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Abstract

Mobile genetic elements are widespread in bacteria, where they cause several kinds of mutations. Although their effects are
on the whole negative, rare beneficial mutations caused by insertion sequence elements are frequently selected in some
experimental evolution systems. For example, in earlier work, we found that strains of Escherichia coli that lack the sigma
factor RpoS adapt to a high-osmolarity environment by the insertion of element IS70 into the promoter of the otsBA
operon, rewiring expression from RpoS dependent to RpoS independent. We wished to determine how the presence of
IS10 in the genome of this strain shaped the evolutionary outcome. IST0 could influence the outcome by causing
mutations that confer adaptive phenotypes that cannot be achieved by strains without the element. Alternatively, IS0
could influence evolution by increasing the rate of appearance of certain classes of beneficial mutations even if they are no
better than those that could be achieved by a strain without the element. We found that populations evolved from an
IS10-free strain did not upregulate otsBA. An otsBA-lacZY fusion facilitated the recovery of a number of mutations that
upregulate otsB without involving 1S10 and found that two caused greater fitness increases than IS0 insertion, implying
that evolution could have upregulated otsBA in the I1S10-free strain. Finally, we demonstrate that there is epistasis between
the IS70 insertion into the otsBA promoter and the other adaptive mutations, implying that introduction of IS70 into the
otsBA promoter may alter the trajectory of adaptive evolution. We conclude that IS70 exerts its effect not by creating
adaptive phenotypes that could not otherwise occur but by increasing the rate of appearance of certain adaptive
mutations.
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operon codes for the enzymes required for the synthesis of
trehalose, a carbohydrate that allows E. coli to maintain os-
motic balance. These lines carried a deletion of the sigma fac-
tor RpoS, which is required for transcription of the wild-type
(wt) otsBA promoter. The insertion of 1S70 allows transcrip-
tion in the absence of RpoS because this mobile element
brings an RpoS-independent promoter with it.

Our finding that IS10 caused an important adaptive mu-
tation suggests that strains that contain a mobile element
like 1IST0 might, at least in some environments, evolve in
different ways than strains without the same element. Dif-
ferences in adaptation between strains with and without an
IS insertion sequence () element has the potential to be
important in evolution in nature, as mobile elements are
not distributed equally among strains. In a comprehensive
survey of six IS elements in naturally occurring strains of E.
coli, Sawyer et al. (1987) found that strains vary dramati-

Introduction

Mobile genetic elements are usually considered to be
genomic parasites that inflict a burden on their host.
The detrimental effects of mobile elements have been in-
ferred from population genetic and phylogenetic data
(Charlesworth and Langley 1989; Touchon and Rocha
2007; Wagner 2009) and directly measured in laboratory
experiments (Wilke and Adams 1992; Elena et al. 1998).
Despite the potential cost of possessing these elements,
mutations generated by mobile elements are sometimes
beneficial (Chao et al. 1983; Wilke and Adams 1992). This
has clearly been demonstrated by experimental evolution,
where mobile elements can create adaptive deletions and
duplications of regions of the genome (Schneider et al.
2000; Cooper et al. 2001; Zhong et al. 2004). Mobile
elements have also been found to cause beneficial muta-
tions that change patterns of gene expression (Treves

et al. 1998; Chou et al. 2009; Stoebel et al. 2009).

In a previous experiment (Stoebel et al. 2009), the mobile
element 1S70 was involved in the evolution of stress responses
in Escherichia coli. We experimentally evolved populations to
a high-osmolarity environment and found that ten of ten
lines adapted via the same mutation: I1S70 transposition into
the promoter of the otsBA operon, denoted P,;z4. The otsBA

cally in the presence and copy number of IS elements, with
even closely related strains of E. coli differing in their IS con-
tent. Their survey did not include IS0, but this element was
surveyed by Matsutani (1991), who found that IS70 copy
number varied from zero to nine copies in a set of E. coli
and Shigella strains. This diversity of element carriage
comes about because mobile elements do not persist in
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bacterial lineages for long: they are either purged from the
genome or drive the lineage extinct (Wagner 2006, 2009).

How does the carriage of an IS element alter the poten-
tial for adaptive evolution? At a trivial level, strains that
differ in the carriage of an element must differ in their evo-
lutionary potential because strains without the element
cannot have IS-mediated mutations. The resulting differen-
ces in mutational spectrum might be evolutionarily impor-
tant, for example, if they alter the rate at which adaptive
mutations occur at some loci or if they change the identity
of loci underlying adaptive evolution. To test the hypothesis
that IS elements change the course of adaptive evolution, we
experimentally evolved a strain that lacked IS70 but was oth-
erwise isogenic to the strain used in our earlier experiments.
We observed that the availability of 1S10-mediated muta-
tions does not alter the average increase in fitness of an
evolving population, but it does change the locus of evolu-
tion: none of the strains free of 1ST0 evolved increased
expression of otsBA, whereas all strains with 1S70 evolved in-
creased expression of this locus. Subsequent experiments
demonstrated that mutations increasing expression of otsBA
can occur in a strain free of 1S70, but these mutations occur
at a much lower rate than in a strain possessing 1S70.

Materials and Methods

Strains, Plasmids, and Growth Media

Allstrains used are listed in supplementary table S1, Supple-
mentary Material online. Long-term evolution and
competition experiments were conducted in 3-(N-
morpholino)propanesulphonic acid (MOPS) minimal me-
dium (Neidhardt et al. 1974) with 0.2% glucose (hereafter
MOPS MM) as a carbon source. In some treatments, an ad-
ditional 0.3 M NaCl was added for osmotic stress. L medium
was 0.5% yeast extract, 1% tryptone, and 0.5% NaCl. Anti-
biotics were used at 15 mg/l tetracycline, 50 mg/l kanamycin,
100 mg/l carbenicllin, and 20 mg/l chloramphenicol.

Strain Construction

Strain DMS2156 was the parental strain for all experiments
with 1S70-free strains. Construction of DMS2156 began with
wt strain CF1684, an isolate of MG1655, from which
DMS1688 is also derived. ApyrE:kan was transduced from
JW3617-1 into CF1684 using phage P1 (Thomason et al
2007). This strain was then transduced to pyrE" rph™ by
transduction  from strain  CF7968, creating strain
DMS2144. laclZY was replaced with the kan cassette from
plasmid pKD4 in strain CF1684 using the method of
Datsenko and Wanner (2000). AlaclZY:kan was transduced
into DMS2144, and the kan cassette was removed by the
plasmid pCP20, creating strain DMS2148. Finally, ArpoS:kan
was introduced into DMS2148 by transduction from
ZK1000, creating strain DMS2156. DNA sequencing con-
firmed that DMS2156 was rph ™. In addition, we sequenced
the spoT gene, as it is known to vary between different E. coli
K-12 isolates (Spira et al. 2008). Both DMS2156 and
DMS1688 contain the H255Y spoT mutation found in strain
MC4100 (Spira et al. 2008) but neither contains the insertion
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of Glutamine Aspartic acid (QD) between amino acids 82
and 83 of the SpoT protein.

To select mutants upregulating P4 in a ArpoS back-
ground, otsB:lacZYcat was transduced from DMS2098
(Stoebel et al. 2009) into DMS2156. To examine epistasis
between P,.34:1S70 and other adaptive mutations, the pro-
moter insertion was cotransduced with araH:tetRA from
DMS1945 (Stoebel et al. 2009).

To recombine mutations upregulating otsB:lacZY, we
amplified the promoter along with the araH::tetRA element
immediately upstream using primers araH verify3+ and
araH verify3— (supplementary table S2, Supplementary
Material online) and recombined the polymerase chain re-
action (PCR) product into strain CF1684. DNA sequencing
was used to confirm that the promoter mutations were
recombined along with araH:tetRA, and the construct
was transduced into DMS1688.

Long-term Experimental Evolution

Strain DMS2156 (the ancestral strain) was streaked onto
L+kan plates, and ten colonies were inoculated into sep-
arate 2 ml MOPS MM cultures. These strains were grown
overnight. The next day, 250 pl of culture was added to 25
ml of MOPS MM and grown for 2 h at 37 °C, shaken at 200
rpm. NaCl was then added to a final concentration of 0.3 M,
and cultures were grown for another 22 h. The next day,
these cultures were used to found the ten experimental
evolution lines by inoculating 25 pl into 25 ml fresh me-
dium. Strains were grown in 25 ml of MOPS MM + 0.3
M NaCl in 250-ml flasks, shaken at 200 rpm at 37 °C.
Twenty-five microliters of culture was transferred to 25
ml of fresh media every 24 h. This 1:1,000 dilution results
in log,(1,000) = 9.96 doublings per day. The long-term ex-
periment was conducted for 25 days or approximately 250
generations. Cultures were frozen at —80 °C by the addi-
tion of glycerol to 20%.

Competition Experiments

Competition experiments were performed as described by
Stoebel et al. (2009). Briefly, a pair of strains to be competed
were each grown separately in MOPS MM + 0.3 NaCl for
24 h. The pair were then mixed and diluted 1:1,000 into
fresh media, where they were grown together for 24 h.
The density of the two strains was measured at the start
and end of the experiment, and fitness was calculated as
the ratio of the growth rates of the two strains.

Real-Time Quantitative Polymerase Chain Reaction

For all RNA work, strains were inoculated directly from
—80 °C frozen culture into 2 ml of MOPS MM in a culture
tube and grown overnight at 37 °C, shaken at 200 rpm. The
next day, the culture was diluted 1:100 into MOPS MM and
grown for 2 h at 37 °C, shaken at 200 rpm. NaCl was added
to a final concentration of 0.3 M, and cultures were grown
for another 22 h. The next day, the culture was diluted
1:100 into 25 ml of MOPS MM + 0.3 M NaCl and grown
until the cells reached an Optical density at a light wave-
length of 600 nanometers between 0.25 and 0.3. Growth
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was stopped by the addition of 5 ml ice-cold phenol:etha-
nol (5:95 by volume), and the cells were left on ice for 30—
60 min. Cells were pelleted by centrifugation, the superna-
tant removed, and frozen at —80 °C for up to 1 week. RNA
was extracted using a Promega SV Total RNA Purification
kit. Residual DNA contamination was removed by treat-
ment with DNase | (Ambion DNA-free Kit). RNA was
run on an agarose gel to confirm that it was not degraded.

Primer pair otsB QPCR+ and otsB QPCR— (supplemen-
tary table S2, Supplementary Material online) were used to
amplify the otsB gene, and primer rho QPCR+ and rho
QPCR— were used to amplify the control gene rho.
One-step QPCR was performed with a QuantiTect SYBR
Green Kit (Qiagen) on a RotorGene RG-3000 (Corbett Re-
search). Three independent RNA samples were run for each
strain and measured for both otsB and rho. In addition, a re-
action without reverse transcriptase was run for each sam-
ple to ensure that there was no DNA contamination. The
method of Pfaffl (2001) was used to quantify the level of
otsB message. Statistical analysis was performed on log-
transformed data.

Green Fluorescent Protein Reporter Fusions
Expression of wt P,.z4 Was measured with a gfp fusion on
plasmid pDMS123 (Stoebel et al. 2009). To measure expres-
sion, strains were cultured overnight in MOPS MM and
then diluted 1:100 into 2 ml fresh MOPS MM and grown
for 2 h. After 2 h, NaCl was added to a final concentration of
0.3 M. Cells were sampled by dilution into 4% formalde-
hyde in phosphate buffered saline and stored at 4 °C over-
night. Fluorescence of 10,000 cells from each sample was
measured by flow cytometery.

Selection of Mutants Upregulating otsB:lacZY
Mutants upregulating otsB:lacZY in DMS2191 were se-
lected as described by Stoebel et al. (2009). Briefly, individ-
ual colonies of DMS2191 were grown to stationary phase in
MOPS MM + 0.3 M NaCl and then plated on MOPS MM +
0.3 M NaCl, with lactose instead of glucose as the carbon
source. A single colony was randomly selected off each
plate and purified on the same media.

Measurement of Mutation Rate

Strains DMS2098 and DMS2191 were inoculated from fro-
zen cultures onto L plates and grown overnight. One colony
of each strain was inoculated into 2 ml MOPS MM and
grown overnight. The next day, each strain was subcultured
1:100 into MOPS MM, NaCl was added to 0.3 M after 2 h
of growth, and the strains were grown for a further 22 h.
Each strain was then diluted 1:10,000 into twenty-four 2-
ml cultures of MOPS MM + 0.3 M NaCl. Cultures were
grown for 48 h, and then, the entire volume was plated
on MOPS MM, with 0.5% lactose instead of glucose, 0.3
M NaCl, kanamycin, and 40 pg/ml X-gal. Plates were incu-
bated at 37 °C for 3 days, after which colonies were counted.
In addition, colony counts were determined at the start and

end of the experiment by plating appropriate dilutions on L
plates. Mutation rate was estimated using the Ma-Sandri-
Sarkar Maximum Likelihood Estimator method imple-
mented in the program FALCOR (Hall et al. 2009).

p-Galactosidase Activity

Mutations in P,z were transduced into a fresh ArpoS
background (DMS1688) to ensure that strains did not have
secondary mutations. For measurement of 3-galactosidase
activity, strains were inoculated from frozen cultures directly
into 2 ml MOPS MM and grown overnight at 37 °C. The
next day, strains were diluted 1:100 into 2 ml MOPS MM
and grown for 2 h. NaCl was added to a final concentration
of 0.3 M and grown for 2 h. Growth was stopped by placing
cells on ice, and the activity of B-galactosidase was measured
as described by Miller (1992).

Results

When IS10 was present in the genome of a ArpoS strain, we
found (Stoebel et al. 2009) that ten of ten populations
growing in high-osmolarity media evolved by insertion
of 1S70 into P,.ga. How would evolution have proceeded
if this particular mutation could not have occurred? The
evolved strains might be different in terms of the level
of fitness increase, the locus of evolution, or the phenotypic
effect of the adaptive mutation. To explore this question,
we performed long-term experimental evolution with
a strain that lacked 1S70 (DMS2156) but was otherwise iso-
genic to the ArpoS strain (DMS1688) used in previous long-
term evolution experiments. Competition experiments
confirmed that these two strains have equal fitness in
the environment used for experimental evolution (t-test,
P > 0.1).

We evolved ten lines of DMS2156 for 250 generations
and selected one isolate from each line. These evolved iso-
lates were competed against their ancestor, revealing that
all lines increased fitness. Significant analysis of variance on
fitness (P = 0.002) suggests that there is heterogeneity in
the increase in fitness. A strain with IS70 in P,z4 had an
intermediate level of fitness that was not significantly dif-
ferent from any of the evolved strains (Tukey’s Honestly
Significant Difference [HSD] test, P >>0.1), indicating that
strains that possess I1S10 do not evolve with mutations of
unusually large benefit.

Was the locus of evolution affected by the lack of IST0 in
the genome? We sequenced P,z in each of the ten lines
and found that none of the strains had a mutation in the
promoter, meaning that the presence of 1S10 affects the
locus of evolution. This might not have resulted in a differ-
ence in phenotypic evolution, however, if a mutation in
trans upregulated otsBA, just as IST0 had by inserting into
Poespa. To test for this, we used QPCR to measure the level
of otsB messenger RNA (mRNA) in each of the ten evolved
strains that lacked 1S70, as well as their nonexpressing an-
cestor and two positive control strains (fig. 1). We found no
evidence that any of the evolved strains without 1S70 in-
creased the level of otsB mRNA relative to their ancestor
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Fic. 1. Transcription of otsB from evolved lines that lacked IS70 as
measured by QPCR. otsB levels are not significantly higher in any of
the evolved lines than in their ancestor (P > 0.2, Tukey’s HSD on
log-transformed data). As a control, note that otsB message levels
are much higher in both the wt (rpoS™) and PopazIS70 lines (P <
0.001, Tukey’s HSD). otsB mRNA levels are normalized to rho mRNA
and expressed as a fold difference relative to the ArpoS ancestor.
MRNA levels were measured on three biological replicates.

(Tukey’s HSD test, P > 0.2). To confirm that there was no
mutation in trans, we introduced into each evolved line
a plasmid (pDMS123) in which wt Pz, drove the tran-
scription of gfp, the gene for the green fluorescent protein.
We detected no transcription in any of the ten lines (sup-
plementary fig. S1, Supplementary Material online). Pheno-
typic evolution differed between strains with and without
IS70: evolution did not involve upregulation of otsBA in
strains lacking IS70.

One possible reason that no lines evolved expression of
otsBA is that other mutations that upregulate otsBA are not
as benefical as the IS70 insertion in Pg,, if such mutations
exist at all. Testing this hypothesis required examining evo-
lutionary events that did not occur: mutations that upre-
gulate P4 independently of IS70. To isolate a set of such
mutants, we used a strain with a lacZY fusion to otsB. This
strain can only grow with lactose as a sole carbon source
when P54 promotes transcription. Use of this otsB-lacZY
transcriptional fusion strain allowed us to isolate a number
of mutations in the otsBA promoter (fig. 2). These muta-
tions include a point mutation, deletion, duplications, and
insertion of mobile element IS5 into the promoter. In ad-
dition, DNA sequencing revealed no mutations in P,.ga Of
one isolate, suggesting that mutations in trans are also able
to activate the promoter. Insertion of 1S70 is not the only
way to upregulate P,z in the absence of RpoS.

To determine how effective these mutations were at up-
regulating expression of otsBA, we measured expression of
each of the mutant promoters using a B-galactosidase as-
say. These experiments revealed that the level of transcrip-
tion from the mutant promoters varied widely, with some
mutations promoting more transcription than an IS70 in-
sertion (fig. 3). Although 1S70 insertion is not the mutation
leading to the highest levels of expression, it could be the
most fit if an intermediate level of expression was optimal.
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FiG. 2. Mutations recovered by selection with an otsBA:lacZY fusion.
Mutants above the sequence were isolated in strain DMS2098,
a background that contains 1S70, and were previously reported
(Stoebel et al. 2009). Mutants below the sequence were isolated in
DMS2191, a background that does not contain IS70. All mutants
were recovered once, except for the C to T transition at +11
relative to the transcriptional start site, isolated five times, and the
IS10 insertion between bases +12 and +13, which was isolated 19
times. The IS70 insertion between +11 and +12 is the insertion
found in the experimentally evolved lines. The start of translation is
at +56. The transcriptional start site is from Becker and Hengge-
Aronis (2001), and the —10 and —35 sites are inferred from the data
in Shultzaberger et al. (2007).

IS10

To test this, we recombined the mutant promoters in front
of the wt otsBA operon and measured the fitness of each of
these up-mutants. We found that just as the IS10 insertion
is in the middle of the spectrum of mutations with respect
to expression, it is also in the middle of the spectrum of
fitness effects. Of the promoter mutations studied, two
were more fit than 1S70 insertion, and three were less so
(fig. 4A). The relationship between otsBA expression and
fitness (fig. 4B) resembles that seen for other metabolic
systems (Dykhuizen et al. 1987) where fitness approaches
an asymptote as activity increases. We can conclude that
P,:ssa contains the potential for mutations upregulating
otsBA that are more adaptive than an IS70 insertion.
The data presented so far demonstrate that strains lack-
ing IS10 possess the potential to evolve high levels of otsBA
expression, and correspondingly increase their fitness, but
none of our experimentally evolved lines realized this out-
come. This may have occurred because mutations upregu-
lating P,z are much more common in strains that possess
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Fic. 3. Activity of the isolated promoter mutations as assayed by
B-galactosidase activity. Strains are labeled as seen in figure 2. Wt
refers to an rpoS™ line (DMS2096) and 1S70 to a strain with 1510
inserted at the same location as recovered in our experimental
evolution. Data are from four independent replicates. Error bars
represent the standard error of the mean.
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FiG. 4. (A) Fitness effects of mutations in P,.gs. Promoter mutations
isolated from the otsB:lacZY fusion were recombined into the wild-
type chromosome and competed against a ArpoS strain with wild-
type P,za. TWo mutations (the —35 deletion and duplication Il)
have higher fitness than an IS10 insertion. (B) Relationship between
transcription of otsBA and fitness increase. For small increases in
transcription, the relationship between otsBA transcription and
fitness increase is approximately linear. A very large increase in
transcription (the —35 deletion) does not increase fitness much
beyond that achievable with less transcription (by duplication II).

IS70. For example, selecting mutants upregulating P,z in
a background containing 1S70 resulted in 20 of 21 mutants
possessing IS10 insertions (Stoebel et al. 2009). To test di-
rectly if strains that contain IST0 have a higher rate of mu-
tations upregulating otsBA, we employed a fluctuation test
(Pope et al. 2008). We found that a strain with I1S70 has a 12-
fold higher rate (1.8 x 10 vs. 1.5 x 10~ '° mutations per
generation) of mutations that increase P4 transcription
than a strain that does not contain 1S70. Furthermore, only
one of eight of the mutations in the 1S10-free background
conferred a fitness increase greater than or equal to 1S70
insertion. When we consider only mutations conferring
a fitness increase of this size, the strain with 1S70 has
a 96-fold higher rate of mutations than the strain without
the element. This suggests that IS70 influences evolution by
increasing the probability of mutations upregulating of
otsBA rather than by creating phenotypes that could
not otherwise occur.

When a strain is free of 1570, the first step of adaptation
does not involve upregulation of otsBA. When IS10 is in the
genome, otsBA becomes the locus of evolution. Is this

1.4+

-
w
i

Fitness on 1IS10 background
2 Y
if_

11 12 13 14
Fitness on ancestral background

FiG. 5. Epistasis between P,4:1S70 and other unknown adaptive
mutations. Fitness of the ten evolved lines that lack 1S10 was
measured relative to their ancestor. In addition, P,.g:IST0 was
added to each of these lines, and they were competed against
a strain with only P,.ps=1S70. The unknown adaptive mutations
were more beneficial on the ancestral background than on the
background P,4:1S10, significantly so in nine of ten cases (P <
0.05, t-test with P values modified by the sequential adjustment
method of Holm, 1979). The diagonal line shows equal fitness on
the two backgrounds.

a temporary detour on the path of adaptation or does
it influence subsequent adaptive mutations? The insertion
of IS10 into P4 might alter subsequent evolution if there
is epistasis between the 1S70 insertion and adaptive muta-
tions that fixed in strains that did not contain IS70. If the
fitness effect of these other (unknown) mutations differs
on a P,;gazIS10 genetic background, then evolution may
take a different trajectory than it would have if IS10 was pre-
sent in the genome. To test this, we combined the
PotseaIST0 mutation with the adaptive mutation(s) of
the I1S710-free lines. We found that the adaptive mutation(s)
of the 1S10-free strains had a lower fitness benefit on
a P,:seazIS10 genetic background than on the wt back-
ground (fig. 5). There was no evidence for sign epistasis
(Weinreich et al. 2005) as the unknown adaptive muta-
tions were beneficial on both backgrounds. Nevertheless,
the lowering of the benefit of these adaptive mutations
on a P,pa:IS10 background indicates the potential for
an IS70 insertion to alter evolutionary trajectories.

Discussion

We have found that the presence of I1S70 in the genome of
a strain of E. coli alters the process of adaptation. As this
strain, which lacks the global regulator RpoS, adapts to
a high-osmolarity environment, the target of evolution de-
pends on the presence of the element 1S70. When strains
possessed I1S10, adaptation always involved insertion of the
element into P,.ga, resulting in upregulation of otsBA. In
contrast, strains free of the element adapt via mutations at
other loci that do not effect otsBA expression. This differ-
ence cannot be due to an inability of IST0-free strains to
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acquire mutations upregulating otsBA because we have
shown that such mutations do exist. We propose that these
other otsBA upregulating mutations did not appear in our
evolution experiment because they occur at a nearly 100-
fold lower rate than IS10 insertions into P,.zs. We con-
clude that in this system, IST0 in the genome changes
the path of adaptive evolution because it increases the rate
of mutations at certain loci and with certain phenotypic
effects not because it creates adaptive mutations with
unique phenotypes.

How general is our conclusion that when IS-mediated
mutations fix in populations, it is because of the increased
rate of mutation at certain loci or to certain phenotypes
rather than because the IS-mediated mutations have
unique phenotypic effects? To our knowledge, we are
the first to have directly tested these alternatives. How-
ever, known IS-mediated adaptive mutations appear to
have phenotypes that are achievable without mobile el-
ements. For example, many of the previously character-
ized IS-mediated adaptive mutations involve deletions
or duplications (Cooper et al. 2001; Zhong et al. 2004),
which can also occur via non-I1S-mediated mechanisms.
IS elements are frequently involved in evolution by knock-
ing out genes (Moran and Plague 2004; Zhong et al. 2004),
a process that can obviously occur independently of
mobile elements.

What of IS elements in promoter evolution? IS elements
can bring about dramatic changes in patterns of transcrip-
tion, by bringing entire new promoters (such as elements
IS3 and 1S70), by introducing a new —35 site to create
a novel hybrid promoter (such as elements IS7 and 1S2)
or changing the conformation of a promoter (such as
IS5 at the bgl promoter) (Galas and Chandler 1989). How-
ever, IS elements are clearly not the only way to affect reg-
ulatory evolution. Patterns of transcription can also be
altered by changing interactions between a regulatory pro-
tein and its target DNA sequence, either by mutations in
the promoter or mutations in the protein. This phenom-
enon has been seen both in comparisons of different strains
or species (Osborne et al. 2009; Perez and Groisman 2009)
and in experimental evolution systems (Miller et al. 1988;
Treves et al. 1998).

Compensating for the loss of a sigma factor, the partic-
ular case under investigation here, is likely to have fewer
kinds of mutational alternatives than other kinds of regu-
latory evolution. In bacteria, transcription absolutely re-
quires a sigma factor to position RNA polymerase
properly at a promoter. To rewire a promoter from RpoS
dependent to RpoS independent requires changes in the
promoter that allow one of the six other sigma factors
to recognize it or changes in the sigma factors themselves.
Contrast this with the act of repressing or activating tran-
scription: Proteins that do these functions are diverse and
more abundant than sigma factors. The loss of a repressor
could potentially be compensated for by any other repres-
sor, making for a much larger suite of mutations than those
that recruit a new sigma factor. Despite this functional con-
straint, it is apparent in our data that there are a number of
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mutations in P,ga that can recruit a new sigma factor.
Switching sigma factors at P4 need not involve an IS
element.

Although we have argued that IS0 is not required for
the evolution of otsBA transcription without RpoS, this
does not mean that IS70 insertion is entirely equivalent
to other promoter mutations. For example, the exact level
of transcription differed among the mutants that we exam-
ined. The size of the IS70 insertion might alter local patterns
of chromatin structure or DNA supercoiling, with potential
pleiotropic effects on gene expression that we did not at-
tempt to measure. Finally, we caution against generalizing
from the fitness of different promoter mutations under our
experimental conditions to the advantage of such a muta-
tion across multiple environments. We know nothing
about how the mutations we studied behave in other en-
vironments, and it is entirely possible that I1S10 insertion
brings with it unique patterns of gene expression in some
other environment. It is possible that across other environ-
ments, the relative fitnesses of each mutation would be dif-
ferent, including a possibly detrimental effect of 1S70
insertion.

There are at least two reasons to think that ability of
a mobile element like 1S70 to create adaptive phenotypes
is likely to be idiosyncratic. First, I1S10, like many mobile el-
ements, has preferences for the DNA site into which it in-
serts. Although P,.zx does not contain a sequence that is
optimal for insertion, the site where IS70 inserts during
adaptive evolution differs at only one of the strongly im-
portant bases (Stoebel et al. 2009). The presence or absence
of a good insertion site in a promoter will affect insertion
frequency. Other potential targets of adaptive evolution
might not contain insertion hot spots, greatly reducing
the probability of an IS-mediated beneficial mutation oc-
curring at those loci.

The second reason that IS-mediated evolution may be
idiosyncratic is environmental. If transposition frequency
is upregulated in a particular environmental conditions,
then adaptation to this environment is more likely to in-
volve mobile elements. (This is not to say that this type of
regulation is necessarily beneficial for the element or its
host.) High osmolarity is known to regulate both levels
of transcription and DNA recombination by its effects
on the level of DNA supercoiling (Dorman and Corcoran
2009). In the specific case of 1S10, the regulatory proteins H-
NS and IHF are known to play a fundamental role in trans-
position (Haniford 2006), as is the level of supercoiling
(Chalmers et al. 1998). Integration host factor, histone-like
nucleoid structuring, and supercoiling levels all respond to
environmental changes, providing a possible mechanistic
link between environmental changes and transposition
(Haniford 2006; Dorman 2009). It is possible that adapting
to high-osmolarity conditions is particularly likely to in-
volve 1S70 because the rate of 1S70 transposition is higher
than in other conditions.

If an IS-mediated adaptive mutation fixes first, how will
subsequent evolution be affected? First, adaptation at the
target of evolution may change. We observed that 1S70
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insertion into P,.3s Was not the best mutation in the pro-
moter. Fixation of the IS70 insertion may prevent the evo-
lution of a better pattern of otsBA expression. Evolution at
other loci may also be affected. We found epistasis between
IS70 insertion into P,.,gs and adaptive mutations at other
loci. Because fixation probability depends on the magni-
tude of benefit of an adaptive mutation in this system (Ger-
rish and Lenski 1998), the insertion of IST0 into P,.pa
decreases the fixation probability for mutations that would
have otherwise occurred. The insertion of 1IST0 may change
the trajectory by which evolution proceeds.

In conclusion, we have found that strains that possess
IS10 evolve via mutations in different loci and with different
phenotypic effects, than strains that do not. This is because
IST0 increases the frequency of appearance of mutations
that upregulate otsBA transcription rather than because
possessing 1S70 allows strains to evolve in beneficial ways
that they otherwise could not. Finally, epistasis between
IS10 insertion into P,.s and mutations that otherwise
might have fixed first suggests that once IS0 inserts into
P,:ssar the trajectory of further adaptation may be altered.

Supplementary Material

Supplementary figure S1 and tables S1 and S2 are available
at Molecular Biology and Evolution online (http://www
.mbe.oxfordjournals.org/).
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