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A Further Look at Waveguide Lasers
E. Del Giudice, R. Mele, G. Preparata, S. Sanvito, and F. Fontana

Abstract—A new approach to the dynamical evolution of
a waveguide laser is presented which goes beyond the usual
Maxwell–Bloch (MB) equations in that it takes fully into account
the phase of the matter quantum field that describes the atomic
systems. As an experimental check of its effectiveness, we analyze
in its light a recent set of experiments on the effects of a “dephas-
ing” of the electromagnetic laser field that find no explanation
within the MB equations but, on the contrary, are in very good
agreement with its expectations.

Index Terms—Electrodynamics, laser excitation, laser stability,
laser tuning, Maxwell’s equations, optical fiber lasers, quantum
theory, ring lasers, waveguide lasers.

I. INTRODUCTION

FOR THE central role they play in modern telecommuni-
cation technology, waveguide lasers have been the focus

of intense research work, both experimental and theoretical
[1]–[3]. In this paper, we wish to contribute some further
insights into this fascinating field (both experimental and
theoretical), based on a novel approach1 to the quantum elec-
trodynamical (QED) interaction between the matter systems
(atoms or molecules) and the coherent laser e.m. field. The
peculiarity of this approach, which has just been successfully
applied in other matter systems such asHe [5], lies in its full
quantum field theoretical (QFT) character that leads to view
the e.m. field and also the matter systems as quantum fields
whose dynamics are governed by the well-known (and well-
defined) QED interaction. It is generally accepted that most
of the main characteristics of lasers (apart from noise) can
be accurately described (and have been described) by using
a treatment where matter is assumed to be an ensemble of
quantized elementary systems (atoms), whose Hilbert space
is formed by the set of states involved in the lasing, while
the electromagnetic field is viewed as a “classical” vector
field. This treatment leads to the well-known Maxwell–Bloch
(MB) equations. However, a more complex dynamics could
be envisaged: the matter system could be the subject of a
dynamical evolution, coupled with the evolution of the e.m.
field, considered as a quantum entity, able to determine a
change in time of the degrees of freedom involved in lasing.
The evolution of the quantum e.m. field could thus switch the
lasing on and off on different pairs of levels. To analyze this
more complex situation, which is at work in the experiments
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reported in Section III, we abandon the nonsymmetrical point
of view of the MB equations, where matter and e.m. field
are present on different grounds, and assume the general
point of view that matter and radiation are both quantum
fields mutually interacting through the well-known and well-
established principles of the QED interaction. No modeling
is introduced so that the system under investigation is not
constrained by any preconceived hypothesis. In QED, the
matter–radiation interaction gets its simplest description in
the Lagrangian scheme—not in the Hamiltonian one—and the
equations of motion of the physical system are very easily
derived, as early recognized by the founding father of QED,
Feynman [6]. However, very recently Enz [7] has proven
through explicit calculations that all the results of [4]—which
are at the origin of this paper—can be recovered in the more
traditional Hamiltonian scheme. In the Lagrangian scheme,
the Path Integral formalism, introduced by Feynman, brings
us very quickly to equations of motions, which replace the
MB equations, that can be recovered as the semiclassical limit
of the theory. and provide the following advantages.

1) No preliminary selection of the “lasing” degrees of
freedom is required. The dynamical evolution ofall the
degrees of freedom of the matter systems can be traced
back and the spontaneous self-selection of the lasing
modes, induced by the matter–radiation interaction, can
be explored.

2) The time evolution of the lasing process can be analyzed
including the spontaneous switchings on and off that
have been observed in the experiments. In this context,
of particular relevance is the role played by the “effective
mass” of the photon in the cavity, given by (10) of this
paper, whose value depends on the differences between
the energies of the levels of matter and the energy of
the e.m. mode, namely the so-called “dispersive bed”
of the system. These dispersive structures have been
already considered in laser physics—for instance, in
the framework of laser cooling and the laser separation
of different molecular species—but our QFT approach
allows a compact way for determiningas a dynamical
variable controlling the propagation of the e.m. modes
in the cavity as a consequence of the dynamics of the
matter system.

Our work is organized as follows. In Section II, the theory
of a simple waveguide laser is worked out, with the aim of
keeping track of the dynamical evolution of each cavity mode
from the switching on of the pump until it reaches the steady
state. In Section III, we shall describe an experiment with such
type of laser and interpret its remarkable results on the ground
of the theory worked out in Section II.
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II. THEORY OF A SIMPLE WAVEGUIDE LASER

The system we wish to study is a thin waveguide of length
and cross-sectional area , which is turned

into a (effectively) one-dimensional (1-D) optical cavity by
depositing dielectric multilayer mirrors on its extremities,
reaching reflectivities close to one, which we denote by.
In such a cavity, which we take as an ideal 1-D cavity, the
allowed spatial (normalized) modes are (throughout this paper
we shall use the natural unit system, where )

(1)

(2)

where is the 1-D spatial coordinate, represents the
wavenumber of the cavity modes whose frequency is
such that ( is the refraction index of the
waveguide), and is an integer. The quantized e.m. field is

(3)

where are the quantum amplitudes, the transverse
polarization vectors, the polarization index, and denotes
the parity of the allowed modes. As for matter field, we
may write

(4)

where and are bosonic2 quantum amplitudes
associated with the atomic ground state (s-state)
describes the totality of the internal atomic quantum num-
bers), and with the excited states (p-state with index

possessing energies above the ground
state. In fact, as is well known, in lasers of the type we are
considering, due to the Stark effect, the atomic populations in
the excited states are distributed in energy according to the
Lorentzian ( is the number of atoms in the cavity)

(5)

where is the central value and is the width of the emission
curve. Thus, the continuous index indicates the allowed
frequency range for the upper level, such that
where is the natural width

(6)

with . In writing (4), the population
of the upper level, proportional to is assumed to

2In view of the the low density of the matter field, any effect due to the
Pauli principle being excluded, we may safely and simply deal with bosonic
degrees of freedom.

be space-independent. This assumption should be well founded
due to the (spatially) homogenizing role of the pump, thus it
holds particularly at the low e.m. field intensity, i.e., during
the start up of the laser modes.

Please note also that for simplicity we have given the upper
level the simplest tensor character, i.e., that of a vector
it can easily be checked that this in no way limits the generality
of our treatment.

A. The Dynamical Equations

The dynamical evolution of our system—matter plus e.m.
field—is governed by the Hamiltonian

(7)

with the conservative Hamiltonian and the dissipative
one. has the following general expression:

(8)

The first term is the matter Hamiltonian and is given by

(9)

where the first term is the free atomic Hamiltonian, the second
term represents the coupling between matter and radiation
where is the e.m. current of the atomic single system
and is the electric charge, and the third term represents the
dispersive effects of the polarizable atomic medium upon the
propagation of the e.m. field. It incorporates the effect on the
propagation (the photon “mass”) of the e.m. mode in
the cavity, stemming from the dispersive matter–e.m. field in-
teraction. An elementary analysis yields for the expression
[4], [9]

(10)

where is the density of the atoms, is the initial
state, denotes the intermediate state accessed from the
initial state through the interaction with the e.m. field mode of
frequency and and are the energies of the initial
and intermediate states. Now one has for the square of the
transition matrix element

(11)

where is the “oscillator strength” of the laser transition and
is the electron mass.

As for the e.m. Hamiltonian , we have the usual
expression

(12)
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with and . The dissipative
Hamiltonian will be given in the following effective form:

(13)

where and embody the effect of the pumping
mechanism(s) and the loss of e.m. field radiation from
the cavity. It is easy to check that the conservation of atomic
species

(14)

requires that at each time satisfies

(15)

Once the Hamiltonian is fully specified, the action is easily
obtained

(16)

The dynamical evolution of the coupled fields can be obtained
by solving the quantum field theory in the path integral
formulation [6]. The transition amplitude is

(17)

It has been shown [4], [5] that in the large-limit the principle
of stationary action holds in a fully quantum limit. Thus the
dynamical equations arising from (17) are nothing but the
Euler–Lagrange equations for the classical (coherent) fields
associated with the e.m. and matter fields. Thus we get

(18a)

(18b)

These equations admit an eminently transparent interpreta-
tion: (18a) is nothing but a “collective” Schrödinger equation

for the classical wave field associated with the atomic systems
coupled to the e.m. field . Equation (18b) represents the
classical D’Alembert equation whose source is the classical
e.m. current of the atomic systems. In terms of the matter
amplitudes and from the system (18) one readily
obtains (we assume that the ground state has the conventional
energy )

(19a)

(19b)

(19c)

where . This formidable looking
system of coupled differential equations can be simplified by
first introducing the interaction representation

(20a)

(20b)

then normalizing all amplitudes to the numberof atoms in
the cavity, i.e., setting

etc. (21)

and finally writing is basically independent of

(22a)

(22b)

(22c)

where is a complex vector, of unit modulus

Introducing the adimensional time one thus obtains

(23a)

(23b)



2406 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 34, NO. 12, DECEMBER 1998

(23c)

where

(24)

is related to the oscillator strength of the laser transition
through

(25)

and . The conser-
vation equation for the number of atomic systems now reads

(26)

The differential system (23) allows us to understand the
dynamical evolution of the laser system through the sequence
of its stages.

B. The Build-Up of the Cavity Modes

First of all, by making the well-known and widely utilized
“rotating wave approximation,” we realize from (23) that
steady, not wildly oscillating solutions can be obtained only for

(27)

namely when a cavity mode resonates, within the cavity width
with one of the matter field modes. Equation (23) then

becomes

(28a)

(28b)

(28c)

whereas the nonresonating matter modes obey the equation

(29)

which describes the evolution of as governed by the pump
only. The resonating modes, on the contrary, are able to evolve
toward nontrivial limiting solutions. However, since at the
start-up of the system the cavity amplitudes
are still vanishing near , (28b) and (29) coincide and
provide an amplitude varying very slowly with time,
so that we can take as a constant in (28a) and (28c), and
renormalize . Moreover, we can drop in (28c) the second-
order term by using the generally accepted “slowly varying
envelope approximation.” Then we have

(30a)

(30b)

which admit the solutions

(31a)

(31b)

By determining by (28), one finds

(32)

When

(33)

that means, since

(34)

the e.m. amplitude grows exponentially,
“running away” from the situation where the e.m. mode
performs incoherent quantum fluctuations of amplitude

to the situation where it becomes a macroscopic
classical field oscillating in phase with the atomic system.
Since the conditions (30) and (32)–(34) depend on the spe-
cific parameter which according to (10) depends on the
frequencies each level has its own specific time for
running away toward the limiting solution (limit cycle) of (28).
These runaway times must be compared with the time

(35)

with being the density of the atoms and the pump
cross section, which governs the total duration of this phase
of build-up and is determined by the level of the power of the
pump. If all the cavity modes are actually able to
reach their limit cycle, namely the stationary solution of (30).

C. The “Colonization” of the “Spectator” Modes
and the Reaching of the Steady State

At the end of the first stage, i.e., for all the e.m.
cavity modes (and their matter partners and
have reached their steady state, corresponding to the limit
cycle. However, the laser is not “on” yet, for its output is fed by
only a very small fraction of all the atomic matter modes .
The vast majority of the excited atoms in fact have been so far
mere “spectators,” being decoupled by all the cavity modes.
However, a careful analysis of (23) shows that the interaction
of the cavity modes, whose e.m. field amplitude after the first
stage has become nonnegligible, with the spectator modes
oscillating initially with frequency is able to drive slowly
the latter ones to oscillate with the same frequency of each
cavity mode. In order to describe the “walk away” of the
spectator modes from their original frequency, we have to
make the Ansatz

(36)
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Fig. 1. �n=�0 for different values ofN=V (1019 cm�3).

where and is the frequency of the “central
cavity mode,” for which . It is possible to show that,
by substituting (36) into (23) and by using again the rotating
wave approximation, it exists always a time at which the
cavity mode having the frequency
oscillates in tune with a fraction

(37)

of the spectator modes, thus colonizing them. In [8], the full
mathematical details are provided. This stage of dynamical
evolution is thus characterized by the fierce competition among
all the cavity modes to “colonize” as many spectators as
possible in order to include them in the collective stationary
states of each cavity mode, whose superposition gives rise
to the steady state of the laser. In Fig. 1, we plot the result
of the analysis sketched above for different atomic densities

and for a typical optical fiber cavity. The analysis [8]
of the new limit cycles of the cavity modes, to which also
contributes the “colonized” fractional population shows
that the intensities of the different cavity modes are just
proportional to .

III. EXPERIMENTAL RESULTS

In order to understand the novel character of our approach
to laser dynamics, we have performed some experiments.
The aim of these experiments is to show the importance
in the dynamic evolution of the laser of the phase of the
matter system. We have thus studied the response of the
system to a shift of the cavity wavevectors due to the
variation of the refraction index induced by the application
of an electric field. In this way, we have investigated the
dynamics of a system in which a dephasing between the
e.m. field and the matter wave field suddenly occurs. In its
basic embodiment, the oscillator chosen for the experiment has
been a 53-mm-long LiNbOwaveguide heavily doped with Er

Fig. 2. Laser amplitude switching off. The step function is the signal of the
phase modulator, the other two plots are the laser amplitude response, both
experimental (solid line) and theoretical (dashed line).

ions and terminated with dielectric mirrors. The waveguide
laser, originally designed as a mode-locked soliton source,
was provided with a phase-modulating electrode optimized for
high-frequency applications.

The laser was pumped by a 1480-nm diode: the power
coupled into the waveguide was about 50 mW. The key feature
used in the experiment was the possibility of switching the dc
bias applied to the phase modulator very rapidly, increasing
or decreasing the voltage by a well-controlled step. The effect
is equivalent to a sudden variation of the optical length of the
resonator, which takes place in a few nanoseconds. Although
the rise time of the voltage step exceeds the cavity round-trip
time, it is still much shorter than the other characteristic times
of the laser. Theory and experiment are compared in Fig. 2.
It is to be noted that on shifting the laser switches off in
a time that is typical of the cavity decay time, to switch on
again with the typical time . Furthermore, theory
predicts and experiment confirms that when the shift is such
that i.e., each cavity mode is shifted
to another preexisting cavity mode, the laserdoes notswitch
off. Physically this is due to the fact that the shifted e.m.
cavity modes remain in tune with the excited modes of the
atomic field (and thus the laser continues to be “on”) only
when the spectrum of the shifted modes coincides with the
unshifted one. When this does not happen, the lasergoes
out of tuneand it switches off, to switch on again when the
laser has gone through the two dynamical stages described
above, i.e., after a time . This behavior, completely
unexpected in the Maxwell–Bloch framework, confirms the
relevance of the phase locking between the e.m. and the matter
field: while after the phase shift the erbium population is still
inverted, the induced dephasing actually “removes” the active
medium from the cavity, causing the extinction of the laser
emission.
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