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J. T. Waldron
School of Computer Applications, Dublin City University, Dublin 9, Ireland

Yu. P. Kalmykov
Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Vvedenskii Sq.1, Fryazino, Moscow Region,
141120, Russia

W. T. Coffey*
Department of Microelectronics and Electrical Engineering, Trinity College, Dublin 2, Ireland
(Received 25 October 1993)

The longitudinal and transverse components of the complex dielectric susceptibility tensor and dielec-
tric correlation times are calculated exactly for a system of noninteracting polar molecules placed in a
constant external electric field. The calculations are carried out in the context of the rotational diffusion
model. The theoretical results are compared with experimental data on both the magnetic relaxation of
colloidal suspensions of single domain ferromagnetic particles (ferrofluids) and the dielectric relaxation
of dilute solutions of polar macromolecules in a bias field. There is good agreement with the experimen-
tal data on both of these systems. It is shown that previous analytic results for the correlation time
based on the effective eigenvalue method are in general an acceptable approximation to the exact solu-

tions.
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I. INTRODUCTION

The application of a strong direct current (dc) biasing
electric field E to a polar fluid comprised of permanent
dipoles results in a transition from the state of free
thermal rotation of the molecules to a state of partial
orientation with hindered rotation. This change in the
character of the molecular motion under the influence of
the bias field has a marked effect on the dielectric proper-
ties of the fluid insofar as dispersion and absorption of
electromagnetic waves will be observed at the charac-
teristic frequencies of rotation of the molecule in the field
E.

In order to include the effect of such a bias field in the
frequency dependence of the dielectric properties of the
fluid, several attempts have been made (e.g., [1], [2], and
references cited therein) to generalize the Debye theory
of rotational diffusion. These theoretical analyses made
use of linear response theory using either of two approxi-
mate methods. The first of these is based on perturbation
theory, carried to terms of the order of the bias field
squared only, and has been described by Coffey and
Paranjape [1]. The second is based on the effective eigen-
value method [2]-[5] and linear response theory. It has
the advantage that it allows one to include terms of all
orders in the bias field. This method has been applied to
the solution of the present problem in [4] and to the simi-
lar problem of magnetic relaxation of a ferrofluid (a col-
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loidal suspension of single domain ferromagnetic parti-
cles) by Martsenyuk, Raikher, and Shliomis [5]. The
similarity of the problems of dielectric relaxation of a po-
lar fluid and magnetic relaxation of a ferrofluid is not
surprising because, from a physical point of view, the ro-
tational Brownian motion of single domain ferromagnetic
particles (magnetic dipoles) in a constant magnetic field
H, where the Néel relaxation mechanism (that is, reorien-
tation of the magnetization within the particle) is
blocked, is similar to that of polar molecules (electric di-
poles) in a constant electric field E. Neither of the
methods described above may be deemed completely sa-
tisfactory as none comprises an exact solution of the set
of differential-difference equations generated by the
Langevin or Smoluchowski equations underlying the
problem, so that the accuracy of the results obtained
remains unknown.

It is the purpose of this paper to demonstrate how the
linear response of an assembly of noninteracting polar
molecules for ac fields applied parallel and perpendicular
to the bias field may be calculated exactly. In order to
carry out the calculation, it is assumed that the rotational
Brownian motion of a polar molecule may be described
by the Smoluchowski equation in which the inertia effects
are neglected. The problem reduces to the solution of the
infinite hierarchy of differential-difference equations for
the aftereffect functions [6]. The lowest order aftereffect
function in the longitudinal case describes the decay of
the polarization following a small change in the bias field.
In the transverse case the aftereffect function describes
the decay of the polarization following the removal of a
small field applied in a direction normal to the bias field.
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The Laplace transform in both cases is presented in terms
of infinite continued fractions in the frequency @ and the
bias field parameter £, which is defined as

=LE
§ ©T (1

where p is the permanent dipole moment of a polar mole-
cule, k is the Boltzmann constant, and T is the tempera-
ture. The longitudinal and transverse susceptibilities
a|(0) and a (w) may be written down from the Laplace
transform of the corresponding aftereffect functions using
linear response theory [6].

On proceeding to the limit of zero frequency in the La-
place transforms of the appropriate aftereffect functions,
we derive expressions for the dielectric correlation times
for rotation in both two and three dimensions in terms of
continued fractions in § only. These correlation times are
a global characterization of orientational relaxation of di-
polar particles and can be compared with those extracted
from experimental spectra of the dielectric or magnetic
susceptibilities. For rotation in two dimensions these
may in turn be represented in terms of a series of
modified Bessel functions [7] of integer order. The ap-
propriate functions for rotation in three dimensions are
the modified spherical Bessel functions [7] which, in turn,
may be expressed in terms of the elementary functions
[7]. These expressions may be compared with a numeri-
cal solution of the set of linear differential-difference
equations when they are arranged in matrix form [3] as

X=AX. )

Using this representation, the calculation of correlation
times amounts merely to the calculation of A ™! [3].

We shall first present the exact solution for rotation of
a dipole in two dimensions, which can be obtained using
some results we have given [8] for the problem of Browni-
an motion of a particle in a tilted periodic potential with
a particular application to ring laser gyroscopes. This ar-
rangement also facilitates comparison with our earlier ex-
act results [9] for the dielectric relaxation of a single axis
rotator with two equivalent sites. Next we present the
solution for rotation of a symmetric top molecule in three
dimensions. This requires the construction of a new solu-
tion of the set of differential-difference equations rather
than an adaptation of an existing one, as is so for rotation
in two dimensions. An outline of this solution is given in
the Appendix. A comparison of the correlation times
from the exact solutions is given with the results of nu-
merical solution of the differential-difference equations
and with the results yielded by the effective eigenvalue
method [4]. The theoretical prediction for the field
dependence of the longitudinal relaxation time is com-
pared with data obtained from dielectric measurements
on dilute solutions of polar macromolecules in a nonpolar
solvent by Block and Hayes [10] and magnetic measure-
ments on ferrofluids by Fannin, Scaife, and Charles [11].

II. ROTATION IN TWO DIMENSIONS:
LONGITUDINAL RESPONSE

We suppose that the dielectric consisting of an assem-
bly of dipolar molecules has been influenced for a long
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time by the dc field E. We first consider an assembly of
the molecules with each molecule compelled to rotate
about an axis normal to itself. We also suppose that the
electrical interaction between each member of the assem-
bly may be ignored so that on the average all molecules of
the assembly behave in the same way. Thus it suffices to
consider the behavior of one molecule only. Hence the
problem is reduced to considering the rotational Browni-
an movement in two dimensions of a dipole or rigid rota-
tor subjected to the external field.

The Smoluchowski equation for a rigid dipole free to
rotate about an axis normal to itself under the influence
of a potential .

V(¢)=—uE cos¢ —uE (t) cosd (3)

arising from the steady dc bias field E and a small probe
field E,(¢) applied along the x axis is [12]

W oV

¢ 9

where W (#,t) is the probability density of orientations of
the dipole on the unit circle, ¢ is the angle between the
dipole and the x axis, § is the friction coefficient arising
from the Brownian motion of the surroundings, and 7 is
the Debye relaxation time for rotation in two dimensions
given by

13w
T 3¢?

) @)

-5
=T (5)

Equation (4) corresponds to the Langevin equation [12]

;¢+9i’£ﬂ=x(r) , ()

where A(?) is the white noise torque, again due to Browni-
an movement, so that A(¢) has the following properties:

AD=0, o)

A(A(t')=28kTd(t —1') . (8)

In order to study the relaxation behavior in the linear
response approximation, we suppose that the small con-
stant field E, is suddenly switched off at time ¢ =0. In
terms of the parameter &, this corresponds to decreasing
& by an amount
KE,
=—<1.

3 kT 9)
For ¢t <0 the system was at equilibrium and the probabili-
ty density W was given by the Boltzmann distribution

. e(§+§l)cos¢
W($,0)=W, ()= o (10
£+ f,”e(§+51) ¢d¢
= WUP[1+&(cosp—( cosd))] . (11)

The statistical average

_ [irOwUe)de
Joweg)ds

is to be evaluated in the absence of &;. This condition is

(o (12)
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denoted by the subscript O on the angular brackets. As
t—o, Wi(d,t) tends to the equilibrium distribution
Wi($).

In order to proceed, we assume a solution of Eq. (4) of
the form

W= 3 ay(ners, (13)

n=-—c
which yields the set of differential-difference equations

2
o+ B p,=L1s, (=f,o 0], (4

where

fo(t)={(cospg) —( cospé ),

_ a_,(t)+a,(t)—a_,(0)—a,(w)

2a,

(2)”COS¢ cos(pd)e §cos¢d¢ f(Z)fr cos(¢)e§cos¢d¢f(2]1r cos(p¢)e§°°s¢d¢
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fo(8)=0. (16)

The quantity of interest is the decay of the polarization of
the system P (t) defined as

P(t)=/,¢Nf02ﬂ( cosp—{ cosd) o)W (4,0)dd, t>0
=uNf, (1), (17)

where N is the concentration of the dipoles. Here it has
been assumed that the polarization arises entirely from
molecular orientation so that induced dipole moments
are ignored. On taking into account the initial conditions
for W(¢,t) from Eq. (11), we have the initial conditions
for f,(0), namely,

F(0)=§,[{ cosp cospe)y—( cosg )o( cospg )] . (18)

Thus we have

(0)= , (19)
fP 51 f(z)fregcos¢d¢ (f(Z)ﬂegcos¢d¢)2
[
which, on noting that [13] S,(s)= &k /3 ‘ (26)
) . T8 +k2+§ksk+,(s)/2
e§cos¢»= z Im(g)exmd: , (20)
m==® On taking into account Eq. (25), we obtain
where the I,,(£) are the modified Bessel functions of the
first kind, reduces, by the orthogonality property of the fi(s) _2r & (—1p*1 | L(EM(E)—I,(§),(E)
circular functions, to fi0) €& it p I(E(E)—T(E)
&1 P
(0)=—=—x(ENT, ()1, (E)] =21 (EN (&) S

fp 21(2)(§)§ 0§[p lg p+1§] 1 g p§} Xkl;llsk(S). 27)

e | dr,(§)  L(§L,(§)
HIy8) dg 13(€)

Here we have made use of the recurrence relation [13]

(21)

dl (z)
2—— =1, (2) ],y (2) . (22)
The Laplace transform of Eq. (14) is
s+%2 fp(s)=%[fp_l(ﬂ_fpﬂ(s)]"rfp(m, (23)
where
F&)1= [ "e~f dr . (24)

Equation (23) has the same form as Eq. (22) of [8] which
occurs in the calculation of the beat signal spectrum of
the laser gyroscope and so has a similar solution in terms
of continued fractions, namely,
© _ +1 n
Fo=2 3 7 0) [T 509, 25)
§ p=1 p k=1

where the continued fraction S, (s) is defined as

Having determined the Laplace transform of the decay
function f,(¢), we may calculate the longitudinal com-
plex susceptibility o (w) and the correlation time 7\. We
have, according to linear response theory [12],

(@) ) o [0 _. P
—=1- ———e dt=1—iwC lin), (28)
af,(O) szo fl(O)e ioC liow
where

~ . fl(lw)

Cu(la))=—ffl(—0)— (29)

is the one-sided Fourier transform of the normalized lon-
gitudinal autocorrelation function C(¢) defined as

_ {cos(0) cose(t) )o—{ cos$(0))3

C ()= (30
! { cos?p(0))o—{ cosg(0) )3
and
o BNFO) 2y [T(EI(§)—17(8))
a)(0)= E, =T 2 (31
Thus,
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a"(w) 21arr i (—1pt!
,(0) = p
AL G
I (E)—T3(E)
X 11 Silio) . (32)
k=1

The longitudinal correlation time 7' is the area under the
curve of the normalized longitudinal autocorrelation
function. We have

T,=lim [ “C (e *'dt=1imC\(s)=C,(0),  (33)
s—0v0 s—0

so that
(=1p*1 5,0 2

5,(0) . 34
T,= 2 > f<o>,LIISk‘°’ (34)
Now, from Eq. (26),
- I ()
5,(0)= £/(2K) _ k(& ’ (35)
145, 1,00 /(2k) I _4(§)

because the modified Bessel function of the first kind of
order v, I (z), satisfies [[7], Eq. (9.6.26)]

Iv_l(z)—1v+1(z)=27:-lv(z) , (36)
which is equivalent to
1,(z)

I, (z)

_ z/(2v)
1+ [z, (2)]/[2v] (2)] °

(37

Equation (34), when combined with Eq. (35), now yields
the exact expression for the correlation time in terms of
the modified Bessel functions I (z), viz.,

2§ (et L&)~ (&)L, (£)
oSS P Iy(OI(E—I3(E)
L,(€)
p
) 8
Iy(€) (38)

On applying the effective eigenvalue method [3] to the
problem, we can easily derive an equation for the effective
eigenvalue A; from Eq. (14) for p =1, namely,

F,(0) (0)
off = _f_l___ .i f2 (39)
f1(0) 2 f1(0)
from which the effective relaxation time
Tﬁ‘f=7te_ﬂ~' (40)
is given by
I3(E)+I,(E),(E)—2I%(&)
Tﬁ,f=7_ o(§ olE)M,(§ (& . @1)

I3(E)—I,(E),(E)

In general, as is obvious from the definition, the effective
relaxation time Tﬁﬂ' accurately represents the initial slope
of the polarization decay. However, in the case under
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consideration the effective eigenvalue approach provides

a good approximation at all times, as we shall see below.
In the limit of large £, on utilizing the asymptotic ex-

pansion of the modified Bessel functions [[7], Eq. (9.7.1)]

e’ 41
Liz)= \/_E 1= 8z
2_ 2__ 22
(=14 —3%) . @)
21(8z)?
we have

T, 1
nll
T 2§ * (43)

Equation (43) should be compared with the corre-
sponding equation [Eq. (74)] of [9] which governs relaxa-
tion of a two-dimensional rotator in the bistable potential

U(¢)=—U,cosp . (44)

Equation (43) for the relaxation time, unlike T, for the
potential of Eq. (44) (cf. [9]), contains no exponential fac-
tor showing explicitly that the longitudinal relaxation in
the present problem is not governed by an activation pro-
cess. This is the most pronounced difference between re-
laxation in a twofold and in a single fold cosine potential.

In the limit of small £, on using the Taylor expansion
of the modified Bessel functions [[7], Eq. (9.6.10)]

2 (z/2)%

L@=@/2" 3 JrG kv 43

we have from Eq. (38)
Ty=~r(1— L&+ 35— ---). (46)
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In Table I and in Fig. 1 we show the longitudinal relaxa-
tion time T as a function of §. In order to ensure con-
vergence of the set of equations (14) for values of £ up to
10, a matrix size of 18X 18 was used in the numerical
evaluation of the reciprocal of the lowest eigenvalue A !

1
0.81
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FIG. 1. The longitudinal correlation time T as a function of
£, the bias field parameter for rotation in two dimensions. The
numerical solution (the reciprocal of the lowest eigenvalue A !)
of the set of equations (14) (small-dashed line) compared with
T as calculated from the exact solution (38) (bold line), and Tﬁﬁr
as calculated from Eq. (41) (large-dashed line).
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TABLE I. Numerical values for T /7 for rotation in two di-
mensions.

T“ /T

& Eq. (38) Eq. (14) Eq. (41)
1 0.8386 0.858 0.793 8
2 0.5452 0.607 0.4707
3 0.323 0.417 0.273 8
4 0.1996 0.2999 0.1781
5 0.1379 0.2296 0.1298
6 0.1054 0.1855 0.1022
7 0.08599 0.1559 0.084 49
8 0.07293 0.1345 0.072 11
9 0.063 44 0.1184 0.062 94

10 0.056 19 0.1058 0.055 85

from Eq. (14) and the first 11 terms were taken in the
infinite summation of Eq. (38). Details of the method of
numerical solution of three term recurrence relations are
given elsewhere [9].

III. ROTATION IN TWO DIMENSIONS:
TRANSVERSE RESPONSE

Here we consider the response following the removal of
a weak constant transverse field E, at ¢ =0, so that prior
to the switching off of E, at ¢ <O,

V(¢)=—pE cos¢ —pE,(t)sing , (47)
with uE; <<kT. The quantities corresponding to f,, are

g,(1)={(sinps) . (48)
We easily find from Eq. (4) that the g, () satisfy

g'p(t)+E;—gp(t)=%[gp_,(t)—g,,ﬂ(t)], (49)
with

8-p=78p (50)
and

g,(0)=§ (sing sinp¢ ), . (51)

Equation (49) also has the same mathematical form as
Eq. (14); thus, the solution of Eq. (49) for g,(s) is

© _ +1 P
=23 Y 011 56. (52)
g p=1 p k=1
Now, according to Eq. (51),
(Z)"sinq& sin(p@)eé°¢d

gp(0)=§1 fé"egc"”dqﬁ
_ 6 [, ()L, (O] _ §wpl,(8) (53)
2 I,(&) EI(€)
Thus,
gi(s) 27 = I(&) » _
== 3 (—1pti-t (s) . (54)
g,(0) £ E’l 1,6) JL Skt

J. T. WALDRON, YU. P. KALMYKOV, AND W. T. COFFEY 49

The transverse complex susceptibility a,(w) is given by

a (o) . g liow)
=l—iw
a(0) g,(0)
ior & 1,(8) »
=l—— 3 (—1p*-2 (@), (55
e % 1 LI St
where
2y I,(8)
vy BN 11
aj(0) T —_é‘fo(é')' (56)
The transverse correlation time T, is
(0) ®
B s e (57)

L7 g (0)  EIL(EM,(E)

This differs from T solely by virtue of the initial condi-
tions. Equation (57) may be further simplified by using
the formula

p=1

BR@+2 3 T2)=1 (58)

n=1

given on page 361 of [16], where J,(z) is the Bessel func-
tion of the first kind. Since [7], Eq. (9.6.3),

I(2)=i"J, (iz) , (59)
we have

© I3(z)—1
_—_1\ynt1y2 — 0
> (=17 I (2) 2 ,

n=1

(60)

from which the summation of Eq. (57) disappears and we
obtain an exact equation in closed form for the transverse
relaxation time T';:

T, I3&)—1

—_— = (61)
T EI(E)(8)
In the large £ limit, Eq. (61) predicts that
I,
—~—. 62
- e (62)

In the limit of small £, we have, as before,

TABLE II. Numerical values for T, /7 for rotation in two di-
mensions.

T, /7

13 Eq. (61) Eq. (49) Eq. (65)
1 0.8426 0.858 0.8063
2 0.5787 0.607 0.5358
3 0.3943 0.417 0.3699
4 0.2872 0.2999 0.2753
5 0.2236 0.2296 0.2175
6 0.1826 0.1855 0.1793
7 0.1543 0.1559 0.1524
8 0.1337 0.1345 0.1324
9 0.1179 0.1184 0.117

10 0.1054 0.1058 0.1048
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3

FIG. 2. The transverse correlation time T as a function of £
for rotation in two dimensions. The exact analytic solution (61)
is the bold line and the numerical solution of Eq. (49) is the
small-dashed line. The large-dashed line is 7% [Eq. (65)].

T ~r(1— L8+ Mgt~ o), (63)
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The effective eigenvalue in this instance is from Eq.
(49) for p =1:

£ g,(0)

2 Iy(§)—1,(8)

1 L©+L
T Io(g)_lz(g) ’

so that the effective transverse correlation time 7% =2
is given by

TS Iy(€)—I,(£)
T Io(§)+12(§) ’

where we have made use of Egs. (22) and (36). In Table
IT and in Fig. 2 we show the transverse correlation time
T, /7 as a function of &. In order to ensure convergence
for values of £ up to 10, a matrix size of 18 X 18 was used
in the evaluation of Eq. (49). It is apparent that the nu-
merical solution and effective eigenvalue solution [Eq.
(65)] provide a close approximation to the exact results
for all values of £. We shall now describe how our exact
method may be extended to rotation in three dimensions.

Aeﬂ‘ gl(o) T

1+

=1
;

(64)

(65)

IV. ROTATION IN THREE DIMENSIONS:
LONGITUDINAL RESPONSE

The analysis given in Secs. I-III pertains to rotation in
two dimensions. This constraint restricts the range of ap-
plication of the theory since in reality the molecules ro-
tate in space. The theory is generalized below to rotation
in three dimensions. More specifically, each dipolar
(linear, spherical, or symmetric top) molecule dissolved in
a nonpolar solvent is supposed to be free to rotate in
space, the molecule being subjected to random torque,
having no preferential direction, and to the action of the
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ac and dc fields. Again, it is implicitly assumed that the
inertia of the molecules may be neglected and further
that the electrical dipole-dipole coupling between them
may also be ignored so that on the average each molecule
behaves in the same way.

Let us suppose that both fields E and E,(¢) are along
the z axis. The appropriate Smoluchowski equation for
rotation of a symmetric top molecule in three dimensions
is [14]

saw_a [ 1 ov,  aw
27psind o 39 [smz? XT 39 + Y] }
1 9 1 9V 14
sind 3¢ [kT 3 o ] , (66
where
V(&)= —uE cosd—uE,(t)cos? , (67)

W (3,@,t) is the probability density of orientations of the
dipole u on the unit sphere where the orientation of p is
specified by the polar and azimuthal angles ¢ and ¢, and

£
D= 2kT (68)

is the Debye relaxation time when E=0.
Equation (66) is equivalent to the vector Langevin
equations [4]

'd‘!;u(t)=[m(t)x;z(t)] , (69)

Eo(t)={p() X [E+E,(1)]} +Al1) , (70)

or
%p(t)=({u(t)X[E+E,(t)]] X (1) + A Xp(1)]

(71)

where {@ is the damping torque due to Brownian move-
ment and A(?) is the white noise driving torque with the
following properties:

X(0=0, (72)
A (OX, (1) =2LkT8(1 —1")8,; (73)

where §;; is Kronecker’s 8. For the calculation of the
longitudinal response we can disregard the dependence of
W on the angle ¢ and we may assume that the solution of
Eq. (66) is of the form

WS,0="S a,(HP,(cosd) , (74)
n=0

where P, is the Legendre polynomial of order n [7]. The
equilibrium Boltzmann distribution Wg(t'?) is given by

w3)=

efoosa?
[ rebe%inddd

(75)

The orthogonality properties of the P, and their re-
currence relations, lead to (having switched off the field
E, at time ¢t =0) the set of differential-difference equa-
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tions for
fo®)=(P,(cos?)) — (P, (cos?) ),
_ay(t)—a,(x) 76
 @2n+la, 76)
where
[5e*% )sind d ¢
()= . (77)

o€ §cosdsing d &
The equations are

n(n +1)fn(t)
21p

_ & nn+1)
T 2rp 2n+1

fa(0+

i SO = fa ()] (78)

We are interested in the decay of the polarization

P(t)=,u,NfO1r( cosd —{ cos} ) o)W (9, 1)sind d
=uNf,(1), (79)

so we require an expression for f,;(¢) only. We now, fol-
lowing the method of Sec. II, take the Laplace transform
of Eq. (49) which may be arranged as

,, ZTDS §ﬁn+1(s)
R vy T
fn(0) &
= s 80
) n+1) (80)
where
- n(s)
R, (s)= Suls (81)
fn—l(s

Equation (80) is the three-dimensional analog of Eq. (23).
Its solution has a similar form to Eq. (25). The details of
the solution are given in the Appendix. We have

Fits Z‘Tgﬂé D0 i(?::ll))ns)‘
(82)
where
Sl(s)= §/Qn+1) . (83)

2rps/[n(n + 1]+ 1+ES!, (s)/(2n +1)

which is the exact solution of our problem. The initial
values f,(0) are evaluated as follows. We note that

fn(0)=§1(<P1Pn Yo— (P, )O(Pn Yo)

n+1
2n +

=£, <Pn+1>0 (Pn-l>0

2+1

_<P1>0<Pn )0 (84)

where we have recalled that ([16], p. 218)
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(2n +1) cosdP,( cosd)

=(n+1)P,, (cos?)+nP,_,(cos?). (85)
Now, on using Eq. (10.2.36) of [7],
12
JET . 21 S 2n+11, 4, (2)P,(cosd), (86)
n=0

where the I, ,,(z) are the modified spherical Bessel
functions [7], we have, from Egs. (86) and (77),
I, +1(8)
(P,)o=—""FT—. 87
VO T ) &7
Hence, the f,(0) from Eq. (84) may be expressed in terms
of the spherical Bessel functions as

£.(0)=¢ n+1 Iy+3,(8) n 1-108)
" Mon+1 1,8 2n+1 I, ,(8)
_ 135(8) I 110(8) (88)
11/2(§) Il/2(§)
In particular,
f(O) g 5/2(§ 1 I%/Z(g)
1 : 3 I,,(8) 1%/2(§)
=§, 1+E12——coth2§ (89)

Here we have used the fact that [[7], Eq. (10.2.13)]

I;,(8) 1

————=coth{——=L(§), (90)
I oML

15/2(§)=i _3coth§:1__3_L(§) 1)
I,,(8) ¢g § £ ’

where L(£) is known as the Langevin function. Hence,
Eq. (82) becomes

2 o
Fils)= T’g’g‘ 3

_1)n+1

I, (&)

I1,,(8)

I; (8, 1 5(E)
13 ,(8)

n
X I1 Sk(s) . 92)
k=1

1 Lht3(8) 1
n I,,(8) n+1

2n +1
n(n—+1)

The longitudinal complex susceptibility is given by

/71 o)
fl 0)

oty 2

"(w)
a"(O)
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where
a(0)=—F7—
Il E1
—H_ 2 2
T 1+ 2z coth®€ (94)

According to linear response theory [12], the quantity

The longitudinal correlation time T” is, as before, deter-
mined from the s =0 limit of Eq. (92). We have, from the
definition of S)(s) [Eq. (83)]

£/(2n +1)

Slo)= ~ .
1+£5) ,,(0)/(2n +1)

(96)

Thus, on comparing Eq. (96) with Eq. (36), we obtain

f1li®)/f,(0) appearing in Eq. (93) is the one-sided S’}‘l(o):M ; 97)
Fourier transform of the equilibrium longitudinal dipole Ii_1(8)
autocorrelation function C(#) defined as we also have
f1(®)  {cos30)cosd(t))y—( cos}0))3
R YT TR cos20(0)>0—(() cos3(0))2 : H Sko= "ﬁffg’ o8
(95)  Thus,
|
T,= fowC,,(t)dt=%
27p
T E(1+£ 2—coth?e)
% i ),,+1In+1/2 £) 1 I, 43,(8) 1 I—1(8) _ 2n+1 13,8, 11 2(8) 99)
el Ip8) | n I,(8) n+1 I,,(8) n(n+1) I, (8)

Equation (99) may also be expressed as a series of elementary functions, taking into account that, according to Egs.

(10.2.12) and (10.2.13) of [7],

n (
T 1o (6)g e (Ecothe] (100)
I, ,,(8)
where the functions g, () satisfy the recurrence relation
(2n +1)
R (101)
3
with
8o(E)=1/&, g (&)=—1/E€*. (102)
We can express the correlation time T in terms of the g,(£) and cothé, after some algebra, as follows:
287p -
T, = -t +g_ th
I (1+§"2—coth2§) n§1( )" T (8n(8) T8 —(n+1)()cothf]
&n-118)  &+18)  2n+1 n
X n n+1 nn+1) g_,,(é') g,,(é’) gg_(,,+1)(§) COthé—
—8—(n+1)(€)coth?g } , (103)

which, with the aid of Egs. (101) and (102), yields T, in terms of elementary functions. The leading terms of Eq. (103)

are given by

3t
n=|

11,5 23
coth§ §]+3§1 £

cothf— é‘ H

[1 +2/§2—coth§( 1/6+cothd)] |

! (104)
1+ £~ 2—coth?¢ ]
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TABLE III. Numerical values for T;/7p for rotation in

three dimensions.

T“ /TD

I3 Eq. (99) Eq. (78) Eq. (105)
1 0.899 0.9092 0.8815
2 0.6842 0.7155 0.6476
3 0.4844 0.5297 0.4518
4 0.3457 0.3907 0.3259
5 0.2593 0.2946 0.2488
6 0.2053 0.2291 0.1998
7 0.1697 0.1841 0.1666
8 0.1447 0.1528 0.1429
9 0.1262 0.1305 0.125

10 0.1119 0.1142 0.1111

The effective eigenvalue method when applied to this
problem yields [4]

T £10) _[ELp8) €18

Tp £1(0) I ,(8)  I,,(8)
_ & |25 00_p2 |
L&) 1 §L(§) L&) . (105)

On using Eq. (42), it becomes apparent that in the limit
of large £, Eq. (99) has the following asymptotic behavior:

L1 (106)
) §

In the opposite limit of small £, we have, as before,
Ty=7p(1—1E2+LE4— ). (107)

In Table III and in Fig. 3 we show the longitudinal relax-
ation time T vs §. In order to ensure convergence for
values of § up to 10, a matrix size of 18 X 18 was used in
the evaluation of Eq. (78) and the first 11 terms were tak-
en in the infinite summation of Eq. (99).

1
I
p \
\‘\\
0.6 PN
. \\\
N
0.4 N
. N \‘~~
- e T s
|
2 : 6 8 )

FIG. 3. The longitudinal correlation time 7', as a function of
& for rotation in three dimensions. The numerical solution of
the set of equations (78) (small-dashed line) compared with T),
as calculated from exact equation (99) (bold line) and T from
Eq. (105) (large-dashed line). The asymptotic equation (106) is
the dotted line.

V. ROTATION IN THREE DIMENSIONS:
THE TRANSVERSE RESPONSE

Here the probe field E (¢) is assumed to be along the x
axis. The Smoluchowski equation for the probability den-
sity W(d,¢,t) is Eq. (66), where

V(3,¢)=—uE cosd—pE (t)sind cose . (108)

For the transverse response we should now take into ac-
count the dependence of W on the azimuthal angle ¢.
Thus we seek a solution of Eq. (66) in the form

WSet)=3 3 a,.P"(cosdle™,  (109)
n=0 m=—n
where
Prx)=(—1y"(1—x"29"p (x) (110)
dx™

are the associated Legendre functions [7]. On assuming
that the field E, is switched off at t =0 and using the
orthogonality properties of the P,” and their recurrence
relations, we obtain the set of differential-difference equa-
tions for

g,,,,,,(t)=(P,',’”’( cost}) cosm@)
1 (n+|m|) @Gnm()ta, ()

= 111
2n+1 (n —|m|) 2a,, (11D
These equations are [4]
d nin+1)
dtg,,,m(t)+——2TD 8nm(t)
-5
ZTD(2n+1){(n +1)(n +m)g, _; ,(2)
—n(n +1—m)g,,+1,m(t)] . (112)

The polarization decay P(t) is given by
2T o m
P(1)= i ,@,t)sindddd
(1) /,LNfO fo cosg sind W (3, @, t)sin @

(113)

Thus we require the terms with m =1 only in Eq. (112).
On taking the Laplace transform of Eq. (112), we obtain,
as before,

=uNg, (1) .

R s L | SU SN
S
n1(s) nin+1) (n+1)2n+1) "tHl
_ 27p 81,1(0) + En+1) , (114)
n(n+1)gn_1’1(s) n(2n +1)
where
_ g, (s)
R, (s)=—Sn20 (115)
' 8n—1,.1(5)

Equation (114) can also be solved by the above method.
Details are given in the Appendix. The result is

2TD - n+1 (2n +1)
&

g = (—1 21(0)
g1.1(s) = ) nin -H)zg'1

n

Si(s), (116)

1

::

X
k

I

where



49 ROTATIONAL BROWNIAN MOTION AND DIELECTRIC. .. 3985
Si(s)= fln +1)/[fl(2n +1)] . (117)
27ps/[n(n +1)]+1+€nS; 4 (s)/[(n +1)2n +1)]
f
initi . a7 I () 2
The: initial values g, ,(0) are evaluated as follows: On ,(0)= wN I3(§ _uN L&) . (125)
noting that EKT I,,(E) kTE

8n,1(0)=E,{P{( cos?)P,( cos?) cos’p),

=%(P}( cos?)P)( cosd) ), (118)

and on using the recurrence relation ([16], p. 239)
(2v+1)sindP 7 ( cosd?)
=(v—m +2)(v—m +1)P™ 7 (cos?)

—(v+m)v+m —1)P7 7 (cosd) , (119)

with m =1, we obtain

n(n+1)

8ni(0)=613 22n +1)

[(Pn—l)o"<Pn+1>o]

—¢ nin+1) In—1,8)—1, +3,(8)
'2(2n +1) I, (&)
nin+1) Inv1(8)

= . (120)
S TR AT

Here we have also used Eq. (36). Now,

1 13(8)
0)=————
81 § I,,(8)°

(121)

thus,
gials) _ 1p
) (_1 n+2
610 &L ,(0) >

n=1

X f[ Si(s) .
k=1

(2n + 1)1, 4 /5(8)
n(n+1)

(122)

Hence, the transverse complex susceptibility a,(w) and
the correlation time T, are given by

. &lio)
—ilo————

al(a)) _
@ 81, 1(0)

al(o)

la)D

0] 3 (-

n=1

x [T §tio)
k=1

(2n+ 1)1, 4, (8)

n+1
D n(n+1)

(123)

and

gll(O) T
T =
LT 201(0) (6 3 (-

n=1

(2n + 1), 11 H(E)

n+1
D n(n+1)

x TI Sk0), (124)
k=1

where

By definition, g, ;(iw)/g,,;(0) is the one-sided Fourier
transform of the transverse dipole autocorrelation func-
tion C,(¢) defined as

_ gl,l(t)
Cl(t)_ gl’l(o)

__ {sin¥(0) cos@(0)sind(#) cosg(?) ) 126

(sin?3(0) cos?p(0) ),
The corresponding effective relaxation time T is given
by [4,5]
of _ 81,1(0)
)
1,,,(8)
=2rp L&) _—3,, (6 .27
5 L&) &1, ,5(8)—13,,(8)

On using the asymptotic expansion (42), we may also
deduce that in the limit of large & the relaxation time T,
from Eq. (124) has the following asymptotic behavior:

T,

L2 (128)
™ §

while in the limit of small &, we have as before
T ~71p(1— LE+ AL E4— - (129)

In Table IV and in Fig. 4 we show the transverse relaxa-
tion time T, vs §& In order to ensure convergence for
values of £ up to 10, a matrix size of 18X 18 was used in
the evaluation of Eq. (112) and the first eight terms were

FIG. 4. The transverse correlation time T, as a function of §
for rotation in three dimensions. The numerical solution of the
set of equations (112) (small-dashed line) compared with T, as
calculated from exact equation (124) (bold line), and T from
Eq. (127) (large-dashed line). The asymptotic equation (128) is
the dotted line.
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TABLE IV. Numerical values for T, /7, for rotation in
three dimensions.

T,/7p

£ Eq. (124) Eq. (112) Eq. (127)
1 0.9239 0.9308 09114
2 0.7589 0.7751 0.7347
3 0.5982 0.6154 0.5769
4 0.4764 0.489 0.462
5 0.39 0.3978 0.381
6 0.3283 0.3329 0.3226
7 0.2828 0.2856 0.2791
8 0.2482 0.25 0.2456
9 0.221 0.2222 0.2192

10 0.1991 0.2 0.1978

taken in the infinite summation of Eq. (124). In order to
ensure convergence of the S;(0), it was sufficient to as-
sume that this quantity was zero for k > 16.

VI. RESULTS, COMPARISON
WITH EXPERIMENTAL DATA, AND DISCUSSION

We have shown how exact analytic expressions may be
obtained for the relaxation behavior of an assembly of
noninteracting dipoles subject to a strong dc field super-
imposed on which is an ac field which is so weak as to
cause only linear behavior in the response to the field.
This allows us to treat in a simple manner the relaxation
effects caused by the coupling between the strong dc field
and the weak field. The method has the advantage over
all previous treatments that exact analytic expressions,
valid for all values of &, the bias field parameter, are now
available for the longitudinal and transverse susceptibili-
ties and correlation times.

Moreover, the comparison of the exact results with the
effective eigenvalue solutions [4,5] and numerical calcula-
tions of the reciprocal of the lowest eigenvalue (Figs. 1-4
and Tables I-1V) allows us to estimate the accuracy of
these approximate approaches. For rotation in three di-
mensions the differences between the exact, effective, and
lowest eigenvalue calculations are of the order of 20% for
all values of & (see Figs. 3 and 4). This is another pro-
nounced difference (see Sec. II) between the relaxation
behavior in a single fold and in a twofold cosine potential.
It is well known [9,15] that for the twofold potential, Eq.
(44), the effective eigenvalue approach is applicable only
for low potential barriers (U, S kT) and that there is ex-
ponentially large divergence from the exact solution in
the limit of high barriers. It appears that the effective ei-
genvalue technique [3—5] provides a close approximation
to the exact solution for any £ in the case under con-
sideration. Thus, for qualitative evaluation of the corre-
lation times, one can safely use the effective eigenvalue
equations (105) and (127) instead of the exact equations
(99) or (103) and (124).

The rotational diffusion theory of Debye has been gen-
eralized in the paper in order to account for the effect of
a constant electric field on the dielectric properties of po-
lar media. The area of applicability of these results is re-
stricted to the low frequency range, as defined by the in-
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equality T, S1 [T, (y=||,1) is the relaxation time], be-
cause the Debye theory does not include the effects of
molecular inertia [12]. A consistent treatment of inertial
effects must be carried out using the kinetic equation for
the probability density function in configuration-angular
velocity space [12], or using an equivalent approach, e.g.,
the Mori-Zwanzig memory function formalism [12]. The
Fokker-Planck and extended rotational diffusion kinetic
equations for the probability density function in
configuration-angular velocity space were used in [17-20]
for the evaluation of the complex dielectric susceptibility
tensor of a polar fluid under the influence of a constant
external field. These models allow one to estimate dielec-
tric parameters in the whole frequency range of orienta-
tional polarization in fluids (up to ~5 THz). However,
the approaches based on them have the disadvantage that
the solutions hitherto obtained for the dielectric spectra
require complicated numerical evaluations [18-20] and
only approximate analytic equations for the relaxation
times, based on the effective eigenvalue technique, have
been deduced [19-20].

In Figs. 5 and 6 we plot the real and imaginary parts of
the longitudinal and transverse components of the nor-
malized complex susceptibility

X (0)=x,(0)=ix,(w)

defined as
)(,,(a))=)(;(w)—iXi,'(m):ay(a))/G (y=1,1), (130)
where
2
_ KN
G T (131)
The Debye spectra
a,(0)/G
Dw)=—L (y=|,1), (132)

X T YT,

where the relaxation times T and T, are given by exact
equations (99) and (124), respectively, are shown in both
figures for comparison. Equation (132) is obtained from

poe-e--a. o
'\
N N
I 0.8 \
\; A}
\
\
0.6 \
A
R 4 07\
0.4 2 ',' “‘ .
-Gt -e--e-gee g N “
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0.2 ' 5 \’\\ "
3 peed - ‘"“‘:: <
- a0 o _o-F == s,
-1 0 1 2
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FIG. 5. The real x| and imaginary Y| parts of the normalized
longitudinal complex susceptibility as a function of logo(w7p).
The circles are the exact solution (93) and the dashed lines are
the single relaxation time approximation (132). Curves 1, 2, and
3 are x| for £=0, 3, and 6, respectively. Curves 4, 5, and 6 are
x| for £=0, 3, and 6, respectively.
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FIG. 6. The real x| and imaginary Y/ parts of the normalized
transverse complex susceptibility as a function of log|(w7p).
The circles are the exact solution (123) and the dashed lines are
the single relaxation time approximation (132). Curves 1, 2, and
3 are x| for £=0, 3, and 6, respectively. Curves 4, 5, and 6 are
xj for £=0, 3, and 6 respectively.

Eq. (28) by assuming that the decay of f,(t) is a single ex-
ponential, namely,

f1(0)=f1(0)exp(—t/T)) .

One can see that there is no practical difference between
the exact equations (93) and (123) for x,(w) and the De-
bye equation (132) for )(f(a)). This means that both lon-
gitudinal and transverse dielectric relaxation can be
effectively described as a single exponential for all values
of £.

The results of calculations of the complex susceptibili-
ties x|’ (@) and x{(w) for rotation in space are in qualita-
tive agreement with those for rotation in two dimensions.
However, there is an essential quantitative difference (or-
der of factor 2) between the susceptibilities calculated for
the two- and three-dimensional models. This difference is
of importance for comparison with experimental data.

Our results for the longitudinal susceptibility (Fig. 5)
and relaxation time [Egs. (93) and (99)] are in qualitative
agreement with available experimental data [10,11].
(These data were obtained for the longitudinal com-
ponent of the susceptibility with the strong dc field ap-
plied parallel to the weak ac probe field.) As observed by
Block and Hayes [10] and Fannin, Scaife, and Charles
[11], with increasing &, both loss [( < (w)] and relaxa-
tion time T decrease compared with those in the isotro-
pic case. Figure 5 shows clearly that these observations
are in qualitative agreement with our results.

In Figure 7 we compare the theoretical and experimen-
tal critical relaxation frequency f, defined as

(133)

f.=QaT)™", (134)
where T is given by Eq. (99), for dilute solutions of polar
macromolecules of poly-y-benzyl-L-glutamate (PBLG) in
a nonpolar solvent at 298 K [10]. The system was very
suitable since dipole moments of the PBLG molecules are
large. Thus values of the energy of a dipole in a dc field
which are comparable with thermal energy (§~ 1) can be
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FIG. 7. Comparison of the theoretical bias field dependence
(dashed lines) of the critical relaxation frequency f, with experi-
mental data (circles) of Block and Hayes [10] for dilute solutions
of polar macromolecules PBLG with molecular weights (1)
4.6X10% (2) 2.6X10% and (3) 1.1X 10°.

obtained. Comparison with the experimental data of
Block and Hayes [10] allowed us to evaluate the average
dipole moments p of the molecules. They are
23.3X107%, 14.7X107%, and 4.8X107% Cm for the
PBLG molecules with molecular weights 4.6X10°,
2.6X10° and 1.1X10% respectively. The data were
fitted using a standard least-squares method. The values
of u so obtained are greater than the originally reported
data but are in agreement with results of Ullman [21]
who suggested that this difference results from a poor es-
timate of the internal field in the context of a simple mod-
el for the evaluation of dipole moments from static dielec-
tric measurements used in [10]. Also, our exact calcula-
tion for PBLG with molecular weight 4.6 X 10’ is in ac-
cordance with results of Ullman [21] based on the numer-
ical solution of Eq. (78).

It should be noted that experiments on the polarization
induced by a weak ac field superimposed on a strong dc
field will be much easier to carry out on a ferrofluid rath-
er than on a polar fluid as a large value of £ can be
achieved with a moderate constant magnetic field due to
the large value of the magnetic dipole moment m
(10*-10° Bohr magnetons) of fine (< 100 A) ferromag-
netic particles. In Fig. 8 we compare the theoretical and
experimental longitudinal relaxation time T, for a
ferrofluid (a colloidal suspension of cobalt ferrite in hexa-
decene). On using Eq. (134), the experimental values of
T, were obtained from the experimental data of Fannin,
Scaife, and Charles [11] for the spectra of the imaginary
part Y| (@) of the magnetic susceptibility. The value of
the average magnetic dipole moment m of particles is
found from the least-squares fit to be 4.29X 10° Bohr
magnetons.
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FIG. 8. Comparison of the theoretical (dashed line) and ex-
perimental (circles) normalized longitudinal relaxation time
T\ /7p against the bias magnetic field H for a ferrofluid. The
experimental data are from Fannin, Scaife, and Charles [11].

In conclusion, is should be noted that we have treated
the relaxation behavior by solving the infinite hierarchies
of the difference-differential equations derived from the
diffusion (Smoluchowski) equations. However, as we
have already shown in [4], the same results (namely,
hierarchies of the difference-differential equations) can be
obtained by direct averaging of the underlying Langevin

equations without recourse to the Smoluchowski equa-
tions.
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APPENDIX

First we present the method of solution of Eq. (80)
which governs the longitudinal relaxation. We seek a
complete solution of the inhomogeneous equation (80) in
the form

Rl(s)=8ls)+Ql(s) . (A1)
We can regard Eq. (A1) as having a particular solution
S!(s) and a complementary solution Q/!(s). The particu-
lar solution satisfies Eq. (80) with f,(0)=0:

_ 21ps §S +1(s) £
I _=b =
SeS) T+ antD | antn A2
Equation (80) then becomes
gy | =725 £ 5 I
ols) n(n +1) +2 1 [S!,,(s)@)(s)
+S51(s)Q) 41 (s)
+0) 4 1(5)Q)(s)]
27pf,(0)
i (A3)

Cnn+DF, (s
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Let us write

gl =f,_1(s)QNs) (A4)
Then, on using
Fa— 1SS} + QN ]=F (), (AS)
we obtain
2TDS -
Iy —= _§_. [l
qn n(n+l)+1 +2n+1[‘1 +1 1478, +1(5)]
_ 21pf,(0)
Tantn o A9
Solving Eq. (A6) for g/, we have
27p(2n +1)f,(0)
|| = n — L
n gn(n+1) qn+l S (s) . (A7)
Thus, according to Egs. (A1) and (A3) and Eq. (A4),
e 27,(2n +1)£,(0) <l
fn(s)— fn*‘l(s)+ é.n(n+1 9n +1 Sn(s)'
(A8)

Since f;,(s)=0, we can write down Eq. (A8) for n =1 as
follows:

3TDf1(O)
e

Now we can obtain an expression for ¢} from Eq. (A7)

for n =2 and so on. Thus we derive from Egs. (A7) and
(A9),

fils)= Sls) . (A9)

Fils) =?" {3£1(0)8 ()= $£,(0)5} ()84 (s)

+1£5(0)8 ()84 (s)8(s)— - - - }
2n +1)

Il

N
U

i 1)n+1f"(0) I_I

(A10)

which is Eq. (82).
The same method applied to Eq. (114) leads to the fol-
lowing recurrence relation for the transverse relaxation:

27p(2n +1)
B9 |10+ 2 2O
n L -
Tt |Ses) (A11)
where
2TD(2n +1) 2 _
" et O e[S
(A12)

Thus, on using Eqgs. (All) and (A12) and noting that
80,1 =0, we derive
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Tp
(s)=—
gl,l g
27p 2 (2n +1)
= —1 n+1
§ n§1( ) nz(n+1)
which is Eq. (116).

>8,1(0) TT Si(s) ,
k=1

3g,1(0)81(s)— %8,1(0)S1(5)83(s)+ Lg;5 ,(0)S1(s)S3(s)85(s)— - - - ]

(A13)
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