char[30];
spText = (char *)new char[30];

strcpy(spText,sps);
strcat(spText,ftext);
strcpy(fdText,ftext);
cout << "fn fd" << fdText << endl;
cout << "fn fd" << spText << endl;
if (fNode != NULL)

{
int i = strcmp(fNode->label,fdText);
if (i != 0 && fNode != NULL)

{
FindNode(fNode->next_sib,fdText);
FindNode(fNode->first_child,spText);
}

if (i == 0)
{
found = true;
cout << "before call" << endl;
tNode *nde = FindPrnt(fNode);
cout << "nde " << nde->label << endl;
frefield = nde->label;
}

}
}

//This function finds previous node in the tree
tNode *TreeWin::FindPrev(tNode *fpNode)
{

tNode *pNode;
tNode *dad;

pNode = new tNode;
dad = new tNode;
pNode = mainroot->first_child;
dad = pNode;
while (pNode != NULL)
{

if (pNode->first_child == NULL)
{
if (pNode->next_sib == fpNode)

{
cout << "ret" << pNode->label << endl;
return pNode;
}

173

else
{
if (pNode->next_sib != NULL)

pNode = pNode->next_sib;
else

pNode = dad->next_sib;

}
return NULL
)

)
else

{
dad = pNode;
pNode = pNode->first_child;
if (pNode == fpNode)

{
parent = true;
cout << "ret" << dad->label << endl
return dad;
}}

//This function finds the parent of a node
tNode *TreeWin::FindPrnt(tNode *cdNode)
{

tNode *pNode;
tNode *dad;

return
}

pNode = new tNode;
dad = new tNode;
pNode = mainroot->first_child;
dad = pNode;
if (dad == cdNode)

return dad;
while (pNode != NULL)
{

if (pNode->first_child == NULL)
{
if (pNode == cdNode)

return dad;
else pNode = pNode->next_sib;
}

else
{
dad = pNode;
pNode = pNode->first_child;
if (pNode == cdNode)

return dad;

}
NULL ;

}

//Deletes a node
void TreeWin::DelNode()
{

int i = 0;
char *ndtext;
tNode *rtNode;
tNode *curNode;
tNode *pNode;

174

pNode = new tNode;
curNode = new tNode;
ndtext = (char *) new char[30];
strnset(ndtext,0,30);
int rown = treelistbox.GetSelection();
if (rown == -1)

{
errorMsg.Warn("No entry selected - select to continue
return;
}

rown++;
rtNode = mainroot->first_child;
if (rown != LIT_NONE)

{
curNode = rtNode->first_child;
strcpy(ndtext,curNode->label);
i = strcmp(ndtext, treecd[rown]);

while (i != 0)
{
curNode = curNode->next_sib;
strcpy(ndtext,curNode->label);
i = strcmp(ndtext,treecd[rown]);
}

if (curNode != NULL)
{
pNode = FindPrev(curNode);
if (parent)

pNode->first_child = curNode->next_sib;
else

pNode->next_sib = curNode->next_sib;
}

Back();
}

}
//Initialise the authomatic query formulation window
void TreeWin::InitSearchWin(HWND hwnd)
{

win.AttachHandle(hwnd);
bqefield.AttachID(hwnd,ID_EFBUILDQUERY);
bqefield =
cout << "init srch" << endl;

}
//Build a Query from the subject heading chosen by the user
void TreeWinQuery()
{

tNode *bqNode;
bqNode = new tNode;
bqtext = (char *) new char[30];

int whr = viewlistbox.GetSelection();
cout << "start " « start « endl;
cout << "where " << whr << endl;
if (whr != LIT_NONE)

{
if (start == true)

{
bqNode = mainroot->first_child;
while (whr != 0)

{
bqNode = bqNode->next_sib;
whr--;
}

strcpy(bqtext,bqNode->label);

175

delete at;
}

store = bqNode;
cout << "txt" << bqtext << endl;
bqefield = bqtext;
}

else GetSubj(at,whr);
}

//Recursive function which finds all children subjects
void TreeWin::GetSubj(tNode *sNode, int s)
{

if (sNode != NULL)
{
if (s == 0)

{
strcpy(bqtext,sNode->label);
store = sNode;
bqefield = bqtext;
)

else
{
s—;
GetSubj(sNode->first_child,s);
GetSubj(sNode->next_sib,s);
}}

)

void TreeWin::Search()
{

char *text;
text = (char *)new char[30];
all = (char *)new char[30];

strcpy(all, " ");
DismissCreatSearchWindow(false);
DismissViewTreeWindow(false);
if (store->first_child != NULL)

{
Recursrch(store);
GoSearch(all);
}

else
{
text = Remhits(store->label);
cout << "text" << text << << endl;
GoSearch(text);
}

cout << "all " << all << endl;
}
//Remove hits from subject string
char *TreeWin::Remhits(char *ntext)
{

char *total;
total = (char *) new char[30];
strcpy(total,ntext);
cout << "totall " << total << endl;
int i = strcspn(total,"(");
cout << "i" << i << endl;
if (i != 0)

total[i - 1] = 0;

176

cout << "totall " << total << endl;
return total;

//Recursive function to build query from tree
void TreeWin::Recursrch(tNode *rNode)
{

char *text;
text = (char *)new char[30];
strnset(text,0,30);

if (rNode != NULL)
{
text = Remhits(rNode->label);
cout << "recur " << text << endl;
strcat(all, text);
Recursrch(rNode->next_sib);
Recursrch(rNode->first_child);}

)
//Call search calss to execute the search
void TreeWin::GoSearch(char *text)
{

SearchNodePtr pRoot, pPlus, pNode;
Token token;
char *word;
char *gText;

gText = (char *)new char[30];
strcpy(gText, text);
Segment segment(gText);
if ((word = segment.GetToken(token)) != NULL)

{
cout << "word " << word << endl;
pRoot = new WordNode(word, authorWindow.pHashTable)
assert(pRoot != NULL);
pNode = new WordNode(word, titleWindow.pHashTable);
assert(pNode != NULL);
pRoot = new UnionNode(pRoot, pNode);
assert(pRoot != NULL);
}

while ((word = segment.GetToken(token)) != NULL)
{
cout << "word " << word << endl;
pNode = new WordNode(word, authorWindow.pHashTable)
assert(pRoot != NULL);
pRoot = new UnionNode(pRoot, pNode);
assert(pRoot != NULL);
pNode = new WordNode(word, titleWindow.pHashTable);
assert(pNode != NULL);
pRoot = new UnionNode(pRoot, pNode);
assert(pRoot != NULL);
}

elist.AsyncDisplayList(pRoot, &win);
}

Latinize Author Name Code
Latwin.hpp
#ifndef _LATWIN_HPP.
#define _LATWIN_HPP.

177

#include "stdwin.hpp"
#include "stdtyp.hpp"
ttinclude "entryfId.hpp"
#include "line.hpp"
#include "listbox.hpp"

class LatWin
{

private:
ListBox latlistbox;
EntryField efield;
StdWin win;
Boolean initlat;
char *lText;
char *rText;
int sv,vr;

public:
char *latrulesl[80];
char *latrules2[80];
char *saverls[100];
char *validrls[100];
LatWin() { initlat = false; }
void Init(HWND hwnd);
void FindCog();
void ChgCog();
void SaveChg(char *svword);
char *RemSgn(char *word);
void ReplcBeg(char *name, char *one, char *two);
void ReplcEnd(char *name, char *one, char *two);
void ReplcMid(char *latm, char *onem, char *twom)
void Check(char *nwname);

extern LatWin latWin;

#endif

Latwin.cpp
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

<iostream.h>
<stdio.h>
<stdlib.h>
"library.ids
"elist.hpp"
"error.hpp"
"glob.hpp"
"latwin.hpp"
"parse.hpp"
"snode.hpp"
"srchwin.hpp
"tools.hpp"

Latwin latwin;

//Initialize Latinize Window
void LatWin::Init(HWND hwnd)
{

win.AttachHandle(hwnd);
latlistbox.AttachID(hwnd, ID_LBLATNAME);
efield.AttachID(hwnd, ID_EFLATNAME);
rText = NULL;

if (authorWindow.pText == NULL)

178

rText = authorWindow.efield;

if ((rText == NULL) && (authorWindow.pText == NULL))
{
errorMsg.Warn("No author surname selected");
DismissLatAthWindow(false);
return;

)
else

{
if (rText != NULL)

efield = rText;
else efield = authorWindow.pText;

IText = efield;
initlat = true;
sv = 0 ;
vr = 0;
cout << "init lat " << initlat << endl;
for (int k = 0; k < 100; k++)

//allocate space for cognates array
saverls[k] = new char[30];

for (int u = 0; u < 20; u++)
//allocate space for valid cognates array

validrls[u] = new char[30];
latlistbox.Clear();
FindCog();
}

//Check for Translation Rules inthe Author Name
void LatWin::FindCog()
{

char *rulel;
char *rule2;
char * found;
char *rll;
char *rl2;
char *gen;
char *lattext;
char *again;
int posrl;
int posr2;
Boolean beg,end,emp,mid;
Boolean first,seed,fndrl;

lattext = (char *) new char[30];
rulel = (char *) new char[10];
rule2 = (char *) new char[10];
again = (char *) new char[30];

strnset(lattext,0,30);

seed = false;
int i = 0;
while (latrulesl[i] != NULL)

{
beg = end = emp = mid = false;

//set all boolean vars to false
first = fndrl = false;
strepy(lattext,IText);

rulel = latrulesl[i];
//get rule from array

rule2 = latrules2[i];

179

char *r = strstr(rulel,"#");
if (r == NULL) //if '#' not found

{ // rule occurs in middle of name
mid = true;
if ((found = strstr(lattext,rulel)) != NULL)

{
ReplcMid(lattext,rulel,rule2);
fndrl = true;
first = true;
}

else
{ //invert rule and try again
if ((found = strstr(lattext,rule2)) != NULL)

{
ReplcMid(lattext,rule2,rulel);
fndrl = true;
}

}
}

if (r != NULL) //if rule contains #
{ II then remember
posrl = strcspn(rulel,"#")
if (posrl == 0)

{
gen = RemSgn(rulel);
if (gen == NULL)

emp = true;
else beg = true;
rll = gen;
}

else
{
end = true;
gen = RemSgn(rulel);
rll = gen;
}

where it occurs and strip

//remove # from rule

//newrule = rll

//remove # from rule
//newrule = rll

it

if (beg == true || end == true) // if rule not empty
{

gen = RemSgn(rule2);
rl2 = gen;
found = strstr(lattext,rll);
if (found != NULL)

{
first = true;
fndrl = true;
if (beg == true)

ReplcBeg(lattext,rll,rl2);
else

ReplcEnd(lattext,rll,rl2);
}

else
{
found = strstr(lattext,rl2);
if (found != NULL)

{
fndrl = true;
if (beg == true)

ReplcBeg(lattext,rl2,rll);
else

ReplcEnd(lattext,rl2,rll);
}

}

180

if (emp == true)
{
posr2 = strcspn(rule2,"#");
if (posr2 != NULL)

{
fndrl = true;
if (posr2 == 0)

beg = true;
else end = true;
gen = RemSgn(rule2);
rl2 = gen;
if (beg == true)

ReplcBeg(lattext,rll,rl2);
else ReplcEnd(lattext,rll,rl2);
}}}

//if rule has been found then
//apply rule found to names already latinized
if (fndrl == true)

{
int whr = 0;
if(sv>l) //if names already found

{
int mx = sv - 1;
while (whr != mx && sv <= 99)

{
strcpy(again,saverls[whr]);
if (mid == true)

//if rule occurs in middle of name
{
if (first == true)

//replc first with second
ReplcMid(again,rulel,rule2);

else ReplcMid(again,rule2,rulel);
}

if (emp == true) //if mapping in rule is null
{
if (beg == true)

//replc at beginning of name
ReplcBeg(again,rll,rl2);

else ReplcEnd(again,rl2,rll);
}

if (beg == true && emp != true)
//if rule occurs at beginning of name

{
if (first == true)

//replc first with second
ReplcBeg(again,rll,rl2);

else ReplcBeg(again,rl2,rll);
}

if (end == true && emp != true)
//if rule occurs at end of name

{
if (first == true)

//replc first with second
ReplcEnd(again,rll,rl2);

else ReplcEnd(again,rl2,rll);
}

whr++;
}

181

//This fuction removes the # sign from the rule
char *LatWin::RemSgn(char *word)
{

char *newword;
char *sendstr;
newword = (char *) new[30];
sendstr = (char *) new[30];

strcpy(newword,word);
strnset(sendstr,0,30);

int len = strlen(newword);
int p = strcspn(newword,"#");
if (p == 0)

{
while (newword[p +1] != NULL)

{
newword[p] = newword[p + 1];
P++;
}

newword[p] = 0;
strcpy(sendstr,newword);
}

else
{
newword[len - 1] = 0;
strcpy(sendstr,newword);
}

return sendstr;
}
//This function substitutes one (part of rule) with two (translation)
//at beginning of name
void LatWin::ReplcBeg(char *name,char *one, char *two)
{

char *bnewauth;
char *authorn;
char *rone;
char *rtwo;
int num = 0;

bnewauth = (char *)new char[30];
rone = (char *)new char[10];
rtwo = (char *)new char[10];
strnset(bnewauth,0,30);
strcpy(authorn,name);
strcpy(rone,one);
strcpy(rtwo,two);

if (rone == NULL)
{
strcpy(bnewauth,rtwo);
streat(bnewauth,authorn);
}

else
{
strcpy(bnewauth,rtwo);
int len = strlen(rone);
int In = len;
while (authorn[len] != NULL)

{
authorn [num] = authorn [len] ,•
len++;

182

num+ +;
}

authorn[len - In] = 0;
streat(bnewauth,authorn);
}
cout << "replc beg" << bnewauth « endl;
SaveChg(bnewauth);

//Replace one with two at end of name
void LatWin::ReplcEnd(char *name,char *one, char *two)
{

char *enewauth;
char *authorn;
char *rone;
char *rtwo;
char *hello2;

enewauth = (char *)new char[30];
rone = (char *)new char[10];
rtwo = (char *)new char[10];
strnset(enewauth,0,30);
strepy(authorn,name);
strepy(rone,one);
strepy(rtwo,two);
if (rone == NULL)

{
strepy(enewauth,authorn);
streat(enewauth,rtwo);}

else
{

//Needed for applying rule to names already found
//If name has been changes by a previous rule it might not
//contain the current rule

int alen = strlen(authorn);
int roneln = strlen(rone);
char *tst = strstr(authorn,rone);
cout << "tst " << tst << endl;
cout << "alen " << alen << endl;
if (tst == NULL)

return;
int pp = strespn(authorn,rone);
int newlen = alen - roneln;
if (newlen != pp)

return;
authorn[pp] = 0;
strepy(enewauth,authorn);
streat(enewauth,rtwo);
}

cout << "replc end" << enewauth << endl;
// latlistbox += enewauth;

SaveChg(enewauth);

//This function substitutes one with two in middle of name
void LatWin::ReplcMid(char *latm, char *onem, char *twom)
{

char *authorn;
char *mnwauth;
int na = 0;
char rune[10];

183

char rdeux[10];
authorn = (char *)new char[30];
mnwauth = (char *)new char[30];

strnset(mnwauth,0,30); //claer variables
strnset(authorn,0,30);
strcpy(authorn,latm);
strcpy(rune,onem);
strcpy(rdeux,twom);

int lenl = strlen(rune);
int len2 = strlen(rdeux);

//Needed for applying rule to names already found
//If name has been changes by a previous rule it might not
//contain the current rule

char *tst = strstr(authorn,rune);
cout « "tst " « tst « endl;
if (tst == NULL)

return;
while (authorn[na] != rune[0])

{ //copy initial segment
mnwauth[na] = authorn[na];
na++ ;
}

int remt = na;
for (int j =0; j < len2; j++) //copy rule

{
mnwauth[na] = rdeux[j];
na++ ;
}

if (lenl == len2)
{
while (authorn[na] != NULL)

{
mnwauth[na] = authornfna];
na++ ;
}}

if (lenl < len2 || len2 < lenl)
{
remt = remt + lenl;
while (authorn[remt] != NULL)

{
mnwauth[na] = authorn[remt];
na++ ;
remt++;
}

}
mnwauth[na] = 0;
cout << "Rplc mid" << mnwauth << endl;
SaveChg(mnwauth);

//This finction changes the entry field in the author window to
//the cognate found in FindCog
void LatWin::ChgCog()
{

int row = latlistbox.GetSelection();
if (row != LIT_NONE)

authorWindow.efield = validrls[row];
}

184

//This function saves the cognate found in an array of cognates
//to be accessed when the user clicks on a row in the listbox
void LatWin::SaveChg(char *svword)
{

char *newsave;
newsave = (char *)new char[30];
strcpy(newsave,svword);
int sine = strlen(newsave);
if (sine < 4) //if word length less than 4 then ignore it

return;
if (sv < 100)

{
strcpy(saverls[sv],newsave);
Check(newsave);
sv++ ;
cout << "sv at " << sv << endl;
}

return;
}

//This function checks to see if new name exists before
//displaying it in the listbox
void LatWin::Check(char *nwname)
{

SearchNodePtr pNode;
Token token;
char *word;
char *chktxt;
int chk = 0;
chktxt = (char *)new char[30];
strnset(chktxt,0,30);
strcpy(chktxt,nwname);
int i = termWin.AthTermFrq(chktxt);

if (i > 0)
{
latlistbox += chktxt;
cout << "valid name" << chktxt << endl;
strcpy(validrls[vr],chktxt);
vr++ ;
}

}

Bibliography Manager Code -Create User File, Open Existing
User File, Save User File and Print User File

NewFile.Hpp
#ifndef _NEWFILE_HPP_
#define _NEWFILE_HPP_
#include "stdtyp.hpp"
♦include "stdwin.hpp"
♦include "entryfId.hpp
♦include "line.hpp"
♦include "listbox.hpp"
//♦include<gpfparms,h>

185

class NewFile
{

private:
StdWin win;
ListBox liblistbox;
int entryFieldID;
int listboxID;
int 1;
char *nText;
CHAR buf[20];
char *libs[50];

public:
int create,open;
EntryField efield;
NewFile(int ID);
NewFile(int ID1, int ID2);
-NewFile();
void Init(HWND hwnd);
void Clear();
void Create();
void Open();
void Print();
void SaveFloppy();
void ListFls();
Boolean exist, listb;
FILE *fileo;

} ;

extern NewFile newFile;
extern NewFile openFile;
extern NewFile printFile;
extern NewFile saveFile;

#endif

NewFile■Cpp

#include
#include
#include
#include
#include
#include
#include
#include

<iostream.h>
<stdio.h>
<stdlib.h>
"error.hpp"
"library.ext"
"library.ids"
"newfile.hpp"
"stdtyp.hpp"

NewFile newFile(ID_EFCREATEFILE);
NewFile openFile(ID_EFOPENFILE, ID_LBOPENFLE);
NewFile printFile(ID_EFPRINTFILE, ID_LBPRINFLE)
NewFile saveFile(ID_EFSAVEFILE, ID_LBSAVEFLE);

NewFile::NewFile(int ID)
{

entryFieldID = ID;
exist = false;
listb = false;
create = open = 0;
nText = NULL;

//Set Up New File Variables
NewFile::NewFile(int ID1, int ID2)
{

186

entryFieldID = ID1;
listboxID = ID2;
exist = false;
listb = true;
create = open = 0;
1 = 0;
nText = NULL;

}
//Close File
NewFile::~NewFile()
{

fclose(fileo);
delete [] libs;

}

//Initialize New File
void NewFile::Init(HWND hwnd)
{

win.AttachHandle(hwnd);
efield.AttachID(hwnd, entryFieldID);
if (listb == true)

{
liblistbox.AttachID(hwnd, listboxID);
liblistbox.Clear();
for (int k = 0; k < 50; k++)

libs[k] = new char[15];
}

if (nText != NULL)
efield = nText;

}
void NewFile::Clear()
{

efield = "";
}
//Create New User File
void NewFile::Create()
{

char *p;
char *r;
nText = efield;
p = strstr(nText, ".lib");
r = strstr(nText, ".LIB");
if (p == NULL && r == NULL)

{
errorMsg.Warn("The file must have a '.lib' extension
return;
}

DismissNewFileWindow(false);
if ((fileo = fopen(efield, "w")) == NULL)

errorMsg.Warn("Cannot open file");
create = 1;
exist = true;

)
//Open Existing User File
void NewFile::Open()
{

char *opfle;
opfle = (char *)new char[20];
int row = liblistbox.GetSelection();
if (row != LIT_NONE)

{
cout << "row " << row << endl;

187

opfle = libs[row];
cout « "opfle " << opfle << endl;
efield = opfle;
}

nText = efield;
strcpy(opfle,nText);
cout << "nText " << opfle << endl;
DismissSaveFileWindow(false);
if ((fileo = fopen(opfle, "r")) == NULL)

{
errorMsg.Warn("No such file exists");
return;
}

fclose(fileo);
if ((fileo = fopen(opfle, "a")) == NULL)

{
errorMsg.Warn("Cannot open file");
return;
}

open = 1;
cout << "finish open " << endl;
exist = true;
delete opfle;

}
//Save User File to Floppy
void NewFile::SaveFloppy()
{

char svcoiran [60] ;
char *svfle;
svfle = (char *)new char[15];

fclose(fileo);
int row = liblistbox.GetSelection();
if (row != LIT_NONE)

{
cout << "row " << row << endl;
svfle = libs[row];
cout « "opfle " « svfle « endl;
efield = svfle;
}

nText = efield;
DismissOpenFileWindow(false) ;
if ((fileo = fopen(efield, "r")) == NULL)

{
errorMsg.Warn("No such file exists");
return;
}

strcpy(svcomm, "copy ");
strcat(svcomm,nText);
streat(svcomm,“ a:");
cout << "command " << svcomm << endl;

system(svcomm);
delete svfle;

}
//Print User File
void NewFile::Print()
{

static char command[20];
char *ppfle;
ppfle = (char *)new char[15];

int row = liblistbox.GetSelection();

188

if (row != LIT_NONE)
{
cout << "row " << row << endl;
ppfle = libs[row];
cout << "ppfle " << ppfle << endl;
efield = ppfle;
}

nText = efield;
DismissPrintFileWindow(false) ;
if ((fileo = fopen(efield, "r")) == NULL)

{
errorMsg.Warn("No such file exists");
return;
}

strcpy(command, "print ");
streat(command,nText);
system(command);
delete ppfle;

//List all files with .lib extension
void NewFile::ListFls()
{

FILE * 1is;
char *liblns;
static char command[20];
liblns = (char *) new char[20];
strcpy(command, "dir *.lib > Ifiles ");
system(command);
strcpy(command, "spitbol remext");
cout << "com" << command << endl;
system(command);
if ((lis = fopen("libfiles", "r")) == NULL)

{
errorMsg.Warn("Cannot find list of lib files")
return;
}

while ((liblns = line.GetLine(lis)) != NULL)
{
liblistbox += liblns;
strcpy(libs[1],liblns);
1 + + ;
}

return;
}

189

APPENDIX F

SOURCE LISTING CODE - SNOBOL4

FindLang.Spt - Language Recognition Program - Final
* This is the latest language recognition program written by
07.02 . ' 95
* This program runs on ocr files of the 1872 catalogue pages.
* Spitbol version ; runs only on SPITBOL PHARLAP

&TRIM = 1
*Function to recognize language of each record

DEFINE('RECOGL(LREC)')
*Patterns to be used
PATS DIGIT = ’ 0123456789'

UPPERS = 1ABCDEFGHIJKLMNOPQRSTUVWXYZ'
LOWERS = 'abcdefghijklmnopgrstuvwxyz'
CHARS = (UPPERS LOWERS
LETTERS = UPPERS LOWERS
OR = ("sive" | "seu" \ "or" | "ou")
AUTSEP = (1 (" \? ", 1)
AUTSPR =

*Direct Translation Patterns
DIRTRANS = ARRAY('10,2')

*Language Indicators for each language
SPANISHIND = TABLE()
DUTCHIND = TABLE()
ITALIANIND = TABLE()
FRENCHIND = TABLE()
ENGLISHIND = TABLE()
LATININD = TABLE()
GERMANIND = TABLE()
PORTUGIND = TABLE()

*Language characteristics for recognition
SPANISHREC = TABLE()
DUTCHREC = TABLE()
ITALIANREC = TABLE()
FRENCHREC = TABLE()
ENGLISHREC = TABLE()
LATINREC = TABLE()
GERMANREC = TABLE()
PORTUGREC = TABLE()

*Suffix characteristics for recognition
SPANISHSUF = TABLE()
DUTCHSUF = TABLE()
ITALIANSUF = TABLE()
FRENCHSUF = TABLE()
ENGLISHSUF = TABLE()
LATINSUF = TABLE()
GERMANSUF = TABLE()
PORTUGSUF = TABLE()

*Table to keep scores
* SCORES = TABLE()
* SCORES<1 SPANISH'> = 0
* SCORES<'DUTCH'> = 0
* SCORES<'ITALIAN'> = 0
* SCORES<'FRENCH'> = 0
* SCORES<'ENGLISH'> = 0

Version
. Clarke

190

* SCORES<'GERMAN'> = 0
* SCORES<1PORTUG'> = 0
*Record each natural language name

LANGNME = ARRAY('101)
*Constants - eight languages

NUMLGS = 8
*Read in direct translations

dt = 1
INPUT('trans',3, 'C:\sptl\trans.1st') :F(NOTRNS)

TRANS inp = trans F(ENDTRS)
RSPS

inp break('=') . pat len(l) rem . Ing
pat ' ' rpos(0) = S(RSPS)

LSPS Ing ' ' = S(LSPS)
dirtrans<dt,1> = pat ; dirtrans<dt,2> = Ing
dt = dt + 1 (TRANS)

NOTRNS terminal = "Trans.1st does not exist" (END)
ENDTRS endfile(3) (begin)

*Read indicators lists from a file
*First, read in possible languages from a file
IFILE INPUT('indlang',4, 'C:\sptl\indics.1st') F(NOISFL)
GETILNG ilangs = indlang F(LICLSE)

*Create

ilangs break('.') . ifn len(l) len(3) . iext
nextilng = ifn '.' iext
newtable = ifn 'ind'
table for each indicator file

*Then,
newtab = $newtable
read in characteristics from each file
INPUT('indie',5, 'C:\sptl\' nextilng) F(LGIERR)

LIREAD recind = indie F(NOILMR)
LICHAR newtab<recind> = 1 (LIREAD)
NOILMR endfile(5) (GETILNG)
LGIERR TERMINAL = 'Unable to access indicator file ' NEXTLANG
:(END)
NOISFL TERMINAL = 'File indies.1st does not exist' (END)
LICLSE endfile(4)
*First read in list of suffix files from a file
SFILE INPUT('suflang',6, 'C:\sptl\suffix.lst') F(NOSFFL)
GTSFLNG slangs = suflang F(SFCLSE)

*Create

slangs break('.') . Isfx len(l) len(3) . sext
nxtsflng = Isfx '.' sext
sftable = Isfx 'suf'
table for each suffix file

*Then,
suitable = $sftable

read in characteristics from each file
INPUT('suffix',7, 'C:\sptl\' nxtsflng) F(LGSFER)

LSFRED reesuf = suffix F(NOMRSF)
SFCHAR suftable<recsuf> = 1 (LSFRED)
NOMRSF endfile(7) (GTSFLNG)
LGSFER TERMINAL = 'Unable to access suffix file ’ nxtsflng :(END)
NOSFFL TERMINAL = 'File suffix.1st does not exist' :(END)
SFCLSE endfile(6)
BEGIN
*Read in charcteristics to recognize languages

L = 0
*First/ read in possible languages from a file
*Ask user for name of file containing list of languages

TERMINAL = "Please enter name of file containing languages "
TERMINAL = "Use full file name e.g. C:\SPT1\LANGS.LST

(default)"
filelist = "C:\SPT1\LANGS.LST"
ans = terminal
leq(ans, '') :S(OFILE)

191

filelist = ans ; ans =
OFILE INPUT(1difflang8,filelist) :F(NOLSFL)
GETLANG LANG = difflang :F(LCLOSE)

L = L + 1
LANG BREAK('.') . LFN LEN(l) LEN(3) . LEXT :F(LGERR)

LREC NEXTLANG = LFN '.' LEXT
*Get appropriate table

LIABLE = LFN 1REC'
* terminal = Itable
*Store
*Then,
LREAD
LCHAR
NOMORE
LGERR
:(END)
NOLSFL
LCLOSE

LANGTABLE = $LIABLE
language names
LANGNME<L> = LFN
read in characteristics from each file
INPUT('nlang1,9, 'c:\SPTl\' NEXTLANG)
RECWRD = nlang
LANGTABLE<recwrd> = 1
ENDFILE(9)
TERMINAL = 'Unable to access language file

:F(LGERR)
:F(NOMORE)
:(LREAD)
:(GETLANG)

NEXTLANG
TERMINAL = 'File ' filelist ' does not exist.' : (END)
ENDFILE(8)

*Start processing
terminal = " LANGUAGE RECOGNIZER -*- "
terminal =
terminal = "This program processes .ocr files to produce .rec

files"
terminal = "Please enter extension - (default .rec)"
output(.outr(13, "c:\sptl\Ingres\fmglst.txt")
ext = "rec"
ans = terminal
leq(ans,'') :s(page_nm)
ext = ans ; ans =

* Read page file name and constructing directory
page_nm terminal = "Enter page file name with full path (default
c:\sptl\pages.cat)"

pgfile = "c:\sptl\pages.cat"
ans = terminal
leg(ans,'')

:s(in_file)
pgfile = ans ; ans =

in_file input(.direc,1, pgfile)
terminal = "Enter records directory (default d:\records)"
rec_dir = "d:\records"
ans = terminal
leq(ans,'')

:s(ndir)
rec_dir = ans ; ans =

ndir fline = direc
:f(out)

fline break(':') . dir break(letters) rem . fline
dir ' ' rpos(O) =
dir = rec_dir '\' dir
terminal = fline
terminal = dir

*Get numbers of pages to be processed
nseq fline break(letters) len(l) . flet break(digit)
+ span(digit) . numl break(digit) span(digit) . num2 =
:f(ndir)

pnum = numl
*Open file containing pagenames
in_page fill = "00" It(pnum,10) :s(npg)

fill = "0" lt(pnum,100) :s(npg)
fill = ""

192

npg :f(no_page)page_name = dir '\' flet fill pnum "." ext
out_page = flet fill pnum ".rec"
out_lang = "c:\sptl\lngres\" flet fill pnum ".NLG"
terminal = "Out " out_page
terminal = "Page " page_name

* Open file for specified page
input(.page,11, page_name) :f(no_page)

*Produce an output file for each input file

OUTR = FLET FILL PNUM
output(.outm,12, out page)

next endfile(ll)
endfile(12)

npgl pnum = pnum + 1
1e(pnum,num2)

:s(in page)f(nseq)
no_page terminal = page_name

:(readl)

does not exist" (npgl)

*Start processing each record
READ1 ENTRY = PAGE :F(NEXT)

TITLE =
ENTRY "T:" REM . TLE :S(MORE)
OUTM = ENTRY :(READ1)

MORE TITLE = TITLE ' TLE
OUTM = ENTRY
ENTRY = PAGE :F(NEXT)
TLE = ENTRY

*Imprint field marks end of title field
ENTRY " I: " :S(ONTO)

*For records that have not been split properly only title and shelf
field

ENTRY " S: " :F(MORE)
ONTO OUTM = ENTRY
REPEAT ENTRY = PAGE :F(NEXT)

ENTRY "L:" REM . OLDLNG :S(RELN)
OUTM = ENTRY :(REPEAT)

RELN RECOGL(TITLE)

OUT ★__

LNME LEN(l) . LORES
OUTR = LORES
OUTM = "L: " OLDLNG
TERMINAL = "COMPLETED"

LNME :(READ1)
:(END)

*Function to recognize languages
RECOGL BEGWORD = 1 ' SPAN(CHARS)

ENDWORD = BREAK(CHARS) SPAN(CHARS) ('
1 :')

SEPR = ANY(,')
NSEP = ('_., :;[]()')
WORDPAT = BREAK(LETTERS) (SPAN(LETTERS))
SUF2 = LEN(2) RPOS(O)
SUF3 = LEN(3) RPOS(O)
SUF4 = LEN(4) RPOS(0)
KEEPT = LREC
DR = 1
LNME = 'UNREC'

*Table to keep scores
SCORES = TABLE()

*Max score so far
MAXSOFAR = 0

*Begin Processing
WORDMATCH = 'TRUE 1

*Look for direct translations - if any found, then return

WORD BREAK(NSEP)

DTST LT(DR,DT)
LREC DIRTRANS<DR,1>
DR = DR + 1

FNDDR TERMINAL = "Direct Translation DIRTRANS<DR,1>

F(HERE)
S(FNDDR)
(DTST)
(RETURN)

193

* TERMINAL = "**Language Chosen " DIRTRANS<DR,2>
* WAIT = TERMINAL :(RETURN)
TSTFIN
HERE

LREC = REPLACE(LREC,&UCASE,&LCASE)
nxtwrd LREC WORDPAT REM . LREC :F(VWSCR)

preslg = 0
* TERMINAL = "--- NEXT WORD " WORD

WORDMATCH = 'FALSE'
SRCIND LGIND = 1
*Look for language indicators
*Get language indicator table from array
NXTLID NAME = LANGNME<LGIND>
*Evaluate string to get language table

NAMER = NAME 1REC'
LNAME = $NAMER

*Check how many tables word is in
IDENT(LNAME<WORD>,NULL) :S(NXTPRS)

* TERMINAL = "Word " WORD " found in language " LANGNME<LGIND>
WORDMATCH = 'TRUE 1
preslg = preslg + 1

nxtprs eq(Igind,numlgs) :S(CKSUF)
Igind = Igind + 1 :(NXTLID)

cksuf eq(preslg,0)
* "Word " word "not found

:F(SETWGT)

cntsuf LGIND = 1
nxtsf SF4 = SF3 = SF2 =
*Get length of word to see which suffixes to strip

WRD_LEN = SIZE(WORD)
*Word length less than 2, get next word

LE(WRD_L EN,2) :S(NXTWRD)
*Word length = 3, strip 2 letter suffix

LE(WRD_LEN,3) :S(LET2a)
*Word length = 4, strip 2 and 3 letter suffix

EQ(WRD_LEN,4) :S(LET3a)
*Word length = 5 or more, strip 2, 3 and 4 letter suffix
*Extract 4 letter suffix from word
LET4a WORD SUF4 . SF4 ; SF4 = '-' SF4
*Extract 3 letter suffix from word
LET3a WORD SUF3 . SF3 ; SF3 = SF3
*Extract 2 letter suffix from word
LET2a WORD SUF2 . SF2 ; SF2 = '-' SF2
* TERMINAL = WORD
* TERMINAL = "SF4 " SF4 " SF3 " SF3 " SF2 " SF2
*Evaluate string to get suffix table
suffs NAME = LANGNME<LGIND>

NAMER = NAME 'REC1
LNAME = $NAMER

*Check if suffixes are in suffix tables
IDENT(LNAME<SF4>,NULL) :S(COUNTSa)★ TERMINAL = "Suffix " SF2 " found in language LANGNME<LGIND>
preslg = preslg + 1 :(nxtsf1)

COUNT3a IDENT(LNAME<SF3>,NULL) :S(C0UNT2a)
•k TERMINAL = "Suffix " SF2 " found in language LANGNME<LGIND>

preslg = preslg + 1 :(nxtsf1)
COUNT2a IDENT(LNAME<SF2>, NULL) :S(NXTsfl)* TERMINAL = "Suffix " SF2 " found in language LANGNME<LGIND>

preslg = preslg + 1 :(nxtsf1)
nxtsf1 eq(Igind,numlgs) :s(ckfor)

Igind = Igind + 1 :(nxtsf)
ckf or eq(preslg,0)
:s(nxtwrd)f(setwgt2)

194

setwgt
* wgt =1.0 / preslg

wgt = 1
*If word contained in only one language than weight

gt(preslg,1)
wgt = 2

* terminal = 'prels ' preslg ' wgt 1 wgt
*Check if word is in the language table
TRYWRD

2 else weight=l
:S(TRYWRD)

LGIND = 1
NXTLID2 NAME = LANGNME<LGIND>

NAMER = NAME 'REC'
LNAME = $NAMER
IDENT(LNAME<WORD>,NULL) :S(CONT)
WORDMATCH = 1 TRUE 1

* TERMINAL = "Word " WORD " found in language " LANGNME<LGIND>
*If it is, add 1 point to that language score

SCORES<LANGNME<LGIND» = SCORES<LANGNME<LGIND» + wgt
*Check for max score so far

GT(SCORES<LANGNME<LGIND»,MAXSOFAR)
MAXSOFAR = SCORES<LANGNME<LGIND»
LNME = LANGNME<LGIND>

CONT EQ(LGIND,NUMLGS)
leg(wordmatch,'FALSE')

nextl LGIND = LGIND + 1
setwgt2
* wgt = 1.0 / preslg
* terminal = 'preslg ' preslg ' wgt' wgt

wgt = 1
trysfx LGIND = 1

SF4 = SF3 = SF2 = ""

:F(CONT)

F(NEXTL)
(NXTWRD)
(NXTLID2)

*Get length of word to see which suffiexes to strip
WRD_LEN = SIZE(WORD)

*Word length less than 2, get next word
LE(WRD_LEN,2) :S(RESET)

*Word length = 3, strip 2 letter suffix
LE(WRD_LEN,3) :S(LET2)

*Word length = 4, strip 2 and 3 letter suffix
EQ(WRD_LEN,4) :S(LET3)

*Word length = 5 or more, strip 2, 3 and 4 letter suffix
*Extract 4 letter suffix from word
LET4 WORD SUF4 . SF4 ; SF4 = '-' SF4
*Extract 3 letter suffix from word
LET3 WORD SUF3 . SF3 ; SF3 = '-' SF3
*Extract 2 letter suffix from word
LET2 WORD SUF2 . SF2 ; SF2 = '-' SF2
* TERMINAL = WORD
* TERMINAL = "SF4 " SF4 " SF3 " SF3 " SF2 " SF2
*Evaluate string to get suffix table
NXTSFX NAME = LANGNME<LGIND>

NAMES = NAME 'REC'
LNAME = $NAMES

*Check if suffixes are in suffix tables
COUNT4 IDENT(LNAME<SF4>,NULL) :S(COUNT3)
* TERMINAL = "Suffix " SF4 " found in language " LANGNME<LGIND>
*If it is, add 1 point to that language score

SCORES<LANGNME<LGIND» = SCORES<LANGNME<LGIND>> + wgt
*Check for max score so far

GT(SCORES<LANGNME<LGIND»,MAXSOFAR) :F(COUNTS)
MAXSOFAR = SCORES<LANGNME<LGIND»
LNME = LANGNME<LGIND>

COUNT3 IDENT(LNAME<SF3>,NULL) :S(COUNT2)
* TERMINAL = "Suffix " SF3 " found in language " LANGNME<LGIND>
*If it is, add 1 point to that language score

SCORES<LANGNME<LGIND>> = SCORES<LANGNME<LGIND» + wgt
*Check for max score so far

195

:F(C0UNT2)GT(SCORES<LANGNME<LGIND»,MAXSOFAR)
MAXSOFAR = SCORES<LANGNME<LGIND»
LNME = LANGNME<LGIND>

COUNT2 IDENT(LNAME<SF2>,NULL)
* TERMINAL = "Suffix " SF2 " found in language "
*If it is, add 1 point to that language score

SCORES<LANGNME<LGIND>> = SCORES<LANGNME<LGIND»
*Check for max score so far

GT(SCORES<LANGNME<LGIND»,MAXSOFAR)
MAXSOFAR = SCORES<LANGNME<LGIND»
LNME = LANGNME<LGIND>

*Check next language for suffixes
INCSFX EQ(LGIND,NUMLGS)

LGIND = LGIND + 1
RESET WORDMATCH = 'TRUE'
*View scores for all languages
VWSCR s = 1
* TERMINAL = "SCORES-"

:S(INCSFX)
LANGNME<LGIND>

+ wgt

:F(INCSFX)

S(RESET)
(NXTSFX)
(nxtwrd)

*Test to see if maxsofar is present in more than one language
*If this is the case - language cannot be recognized

COUNT_EQ = 0 ; CT = 1
TSTCNT EQ(SCORES<LANGNME<CT», MAXSOFAR)

COUNT_EQ = COUNT_EQ + 1
INCTST EQ(CT,NUMLGS)

CT = CT + 1
SETLNG GT(COUNT_EQ,1)

LNME = 1UNREC'

:F(INCTST)

:S(SETLNG)
:(TSTCNT)
:F(NXTSCR)

NXTSCR
* TERMINAL = LANGNME<S>
+ 1>

SCORES<LANGNME<S» ’ ' LANGNME< S

*+ 1 : ’ SCORES<LANGNME<S + 1»
* EQ(S,5) :F(PLUSS)
* TERMINAL = LANGNME<S + 2> 1 : ' SCORES<LANGNME<S + 2>>
* TERMINAL = KEEPT
* TERMINAL = "** Language Chosen " LNME
* WAIT = TERMINAL
* :(RETURN)
* PLUSS S = S + 2 : (NXTSCR)
LFIN RECOGL = LNME :(RETURN)
RECOGL.END

END

NewDict.Spt - Program that builds dictionaries for each of
the languages
*This program creates dictionaries for each language and stores
*all the words in titles into the relevant dictionaries.
* Spitbol version ; runs only on SPITBOL PHARLAP

&TRIM = 1
-INCLUDE "D:\spt\host.inc"

DEFINE('CONVUL(WD)')
terminal = 'PLease enter file name'
name = terminal
INPUT(’INP1, 3, name) :(OUTVAR)

*Function to convert a lower case letter to an upper case letter
DEFINE('CPWORD(LWRD)')

*Shelf No. patterns
OUTVAR OUTPUT('OUTENG',15,"DICT.ENG") :F(WARN)

OUTPUT(1OUTFRN',16,"DICT.FRN") :F(WARN)
OUTPUT('OUTLAT',17,"DICT.LAT") :F(WARN)

196

PATS

PREST
+

OUTPUT(1OUTITL',18,"DICT.ITL") :F(WARN)
OUTPUT(1OUTDUT',19,"DICT.DUT") :F(WARN)
OUTPUT(1OUTGER' ,2 0, "DICT.GER") :F(WARN)
OUTPUT('OUTSPN1,21,"DICT.SPN") :F(WARN)
DIGIT = ' 0123456789'
UPPERS = 1ABCDEFGHIJKLMNOPQRSTUVWXYZ'
LOWERS = 'abcdefghijklmnopqrstuvwxyz'
CHARS = (UPPERS LOWERS '"')
NUM10R2 = (ANY(DIGIT) $ DIG *DIG)
NUMBER = BREAK(DIGIT) SPAN(DIGIT)
CAP = BREAK(UPPERS) SPAN(UPPERS)
LC = BREAK(LOWERS) SPAN(LOWERS)
CAP10R2 = (ANY(UPPERS) $ CH *CH)
LC10R2 = (ANY(LOWERS) $ CH *CH) |
DIG2 = ANY(DIGIT) ANY(DIGIT)
DIG3 = DIG2 ANY(DIGIT)
NUMB1 = ANY(DIGIT)
NUMB2 = DIGIT LEN(2)
NUMB3 = DIGIT LEN(3)
NUMB4 = DIGIT LEN(4)
SDSP = SPAN ('. ')
SKSP = BREAK(LOWERS)
EXDIGIT = DIGIT 1,-
NMAT ='10'
EXTRA = ((',' I '-'!

ANY(DIGIT)

ANY(UPPERS)
ANY(LOWERS)

X SPAN(EXDIGIT) . SREST BREAK(

| (' N' NOTANY('N1) ’.')) . YYXNOS = (' N0. ' | ' N0S. '
+ SPAN(EXDIGIT) . TREST
* NOS = (1 N1 LEN(1) '.') . YYX BREAKX(DIGIT) SPAN(DIGIT)

TREST
PAGEAUTHORS = ARRAY('100,2')

* SHELFMARKS = ARRAY(1100,2 ')
* Word patterns etc

TOTAL = 0
T = TABLE()
PLACE = TABLE()
CHARS = UPPERS LOWERS DIGIT
CHAR = UPPERS LOWERS DIGIT
SEP = ' ,.;:[]()!-'"
WORDPAT = LEN(1) BREAK(CHARS) SPAN(CHARS) . WORD BREAK(SEP)
WDPAT = LEN(1) BREAK(CHAR) SPAN(CHAR) . WORD BREAK(SEP)
ITEMS = DIGITS CHAR SEP
ITEM = ANY(ITEMS)
ERCNT = TABLE()
CORRECT = TABLE()
POSSIB = ARRAY('10')
CW = 1
GLBCT = 0
CHARCT = 0
AC = 0
MOR = 0
LANGCT = 0
TIMES = 0
ND = 0
AUTPR = 0
OCRERR = 'TT '

+

*Count number of records recognised by language recognition function
LCNT = 0
SUM = 0
COR = 0
NFIX = TABLE()

*Creat new dictionnary of words
NEWDICT = TABLE()

197

* Start of processing *
*Set up tables for trigram counting
CRTAB ENGLDICT = TABLE()

FRENDICT = TABLE()
ITALDICT = TABLE()
GERMDICT = TABLE()
LATIDICT = TABLE()
SPANDICT = TABLE()
DUTCHDICT = TABLE()
OUTPUT('OPAT4, "OCRERR.TXT") :F(NOFIL)

*Read in charcteristics to recognize languages
L = 0

*Start processing
*Read in first file from list of file names
READ FILENAME1 = INP :F(T2)★ FILENAMEl BREAK(' 1) . FN SPAN(' ')

EXTEN = LEN(3) . EXT RPOS(0)
NME = RPOS(8) LEN(4) . FN
FILENAMEl EXTEN :S(RR1)

SPAN(UPPERS LOWERS)

RR1 FILENAMEl NME :S(RR2)
RR2 FNEXT = FN '.1 EXT★ FN LEN(1) REM . FN
*Produce an output file for each input file

TERMINAL = FNEXT
INPUT('INQ',7,FNEXT) :F(NOFILE)

*Read in lines of file
READ1 ENTRY = INQ

TITLE =
:F(NEXTF)

*Find title field in file
ENTRY "T:" REM . TLE :F(READ1)

MORE TITLE = TITLE ' ' TLE
ENTRY = INQ
TLE = ENTRY

:F(NEXTF)
ENTRY ”C:” :F(MORE)

REPEAT ENTRY = INQ :F(NEXTF)
*Fine language of title

ENTRY ”L:" rem . Inme :F(REPEAT)
cntrmv Inme ' 1 = :S(CNTRMV)
rein LEQ(LNME, 'UNREC')

LNME '2' =
WDICT = LNME 'DICT’

:S(READ1)

GOGO WHDICT = $WDICT
*Add each word in the title to the appropriate dictionary
T1 TITLE WORDPAT = :F(READ1)

WORD OCRERR :F(PLACE)
*Output specified ocr errors to file "ocrerr.txt"

OPAT = WORD
PLACE WHDICT<WORD> = WHDICT<WORD> +1 :(T1)
*Output dictionnary for each language to a file
T2 ENDFILE(4)

ENGLDICT = CONVERT(ENGLDICT, ’ARRAY') :F(CREFRE)
ENGLDICT = SORT(ENGLDICT)
Q = 1

*Count number of elements in each array
FILE1 DIFFER(ENGLDICT<Q,1>,"") :F(ODIC2)

Q = Q + 1 :(FILE!)
0DIC2 NUMB = Q / 4
*Set variables for padding words

X = 1 ; Y = (NUMB + 1)
Z = (NUMB * 2) +1 ; W = (NUMB * 3) + 1
TERMINAL = "COMPILING ENGLISH DICTIONARY - PLEASE WAIT"

CONTE XI = SIZE(ENGLDICT<X,1>) ; Y2 = SIZE(ENGLDICT<Y,2>)
Z1 = SIZE(ENGLDICT<Z,1>)

*Output words in four columns to file

EXT

198

CREFRE

FILE2

0DIC3

CONTF

+

CRELAT

FILE3

ODIC4

CONTL

CREITL

FILE4

ODIC5

CONTI

CREGER

FILES

ODIC6

OUTENG = ENGLDICT<X,1> LPAD(ENGLDICT<Y,1>,(25 - XI))
LPAD(ENGLDICT<Z,1>,(25 - Y2)) RPAD("",15) ENGLDICT<W,1>
X = X + 1 ; Z = Z + 1
Y = Y+1;W = W+1
EQ(W,Q) :F(CONTE)
ENDFILE(15)
FRENDICT = CONVERT(FRENDICT, 'ARRAY') :F(CRELAT)
FRENDICT = SORT(FRENDICT)
Q = 1
DIFFER(FRENDICT<Q,1>,"") :F(ODIC3)
Q = Q + 1 :(FILE2)
NUMB = Q / 4
X = 1 ; Y = (NUMB + 1)
Z = (NUMB * 2) + 1 ; W = (NUMB * 3) + 1
TERMINAL = "COMPILING FRENCH DICTIONARY - PLEASE WAIT"
XI = SIZE(FRENDICT<X,1>) ; Y2 = SIZE(FRENDICT<Y,2>)
Z1 = SIZE(FRENDICT<Z,1>)
OUTFRN = FRENDICT<X,1> LPAD(FRENDICT<Y,1>,(25 - XI))
LPAD(FRENDICT<Z,1>,(25 - Y2)) RPAD("",15) FRENDICT<W,1>
X = X + 1 ; Z = Z + 1
Y = Y + 1 ; W = W + 1
EQ(W,Q)
ENDFILE(16)
LATIDICT = CONVERT(LATIDICT, 'ARRAY')
LATIDICT = SORT(LATIDICT)
Q = 1
DIFFER(LATIDICT<Q,1>,"")
Q = Q + 1
NUMB = Q / 4

:F(CONTF)

:F(CREITL)

:F(ODIC4)
:(FILE3)

X = 1 ; Y = (NUMB + 1)
Z = (NUMB * 2) + 1 ; W = (NUMB * 3) + 1
TERMINAL = "COMPILING LATIN DICTIONARY - PLEASE WAIT"
XI = SIZE(LATIDICT<X,1>) ; Y2 = SIZE(LATIDICT<Y,2>)
Z1 = SIZE(LATIDICT<Z,1>)
OUTLAT = LATIDICT<X,1> LPAD(LATIDICT<Y,1>,(25 - XI))
LPAD(LATIDICT<Z,1>,(25 - Y2)) RPAD("",15) LATIDICT<W,1>
X = X + 1 ; Z = Z + 1
Y = Y + 1 ; W = W + 1
EQ(W,Q) :F(CONTL)
ENDFILE(17)
ITALDICT = CONVERT(ITALDICT, 'ARRAY')
ITALDICT = SORT(ITALDICT)
Q = 1
DIFFER(ITALDICT<Q,1>,"")
Q = Q + 1

:F(CREGER)

:F(ODIC5)
:(FILE4)

NUMB = Q / 4
X = 1 ; Y = (NUMB + 1)
Z = (NUMB * 2) + 1 ; W = (NUMB * 3) + 1
TERMINAL = "COMPILING ITALIAN DICTIONARY - PLEASE WAIT"
XI = SIZE(ITALDICT<X,1>) ; Y2 = SIZE(ITALDICT<Y,2>)
Z1 = SIZE(ITALDICT<Z,1>)
OUTITL = ITALDICT<X,1> LPAD(ITALDICT<Y,1>,(25 - XI))
LPAD(ITALDICT<Z,1>,(25 - Y2)) RPAD("",15) ITALDICT<W,1>
X = X + 1 ; Z = Z + 1
Y = Y + 1 ; W = W+1
EQ (W, Q)
ENDFILE(18)
GERMDICT = CONVERT(GERMDICT, 'ARRAY')
GERMDICT = SORT(GERMDICT)
Q = 1
DIFFER(GERMDICT<Q,1>,"")
Q = Q + 1
NUMB = Q / 4
X = 1 ; Y = (NUMB + 1)
Z = (NUMB * 2) + 1 ; W = (NUMB * 3) + 1
TERMINAL = "COMPILING GERMAN DICTIONARY

:F(CONTI)

:F(CRESPA)

:F(ODIC6)
:(FILE5)

PLEASE WAIT

199

SIZE(GERMDICT<Y,2>)CONTG XI = SIZE(GERMDICT<X,1>) ; Y2 =
Z1 = SIZE(GERMDICT<Z,1>)
OUTGER = GERMDICT<X(1> LPAD(GERMDICT<Y,1>, (25 - XI))

+ LPAD(GERMDICT<Z,1>,(25 - Y2)) RPAD("",15) GERMDICT<W,1>
X = X+1 ; Z = Z + 1
Y = Y + 1 ; W = W + 1

CRESPA

FILE6

ODIC7

CONTS

CREDUT

FILE?

END1

CONTD

+

EQ(W,Q) :F(CONTG)
ENDFILE(20)
SPANDICT = CONVERT(SPANDICT, 'ARRAY') :F(CREDUT)
SPANDICT = SORT(SPANDICT)
Q = 1
DIFFER(SPANDICT<Q,1>,"") :F(ODIC7)
Q = Q + 1 :(FILE6)
NUMB = Q / 4
X = 1 ; Y = (NUMB + 1)
Z = (NUMB * 2) + 1 ; W = (NUMB * 3) + 1
TERMINAL = "COMPILING SPANISH DICTIONARY - PLEASE WAIT"
XI = SIZE(SPANDICT<X,1>) ; Y2 = SIZE(SPANDICT<Y,2>)
Z1 = SIZE(SPANDICT<Z,1>)
OUTSPN = SPANDICT<X,1> LPAD(SPANDICT<Y,1>,(25 - XI))
LPAD(SPANDICT<Z,1>,(25 - Y2)) RPAD("",15) SPANDICT<W,1>
X = X + 1 ; Z = Z + 1
Y = Y + 1 ;W = W+1
EQ(W,Q) :F(CONTS)

:F(END)

:F(END1)
:(FILE?)

ENDFILE(21)
DUTCHDICT = CONVERT(DUTCHDICT, 'ARRAY')
DUTCHDICT = SORT(DUTCHDICT)
Q = 1
DIFFER(DUTCHDICT<Q,1>,"")
Q = Q + 1
NUMB = Q / 4
X = 1 ; Y = (NUMB + 1)
Z = (NUMB * 2) + 1 ; W = (NUMB * 3) + 1
TERMINAL = "COMPILING DUTCH DICTIONARY - PLEASE WAIT"
XI = SIZE(DUTCHDICT<X,1>) ; Y2 = SIZE(DUTCHDICT<Y,2>)
Z1 = SIZE(DUTCHDICT<Z,1>)
OUTDUT = DUTCHDICT<X,1> LPAD(DUTCHDICT<Y,1>,(25 - XI))
LPAD(DUTCHDICT<Z,1>,(25 - Y2)) RPAD("",15) DUTCHDICT<W,1>
X = X+1 ; Z = Z + 1
Y = Y+1 ; W = W+1
EQ(W,Q)
ENDFILE(19)

:F(CONTD)
:(END)

*Error messages
NEXTF ENDFILE(7) (READ)
NOFILE (READ)
NOFIL TERMINAL "CANNOT OPEN OUTPUT FILE" (END)
WARN TERMINAL = 'CANNOT OUTPUT TO FILE' (END)
ER1 OUTPUT = "Error in \page :" ENTRY (END)
ER2 OUTPUT = "Error in \entries :" ENTRY (END)

END

200

Rectit.Spt - Expands author title abbreviations in author
fields of each entry
*-INCLUDE "D:\SPT\host.inc"

&TRIM = 1
*This program expands the initials and abbreviations in the author
title field
*in order that this information can be used in the search system of
the library
*catalogue.
*e.g. S.J. - Society of Jesus (Jesuit)

TERMINAL = 'enter name of file containing file names'
ASK FILENAME = TERMINAL

INPUT('SOFAR', 7, FILENAME)
INPUT('TITL', 1, "C:\SPT\AUTD.DAT")
INPUT('OCRR', 2, "C:\SPT\AUTOCR.DAT")
OCRTAB = ARRAY('150,2')
AUTHRT = ARRAY(’200,2')
DIGIT = (' 0123456789')
PUNCT = (' . , \ - ')
CHARS = &LCASE &UCASE DIGIT PUNCT

* Start of processing *
★ ★★★★★★★★★★★★★★★★★★★★★it

I = 1 ; R = 1
*Read in substitutions for initials
SUBSTI INN = TITL

INN SPAN(CHARS) . ONE BREAK(';') LEN
RMSPS ONE " " RPOS(0) =

AUTHRT<I,1> = ONE
RMSPS2 TWO POS(O) " “ =

AUTHRT<I,2> = TWO
1 = 1 + 1

*Read in ocr errors for author title field
ROCR OCR = OCRR

OCR SPAN(CHARS) . ONE BREAK(';
RMSPS3 ONE " " RPOS(O) =

ONE
LEN

OCRTAB<R,1>
RMSPS4 TWO POS(O) " " =

OCRTAB<R,2> = TWO
R = R + 1

SET LASTI =1-1
LASTR = R - 1

READ FILENAMEl = SOFAR
EXTEN = LEN(3) . EXT RPOS(0)
EXT = EXT
NME = RPOS(8) LEN(4) . FN
FILENAMEl EXTEN :S(RR1)

RR1 FILENAMEl NME :S(RR2)
RR2 FNEXT = FN '.' EXT

NEWF = FN '.OCR'
TERMINAL = FNEXT

*Input each file
INPUT('INQ',3, FNEXT)
OUTPUT('OUT',4,

*Produce an output file
READ1
NEXTE
TEST1
TEST

REPLC

ENTRY
1 = 1
ENTRY
OUT =

= INQ
; R = 1
"E:" REM
ENTRY

NEWF)
for each

EDU

input file

EQ(R,LASTR)
EDU OCRTAB<R,l>
R = R + 1
EDU OCRTAB<R,l>

:F(ROCR)
(1) REM . TWO

:S(RMSPS)
:S(RMSPS2)
:(SUBSTI)
:F(SET)

(1) REM . TWO
:S(RMSPS3)
:S(RMSPS4)
:(ROCR)

:F(OUT)

:F(NOFILE)
:F(NOOUT)
:F(NXTF)
:S(TEST1)
:(READ1)
S(SUBST)
S(REPLC)
(TEST)

= OCRTAB<R,2>

201

ENTRY 0CRTAB<R,1> = OCRTAB<R,2>
R = R + 1

SUBST EQ(I,LASTI)
EDU AUTHRT<I,1>
1 = 1 + 1

REPL2 ENTRY AUTHRT<I,1> = AUTHRT<I,1>
ENTRY AUTHRT<I,2> REM . EDU

(TEST)
S(NEENY)
S(REPL2)
(SUBST)

AUTHRTd, 2>

IDENT(EDU, ") :S(NEENY)
1 = 1 + 1 :(SUBST)

NEENY OUT = entry :(READ1)
NXTF ENDFILE(3)

ENDFILE(4) :(READ)
NOOUT TERMINAL = Cannot output to file" :(END)
NOSOF TERMINAL = Cannot convert array to table" :(END)
OUT TERMINAL = Processing Completed" :(END)
NOFILE
END

TERMINAL = File does not exist' :(END)

Rules.Spt - Program that attempts to find cognate rules for
pairs of words in different languages
*This program compares words in two different languages and checks if
*they are related.
*The sounds in the words are used to determine how related the words
are.
*If the word pair is deemed to be over 65% related - then translation
rules
*are developed from this word pair.
*The rules developped are context sensitive.

DEFINE(1READIN(X) ,STORE 1)
DEFINE('CMETHOD(C0NS0N1,C0NS0N2)1)
DEFINE(1VMETHOD(V0WEL1,V0WEL2)1)
DEFINE(1 VOICING(CN1,CN2) ')
DEFINE(1ISCON(CHARC)1)
DEFINE(1ISVWL(CHARV)1)
DEFINE('SETSOUND(ARRAY1)')
DEFINE('SETRULE(RUL1,RUL2)1)
VOWELS = 1AEIOUY'
CONSONANTS = 1BCDFGHJKLMNPQRSTVWXZ'
DOUBLECONS = (ANY(CONSONANTS) $ CAP *CAP)
COMPOUND = ('TH' | 'GH1 | 1CK' | 'CH' | 'PF' | 'NG1)
CEITHER = (DOUBLECONS | COMPOUND | ANY(CONSONANTS))
COMPVWLS = ('EE' | 'EA' | 'IE' | 'El' | 'AI1 | 'EA' | 'AY' |

+ '01' | 'OH' | 'UH' | 'AU')
DOUBLEVLS = (ANY(VOWELS) $ VOL *VOL)
VEITHER = (COMPVWLS | DOUBLEVLS | ANY(VOWELS))
GLBCNT = 0
ARRAY1 = ARRAY('10,2')
FIRST = ARRAY(110,2 ')
SECOND = ARRAY('10,21)
RES1 = ARRAY('10,2')
RES2 = ARRAY(110,21)
FRONT = ('EE 1 ' EA' ' IE ' ’ El ' ' AI ' ' EA' | 'I' | 'E

CENTRAL = ('E' | ' AU’ | 'Y' 1 'U' 1 'A')
BACK = ('01 ' | '00' | 'OH' | 'UH' 'OU' | 'O' | 'U')
BILABIAL = ('P' | 'B' | 'M')
LABIODENTAL = (' PF' 1 'F' 'V)
DENTAL = 1TH'
SINGLE = ('BDGVZJMNRWL')

202

VOICED = ('TH' I 'DC
VSINGLE = ('PTKFS')
VOICELESS = (1PF' I 'TH'

ANY(SINGLE))

ALVEOLAR ('T' 1 SH 1
1CH' | ANY(VSINGLE)

'S' I 'Z' I 'N' 'R'
•X'

('CH1

1 CH'

MAIN

PAL_ALVEOLAR
PALATAL = 'J
VELAR = ('K1
GLOTTAL = 'H1

Possible phonetic groups
CONSOUNDS = ARRAY(8
C0NS0UNDS<1>
C0NS0UNDS<2>
CONSOUNDS<3 >
C0NS0UNDS<4>
CONSOUNDS<5>
CONSOUNDS<6>
CONSOUNDS<7>
CONSOUNDS<8>
TERMINAL =

1 DC)

' NG 1 'GN' 'W

BILABIAL;
LABIODENTAL;
DENTAL;
ALVEOLAR;
PAL_ALVEOLAR;
PALATAL;
VELAR ;
GLOTTAL;

PLEASE ENTER FIRST

GRPVAL = TABLE()
GRPVAL<1> = 'BILABIAL'
GRPVAL<2>
GRPVAL<3 >
GRPVAL<4>
GRPVAL<5>
GRPVAL<6>
GRPVAL<7>
GRPVAL<8>
LANGUAGE'

'LABIODENTAL'
'DENTAL'
'ALVEOLAR'
'PAL_ALVEOLAR'
'PALATAL'
'VELAR'
'GLOTTAL'

1 RULE'
L2 ’ . RLS '

REPEAT

''The

LANG1 = TERMINAL
LANG1 LEN(2) . LI
TERMINAL = 'PLEASE ENTER SECOND LANGUAGE'
LANG2 = TERMINAL
LANG2 LEN(2) . L2
DEFRULES = LI L2
STORERLS = LI 'TO'
DEFRULES = TABLE()
POSSRULES = ARRAY('20')
OUTPUT('OUTR',4,STORERLS)
INPUT('INP1',2,LANG1)
INPUT('INP2',3,LANG2)
ONE = INP1
ONE = REPLACE(ONE,&LCASE,&UCASE)
TERMINAL = ONE
TWO = INP2
TWO = REPLACE(TWO,&LCASE,&UCASE)
TERMINAL = TWO

Readin' procedure reads the sounds of a word into an array
FIRST = READIN(ONE)

Setsound' procedure determines each of the sounds in the array

F(NOSUCH1)
F(NOSUCH2)
F(END1)

:F(END2)

*The
i . e.
* whether the sounds are inetrvovalic,

FIRST = SETSOUND(FIRST)
*Same as above with second word

SECOND = READIN(TWO)
SECOND = SETSOUND(SECOND)

*Scan through consonants in each array
FINFIR = 'FALSE'
FINSEC = 'FALSE'
CNT1 = CNT2 = 1;
CONS = 'FALSE'
EXTRA = 0
PR = 0

in the first sound of both words
LEQ(FIRST<CNT1,1>,NULL)
FINFIR = 'TRUE'
LEQ(SECOND<CNT2,1>,NULL)
FINSEC = 'TRUE'
TERMINAL = FIRST<CNT1,1> CNT1 1 SEC
FIRST<CNT1,1> CEITHER
SECOND<CNT2,1> VEITHER
FIRSTcCNTl,1> (DOUBLEVLS | COMPVWLS)
SECOND<CNT2,1> CEITHER
SECOND<CNT2,1> (DOUBLEVLS | COMPVWLS)

'If sounds are both consonants - then compare

initial, final etc

and compare them

*Read
CMPTST

SECFIN

CMPFS

CHKSEC

F(SECFIN)
(RELATE)
F(CMPFS)
(RELATE)

SECOND<CNT2,1> CNT2
:S(CHKSEC)
:S(TRYVL)
:S(INCSEC)F(INCFIR)
:S(CMET)
:S(INCFIR)F(INCSEC)

these consonants

203

CMET CMETHOD(FIRSTcCNTl,1>,SECOND<CNT2,1>) :(INCBTH)
INCFIR RESlcCNTl,1> = FIRST<CNT1,1>

EXTRA = EXTRA + 1
*Next sound in first word

CNT1 = CNT1 + 1 :(CMPTST)
INCSEC RES2<CNT2,1> = SEC0ND<CNT2,1>

EXTRA = EXTRA + 1
*Next sound in second word

CNT2 = CNT2 + 1 :(CMPTST)
INCBTH RESlcCNTl,1> = FIRSTcCNTl,1>

RES2cCNT2,l> = SECONDcCNT2,1>
CNT1 = CNT1 + 1
CNT2 = CNT2 + 1 :(CMPTST)

*Else if sounds are both vowels - then compare these vowels
TRYVL VMETHOD(FIRSTcCNTl,1>, SECONDcCNT2,1>) :(INCBTH)

RELATE C = D = 1;
TOTAL = NO = 0;
EXCHARS = 0

*If one word is shorter than the other
*then find out by how many chars/sounds they differ and
*add this to the total number of sounds.
LENGTH LEQ(FINFIR,'TRUE') :F(FIRLNG)

LEQ(SECONDCCNT2,1>,NULL) :S(EXTRCH)
SECLNG LEQ(SECONDcCNT2,1>,NULL)

EXTRA = EXTRA + 1
:S(EXTRCH)

CNT2 = CNT2 + 1 :(SECLNG)
FIRLNG LEQ(FIRSTcCNTl,1>,NULL)

EXTRA = EXTRA + 1
:S(EXTRCH)

CNT1 = CNT1 + 1 :(FIRLNG)
EXTRCH EXCHARS = EXTRA / 1.5
TSTFIN GT(C,CNT1) :S(CKRES2)
*For each sound in the first word
*If current sound has a score then add this score to the total
CHKVAL LEQ(RESlcC,2>,'')

TOTAL = TOTAL + RESlcC,2>
:S(INCC)

★ TERMINAL = RESlcC,2>
NO = NO + 1

INCC C = C + 1 :(TSTFIN)
*For each sound in the second word
*If current sound has a score then add this score to the total
CKRES2 GT(D,CNT2) :S(FINISH)

LEQ(RES2<D,2>,1') :S(INCRD)
TOTAL = TOTAL + RES2<D,2>

* TERMINAL = RES2<D,2>
NO = NO + 1

INCRD D = D + 1 :(CKRES2)
FINISH TOTAL = TOTAL * 2

NO = NO + EXCHARS
*Calculate percentage of related words

PRECEN = TOTAL / NO
TERMINAL = 'TOT ' TOTAL ' NO ' NO
PRECEN = PRECEN * 10
GT(PRECEN,65) :F(STATE)
NUMB = 1
GT(NUMB,PR) :S(STATE)
TEMP = POSSRULES<NUMB>
DEFRULES<TEMP> = DEFRULES<TEMP> + 1
TEMP =
NUMB = NUMB + 1
GLBCNT = GLBCNT + 1 :(TSTEND)
TERMINAL = 'THERE IS A 1 PRECEN 1 % CHANCE OF THESE WORDS BEING

RELATED'
TERMINAL =
TERMINAL = 'DO YOU WISH TO CONTINUE - YES / NO '
ANS = TERMINAL

TSTEND

STATE

204

LEQ(ANS,'YES')
LEQ(ANS, ’yes')
LEQ(ANS,'NO')
LEQ(ANS,'no')

CNTIN TERMINAL = 'NEXT PAIR'

S(CNTIN)
S(CNTIN)
S(ENDT)
S(ENDT)
(REPEAT)

CMETHOD
*This procedure compares two consonant sounds

CONS1 = CONSON1
CONS2 = CONSON2
SCR = 0

*If two sounds are identical - then set score to 5
LEQ(C0NS1,CONS2) :F(CHKGRP)
SCORE = 5 :(SETSCR)

*Otherwise find out to which group each of the sounds belong
CHKGRP Cl = 1

DI = 1
PH0N1 CONS1 CONSOUNDS<CI> REM
INCCI GT(Cl,8)

Cl = Cl + 1
CONISET CONST DOUBLECONS

LEQ(REST,NULL)
STVLS SNDONE = GRPVAL<CI>
PHON2 CONS2 CONSOUNDS<DI> REM
INCDI GT(DI,8)

DI = DI + 1
CON2SET CONS2 DOUBLECONS

LEQ(RESTD,NULL)
STVLS2 SNDTWO = GRPVAL<DI>

REST :S(CON1SET)
:S(PROB)
:(PHON1)
:S(STVLS)
:F(INCCI)

RESTD :S(CON2SET)
:S(PROB)
:(PHON2)
:S(STVLS2)
:F(INCDI)

*Are both consonant sounds of the same phonetic group - i.e.
dental

bilabial,

*If voicing of both consonants is the same then increase the score
SCR = VOICING(CONSl,CONS2)

*If both sounds belong to the same phonetic group - then set score =
IDENT(SNDONE,SNDTWO) :F(DIFGRP)
SCORE = 4 :(SETSCR)

*If both sounds belong to different phonetic groups - then
*check how close these phonetic groups are and set score accordingly
DIFGRP GT(Cl,DI)

DIFF = DI - Cl
BIGR DIFF = Cl - DI
SETVAL SCORE = 4
CONV EQ(DIFF,0)

EQ(SCORE,0)
SCORE = SCORE - 1
DIFF = DIFF - 1

PROB SCORE = 0
SETSCR SCORE = SCORE + SCR

SETRULE(CONS1,CONS2)
RES1<CNT1,2> = SCORE

* TERMINAL = CONSON1 'SC' SCORE
* TERMINAL = CONSON2 'SC' SCORE

RES2<CNT2,2> = SCORE

:S(BIGR)
:(SETVAL)

:S(SETSCR)
:S(SETSCR)

:(CONV)

:(RETURN)

4

VMETHOD
*This procedure compares two vowel sounds

VWL1 = VOWEL1
VWL2 = VOWEL2
SCORE = 0
SECTIME = 'FALSE'

*If both vowel sounds are identical - then set the score to 5
LEQ(VWL1,VWL2) :F(SETONE)
SCORE = 5 :(SETVLS)

SETONE CMVWL = VWL1
*Otherwise find out to whcih group the vowle sounds belong
CKVL CMVWL DOUBLEVLS . DB :F(CKVLGP)

205

DB LEN(l) . CMVWL
CKVLGP CMVWL POS(0) FRONT REM . REST :F(CENTRL)

LEQ(FREST,NULL)
FL = 1

:F(CENTRL)
FLAG = 'FRONT' :(SECN)

CENTRL CMVWL CENTRAL REM . CREST :F(BACK1)
LEQ(CREST,NULL)
FL = 2

:F(BACK1)
FLAG = 'CENTRAL' :(SECN)

BACK1 CMVWL BACK REM . BREST :F(MINSC)
LEQ(BREST,NULL)
FL = 3
FLAG = 'BACK'

:F(MINSC)

SECN LEQ(SECTIME,'TRUE')
CMVWL = VWL2

:S(FINVL)
SECTIME = 1 TRUE 1
FL1 = FL
FLAG1 = FLAG :(CKVL)

*If vowel sounds belong to same group - then score = 4
FINVL LEQ(FLAG1,FLAG) :F(DIFFRV)

SCORE = 4 :(SETVLS)
*Else check how close the vowel sounds are and set screo accordingly
DIFFRV GT(ELI,FL) :F(LWRR)

DIFVL = ELI - FL :(WHICH)
LWRR DIFVL = FL = FL1
WHICH EQ(DIFVL,1) :F(DIFTWO)

SCORE = 3 :(SETVLS)
DIFTWO EQ(DIFVL,2) :F(MINSC)

SCORE = 2 :(SETVLS)
MINSC TERMINAL = 'MINSC ' CMVWL

SCORE = 0
SETVLS SETRULE(VWL1,VWL2)

RES1<CNT1,2> = SCORE
RES2<CNT2,2> = SCORE :(RETURN)

VOICING
*This procedure checks if both consonant sounds are voiced
*or both consonant sounds are voiceless

ELI = CN1
EL2 = CN2
ELI VOICED :F(NOVCE)
EL2 VOICED :F(NOTSIM)

* If both sounds have the same voicing
*then award an extra 0.5 to the score

quality
VOICE SCR = 0.5 :(COMPLT)
NOVCE EL2 VOICELESS :S(VOICE)
NOTSIM SCR = 0
COMPLT ★ _
ISCON

VOICING = SCR :(RETURN)

*This function checks whether the current char is a consonant
CON = CHARC
CON CEITHER :F(NOT)
TEMP = 1 TRUE' :(RETVAL)

NOT TEMP = 1 FALSE'
RETVAL ISCON = TEMP :(RETURN)

ISVWL
*This function checks whether the current char is a vowel

VWL = CHARV
VWL VEITHER :F(VNOT)
CURRENT = 'TRUE' :(RETVWL)

VNOT CURRENT = 1 FALSE1
RETVWL ISVWL = CURRENT :(RETURN)

206

*_______
SETSOUND
*This procedure determines the context of each sound
* i . e . intervocalic, initial, final etc

WORDAR = ARRAY1
INITIAL = 'TRUE1
P = 0
PREV = ’'

NEXTCH R = P + 2
LEQ(WORDAR<R,1>,NULL)
VAL = ISCON(WORDAR<R,1>)

:S(FINAL)

LEQ(VAL,'TRUE') :F(ISVL)
NEXT = '_#C' :(INCR)

ISVL VAL = ISVWL(WORDAR< R,1>)
LEQ(VAL,'TRUE1) :F(NEITH)
NEXT = '_#V' :(INCR)

NEITH NEXT = '#'
INCR P = P + 1

WORDAR<P,2> = PREV WORDAR<P,l> NEXT
VAL = ISCON(WORDAR<P,1>)
LEQ(VAL,'TRUE') :F(ISVL2)
PREV = ’#C_' :(NEXTCH)

ISVL 2 VAL = ISVWL(WORDAR< P,1>)
LEQ(VAL,'TRUE') :F(NEITH2)
PREV = '#V_' :(NEXTCH)

NEITH2 PREV = '#' :(NEXTCH)
FINAL P = P + 1

WORDAR<P,2> = PREV WORDAR<P,l>
SETSOUND = WORDAR :(RETURN)

SETRULE
*This procedure determines translation rules

ELEM1 = RUL1
ELEM2 = RUL2
FI = 1; SI = 1

FIND1 LEQ(FIRST<F1,1>,ELEM1)
FI = FI + 1

SELCT A = FIRST<F1,2>
FIND2 LEQ(SECOND<Sl,1>,ELEM2)

SI = SI + 1
SELCT2 B = SECOND<Sl,2>

RULE = A 1 / 1 B
PR = PR + 1
POSSRULES<PR> = RULE

* IDENT(DEFRULES<RULE>,

:S(SELCT)
:(FIND1)

:S(SELCT2)
:(FIND2)

:F(NOSET)
*If a rule has occurred once already - then it becomes a 'definite
rule '
*and is placed in the defrules table
* IDENT(POSSRULES<RULE>,1) :S(SETDEF)
*Otherwise it is a 'possible rule' and is placed in the possrue table
* POSSRULES<RULE> = 1 :(NOSET)
*SETDEF POSSRULES<RULE> = ''
* DEFRULES<RULE> = 1
* GLBCNT = CLBCNT + 1
NOSET :(RETURN)

READIN
*This procedure reads the sounds of each word into an array

WORD = X
1 = 1
STORE = ARRAY('15,2 ')

LOOP WORD POS(O) (DOUBLECONS | COMPOUND | ANY(CONSONANTS)) . CNS
:S(STCNS)
VWLS WORD POS(O) (SPAN(VOWELS) (BREAK(CONSONANTS) | '')) . VLS =

207

VLS

STCNS

FIN
FINEND

*Write
END1
END2
ENDT

CUNN

N0SUCH1
NOSUCH2
END

STOREcI,1> =
1 = 1 + 1
WORD POS(O) VLS =
EQ(SIZE(WORD),0)
STORE<I,l> = CNS
1 = 1 + 1
WORD POS(O) CNS =
EQ(SIZE(WORD),0)
READIN = STORE

out the definite rules to a file
ENDFILE(2) :
ENDFILE(3)
DEFRULES = CONVERT(DEFRULES, 'ARRAY') :
AR = 1
TERMINAL = 'STORING RULES TO TRANSLATE '
OUTR = 'RULES FOR CONVERTING FROM ' LANG1
GT(AR,GLBCNT) :S(END)
TERMINAL = DEFRULES<AR,1>
OUTR = DEFRULES<AR,1>
AR = AR + 1 :(CUNN)
TERMINAL = 'THERE IS NO ' LANG1 ' FILE '
TERMINAL = 'THERE IS NO ' LANG2 ' FILE '

S(FINEND)F(LOOP)

F(LOOP)
(RETURN)

(ENDT)

F(END)

LANG1 ' TO ' LANG2
' TO ' LANG2 ' : '

:(END)
:(END)

208

