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The effect of the moment of inertia of single domain ferromagnetic particles on the frequency-
dependent complex susceptibility y(w)=x'(w)—ix"(w) of ferrofluids is reported. It is demonstrated
that particle inertial effects that arise from rotational Brownian motion can give rise to a resonant
behavior, which is indicated by the real component '(w) becoming negative at a frequency substantially
lower than the Larmor frequency. This provides a possible explanation for previously published data
that display such an effect in the 10 to 100 MHz region. The Langevin treatment of Brownian motion is
used to incorporate thermal agitation into a model which represents, for the purpose of analysis, a typi-
cal ferroparticle, P, as a composite particle comprising a magnetic particle, P,, (assumed to be spherical),
which may rotate inside and in contact with a concentric rigid sphere, P, representing the surfactant, so
that P, and P, may have different angular velocities about a common center. This leads to a three-
dimensional form of the itinerant oscillator model in the small oscillation approximation. The model
predicts inertia corrected Debye relaxation in the form of the Rocard equation that arises for P,, and P
rotating as a unit, and resonance behavior arising from the relative motion of P,, and P;.

PACS number(s): 47.90.+a, 75.50.Mm, 75.60.Jp, 76.90.+d

I. INTRODUCTION

Previously reported measurements of the complex sus-
ceptibility of ferrofluids [1,2] have shown an apparent
resonance, indicated by the real component y¥'(w) becom-
ing negative at a frequency lower than that predicted by
the existing theory of ferromagnetic resonance in fine
particles. A typical example of such experimental data,
measured over the approximate frequency range 0.2 kHz
to 300 MHz, is given in Sec. VIII for a colloidal suspen-
sion of cobalt ferrite in isopar-m. The X'(w) component
of these data exhibits an apparent resonance at a frequen-
cy of approximately 50 MHz. Here we demonstrate that
this effect can be attributed to inertial effects arising from
the magnetic particle and its surfactant.

The particles commonly used in magnetic fluids have
radii ranging from 2 to 10 nm. As these particles are in
the single domain region, they can be considered to be in
a state of uniform magnetization with magnetic moment
u given by

u=My,, , (1)

where M, (Wb/m?) denotes the saturation magnetization
and v,, is the volume of the particle. The magnetic mo-
ments have preferred orientation(s) (easy axes) relative to
the particles due to the magnetic anisotropy K, which
generally arises from a combination of shape and magne-
tocrystalline anisotropy.

Consider a system of such spherical particles immersed
in a liquid carrier, with each particle possessing a mag-
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netic moment; these particles undergo Brownian rotation
due to thermal agitation of the carrier liquid. The
Brownian motion is random with no preferential direc-
tion, and the time associated with the rotational diffusion
is the Brownian relaxation time 7, [3], where

Tp=2v0/kT , (2)

v is the hydrodynamic volume of the particle in m?, and 7
is the dynamic viscosity of the carrier liquid in N's/m?.

The magnetic moment may also reverse direction
within the particle by overcoming an energy barrier,
which for uniaxial anisotropy is given by Kv,,. The prob-
ability of such a transition is approximately equal to
expo, where o is the ratio of anisotropy energy to
thermal energy (Kv,, /kT). The time of the magnetic mo-
ment reversal, or switching time, is referred to [2] as the
Néel relaxation time 7. Néel, by assuming discrete orien-
tations of the magnetic moments, estimated the relaxa-
tion time 7 to be

T=Ty€Xpo , (3)

with 7, having an often quoted approximate value of
107° s [4].

Brown [4] improved on Néel’s work, providing for a
continuous distribution of orientations by constructing
the Fokker-Planck equation for the density of magnetic
moment orientations on a sphere of radius M, and ar-
rived at his asymptotic expressions for high and low bar-
rier heights, which for the simplest uniaxial potential of
the crystalline anisotropy may be described [4] approxi-
mately as

Toawl/zexpa, o=>2

TN To0, O<<1. @)
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A ferrofiuid has a distribution of particle sizes, and this
implies the existence of a distribution of relaxation times;
in general, both Brownian and Néel relaxation mecha-
nisms will contribute to the magnetization with an
effective relaxation time 7., where

Teg=7nTp /(T +7p) . 4"

The dominant mechanism of a particle will be that
with the shortest relaxation time. Thus if 7 >>7, then
from (4') 7.4=7p, whereas if Ty <<Tp, Tg=7x.

The theory of orientational relaxation developed by
Debye [3] is used to determine the frequency-depen-
dent complex susceptibility Y(w), where y(w)—x'(w)
—ix"(w), of ferrofluids. This theory holds for spherical
particles when the magnetic dipole-dipole interaction en-
ergy is small compared to the thermal energy kT.

According to the Debye theory, y(w) has a frequency
dependence given by the equation

X(@0) =X =(Xo—Xo)/(1tioT) , (5)
where
Tg=1/0,,=1/27f,, , (6)

where f,, is the frequency at which y"(®) is a maximum
and x, and Y, denote susceptibility values at =0 and at
very high frequencies.

For simplicity, Eq. (5) is often approximated to [3]

X(w)=xo/(1tioTey) . (7)

Furthermore, Y(w) may also be expressed in terms of its
longitudinal, x,(), and transverse, Y,(w), components,
with

The Debye theory can be described physically in terms
of the magnetization aftereffect function b (¢) [5] and its
corresponding correlation function p(z) [6]. The function
b(t) is the response to a small steady field H, which has
been applied to a system of single domain ferromagnetic
particles at time ¢ = — o and which is suddenly switched
off at # =0. This results in a decay transient of the mag-
netization M, (¢), of the form [5]

M, (1) —My=(xo— X, Hb(2), 9)

where My is the equilibrium magnetization. The corre-
sponding autocorrelation function p(¢), which is an aver-
age measure of the decaying magnetization, is related to
b (t) by the equation [5]

p(t)=3KkTh(t) . (10

The theory we have described, however, does not take
account of inertial effects arising from the finite mass of
the particles. To investigate the effect of the inertia of
the ferroparticles on the complex susceptibility of
ferrofluids, Fannin, Charles, and Relihan [7] used the
treatment of Langevin [6,8] to incorporate thermal agita-
tion into the analysis. In the dynamical model chosen,
both the magnetic particle and its surfactant were con-
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ceived of as a rigid body having a moment of inertia I,
constrained to rotate about an axis normal to itself, that
is, a space-fixed axis rotator, so that the magnetic mo-
ment is assumed to make an angle 6 with a fixed direction
in space.

The equation of motion of a typical rotator following
removal of the previously steady external field H is

I6+¢E6=M\1) , (11)

where I denotes the moment of inertia of the particle
about a diameter, § is the damping coefficient, and A(?) is
the random white noise driving torque, which arises from
the Brownian motion of the surroundings.

The results of Fannin, Charles, and Relihan [7], when
analyzed using this model, showed that a condition of the
real component }'(w) going negative, albeit of a minus-
cule level, could arise in the frequency range concerned.
However, this was merely an inertial and not a resonance
effect, as Eq. (11) by its very nature cannot exhibit reso-
nant behavior.

The deficiency in the above approach lay in the fact
that a ferroparticle, which consists of a magnetic particle
and its surfactant, was treated as a single rigid body.
Here it is demonstrated that a scheme that can qualita-
tively explain the experimental results is to postulate a
relative motion of the magnetic particle and surfactant.
Thus the ferroparticle P is represented as a composite rig-
id body comprising a rigid magnetic particle P, (as-
sumed to be spherical), which may rotate inside and in
contact with a concentric rigid hollow sphere P,
representing the surfactant, so that P,, and P, may have
different angular velocities, as illustrated in Figs. 1 and 2.
This is a three-dimensional form of the itinerant oscilla-
tor model [9] if considered in the small oscillation ap-
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FIG. 1. Geometry for ferrofluid particle P with frozen car-
rier liquid matrix; P is immobile so that the easy axis n is frozen
at (in general) a constant angle ¢ in space relative to the refer-
ence direction h, taken as that of the external applied field. The
surfactant P; and the inertia of P play no role because there are
no hydrodynamic torques due to the carrier. The diagram is
drawn for rotation in the X-Y plane for simplicity; u rotates
about the z axis in the medium of magnetic viscosity 7,, inside
the frozen magnetic particle P with angular velocity
wg =¢g(t)k. Ix =moment of inertia of surfactant; I N =moment
of inertia of magnetic particle.
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FIG. 2. Model for ferroparticle P in carrier liquid matrix
(shown for rotation in X-Y plane); P rotates because of the
torques imposed by the surrounding fluid; P,, rotates relative to
P,. P, is treated as a rigid disk of moment of inertia I (carry-
ing a magnetic moment vector u, which can swivel about the
origin O) subjected to torques Kuv,, sin2(¢y—dr),
67, Um(dy —dg ), and A(¢) arising from the interaction energy
U and the relative motion of u and n, with P,, rotating (and so
also the easy axis) about the point O with angular velocity
oy =dyk;u rotates about O with angular velocity wz =g ()k
and makes an angle ¢z (¢) with h, which is used to specify the
orientation of P and thus a point on the outer rim of a rigid an-
nulus P; of moment of inertia Iy representing the surfactant.
P is subject to reaction damping torques,
— 60U Py —dr ) —A™(t) and —Kv,, sin[2(dy—dg)]; a
torque M,v,, H sindy(t), arising from the applied external field
H; and the stochastic torques 6nzv(dg —wp),A“(2), arising
from the carrier fluid. To simplify the model it is subsequently
assumed that P,, and P, are coupled through the magnetic
torque only.

proximation. It leads to inertia corrected Debye relaxa-
tion in the form of the Rocard equation, which arises for
P, and P, rotating as a unit, and resonance behavior
arising from the relative motion of P,, and P,. We shall
now describe the Néel and Debye relaxation mechanisms
separately and subsequently explain how they may be
combined in the itinerant oscillator model just men-
tioned.

II. RELAXATION IN A FROZEN LIQUID MATRIX

The analysis that has been invariably used hitherto as-
sumes for the purpose of the discussion the Néel relaxa-
tion of a ferrofluid, a frozen carrier liquid matrix, i.e., a
frozen easy axis n, so that only the magnetic moment axis
u can rotate. The ferroparticle has therefore no mechani-
cal degrees of freedom and so the inertia plays no role, the
solid state Néel process of rotation of u inside the particle
being the only mechanism of reorientation. On the other
hand, for the purpose of the discussion of the Debye
(Brownian relaxation), it is assumed that the magnetic
moment is frozen along the easy axis so that u||n, but the
ferroparticle now has mechanical degrees of freedom, and
so the magnetic moment may rotate in unison with the
ferroparticle under the influence of the mechanical
torques arising from the surrounding carrier fluid. Here
the inertia of the ferroparticle will come into play, and
the behavior is exactly like that of a rigid polar molecule
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in the inertia corrected Debye theory of dielectric relaxa-
tion, the rotation of u in the carrier liquid being the only
mechanism of reorientation because it is clamped rigidly
to the easy axis.

In order to proceed, let us, following [10], consider the
equation governing the average of the magnetization
of a ferroparticle of linear dimensions <150 A (so that it
is a single domain particle) when n is frozen. The mag-
netic volume of the particle is v,,, so that, as before, the
magnitude of the magnetic moment is

u=My,, , (12)

where M, is the saturation magnetization. The magnetic
moment vector then satisfies [4] the Landau-Lifshitz
equation, so that the equation governing the time evolu-
tion of the average of the magnetization M is

. a
M—y(MXHEf)—l-X}:—(MXHef)XM : (13)

We denote the total field acting on the ferroparticle,
i.e., the anisotropy field plus the external field by H,,.
The corresponding value of the diffusion time is

MSvm
"N aykT
Now
Muv, 14
Msvm _u
and
14 U
= —e—— T — —— > 15
H,, oM o (15)

where U is the Gibbs free energy, which for uniaxial an-
isotropy is

U=v,,V=—Hu(u-h)—Kv, (un)?, (16)
oU 2K

eV - . 17

H,, o Hh+ M, (un)n, (17)

V being the Gibbs free energy density and h denoting a
unit vector in the direction of the applied field H. In gen-
eral h will not be parallel to n. Equation (13) now be-
comes

u=y(uXH,)+ay(uXH,)Xu, (18)
which has the form of the kinematic relation
1=w, Xu, (19)

where the angular velocity of the magnetic moment vec-
tor u is

o,=—vH,+ayuXH,
=w; togp . (20)
Now

o =—vH,
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is the velocity of free (Larmor) precession about the
direction of the effective field H,,, while wg is the com-
ponent of the angular velocity proportional to the damp-
ing constant a. The damping extinguishes the precession
of the magnetic moment after a time (aw; )™, so that
ul/h. The vector wg obeys the equation

Or _ uXH
ay ef
or
_("_R_M_S_ JuX 1% =0 21)
ay du ’
We write
N 2aykT kT’
where
M
Non =7 (22)
6ay

is called the magnetic viscosity. Equation (22) follows by
analogy with the Debye formula

Tp =4*n'77a3(kT)_1 .

Thus, eliminating ay, we have the average torque equa-
tion when n is frozen:

ax U

3u =0. (23)

61,0, 0 +

Hence the magnetic moment behaves as a rigid rotator
of volume v,, with zero inertia (because no physical rota-
tion of the ferroparticle occurs) in a potential well U em-
bedded in a “liquid” of viscosity 7,, (Fig. 1). Equation
(23) refers to the average behavior of wg. If we wish to
discuss not the average but the particular behavior of wg,
we must consider the instantaneous equation of motion
incorporating the stochastic torques due to thermal agita-
tion of the surroundings. This is

ax U

— 1 (u)
3u AMA(e) (24)

67, v, 05 +

where the correlation functions of the components of the
white noise torque A'*), which is purely magnetic in ori-
gin, satisfy
XE")(t)ly‘)(t')z M
vyMv

s

6;;8(t—1t") ,- (25)

i
i and j referring to different cartesian axes, i,j =1,2,3.

In order to determine the frequency dependence of the
longitudinal component X,(w) of the susceptibility of the
system governed by Eq. (24), it is supposed that the exter-
nal field H is applied parallel to n and is suddenly
switched off at a time ¢ =0, with the condition that
&=v, HM kT <<1 being imposed in order to ensure
linearity of the response. The alternating current
response may then be obtained by linear response theory.
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Since h is assumed parallel to n, the gyromagnetic terms
play no role in the determination of the longitudinal sus-
ceptibility as they automatically drop out of the Fokker-
Planck equation [11]. The limitations of the assumption
that h|ln have been discussed by Dormann [12].

ITI. RELAXATION WITH MAGNETIC MOMENT
FROZEN ALONG THE EASY AXIS

Equations (13) and (24) refer purely to magnetic relaxa-
tion, since the ferroparticle P is embedded in a frozen car-
rier liquid matrix. If the carrier matrix melts, the easy
axis n of the ferroparticle can now physically rotate be-
cause of hydrodynamic torques imposed by the carrier
liquid. Hence if we assume that u is frozen parallel to n
so that the Néel mechanism of orientation described
above is inoperative, then the ferroparticle P behaves as a
rigid rotator of moment of inertia I rotating in the carrier
fluid, and the equation of motion of P before H is
switched off is

Tog(t)+6npv(0g —op)+v, MuXH=1%(z) . (26)

Here the torques are purely hydrodynamic in origin so
that

AM(OM ()= 12kTnpv8,;8(t —1t')
7
E=6mpv

and v is the hydrodynamic volume of the particle; the
orientation of P in the liquid is specified by the magnetic
moment vector u.

In two dimensions the angle between u and H=Hh is
¢r(t). As usual we suppose that H is switched off at a
time ¢ =0 in order to obtain the after-effect solution. If
inertial effects are small, i.e., the inertial parameter

y=—kTI <0.05, (28)

§2
and if the local angular velocity of the fluid @y =0, then
Eq. (26) leads to the Rocard equation for inertia-
corrected Debye relaxation. Resonant behavior is not
possible, although Y'(w) has the desirable feature of
becoming negative at a certain critical frequency, as ob-
served experimentally [1,2].

IV. COMBINED EFFECT OF NEEL AND DEBYE
RELAXATION

The analysis we have just given cannot describe the
joint effects of the Debye and Néel relaxation, as it is ob-
vious that both mechanisms are treated independently.
In order to combine the two effects, we suppose that the
ferroparticle P rotating in the liquid carrier is made up of
two composite particles P,, and P,, which may swivel rel-
ative to each other about the same common point O, as
illustrated in Fig. 2. P,, is treated as a rigid sphere of
volume v,, and moment of inertia Iy, representing the
magnetic particle; while P, is a hollow rigid sphere of
volume v —v,, and moment of inertia I representing the

surfactant; v is the hydrodynamic volume of P, which is
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assumed spherical; and both P,, and P rotate about the
common center O. P,, is subjected to a torque arising
from the magnetic interaction energy U [Eq. (16)] and
white noise and damping torques arising from the relative
motion of u and n (Fig. 2).

Hence the equation of motion of P,, is

ax U

— 1 (n)
on A7) . (29)

Iyoy+6m,v,(0y—wg)+

The equation of motion of the surfactant P, the orienta-
tion of the ferroparticle P and thus P, in the liquid, being
specified by the direction of the magnetic moment vector
u, just as in Eq. (26)—is

Ipig +6m,v, (@ —0y)+6npv(0g —0F)+ ux—gg
— —)\.(")(t)-f‘)\,(“)(t) .
(30)

In Eq. (30), I @y is the inertial torque due to the motion
of P, the second and fifth terms are the stochastic reac-
tion (braking) torques arising from the relative motion of
P, and P, the fourth term is the magnetic interaction
torque, and the third and sixth terms are the stochastic
braking torques imposed on P by the carrier liquid, where
wp is the local angular velocity of the liquid. In addition,
by Newton’s third law, we have, if the applied field H is
switched off at a time t =0,

ux Y |4+ [ax3Y | =0, 31)

du on

since in the absence of H,
U=U(Qr —QF), (32)

where Q and )y denote the sets of Eulerian angles
specifying the orientations of u and n, respectively, rela-
tive to the applied field axis h. This is taken as the refer-
ence axis, thus emphasizing that one may never assume
that h and n are collinear. The viscous drag coefficient of
P, is calculated from the hydrodynamic radius a of the
ferroparticle P and again follows from the Debye formula

dmrypa’
T Tk
so that

=¢/2kT ,

§=8mnpa’=6nv ,

whence ki-”’(t)k}“’(t’) is given by Eq. (27), since the damp-
ing on P,, is purely magnetic in origin.

We note that the equation of motion of the complete
ferroparticle P consisting of P,, and P is

Inoog +Iyoy+6npv(0g —0p)+uv,, (WXH)=1")(1) ,
(33)

which reduces to Eq. (26) if wz =wy, that is, P,, rotates

in unison with P, or the magnetic moment is frozen
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along the easy axis. We shall also suppose that A{*(z)
and kﬁ-”)(t) are statistically independent, that is, their
cross-correlation functions vanish. Equations (29) and
(30) represent a three-dimensional form of the itinerant
oscillator model [9,13]. They may be simplified and ulti-
mately decoupled into sum and difference angular vari-
ables as in the zero damping and noise limit (see the Ap-
pendix). This may be accomplished if we suppose in Eq.
(30) that the magnetic interaction torque is the most
significant factor in the coupling of the motion of P,, and
P, and that the mutual coupling through the damping
and white noise torques is very small in comparison to
this. We shall again suppose that the local angular veloc-
ity of the fluid is zero.
Equations (29) and (30) now become

Inoon+6n,0, 0y + nx% =Al"(y) (34)
Ijnog +6npveg + uX%% =A™z, (35)

which is a simplified three-dimensional form of the
itinerant oscillator model [13,14]. The combined motion
of P, and P, gives rise to inertia corrected Debye absorp-
tion. The fast relative (libration) motion Qy —Q, giving
rise to resoniance absorption as is shown briefly below.

V. RESONANT BEHAVIOR

The model may qualitatively explain the experimental
results by demonstrating that a resonance, that is magne-
tomechanical in origin can arise in y (@) for a ferrofluid
if P,, is allowed to rotate relative to P,. This is in addi-
tion to the high-frequency ferromagnetic resonance [8] of
the transverse component Y (@) of the susceptibility aris-
ing from the precession of u about the axis of the effective
field; cf. Eq. (20). The inclusion of the inertial terms in
Egs. (27) and (30) and the fact that h and n are not col-
linear will induce a coupling between the transverse and
longitudinal relaxation, thus affecting the ferromagnetic
resonance. We suppose, however, that this may be ig-
nored in a first approximation. An estimate of the reso-
nant frequency may be made by restricting the motion to
rotation in a plane, so that having switched H off at a
time ¢t =0,

Iyooy+67,0,0y—U'(dgr —¢y)=A"A(1), t>0, (36
Irdg +6mpvag +U'(¢g —¢y)=A"(2) (37)
with
U(pr —dy)=—Kv,, cos’(¢g —dn) , (38)
where
wg=¢r, oy=dy . (39)
If we write
_ Ipdr +1ydn , Y= dr — PN (40)
Ip+1Iy 2
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and further impose the condition

67,,v,, 6npv
i _nr =B:£_1‘_’_=§_R (41)
Iy I Iy Ip
that is,
I
g_N=_1.‘L , (42)
S Ix

so that with Iy <<Iy (as we expect since the mass of the
surfactant is much less than that of the magnetic parti-
cle), the condition §p <<§y is automatically satisfied;
thus P,,, the magnetic particle, is heavily damped; Egs.
(36) and (37) decouple into [14]

g +I)®+Ig +1y)BO=A"(2)+A1 (1) , 43)
V+BY+ K;’" i+i sin4¢=~;— 7;(: - 7;;) ] .
(44)
Here
U(¢g —¢n)=—Kv,, cos’(¢g —dy) , (45)
so that
U'(¢pr —dy)=Kv,, sin[2(¢g —dy)] . (46)

Equation (43) represents inertia-corrected Debye relaxa-
tion, both particle P,, and surfactant P, rotating as a unit
in the fluid. Equation (44), on the other hand, describes
the relative motion of the magnetic particle and surfac-
tant, with the angular frequency of small oscillation ) be-
ing

172

, 47)

172

~

2Kv,,
Ig

1,

Q=
Ip Iy

2Kv,,

so that resonance may occur at this frequency. A brief
account of the calculation of y(w) from Egs. (43) and
(44) is given in the Appendix.

We note that the restriction to small oscillations of the

J

_ {cospgr(0)cospg(1))y  (cos®(0)cosd(z) ),
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1 motion allows one [14] to calculate from Egs. (43) and
(44) the decay function

b(t)=(u?/3kT){cosdg(0)cosdg (1)),

of the magnetic moment in closed form. The subscript
zero on the angular braces denotes that the average is to
be evaluated in the absence of H. Such a restriction re-
quires, however, that 2y=¢r —¢, (which is also, as we
have defined it, the angle between the magnetic moment
direction u and the easy axis direction n) be small <30°.
This means that the slow Néel relaxation process (in a
strict sense we can no longer speak of a pure Debye or
pure Néel process since the solid state and hydrodynamic
processes are irrevocably mixed in the model), which
[15,16] demands escape over the hills of the potential U,
is disregarded. Thus, in order to include the Néel pro-
cess, the cos?2y potential of Eq. (45) must be used in or-
der to calculate b(¢). The contribution to b(¢) of the ®
motion (P,, and P, rotating as a unit) is the same as in the
small oscillation approximation; however, the exact con-
tribution of the 3 motion, which now describes both the
fast process of oscillations in the wells of U and the rela-
tively slow Neéel (activation) process of escape over the
hills of U, must be evaluated numerically in the manner
described in Ref. [16]. The Néel process should then
manifest itself as an additional Debye type of absorption
(with characteristic angular frequency of maximum ab-
sorption the inverse of the Néel time), lying in the fre-
quency range between the inertia-corrected Debye ab-
sorption due to the ® motion and the resonance absorp-
tion due to the rapid oscillations of u.

VI. MAGNETIC MOMENT AUTOCORRELATION
FUNCTION

Equations (43) and (44) may be solved exactly in the
small oscillation approximation, as described in the con-
text of the far infrared dielectric absorption of polar
fluids [14]. We have (see the Appendix) for the normal-
ized magnetic moment autocorrelation function C,(¢) in
the underdamped case

Re(expiaAy),

C, (1)
N {cos’pr(0)), (cos’®)
_ (cos®(0)cosd(1) ), N (AY)2
(cos’® ), )
—kT _ —kT
= ————(Bt—1+e # ———[1-x(] |, 48
P (IR+IN)32(B ¢ )CXP:(IR+IN)02[ *(0] e
where Q?=02—-p%/4 , (50)

x (t)=exp(—pBt/2)[cosQt+(B/2Q,)sinQ¢ ]

and

(49)

where a =21y /(In +1y).
The first term in Eq. (48) represents inertia-corrected
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Debye relaxation, where we expect that I <<Iy, so that
u may oscillate rapidly. The leading term is the contribu-
tion to the relaxation due to P,, and P, rotating as a unit.
The behavior is like that of a solid ferroparticle of mo-
ment of inertia I +1y. The second term represents re-
laxation due to the relative motion of P,, and P;. It ap-
pears, owing to the oscillatory nature of the argument of
the second exponential, that resonant behavior will be ex-
hibited in the frequency domain. This is the exact solu-
tion for C,(¢) in the small oscillation approximation for
the system governed by Egs. (36) and (37). In order to
calculate x|(w), the longitudinal component of the com-
plex susceptibility, it is again necessary to use linear
response theory. The calculation of the Fourier trans-
form of Eq. (48) is cumbersome, however, because of the
transcendental functions occurring in the arguments of
the exponentials. Nevertheless, the calculation can be
carried out exactly [14], leading to an expression for
X,(@) as a triple sum, showing that, theoretically, the lon-
gitudinal susceptibility comprises an infinite set of
damped resonances. In practice, however, only the fun-
damental mode should be of significance since
KT[(1+1I71)0%,]1 << 1. Hence, it is possible to write
a simple analytical formula for y (), as will be presently
demonstrated. Before doing this, however, it is useful to
express the solution in terms of the following four param-
eters, namely,
(i) the inertial parameter ¥, where
y=kT(Iy+Ig)B)"; (51)
(ii) the Debye relaxation time 7, where
Tp=UyN+1Ig)B/KT ; (52)

(iii) the natural frequency of oscillation  as defined in
Eq. (47);
(iv) the inertia ratio I,, where

=2 (53)

The friction parameter S is then

B=1/yTp . (54)
Hence,
Cu(t)=exp[- t/Tp—vy+vexp *77_1) }
—[1—x(2)]
X —_— 1, (55)
PN R+
where,

x (t)=exp(—1t/2y1p)[cosQt +(2Q,y7p) 'sinQ,t ]
(56)

and

(57)

0}=0— :
’ 4y*7h
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In any particular situation the measured parameters )
and 7 will be regarded as fixed, and the parameters I,
and y are adjusted to obtain a fit to the experimental re-
sults. We remark that it is also possible to calculate
C,,(2) exactly for rotation in a plane in the small oscilla-
tion approximation by using the exact equations, Egs.
(29) and (30), respectively, which include coupling be-
tween ¢y and ¢, in the damping torques. However, the
characteristic equation of the system, which is a cubic in
s, as in the present discussion, no longer factorizes; hence
it is impossible to neatly separate the motion into ¢ and
¥ variables, and thus the methods described in Ref. [15]
must be adapted in this case.

VII. THE COMPLEX SUSCEPTIBILITY

Referring to our discussion above, if we use the exact
expression for C,(7) to calculate y (@), it is generally
easiest to use the fast Fourier transform (FFT) algorithm.
However, we remarked that in general one would expect
that kT[(1+I")Q%I,]"!<<1, in order that the har-
monic approximation to the potential be justified. If this
is so we may use the result (see the Appendix), namely,
that with s =i,

Xy /%0 =1= [ “C,(Dexp(—st)dt (58)
is accurately represented by
kT 1
I +1Iy (s+1/7p)
% 1 _Ii s
s+B I s*+Bs+Q?
_ 1
(stp+1)syrp+1)
I, (yrp) s
+or L (59)
s s
(stp+1)|—+ +1
T e gy, ]

This equation is the Rocard equation [5,6] describing in-
ertia corrected Debye relaxation, added to which is the
response of a damped harmonic oscillator filtered by a
Debye process. The Rocard equation represents the low-
frequency response arising from the combined motion of
P,, and P,, while the harmonic oscillator portion is the
high-frequency response originating from -the relative
motion, which exhibits resonant behavior at a frequency
o= . One may in turn separate this equation into its
real and imaginary parts, so that

xj(@) _ 1—’y7h
Xj(0)  (1+0?h)(1+0y?)
I.o 2
’ ) @ QZ+wTD 1—%— ] ]
')/TDQ yTD Q0
22 2 2 > ’
1+o?) | [1-2 | +—=55
(1+o%rp Q2 Q'

(60)
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Xl'['(a)) _ o(1+y)rp
X0 (1+a0*mh)(1+w?y?rp)
Iw
‘VTDQZ
o |
92 '}/TDQZ
X T2 " (61)
(1+o?d) | [1-2 | + =5
D 02 041/2720

The sharpness of the resonance absorption peak will be
determined by the Q factor, which is

0=0/B=ympQ . (62)

VIII. RESULTS AND SIMULATIONS

Initially, it was necessary to determine the dependence
of the model equations, Eqgs. (60) and (61), representing
the normalized components of ¥'(w) and Y"(w) on the
variable fitting parameters ¥ and I, respectively, 7, and
Q being fixed at values of 10 us and 3.14X10® rad/s.
Figure 3(a) shows a plot of ¥'(w) and x''(w) normalized
against log[f (Hz)] with y =2X 10" and I, varying from
180 to 1140 in five steps of 240, while Fig. 3(b) simply
highlights the high-frequency region of the data. Figure
4(a) shows a similar plot, but in this case I, is fixed at 180
and 7 has values of (1) 2 1074, (2) 0.8 1074, (3) 0.45 10~ 4,
and (4) 0.31 1074, respectively; for this case, Fig. 4(b) il-
lustrates the high-frequency region of the data. From
these plots the following relevant points, pertaining to the
model fitting, emerge:

1
Y 08
0.6

X (@) 0.4
0.2

% (@)

x (@)

ooooo0

FIG. 3. (a) Plot of x¥'(w) and x"'(w) against log,, [(f Hz)] with
y=2X10"* and I, having values of (1) 180, (2) 420, (3) 660, (4)
900, and (5) 1140, respectively. Both plots are normalized by
x'(0). (b) Highlights of the high-frequency region of the data of
(a).
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1
Y 08
0.6
x (@ 0.4
0.2

K@ 6413 (b)

@ 02

65 7 75 8 85
logyglf(H2)]

FIG. 4. (a) Plot of x¥'(w) and x"(w) against log,, (f Hz) with
I, fixed at 180 and y having values of (1) 2 1074, (2) 0.8 1074, (3)
0.45 1074, and (4) 0.31 10™*, respectively; again both plots are
normalized by x’(0). (b) Highlights of the high-frequency re-
gion of the data of (a).

(i) Increasing I, while Ty, Q, and y remain fixed results
in (a) an increase in the high-frequency plateau of y'(w),
(b) an increase in the high-frequency negative component
of ¥'(w), (c) an increase in the high-frequency absorption
peak of X"'(@)yp max (d) a reduction in the low-frequency
absorption peak of ¥"'(w) g max and (e) no change in the
frequencies at which X"’ (®)gp max» a0d X"’ (@)LF max OCCUT.

(ii) Decreasing vy while 1y, Q, and I, remain fixed re-
sults in (a) an increase in the high-frequency plateau of
X (@), (b) a reduction in the high-frequency negative com-
ponent of x'(®), (c) a shift to a lower-frequency absorp-
tion peak of X" (@)gp max» (d) an increase in the high-
frequency absorption peak of Y''(@w)yp max and (e) a
reduction in the low-frequency absorption peak of
X”(C‘))LF max*

Having become familiar with the theoretical model,
one may apply it to experimentally derived data; thus the
frequency-dependent complex susceptibility of - a
ferrofluid sample of cobalt ferrite in isopar-m, with an ap-
proximate median particle diameter of 9.5 nm, was deter-
mined over the frequency range 0.1 kHz to 400 MHz. A
plot of this data against log[f(Hz)] is shown in Fig. 5(a),
with the Y'(w) component becoming negative at a fre-
quency of 50 MHz and the }''(®) component revealing
the presence of two absorption peaks at approximate
frequencies of 16 kHz [Y"'(®)ifmax] and 40 MHz
X" (@)gF max)> Trespectively; this lower frequency corre-
sponds to a Brownian relaxation time, 7, of 10 us. The
corresponding fit obtained from Egs. (60) and (61), using
parameter values of 7, =10 us, Q=27X 50X 10% rad s !,
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1 =~ ” T T

- -

X (w)

X (w)

FIG. 5. (a) Plot of y'(w)
and Y'(w) against log,,f (Hz)
of experimental data, with

X”(w)LFmaxz 16 K HZ)
X”(w)HF max =40 MHz,

and the Y'(w) component going
negative at a frequency of ap-
proximately 50 MHz. (b) Fit ob-
tained to the experimental data
by use of Egs. (60) and (61), us-
ing parameter values of 7, =10
us, Q=27 50.10° rad s™!, y=2

102 103 104 105 108

y=2X10"% and I, =180, is shown in Fig. 5(b). This is a
very satisfactory fit, and the discrepancies in the experi-
mental and theoretical profiles can in part be attributed
to the fact that a ferrofluid consists of a distribution of
particle sizes, a factor that the model, in its present form,
fails to take into account.

IX. CONCLUSION

The effect of the moment of inertia of single domain
ferromagnetic particles on the frequency-dependent com-
plex susceptibility, y(w)=x'(w)—ix" (@), of ferrofluids is
reported. It is demonstrated that particle inertial effects,
arising from rotational Brownian motion and the finite
mass of the particles, can give rise to a condition whereby
the real component, Y'(w), takes on a negative value at a
frequency substantially lower than the Larmor frequency,
thus providing a possible explanation for present and pre-
viously published data [1,2] that display such an effect in
the 10 to 100 MHz region.

A model of the dynamical behavior of a ferroparticle,
in which the Langevin treatment of Brownian motion is
used to incorporate thermal agitation, is presented. It is
shown that this model, which takes into account the rela-
tive motion of the magnetic moment and easy axis, can
qualitatively explain the experimental results obtained for
a ferrofluid sample of cobalt ferrite in isopar-m over the
frequency range 0.2 KHz to 300 MHz. The model takes
into account the relative motion of the axes by represent-
ing the ferroparticle P as a composite rigid body compris-
ing a rigid magnetic particle P,, (assumed to be spheri-
cal), which may rotate inside and in contact with a con-
centric rigid sphere P, representing the surfactant, so
that P,, and P, may have different angular velocities
about a common center. It constitutes, in the small oscil-

107%, and I,=180. All plots are
normalized by x'(0).

108 10°

lation approximation, a three-dimensional form of the
itinerant oscillator model. The model accordingly pre-
dicts, for the longitudinal component of the complex sus-
ceptibility, inertia-corrected Debye relaxation in the form
of the Rocard equation, which arises for P,, and P, rotat-
ing as a unit and resonance behavior arising from the rel-
ative motion of P,, and P, thus providing a quantative
explanation of the experimental results.
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APPENDIX: SUMMARY OF THE SIMPLIFIED
ITINERANT OSCILLATOR MODEL

We shall first calculate the angular-velocity autocorre-
lation function for the simplified itinerant oscillator mod-
el governed by Egs. (36), (37), and (41),

r(t)=<(]5R(0)¢‘R(t)>() ’

as it is useful in the calculation of the orientational corre-
lation function C,(#). Again the “0” subscript on the
averaging brackets indicates the equilibrium ensemble
average. In terms of our ® and ¥ variables, »(¢) becomes

([@(0)+ad(0)][@(t)+ai(t)]),
={(D(0)D(0) )+ a{P(0)D(£))y+a{D(0)f(1)),
+a2((0)(2) ), .

Now @ and v are independent random variables, whence
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(D(0)4j(1) ) o= D(0)){¥(2)),=0,
r(1)={(D0)D(1))+a?(F(0)(1) ), .

The foregoing result is perfectly general and holds no
matter what the form of U, the only restrictive condition
being Eq. (41). The ¢ correlation function may be writ-
ten immediately from the known results for free rotation
about a space-fixed axis [5,6]. The ® angular-velocity
correlation function is then (where ¢ means |¢| from now
on)

(A1)

(D(0)D(1))g=(D*)pe P .

The average (cb2)0 is found by inspection of the Hamil-
tonian

Lydy + 1R P+ Ulg —dy )= LI +1)d?

+ d 3 +U(2
IR+IN¢ 29) .

We have by the equipartition theorem
LI +Iy)( D) g=1kT .

kT 'B’+ mexp

r(t)=<¢R(0)¢R(t)>0:m Ie

To calculate orientational correlation functions, we make
use of a theorem concerning characteristic functions of
Gaussian random variables, namely [15]

(exp(iX)) =exp[i{X) —1({X?)—(X)H)]. (A9
Because the noise torques acting on the system have
Gaussian distributions and because the equations of
motion of ¥ in the harmonic approximation are linear, ¥
will be a Gaussian random variable (linear transforma-
tions of Gaussian random variables are themselves
Gaussian) and @ is automatically a Gaussian random
variable because the equation of motion of ® contains no
external torques apart from those due to the Brownian
movement.

Returning now to our original variable, we wish to cal-
culate the magnetic moment autocorrelation function

p(t). We have, by definition,
p(t)=u?(cospg (0)cosdg (t))g . (A5)

We now write Eq. (A5) in terms of the independent ran-
dom variables ® and ¢ as

p(t)={cos®(0)cos®(t) ),
X {u?[{cos[a(0)]cos[ay(t)]),
+ (sin[a(0)]sin[a(¢)])o]]} .

(A6)

—1pt) |cosQt —
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Thus

(D0)D(1))o=[kT /(Ix +1Iy)le 5. (A2)

The ¢ velocity correlation function, on the other hand,
can only be had in closed form in the small oscillation ap-
proximation. This may be written immediately from the
results of [17] for the harmonic oscillator in the under-
damped case, so that
(9(0)4(1) )

= (4(0)?) yexp!( —1Bt)[cosQt —(3B/Q)sinQ ] .

In order to determine {4/*), we refer again to the Hamil-
tonian. Since ® and v are independent, we again have

MAIgIy /(g +I) {47 )o=1KT .
Thus

(§?)o=kT(Ig +Iy)/AlgIy ,

and so

sin{)¢

B
20,

In writing Eq. (A6) we have recalled that ¢ and ® are in-
dependent random variables; thus averages like

(cos®(0)cos®(t)cos[ap(0)]cos[a(t)]),
may be written
(cos®(0)cos®(t) ){ cos[a(0)]cos[ay(t)]), ,
while averages like
(cos®(0)sin®(t)cos[a(0)]sin[a(t)]),

all vanish. We have also used the fact that for the free
rotator

(cos®(0)cos®(?) )= (sin®(0)sin®(¢) ), .

We now write Eq. (A6) in a form in which the Gauss-
ian theorem given above may be used. We first define

Ayp=1(t)—(0)
and write
(cos[a(0)]cos[a(t)]) o+ (sin[ap(0)]sin[a ()]},
= (cos[a(0)]cos[ap(0)+aAp]),
+ (sin[a®(0)Isin[ay(0)+aA¢]), ,

(cos(aA))o=Re[{explia Ay))o]=g(?) (A7)
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¥(¢) and ¥(0) are Gaussian random variables; therefore
Ay is a Gaussian random variable. We may therefore
write

g(t)=Re(exp{ia{Ap)o—1a?[{((AY)?)o—(AY)E]}) .

By stationarity
(¥(0)),=0.

Thus Ay is a centered random variable, whence
g (t)=exp[ —La®((AY)*),] . (A8)

Thus we write g (¢) by knowing {(Ay)?), only. To use
the results of Ref. [17] it is convenient to substitute for
((A9)?),, so that Eq. (A8) becomes

exp{ —La?[ (X 0)+ (1) —2(0)Y(2) ), 1}
=exp[ —a?*($*(0) )olexp[a*(Y(0)¢(1))o] ,
(A9)
because {4%(0)),={*(¢)), by stationarity. Thus
p(1)=pa(t){p? exp(—a?(P?)oexp[a®($(0)¢(2) )o]} .
(A10)

polt) is the autocorrelation function {cos®(0)cos®(z)),
for rotation about a space-fixed axis. The value of this is

(5]
kT

m(ﬁt—l+e_3t) .
R N

lexp | — (A11)

We now evaluate {¥(0)¥(¢)),. We again use the re-
sults of Ref. [17] for the harmonic oscillator model in the
underdamped case. Thus

(1/}(0)1/1([))0:’}/1)(?([) ’

where

x (t)=exp(—pBt /2)[cosQt —(B/2Q,)sinQz] (A12)
and .
D,
Y11= Qz .

Equation (A 10) when Fourier transformed leads to a very
complicated expression [14]. Equations (60) and (61),
however, may be derived simply as follows. We first con-
sider the plane rotator of moment of inertia I specified by
the angular coordinate 6. The angular-velocity auto-
correlation function of this is [5,6]

(6(0)8(1))o=(KT /I)e " (A13)
and (L denoting the Laplace transform)

L{{6(0)6(2))o} =(kT/I)/(s +B) . (A14)
Also with

AB8=6(t)—6(0) , (A15)

(H(A0))o=(kT/IB*)(Bt —1+e P,
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the complex susceptibility is
X(s) __(~d . ((A6)?), —t
—X”(O) o A IPITT (¢ dt (A16)
= {((A0)?)g (—1)"
=—sL {n§1 o o . (A17)
If we truncate this equation at n =1, we have
X, (s) ((A0%) | kT 1
X0 2 1 s(s+B) (Al8)
=¥%L{<é(0)@'(:)>o} : (A19)

Equation (A19) is singular at s =0 and so cannot hold
at low frequencies. Let us, however, shift the s ~! term in
that equation by the inverse of 7, =IB/kT. Equation
(A 19) then becomes

X”(S) =_]g‘_ 1
xj(0) I (s+kT/IB)s+p) ’

(A20)

Equation (A19) is the Rocard equation [5,16]. It accu-
rately represents the susceptibility of the free rotator if
¥ <0.05. Equation (A20) is valuable insofar as it pro-
vides a simple connection between the complex susceptili-
ty and the angular-velocity correlation function and also
allows the Rocard equation to be easily derived. An
analogous, simple way of treating the itinerant oscillator
also exists [15], as our approximate formula (A20) may be
derived from the analogous high-frequency formula for
the itinerant oscillator, namely,

(s) . .
Xlll_sz(1/s)L{(¢R(0)¢R(t)>o} ,
X(0)

by simply writing s —s+kT /[IyB(1+1,1)] in the lead-
ing term in (A21). We can now calculate the complex po-
larizability directly from the Laplace transform of the an-
gular velocity autocorrelation function. The high-
frequency susceptibility in terms of the ® and ¢ variables
is

(A21)

() L. L
X2 L] D(0) (1) Yg+a 2 G(0)(1))) (A22)
x,(0)
kKT 1] 1 Iy s
= = ~ . (A23
In+Iy s |s+B  Ix s*+Bs+0? } (A23)

We shift the s ~! term by 1/7,,. The resulting equation,
which is the same as Eq. (59), is (the reader is referred to
[15] for more details)

xy(s) _ kT 1

X|(0)  Ix+Iy (s+1/7p)
1 Iy s
X — (A24)
s+B  Ip s*+Bs+0?

Equation (A24) is the Rocard equation, added to which is
the response of a damped harmonic oscillator of a natural
angular frequency ( filtered by a Debye process.
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