
LEABHARLANN CHOLAISTE NA TRIONOIDE, BAILE ATHA CLIATH TRINITY COLLEGE LIBRARY DUBLIN
OUscoil Atha Cliath The University of Dublin

Terms and Conditions of Use of Digitised Theses from Trinity College Library Dublin

Copyright statement

All material supplied by Trinity College Library is protected by copyright (under the Copyright and
Related Rights Act, 2000 as amended) and other relevant Intellectual Property Rights. By accessing
and using a Digitised Thesis from Trinity College Library you acknowledge that all Intellectual Property
Rights in any Works supplied are the sole and exclusive property of the copyright and/or other I PR
holder. Specific copyright holders may not be explicitly identified. Use of materials from other sources
within a thesis should not be construed as a claim over them.

A non-exclusive, non-transferable licence is hereby granted to those using or reproducing, in whole or in
part, the material for valid purposes, providing the copyright owners are acknowledged using the normal
conventions. Where specific permission to use material is required, this is identified and such
permission must be sought from the copyright holder or agency cited.

Liability statement

By using a Digitised Thesis, I accept that Trinity College Dublin bears no legal responsibility for the
accuracy, legality or comprehensiveness of materials contained within the thesis, and that Trinity
College Dublin accepts no liability for indirect, consequential, or incidental, damages or losses arising
from use of the thesis for whatever reason. Information located in a thesis may be subject to specific
use constraints, details of which may not be explicitly described. It is the responsibility of potential and
actual users to be aware of such constraints and to abide by them. By making use of material from a
digitised thesis, you accept these copyright and disclaimer provisions. Where it is brought to the
attention of Trinity College Library that there may be a breach of copyright or other restraint, it is the
policy to withdraw or take down access to a thesis while the issue is being resolved.

Access Agreement

By using a Digitised Thesis from Trinity College Library you are bound by the following Terms &
Conditions. Please read them carefully.

I have read and I understand the following statement: All material supplied via a Digitised Thesis from
Trinity College Library is protected by copyright and other intellectual property rights, and duplication or
sale of all or part of any of a thesis is not permitted, except that material may be duplicated by you for
your research use or for educational purposes in electronic or print form providing the copyright owners
are acknowledged using the normal conventions. You must obtain permission for any other use.
Electronic or print copies may not be offered, whether for sale or otherwise to anyone. This copy has
been supplied on the understanding that it is copyright material and that no quotation from the thesis
may be published without proper acknowledgement.

NEURAL NETWORK ENSEMBLES FOR FINANCIAL

TIME-SERIES PREDICTION AND RISK MANAGEMENT

A THESIS SUBMITTED FOR THE DEGREE OF

D o c t o r o f P h i l o s o p h y i n C o m p u t e r S c i e n c e

U n i v e r s i t y o f D u b l i n , T r i n i t y C o l l e g e

D e p a r t m e n t o f C o m p u t e r S c i e n c e

John G. Carney

May 2000

10 JUL 2000

L lB B A sy O U « .IN

"7 £ r ^ ̂S
5 7 ^ /

Permission to lend and/or copy

I agree that the Hbrary in Trinity College Dublin may lend or copy the thesis “Neural

Network Ensembles for Time-Series Prediction and Risk M anagement” .

Signature

J)L C
John G. Carney

June 2000

Declaration

I declare th a t the work in this thesis has not been subm itted for a degree a t any other

university, and th a t the work is entirely my own.

Signature

John G. Carney

L i i

J)U ^

May 2000.

ii

Acknowledgements

This thesis is dedicated to those who supported and encouraged me over the last

3 years. Dr. Padraig Cunningham, my supervisor, deserves special thanks - his

knowledge and vision guided the thesis and made it a success. Most im portantly,

when things were not going well he stood by and believed in me and the work -

thanks Padraig, I’ll always appreciate that.

My dearest Alyson also deserves special thanks - sometimes I believe she should

get a Ph.D. for her patience and support over the last 3 years. Thanks for putting

up with so many endless days of work and stress - I would not have made it but for

you.

I would also like to thank my wonderful parents who have always believed in the

value of knowledge and education. I do recognise the sacrifices you have made to put

me through so many years of education. Your love and support is forever appreciated.

Abstract

Neural Network Ensembles for Financial Time-Series Prediction and Risk Manage­

ment

John G. Carney

Supervisor: Dr. Padraig Cunningham

Recently, neural networks have become popular tools for modelling financial m ar­

kets. Much of this popularity can be attributed to the fact th a t neural networks are

universal approximators i.e. they can (in theory at least) approximate any complex

non-linear function to arbitrary accuracy. Given the complexity of modern financial

markets, and the non-linearity tha t is widely accepted as driving the relationships

between related financial variables, neural networks are potentially very powerful.

This was recognised by financial market practitioners and researchers very early on.

However, when systems were developed and tested, performance was typically poor.

This is because non-parametric universal approximators such as neural networks can

have serious limitations, especially when applied to model noisy, real-world systems

such as financial markets.

One of the most serious is high-variance or instability i.e. small changes in tra in ­

ing set and /o r param eter selection can cause significant changes in generalisation

(prediction) performance. Another problem (closely related to instability) is the ten­

dency of neural networks to over-fit, essentially “memorize” their training sets, which

also causes poor generalisation performance. The final, but probably most serious

lim itation of neural networks in the context of financial modelling, is the absence of

IV

model transparency - neural networks are “black-box” estimators. Given the regula­

tory pressures today on financial institutions and traders to manage and lim it their

exposure to risk, such black-box models are just not good enough - the trader cannot

determine what factors drive the model or more im portantly how much confidence he

can have in specific predictions.

In this thesis we attem pt to (at least partly) solve these problems. To address

the stability and over-fitting issues we focus on ensemble techniques and argue th a t

bagging, an established statistical ensemble technique based on bootstrapping is par­

ticularly suitable for neural networks applied to financial time-series prediction. An

im portant feature of our work on bagging is th a t we recognise the im portance of

diversity amongst individual members in a bagged ensemble. This m otivates the de­

velopment of a new early-stopping technique (the NeuralBAG algorithm) th a t tunes

diversity by varying the fit of the individual networks in an ensemble. Significant

advantages of NeuralBAG over other ensemble techniques (in the context of financial

time-series prediction) include its robustness to noise and the availability of model

variance (confidence) estimates from the bootstrapping process.

To address the issues relating to the absence of transparency in neural network

models, we propose a new technique for generating prediction intervals i.e. esti­

mates of bounds on the possible error of our prediction of the targets. A unique

feature of this technique is the way in which it incorporates uncertainty caused by

model variance (estimated using bootstrapping as outlined above) and noise variance

(estimated using an established econometric technique). These prediction intervals

essentially allow a trader to anticipate the quality of an ensemble prediction before

the prediction horizon expires. This enables him to manage risk more effectively and

essentially circumvents the problems relating to the absence of transparency - the

trader is provided with a quantitative measure of how much faith he can put in a

prediction.

A ssociated publications

J.G. Carney and P. Cunningham. The NeuralBAG algorithm: Optimising generali­

sation performance in bagged neural networks. In M. Verleysen, editor, Proceedings

of the 7th European Symposium on Artificial Neural Networks, pages 35-40, Bruges,

Belgium, 1999.

J.G. Carney, P. Cunningham and U. Bhagwan. Confidence and prediction intervals

for neural network ensembles. In Proceedings of the International Joint Conference

on Neural Networks 1999, paper 2090, Washington D.C., 1999.

J.G. Carney and P. Cunningham. Tuning diversity in bagged ensembles. Techni­

cal report TCD-CS-1999-44, Department of Computer Science, University of Dublin,

Trinity College, 1999. To appear in International Journal of Neural Systems.

P. Cunningham, J.G. Carney and S. Jacob. Stability problems with neural net­

works and the ensemble solution. Technical report TCD-CS-1999-52, D epartm ent of

Computer Science, University of Dublin, Trinity College, 1999. To appear in Journal

of Artificial Intelligence in Medicine.

S. Jacob, P. Cunningham, J.G. Carney and R.F. Harrison. Prediction of assisted

reproduction outcome using artificial neural networks. Submitted.

P. Cunningham and J.G. Carney. Diversity versus quality in ensembles for fea­

ture selection. Technical report TCD-CS-2000-02, Departm ent of Com puter Science,

VI

U niversity of Dublin, Trinity College, 2000. To appear in Proceedings of the 11th

European Conference on Machine Learning.

vii

Contents

D eclaration ii

Acknowledgem ents iii

A bstract iv

A ssociated publications vi

1 Introduction 1
1.1 In tro d u c tio n .. 1

1.2 Predictability in financial m a rk e ts ... 3

1.3 Financial market prediction te c h n iq u e s ... 5

1.3.1 Fundamental an aly sis ... 5

1.3.2 C h a r tin g .. 7

1.3.3 E c o n o m e tric s .. 7

1.3.4 “Exotic” techniques... 8

1.4 Neural networks for financial time-series prediction 10

1.5 Neural network ensemble le a rn in g ... 12

1.6 Finding p red ictab ility ... 14

1.7 The d a t a .. 16

1.7.1 S to c k s .. 16

1.7.2 Stock-market in d ic e s ... 17

1.7.3 Foreign e x c h a n g e .. 18

1.8 Thesis contributions .. 18

vni

1.9 Summary ... 19

2 Bagging and bootstrapping 21

2.1 In tro d u c tio n ... 21

2.2 B o o ts trap p in g .. 21

2.3 B a g g in g .. 25

2.4 Diversity and ensemble generalization performance 29

2.5 Summary ... 30

3 O ptim izing generalisation performance 31
3.1 In tro d u c tio n ... 31

3.2 Optimising generalisation performance using early -stopping 32

3.3 Applying early-stopping to bagged ensem bles... 35

3.4 The NeuralBAG a lg o rith m .. 36

3.5 E v a lu a tio n .. 39

3.5.1 Experiment 1: Are NeuralBAG estimates of generalisation error

better than local e s t im a te s ? ... 39

3.5.2 Experiment 2: Does NeuralBAG over-fit or u n d e r-f i t? 41

3.5.3 Experiment 3: How does ambiguity and generalisation error

evolve during tra in in g ? ... 41

3.5.4 Experiment 4: How many networks should the ensembles have? 42

3.5.5 D iscussion .. 43

3.6 Relation to other w o r k ... 46

3.7 Summary ... 50

4 Predicting uncertainty 51
4.1 In tro d u c tio n ... 51

4.2 Uncertainty in reg ression .. 52

4.3 Confidence in tervals.. 53

4.3.1 T h e o ry ... 53

4.3.2 Illustration .. 56

4.4 Prediction in te rv a ls .. 57

ix

4.4.1 Volatility ... 58

4.4.2 Estim ating the decay f a c t o r .. 60

4.4.3 Combining volatility with model v a rian ce .. 61

4.5 Summary .. 62

5 Evaluation 63
5.1 In tro d u c tio n .. 63

5.2 Evaluation m e t r i c s ... 64

5.2.1 Root mean squared e r r o r ... 64

5.2.2 Correlation coefficient .. 65

5.2.3 Information c o e ffic ien t.. 65

5.2.4 Directional change ... 66

5.2.5 Interval non-coverage.. 66

5.3 Experimental set-up .. 66

5.3.1 S to c k s .. 68

5.3.2 Stock-market in d ic e s .. 70

5.3.3 Foreign e x c h a n g e ... 71

5.4 Analysis of re su lts .. 72

5.4.1 S to c k s ... 73

5.4.2 Foreign exchange and stock-market in d ic e s 79

5.4.3 Prediction interval p e rfo rm an c e .. 80

5.5 Summary .. 85

6 Conclusion 87
6.1 In tro d u c tio n ... 87

6.2 Thesis contributions .. 87

6.2.1 Machine le a r n in g ... 87

6.2.2 Time-series prediction .. 88

6.2.3 E c o n o m e tric s ... 89

6.2.4 F in a n c e ... 89

6.3 Future w o r k .. 89

6.3.1 Feature s e le c t io n ... 90

X

6.3.2 E n sem b les .. 90

6.3.3 Prediction in te rv a ls ... 90

6.4 Summary .. 91

A NeuralBA G C-M PI code 92

Bibliography 134

XI

List o f Tables

3.1 Experiment 1 results. Generalisation (test set) mean-squared error per­

formance of ensembles trained using NeuralBAG (NBAG) compared to

the benchmark technique adapted from (Breinian, 1996b) th a t uses lo­

cal estimates of generalisation error (B-LOCAL) and the simple tech­

nique described in section 3.3 tha t also uses local estimates of gen­

eralisation error (S-LOCAL). Note th a t the USD/CHF, S&P500 and

NYSE results have been adjusted for clarity and ease of comparison.

For example, all of the S&P500 results have been multiplied by 10“ .̂

3.2 Experiment 2 results. Average optimal number of epochs estim ated

for each ensemble and data-set in experiment 1...

4.1 Illustration of confidence interval performance expressed in terms of

interval non-coverage i.e. number of times the actual target value was

not covered by the interval (see section 5.2.5 for an exact description of

this metric). Given tha t we used 1000 test points for each experiment

we would expect non-coverage of 200 for an 80% interval for example.

4.2 Estim ates for the decay factor A for each data-set used in this thesis.

We use 11 years of observations for the stock-market experiments {H =

2780) and 5 years of observations for the foreign exchange experiments

{H = 1238). We tested for 18 values of A (0.1, 0.15,..., 0.9,0.95) for

each volatility horizon..

5.1 Coca-Cola 1-day, 5-days, 10-days and 20-days ahead prediction results.

5.2 General Electric Corporation 1-day, 5-days, 10-days and 20-days ahead

prediction results... 76

5.3 International Business Machines 1-day, 5-days, 10-days and 20-days

ahead prediction results... 77

5.4 Microsoft Corporation 1-day, 5-days, 10-days and 20-days ahead pre­

diction results... 78

5.5 C H F /JP Y 1-day, 5-days, 10-days and 20-days ahead prediction results. 81

5.6 U SD /JPY 1-day, 5-days, 10-days and 20-days ahead prediction results. 82

5.7 S&P500 1-day, 5-days, 10-days and 20-days ahead prediction results. 83

5.8 NYSE 1-day, 5-days, 10-days and 20-days ahead prediction results. . 84

5.9 Average interval non-coverage across all of the SIMLIVE experiments

for the 80%, 90%, 95% and 99% prediction intervals................................. 85

xiii

List o f Figures

2.1 50 rolls of a die. The possible roll outcomes 1, 2, 3, 4, 5, 6 occurred 7,

8, 8, 10, 9, 8 times respectively. Therefore the empirical distribution

is (7/50, 8/50, 8/50, 10/50, 9/50, 9 /50)..

2.2 A comparison of the real and bootstrap versions of a param eter estim a­

tion problem. In the real version of the problem we are given a finite

set of n observations from some unknown probability distribution P.

We use these observations to generate a single param eter estim ate 9.

We also use these observations to generate an empirical distribution

P. Note th a t in the diagram both the original observations and the

empirical distribution are enclosed in the large arrow. This is to de­

note th a t observations from the empirical distribution are generated

by just sampling at random with replacement from the original set of

observations. Using this any number of bootstrap samples from the

empirical distribution can be generated and therefore also any number

of bootstrap param eter estimates 9*..

2.3 A bagged neural network ensemble. Training sets are generated by

sampling from the bootstrap empirical distribution P. These training

sets are used to train an ensemble of neural networks. The outputs

of the networks in the ensemble are averaged to produce the bagged

ensemble prediction...

3.1 Experiment 3 results, C H F/JP Y data. Here we compare the ensemble

generalisation performance to the ensemble ambiguity and the average

individual network generalisation performance as training evolves for

a single training and test set pair of the C H F /JP Y d a ta 43

3.2 Experiment 3 results, S&P500 data. As above for figure 3.1 but with

the S&P500 d a ta .. 44

3.3 Experiment 4 results, C H F /JP Y data, part 1. Here we plot the aver­

age generalisation error across 10 experiments on the C H F /JP Y data

as a function of the number of networks in ensembles trained with

NeuralBAG.. 45

3.4 Experiment 4 results, S&P500 data, part 1. As above for figure 3.3

but with the S&P500 d a ta .. 46

3.5 Experiment 4 results, C H F /JP Y data, part 2. Here we plot the aver­

age estim ated optimal number of epochs across 10 experiments on the

CHE/ JPY data as a function of the number of networks in ensembles

trained with NeuralBAG... 47

3.6 Experiment 4 results, S&P500 data, part 2. As above for figure 3.5

but with the S&P500 d a ta .. 48

4.1 Synthetic test data generated using W ahba’s function.............................. 56

5.1 Training and test set organisation for the the BACKTEST and SIM-

LIVE experiments (1-day ahead). Each data-set used has identical

training and test set organisations. However the dates will obviously

difi'er amongst the different prediction horizons.. 67

5.2 20 days of GEC SIMLIVE 20-day ahead predictions with 90% predic­

tion intervals... 79

XV

Chapter 1

Introduction

“I can calculate the m ovem ents o f heavenly bodies, but not the m adness o f people”

Sir Issac Newton, after losing £20,000 on the London stock-market.

1.1 Introduction

Possibly the most central (and difficult) problem in finance is predicting future market

behaviour. Every time a trader places a trade, it is motivated by some prediction

of future market prices. Traditionally, traders have relied on their own internal or

instinctive models of market dynamics, developed over years of m arket participation

to do this. However, over the last few decades more scientific methods have evolved

th a t have recently begun to show significant promise. Neural networks have emerged

as one of the most popular scientific prediction methodologies. However, despite

their powerful universal approximation properties, neural networks have some serious

lim itations, especially when applied to difficult noisy problems such as financial time-

series prediction. In this thesis we recognise these lim itations and a ttem pt to minimise

the adverse effect they can have on the quality and usefulness of predictions.

We begin the thesis in this chapter by providing some background to financial pre­

diction and describing in general terms the variety of modern statistical and econo­

metric techniques th a t could be applied to solve the problems we aim to address.

1

C H A P T E R 1. INTRODUCTION 2

We focus on ensemble techniques and argue th a t bagging (an abreviation for “boot­

strap aggregation”) (Breiman, 1996a) is particularly suitable for stabilising neural

networks trained for financial time-series prediction. In this chapter we also describe

the financial data-sets th a t we use, we describe the training vector set-up used for

the experiments performed in later chapters, and outline the main contributions of

the thesis.

In chapter 2 we begin to focus on the problems of instability and over-fitting in

neural networks in more detail. In particular, we focus on the importance of diversity

amongst neural networks in bagged ensembles and suggest a new approach th a t tunes

this diversity by varying the fit of the individual networks in an ensemble. We continue

this theme in chapter 3 by proposing a new early-stopping technique (the NeuralBAG

algorithm) th a t optimises ensemble generalisation performance by tuning diversity in

this way. Im portant features of NeuralBAG (in the context of financial time-series

prediction) are its robustness to noise and the availability of model variance estimates

from the bootstrapping process, which forms a core part of bagging.

In chapter 4 we attem pt to address the issues relating to the absence of trans­

parency in neural network models. We propose a new technique th a t provides esti­

m ates of model variance for bagged ensembles th a t can be used to generate confidence

intervals with very good coverage (confidence intervals provide estimates of confidence

in our prediction of the underlying true regression of the data). We then extend this

work to develop a new technique tha t provides estimates of noise variance for ensem­

ble predictions th a t can be combined with the estimates of model variance to generate

prediction intervals with very good coverage (prediction intervals provide estim ates

of confidence in our prediction of the targets themselves). These prediction intervals

essentially allow a trader to anticipate the quality of an ensemble prediction before

the prediction horizon expires. This enables him to manage risk more effectively.

In chapter 5, using 8 financial time-series data-sets, we evaluate the performance

of all techniques proposed in this thesis by measuring the predictive accuracy of the

ensembles compared to econometric benchmarks. In this chapter we also identify

recurring features in the results such as the sensitivity of the ensemble predictions to

m arket volatility and prediction horizon. Finally in chapter 6 we conclude the thesis

C H A P T E R 1. IN TRO D U C TIO N 3

by summarising its main contributions and identifying what further work should to

be done to improve the techniques proposed in the thesis.

1.2 Predictability in financial markets

One of the most fundamental questions in finance is whether or not financial markets

are predictable. This topic has been a focus of considerable attention amongst both

researchers and practitioners in the financial world ever since financial markets have

existed. In this section we briefly review this area of research. We focus on the pop­

ular Efficient Markets Hypothesis and discuss its relevance in the context of modern

financial markets and practice.

Possibly the earliest published work on this subject is the doctoral thesis of the

French m athem atician Louis Bachelier (1900). He developed the foundations of a

theory which, in essence, proposes th a t all stock market prices follow a random walk.

His work was initially ignored by the financial world, but quickly gained recognition

in other fields such as physics and is rumored by many (e.g. Granger and Morgenstern

(1970)) to have inspired Einstein’s seminal work on Brownian motion (Einstein, 1905).

O ther im portant early work on this subject includes the empirical study of Cowles

(1933) who attem pted to evaluate how accurately stock market analysts could predict

prices. He found th a t they rarely out-performed a random walk and suggested tha t

those who did were just very lucky. Similar theoretical and empirical contributions

followed for several decades th a t supported the work of Bachelier and Cowles. Some of

the most significant include (Kendall, 1953), (Mandelbrot, 1963), (Samuelson, 1965)

and (Malkiel, 1992). Over the decades, this random walk theory of financial markets

was refined and extended. Today, it is known as the Efficient Markets Hypothesis.

The Efficient Markets Hypothesis essentially consists of several random walk the­

ories of financial markets. These theories differ primarily in how strict their definition

of randomness is. A comprehensive review can be found in (Campbell et a l, 1997

(chapter 2)). The simplest and possibly most recognised of these is the martingale

model. There are a number of ways in which this model can be expressed. However,

C H A P T E R 1. IN TRO DU CTIO N 4

possibly the most natural is as

Pt = Pt-i + (1-1)

where pt denotes the price at time t (of a stock for example) and et denotes the residual

(error) at time t. The residual is assumed to have zero mean and to be uncorrelated

with all previous residuals. If this model holds true, then essentially it implies tha t

the best predictor of tomorrow’s price is today’s price. It can also be applied to other

prediction horizons e.g. the best predictor of next week’s price is today’s price.

Despite the simplicity of this model, it has been consistently m isinterpreted by

many in the financial world. The most common m isinterpretation is tha t it implies

all financial markets are unpredictable. However, a closer look at the model reveals

th a t it is in fact much more specific than this. The exact, correct interpretation

is th a t price changes are unpredictable if only linear combinations of previous price

changes from the same market are used to generate the predictions - see (Granger

and Morgenstern, 1970) for details. So, if one builds a model to predict prices tha t

uses non-iznear combinations of previous price changes, the martingale does not claim

th a t it would be unsucessful. Likewise, if one builds a m ultivariate model th a t uses

exogenous financial predictor variables, the martingale model does not claim this

would be unsuccessful either.

Although more sophisticated random walk models have been developed th a t also

include, for example, the restriction tha t price changes are unpredictable even if non­

linear combinations of previous price changes are used (see (Campbell et a i, 1997

(chapter 2))), they still over-simplify the dynamics of financial markets and under­

estim ate the models th a t can be built to predict their movements. It is generally

accepted today th a t the Efficient Markets Hypothesis has been over-emphasised in

the econometrics literature. Many leading practitioners and academics e.g. Campbell

et al. (1997), Farmer (1998) and Soros (1987) believe th a t all random walk theories

of financial markets over-simplify the dynamics of a system th a t is ultim ately driven

by complex human behaviour. Models such as Farm er’s theory of financial ecology

(Farmer, 1998) are more sensible and, significantly, concur with the concensus view

C H A P T E R 1. IN TRO DU CTIO N 5

today amongst practitioners th a t at least some predictability in financial markets ex­

ists. For example, changing business conditions and cycles, non-linear behaviour and

relationships amongst financial instruments and markets and friction in the markets

all naturally contribute towards a certain degree of predictability.

It is this modern view th a t we take in this thesis. We do not expect markets

to follow a random walk, but do expect the predictability th a t does exist to be

very difficult to find and exploit. We will show how the particular model of neural

network learning th a t we use and develop plays a key role in finding and exploiting this

predictability. Our analysis of its predictive performance on financial m arket da ta ­

sets will confirm th a t a limited amount of predictability does exist in most financial

markets and can be exploited.

1.3 Financial market prediction techniques

The financial market prediction techniques used today can be roughly divided into

four main categories; fundamental analysis techniques, charting techniques, econo­

metric techniques and modern “exotic” techniques such as chaos theory and hidden

Markov models. In this section we review some of the more popular techniques th a t

make up these categories.

1.3.1 Fundamental analysis

This category of financial prediction can be used for a wide variety of prediction

tasks in finance. For example, changes in individual stock prices can be predicted

by analysing the fundamental financial conditions and operating performance of a

company. Usually, information such as the price/earnings ratio, profit/loss history,

quality of the competition and the track-record of the management are used. To

predict other financial market movements, such as a country’s future foreign exchange

rate, other fundamental indicators are used e.g. interest rates, inflation and growth

rates relative to other economies. A discussion and general review of some popular

fundamental analysis techniques and strategies can be found in (Garret, 1997).

C H A P T E R 1. IN TRO DU CTIO N 6

This traditional method of financial prediction enjoys widespread use in most fi­

nancial institutions. However, it does have some serious limitations. For example,

predictions generated using fundamental analysis techniques are typically very subjec­

tive i.e. humans play a very im portant role in the process. Although some objective

quantitative analysis usually exists in the form of balance sheets, economic indicators

and so on, typically the only “model” tha t exists is in the mind of an analyst or

economist. Humans can be influenced by any number of subjective and emotional

factors e.g. greed, fear and ulterior motive, all of which can corrupt the process of

generating a prediction.

Another problem regarding the role played by humans in fundam ental analysis

is th a t we cannot easily identify complex non-linear relationships between variables

and markets. It is widely accepted today th a t non-linearity exists in all financial

markets. Indeed, as mentioned in section 1.2 it is an im portant source of predictability.

Excluding the possibility th a t non-linearity may exist in modern financial markets will

inevitably lead to poor predictions.

Finally, most fundamental analysis techniques operate under the assum ption that

every financial asset has an intrinsic value tha t can be determined by analysing fun­

dam ental indicators. However, in modern sophisticated financial markets the concept

of value is no longer easy to identify or clearly define. For example, technology (es­

pecially internet) companies can consistently make a loss but still m aintain a very

high stock price. These companies are unique in tha t most of their current value is

based on their projected future performance and future potential markets for their

products. Integrating this into a fundamental anlysis strategy is very difficult - fun­

dam ental analysis essentially assumes tha t the current value of a company is mostly

reflected in its current fundamental indicators. This can be carried over to economic

analysis as well. For example, the effect th a t “globalisation” has on financial markets

is not very well understood. No economy today operates in isolation, rather, they

influence each other in very complex ways. Therefore, the “value” of an economy is

very difficult to determine and predict if only simple linear analyses of fundamental

indicators are used.

C H A P T E R 1. INTRO DU CTIO N 7

1.3.2 Charting

Charting (sometimes called technical analysis) is an approach to financial prediction

th a t is based on the belief tha t financial time-series exhibit trends and regularities in

the form of geometric patterns. Predictions are usually generated by deducing from

the historical trends or geometry of a series the probable future trend. A review of

some popular charting techniques can be found in (Murphy, 1986).

Traditionally, charting has been unpopular amongst academics but popular with

practitioners. Academics are uncomfortable with charting because it is not based on

sound, proven principles but instead largely on intuition and interpretation. However,

recently the differences between charting, fundamental analysis and econometrics have

become somewhat blurred. For example, fundamental indicators such as earnings and

econometric indicators such as volatility^ are being integrated into the charts th a t

charting practitioners use. However, despite this, charting still remains somewhat

unprincipled and trends or projections open to interpretation. Also, most charting

techniques can only identify linear trends and relationships. Those techniques tha t

claim to identify and exploit non-linear trends usually use econometric indicators.

Although some recent studies by leading academics (e.g. Blume et al. (1994),

Brock et al. (1992) and LeBaron (1996)) have given charting some credibility by

highlighting various similarities with econometrics, there is still significant suspicion

amongst academics.

1.3.3 Econom etrics

Econometric techniques are amongst the most popular financial prediction techniques

in modern financial institutions. They include simple moving average techniques,

sophisticated volatility prediction techniques such as autoregressive conditional het-

eroskedastic (ARCH) methods and pricing models such as the Capital Asset Pricing

^The volatility of a financial market is a measure of how turbulent it is. Unlike prices, volatility
cannot be observed and must be estimated. A rough estimate of volatility over a specified period
is given by the corresponding standard deviation of prices over that period. More sophisticated
estimates of volatility also exist (see e.g. (Alexander, 1998 (chapter 4))). We will re-visit this issue
in significant depth in chapter 5.

C H A PT ER 1. INTRODUCTION 8

Model (CAPM) and its variations. Other econometric theories such as the Black-

Scholes option pricing model can also be manipulated to predict future market move­

ments (see e.g. (Alexander, 1998 (chapter 4)) for some examples). All econometric

techniques are based on proven principles and theories and are very popular amongst

both academics and (sophisticated) practitioners. They are also objective and some

can model non-linearities. A comprehensive review of the most popular modern

econometric tools and techniques can be found in (Campbell et ai, 1997).

Econometric techniques are rarely used to predict the absolute value of a financial

asset. Most applications lie in risk management (see (Alexander, 1998 (chapter 4))

for a survey of some popular applications). For example, the predicted volatility

of an asset is an im portant factor in determining risk exposure. Today it is very

difficult to distinguish between these econometric techniques and some of the so-

called “exotic” techniques. For example, amongst some academics and practitioners

in finance neural networks are no longer seen as some obscure artificial intelligence

technique but instead are beginning to be accepted as a valid non-param etric, non­

linear econometric modelling tool. For example, in (Zapranis and Refenes, 1999) an

econometric framework is developed tha t shows how neural networks fit into theories

such as the CAPM.

In this thesis we view neural networks in this way. The techniques we develop

have the statistical rigour and theoretical foundations necessary to support this. We

also support this by integrating an established ARCH volatility prediction method

into our technique for generating prediction intervals.

1.3.4 “E xotic” techniques

It is quite difficult to define what constitutes an “exotic” financial prediction tech­

nique. For example, neural networks have traditionally belonged to this group, but as

discussed above, are now beginning to be accepted as an econometric modelling tech­

nique. We will therefore restrict our definition of “exotic” as meaning a theoretically

promising, but empirically unproven non-linear financial modelling technique.

Currently, one of the most popular (and fashionable) of these techniques is chaos

C H A P T E R 1. INTRO DU CTIO N 9

theory which has its origins in the physics literature (Lorenz, 1963). Its main con­

tribution is th a t it shows how relatively simple systems of ordinary diflFerential and

difference equations can exhibit extremely complex dynamics. However, although

chaos theory is quite m ature in physics and a number of possible financial applica­

tions have been proposed (see e.g. (Scheinkman and Woodford, 1994), (Kennan and

O ’Brien, 1993) and (Pesaran and Potter, 1992)), there is little compelling evidence to

suggest th a t it will emerge as an im portant modelling tool in finance. As discussed

in (Campbell et a i, 1997) financial markets are not specific about functional forms

and econometricians have no theoretical reason for expecting to find one form of non-

linearity rather than another. Chaos theory is a very active area of research however

and it is possible th a t current theoretical lim itations and assumptions may not exist

in the future.

Another technique th a t is gaining popularity as a financial prediction tool is the

hidden Markov model method, which is widely used in speech recognition (Huang

et a l, 1990). In (Fraser and Dimitriadis, 1994) hidden Markov models are used to

predict entire conditional probability distributions^ of future foreign exchange rates.

In (Weigend and Shi, 1998) they are used to predict rare events such as stock market

crashes by modelling the tails of conditional target distributions. Although hidden

Markov models are relatively new as a financial prediction technique, they do seem

to show promise for some specific applications.

The techniques described above are examples of only a few “exotic” techniques

th a t have been applied to predict financial market movements. There are count­

less other techniques th a t have not been mentioned e.g. Markov-switching methods

(Hamilton, 1989; Sclove, 1983), support vector machines (Vapnik, 1995; Mukherjee et

a i, 1997) and wavelet transforms (Starck et a l, 1998; Aussem et a i, 1998). Given the

significant activity and diversity of research in financial prediction, it is very difficult

to predict what will be the most powerful technique of the future. However, with

the possible exception of neural networks, few so-called “exotic” techniques have

made the transition from academic research to financial practice. Most prediction

^Typically, models are built that only predict the mean of this distribution.

C H A P T E R 1. IN TRO DU CTIO N 10

techniques th a t are currently used in finance were developed in the econometrics lit­

erature. Therefore, if an unusual new technique is to be accepted by practitioners it

should first be adopted by the econometrics community. Keeping this in mind, we

follow the lead of (Zapranis and Refenes, 1999) in this thesis and attem pt to develop

neural networks as an econometric technique th a t is statistically viable and robust.

The terminology and methods th a t we adopt will reflect this.

1.4 Neural networks for financial tim e-series pre­

diction

In this section we review neural network approaches to financial prediction and discuss

their advantages and disadvantages relative to the techniques described in section 1.3

above.

Neural networks are essentially devices for non-parametric statistical inference i.e.

when they are trained no assumptions about model or data are made a priori. Sig­

nificantly, they are also universal function approximators - W hite (1988a), Cybenko

(1989) and Ito (1993) have all shown how neural networks with a single hidden layer

can approximate arbitrarily well any continuous function. These non-parametric,

imiversal approximation properties give rise to a number of im portant advantages

and disadvantages, especially when neural networks are applied to model financial

time-series.

One of the most im portant advantages is th a t they can easily identify and model

subtle non-linearities between variables and markets. These non-linearites are “learned”

by the neural network and so are objective and require little input by the user. This

learning process is robust to noise if a suitable network regularisation algorithm is

used. Given the peculiar nature of financial time-series da ta i.e. no specific func­

tional form, more stochastic than deterministic, non-stationary etc. these universal

approximation properties are potentially very powerful.

It is these key advantages tha t have motivated most of the work in the literature

th a t applies neural networks to financial prediction. One of the most im portant early

C H A P T E R 1. IN T R O D U C T IO N 11

works was published by an econometrician (White, 1988b). This work gave credibility

to neural networks amongst financial practitioners and paved the way for a large

num ber of other works in th is area. Good overviews of this work and summaries of

im portant specific papers can be found in (Refenes, 1994), (Zapranis and Refenes,

1999) and (Campbell et a i , 1997).

However, the flexibility and power afforded by the advantages of neural networks

outlined above also introduce some serious limitations. Few of these lim itations hav(̂

been addressed by existing work in the literature. Possibly the most serious is instabil­

ity or high-variance. When neural networks are trained, especially on noisy, non-linear

da ta (such as financial time-series data), small changes in param eters an d /o r training

da ta can cause large changes in prediction performance. This is a serious lim itation

in an application area such as finance which is very sensitive to risk. Another disad­

vantage of neural networks is th a t typically they are “black-box” i.e. the particular

functional form of the data learned by the neural network is not easy to identify given

the complexity of the relationships between the inputs, weights and hidden units in

the network. Finally, neural networks have traditionally been seen as very com puta­

tionally expensive given the significant (usually gradient descent) optim isation th a t

must be performed to estim ate a good set of weights.

So how can we justify the use of neural networks given these disadvantages? Can

the above problems be solved or at least partially overcome? In this thesis we a t­

tem pt to do just tha t. We recognise the power and potential of neural networks as a

financial time-series prediction tool and attem pt to overcome the problems identified

above using some novel statistical, econometric and com putational techniques. In

chapters 2 and 3 we develop our own particular variety of neural network ensemble

technique to stabilise the networks and significantly improve prediction performance.

In chapter 4 we combine our ensemble technique with an established econometric

volatility prediction technique to estimate prediction intervals which in essence throw

light onto the modelling process and can be used to manage risk. The com puta­

tional problems are a little more difficult to overcome especially given th a t ensemble

techniques require an increased level of com putational power. However, the speed of

modern computers minimises the negative impact of this. Also, in this thesis all code

C H A P T E R 1. INTRODUCTION 12

was w ritten in C-M PP. This made running the experiments for even large ensembles

very manageable. The final neural network models of financial time-series th a t we

use for our evaluation in chapter 5 do not suffer in any serious way from the problems

summarised above. Moreover, the universal approximation properties and related

advantages remain the same.

1.5 Neural network ensemble learning

In this section we briefly review some popular neural network ensemble techniques

and discuss in general terms how they can significantly improve the generalisation

performance of neural networks. We put particular emphasis on bagging, the ensemble

technicjue of choice for this thesis.

Recently, neural network ensemble techniques have gained widespread use amongst

neural network practitioners (see (Sharkey, 1999) for a review of this research). There

are many different varieties, but the most popular include some elaboration of bag­

ging or boosting (Freund and Schapire. 1995). The basic idea of these techniques is to

generate multiple versions of a predictor. When predictions from these versions are

combined (averaged for example), smoother more stable predictions are generated.

Wlien applied to neural networks, these techniques can yield dram atic improvements

in generalization performance (see e.g. (Carney and Cunningham, 1999a; Maclin and

Opitz, 1997)). This is because neural networks are inherently unstable (Breiman,

1994; Breiman, 1996a) i.e. small changes in training set and /or param eter selection

can produce large changes in performance. This idea of combining predictions from

multiple versions has been around for quite a while - its origins in the neural network

literature can be traced back to as early as 1965 (Nilsson, 1965). Significantly, it

has also been used in other fields such as econometrics where it is called “forecast

combining” (Granger, 1989). However, it has not gained widepread use until recently,

^This is the C programming language with MPI (Message Passing Interface) library extensions.
C-MPI allows parallel code to be written that can run on any MPI compatible super-computer or
workstation cluster. We use the TCD CS Department SCI Cluster (for more information on this
machine see http://www.cs.tcd.ie).

CH A P TE R 1. IN TRO D U C TIO N 13

largely because it requires significant computational resources, especially when ap­

plied to learners such as neural networks.

Bagging is widely accepted as one of the most popular neural network ensemble

techniques. It uses the bootstrap (Efron and Tibshirani, 1993), a very popular sta­

tistical re-sampling technique, to generate multiple training sets and networks for an

ensemble. Each ensemble training set is the same size as the original training set, but

given th a t the bootstrap samples da ta with replacement, individual training samples

may appear several times in an ensemble training set while others may be left out.

O utputs from the trained networks in a bagged ensemble are combined using a simple

average to produce smoother, more stable predictions. There are many works on bag­

ging in the literature th a t study the technique in general terms i.e. w ithout reference

to any specific predictor e.g. (Breirnan, 1996a; Breiman, 1996b; Rao and Tibshirani,

1997; W olpert and Macready, 1996; Wolpert and Macready, 1996). Works th a t study

bagging solely in the context of neural networks include (Carney and Cunningham,

1999a; Heskes, 1997a; Zhang, 1999).

Boosting techniques use more elaborate training set generation and network com­

bination methods. There are a number of related boosting techniques, the most

popular being arcing (Breiman, 1996c) and ada-boosting (Freund and Schapire, 1996).

Unlike bagging, all boosting techniques are inherently sequential in nature - the prob­

ability of selecting a training example for a new ensemble training set is not equal

across the original set of training examples; instead, this probability depends upon

how often th a t example performed poorly across the set of previously trained net­

works. The idea here is to put more emphasis on training examples th a t are difficult to

learn, which in essence (using machine learning terminology) pushes a “weak-learner”

towards being a “strong-learner” . The primary difference between arcing and ada-

boosting is th a t ada-boosting uses a weighted average to combine the networks in the

ensemble whereas arcing uses a simple average.

Bagging has a number of im portant advantages over boosting techniques when

applied to noisy real-world tasks such as financial time-series prediction. One of the

most im portant is the ease with which confidence and prediction intervals can be

C H A P T E R 1. INTRODUCTION 14

computed (Carney et a/., 1999; Heskes, 1997b). Another is the robustness and s ta ­

bility of the technique itself - it can be shown th a t it will always perform at least as

well as an individual predictor, as long as the predictor is unstable (Breiman, 1996a).

Boosting techniques on the other hand have been shown to be sometimes quite un­

stable. Maclin and Opitz (1997) showed th a t arcing sometimes produces results tha t

are the same as or worse than a single network. However, other times it significantly

out-performs individual classifiers and bagging. Maclin and Opitz (1997) also showed

th a t on some data-sets ada-boosting produces results tha t are significantly worse than

using a single network whereas on other data-sets it significantly out-performs any

other method. Most of this erratic behaviour has been attribu ted to the sensitivity

of boosting techniques to noise. Freund and Schapire (1996) suggest th a t the re­

sampling procedure used by boosting techniques can over-emphasise noisy training

examples by interpreting them as training examples th a t are just difficult to learn

(but contain useful information). Boosting techniques cannot recognise the difference

between training examples th a t are diflficult to learn and those th a t are just noise.

Given the robustness of bagging to noise, its stability and the ease with which

confidence and prediction intervals can be computed, bagging (or some elaboration

of the technique) is the natural choice for financial time-series prediction.

1.6 Finding predictability

In this section we describe how we attem pt to uncover hidden predictive structure in

the financial market data-sets studied in this thesis. We use a number of new empirical

results from the econometrics literature th a t uncover dependancies amongst related

financial variables and markets.

Possibly the most valuable and interesting predictive structure th a t exists in fi­

nancial markets is the relationship between financial market prices, trading volume^

and volatility. For example, in rising markets volume increases. In volatile m arkets

volume also increases. Although these dependencies seem quite linear, the most valu­

able and predictive structure is expected to be non-linear and difficult to identify in

■*The volume of a market is the number of shares traded in tha t market over a specified period.

C H A P T E R 1. INTRODUCTION 15

most markets - see (Gallant et aL, 1993; Karpov, 1987; LeBaron, 1982) for some

interesting discussions and results on this topic. To exploit any such predictive struc­

ture, we include volume and volatility information as part of each training vector in

each data-set.

For foreign exchange markets, interest rate changes can play an im portant role.

For example, if interest rates increase in an economy there is likely to be an increase

in the flow of foreign currency into th a t economy. However, this relationship is not

always linear and easy to identify e.g. increases in interest rates have been known to

devalue a currency under certain circumstances (see Corden, 1995 for a discussion).

Nevertheless, it is generally accepted tha t an im portant relationship does exist, albeit

potentially non-linear. To exploit any contribution changes in interest rates may make

to the process of generating a prediction, we include the difference in the discount

rate of interest between the two economies th a t determine a foreign exchange (cross-)

rate (e.g. U SD /JPY (US-Dollar/Japanese-Yen)). The exact set-up is described in

section 1.7.

O ther sources of predictive structure th a t have been identified in the econometrics

literature are so-called “calender effects” . It is generally accepted th a t all financial

markets exhibit calender effects. One of the most documented is the “January Effect”

- the fact th a t smaller capitalisation stocks out-perform larger capitalisation stocks

at the turn of the year. Keim (1989) provides some elaborate econometric reasons

for the occurance of this effect. Other calender effects on smaller time-scales are also

suspected to exist. For example, trading behaviour at specific times over certain time

horizons can sometimes be very similar in terms of volume, volatility and so on. Some

interesting discussions relating to these effects can be found in (Campbell et aL, 1997

(chapter 1)).

Related to these calender effects are “lead-lag” structures. Here, some markets

lead while others follow. Examples include the phenomenon of larger capitalisa­

tion stocks leading smaller capitalisation stocks. Also, general movements in indices

can move stocks in directions tha t do not reflect their individual performance. See

(Campbell et aL, 1997 (chapter 1)) for a discussion of these lead-lag structures and

a summary of some useful econometric tools th a t can identify when they occur. To

CHAPTER 1. INTRODUCTION 16

exploit (at least in part) these calender effects and lead-lag structures we include the

date, day of the week and (for the stock-market data) the m ajor indices (S&P500^,

NYSE® , DJIA^) in each training vector for the data-sets in this thesis. Again, the

exact set-up is described below in section 1.7.

1.7 The data

In this section we describe the exact set-up of the financial time-series data-sets®

used for the experiments performed in this thesis. We also outline our motivation

for including each data-set and describe how exogenous variables are combined with

price information to create training vectors.

1.7.1 Stocks

In to tal we use 4 stock-market data-sets. We use 11 years (1 /9 /88-1 /9 /99) of daily

closing price data from two mainstream industry stocks General Electric Corporation

(GEC) and Coca-Cola and two mainstream technology stocks Microsoft Corporation

and International Business Machines (IBM). These stocks have histories th a t are long

enough to build useful models th a t generate good predictions. We also believe tha t

together they broadly represent the behaviour of the m ajority of stocks in the financial

markets. We use the following training vector set-up for each data-set

(rt_4, {vlt-4, {vt t -4, { spt ,ny t , d j t) , {dt , r r i t ,wdt) , r t+i . (1.2)

^Standard and Poor’s 500 index.
®New York Stock-Exchange index.
^Dow-Jones Industrial Average index.
®A11 (unprocessed) stock-market data was provided by Riskmetrics Ltd. and foreign exchange

data by Beacon Foreign Exchange Ltd..

CHAPTER 1. INTRODUCTION 17

Here Vt denotes the log-return® at time t. Note th a t we use 5-day lagged log-returns.

Wt do this to model any temporal structure tha t may exist in the returns series.

Our motivation for using a 5-day lag is simply th a t it seems reasonable - it is long

en(ugh to model temporal structure (markets can change significantly over a 5 day

peiiod) but sufficiently short enough so as to m aintain parsimony in the models. For

th(same reason we also use 5-day lagged returns of volume and volatility, where vlt

is ihe volume and vtt is the volatility at time t. To model any lead-lag structure

betw'een the stocks and the major indices we include the log-returns at tim e t of the

S&P500, the NYSE and the DJIA indicies {spt, nyt, djt). To model any calender

efftcts we include at time t the day of the month, the month, and the day of the week

{dt rrit^wdt). Given these input features we expect the neural network to generate

preiictions 1-day ahead i.e. for rt+i. We also perform experiments th a t generate

prelictions over other time horizons. In chapter 5 we will re-visit this issue.

1.7.2 Stock-market indices

We use 11 years (1 /9 /88-1 /9 /99) of 3 stock-market index data-sets of the major

U.S. indices S&P500, NYSE and D.IIA. The training vector set-up is very similar to

the stock-market training vector set-up. To generate 1-day ahead predictions for the

S&?*500 index we use

{ s p t - 4 , s p t) , { v l t - 4 , v l t) , {vtt-A, .., vtt), {nyt, djt), {dt, rrit, wdt), spt+i • (1-3)

Here, as for the stock-market data-sets, we use 5-day lagged returns for our target

series. W"e also include 5-day lags of volume, volatility, related index and date infor-

maiion. Using a similar training vector set-up we also generated predictions for the

NYSE data-set and predictions over other time horizons. We also will re-visit this in

®riie log-return is a m easure of relative change in prices over a fixed period. T he log-return at
time t is given by log{pt) — l o g {p t - \) , where pt is the price at tim e t. A lm ost every econom etric
stud / o f financial markets uses returns rather than prices. There are a variety of reasons for this,
but '.he m ost im portant in the context of this thesis is that returns exhibit som e desirable statistica l
properties such as stationarity and ergodicity. See (Lucas, 1978) and (Cam pbell et al., 1997 (chapter
1)) f)r a discussion.

C H A P T E R 1. I N T R O D U C T I O N 18

chap ter 5.

1.7.3 Foreign exchange

We use 5 years (2 0 /5 /9 2 -2 0 /5 /9 7) of 2 foreign exchange m arket data-se ts U S D /JP Y

and C H F /JP Y (Sw iss-Franc/Japanese-Y en). The tra in ing vector set-up for each d a ta ­

set is

(r t _ 4 , rt), {vtt-4, ■; vtt), {it-4, h), {du m , wdt), n + i. (1.4)

Here {rt-A, ft) denotes a 5-day lag of foreign exchange ra te returns, (ut«_4 , a

5-day lag of volatility and {it-4 , ■■jh) a 5-day lag of discount in terest ra te differences.

Again, we also perform experim ents th a t generate predictions over o ther tim e horizons

and in chap ter 5 will re-visit th is issue.

1.8 Thesis contributions

In th is section we sunm iarise the m ain contributions of the thesis:

• We propose a new neural network ensemble technique (the NeuralBA G algorithm)

based on bagging th a t optim ises generalisation perform ance by tun ing diversity. A d­

vantages of th is technique over o ther ensemble techniques (in the context of financial

tim e-series prediction) are its robustness to noise and the availability of b o o ts trap

m odel variance estim ates.

• We propose a new technique for estimating model variance (confidence interval)

estim ates for neural network ensembles. These estim ates ad just the model variance

estim ates provided by bagging so th a t they b e tte r reflect the (lower) variance of en­

semble predictions. We show how these confidence intervals have significantly b e tte r

coverage th a n those generated by an alternative m ethod.

• We propose a new technique for generating prediction intervals. These intervals

incorporate b o th the uncertain ty caused by model variance (estim ated as above) and

C H A PTE R 1. IN TRO DU CTIO N 19

noise variance (estimated using an established econometric technique). We demon­

strate the excellent coverage tha t these intervals have and also discuss how they can

be applied to manage risk in trading.

• We use a number of new and established empirical research results from the econo­

metrics literature to propose a number of new novel training vector structures. We

also perform extensive experimentation to estimate good model parameters for the

econometric noise variance prediction technique used for estim ating the prediction

intervals.

• We perform a large number of experiments to test our techniques. The results

of these experiments both validate our techniques but can also be used to draw more

general inferences such as the suitability of machine learning techniques for financial

market prediction and their sensitivity to the volatility of m arkets and prediction

horizons.

• The success of the multi-disciplinary approach taken in this thesis dem onstrates

the potential of this approach for solving other difficult real-world prediction prob­

lems.

1.9 Summary

In this chapter we discussed the nature of predictability in financial markets and re­

viewed some popular econometric, economic and exotic techniques used to generate

predictions. We positioned neural networks relative to these techniques, discussing

their strengths and weaknesses. We proposed how instability in neural networks can

be overcome using ensemble methods and reviewed some of the more popular tech­

niques. We argued th a t for financial time-series prediction bagging shows significant

promise and is the natural choice especially given its robustness to noisy da ta and

the ease with which measures of model uncertainty can be estimated. We described

in significant detail the financial data-sets used for the experiments in this thesis and

C H A PT E R 1. INTRODUCTION 20

the training vector set-up. Finally, we outlined the main contributions of the thesis.

Chapter 2

Bagging and bootstrapping

2.1 Introduction

In chapter 1 we briefly reviewed a variety of neural network ensemble techniques

and discussed in general terms how bagging is particularly suited to financial time-

series prediction. In this chapter we study bagging in more detail. We begin in

section 2.2 by outlining the underlying principles of bootstrapping, the statistical

resampling technique at the heart of bagging. In section 2.3 we introduce some

notation, provide a concrete description of bagging and analytically show how it

improves the performance of neural networks. This analytical work highlights the

im portance of diversity amongst networks in a bagged ensemble and in section 2.4 we

discuss the implications this has for how a bagged ensemble should be trained. Note

th a t all the work presented in this chapter is descriptive and analytical. Any claims

made will be substantiated by extensive experimentation in chapter 3.

2.2 Bootstrapping

To understand how bagging works, one must first understand how bootstrapping

works. Bootstrapping is a very general computer intensive statistical re-sampling

technique. In its simplest form bootstrapping is used for estim ating measures of

21

C H A P T E R 2. BAGGING AN D BO O TSTR A PP ING 22

uncertainty and bias in parameters generated from independent and identically dis­

tributed variables. It was proposed by Efron (1979) and has become very popular as

computers have become more powerful. The term “bootstrap” was well chosen by

Efron - it implies “pulling oneself up by the bootstraps” . As will be illustrated in this

section, in a statistical sense, this is exactly what the bootstrap does. The technique

has been generalised extensively and applied to problems such as confidence interval

estim ation e.g. (DiCicco and Tibshirani, 1987), (Efron and Tibshirani, 1993); model

selection e.g. (Efron and Tibshirani, 1997) and (Breiman, 1996b); and variance cor­

rection e.g. (Breiman, 1996a). A popular way to illustrate in general terms how the

bootstrap works (see e.g. (Hjorth, 1994)) is to present two versions of a simple esti­

m ation problem; an artificial bootstrap version and a real version. Comparisons are

drawn between the real and artificial versions to highlight the underlying principles

of the technique.

In the real version of the problem we are given a set of n observations X\, ...,x„.

However, very little information about the underlying distribution P of these obser­

vations is available - we might know it is continuous for example, but little more. A

param eter 9 = g[P{.)), defined by the distribution, is estim ated using the observed

da ta to give us 9 = s{x\, ...,x„). This param eter could be the median or mean of the

distribution for example.

In the bootstrap version of the problem, the true distribution P is replaced by

an empirical version of it. This empirical distribution, which we will denote as P,

is the discrete distribution th a t puts probability 1 /n on each of the observed values

Xi, ...,Xn- A more exact expression of this is given by

P(^) = # (£ i££ l_ (2.1)
n

where # { ^ } denotes the number of times the event A occurs. An example set of

observations and its corresponding empirical distribution is illustrated in figure 2.1.

A param eter 6 = g{P{.)), the empirical analogue of 6, is also defined. It is

estim ated using “observations” drawn from the empirical distribution P. A single set

of n observations drawn from the empirical distribution P is called a bootstrap sample

C H A PTE R 2. BAGGING AN D B O O TST R A P P IN G 23

Figure 2.1: 50 rolls of a die. The possible roll outcomes 1, 2, 3, 4, 5, 6 occurred 7,
8, 8, 10, 9, 8 times respectively. Therefore the empirical distribution is (7/50, 8/50,
8/50, 10/50, 9/50, 9/50).

X*, ...,x* where x* G P{x). A single estimate for the param eter 0 is therefore given

by 6* = s { x l , x ^) . If we repeat this procedure many times (i.e.) generate a large

number of bootstrap samples, we can generate multiple estim ates for the param eter

9. From these we can estim ate statistics of interest for the bootstrap version of the

problem. For example, we can compute the standard error of 9* from

sepiO*) = \B ̂ 6=1

where
B Q*

^ B

(2 .2)

(2.3)
6=1

and B is the number of bootstrap samples. Note tha t the ideal number of bootstrap

samples generated takes B = oo. However, in practice, the value for B chosen is

largely determined by the amount of computer processing power available^

Now th a t we have established how statistics of interest can be estim ated for the

artificial bootstrap version of the problem, how do we relate this to the real problem?

The bold claim of the bootstrap is tha t the estimation properties of the bootstrap

problem can be used to judge the estimation properties of the real problem. Using

^See (Efron and Tibshirani, 1993) for more on this.

C H AP T ER 2. BAGGING AN D BOO TSTRAPPING 24

Real problem Bootstrap problem

Bootstrapdistribution
sample

Sample
observationsUnknown true

distribution

P

7
9=s{x\,..., JCn)

Parameter
estimate

9 =SKX^ x j
Bootstrap
parameter
estimate

Figure 2.2: A comparison of the real and bootstrap versions of a param eter estimation
problem. In the real version of the problem we are given a finite set of n observa­
tions from some unknown probability distribution P. We use these observations to
generate a single param eter estimate 9. We also use these observations to generate
an empirical distribution P. Note that in the diagram both the original observations
and the empirical distribution are enclosed in the large arrow. This is to denote th a t
observations from the empirical distribution are generated by just sampling a t ran­
dom with replacement from the original set of observations. Using this any number
of bootstrap samples from the empirical distribution can be generated and therefore
also any number of bootstrap parameter estimates 6*.

this we can use the standard error estimate for 9* in the bootstrap problem as an

estim ate for the standard error of 9 in the real problem. This idea can be generalised

for a large number of parameters and statistics of interest. A diagram th a t illustrates

the relationship between the real and artificial bootstrap versions of a param eter

estim ation problem is given in hgure 2.2.

To the theoretical purist the bootstrap may seem difficult to accept. However, its

success is reflected in the excellent results yielded by many studies of its application

in a variety of domains - see (Efron and Tibshirani, 1993) and (Davidson and Hink-

ley, 1997) for just a sample. A more comprehensive introduction to the technique

can be found in (Efron and Tibshirani, 1993). Some asymtotic results, theoretical

analyses and comparisons to similar techiques can also be found here and in (Bickel

and Freedman, 1981).

CHAPTER 2. BAGGING AN D BO O TST RA P PING 25

2.3 Bagging

To describe bagging (in the context of regression) in concrete terms, let us now

introduce some notation. Assume we are given a set of N data pairs T = {(t„,

described by the distribution P and generated according to

t = /(x) + e(x), (2.4)

where t is the observed target value, / (x) is the true regression and e(x) is noise with

zero mean. When we train a neural network on such data, our aim is for the network to

approximate /(x) . Let us denote this neural network approximation as </>(x). Bagging

aims to improve this individual network approximation by generating bootstrap re­

samples of T and using these re-sampled training sets to generate multiple

bootstrap versions. Each bootstrap re-sample T^ consists of N da ta pairs, sampled

at random with replacement from the empirical distribution P. The training sets

{T^)b=i give us a set of networks Bagging aggregates these bootstrap

versions by averaging to form a bagged prediction,

(t>bagi^) = (2-5)
^ 6=1

See figure 2.3 for a schematic outline of this.

The description of bagging given above does not quantify the extent to which

bagging can improve the generalisation performance of neural networks or under what

circumstances. To study bagging in more depth and clearly illustrate its properties

and limitations, we will now show how the general work of Krogh and Vedelsby (1995)

on neural network ensembles applies to bagged ensembles.

Using the notation introduced above and the terminology introduced in (Krogh

and Vedelsby, 1995), let us define the ambiguity of a single member of a bagged

ensemble on a prediction for t as

“6(X) = (0J(X) - (2 .6)

C H A P T E R 2. BAGGING AN D BO O TST RA P PING 26

P

Figure 2.3; A bagged neural network ensemble. Training sets are generated by sam­
pling from the bootstrap empirical distribution P. These training sets are used to
train an ensemble of neural networks. The outputs of the networks in the ensemble
are averaged to produce the bagged ensemble prediction.

and the ensemble ambiguity to be

Ofcaglx) = ^ Z ('^6 W - 06as(x))^ (2.7)
^ 6=1

The ensemble ambiguity is a variance measure - it quantifies the disagreement or

diversity amongst the networks in an ensemble on a prediction for t. Define the

generalisation error of an individual network on a single prediction for t as

eft(x) = ((/>;(x) - ^)^ (2.8)

and on an ensemble prediction as

ebagi^) = (06as(x) - t)'^. (2.9)

Note th a t here we assume the inputs are independent of the training set i.e. they

are test set inputs. We also define the average of the generalisation errors of the

individual networks across the ensemble as

6=1

(2 .10)

CHAPTER 2. BAGGING AND BOOTSTRAPPING 27

This important measure will be compared to the ensemble generalisation error to

provide valuable insights. It can be rewritten as

W - </’6ag(x) + A a g { ^) ~ t f (2 .1 1)
6 = 1

and after a little manipulation (see (Zenobi, 1999) for details) as

^ - <̂ f>ag(x))̂ + (</>bag(x) - t)^. (2 .12)
6 = 1

Using equations (2.4) and (2.6) above this gives us

e(x) = (i h a g i x) + e b a g (x) , (2.13)

or

e6as(x) = e(x) - abag(x). (2.14)

For statistical rigour we now average this over the input distribution P. We begin

by denoting the average generalisation error over P of an individual network in an
ensemble to be

El, = y dxP(x)eft(x). (2.15)

Using this and equation (2.7), we express the average generalisation over P across all
the networks in an ensemble as E. Similarly we denote the average ambiguity over
P for an individual network in an ensemble as

Ab = j d:s.P{x)ab{x.), (2.16)

and across all the networks in an ensemble as A. Finally, using equation (2.6) we
express the average bagged ensemble generalisation error over P as

£■ = y d x P { x) e h a g { x) . (2 . 17)

CHAPTER 2. BAGGING AND BO O T ST R A P P IN G 28

Using equation (2.11) this gives us

E = E - A . (2.18)

This expression is extrem ely valuable. It relates diversity (ensemble am biguity) in

a bagged ensemble to the generalisation error of a bagged ensemble. As long as the

average of the individual network generalisation errors in an ensemble remains con­

stant, increasing diversity will improve generalisation performance. It also confirms

in tu ition - an ensemble th a t consists of a thousand identical networks will not per­

form any b e tte r th a n an individual network. Note th a t, as described in (Krogh and

Vedelsby, 1995), th is expression is a general result and can be applied to m ost neural

network ensembles.

W hat specific im plications does it have for bagged ensembles? The tra in ing sets

in a bagged ensemble are generated by sam pling w ith replacem ent from the original

tra in ing set T. The probability an individual tra in ing sam ple from T will no t be

p a rt of a b o o ts trap re-sam pled train ing set is (1 — 1/iV)^ ft; 0.368, where N is the

num ber of train ing samples in T. This m eans th a t only approxim ately 63% d istinct

tra in ing samples from T will be included in a b o o ts trap tra in ing set. This, of course,

d irectly affects the average individual network generalisation error E - given fewer

d istinct tra in ing sam ples it may not rem ain constant bu t instead may fall. However,

the boo ts trap sam pling dram atically increases the diversity am ongst the tra in ing sets

in the ensemble and this combined w ith the inherent in stab ility in neural networks

will increase the am biguity term A. This is a key point - as long as the increase

in am biguity is larger than the decrease in average individual network generalisation

error it is worthwhile bagging a predictor. This is easy to achieve for neural networks

because they are unstab le and so bagging can consistently improve generalisation

perform ance. So, in sum m ary, we can conclude th a t the more unstable a predic tor

is the more can be gained from bagging. B reim an dem onstrates th is em pirically

by bagging stable and unstable predictors and com paring relative im provem ents in

generalisation error (Breim an, 1996a). However, he does not quantify this analy tically

by including an am biguity term in his derivations.

C H A P T E R 2. BAGGING AN D BO O TSTR A P P IN G 29

2.4 Diversity and ensemble generalization perfor­

mance

Now th a t we have established the importance of generating diversity in neural network

ensembles, the question th a t remains is: how do we tune diversity so th a t ensemble

generalisation performance is optimised? In this section we discuss the merits and

disadvantages of two possible methods for tuning diversity. Our conclusions are used

as motivation for techniques developed in later sections th a t optimise ensemble gen­

eralisation performance.

We will begin by discussing the effectiveness of training set resampling as a method

for generating diversity. In the previous two sections we discussed how bagged ensem­

bles use bootstrapping to generate diversity. How can we adjust this process to tune

diversity? As outlined in (Krogh and Vedelsby, 1995), but in the context of simple

linear ensembles, one could adjust the re-sarnpling process. Applying this to bagged

ensembles, to generate more diversity fewer distinct training examples could be sam ­

pled, pushing down the standard bootstrap distinct sample rate of ~ 63%. Similarly,

to generate less diversity more distinct training examples could be sampled. This

approach may seem promising at first, but in practice it has some m ajor drawbacks.

For example, the optimal resampling rate will vary depending on a number of factors

including the level of noise in the training set, the size of the training set and the size

of the ensemble. Therefore a global optimal resampling rate does not exist. Instead,

it would have to estim ated for each individual training scenario. Another more se­

rious drawback is th a t such “pseudo-bootstrapping” does not have a large body of

theoretical work to support it as does conventional bootstrapping. It would therefore

be unwise (and possibly incorrect) to use this form of bootstrapping as a m ethod

for generating other statistics of interest such as confidence and prediction intervals,

which can be conveniently estimated as part of the bootstrapping process in bagged

ensemble training (Carney et ai, 1999), (Heskes, 1997b). Losing such valuable side

effects of standard bootstrapping is a high price to pay. These drawbacks motivate

the search for an alternative method for tuning ambiguity.

CHAPTER 2. BAGGING AND BOOTSTRAPPING 30

One possible approach highUghts a fascinating feature of neural network ensem­

bles. If we over-fit the networks in an ensemble we generate more diversity. If we
under-fit the networks we generate less diversity. Therefore, if we use standard boot­

strapping to generate a basic level of diversity we can fine-tune the diversity by con­
trolling the fit of each network in the ensemble. In chapter 3 we develop and evaluate
a new technique that optimises the generalisation performance of bagged ensembles
using this idea. The results of our analysis highlight an interesting feature of bagged

(back-propagation) ensembles - a controlled level of over-fitting can consistently im­
prove overall ensemble generalisation performance. This result is consistent with work

performed on other ensembles, e.g. in (SolUch and Krogh, 1996) it is demonstrated
for simple linear ensembles and in (Husmeier, 1999) it is demonstrated for Random

Vector Functional Link (RVFL) ensembles. A key advantage of this approach is that
ensemble diversity tuning and individual network parameter tuning can be unified
and performed simultaneously using the same algorithm.

2.5 Sum m ary

In this chapter we examined in significant detail the underlying principles of bag­
ging and bootstrapping. In particular, we analytically justified the use of bagging
as a technique for stabilising high variance predictors such as neural networks and
discussed the importance of diversity. We proposed a new method for tuning this di­
versity so that ensemble generalisation performance is optimised and outlined its key
advantages compared to other approaches. The analytical results and claims made
in this chapter will be supported by extensive experimentation in chapter 3.

Chapter 3

O ptim izing generalisation
performance

3.1 Introduction

In chap ter 2 we dem onstrated the im portance of diversity in bagged ensembles and

suggested th a t it should be tuned to optim ise ensemble generalisation perform ance.

We argued th a t a good way to do this is to vary the fit of the individual networks in

an ensemble. In th is chapter we support these claims by developing and evaluating

a new technique which we call the NeuralBAG algorithm th a t optim ises ensemble

generalisation perform ance by tun ing diversity in this way.

A m ore specific outline of this chapter goes as follows. In section 3.2 we discuss

the m erits and disadvantages of different approaches to optim ising generalisation per­

form ance and argue th a t early-stopping is particu larly su itable for bagged ensembles.

In section 3.3 we support th is argum ent by describing a simple bu t effective technique

th a t applies early-stopping to bagged ensembles. In section 3.4 we detail the N eural­

BAG algorithm and in section 3.5 evaluate its perform ance on some of the financial

tim e-series d a ta-se ts sum m arised in chapter 1. Finally, in section 3.6 we discuss how

our work relates to sim ilar work on neural network ensembles.

31

C H AP T ER 3. OPTIMIZING GENERALISATION PE R F O R M AN C E 32

3.2 O ptim ising generalisation perform ance using

early-stopping

To optimise a neural network’s generalisation performance is to optimise its per­

formance on test or out-of-sample data i.e. data not used during training. Much of

modern neural network research is focused on developing techniques th a t optimise the

performance of neural networks in this way. A large number of these techniques exist.

They can however be loosely divided into two main categories - pruning techniques

and regularisation techniques.

Pruning techniques work by explicitly choosing an optimal number of hidden

units and weights for a network. Examples include optimal brain damage pruning

(Le Cun et ai, 1990) and optimal brain surgeon pruning (Hassibi and Stork, 1993).

Regularisation techniques work by constraining or penalising the training of a network

so th a t smoother, more general models are built. Examples of this approach include

weight decay (Hertz et ai, 1991) and early-stopping, which cannot be fairly a ttributed

to any single author.

It is generally accepted that, in practice, early-stopping based techniques are

amongst the most popular for optimising generalisation performance. This is espe­

cially true for ensemble learning - see e.g. (Heskes, 1997a). We a ttribu te this to a

number of factors. Firstly, they are much more general than pruning techniques and

can be easily adapted to a large variety of architectures and algorithms. Secondly,

they do not require any a priori assumptions about the model (network) or training

da ta -- all pruning algorithms require prior assumptions, some of which are difficult to

justify - see e.g. (Reed, 1993). Thirdly, they are easy to understand and implement.

Finally, and most im portantly for this thesis, they work very well with ensembles.

For example, as we will show in this section 3.4 they allow diversity to be easily

tuned, which as discussed in chapter 2, is a very im portant consideration for bagged

ensemble training. Given these factors, we pursue the development and evaluation of

an early-stopping based technique in this thesis.

The basic idea of early-stopping is to term inate neural network training as soon

CH A P TE R 3. OPTIMIZING G ENERALISATIO N PE RF O R M AN C E 33

as some estim ate of generalisation error begins to increase. This estim ate of general-

istion error is usually generated using cross-validation (Stone, 1974) or some related

statistical re-sampling technique. The simplest and possibly most popular early-

stopping technique for neural networks uses “hold-out validation” (often just called

cross-validation) to estimate generalisation error.

Hold-out validation consists of using N — Ny oi the available N training examples

for training the network i.e. estimating the network weights and the remain­

ing Ny examples for computing the generalisation error estimate. This generalisation

error estim ate can be expressed in terms of a neural network cost function as

1 ^
Ghov N-nS)) j (3-1)

n=N-Nv-l-l

The estim ate Ghov is measured at regular intervals during training (usually every

epoch or training iteration). When it begins to increase, training is stopped.

This is early-stopping in its simplest form. However, it is widely accepted tha t

the estim ate Ghov (^an fluctuate during training if there is noise and /o r non-linearity

in the training data. Therefore, to simply term inate training as soon as it begins to

increase can result in choosing a sub-optimal set of weights. One way to overcome

this is to train a network to convergence and then choose the set of weights tha t

correspond to the minimum value of Ghov as the optimal set. O ther more elaborate

techniques also exist. For example, in (Prechelt, 1994a) a patience threshold, set

by the user, is used to determine for how long training should continue after Ghov

begins to increase during training. Although such techniques can improve overall

training speed by circumventing the requirement th a t a network should be trained

to convergence, the patience threshold is not easy to estim ate given tha t it can vary

significantly depending on the training data and network architecture used. The

simpler option of training a network to convergence and then choosing the optimal

set of weights will always be more robust and reliable. Given this, combined with

the general view today tha t training speed is not as vital an issue as it used to be

given modern computer processing power, we will pursue the simpler approach in this

thesis.

C H A P T E R 3. OPTIMIZING GENERALISATION P E R F O R M A N C E 34

To describe in more concrete terms the variety of early-stopping adopted in this

thesis, let us extend equation (3.1) above so th a t the generalisation error estimates

and the network weights are “indexed” by the number of epochs they correspond to,

1 ^
Ghov{e)=^— Y . (̂ n - 0(Xn; W A r _ A T ^ (e))) ^ (3.2)

n = N - N ^ + \

Here, Ghov[e) is the hold-out validation estimate of generalisation error for a network

trained to epoch e. Values for Ghov{^) are found for e = where E is the

“maximum” number of epochs and chosen to ensure convergence. A simple patience

threshold idea, similar to th a t used above could be used here e.g. if training error

does not change significantly for 100 epochs, term inate training. Once the network

has been trained through the range of epochs specified, the user chooses the value

for e th a t provides the best estimated generalisation performance. The set of weights

saved on disk corresponding to this best e is chosen as the optim al set.

An obvious drawback of early-stopping techniques th a t use hold-out validation is

th a t only of the available training data can be used for estim ating network

weights. This damages the generalisation performance of a network. If a small value

for Ny is chosen to minimise this effect, then the estim ate of generalisation error will

be compromised. One way to overcome this dilemma is to use a different variety

of cross-validation. For example, “leave-one-out” cross-validation (Stone, 1974) does

not require any training da ta to be sacrificed by the user. There are a number of

different ways this technique (and elaborations of it such as A:-fold cross-validation)

can be applied to estimate generalisation error for neural networks - see (Geman et

ai, 1992) for a general discussion.

However, in the context of this paper, a key point regarding the leave-one-out

cross-validation family of techniques is th a t when applied to bagged ensembles they

fail. This is because the bootstrapped training sets in a bagged ensemble are gener­

ated by sampling with replacement. This means th a t a single training example may

occur several times in a training set. If a training example is removed from a training

set for leave-one-out cross-validation, a replicate of it may still remain. This will

produce an estim ate of generalisation error tha t is biased downwards, as the training

C H A P T E R 3. OPTIMIZING GENERALISATION P E RF O R M A N C E 35

example removed for cross-validation is not truly out-of-sample. However, sampling

with replacement also has some im portant advantages in the context of bagged en­

sembles. As we will describe in the next section, it can be used as the basis for a

simple but effective method for applying early-stopping to bagged ensembles.

Most criticism of early-stopping techniques comes from the statistics community.

This is largely because, until recently, no theoretical analyses have been performed

th a t verify in any concrete way the potential of early-stopping as a technique for

improving generaUsation performance. However, the work of (Wang et a i, 1994),

which is rarely cited in the statistics literature, provides some very valuable insights.

Here it is shown th a t early-stopping is (ironically) closely related to ridge regression,

one of the most popular and successful statistical regularisation methods.

3.3 A pplying early-stopping to bagged ensem bles

As described in section 3.2, training sets in a bagged ensemble are generated by

sampling with replacement from the original training set T. As previously described

in section 2.3, the probability a training example from T will not be part of a bootstrap

re-sampled training set is (1 — 1/A^)^ 0.368, where N is the number of training

examples in T . This means th a t approximately 37% of the original training examples

in T will not be used for training i.e. they will be out-of-sample. These can be used

to estim ate generalisation error.

Let us describe this in more concrete terms by outlining a technique th a t uses

these out-of-sample training examples for estim ating generalisation error in an early-

stopping context. We present the technique in algorithmic form for clarity.

S te p 1: Set-up bootstrap training sets

Generate B bootstrap re-samples of T : T^.T ^ , ■■■,T̂ where T = {(t„, x„)}^^j.

S te p 2: Compute generalisation error estimates for each network in the ensemble

for 6 = 1 to B

for e = 1 to E

C H A P T E R 3. O P TIM IZIN G G E N E R A L IS A T IO N P E R F O R M A N C E 36

Com pute:

Gb{e) = Y. ̂ n { t n - 0 (x„; w t ; (e)))^ (3.3)
n = l

where 7 ^ = 1 is an indicator variable th a t indicates w hether tra in ing sam ple n is

out-of-sam ple for tra in ing set ; 7 ^ = 1 if it is and 7 ^ = 0 if it is not. A value for

E th a t guarantees convergence is chosen as discussed in section 3.2 above. In section

3.5, we discuss w hat value for B should be chosen.

S te p 3: Find the best value fo r e fo r each network in the ensemble

fo r b = 1 to B

Com pute:

O PT,{e) {G,{e)) (3.4)

Here, for each network in the ensemble, the user finds the value for e th a t m inimises

generalisation error. The corresponding networks are chosen as the optim al set for

the ensemble.

A lthough there is no record of this technique in the neural network litera tu re , it

is generally accepted th a t, in practice, it enjoys widespread use. It is fast, easy to

im plem ent and easy to understand. More im portantly , it does not require d a ta to

be sacrificed for estim ating generalisation error. However, as we will discuss in much

detail in the next section, it only provides “local” estim ates of generalisation error

i.e. it does not consider how diversity am ongst networks in an ensemble can signif­

icantly influence overall ensemble generalisation error. This po in t was highlighted

in chapter 2 a controlled level of over-fitting can in fact im prove overall ensemble

generalisation perform ance by generating more diversity. We support these assertions

by experim entation in section 3.5.

3.4 The NeuralBAG algorithm

In th is section we propose a new early-stopping algorithm we call N euralBAG th a t

optim izes generalisation perform ance in bagged neural network ensembles. It oper­

ates in a sim ilar fashion to the technique presented in section 3.3 above and is also

C H A P T E R 3. OPTIMIZING GENERALISATION P E RF O R M A N C E 37

presented in algorithmic form for clarity. However, it tunes diversity i.e. it will over­

fit/under-fit networks in an ensemble if it estimates th a t this will improve overall

ensemble generalisation performance. An earlier version of NeuralBAG was first in­

troduced in (Carney and Cunningham, 1999a). However this presentation was only

an outline of the technique - no concrete justification or evaluation was included.

So how does NeuralBAG tune diversity? The key to solving this problem is to

compute estimates of ensemble generalisation error rather than individual network

generalisation error. This issue has not been directly addressed for neural networks

- most techniques proposed have concentrated on optimising the networks in an

ensemble locally e.g. in (Zhang, 1999) weight-decay is used to regularise the individual

networks. Although some techniques do use estimates of ensemble generalisation error

e.g. (Heskes, 1997a) they are used for a different purpose and not with the explicit

aim of tuning diversity. The details of the NeuralBAG algorithm go as follows.

Step 1 : Set-up bootstrap training sets

Step 2: Compute ensemble generalisation error estimates for each training ex­

ample

for n = I to N

for e = I to E

Compute:

Here we find the networks in the ensemble tha t were trained with bootstrap resampled

training sets th a t do not contain training example n. We propagate training example

n through these netw^orks, average (bag) their outputs and calculate the squared

error. This error is an estim ate of the ensemble generalisation performance for a single

test example. We repeat this procedure for each training example in T throughout

the specified range of epochs. At the end of this step the user will have ensemble

generalisation error estimates for each of the N training examples in T for e = 1,

Generate B bootstrap re-samples of T : .. . ,T^ where T = {(i„, x„)}^^j.

(3.5)

C H A P T ER 3. OPTIMIZING G EN ERALISATIO N PE RF O R M AN C E 38

S te p 3: Aggregate the ensemble generalisation error estimates specific to each

network in the ensemble

for b = 1 to B

for e = 1 to E

where Nf, = J2n=i 7n denotes the number of training examples for training set T^. At

the end of this step, for each network in the ensemble, the user will have aggregated

ensemble generalisation error estimates throughout the range e =

S te p 4 : Find the best value for e for each network in the ensemble

for 6 = 1 to B

Here, for each network in the ensemble, the user finds the value for e th a t minimises

generalisation error. The corresponding networks are chosen as the optim al set for

the ensemble.

As already mentioned, the very im portant difference of this algorithm is th a t

diversity is tuned. This is achieved by computing estimates of ensemble generalisation

error as opposed to estimates of individual network generalisation error. From these

we can approximate the optimal number of epochs individual networks should be

trained for so tha t overall ensemble generalisation performance is optimised.

Up to now we have not mentioned the number of hidden units each network in a

bagged ensemble should have. In (Carney and Cunningham, 1999a), a different ver­

sion of NeuralBAG is presented th a t includes another loop to estim ate experimentally

a (possibly) different number of hidden units for each network in the ensemble. Over a

small range of hidden units this provides modest improvements in performance. How­

ever, computationally, a very high price is paid. We suggest th a t for small problems

i.e. problems represented by small training sets and relatively few dim ensions/inputs,

such an approach should be adopted. However, for larger problems we suggest tha t

the version of NeuralBAG presented in this section should be used. The number of

Compute:

(3.6)

Compute;
argm in

OPT,{e) (3.7)

C H A P T E R 3. OPTIMIZING GENERALISATION P E R F O R M AN C E 39

hidden units can be estim ated prior to training using some simpler m ethod (e.g. the

technique described in (Baum and Haussler, 1988)) and remain fixed for each network

in the ensemble.

3.5 Evaluation

In this section we analyse the results of 4 sets of experiments th a t evaluate the

performance and highlight the properties of ensembles trained using NeuralBAG.

We use 4 of the financial data-sets summarised in section 1.7; C H F /JP Y , C H F/JPY ,

S&P500 and NYSE. Each foreign exchange rate data-set is arranged into 1230 training

vectors th a t are set-up as described by equation 1.4. The stock market index da ta ­

sets are also arranged into 1230 training vectors and are set up as described equation

1.3.

3.5.1 E xperim ent 1: Are N euralB A G estim ates o f generali­

sation error better than local estim ates?

In this experiment we compare the generalisation performance of ensembles trained

using NeuralBAG to the generalisation performance of ensembles trained using 2

techniques th a t both use only local estimates of generalisation error to optimise en­

semble performance. The first local technique tha t we compare NeuralBAG to is a

benchmark technique th a t we adapt from (Breiman, 1996b). The second is the simple

early-stopping technique described in section 3.3.

Let us first describe how the benchmark technique works. Breiman showed in

(Breiman, 1996b) th a t a good measure of the quality of any generalisation error

estim ate based on the training set can be found by comparing its accuracy to the

estim ate one would get using an independent validation set which is the same size as

the training set. Adapting this idea to our problem, we train ensembles th a t have each

individual network optimised locally using estimates of generalisation error generated

from independent validation sets tha t are the same size as the training sets.

CHAPTER 3. OPTIMIZING GENERALISATION PERFORMANCE 40

Our reasoning behind this idea goes as follows. If we optimise the individual net­

works of an ensemble as described above, then we can expect the performance of such

an ensemble to be close to the best achievable for an ensemble where only local esti­

mates of generalisation error based on the training set are used, and the importance

of tuning diversity is not considered. Therefore, if we compare the generalisation per­

formance of such ensembles to the generalisation performance of ensembles trained

using NeuralBAG, any improvement in performance yielded by NeuralBAG can be

attribu ted (mostly) to tuning diversity.

The experiments were set up as follows. We generated 10 randomly sampled

training, validation and test sets for each data-set and averaged results across 10

experiments. Randomising the data-sets in this fashion is not normally done for

time-series prediction experiments - one usually trains on the past and predicts the

future. However, this convention for evaluating time-series models combined with the

use of validation sets in this experiment severely limits the statistical significance of

results. This is because only one test set for each data-set would be available for

evaluating generalisation performance. Treating the process as a standard function

approximation task as we do here allows us to generate more test sets and suffices as

a m ethod to increase the statistical significance of results.

For all of the data-sets the training, validation and test sets were of size 500,

500 and 230 respectively. Each combination of training, validation and test set for

each data-set are independent of each other. Note tha t the same training and test

set combinations are used for ensembles trained using NeuralBAG, the benchmark

technique and the simple early-stopping technique so as to get a direct comparison of

performance. All ensembles trained had 30 networks (in experiment 4 below we justify

this), a learning rate of 0.2 and momentum rate of 0.9. Ensembles trained with the

foreign exchange rate data-sets had 7 hidden units and with the stock-market index

data-sets 6 hidden units. We used the the technique described in (Baum and Haussler,

1988) to estimate these figures. The results are presented in table 3.1 and discussed

in section 3.5.5.

C H A P T E R 3. OPTIMIZING GENERALISATION P E RF OR M AN C E 41

Table 3.1: Experiment 1 results. Generalisation (test set) mean-squared error perfor­
mance of ensembles trained using NeuralBAG (NBAG) compared to the benchmark
technique adapted from (Breiman, 1996b) th a t uses local estimates of generalisation
error (B-LOCAL) and the simple technique described in section 3.3 th a t also uses lo­
cal estimates of generalisation error (S-LOCAL). Note th a t the U SD /CH F, S&P500
and NYSE results have been adjusted for clarity and ease of comparison. For example,
all of the S&P500 results have been multiplied by 10“ .̂

Dataset NBAG stdev B-LOCAL stdev S-LOCAL stdev
C H F /JP Y 1.23 0.07 1.26 0.06 1.26 0.06
U SD /JPY 1.98 0.16 1.99 0.14 2.00 0.15

S&P500 (*1Q2) 3.71 0.42 3.75 0.41 3.76 0.39
NYSE (*10) 7.62 0.88 7.97 0.80 8.17 0.78

3.5.2 Experiment 2: Does NeuralBAG over-fit or under-fit?

In this experiment we compare the average number of epochs or training iterations

tha t each of the 3 technicjues (NBAG, B-LOCAL and S-LOCAL) estim ate as opti­

mal. The aim is to determine whether NeuralBAG over-fits or under-fits the training

sets (relative to the other two techniques) when it tunes diversity. Using estim ates

recorded from experiment 1, we average the optimal number of epochs estim ated for

each network in each ensemble. This gives us a single average number of epochs for

each ensemble. We then average these figures across the 10 experiments performed

for each data-set. Note tha t we do not include standard deviations with the results.

This is because in the context of this experiment they are not meaningful or useful.

The results are presented in table 3.2 and discussed in section 3.5.5.

3.5.3 Experiment 3: How does ambiguity and generalisation

error evolve during training?

In this experiment we attem pt to illustrate the importance and value of tuning diver­

sity by plotting the ensemble test set (generalisation) performance (an estim ate for

E) against the corresponding ensemble ambiguity (an estim ate for A) and the average

individual network test set performance (an estim ate for E) as training evolves. We

CHAPTER 3. OPTIMIZING GENERALISATION PERFORMANCE 42

Table 3.2: Experiment 2 results. Average optimal number of epochs estim ated for
each ensemble and data-set in experiment 1.____________________

Dataset NBAG B-LOCAL S-LOCAL
C H F/JP Y 2577 964 1412
U SD /JPY 2359 1736 1439

S&P500 2713 2002 1675
NYSE 2820 1935 1665

do this for a single training and test set pair of the CHF/ JPY data and the S&P500

data.

Note tha t we could not directly use NeuralBAG to generate such a plot. This is

because it estimates a (possibly) different optimal number of epochs for each network

in the ensemble. This makes a single plot th a t compares these measures at each

epoch impossible. To overcome this and to generate a meaningful plot, w’e recorded

the responses generated by each network in the ensemble at each epoch for the test

set. Following training we computed the ensemble test set performance, the ensemble

ambiguity and the average individual network test set performance at each epoch.

The resulting plots are illustrated in figures 3.1 and 3.2 and discussed in section

3.5.5.

3.5.4 E xperim ent 4: How m any networks should th e ensem ­

bles have?

In this experiment we a ttem pt to investigate the effect the size of the ensemble has on

NeuralBAG and how it tunes diversity. Using the 10 C H F /JP Y and S&P500 training

and test set pairs, ŵ e plot the average test set performance across 10 experiments

against the number of networks in the ensemble. We also plot the average number of

epochs across 10 experiments against the number of networks in the ensemble. The

plots are illustrated in figures 3.2 and 3.3 and discussed in section 3.5.3.

CHAPTER 3. OPTIMIZING GENERALISATION PERFORMANCE 43

10 -

8 -

A verage individual netw/ori<
generalisation error

- E nsem b le generalisation error
Ambiguity

e
UJ

6 -

4 -

2 -

0 500 1000 1500 2000

E p o c h

Figure 3.1: Experiment 3 results, CHF/.IPY data. Here we compare the ensemble
generalisation performance to the ensemble ambiguity and the average individual
network generalisation performance as training evolves for a single training and test
set pair of the C H F /JP Y data.

3.5.5 D iscussion

In this section we discuss the results of the experiments described above. The re­

sults of experiment 1 dem onstrate the potential of NeuralBAG as a technique for

tuning diversity. On every data-set, it out-performs the benchmark local technique

(B-LOCAL). It does this despite having fewer validation samples (fti 63% the number

of samples used in benchmark technique per network in each ensemble). As expected

it also out-performs the simple local technique (S-LOCAL). The simple local tech­

nique has approximately the same number of validation samples per network in each

ensemble but does not tune diversity.

One of the key aims of these experiments is to verify th a t NeuralBAG improves

C H A P T E R 3. OPTIMIZING GENERALISATION P E RFO R M AN C E 44

1000 -

800 -

A v e rag e individual ne tw o rk
g en era lisa tio n e rro r

- E n se m b le g e n era lisa tio n erro r
A m biguity

2
ill

6 0 0 -

4 0 0 -

200 -

T ------------- '------------- 1------------- '------------- 1------------- '------------- 1------------- '------------- 1

0 500 1000 1500 2000

Epoch

Figure 3.2: Experiment 3 results, SfePoOO data. As above for hgure 3.1 but with the
S&P500 data.

performance by tuning diversity and not by any other means. The results of experi­

ments 2 and 3 help to confirm this. Taking experiment 2 first, the average number of

epochs estim ated as optimal for NeuralBAG is consistently larger than th a t for the

benchmark technique and the simple technique. This suggests th a t networks are over­

fitting their training sets (relative to the other techniques) in order to tune (which

translates to generating more) diversity. It is im portant to note however th a t the

ensemble generalisation error begins to increase after the optim al number of epochs

- it does not converge, instead the ensemble itself begins to over-fit the training set.

This is im portant as it implies th a t it is not good enough to just train every network

in a bagged ensemble to convergence - a controlled level of over-fitting is required.

The results of experiment 3 illustrate this effect very clearly. For the CH F/ JPY data,

the average individual network generalisation error is minimised much earlier (epoch

CHAPTER 3. OPTIMIZING GENERALISATION PERFORMANCE 45

1.7

1.6

1.5

1.4

1.3

1.2

60 1008020 40
Number of networks

Figure 3.3; Experiment 4 results, CHF/'JPY data, part 1. Here we plot the average
generalisation error across 10 experiments on the CHE/ JPY data as a function of the
number of networks in ensembles trained with NeuralBAG.

970) than the ensemble generalisation error (epoch 1590). For the S&P500 data, the

average individual network generalisation error is minimised at epoch 1005 and the

ensemble generalisation error at epoch 1910. However, for both data-sets the ensem­

ble generalisation error begins to increase again following the ensemble generalisation

error minima.

In experiment 4 we attem pt to investigate what effect the size of an ensemble has

on NeuralBAG. The results for the first part of the experiment are not a surprise -

as the size of an ensemble increases, generalisation error decreases. However, little

is to be gained by using more than 30 networks and improvements seem to level out

at around 100 networks. This is consistent with previous work on bagged ensembles

e.g. (Breiman, 1996a) and (Heskes, 1997a). The results on the second part of the

experiment are a little more interesting. Here, the average optimal number of epochs

CHAPTER 3. OPTIMIZING GENERALISATION PERFORMANCE 46

398
396
394
392
390
388

o
386

0)
c 384
S 382 ro

380
^ 378
S 376
^ 374

372
370
368
366

10080604020
Number of networks

Figure 3.4: Experiment 4 results, S&P500 data, part 1. As above for figure 3.3 but
with the S&P500 data.

increases because the variance (and therefore also the diversity) of a larger ensemble

will naturally be lower. To compensate for this effect NeuralBAG will over-fit the

networks a little more to generate more diversity.

Note th a t this work is also presented in (Carney and Cunningham, 1999b). How­

ever, popular benchmark regression data-sets were used for the experiments instead

of the financial data-sets used here.

3.6 R elation to other work

In this section we discuss how the work presented in this chapter relates to similar,

previous studies on neural network ensembles. Much of the work presented in this

chapter was inspired by the the work of Sollich and Krogh (1996). They studied the

C H APT ER 3. OPTIMIZING GENERALISATION PE R F O R M A N C E 47

2700 -

2650 -

2600 -

O 2550 -
Q .

2500 -

2450 -

2400
80 10020 40 60

Number of networks

Figure 3.5: Experiment 4 results, C H F/JPY data, part 2. Here we plot the average
estim ated optimal number of epochs across 10 experiments on the C H F /JP Y d a ta as
a function of the number of networks in ensembles trained with NeuralBAG.

characteristics and properties of simple linear ensembles and together with Krogh

and Vedelsby’s work (Krogh and Vedelsby, 1995) were the first to study in depth

the importance and value of diversity in neural network ensembles. More specifi­

cally, in (Sollich and Krogh, 1996) they proposed tha t for large linear ensembles,

under-regularized networks should be used and tha t a globally optim al ensemble gen­

eralisation error can be reached by also varying the training set sizes of the individual

networks. If only small ensembles can be trained due to com putational restrictions,

then they suggested th a t varying the re-sampling rate of the training sets is unneces­

sary (especially if the original training set is very noisy) and th a t a better approach

is to use an optimised weighted average to combine the networks in the ensemble.

So, how does their work relate to ours? Although there are a number of obvious

similarities in some of the conclusions, there are a number of im portant differences in

E
po

ch
s

C H A P T E R 3. OPTIMIZING GENERALISATION P E RF O R M AN C E 48

2900 -1

2850 -

2800 -

2750 -

2700 -

2650 -

2600 -

20 40 60 80 100
Number of networks

Figure 3.6; Experiment 4 results, S&P500 data, part 2. As above for figure 3.5 but
with the S&P500 data.

C H A P TE R 3. OPTIMIZING G EN ERALISATIO N PE R F O R M A N C E 49

the analysis and aims of their research. Firstly, our analysis is based on experiments

performed using ensembles of non-linear back-propagation neural networks trained

using noisy, real-world data. Secondly, we use an early-stopping technique to regu­

larise the networks, they use weight-decay. Thirdly, we are only interested in bagged

ensembles - we do not attem pt or desire to vary the re-sampling rate of the boot­

strapping process. As discussed in section 2.4, we believe th a t this can potentionally

be cumbersome to optimise and may cause difficulties when confidence and prediction

intervals are estimated. Finally, we don’t attem pt to use a weighted average - we

find the robustness of a simple average very attractive. We prefer to simply increase

the size of the ensemble to compensate for any problems caused by poorly performing

individual networks. Given the wide availability of significant com puter processing

power today, we believe this approach is justified. Also, as described in (Carney et

ai, 1999) and chapter 4, an added advantage of this approach is th a t large ensembles

can produce more accurate confidence and prediction intervals.

O ther related work includes Husmeier’s analysis of RVFL ensembles (Husmeier,

1999). He was the first to provide empirical evidence th a t over-fitting an ensemble of

non-linear networks can be useful. However, his focus is solely on RVFL ensembles

whose properties are significantly different to conventional back-propagation ensem­

bles. For example, in (Husmeier, 1999) he showed how bagging does not usually

improve the performance RVFL networks. He suggests th a t enough inherent insta­

bility exists in RVFL networks and introducing more by re-sampling the training sets

will not improve performance. Also, his focus is a little different from ours in tha t he

doesn’t expicitly attem pt to tune diversity.

Finally, the work of Heskes also has some similarites with ours. In (Heskes, 1997a),

he develops and evaluates a technique for optimising the performance of weighted

back-propagation ensembles. Although he does compute estimates of ensemble gen­

eralisation error he uses them for a different purpose and does not explicitly attem pt

to tune diversity.

CH A P T E R 3. OPTIMIZING GENERALISATION PE R F O R M A N C E 50

3.7 Summary

In this chapter we dem onstrated the importance and value of tuning diversity in

bagged neural network ensembles. Our approach of tuning diversity by varying the

fit of the networks is a simple idea, but nevertheless works very well for bagged

ensembles in practice. Also, it has one key advantage over other approaches ~ diversity

tuning and network param eter (weights) tuning are unified - both can be performed

simultaneously using the same algorithm. This would not be easy to achieve if a

different method (e.g. varying the re-sampling rate of the training set) were used to

tune diversity.

Also, an im portant finding of our work th a t must be stressed is th a t although some

over-fitting amongst networks in a bagged ensemble is usually required, it must be

controlled. If it is not, even large ensembles will over-fit and ensemble generalisation

performance will be compromised. Nevertheless however, it is fascinating to observe

over-fitting improving the generalisation performance of neural networks for a change.

Chapter 4

Predicting uncertainty

4.1 Introduction

In chapter 3 we proposed a new technique for optimising the generalisation perfor­

mance of bagged neural network ensembles. However, the predictions generated by

these ensembles are point predictions i.e. they do not include any measure of predic­

tion uncertainty. In reality, the quality of these predictions can vary significantly. For

example, there may be a large amount of unpredictable noise in the test da ta caused

by high volatility or other extreme market events. Given the im portance placed on

managing risk in financial institutions today point predictions are therefore of little

practical value. In this chapter we develop a new technique th a t generates inter­

val predictions th a t provide a valuable insight into the ensemble models and market

behaviour.

In section 4.2 we introduce the underlying theory of interval prediction by describ­

ing how uncertainty in regression is represented and outlining the difference between

confidence and prediction intervals. In section 4.3 we propose a new m ethod for com­

puting confidence intervals for neural network ensembles and illustrate the perfor­

mance gains it produces over previous techniques using a popular synthetic data-set.

In section 4.4 we show how the confidence intervals can be combined with econo­

m etric estimates of future volatility movements to generate prediction intervals. Our

approach is novel and in chapter 5 is shown to provide excellent interval predictions

51

C H A P T E R 4. PREDICTING U N CE RTA IN TY 52

of financial market movements over a number of prediction horizons.

4.2 U ncertainty in regression

In this section we introduce an analytical framework through which uncertainty in

regression can be described. Let us assume we are given a set of N training pairs

{ (i „ , , generated according to

where t is the observed target value, / (x) is the true regression and e(x) is noise with

zero mean. When we train a neural network on such data, our aim is for the network

to approximate the true regression /(x) . Using the notation introduced in section 2.3

let us denote this neural network approximation as 0(x), which can be interpreted

as an estimate of the mean of the distribution of target values given an input vector

X . For many real-world regression applications, it is highly desirable to have some

measure of confidence in this point prediction.

There are two “components” of confidence however. The first is concerned with

the accuracy of our estim ate of the true regression i.e. the distribution of the quantity

/ (x) —(/)(x). This distribution is a conditional distribution and in statistics is normally

expressed as F (/(x) |0 (x)) . In a regression context, measures of confidence based on

this distribution are usually termed confidence intervals (Heskes, 1997b). The second

component of confidence is concerned with our prediction of the targets themselves

i.e. the distribution of the quantity t — (j){'}c) or P (t|0 (x)) . These estimates are usually

term ed prediction intervals (Heskes, 1997b). As illustrated below in equation (4.2), a

confidence interval is enclosed in a prediction interval

Prediction intervals are of more practical use than confidence intervals for real-

world (especially financial) applications. This is because prediction intervals are con­

cerned with the accuracy with which we can predict the targets or observed values

t = / (x) + e(x) (4 1)

(4^2)

CHAPTER 4. PREDICTING UNCERTAINTY 53

themselves, not just the accuracy of our prediction of the true regression.

4.3 Confidence intervals

As described in section 4.2 above, confidence intervals are enclosed in prediction

intervals and are concerned with the accuracy of our estimate of the true regression i.e.

the distribution of the quantity / (x) — ^(x) or P(/(x)|^(x)). When we use a bagged

neural network ensemble, we are interested in the distribution of the quantity / (x) —

06ag(x) or P(/(x)|(/)(,ag(x)), where 4>bag{')̂ denotes the bagged ensemble prediction as
described in section 2.3. In this section we show how confidence intervals can be

computed for the estimate (t)bagi)̂-

4.3.1 Theory

To generate the confidence (and prediction) intervals we must assume our neural
networks provide unbiased estimates of the true regression / (x) . In other words (for
confidence intervals) we must assume the distribution P(/(x)l0bag(x)) is centered on

the estimate (f)bag{̂)- This assumption, of course, does not hold in practice - as with
any other estimator, neural networks can and usually are biased i.e. residual errors
are not caused by variance alone. However, it is generally accepted that the variance
component of residual error in neural network learning dominates the bias component
- see (Geman et al., 1992) for a comprehensive study of this issue.

To form our confidence intervals, we need to estimate the variance of the distribu­

tion P{f{x)\(f)bag{'^))- However, we have no direct access to this distribution and (for
real-world tasks) do not know what the true regression / (x) is. Using the outputs

of the bootstrap re-sampled networks in the ensemble, we can however approximate
it. The bootstrap outputs provide us with an empirical estimate of the distribution

P(0ha9(x)|/(x)) which is the “inverse” of the distribution P(/(x)|0ftag(x)). This em­
pirical estimate of P(0iag(x)|/(x)) is P(0(x)|0ftap(x)). Here, 06ap(x) replaces the true

regression to which we have no access. The variance of this distribution can be found

by calculating the variance across the bootstrap outputs. Note that by assuming

CHAPTER 4. PREDICTING UNCERTAINTY 54

P(/(x)|(/)bap(x)) is Gaussian we also assume its inverse P(0bag(x)|/(x)) is Gaussian

and so any estimates of variance for P((/)ftag(x)|/(x)) can be used as estimates of

variance for P(/(x)|</)hap(x)). This gives us

- (f>bag{̂)) ̂ (4.3)
^ ̂ 6=1

In (Heskes, 1997b), this variance measure is used to construct standard Gaussian
confidence intervals for weighted neural network bootstrap ensemble predictions.

This variance estimate however will be biased upwards for most predictions. This
is because it more accurately reflects the variance of the distribution P (/(x) |0 (x)) ,

not P(/(x)|06a(,(x)). In other words, it really only provides a variance measure suit­
able for computing a confidence interval for a single network prediction 0(x). As
discussed in chapter 2 bagging has the effect of significantly reducing the variance of
neural networks. This reduced variance should be reflected in the confidence interval.
We wall now propose a way to do this.

Using a large number of bootstrap networks for the ensemble (we use 200, but

fewer would suffice) we divide the ensemble into M smaller ensembles (we use 8 groups
of 25 networks each). This gives us a set of M ^hap(x) values

C = { C ,(x)} i^ i (4.4)

from which we approximate a more accurate variance measure for the distribution
P(06a5(x)|/(x)). However, we don’t simply compute a variance measure across (in
our case) the 8 ensemble outputs - this variance measure itself would be highly variable

and unreliable. Instead we undergo one more iteration of bootstrapping and use the
technique for which it was originally designed as described in section 2.2. We form P

(we use P = 1000) bootstrap re-sampled sets of C

(4.5)

C H A P T E R 4. P R E D I C T I N G U N C E R T A I N T Y 55

where

Cj = W ’ •••’ ^bagi^)} (4-6)

each containing M (ptagi^) values sampled with replacement from C. We calculate

a variance measure for each of these sets and then calculate an average of these

to provide a sm oother, lower variance estim ate of the variance of the distribution

P { (i) b a g { ^) \ f { ^)) - ^

= (4-7)
 ̂ i= i

where
1 ^

" M - K v g i ^) ? (4-8)
k=\

and
1 M

(Pivgi^) = 77 E 4'agi^)- (4-9)
fc=l

N ote that here, to estim ate the true regression, we use the com bination of values

across all the B networks in the ensemble and denote this as 4>b a g {')̂- In other

words, we approxim ate the distribution r((^6Q j,(x)l/(x)) from P((;i)hag(x)l^jg^G(x)).

T his second iteration of bootstraj)ping is not com putationally intensive (there are no

networks to train) and is easy to implement.

Now that we have a good variance estim ate for the distribution P (/(x) |0 (,a g (x)) ,

which ŵ e assum e to be G aussian, we can calculate a confidence interval in the usual

fashion

0 b ^ g (x) - 2<^""^(7s(x) < / (x) < 0 b a g (x) + ẑ “̂ “V 5 (x) (4.10)

The factor depends on the desired level of confidence ((e.g .) 90%, 95% etc.)

and can be taken from a standard Gaussian distribution table.

It should be noted that this technique can be applied to any neural network

ensem ble technique that uses the bootstrap to generate the training sets for the

ensem ble e.g. balancing (Heskes, 1997a) which uses a weighted average to com bine

the ensemble outputs. See (Carney et a i , 1999) for a more general description of the

technique.

CHAPTER 4. PREDICTING UNCERTAINTY 56

 1------------------' 1--------------- ' 1--------- ' 1--------------------- ' 1---------------- ' 1----------- '

0 200 400 600 800 1000

t e s t point

Figure 4.1; Synthetic test data generated using W ahba’s function.

4.3.2 Illustration

In this section we attem pt to illustrate the properties and performance of our confi­

dence interval technique by testing it on synthetic data. Our motivation behind using

synthetic data here is to maintain some statistical transparency and flexibility e.g. we

can exclude any noise and estimate how biased our ensembles are by comparing their

prediction to the true regression. Note tha t this section is merely an illustration of

the technique. A complete evaluation using financial data will be provided in chapter

5.

The synthetic data-set th a t we used is generated as follows. Inputs are uniformly

drawn at random from the interval [0,2], Here, the input vectors contain only a single

value. The target values are generated according to

(4 . 11)

CHAPTER 4. PREDICTING UNCERTAINTY 57

Table 4.1: Illustration of confidence interval performance expressed in terms of in­
terval non-coverage i.e. number of times the actual target value was not covered by
the interval (see section 5.2.5 for an exact description of this metric). Given that we
used 1000 test points for each experiment we would expect non-coverage of 200 for
an 80% interval for example._______________________________

INTERVAL NEW SIMPLE IDEAL
80% 220 35 200
90% 112 0 100
95% 58 0 50
99% 13 0 10

This function was first introduced in (Wahba and Wold, 1975) and is known as the
Wahba’s function. We generated 1000 data pairs for training and 1000 for testing.
The test set is illustrated in figure 4.1.

For our experiments, 200 networks were trained for the bagged ensemble. We ran
the test set through our ensemble following the steps outlined in section 4.3.1 above
to produce 80%, 90%, 95% and 99% confidence intervals for each test point. We
repeated the experiment using the simpler technique described in (Heskes, 1997b).
As illustrated by the results which are summarised in table 4.1, the simpler technique
produces intervals that are consistently too wide for ensemble predictions and provide
no non-coverage for the 90%, 95% and 99% intervals.

4.4 Prediction intervals

As described above in section 4.2 prediction intervals are concerned with the distri­

bution of the quantity i — </)bag(x) or P{t\<phag{'^)) i-e. they estimate the accuracy with
w^hich we can predict the targets or observed values themselves. To estimate predic­
tion intervals, we must incorporate the noise variance factor of a regression. This is

the variance of the noise component e(x) in equations 4.1 and 4.2. Incorporating this

factor, the variance of the complete regression can be given as

s^(x) = {(t - 0b.4g(x))^) = ((/(x) - (/>b4g(x))^) + (e^(x)) (4.12)

C H A P T E R 4. P R E D IC T IN G U N C E R T A IN T Y 58

where (.) denotes expectation. Note th a t we already have an estim ate of the model

variance from our boo ts trap technique described in section 4.3,

((/ (x) - <^b/1g (x))^) = a |(x) . (4.13)

In th is section we will develop a new technique to m odel the noise variance so th a t

s^(x) can be estim ated and prediction intervals generated.

The key to solving this problem is recognising th a t noise variance in regression is

equivalent to m arket volatility in econometrics. This is an im portan t connection to

make - volatility has been shown to be very predictable given the clustered na tu re of

its behaviour i.e. clusters of high volatility are followed by clusters of low volatility

(see (Alexander, 1998 (chapter 4) for a discussion and some illustrations of th is ef­

fect). Using this, we propose to use an established econom etric volatility prediction

technique to generate predictions of volatility and combine these w ith predictions

of the model variance (estim ated using the boo tstrap as in section 4.3) to generate

prediction intervals.

Before we illu stra te th is equivalence of noise variance and volatility and show how

it can be used to generate accurate prediction intervals, we will first describe how

volatility is estim ated and predicted in econometrics.

4.4.1 V olatility

T he volatility of a financial m arket is a m easure of how tu rbu len t it is i.e. a m easure

of how much prices “jum p ab o u t” . Given this, volatility cannot be observed and so

m ust be estim ated. Traditionally, the n-period historic volatility (HV) estim ate has

been used to do this. The HV estim ate a t tim e T is usually expressed in term s of an

annualised percentage s tandard deviation^ which we will denote as

(100i>rV^)% (4.14)

^This is done to standardise the volatility estimates so that volatilities of different maturities
may be compared on the same scale - see (Alexander, 1998 (chapter 4)).

C H A P T E R 4. PREDICTING U N CE RTA IN TY 59

where A denotes the number of observations per year and

E (4-15)
i = T —n

Note th a t here denotes the log-return at time i and n the period. This tech­

nique for estim ating volatihty has been replaced by more sophisticated general auto­

regressive conditional heteroskedastic (GARCH) and exponentially weighted moving

average (EWMA)^ methods in most financial institutions today. The EWMA tech­

nique has been popularised by it use for generating the RiskMetrics volatility da ta ­

sets and is generally accepted as the industry standard for volatility estim ation (and

prediction) today (Alexander, 1998 (chapter 4)).

The EWMA approach differs from the HV approach in th a t it places a higher

weight on more recent observations in the calculation for Ot - This approach has

two im portant advantages over the HV approach. The first is th a t the volatility

estim ate reacts faster to an abrupt change in the market i.e. a very large return.

The second is tha t following a shock the estimate of volatility declines exponentially

as tlie market reverts to normal behaviour and the weight of the shock observation

falls. HV methods on the other hand introduce what are known as “ghost features”

- the effect of a shock can be reflected in the volatility estim ate long after the market

returns to normal behaviour. For an EWMA volatility estim ate at time T,

OO

(1 - A) V\ i= l
(4.16)

which can be re-written in recursive form as

i>T = Ŷ (l - A)4 _ i -h (4.17)

Here it is assumed th a t we have access to an infinite set of returns^. This recursive

 ̂An EWMA is equivalent to an integrated GARCH (I-GARCH) without a constant term (Alexan­
der, 1998 (chapter 4); Zangari, 1996).

^In reality we never have access to an infinite set of returns and so the EWMA is usually “seeded”
using a simple squared log-return for example.

C H A P T E R 4. PREDICTING U N C E RTA IN TY 60

form makes it convenient to use the EWMA technique for predicting volatility 1-step

(e.g. day) ahead,

Zangari (1996) shows how this can be easily adapted to conveniently generate multiple-

step ahead predictions of volatility by using a simple multiple of a 1-step ahead pre­

diction,

Here h denotes the prediction horizon e.g. h = 5 will generate a prediction 5-steps

ahead.

4 .4 .2 E stim a tin g th e d eca y factor

The obvious drawback of using EWMA methods over HV methods is th a t the decay

factor A must be estim ated for each data-set and volatility horizon (e.g. 1-day volatil­

ity, weekly volatility etc.). We use the simple cross-validation technique outlined in

(Zangari, 1996) (which he calls the root mean squared error (RMSE) criterion) to do

this. This technique uses a variance prediction error which is defined as

(4.18)

(4.19)

or

(4.20)

Ct +1 = 4+1 - T̂+1- (4.21)

See (Zangari, 1996) for an analytical justification for the use of this error.

Using this, the root mean squared prediction error is defined as

R M S E (4.22)

Here the variance prediction is written as a function of A. This RMSE is com­

puted for a range of A values and the value th a t generates the minimum RMSE is

chosen as optimal for the data-set in question. Note th a t H denotes the number of

C H APT ER 4. PREDICTING UNCE RTAINTY 61

Table 4.2: Estimates for the decay factor A for each data-set used in this thesis. We
use 11 years of observations for the stock-market experiments {H = 2780) and 5 years
of observations for the foreign exchange experiments {H = 1238). We tested for 18
values of A (0.1,0.15, ...,0.9,0.95) for each volatility horizon.

DATASET 1-day 5-day 10-day 20-day
Coca-Cola 0.93 0.20 0.10 0.10

GEC 0.93 0.25 0.15 0.10
IBM 0.98 0.10 0.10 0.10

Microsoft 0.95 0.13 0.10 0.10
C H F/JP Y 0.98 0.30 0.20 0.15
U SD /JPY 0.98 0.30 0.25 0.15

S&P500 0.92 0.20 0.10 0.10
NYSE 0.93 0.15 0.10 0.10

observations th a t are used to compute the RMSE.

Unlike the RiskMetrics methodology outlined in (Zangari, 1996) which estimates

global estimates for A for each volatility horizon (e.g. A = 0.94 for all daily market

data, A = 0.97 for all monthly market data) we estimate a different A for each data-set

and volatility horizon used. The results are summarised in table 4.2.

4.4.3 C om bining volatility w ith m odel variance

In this section we will illustrate the equivalence of noise variance and volatility. We

also outline how we combine the model variance with the volatility estim ates to

generate prediction intervals.

Consider the following standard econometric model of financial returns (taken

from (Alexander, 1998 (chapter 4))),

Tj’ = C €x- (4.23)

Here tt is the return at time T, C is a constant and er is the residual error or noise

a t time T. Note tha t is assumed to be normally distributed with variance In

econometrics this noise variance is called the volatility.

If we build a more sophisticated model of financial returns e.g. using a neural

CH A P TE R 4. PREDICTING UNCERTAINTY 62

network ensemble, this noise variance (volatility) term does not change. However,

it is usually expressed in a different form e.g. as a function of the input vector x

as in equation (4.12). Therefore, the only hurdle to overcome if we want to use an

econometric volatility prediction technique to estimate noise variance is notational -

we need to somehow connect the econometric notation with the functional (regression)

notation.

To do this, we simply include the subscript T to denote the target that the volatil­

ity estimate Pt corresponds to. More specifically

«^(x) = ({ t r - 0 b 4g (x))̂) = ((/ (x) - (/)b a g (x))̂) + (e^(x)) = a |(x) + z>|. (4.24)

Here the EWMA technique outlined in sections 4.4.1 and 4.4.2 is used to estimate

9^. To generate a prediction interval we use

4>b a g { ^) - 2̂ “̂“^s(x) < t r < b̂ ĝ (x) + 2̂ “̂“^s(x) (4.25)

Again the factor depends on the desired level of confidence and can be taken

from a standard Gaussian distribution table.

4.5 Sum m ary

In this chapter we proposed new techniques for generating confidence and prediction

intervals for bagged neural network ensembles used for financial time-series prediction.

A unique feature of the prediction interval technique is that it relies on techniques

from a number of disciplines; statistics (the bootstrap), econometrics (the EWMA

technique) and machine learning (bagged ensembles). This multi-disciplinary ap­

proach is key to the technique’s success. In the next chapter we will empirically

evaluate all of the techniques proposed in this chapter.

Chapter 5

Evaluation

5.1 Introduction

In this chapter we evahiate the ability of our ensembles to predict future prices,

directional change and prediction uncertainty across the 8 financial time-series da ta­

sets (described in section 1.7).

We begin in section 5.2 by describing the statistical metrics used to evalute pre­

diction performance. In this section we also attem pt to justify why a revenue (profit)

based evaluation method was not used. In section 5.3 we outline the experimental

set-up of the experiments and in section 5.4 analyse the results of the experiments

in detail. One of our main aims in section 5.4 is to highlight im portant recurring

features in the results. As we shall illustrate and discuss in detail, the most consis­

tent recurring feature in the results is the dependancy of the predictions (of price and

directional change) on the magnitude of volatility - any poor results correspond to

periods of excessive volatility, any excellent results to periods of low volatility. An­

other im portant feature related to this is the quality and stability of the prediction

intervals even over such periods of excessive volatility - as we shall show, this has

significant implications for risk management in real-world trading scenarios.

Overall, the results of this chapter clearly illustrate the potential of the techniques

proposed in earlier chapters for predicting future financial market behaviour.

63

C H APT ER 5. EVALUATION 64

5.2 Evaluation m etrics

In this section the metrics used to measure the relative and absolute prediction perfor­

mance of ensembles trained using our techniques are described. Most of them are well

known; they include the root mean squared error (RMSE), the correlation coefficient

(CC), the information coefficient (IC) (also known as the ^-test or Theil’s coefficient

of inequality) and the d-statistic (DC) (used to measure directional change prediction

accuracy). We also describe how we evaluate the accuracy of the prediction intervals

(and therefore also implictly the confidence intervals) by measuring the non-coverage

(NC) of the intervals over the test sets.

Note tha t in this thesis we do not attem pt to evaluate the performance of the

ensembles by tracking profits earned during simulated trading sessions or some other

revenue based method. This is because our techniques generate predictions, not trad ­

ing (e.g. buy or sell) signals. Using predictions to generate such signals requires

expertise th a t is beyond the scope of this thesis and, in any case, is sensitive to a

large number of situation specific variables e.g. transaction costs, gearing (percentage

of money borrowed to make the trade), market liquidity, portfolio value-at-risk and

so on. It is generally accepted today tha t to effectively evaluate a prediction system

using revenue based techniques, actual trades with real money should be executed.

However, this is not usually an option for academic research - using objective sta­

tistical measures of prediction performance such as those described in this section is

perhaps the best alternative.

5.2.1 Root mean squared error

The RM SE is probably the most widely used measure of estim ator performance in

times-series prediction and econometrics. We have already used it in section 4.4.2 for

param eter tuning. Here we use it to measure prediction accuracy in absolute terms

across a test set of size N ,

R M S E = ,
\ n = l

(5.1)

C H A P T ER 5. EVALUATIO N 65

where yn is the predicted vahie and the target value.

5.2.2 Correlation coefficient

The CC is another popular measure of absolute prediction accuracy. It measures the

where y = l /n Y ,n = \yn and t = = 1 denotes perfect correlation

5.2.3 Inform ation coefficient

It is very im portant to compare the performance of the ensembles against the perfor­

mance of trivial predictors. The IC gives a good measure of the ensemble prediction

performance relative to the martingale random walk model (see section 1.2),

For /C > 1, the neural network is worse than the martingale; for IC < \ it is better

than the martingale. As IC approaches zero the ensemble is doing infinitely better

than the martingale.

This equation can be easily adjusted to estimate the information coefficient for

predictions more than one day ahead. For example if we wanted to compare the

accuracy of the ensemble against the performance of the m artingale for 5-day ahead

predictions we would used the following,

linear correlation between predicted values (?/„) and actual values (i„), averaged over

all observations,

A'(i„ - i)(i„ - t)
(5.2)

between actual and predicted values and CC^ = 0 signifies no correlation.

(6.3)

I C = (5.4)

CHAPTER 5. EVALUATION 66

5.2.4 Directional change

Although predicting the levels of price changes is desirable, in many cases the direction

of the change is equally important. To estimate the directional prediction accuracy

we use the following test statistic,

D C = ^ T < ‘n (5-5)
n = l

where = 1 if (t„ — ~ tn-i) > 0 and = 0 otherwise (for 1-day ahead
predictions). Any estimator with DC > 0.5 is doing better than tossing a coin,
DC — 1 implies the estimator is predicting 100% of the directional changes and
d = 0, 0% of the directional changes.

5.2.5 Interval non-coverage

The NC is a measure of the number of times the actual target value is not covered
by or falls outside an interval. We use the following statistic to measure this,

7VC = ^ f : c„ (5.6)
n = l

where c„ = 1 if (t„ — ln){Un — tn) > 0 and c„ = 0 otherwise. Here In denotes the
prediction for the lower bound of an interval and denotes the prediction for the
upper bound of an interval. If c„ = 0 .1 for example, then 10% of the targets are not
covered by the intervals - this would be a perfect result for a 90% interval.

5.3 Experim ental set-up

In this section we describe the experimental set-up of the experiments used to evaluate

the predictive ability of the ensembles. For each data-set we perform experiments

over 4 different prediction horizons; 1-day, 5-days, 10-days and 20-days ahead^ Our

5-day prediction horizon for example spans a week of trading - if today is Monday then a
5-day ahead prediction aims to predict the closing price of the following Monday.

CHAPTER 5. EVALUATION 67

1/9/88 2̂IAi/99 1/9/99

Training
set

Test
set

SIMLIVE

1/9/88 13/11/98 9/4/99 1/9/99

BACKTEST1Training Test Training
set set set

1/9/8816/4/97 5/9/97

Test Training
set set

1/9/99

BACKTESTS

Figure 5.1; Training and test set organisation for the the BACKTEST and SIMLIVE
experiments (1-day ahead). Each data-set used has identical training and test set
organisations. However the dates will obviously differ amongst the different prediction
horizons.

motivation for using these prediction horizons is tha t they are typical in real-world

trading scenarios, particularly for options and forwards trades. We perform two

types of experiment for each data-set also. The first, which we call “simulated live”

(SIMLIVE), uses 100 test vectors (approximately 20 weeks of trading) which were not

used in any part of the training process i.e. for building the ensemble or estim ating

the decay factor for the EWMA volatility model. Therefore the test set is completely

new to all of the models used to generate the predictions and so simulates a live

trading scenario. The SIMLIVE experiments are classical time-series experiments -

the test sets are made up of the most recent observations in the time-series and so

we train on the past and test on the future.

CHAPTER 5. EVALUATION 68

The second, called “back-testing” (BACKTEST) also uses 100 test vectors. How­

ever we perform 5 BACKTEST experiments for each data-set and time horizon. The

BACKTEST experiments are used to increase the statistical significance of the results

- the test sets here consist of contiguous sets of vectors th a t may occur before some

training vectors in the time series. Although these test vectors will not have been

used for training the ensembles, they will have been used to estim ate the decay factor

for the EWMA volatility model. Figure 5.1 illustrates this set-up.

5.3.1 Stocks

As described in section 1.7.1 we test the prediction performance of the ensembles

on 11 years (1 /9 /88 -1 /9 /99) of 4 stock-market data-sets; General Electic Corpora­

tion (GEC), Coca-Cola, Microsoft Corporation and International Business Machines

(IBM). The training vector set-up for each data-set is the same.

Using the notation introduced in section 1.7.1 but a more detailed expression for

the training vector, the 1-day ahead vector set-up is

^Xdayi '^^Idayi ^^'Xdayt (•̂')̂

where

T i d a y = (r t _ 4 , r t _ 3 , r (_ 2 , r t _ i , r «) , (5.8)

^^ I day 4) 3) 2) 1) ^^f.)! (5.9)

V t i d a y = { v t t - 4 , v t t - 3 , v t t - 2 , v t t - i , v t t) , (5.10)

i d i d a y = (spt,nyt,djt), (5.11)

d t u a y = {dt,mt,wdt). (5.12)

Here we use a more elaborate expression for the 1-day ahead training vector set-up

than th a t used in section 1.7.1 to allow it to be clearly distinguishable from training

vector set-ups used for other prediction horizons.

C H A P T E R 5. EVALUATION 69

The 5-day ahead training vector set-up is

(5^13)

where

1"5d,ay ~ { ^ 1 - 2 0 , 1^1-15, f t - l O , f t - 5 , f t) ,

'^l‘5d a y — (^ ^ t —20) 15i 10) 5)

'^ tb d a y — 20) 15) 1 0) 5 >)

idMay = [spu niju dj t),

(5.14)

(5.15)

(5.16)

(5.17)

and

(5.18)

Note th a t here the lagged series {r^day, vkday and vt^day) includes tem poral information

spanning 20 days of trading. Note also th a t we use 5-day returns (i.e. rt = log{pt) —

log{pt-^)) and 5-day (weekly) volatilites. These changes are necessary to enable the

ensembles to identify 5-day temporal structures (if they exist) in the training data.

The 10-day ahead training vector set-up is

For reasons identical to those for the 5-day ahead prediction horizon the lagged series

^ l Oda yt ^ ^ W d a y i ^^ lO day) ^^lOdaj/) d t \ Q d a y i ^ t +1 0 (5.19)

where

f l O d a y = (^ t - 4 0) ^ « - 3 0) ’’ i - 2 0) J’ f - l O) ?'«))

Vhoday = { v h - A 0 , v l t - S 0 , v l t - 2 0 , v l t - l Q , v l t) ,

V t w d a y = { v t t - A 0 , V t t - S 0 , V t t - 2 0 , V t t - W , V t t) .

^d\Qday {^Pti ^Vti djt} 1

(5.20)

(5.21)

(5.22)

(5.23)

and

dtioday — {dt, 7Tlt, wdt) ■ (5.24)

C H A P T E R 5. EVALUATION 70

includes tem poral information spanning 40 days of trading and we use 10-day returns

and volatilities.

The 20-day ahead training vector set-up is

^20dayi ^^20dayi ^̂ 20da?/? ^^20daj/) ^ 2̂0da?/) ^t+20 (5.25)

where

'>'2i)day = (? ' t - 8 0 5 ^4 -6 0) 5 ^ t - 2 0 >)> (5.26)

vhoday = {vlt-80^ vlt-eOi vlt-io, vlt-20, vlt), (5-27)

Vt20day = (vtt-80, Vtt-eo, Vtt-iO, Wt(_20, Vtt), (5.28)

i d 20day ^ {spt, nyt, djt), (5.29)

and

d t 2 0 d a y ^ { d t , m t , w d t) . (5.30)

Here the lagged series includes temporal information spanning 80 days of trading and

we use 20-day returns and volatilities.

The results of all experiments performed on the stock-market data-sets are sum­

marised in tables 5.1, 5.2, 5.3 and 5.4 and analysed in section 5.4.1. Note th a t the

predicted returns for these (and experiments performed on all other data-sets) are

transformed back to prices for reporting the results.

5.3.2 Stock-market indices

We also test the prediction performance of the ensembles on 11 years (1 /9 /88-1/9 /99)

of 2 stock-market index (S&P500 and NYSE) data-sets. The training vector set-up

is very similar to tha t used above for the stock-market data-sets. For example, the

1-day ahead training vector set-up for the S&P500 data-set is

^ P l d a y i ^ ^ \ d a y j ^ t l d a y i ^ P t + l (5.31)

CHAPTER 5. EVALUATION 71

where

S P l d a y = { s p t - 4 , S P t - 3 , S p t - 2 , S P t - U S P t) ,

^^i day 4 5 3) 2 i 1)))

V t i d a y = { v t t - 4 , v t t - 3 , v t t - 2 , v t t - u v t t) ,

^dlday

(5.32)

(5.33)

(5.34)

(5.35)

and

(5.36)

The training vectors for the other index data-sets and for all the prediction horizons

can be trivially derived from this.

The results of all experiments performed on the stock-market index data-sets are

summarised in tables 5.5 and 5.6 and analysed in section 5.4.2.

5.3.3 Foreign exchange

We test the ensembles using 5 years (20/5/92 - 20/5/97) of 2 foreign exchange market

data-sets; C H F /JP Y and U SD /JPY . Again, the training vector set-up is very similar

to th a t used for the stock-market data-sets. However, the dates spanning the training

and test sets will be different but can be trivially derived. The 1-day ahead training

vector set-up for each foreign exchange data-set is

\̂day-i ̂ tldayj ̂ Idayj dtidayi ̂ t+l (5.37)

where

riday = {rt-4,rt-3,rt-2,rt-i,rt),

v t i d a y = { v t t - 4 , v t t - 3 , v t t - 2 , v t t - u v t t)

^ I day (^t—4) 3) 2) 1)))

(5.38)

(5.39)

(5.40)

and

dtiday = {dt,mt,wdt). (5.41)

CHAPTER 5. EVALUATION 72

As for the stock-market index data-sets we will not detail the exact make-up of each

training vector set-up for each prediction horizon as it can be trivially derived from

this.

The results of all experiments performed on the foreign exchange data-sets are

summarised in tables 5.7 and 5.8 and analysed in section 5.4.3.

5.4 A nalysis o f results

In this section we discuss and analyse the results of all the experiments described
in this chapter. The aim is to establish the overall predictive accuracy of the en­
sembles and to highlight important properties of the ensembles such as dependancies
of predictive accuracy on the volatility of the test sets and on the prediction hori­

zons. Determining what constitutes “good” prediction performance is not easy in
the context of financial time-series prediction. However, as a guideline we expect the
ensembles to at least out-perform the martingale random walk model and achieve a
directional prediction accuracy of above 50%^.

Each table (5.1-5.8) consists of results for a single data-set (e.g. Coca-Cola) across
4 prediction horizons - 1-day, 5-days, 10-days and 20-days ahead. For each prediction
horizon we include the results of 6 experiments - simulated-live (SIMLIVE) and back­
tests 1-5 (BACKTESTl-5). The evaluation metrics that we include in each table are
the root mean squared error (RMSE), the root mean squared error of the martingale
random walk model {RW), the information coefficient {IC), the correlation coefficient
squared (CC^) and the directional prediction accuracy (expressed as a percentage)
{DC). We also include the average volatility of the market over a test set {VT) and

the interval non-coverage (expressed as a percentage) for 80%, 90%, 95% and 99%
intervals.

Note that for all experiments we trained ensembles of 200 networks. Each ensem­

ble required approximately 1 hour of compute time to be trained using the C-MPI

•^Anything above a directional prediction accuracy of 52% should recover costs and generate a
profit. The best traders predict directional change correctly 55-60% of the time (personal commu­
nication Beacon Systems Ltd.).

CHAPTER 5. EVALUATION 73

implementation of NeuralBAG and 8 processing nodes on the TCD CS Departm ent

SCI Cluster.

5.4.1 Stocks

In this section we discuss the results of the experiments performed on the stock-market

data-sets (tables 5.1-5.4).

Overall the results of the Coca-Cola experiments are quite promising. The 1-day

ahead and 5-day ahead predictions are consistent and the BACKTEST3 and BACK-

TEST4 experiments over these horizons are particularly good. The average interval

non-coverage is also very good over these horizons. The results for the 10-day ahead

and 20-day ahead predictions (although on average are roughly equivalent to the

5-day and 10-day ahead results) are highly variable however - although the BACK-

TEST3 and BACKTEST4 results are excellent, the SIMLIVE, BA CK TESTl and

BACKTEST2 results are poor. Note tha t the very poor results e.g. BACKTEST2

correspond to periods of very high volatility. This is a phenomenon we will see recur­

ring in the results of experiments performed on the other data-sets also - it confirms

what one would expect - more volatility implies more noise variance (randomness)

and therefore poorer predictions. Another significant feature of the Coca-Cola results

is th a t the quality of the prediction intervals are not sensitive to the quality of the

predictions. This also confirms what one would expect - the quality of a volatility

prediction does not deteriorate as the magnitude of the volatility increases. Overall

these predictions if traded live on the market could generate a reasonable return.

The GEC results are more promising than the Coca-Cola results. They are gen­

erally more consistent and over the 5-day, 10-day and 20-day prediction horizons are

excellent in terms of directional prediction accuracy, peaking twice at 76% for the

20-day ahead predictions. Again the poor results (e.g. BACKTEST2, 20-day ahead)

correspond to periods of very high volatility. Also, the prediction intervals are not

sensitive to the magnitude of the volatility. However, the prediction intervals do seem

to be sensitive to the prediction horizon -- although on average the quality of all the

intervals are roughly equivalent, the 10-day and 20-day intervals are significantly more

CHAPTER 5. EVALUATION 74

variable. We will re-visit this issue in section 5.4.3. Overall, these predictions could

generate a profit, especially the 10-day and 20-day ahead predictions.

The IBM results are excellent. The 5-day ahead predictions are particularly

promising - an average directional prediction accuracy of 70% is exceptional, espe­

cially given the consistency of the results across all 6 of the 5-day ahead experiments.

The BACKTESTS results for the 10-day ahead predictions which have a directional

prediction accuracy of 81% are also exceptional. A significant feature of all the IBM

results is th a t there are no very poor results. This is due (in large part a t least) to the

absence of periods of very high volatility - volatility instead is relatively stable. This

introduces consistency to the results and perhaps even predictable structure th a t the

ensembles model to generate the excellent predictions^. The prediction intervals for

the 1-day, 5-day and 10-day ahead predictions are similar in quality to those for the

previous data-sets. However the 20-day predictions are consistently too wide. As

previously mentioned we will re-visit this issue in section 5.4.3. Overall, the IBM

results are excellent and could generate a significant profit if applied to real-world

trading.

The Microsoft Corporation results are quite promising. The BACKTEST3 and

BACKTEST4 experiments across all prediction horizons are particularly good. These

experiments correspond to periods of low volatility. The prediction intervals are very

good for the 1-day, 5-day and 10-day ahead prediction horizons but quite poor for

the 20-day ahead horizon. However, they still remain good enough to be useful.

For illustrative purposes, in figure 5.2 we plot the results of the first 20 days of

the GEC SIMLIVE 20-day ahead experiment. In this illustration the correspondance

between the quality of the predictions and the width of the prediction intervals is

clearly observable. In practical trading scenarios this is very valuable - if a trader

can observe the quality of a prediction before its horizon expires then he can manage

risk more effectively e.g. if an interval is relatively narrow he can place a larger trade

to bet on the corresponding prediction than if the interval is relatively wide.

^This is merely speculation - significantly more analysis would be needed to confirm this.

CHAPTER 5. EVALUATION 75

Table 5.1: Coca-Cola 1-day, 5-days, 10-days and 20-days a'
1-DAY RMSE RW IC CC'^ DC VT 80% 90% 95% 99%

SIMLIVE 1.00 1.00 1.00 0.82 52 25.50 16 10 3 0
BACKTESTl 1.26 1.26 1.00 0.86 56 30.36 23 9 3 2
BACKTEST2 1.67 1.66 1.01 0.97 55 34.76 18 11 5 3
BACKTESTS 1.04 1.05 0.98 0.95 60 22.64 19 8 5 2
BACKTEST4 1.09 1.10 0.98 0.90 53 29.24 17 11 5 3
BACKTEST5 1.10 1.11 1.00 0.93 53 28.54 16 8 4 2

AVG 1.19 1.20 1.00 0.90 54.83 28.51 18.17 9.50 4.17 2.00
STDEV 0.25 0.24 0.01 0.06 2.93 4.16 2.64 1.38 0.98 1.10
5-DAY RMSE RW IC CC ‘̂ DC VT 80% 90% 95% 99%

SIMLIVE 1.94 1.92 1.01 0.62 55 44.34 23 14 7 0
BACKTESTl 2.91 2.93 0.99 0.37 47 61.43 23 11 8 0
BACKTEST2 4.S7 4.09 1.07 0.83 50 68.87 24 13 8 2
BACKTESTS 2.09 2.25 0.93 0.82 62 41.17 24 13 6 2
BACKTEST4 2.05 2.18 0.94 0.65 72 49.33 22 13 6 3
BACKTEST5 2.37 2.37 1.00 0.72 52 47.60 24 14 5 0

AVG 2.62 2.62 0.99 0.67 56.33 52.12 23.33 13.00 6.67 1.17
STDEV 0.92 0.79 0.05 0.17 9.22 10.73 0.82 1.10 1.21 1.33
10-DAY RMSE RW IC CC- DC VT 80% 90% 95% 99%
SIMLIVE 2.66 2.61 1.02 0.32 50 57.72 24 14 9 2

BACKTESTl 3.44 3.62 0.95 0.38 42 72.89 23 13 7 3
BACKTEST2 6.84 6.41 1.07 0.62 36 113.47 21 11 4 1
BACKTESTS 2.75 3.31 0.83 0.85 80 57.95 16 6 3 1
BACKTEST4 2.85 3.23 0.88 0.63 61 60.98 23 10 7 2
BACKTEST5 3.53 3.62 0.97 0.67 50 70.50 17 9 6 2

AVG 3.68 3.80 0.95 0.58 53.17 72.25 20.67 10.50 6.00 1.83
STDEV 1.59 l.SS 0.09 0.20 15.63 21.19 3.39 2.88 2.19 0.75

20-DAY RMSE RW IC C C ‘̂ DC VT 80% 90% 95% 99%
SIMLIVE 3.33 3.15 1.06 0.07 47 75.80 21 7 5 1

BACKTESTl 3.07 3.56 0.86 0.13 43 75.52 24 9 4 1
BACKTEST2 12.52 10.76 1.16 0.19 33 188.53 16 6 3 0
BACKTESTS 3.86 4.94 0.78 0.54 81 87.20 16 7 3 1
BACKTEST4 5.57 14.95 0.37 0.76 92 93.08 16 8 3 0
BACKTEST5 4.48 5.64 0.79 0.33 57 119.99 17 9 4 0

AVG 5.47 7.17 0.84 0.34 58.83 106.69 18.33 7.67 3.67 0.50
STDEV 3.57 4.69 0.27 0.27 23.03 43.28 3.39 1.21 0.82 0.55

lead prediction results.

CHAPTER 5. EVALUATION 76

Table 5.2: General Electric Corporation 1-day, 5-days, 10-days and 20-days ahead
prediction results.___

1-DAY RMSE RW IC CC^ DC VT 80% 90% 95% 99%
SIMLIVE 2.00 2.01 0.99 0.85 44 29.01 19 8 3 1

BACKTESTl 1.81 1.85 0.98 0.94 52 28.58 17 10 7 1
BACKTEST2 1.8S 1.84 0.99 0.91 54 33.56 16 9 5 3
BACKTEST3 0.95 0.97 0.98 0.99 51 19.43 16 9 3 2
BACKTEST4 1.26 1.28 0.98 0.96 58 30.04 18 7 5 3
BACKTEST5 l.OS 1.06 0.98 0.96 57 26.07 22 8 4 2

AVG 1.38 1.40 0.98 0.95 52.67 27.53 18.00 8.50 4.50 2.00
STDEV 0.42 0.42 0.01 0.03 5.05 5.28 2.28 1.05 1.52 0.89
5-DAY RMSE RW IC CC^ DC VT 80% 90% 95% 99%

SIMLIVE 4.43 4.48 0.99 0.36 50 56.82 22 7 4 1
BACKTESTl 3.87 3.95 0.98 0.74 66 54.41 23 12 4 0
BACKTEST2 4.39 4.23 1.04 0.55 60 65.39 16 7 3 0
BACKTESTS 1.96 1.96 1.00 0.76 57 32.36 16 7 3 1
BACKTEST4 2.51 2.53 0.99 0.96 61 47.51 19 8 4 0
BACKTEST5 2.28 2.39 0.95 0.86 60 52.78 15 7 2 0

AVG 3.00 3.01 0.99 0.77 59.00 50.49 18.50 8.00 3.33 0.33
STDEV 1.06 1.01 0.03 0.15 5.29 12.04 3.39 2.00 0.82 0.52
10-DAY RMSE RW IC CC^ DC VT 80% 90% 95% 99%
SIMLIVE 5.77 5.71 1.01 0.10 54 71.08 25 10 4 1

BACKTESTl 5.14 5.68 0.91 0.58 74 70.47 16 11 5 0
BACKTEST2 6.24 6.38 0.98 0.23 50 99.01 14 6 3 1
BACKTESTS 2.57 2.81 0.92 0.58 60 45.08 16 3 2 0
BACKTEST4 2.50 2.81 0.89 0.52 69 53.13 14 3 2 0
BACKTESTS 3.35 3.69 0.91 0.76 65 81.57 16 5 2 0

AVG 3.96 4.27 0.92 0.53 62.00 69.85 16.83 6.33 3.00 0.33
STDEV 1.66 1.66 0.03 0.19 9.10 21.69 4.12 3.44 1.26 0.52

20-DAY RMSE RW IC CC^ DC VT 80% 90% 95% 99%
SIMLIVE 7.73 8.01 0.97 0.02 52 96.12 22 11 5 2

BACKTESTl 5.45 7.52 0.73 0.59 76 84.07 19 7 6 4
BACKTEST2 7.67 7.59 1.01 0.03 45 101.41 25 15 8 4
BACKTESTS 4.08 4.37 0.93 0.41 76 66.06 15 5 2 0
BACKTEST4 3.90 3.96 0.98 0.23 65 74.03 19 9 6 1
BACKTEST5 4.94 5.54 0.89 0.56 50 134.70 16 4 3 1

AVG 5.21 5.80 0.92 0.37 60.67 92.05 19.33 8.50 5.00 2.00
STDEV 1.52 1.71 0.10 0.24 13.59 27.25 3.72 4.09 2.19 1.67

CHAPTER 5. EVALUATION 77

Table 5.3: International Business Machines 1-day, 5-days, 10-days and 20-days ahead
prediction results.___

1-DAY RMSE RW IC CC^ DC VT 80% 90% 95% 99%
SIMLIVE 2.85 2.89 0.99 0.95 54 40.46 16 6 4 2

BACKTESTl 1.98 1.99 1.00 0.90 57 34.41 16 8 6 1
BACKTEST2 1.27 1.34 0.95 0.91 56 31.99 19 7 5 1
BACKTEST3 0.88 0.88 1.00 0.89 58 30.14 22 8 7 2
BACKTEST4 1.28 1.29 0.99 0.97 52 37.32 17 6 3 0
BACKTESTS 0.85 0.88 0.96 0.98 68 31.50 16 6 4 0

AVG 1.52 1.54 0.98 0.93 57.50 34.30 17.67 6.83 4.83 1.00
STDEV 0.77 0.77 0.02 0.04 5.58 3.94 2.42 0.98 1.47 0.89
5-DAY RMSE RW IC CC^ DC VT 80% 90% 95% 99%

SIMLIVE 6.79 6.76 1.00 0.76 64 73.37 24 14 7 3
BACKTESTl 4.15 4.23 0.98 0.82 64 64.54 24 14 7 1
BACKTEST2 2.85 3.08 0.93 0.81 65 63.03 22 12 5 1
BACKTESTS 1.99 2.03 0.98 0.95 82 54.36 22 13 5 0
BACKTEST4 2.20 2.37 0.93 0.91 75 61.69 23 10 3 1
BACKTESTS 1.84 1.93 0.95 0.92 72 56.73 20 9 4 0

AVG S.SO 3.40 0.96 0.86 70.33 62.29 22.50 12.00 5.17 1.00
STDEV 1.91 1.86 0.03 0.07 7.34 6.67 1.52 2.10 1.60 1.10
10-DAY RMSE RW IC CC^ DC VT 80% 90% 95% 99%
SIMLIVE 9.33 9.30 1.00 0.66 61 105.97 19 14 7 1

BACKTESTl 5.44 5.52 0.99 0.72 62 85.50 18 13 7 0
BACKTEST2 4.25 4.28 0.99 0.71 54 89.57 22 12 7 1
BACKTESTS 2.69 2.82 0.95 0.95 81 54.36 17 8 4 1
BACKTEST4 2.78 2.80 0.99 0.91 53 73.54 16 9 5 1
BACKTEST5 2.85 2.87 0.99 0.87 51 85.78 22 11 7 2

AVG 4.56 4.60 0.99 0.80 60.33 82.45 19.00 11.17 6.17 1.00
STDEV 2.58 2.55 0.02 0.12 11.06 17.28 2.53 2.32 1.33 0.63

20-DAY RMSE RW IC CC'^ DC VT 80% 90% 95% 99%
SIMLIVE 14.08 14.03 1.00 0.50 66 155.02 13 4 3 3

BACKTESTl 7.47 7.49 1.00 0.55 60 125.59 13 6 5 1
BACKTEST2 6.01 6.03 1.00 0.41 62 116.33 12 5 3 0
BACKTESTS 3.11 4.00 0.78 0.92 76 54.36 16 8 2 1
BACKTEST4 2.85 3.08 0.93 0.66 69 79.48 17 7 3 2
BACKTEST5 4.83 4.83 1.00 0.21 54 146.38 16 6 3 2

AVG 6.39 6.57 0.95 0.54 64.50 112.86 14.50 6.00 3.17 1.50
STDEV 4.15 3.97 0.09 0.24 7.64 39.02 2.07 1.41 0.98 1.05

CHAPTER 5. E m iU A T I O N 78

Table 5.4: Microsoft Corporation 1-day, 5-days, 10-days and 20-days ahead prediction
results.___

1-DAY RMSE RW IC CC^ DC VT 80% 90% 95% 99%
SIMLIVE 2.0S 2.05 0.99 0.87 54 37.59 17 9 5 1

BACKTESTl 2.01 1.99 1.01 0.81 50 42.07 19 8 3 0
BACKTEST2 1.38 1.40 0.98 0.91 53 41.42 22 9 5 1
BACKTEST3 0.91 0.91 1.00 0.84 57 30.86 18 11 4 2
BACKTEST4 0.59 0.63 0.93 0.97 65 30.05 21 8 4 1
BACKTEST5 0.68 0.70 0.97 0.95 64 34.67 17 9 3 0

AVG 1.27 1.28 0.98 0.89 57.17 36.11 19.00 9.00 4.00 0.83
STDEV 0.64 0.63 0.03 0.06 6.11 5.14 2.10 1.10 0.89 0.75
5-DAY RMSE RW IC CC^ DC VT 80% 90% 95% 99%

SIMLIVE 4.10 4.25 0.97 0.47 50 65.10 21 9 3 0
BACKTESTl 4.41 4.40 1.00 0.52 52 80.00 20 7 3 1
BACKTEST2 3.16 3.16 1.00 0.43 49 80.97 22 11 5 2
BACKTESTS 1.89 2.11 0.90 0.86 77 47.16 17 8 6 0
BACKTEST4 1.36 1.37 0.99 0.81 66 52.49 16 8 6 1
BACKTEST5 1.55 1.58 0.98 0.83 59 63.72 18 9 5 0

A\^G 2.75 2.81 0.97 0.65 58.83 64.91 19.00 8.67 4.67 0.67
STDEV 1.33 1.33 0.04 0.20 10.98 13.83 2.37 1.37 1.37 0.82
10-DAY RMSE RW IC C C ‘̂ DC VT 80% 90% 95% 99%
SIMLIVE 5.82 5.92 0.98 0.17 52 94.36 23 14 8 0

BACKTESTl 6.49 6.49 1.00 0.16 49 121.92 16 5 3 0
BACKTEST2 4.72 4.74 1.00 0.15 51 125.87 17 9 4 1
BACKTESTS 2.65 2.81 0.94 0.83 81 43.04 20 7 6 1
BACKTEST4 1.89 1.91 0.99 0.67 76 67.57 18 11 3 0
BACKTEST5 2.13 2.13 1.00 0.18 54 85.25 16 7 3 0

AVG 3.95 4.00 0.98 0.36 60.50 89.67 18.33 8.83 4.50 0.33
STDEV 1.99 1.99 0.02 0.31 14.12 31.80 2.73 3.25 2.07 0.52

20-DAY RMSE RW IC CC'^ DC VT 80% 90% 95% 99%
SIMLIVE 7.27 8.45 0.86 0.01 54 135.14 22 11 5 2

BACKTESTl 10.01 10.10 0.99 0.02 50 199.79 18 8 4 1
BACKTEST2 6.15 6.18 1.00 0.15 51 147.58 10 2 0 0
BACKTESTS 3.95 3.97 0.99 0.19 58 127.14 12 3 1 1
BACKTEST4 2.22 2.28 0.98 0.52 64 79.92 16 8 3 2
BACKTEST5 3.01 3.10 0.97 0.21 53 137.50 19 9 4 1

AVG 5.43 5.68 0.96 0.18 55.00 137.85 16.17 6.83 2.83 1.17
STDEV 2.94 3.12 0.05 0.19 5.22 38.49 4.49 3.54 1.94 0.75

CHAPTER 5. EVALUATION 79

(Uo

o
o

O
LU
O

1 3 5 - |

1 3 0 -

1 25

120 -

11 5 -

110 -

1 0 5 -

100 -

9 5 -

Actual
Predicted
Lower

~1— '— I— '— I— '— I— '— I— '— I— '— I— '— I— ■— I— '— I— '— I— '— I
0 2 4 6 8 10 12 14 16 18 2 0 22

Day

Figure 5.2: 20 days of GEC SIMLIVE 20-day ahead predictions with 90% prediction
intervals.

5.4.2 Foreign exchange and stock-market indices

In this section we discuss the results of the experiments performed with the the foreign

exchange and stock-market index data-sets (tables 5.4-5.8). In general, all of these

results have properties very similar to those observed for the stock-market results and

so do not merit much extra discussion.

One unique feature of these results however is their consistency. This is no sur­

prise for the stock-market index results - the fact th a t a daily stock-market index

observation is essentially an aggregate of a large number of daily stock prices sta-

blises the returns series somewhat which reduces volatility. However, consistency

across most of the foreign exchange results is a surprise given tha t foreign exchange

CHAPTER 5. EVALUATION 80

markets are traditionally very volatile. However, the data-sets chosen for the exper­

iments (C H F/JPY and U SD /JPY) are widely accepted as amongst those with the

lowest volatility given the relative stability of the underlying economies th a t drive the

exchange rates. Experiments performed on other exchange rate data-sets (especially

those subject to occasional government intervention e.g. the Thai Bhat, Brazilian

Real) would not likely be as fruitful.

5.4.3 Prediction interval performance

Given th a t the prediction intervals are an im portant focus of this thesis, in this section

we discuss their performance in more detail.

Overall, the quality of the prediction intervals is very high. This is especially

significant given the number of possible sources of error e.g. bias in the ensemble

predictions (the mean of the predicted conditional distribution), bias in the volatility

predictions e.g. caused by a poorly chosen decay param eter in the EWMA model,

bias in the model variance estimate and “extreme” or non-Gaussian m arket condi­

tions (which can occur quite frequently in most stock and foreign exchange financial

markets).

The most encouraging result is the performance of the intervals over the SIM-

LIVE experiments. This is im portant - as discussed in section 5.3 these are the

only truly “out-of-sample” experiments for the prediction intervals. These results are

summarised in table 5.9. Note th a t although, on average, the performance of the

SIMLIVE intervals is roughly equivalent across all horizons there is more variablility

across the 10-day and 20-day ahead horizons. This phenomenon was also observed

for the BACKTEST intervals as discussed in section 5.4.1. Also, for some of the

BACKTEST experiments, the interval non-coverage for the 10-day and 20-day ahead

horizons is poorer.

The reason for this poorer performance of the intervals over longer horizons can

be a ttributed (at least in large part) to two related factors. Firstly, the ensemble

predictions over the longer horizons are likely to be more biased than over the shorter

horizons. This is simply because it is a more difBcult prediction task. Secondly, for

CHAPTER 5. EVALUATION 81

Table 5.5: CH F/JPY 1-day, 5-days, 10-days and 20-days ahead prediction results.
1-DAY RMSE RW IC CC^ DC VT 80% 90% 95% 99%

SIMLIVE 0.46 0.47 0.98 0.97 52 31.06 22 11 5 1
BACKTESTl 0.44 0.46 0.97 0.98 58 29.46 18 7 3 1
BACKTEST2 0.41 0.41 1.00 0.99 71 33.09 17 6 2 0
BACKTEST3 0.45 0.45 1.00 0.89 62 35.20 19 8 5 2
BACKTEST4 0.46 0.47 0.98 0.89 53 31.60 22 9 7 1
BACKTEST5 1.89 1.88 1.00 0.88 49 41.91 21 10 3 1

AVG 0.69 0.69 0.99 0.93 57.50 33.72 19.83 8.50 4.17 1.00
STDEV 0.59 0.59 0.01 0.05 8.07 4.46 2.14 1.87 1.83 0.63
5-DAY RMSE RW IC CC^ DC VT 80% 90% 95% 99%

SIMLIVE 1.10 1.10 1.00 0.82 52 52.64 20 9 3 1
BACKTESTl 0.89 0.88 1.01 0.54 48 75.81 19 8 2 0
BACKTEST2 1.01 1.04 0.97 0.91 62 36.39 21 7 4 1
BACKTEST3 1.00 1.11 0.90 0.93 59 37.90 19 9 6 2
BACKTEST4 1.25 1.26 1.00 0.65 63 41.21 23 8 5 1
BACKTESTS 1.28 1.28 0.99 0.69 54 37.13 20 8 6 2

AVG 1.09 1.11 0.98 0.76 56.33 46.85 20.33 8.17 4.33 1.17
STDEV 0.15 0.15 0.04 0.16 5.96 15.41 1.51 0.75 1.63 0.75
10-DAY RAISE RW IC CC^ DC VT 80% 90% 95% 99%
SIMLIVE 1.57 1.58 1.00 0.85 52 23.81 17 9 4 0

BACKTESTl 1.27 1.27 0.99 0.72 56 18.07 15 5 2 0
BACKTEST2 1.49 l.SS 0.96 0.81 76 19.12 17 7 3 1
BACKTESTS 1.60 1.62 0.99 0.76 61 24.79 19 6 2 0
BACKTEST4 2.02 2.01 1.00 0.53 52 31.23 21 9 5 0
BACKTEST5 1.66 1.67 0.99 0.63 54 26.16 19 8 3 1

AVG 1.60 1.62 0.99 0.72 58.50 23.86 18.00 7.33 3.17 0.33
STDEV 0.25 0.24 0.02 0.12 9.20 4.83 2.10 1.63 1.17 0.52

20-DAY RMSE RW IC CC'^ DC VT 80% 90% 95% 99%
SIMLIVE 2.02 2.03 1.00 0.58 51 31.21 24 12 7 3

BACKTESTl 1.57 1.57 1.00 0.79 69 23.70 23 8 4 1
BACKTEST2 1.53 1.55 0.99 0.67 56 34.42 27 13 6 2
BACKTEST3 2.28 2.31 0.99 0.81 59 36.31 24 11 4 1
BACKTEST4 3.52 3.51 1.00 0.16 54 55.91 22 10 6 2
BACKTESTS 3.51 3.53 1.00 0.44 68 51.98 23 12 4 1

AVG 2.41 2.42 0.99 0.58 59.50 38.92 23.83 11.00 5.17 1.67
STDEV 0.91 0.90 0.01 0.25 7.45 12.47 1.72 1.79 1.33 0.82

CHAPTER 5. EVALUATION 82

Table 5.6: USD/JPY 1-day, 5-days, 10-days and 20-days ahead prediction results.
1-DAY RMSE RW IC CC^ DC VT 80% 90% 95% 99%

SIMLIVE 0.62 0.62 0.99 0.91 55 7.79 22 11 4 1
BACKTESTl 0.44 0.46 0.97 0.98 62 6.41 20 10 6 0
BACKTEST2 0.50 0.50 1.00 0.96 53 7.57 21 13 4 2
BACKTESTS 0.59 0.59 1.00 0.92 51 9.84 19 11 3 1
BACKTEST4 0.95 0.9S 1.02 0.85 50 15.36 21 8 4 0
BACKTESTS 0.76 0.76 1.00 0.91 50 11.53 17 7 3 0

AVG 0.64 0.64 1.00 0.92 53.50 9.75 20.00 10.00 4.00 0.67
STDEV 0.18 0.18 0.02 0.05 4.59 3.30 1.79 2.19 1.10 0.82
5-DAY RMSE RW IC CC^ DC VT 80% 90% 95% 99%

SIMLIVE 1.48 1.50 0.99 0.65 53 16.43 23 13 6 2
BACKTESTl l.OS 1.04 0.99 0.72 72 13.11 22 12 6 2
BACKTEST2 1.11 1.11 0.99 0.69 66 13.91 19 8 3 0
BACKTESTS 1.14 1.15 0.99 0.65 58 14.51 24 7 6 1
BACKTEST4 2.21 2.17 1.02 0.23 45 29.98 22 8 4 0
BACKTEST5 1.88 1.87 1.01 0.38 50 24.53 20 11 6 2

AVG 1.47 1.47 1.00 0.55 57.33 18.74 21.67 9.83 5.17 1.17
STDEV 0.48 0.46 0.01 0.20 10.15 6.90 1.86 2.48 1.33 0.98
10-DAY RMSE RW IC CC^ DC VT 80% 90% 95% 99%
SIMLIVE 2.29 2.SO 1.00 0.51 53 24.88 18 9 3 1

BACKTESTl 1.47 1.48 0.99 0.46 55 18.68 15 5 2 0
BACKTEST2 1.62 1.65 0.98 0.39 57 22.16 15 6 3 0
BACKTESTS 1.48 1.52 0.98 0.72 63 18.62 17 7 2 0
BACKTEST4 S.22 S.20 1.01 0.08 47 44.38 16 5 4 1
BACKTEST5 2.90 2.82 1.03 0.12 51 36.42 18 9 3 0

AVG 2.16 2.16 1.00 0.38 54.33 27.52 16.50 6.83 2.83 0.33
STDEV 0.76 0.7S 0.02 0.24 5.47 10.55 1.38 1.83 0.75 0.52

20-DAY RMSE RW IC C C ‘̂ DC VT 80% 90% 95% 99%
SIMLIVE S.70 S.68 1.00 0.13 50 41.44 16 7 2 0

BACKTESTl 1.87 1.95 0.96 0.65 68 24.67 17 8 3 1
BACKTEST2 1.51 1.65 0.91 0.68 72 26.50 15 7 3 2
BACKTESTS 2.2S 2.26 0.99 0.59 65 28.51 19 8 3 1
BACKTEST4 4.79 4.78 1.00 0.02 47 69.87 22 7 4 2
BACKTEST5 4.75 4.73 1.00 0.05 51 64.52 12 4 2 0

AVG S.14 S.18 0.98 0.35 58.83 42.59 16.83 6.83 2.83 1.00
STDEV 1.46 1.41 0.04 0.32 10.72 20.02 3.43 1.47 0.75 0.89

CHAPTER 5. EVALUATION 83

Table 5.7: SfcPSOO 1-day, 5-days, 10-days and 20-days ahead prediction results.
1-DAY RMSE RW IC CC^ DC VT 80% 90% 95% 99%

SIMLIVE 14.48 14.51 1.00 0.98 65 17.12 19 10 4 2
BACKTESTl IS.SI 15.31 1.00 0.90 57 19.30 23 13 6 2
BACKTEST2 17.26 17.18 1.00 0.93 56 24.54 21 11 3 1
BACKTESTS 8.90 8.92 1.00 0.96 75 12.78 19 9 4 0
BACKTEST4 12.67 12.67 1.00 0.95 53 20.35 21 7 2 1
BACKTESTS 9.14 9.15 1.00 0.98 73 16.44 23 11 7 1

AVG 12.96 12.96 1.00 0.95 63.17 18.42 21.00 10.17 4.33 1.17
STDEV S.S9 3.37 0.00 0.03 9.30 3.98 1.79 2.04 1.86 0.75
5-DAY RMSE RW IC CC‘̂ DC VT 80% 90% 95% 99%

SIMLIVE S2.2S 33.47 0.96 0.54 56 34.89 22 11 8 2
BACKTESTl SI.54 31.45 1.00 0.27 46 47.66 19 10 6 1
BACKTEST2 S7.97 39.04 0.97 0.77 69 24.23 23 13 7 2
BACKTESTS 18.99 19.07 1.00 0.63 54 32.93 22 11 7 0
BACKTEST4 23.98 23.99 1.00 0.68 53 29.10 24 12 5 1
BACKTESTS 19.39 19.38 1.00 0.72 55 34.45 23 11 7 2

AVG 27.35 27.73 0.99 0.60 55.50 33.88 22.17 11.33 6.67 1.33
STDEV 7.73 8.17 0.02 0.18 7.50 7.85 1.72 1.03 1.03 0.82
10-DAY RMSE RW 1C c c - DC VT 80% 90% 95% 99%
SIMLIVE 41.00 41.06 1.00 0.56 52 41.02 29 16 7 7

BACKTESTl 39.18 39.19 1.00 0.67 55 41.43 23 12 6 3
BACKTEST2 57.98 56.93 1.02 0.21 49 74.44 24 13 8 2
BACKTESTS 24.19 24.91 0.97 0.87 71 32.55 23 11 7 1
BACKTEST4 24.13 24.57 0.98 0.72 63 33.83 24 12 6 2
BACKTESTS 28.23 28.24 1.00 0.82 54 43.71 23 12 7 2

AVG 35.79 35.82 0.99 0.64 57.33 44.50 24.33 12.67 6.83 2.83
STDEV 13.11 12.55 0.02 0.24 8.16 15.33 2.34 1.75 0.75 2.14
20-DAY RMSE RW IC CC'̂ DC VT 80% 90% 95% 99%
SIMLIVE 38.34 39.69 0.97 0.55 54 54.01 24 8 6 2

BACKTESTl 56.35 56.16 1.00 0.09 49 65.26 12 6 3 0
BACKTEST2 74.36 72.93 1.02 0.13 50 91.17 15 5 2 0
BACKTESTS 40.13 42.87 0.94 0.79 62 52.80 14 4 1 0
BACKTEST4 26.93 32.34 0.83 0.83 75 45.93 19 7 3 0
BACKTESTS 47.15 46.07 1.02 0.20 54 76.59 21 7 3 1

AVG 47.21 48.34 0.96 0.43 57.33 64.29 17.50 6.17 3.00 0.50
STDEV 16.50 14.36 0.07 0.34 9.79 17.03 4.59 1.47 1.67 0.84

CHAPTER 5. EVALUATION 84

Table 5.8: NYSE 1-day, 5-days, 10-days and 20-days ahead prediction results.
1-DAY RMSE RW IC CC^ DC VT 80% 90% 95% 99%

SIMLIVE 5.53 5.67 0.97 0.98 68 14.16 21 11 4 1
BACKTESTl 6.04 6.05 1.00 0.92 54 16.10 22 9 6 0
BACKTEST2 7.99 7.93 1.01 0.88 48 22.66 22 11 6 2
BACKTESTS 4.26 4.27 1.00 0.96 58 11.76 20 9 5 1
BACKTEST4 6.03 6.02 1.00 0.91 52 18.20 21 8 4 0
BACKTEST5 4.15 4.17 1.00 0.95 56 14.60 20 9 5 2

AVG 5.67 5.69 1.00 0.93 56.00 16.25 21.00 9.50 5.00 1.00
STDEV 1.41 1.38 0.01 0.04 6.81 S.80 0.89 1.22 0.89 0.89
5-DAY RMSE RW IC CC^ DC VT 80% 90% 95% 99%

SIMLIVE 13.46 13.48 1.00 0.68 58 29.13 23 13 > -r 1
BACKTESTl 12.91 12.93 1.00 0.72 57 30.08 22 11 8 2
BACKTEST2 18.90 18.90 1.00 0.43 51 45.39 22 11 7 1
BACKTEST3 9.47 9.48 1.00 0.76 63 23.03 19 12 6 0
BACKTEST4 11.98 11.96 1.00 0.40 52 31.02 21 11 5 1
BACKTEST5 9.11 9.12 1.00 0.65 60 26.07 22 10 6 2

AVG 12.64 12.64 1.00 0.61 56.83 30.79 21.50 11.33 6.50 1.17
STDEV 3.55 S.54 0.00 0.15 4.62 7.73 1.38 1.03 1.05 0.75
10-DAY RMSE RW IC C C ' DC VT 80% 90% 95% 99%
SIMLIVE 17.16 17.20 1.00 0.53 62 36.25 22 12 7 1

BACKTESTl 16.18 16.44 0.98 0.65 63 35.62 21 11 6 1
BACKTEST2 29.99 28.06 1.07 0.30 50 72.56 23 12 7 2
BACKTESTS 11.89 12.59 0.94 0.87 71 31.95 19 9 4 0
BACKTEST4 12.01 12.22 0.98 0.77 56 32.79 22 11 7 2
BACKTESTS 1S.53 13.57 1.00 0.66 53 40.41 23 12 6 1

AVG 16.79 16.68 1.00 0.63 59.17 41.60 21.67 11.17 6.17 1.17
STDEV 6.81 5.94 0.04 0.20 7.68 15.46 1.51 1.17 1.17 0.75

20-DAY RMSE RW IC CC^ DC VT 80% 90% 95% 99%
SIMLIVE 38.89 37.09 1.05 0.03 50 49.58 25 13 8 2

BACKTESTl 21.45 22.10 0.97 0.69 62 49.73 24 13 8 1
BACKTEST2 39.56 37.30 1.06 0.12 48 92.02 22 11 6 2
BACKTESTS 19.57 21.58 0.91 0.82 80 51.59 23 14 7 2
BACKTEST4 15.29 16.41 0.93 0.75 67 44.56 22 11 7 1
BACKTEST5 23.92 22.31 1.07 0.09 51 71.63 24 11 7 1

AVG 26.45 26.13 1.00 0.42 59.67 59.85 23.33 12.17 7.17 1.50
STDEV 10.29 8.84 0.07 0.37 12.47 18.35 1.21 1.33 0.75 0.55

CH APTERS. EVALUATION 85

Table 5.9: Average interval non-coverage across all of the SIMLIVE experiments for
80%, 90%, 95% and 99% prediction interva s.

80% STDEV 90% STDEV 95% STDEV 99% STDEV
1-day 19.00 2.51 9.5 1.77 4 0.76 1.13 0.64
5-day 22.25 1.28 11.25 2.66 5.63 1.99 1.25 1.04
10-day 22.13 4.02 12.25 2.66 6.13 2.17 1.63 2.26
20-day 20.88 4.22 9.13 3.09 5.13 1.96 1.88 0.99

essentially the same reason the volatility predictions are likely to be more biased -

volatility predictions over longer horizons are never as accurate as those over shorter

horizons - see (Alexander, 1998) for a discussion. However, despite this occasional

poor performance of the prediction intervals, on average they are excellent and po­

tentially very valuable in real-world trading scenarios.

5.5 Sum m ary

In this chapter we evaluated the prediction performance of our ensembles. We used

a number of popular objective statistical measures to do this including the root-

mean-squared-error, the correlation coefficient, the information coefficient and the

d-statistic. We also evaluated the ability of our ensembles to predict uncertainty by

measuring the prediction interval non-coverage.

Overall, the performance of the ensembles is promising. Although there are ex­

amples of poor prediction performance, we showed how these are mostly caused by

excessive volatility in the corresponding test sets. However, we also showed how this

minority of poor predictions are anticipated by the prediction intervals and so in a

real-world trading scenario a trader can adjust his trading behaviour accordingly -

essentially manage risk more effectively. The overall quality of the prediction inter­

vals is excellent. Although there is some degradation in their quality over the longer

prediction horizons on average even the performance of these intervals is good.

In summary, we can conclude from the results presented in this chapter th a t the

ensembles do provide valuable insights into future market behaviour (future prices and

directional change) if market volatility is not excessive. However, a unique feature of

CHAPTER 5. EVALUATION 86

the prediction methodology th a t we propose is tha t the risk th a t traders are exposed

to during such periods of excessive volatility can at least be more effectively managed

using the prediction intervals.

Chapter 6

Conclusion

6.1 Introduction

In this chapter we conclude the thesis. In section 6.2 we discuss the main contribu­

tions or novel aspects of the thesis by identifying the contributions to the individual

disciplines from which new techniques in the thesis were derived. In section 6.3 we

discuss future work i.e. approaches tha t could be taken to improve the performance

of the techniques proposed in the thesis. Finally, in section 6.4 we summarise the

main conclusions of the thesis.

6.2 Thesis contributions

In this section we attem pt to identify the main contributions of the thesis. The

approach is different to tha t taken in section 1.8 - given the multi-disciplinary nature

of the thesis we attem pt to identify contributions to the individual disciplines from

which techniques in the thesis were inspired or adapted.

6.2.1 M achine learning

The main contribution of the thesis to the discipline of machine learning is the devel­

opment and evaluation of the NeuralBAG ensemble technique proposed in chapter 3.

87

C H A P T E R 6. CONCLUSION 88

Although most work on neural network ensembles has recognised the im portance of

diversity in ensembles, very little work has attem pted to explicitly tune diversity as

the NeuralBAG technique does. The simplicity and stability of NeuralBAG is par­

ticularly attractive, especially in the context of difficult, noisy, real-world prediction

tasks.

Another key feature of the NeuralBAG algorithm is th a t estimates of model vari­

ance are readily available from the outputs of the individual networks in the ensemble.

In chapter 4 we show how these estimates can be adapted to provide better estimates

of ensemble model variance which can be used to generate confidence intervals with

very good coverage. This method for generating confidence intervals can be applied

to any ensemble technique th a t uses the bootstrap to generate the training sets for

the ensemble e.g. balancing (Heskes, 1997a).

6.2.2 Tim e-series prediction

It is difficult to identify any specific contribution to the field of (modern) time-series

prediction as it is itself very multi-disciplinary. However it is useful to position our

prediction methodology relative to some classical time-series prediction approaches.

Using the classical time-series prediction terminology, the models th a t we build are

low-variance, non-linear, multi-variate and semi-parametric (the neural networks and

bootstrapping techniques are non-parametric, but the volatility models and interpre­

tation of the predicted conditional distributions are param etric). Classical time-series

prediction techniques e.g. auto-regressive moving-average (ARMA) methods are also

typically low-variance but they are also usually linear, univariate and param etric.

The big difference here is tha t the classical time-series prediction techniques do

not have the attractive universal approximation properties th a t neural networks have.

Also, most will not have prediction intervals of the sophistication and accuracy of

those proposed in this thesis. The big criticism of universal approximators such as

neural networks from the classical time-series prediction and statistics communities

has always been related to issues of variance or instability. However, this problem

has been largely solved using ensemble techniques. In this context, the contribution

CHAPTER 6. CONCLUSION 89

of this thesis to the time-series prediction community is significant - much more

powerful and accurate models of time-series can be built w ithout any significant loss

in stability.

6.2.3 Econom etrics

The main contribution of this thesis to the field of econometrics is our prediction

interval technique proposed in chapter 4. Here we show how classical param etric

econometric (EWMA) volatility predictions can be combined with non-param etric

(bootstrap) predictions for model variance and non-parametric (neural network) pre­

dictions for price to produce estimates for the future conditional distribution of m arket

prices. The novelty here is the successful combination of econometric techniques with

techniques from machine learning and statistics.

Another contribution is the set of decay factor estimates uesd for the EWMA

models. Unlike previous attem pts (see e.g. Zangari, 1996), we estim ate a different

decay factor for each data-set and volatility horizon. These could be used in a variety

of other econometric studies.

6.2.4 Finance

The contributions of the thesis to the field of finance are easy to identify. Firstly, the

ensembles generate predictions of financial market movements th a t could be applied in

real-world trading to generate a significant profit. Secondly, each prediction generated

by the ensembles has a quantifiable measure of confidence associated with it. This is

potentially very valuable for managing risk in real-world trading scenarios.

6.3 Future work

In this section we identify the areas of research th a t could be pursued to improve the

predictions generated by the techniques described in this thesis.

C H A PTE R 6. CONCLUSION 90

6.3.1 Feature selection

One area of research th a t was not pursued in any significant depth in this thesis is

feature selection i.e. determining what are the best inputs or training vectors for the

ensembles. There are two approaches to solving this problem. The first is to use

expert knowledge e.g. in the context of financial markets an experienced trader or

econometrician who has a feel for what influences or drives a specific market. This

is essentially the approach taken in this thesis i.e. established relationships between

im portant financial market variables were identified by surveying the econometrics

literature.

The second is much more systematic and essentially attem pts to “learn” which

variables are im portant. Examples of this approach applied to neural networks in­

clude the automatic relevance determination (ARD) technique of (Neal, 1996). This

rather more principled approach should at least be investigated as a more convenient

technique for feature selection and compared to the expert based approach.

6.3.2 Ensembles

Although the issue of stabilising the neural networks using ensemble techniques was

pursued in depth in this thesis, there is still scope for improving the techniques. For,

example more novel combination techniques than averaging could be investigated. We

do not expect the improvements in performance to be dram atic (such sophisticated

combination techniques usually only yield significant improvements for small ensem­

bles - we use ensembles of 200 networks). However, a small change in performance

can translate to large sums of money being lost or earned in financial prediction.

6.3.3 Prediction intervals

This is possibly the area where there is most scope for improvement. There are two

possible approaches th a t could be taken to improve performance. The first is to refine

the current technique. The most obvious improvement th a t could be made here is

to use a more sophisticated technique for predicting volatility. For example, some

GARCH techniques can provide predictions of volatility over long horizons tha t are

C H A P T E R 6. CONCLUSION 91

significantly better than those provided by EWMA models - see (Alexander, 1998)

for a discussion. Another way in which the current technique could be refined is

to investigate using ^-distribution tables instead of Gaussian distribution tables for

the z-values used in the prediction intervals. These ^-distributions have fatter tails

than Gaussian distributions which should better model the occurance of very large

movements in prices which are often observed in financial markets. However, it is not

clear how many degrees of freedom should be chosen for the ^-distributions.

The second is to interpret the problem in a completely different way and use

mixture density networks (MDNs) (Bishop, 1994) to predict entire conditional distri­

butions, not just means and variances. Here no prior assumptions are made about the

form of the conditional distribution and rare or extreme market events can (in theory

at least) be captured by the predictions (e.g. by predicting a very fat tailed distri­

bution). However, this is not a m ature area of research and such MDNs have serious

lim itations when applied to anything other than toy problems e.g. they need very

large quantities of data and have serious stability (local minima) problems (see (Hus-

meier, 1999) for a discussion). However, they do seem very attractive as a technique

for predicting financial time-series and managing risk and will certainly be pursued

in the future.

6.4 Summary

In this chapter we outlined the main contributions of the thesis and suggested some

possible future areas of research th a t could be pursued to improve the performance

of the techniques introduced in the thesis.

Overall, the research was a success - its ultim ate aim i.e. to develop a new

neural network prediction methodology tha t generates accurate, stable, risk-adjusted

(interval) predictions of financial market movements was achieved. Significantly, a

large part of this success can be a ttributed to the multi-disciplinary approach th a t

was taken to solve the difficult specific problems.

A ppendix A

NeuralBA G C-M PI code

* NeuralBAG vl.O - C-MPI cluster version
 *------------------------------------
*

* bagmain.c ; Mainline of NeuralBAG (C-MPI)
*

* c. John Carney 13/5/99
*

#include "/CAGclusterl/CAG32/Software/Ensemble/
MPI/MPICH/MPICHl_l_l/Binaries/include/mpi.h"
#include "bagmain.h"
#include <stdio.h>
#include <stdlib.h>

#define MASTER 0

92

APPENDIX A. NEURALBAG C-MPI CODE

/* Variables global to all files */
double **train_array;
double **test_array;
int **bs_indices;
int **bs_waste_indices;
int *count_waste;
int *nodes;
int *rand_index;
int *stop_epoch;
double **idiff;
double **agg_errors;
double *agg_errorsld;
double *+inter;
double ***wgts;
double ***batchbuf;
double ***wdiff;
int *count_voccur;
int ntrainpat;
int ntestpat;
int ninput;
int nhidden_nodes;
int raaxepochs;
int num_bs;
double Irate;
double mom;
double offset;
double scale;
int nlayer=3;

APPENDIX A. NEURALBAG C-MPI CODE

*

* mainO : This is the main parallel
* engine function
*

void main(int argc, char *argv[])
{

/*** DECLARATIONS ***/
/*--------------------- j(c/

MPI_Status status;

/* Mainline variables */
int numtasks;
int numworkers;
int taskid;
int indexmsg=l;
int arraymsgld=3;
int rc;
int start_index;
int dest;
int source;
int bs_partit;
double *W_agg_errorsld;

/* Miscellaneous */

APPENDIX A. NEURALBAG C-MPI CODE 95

char db_filename[32];
char pr_filename[32];
char *task;
int i, j, k;

/*** INITIALISE COMM WORLD ***/
/* */

rc = MPI_Init (feargc, feargv);
rc = MPI_Comni_size (MPI_COMM_WORLD, &numtasks) ;
rc = MPI_Coinm_rank (MPI_COMM_WORLD, fetaskid);

/* Check this worked */
if (rc != 0)
{
printf ("Error initialising MPI...exiting\n");
MPI_Finalize ();
exit (0) ;
}

/*** READ DATA AND PARAMS ***/
/* */

APPENDIX A. NEURALBAG C-MPI CODE

/* Each task will have its own copy */
/* of data ajid params */

task = "input"; /* This is temporary */
sprintf (pr_filename, ""/.sy.s", task, ".par")
sprintf (db_filenajTie, "%syoS", task, ".dat")
read_params (pr_filename);
read_patterns (db_filename);

/* Error checking */
if (num_bs°/onumtasks != 0)
{
printf ("Error with num_bs...exiting\n");
MPI_Finalize ();
exit (0) ;
}
bs_partit = num_bs/numtasks;
numworkers = numtasks-1;

/* Create bootstrap reScimpled datasets */
create_bs_datasets ();

MASTER ***/
/* */

if (taskid == MASTER)

APPENDIX A. NEURALBAG C-MPI CODE

/*** CALCULATE OUT-OF-BAG ERRORS ***/
/*---------------------------------

/* Send slaves their share of the work */
start_index = 0;
for (dest=l; dest <= numworkers; dest++)
{
start_index += bs_partit;
MPI_Send (&start_index, 1, MPI_INT,
dest, indexmsg, MPI_COMM_WORLD);
}

/* Master must do work too */
start_index = 0;
printf ("\nCreating error matrix...");
create_error_matrix (start_index,
bs_partit, taskid);

/* Receive back work done by slaves */
W_agg_errorsld = (double *)
malloc (sizeof (double) * (ntrainpat*maxepochs))
for (i=l; i <= numworkers; i++)
{
source = i;
MPI_Recv (&W_agg_errorsld[0],
ntrainpat*maxepochs, MPI_DOUBLE,

source, arraymsgld, i
MPI_COMM_WORLD, festatus);

APPENDIX A. NEURALBAG C-MPI CODE

!* Merge */
for (j=0; j < (ntrainpat*maxepochs); j++)
agg_errorsld[j] += W_agg_errorsld[j] ;
}

/* Convert 1-d back to 2-d for convenience
k = 0;
for (i=0; i < ntrainpat; i++)
for (j=0; j < maxepochs; j++)

agg_errors[i][j] = agg_errorsld[k];
k++;
}

/* Combine out-of-bag errors */
combine_errors () ;

/*** TRAIN NETWORKS ***/
/ *----------------------- */

/* Send slaves their share of the work */
start_index = 0;
for (dest=l; dest <= numworkers; dest++)
{
start_index +- bs_partit;
MPI_Send (&stop_epoch[0] ,

APPENDIX A. NEURALBAG C-MPl CODE

nuin_bs, MPI_INT, dest,
arraymsgld, MPI_COMM_WORLD);
MPI_Send (&start_index,
1, MPI_INT, dest,
indexmsg, MPI_COMM_WORLD);

}

/* Master works too */
start_index = 0;
printf ("\nTraining networks");
train_bs_ensemble (start_index, bs_partit, taskid)

calc_val_res (numtasks);
}

/*** WORKERS
/*------------- * /

if (taskid > MASTER)
{
/*** CALCULATE OUT-OF-BAG ERRORS ***/
fif---------------------------------

source = MASTER;
MPI_Recv (&start_index,
1, MPI_INT, source,
indexmsg, MPI_COMM_WORLD, festatus);
create_error_matrix (start_index,
bs_partit, taskid);

APPENDIX A. NEURALBAG C-MPI CODE

/* Send agg_errorsld versions
back to master to be merged */
dest = MASTER;
MPI_Send (&agg_errorsld[0] ,
ntrainpat*maxepochs, MPI_DOUBLE,
dest, arraymsgld, MPI_COMM_WORLD);

/*** TRAIN NETWORKS ***/
/*--------------------------if/

stop_epoch = (int *) malloc
(sizeof (int) * num_bs) ;
MPI_Recv (&stop_epoch[0], num_bs,
MPI_INT, source, arraymsgld,
MPI_COMM_WORLD, festatus);
MPI_Recv (&start_index,
1, MPI_INT, source,
indexmsg, MPI_COMM_WORLD, festatus);

/* Train */
train_bs_ensemble (start_index,
bs_partit, taskid);
}

MPI_Finalize ();

}

APPENDIX A. NEURALBAG C-MPI CODE

*

* bootstrap.c: The boostrap data-sets to be used
* for the ensemble are created here
*

* c. John Carney 11/9/98
*

#include <stdio.h>
#include <time.h>
#include <stdlib.h>

/* Prototypes */
static void seed_randnums ();
void create_bs_datasets ();

/* External variables */
extern int **bs_indices;
extern int *count_waste;
extern int **bs_waste_indices;
extern int ntrainpat;
extern int num_bs;

*

* create_bs_datasets0 : Create the boostrap indices
* These are int * []
*

APPENDIX A. NEURALBAG C-MPI CODE 102

void create_bs_datasets ()

{

int i , j , b ;
int rand_num;
int index;
int **waste_tag;

/* Allocate bs_indices memory */
bs_indices = (int **)
malloc (sizeof (int *) * num_bs);
for (i=0; i < num_bs; i++)
bs_indices[i] = (int *)
malloc (sizeof (int) * ntrainpat);

/* Allocate waste_tag memory and initialise it */
waste_tag = (int **)
malloc (sizeof (int *) * num_bs);
for (i=0; i < num_bs; i++)
waste_tag[i] = (int *)
malloc (sizeof (int) * ntrainpat);
for (b=0; b < num_bs; b++)
for (i=0; i < ntrainpat; i++)
waste_tag[b] [i] =0;

APPENDIX A. NEURALBAG C-MPI CODE

/* Generate bootstrap indices */
seed_randnums ();
for (b=0; b < num_bs; b++)
{
for (i=0; i < ntrainpat; i++)
{
raiid_nuin = randO % (ntrainpat) ;
bs_indices[b][i] = rand_num;
waste_tag[b][rand_num] = 1;
}
}

/* Allocate count_waste memory
and bs_waste_indices memory */
count.waste = (int *)
malloc (sizeof (int) * num_bs);
bs_waste_indices = (int **)
malloc (sizeof (int *) * num_bs);
for (i=0; i < num_bs; i++)
bs_waste_indices[i] = (int *)
malloc (sizeof (int) * (ntrainpat/2));

/* Generate waste indices */
for (b=0; b < num_bs; b++)
{
count_waste[b] = 0;
index = 0;
for (i=0; i < ntrainpat; i++)

APPENDIX A. NEURALBAG C-MPI CODE

if (waste_tag[b][i] == 0)
{
count_waste[b]++;
bs_waste_indices[b][index] = i;
index++;
}
}

/* Free waste_tag memory */
for (i=0; i < num_bs; i++)
free (waste_tag[i]);
free (waste_tag);

}

*

* seed_randnums (): Seed the random number generator
*

A P P E N D IX A. N E U R A LB A G C-MPI CODE

static void seed_randnums ()

int Itime;
int utime;

Itime = time (NULL);
utime = (unsigned int) ltime/2;
srand (utime);

}

*

* combine.c : File for code to combine agg_errors
*

* John Carney 18/3/98
*

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

/* Prototypes */
void combine_errors0;

APPENDIX A. NEURALBAG C-MPI CODE 106

/* External variables */
extern int *stop_epoch;
extern int *count_waste;
extern int **bs_waste_indices;
extern double **train_array;
extern double **agg_errors;
extern int *count_voccur;
extern int maxepochs;
extern int num_bs;
extern int ntrainpat;
extern int ninput;

*

* combine_errors () : combine agg_errors
*

void combine_errors ()

{

int i, b, e, j;
int found;
double b_fx;
double y;
double min_err;
double terror;

A P P E N D IX A. N EU RA LB AG C-MPI CODE 107

FILE *fp;

/* Allocate memory */
error = (double *)
malloc (sizeof (double) * maxepochs);
stop_epoch = (int *)
malloc (sizeof (int) * num_bs);
count_voccur = (int *)
malloc (sizeof (int) * ntrainpat);

/* Make count_voccur */

for (i=0; i < ntrainpat; i++)
count_voccur[i] = 0;
for (1=0; i < ntrainpat; i++)
for (b=0; b < num_bs; b++)
{
found = 0;
j = 0;
while ((j<count_waste[b]) && (found == 0))
{
if (bs_waste_indices[b][j] == i)
{
count_voccur[i]++;
found = 1;
}

}
}

A P P E N D I X A. N E U R A L B A G C-M PI C O D E 108

/ * Combine errors * /

f o r (b=0; b < num_bs; b++)

for (e=0; e < maxepochs; e++)
-C
error[e] = 0.0;
for (j=0; j < count_waste[b] ; j++)
{
b_fx =
agg_errors[(bs_waste_indices[b] Cj])] [e] /

count_voccur[(bs_waste_indices[b] [j])] ;
y =
train_array[(bs_waste_indices[b][j])][ninput];
error[el += pow ((y-b_fx), 2.0);
}
error[e] /= count_waste[b];
}
stop_epoch [b] = 0;
min_err = error [0];
for (e=l; e < maxepochs; e++)
{
if (error[e] < min_err)
{
min_err = error [e];
stop_epoch[b] = e;
}
}
}

APPENDIX A. NEURALBAG C-MPI CODE

/* Free memory */
free (error);

fp = fopen ("stopepochs.out", "w+");
for (b=0; b < num_bs; b++)
fprintf (fp, "%d\n", stop_epoch[b]);

fclose (fp);

}

*

* errors.c : Header file of code for calculating validation
* errors for each training vector
*

* c. John Carney 21/8/98
=t!

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "neural.h"

/* Function prototypes */

APPENDIX A. NEURALBAG C-MPI CODE 110

void create_error_matrix (int start_index, int bs_partit, int taskid);
static void allocate_mem (int ntrainpat, int maxepochs);

/* External variables */
extern int *rand_index;
extern int *count_waste;
extern int *nodes;
extern double **idiff;
extern double **agg_errors;
extern double *agg_errorsld;
extern int **bs_indices;
extern double **train_array;
extern int **bs_waste_indices
extern double **inter;
extern double ***wgts;
extern double ***batchbuf;
extern double ***wdiff;
extern int ntrainpat;
extern int maxepochs;
extern int ninput;
extern double Irate;
extern double mom;

*

* create_error_matrix: create the error
* validation matrix
*

APPENDIX A. NEURALBAG C-MPI CODE 111

void create_error_matrix (int start_index, int bs_partit, int taskid)

{

int i,j,b,k;
int epoch;
double actual_out;
double net_out;
double *in;

/* Allocate memory */
allocate_mem (ntrainpat, maxepochs);
in = (double *) malloc (sizeof (double) * ninput);

/* Initialise agg_errors */
for (i=0; i < ntrainpat; i++)
for (j=0; j < maxepochs; j++)
agg_errors[i][j] = 0.0;

/* Train each bootstrap re-sample */
for (b=start_index; b < (start_index+bs_partit); b++)
{
if (taskid == 0)
printf ("\nMASTER: Error matrix %d", (b+D);

init_weights (ninput);
epoch = 0;

APPENDIX A. NEURALBAG C-MPI CODE 112

for (i=0; i < ntrainpat; i++)
rand_index[i] = bs_indices[b][i] ;

do
{
/* Present training patterns */
for (j=0; j < ntrainpat; j++)
{
for (k=0; k < ninput; k++)
inCk] =
train_array[(rajid_index[j])] [k] ;
actual_out =
train_array [(rcLnd_index[j])] [ninput] ;
net_out = feed_forward (in);
compute_difference (actual_out);
propagate_back«ards ();
update_weights (epoch);
}

/* Create errors matrix */
for (j=0; j < count_waste[b]; j++)
-C
for (k=0; k < ninput; k++)
in[k] =
train_array[(bs_waste_indices[b][j])][k];
net_out = feed_forward (in);
agg_errors[(bs_waste_indices[b][j])][epoch] += net_out;

}

APPENDIX A. NEURALBAG C-MPI CODE 113

} while (++epoch < maxepochs);
}

/* Convert agg_errors to 1-d for message passing */
!* This is done to overcome apparent bug in n-d */
/* array message passing */
k = 0;
for (i=0; i < ntrainpat; i++)
for (j=0; j < maxepochs; j++)

agg_errorsld[k] = agg_errors[i][j] ;
k++;
}

}

*

* allocate_mem (): allocate memory
*

static void allocate_mem (int ntrainpat, int maxepochs)

{

int i, j ;

APPENDIX A. NEURALBAG C-MPI CODE 114

/* Allocate memory */
rand_index = (int *) malloc (sizeof (float) * ntrainpat);

inter = (double **) malloc (sizeof (double *) * 3);
for (i=0; i < 3; i++)
inter [i] = (double *) malloc (sizeof (double) * (nodes[i]+1));

wgts = (double ***) malloc (sizeof (double **) * 2);
for (i=l; i < 3; i++)
{
wgts[i-l] = (double **) malloc (sizeof (double *) * nodes[i]);
for (j=0; j < nodes[i]; j++)
wgts[i-l][j] = (double *) malloc (sizeof (double) * (nodes[i-1]+1));
}

batchbuf = (double ***) malloc (sizeof (double **) * 2);
wdiff = (double ***) malloc (sizeof (double **) * 2);
for (i=l; i < 3; i++)
{
batchbuf[i-1] = (double **) malloc (sizeof (double *) * nodes[i]);
wdiff[i-1] = (double **) malloc (sizeof (double *) * nodes [i]);
for (j=0; j < nodes[i]; j++)

batchbuf[i-1][j] = (double *)
malloc (sizeof (double) * (nodes[i-1]+1));
wdiff[i-1][j] = (double *)
malloc (sizeof (double) * (nodes[i-1]+1));
}

APPENDIX A. NEURALBAG C-MPI CODE 115

}

idiff = (double **) malloc (sizeof (double *) * 3);
for (i=0; i < 3; i++)
idiff [i] = (double *) malloc (sizeof (double) * (nodes[i]+1));

agg_errors = (double **) malloc (sizeof (double *) * ntrainpat);
for (i=0; i < ntrainpat; i++)
agg_errors[i] = (double *) malloc (sizeof (double) * maxepochs);

agg_errorsld = (double *) malloc (sizeof (double) * (ntrainpat*maxepochs))

}

*

* neural.c : File of NN functions
*

* John Carney 16/3/98
*

#include <math.h>
#include <stdlib.h>

/* Function prototypes */

APPENDIX A. NEURALBAG C-MPI CODE 116

void init_weights (int ninput);
double feed_forward (double *in);
void compute_difference (double actual_out);
void propagate_backwards ();
void update_weights (int epoch);
static double momentum (int epoch);
void setup_index ();

/* External variables */
extern int ntrainpat;
extern double mom;
extern double Irate;
extern double **inter;
extern double ***wgts;
extern double ***wdiff;
extern double **idiff;
extern int *nodes;
extern double ***batchbuf;
extern int *rand_index;

*

* init_weights () : Initialise network weights
*

void init_weights (int ninput)

APPENDIX A. NEURALBAG C-MPI CODE 117

int i, j , k ;
double beta, v_old;

/* Basis for learning thresholds */
for (i=0; i < 3; i++)
inter[i][nodes[i]] = 1.0;

/* Randomise weights */
beta = 0.7*(pow((double)nodes[1] , (1.0/((double)ninput))));

for (i=l; i < 3; i++)
for (j=0; j < nodes[i]; j++)
for (k=0; k < nodes[i-1]; k++)
■C
wgts[i-1][j] [k] =
((((double) (randomO 7.65535))/65535)-0.5) ;
wdiff[i-1] [j][k] = 0.0;
}

for (j=0; j < nodes[l]; j++)
{
v_old = 0.0;
for (i=0; i < nodes[0]; i++)
v_old += pow(wgts[0] [j] [i] , 2.0);
v_old = sqrt(v_old);

for (k=0; k < nodes[0]; k++)
wgts[0][j][k] = (beta * wgts[0][j][k]) / v_old;

AP P E N D IX A. NEURALBAG C-MPI CODE

}

}

*

* feed_forward () : Feed input values forward
* to output
*

double feed_forward (double *in)

{

int i, j, k;
double net;
double net_out;

for (k=0; k < nodes[0]; k++)
inter [0] [k] = in[k] ;
/* Feed forward */
for (i=l; i < 3; i++)
{
for (j=0; j < nodesCi]; j++)

net = 0.0;
for (k=0; k < nodes[i-1]+1; k++)

APPENDIX A. NEURALBAG C-MPl CODE

net += wgts[i-1][j][k] * inter[i-1][k];
/* Thresholding */
inter[i][j] = (1.0-exp(-2.0*net))/(1.0+exp(-2.0*net))
}
}
for (k=0; k < nodes[2]; k++)
net_out = inter[2][k];

return (net_out);

}

*

* compute_difference () : Compute difference
* between desired and
* actual output
*

void compute_difference (double actual_out)

-C

int i ;
double val;

for (i=0; i < nodes[2]; i++)

A P P E N D IX A. NEU RA LBAG C-MPI CODE

-C
val = inter[2] [i] ;
idif f [2] [i] = (1+val) * (1-val) * (actual_out - val)
}
}

*

* propagate_backwards 0 : Propagate errors
* backward
*

void propagate_backwards ()

{

int i, j, k;
double val;

for (i=l; i >= 0; i—)
{
/* Compute weight differences */
for (j=0; j < nodes[i+l]; j++)
{
for (k=0; k < nodes[i]+l; k++)
{
batchbuf [i] [j] [k] = wdiff [i] [j] [k] ;

AP PE N D IX A. NEUHALBAG C-MPI CODE 121

wdiff[i][j][k] = lrate*idiff[i+1][j]winter[i] [k];
}
}
/* Compute deltas */

for (j=0; j < nodes[i]; j++)
{
val = 0.0;
for (k=0; k < nodes[i+1]; k++)
val += idiff[i+1] [k] * wgts[i] [k] [j];
idiff[i][j] = val * (1+inter [i] [j]) * (1-inter [i] [j]);
}
}
}

*

* update_weights () : update the weights after
* backpropagation

void update_weights (int epoch)

{

int i, j , k ;

for (i=l; i>=0; i—)

AP P E N D IX A. N EURALBAG C-MPI CODE 122

for (j=0; j<nodes[i+1]; j++)
for (k=0; k < nodes[i]+l; k++)
{
wgts [i] [j] [k] +=
wdiff[i][j][k]+(momentum(epoch) * batchbuf[i][j][k]);
}
}

*

* momentum () : incremental momentum value
*

static double momentum (int epoch)

{
if (epoch < 100) return ((((double) (epoch))/lOO.0) * mom);
return (mom);
}

*

* setup_index ()
*

APPENDIX A. NEURALBAG C-MPI CODE 123

void setup_index ()

int firstlndex;
int secondlndex, r;
int holding!ank;

for (firstlndex = 0; firstlndex < ntrainpat; firstlndex++)
{
secondlndex = rand () "/.ntrainpat;
holding!ank = rand_index[firstlndex];
rand_index[firstlndex] = rand_index[secondlndex];
rand_index[secondlndex] = holding!ank;
}
}

*

* read.c: File for reading the parameters and
* database files
*

* c. John Carney 21/8/98
*

#include <stdio.h>
#include <stdlib.h>

/* Function Prototypes */

A P P E N D IX A. NEUBALBAG C-MPI CODE 124

void read_params (char *pr_filename);
void read_patterns (char *db_filename);

/* External variables */

extern double **train_array;
extern double **test_array;
extern int *nodes;
extern int ntrainpat;
extern int ntestpat;
extern int ninput;
extern int nhidden_nodes;
extern int maxepochs;
extern int num_bs;
extern double Irate;
extern double mom;
extern double offset;
extern double scale;

*

* read_params () : process parameter file
*

void read_params (char *pr_filename)

-C

AP PE N D IX A. N EURALBAG C-MPI CODE

FILE *fp;

/*Open parameter file*/
fp = fopen (pr_filename, "r");

/* Read parameters */

fscanf
fscanf
fscanf
f scanf
fscanf
f scanf
fscanf
f scanf
f scanf
fscanf

(fp,
(fp.
(fp,
(fp,
(fp,
(fp,
(fp,
(fp,
(fp,
(fp.

y,d", fentrainpat);
y.d",

y.d".

y.d".

y.d".

y.d".

y . i f

y . i f

y . i f

y . i f

fentestpat);
feninput);
&nhidden_nodes);
femaxepochs);
&num_bs);
, felrate);
, &mom);
, fescale);
, feoffset);

fclose (fp);

*

* read_patterns () : read patterns from database
*

AP P E N D IX A. NEURALBAG C-MPI CODE

void read_patterns (char *db_filename)

FILE *fp;

int i , j ;

/* Allocate memory */
train_array = (double **) malloc (sizeof (double *)
for (i=0; i < ntrainpat; i++)
train_array[i] = (double *) malloc (sizeof (double)
test_array = (double malloc (sizeof (double *) *
for (i=0; i < ntestpat; i++)
test_array[i] = (double *) malloc (sizeof (double) *
nodes = (int *) malloc (sizeof (int) * 3);

/* Initialise nodes */
nodes [0] = ninput;
nodes [1] = nhidden_nodes;
nodes [2] = 1;

/* Read data */
fp = fopen (db_filename, "r");
for (i=0; i < ntrainpat; i++)

* (ntrainpat))

* (ninput+D);
(ntestpat));

(ninput+1));

AP P E N D IX A. N EU RA LBAG C-MPI CODE

{
for (j=0; j < (ninput+1); j++)
{
fscajif (fp, "°/olf", &train_array [i] Cj]);
}
}
fclose (fp);

fp = fopen ("test.dat", "r");
for (i=0; i < ntestpat; i++)
{
for (j=0; j < (ninput+1); j++)

fscanf (fp, "°/.lf", &test_array [i] [j]) ;
}
}

fclose (fp);

}

*

* train.c : Once we have found the
* optimal epochs we train the nets
=t=

* c. John Carney 21/8/98

A P PE N D IX A. NEURALBAG C-MPI CODE 128

#include <math.h>
#include <stdlib.h>
#include <stdio.h>
#include "neural.h"

/* Function prototypes */

void train_bs_enserable (int start_index, int bs_partit, int taskid);

/* External variables */

extern int *rand_index;
extern int +*bs_indices;
extern double **train_array;
extern double **test_array;
extern int *stop_epoch;
extern int *nodes;
extern double ***wgts;
extern int ntrainpat;
extern int ntestpat;
extern int ninput;
extern int nlayer;
extern double Irate;
extern double mom;

APPENDIX A. NEURALBAG C-MPI CODE 129

*

* train_bs_ensemble ()
*

void train_bs_ensemble (int start_index, int bs_partit, int taskid)

int b, i, j, k;
int epoch;
double actual_out;
double net_out;
double *in;
FILE +fp;

char savefile[32];

/* We need a different save_weights file for each task */
sprintf (savefile, "%s.yod", "weights", taskid);

/* Open save network weights file */
fp = fopen (savefile, "w");

/* Allocate memory for in */
in = (double *) malloc (sizeof (double) * ninput);

/* Train each bootstrap re-sample */

AP P E N D IX A. NEU RA LBAG C-MPI CODE

for (b=start_index; b < (start_index+bs_partit); b++)
{

if (taskid == 0)
printf ("\nMASTER: Training network 7«d", (b+D);

init_weights (ninput);
epoch = 0;

for (i=0; i < ntrainpat; i++)
rand_index[i] = bs_indices[b][i];

/* Train and test 1 network */
do
{
/* Present training patterns */
for (j=0; j < ntrainpat; j++)
{
for (k=0; k < ninput; k++)
in[k] = train_array[(rand_index[j])][k];
actual_out = train_array [(raiid_index[j])] [ninput] ;
net_out = feed_forward (in);
compute_difference (actual_out);
propagate_backwards ();
update_weights (epoch);
}
} while (++epoch < stop_epoch[b]);

/* Save weights */

APPENDIX A. NEURALBAG C-MPI CODE 131

for (i=l; i < nlayer; i++)
{
for (j=0; j < nodes[i]; j++)

for (k=0; k < nodes[i-1]+1; k++)
{
fprintf (fp, "“/.If ", wgts [i-1] [j] [k]) ;
}
fprintf (fp, "\n");
}
fprintf (fp, "\n");
}

}
fclose (fp);

}

*

* bagmain.h : header for bagmain.c
*

* c. John Carney 10/9/98
*

void create_bs_datasets ();
void create_error_matrix (int start_index, int bs_partit, int taskid);

APPENDIX A. NEURALBAG C-MPI CODE 132

void read_params (char *pr_filename);
void read_patterns (char *db_filename);
void combine_errors ();
void train_bs_ensemble (int start_index, int bs_partit, int taskid);
void calc_val_res (int numtasks);

*

* errors.h; Header file for errors.c
*

* c . John Carney 21/8/98
*

void init_weights (int ninput);
double feed_forward (double *in);
void propagate_backwards ();
void update_weights (int epoch);
void compute.difference (double actual_out);

*

* train.h: Header file for train.c
*

* c. John Carney 21/8/98
*

APPENDIX A. NEURALBAG C-MPI CODE

void init_weights0;
double feed_forwardO ;
void compute_difference(double actual_out)
void propagate_backwards0;
void update.weights(int epoch);

Bibliography

(Alexander, 1998) C. Alexander, editor. Risk Management and Analysis, John Wiley

and Sons, Chichester, England, 1998.

(Aussem et al, 1998) A. Aussem, J. Campbell and F. M urtagh. S&P500 forecasting

using a neuro-wavelet approach. Journal of Computational Intelligence in Finance

6:5-12, 1998.

(Bachelier, 1900) L. Bachelier. Theory of Speculation. In P. Cootner editor. The

Random Character of Stock Market Prices, MIT Press, Cambridge, MA, 1964, reprint.

(Baum and Haussler, 1988) E. Baum and D. Haussler. W hat size net gives valid

generalization? Neural Computation 1:151-160, 1988.

(Bickel and Freedman, 1981) P. Bickel and D. Freedman. Some asym ptotic theory

for the bootstrap, Annals of Statistics, 9:1196-1217, 1981.

(Bishop, 1994) C.M. Bishop. Mixture density networks. Technical report. Departm ent

of Computer Science and Applied Mathematics, Aston University, Birmingham, UK,

1994.

(Blume et al, 1994) L. Blume, D. Easley and M. O ’Hara. Market statistics and

technical analysis: The role of volume. Journal of Finance, 49:153-181, 1994.

134

BIB L IO G R A P H Y 135

(Breiman, 1996a) L. Breiman. Bagging predictors. Machine Learning, 24:123-140,

1996.

(Breiman, 1996b) L. Breiman. Out-of-bag estimation. Technical report, Statistics

Departm ent, University of California at Berkeley, California, 1996.

(Breiman, 1996c) L. Breiman. Bias, variance and arcing classifiers. Technical report,

Statistics Department, University of California at Berkeley, California, 1996.

(Breiman, 1994) L. Breiman. Heuristics of instability in model selection. Technical

report. Statistics Department, University of California at Berkeley, California, 1994.

(Brock et ai, 1992) W. Brock, .J. Lakonishok and B. LeBaron. Simple technical

trading rules and the stochastic properties of stock returns. Journal of Finance,

47:1731-1764, 1992.

(Campbell et al., 1997) J. Campbell, A. Lo and A.C. MacKinlay. The Econometrics

of Financial Markets, Princeton University Press, Princeton, New Jersey, 1997.

(Carney and Cunningham, 1999a) J.G. Carney and P. Cunningham. The NeuralBAG

algorithm: Optimizing generalization performance in bagged neural networks. In M.

Verleysen, editor. Proceedings of the 7th European Symposium on Artificial Neural

Networks , 135-140, D-Facto, Brussels, 1999.

(Carney and Cunningham, 1999b) J.G. Carney and P. Cunningham. Tuning diversity

in bagged ensembles. Technical report TCD-CS-1999-44, Departm ent of Com puter

Science, University of Dublin, Trinity College, 1999. To appear in International

Journal of Neural Systems.

B IB L IO G R A P H Y 136

(Carney et ai, 1999) J.G. Carney, P. Cunningham and U. Bhagwan. Confidence and

prediction intervals for neural network ensembles. In Proceedings of the International

Joint Conference on Neural Networks 1999 , paper 2090 (CD-ROM volume),

W ashington DC, 1999.

(Carret, 1997) P. Carret. The Art of Speculation, John Wiley and Sons, New York,

1997.

(Corden, 1995) W.M. Corden. Economic Policy, Exchange Rates and the Interna­

tional System, University of Chicago Press, Chicago, 1995.

(Cowles, 1933) A. Cowles. Can stock-market forecasters forecast? Econometrica,

1:309-324, 1933.

(Cybenko, 1989) G. Cybenko, Approximation by superpositions of a sigmoidal

function. Mathematical Control Signals Systems, 2:303-314, 1989.

(Davidson and Hinkley, 1997) A. Davidson and D. Hinkley. Bootstrap Methods and

their Application, Cambridge University Press, 1997.

(DiCicco and Tibshirani, 1987) T. DiCicco and R. Tibshirani. B ootstrap confidence

intervals and bootstrap approximations. Journal of the American Statistical Associ­

ation, 82:163-170, 1987.

(Drucker et ai, 1993) H. Drucker, R. Schairpe and P. Simard. Improving performance

in neural networks using a boosting algorithm. In S.J. Hanson, J.D. Cowen and C.L.

Giles, editors. Advances in Neural Information Processing Systems 5 , 42-49, Morgan

Kaufman, 1993.

B IB L IO G R A P H Y 137

(Efron, 1979) B. Efron. Bootstrap methods: Another look at the jackknife, Annals

of Statistics, 7:1-26, 1979.

(Efron and Tibshirani, 1993) B. Efron and R. Tibshirani. An Introduction to the

Bootstrap , Chapm an and Hall, London, 1993.

(Efron and Tibshirani, 1995) B. Efron and R. Tibshirani. Cross-validation and the

bootstrap: Estim ating the error rate of a prediction rule. Technical report, Statistics

D epartm ent, Stanford University, 1995.

(Einstein, 1905) A. Einstein. Ueber die von der molekular-kinetischen Theorie der

W arme geforderte Bewegung von in ruhenden Eliissigkeiten suspendierten Teilchen.

Annalen der Physik, 17:549-560, 1905.

(Farmer, 1998) D. Farmer. Market force, ecology and evolution. Technical report

98-12-119E, Santa Fe Institute, 1998.

(Fraser and Dimitriadis, 1994) A.M. Fraser and A. Dimitriadis. Forecasting proba­

bility densities by using hidden Markov models with mixed states. In A. Weigend

and N. Gershenfeld, editors, Time-Series Prediction: Forecasting the Future and

Understanding the Past, Addison-Wesley, Reading, MA, 1994.

(Freidman, 1991) J. Freidman. Multivariate adaptive regression splines (with

discussion). Annals of Statistics , 19:1-141, 1991.

(Freund and Schapire, 1996) Y. Freund and R. Schapire. Experiments with a new

boosting algorithm. In Proceedings of the Thirteenth International Conference on

Machine Learning , 148-156, Morgan Kaufman, 1996.

BIB LIO G R A P H Y 138

(Freund and Schapire, 1995) Y. Freund and R. Schapire. A decision-theoretic gen­

eralization of on-line learning and an application to boosting. In Proceedings of the

Second European Conference on Computational Learning Theory , Springer-Verlag,

23-37, 1995.

(Gallant et ai, 1991) R. Gallant, P. Rossi and G. Tauchen. Stock prices and volume,

Review of Financial Studies, 5:199-242, 1991.

(Geman et ai, 1992) S. Geman, E. Bienenstock and Rene Doursat. Neural networks

and the bias/variance dilemma, Neural Computation, 4:1-58, 1992.

(Granger, 1989) C.W. Granger. Combining forecasts - twenty years later, Journal of

Forecasting 8:167-173, 1989.

(Granger and Morgenstern, 1970) C. Granger and O. Morgenstern. Predictability of

Stock-Market Prices, D.C. Heath and Company, Lexington, MA, 1970.

(Hamilton, 1989) J. Hamilton. A new approach to the economic analysis of nonsta-

tionary time-series and the business cycle, Econometrica, 57:257-384, 1989.

(Hassibi and Stork, 1993) B. Hassibi and D. Stork. Second order derivatives for

network pruning: Optimal Brain Surgeon. In S.J. Hanson, J.D. Cowen and C.L.

Giles, editors. Advances in Neural Information Processing Systems 5 , 164-171,

Morgan Kaufman, 1993.

(Hertz et ai, 1991) J. Hertz, A. Krogh and R. Palmer. Introduction to the Theory of

Neural Computation , Addison-Wesley, Redwood City, CA, 1991.

DIBLIOGRAPm 139

(Heskes, 1997a) T. Heskes. Balancing between bumping and bagging. In M. Mozer,

M. Jordan and T. Petsche, editors. Advances in Neural Information Processing

Systems 9 , 466-472, MIT Press, 1997.

(Heskes, 1997b) T. Heskes. Practical confidence and prediction intervals. In M.

Mozer, M. Jordan and T. Petsche, editors. Advances in Neural Information Process­

ing Systems 9 , 176-182, MIT Press, 1997.

(Hjorth, 1994) U. Hjorth. Computer Intensive Statistical Methods, Chapm an and

Hall, London, 1994.

(Huang et a i, 1990) X. Huang, K.F. Lee and H.W. Hon. On semi-continuous hidden

Markov modeling. In Proceedings of the International Conference on Acoustics,

Speech and Signal Processing, 689-692, 1990.

(Hvismeier, 1999) D. Husmeier. Neural Networks for Conditional Probability Esti?)ia-

tion , Spinger-Verlag, London, 1999.

(Ito, 1993) Y. Ito. Extension of approximation capability of three layered neural

networks to derivatives. In Proceedings of the International Conference on Neural

Networks 1993, 377-381, 1993.

(Karpoff, 1986) J. Karpoff. The relation between orice changes and tradining volume:

A survey, Journal of Quantitative and Financial Analysis, 22:109-126, 1986.

(Keim, 1989) D. Keim. Trading patterns, bid-ask spreads and estim ated security

returns: The case of common stocks and at calendar turning points. Journal of

financial Economics, 37:371-398, 1989.

B IB L IO G R A P H Y 140

(Kendall, 1953) M.G. Kendall. The analysis of economic time-series - part I: Prices,

Journal of the Royal Statistical Society, 96:11-25, 1953.

(Kennan and O ’Brien, 1993) D. Kennan and M. O ’Brien. Competition, collusion and

chaos. Journal of Economic Dynamics and Control, 17:327-353, 1993.

(Krogh and Vedelsby, 1995) A. Krogh and J. Vedelsby. Neural network ensembles,

cross-validation and active learning. In G. Tesauro, D. Touretzky and T. Lean,

editors. Advances in Neural Information Processing Systems 7 , 231-238, MIT Press,

1995.

(LeBaron, 1996) B. LeBaron. Technical trading rule profitability and foreign ex­

change intervention, working paper 5505, NBER, Camridge, MA, 1996.

(Le Cun et ai, 1990) Y. Le Cun, J. Denker and S. Solla. Optimal brain damage.

In D. Touretzky, editor. Advances in Neural Information Processing Systems 2 ,

598-605, Morgan Kaufman, 1990.

(Lorenz, 1963) E. Lorenz. Deterministic aperiodic flow. Journal of atmospheric

sciences, 20:130-141, 1963.

(Lucas, 1978) R. Lucas. Asset prices in an exchange economy, Econometrica,

46:1429-1446, 1978.

(Maclin and Opitz, 1997) R. Maclin and D. Opitz. An empirical evaluation of

bagging and boosting. In Proceedings of the Fourteenth National Conference on

Artificial Intelligence , Providence, Rhode Island, 1997.

BIBLIOGRAPHY 141

(Maclin and Shavlik, 1995) R. Maclin and J. Shavlik. Using competitive learning

to initialize neural networks. In Proceedings of the Fourteenth International Joint

Conference on Artificial Intelligence , 524-530, 1995.

(Malkiel, 1992) B. Malkiel. Efficient market hypothesis. In P. Newman, M. Milgate

and J. Eatwell editors, New Palgrave Dictionary of Money and Finance, Macmillan,

London, 1992.

(Mandelbrot, 1963) B. Mandelbrot. The variation of certain speculative prices.

Journal of Business, 36:394-419, 1963.

(Mukherjee et al., 1997) S. Mukherjee, E. Osuna and F. Girosi. Nonlinear prediction

of chaotic time-series using support vector machines. In Proceedings of Neural

Networks for Signal Processing 1997, Amelia Island, FL, 1997.

(Murphy, 1986) Murphy. Technical Analysis of the Futures Markets, New York
Institu te of Finance, New York, 1986.

(Murphy and Aha, 1995) P. Murphy and D. Aha, librarians. The

UCI Repository of Machine Learning Databases and Domain Theories,

http://www.ics.uci.edu/ mlearn/MLRepository.html , 1995.

(Neal, 1996) R.M. Neal. Bayesian Learning for Neural Networks, Springer-Verlag,

New' York, 1996.

(Nilsson, 1965) N.J. Nilsson. Learning Machines: Foundations of Trainable Pattern-

Classifying Systems , McGraw Hill, New York, 1965.

BIBLIOGRAPHY 142

(Opitz and Shavlik, 1996) D. Opitz and J. Shavlik. Generating accurate and diverse

members of a neural network ensemble. In D. Touretzky, M. Mozer and M. Hasselmo,

editors, Advances in Neural Information Processing Systems 8 , 534-541, M IT Press,

1996.

(Pesaron and Potter, 1992) M. Pesaron and S. Potter. Nonlinear dynamics and

econometrics: An introduction. Journal of Applied Econometrics, 7(supp):Sl-S8,

1992.

(Prechelt, 1994a) L. Prechelt. Probenl: A set of benchmarks and benchmarking

rules for neural network training algorithms. Technical Report 21/94, Fakultat fiir

Informatik, Universitat Karlsruhe, Germany, 1994.

(Prechelt, 1994b) L. Prechelt, librarian, Probenl: A set of bench­

marks and benchmarking rules for neural network training algorithms,

ftp://ftp.ira.uka.de/pub/neuron. 1994.

(Rao and Tibshirani, 1997) J. Rao and R. Tibshirani. The out-of-bootstrap method

for model averaging and selection. Technical Report, Statistics D epartm ent, Stanford

University, 1997.

(Reed, 1993) R. Reed. Pruning algorithms - a survey, IEEE Transactions on Neural

Networks 4:740-747, 1993.

(Refenes, 1994) A. Refenes, editor. Neural Networks in the Capital Markets, 1994,

John Wiley and Sons, Chichester.

(Samuelson, 1965) P. Samuelson. Proof th a t properly anticipated prices fluctuate

randomly. Industrial Management Review, 6:41-49, 1965.

BIBLIOGRAPHY 143

(Scheiiikinan and Woodford, 1994) J. Scheinlman and M. Woodford. Self-organized

criticality and economic fluctuations, American Economic Review, 84:417-421, 1994.

(Sclove, 1983) S. Sclove. Time-series segmentation: A model and a method. Infor­

mation Sciences, 29:7-25, 1983.

(Sharkey, 1999) A.J. Sharkey, editor. Combining Artificial Neural Nets: Ensemble

and Modular Multi-Net Systems, Springer-Verlag, London, 1999.

(Sollich and FCrogh, 1996) P. Sollich and A. Krogh. Learning with ensembles: How

over-fitting can be useful. In D. Touretzky, M. Mozer and M. Hasselmo, editors.

Advances in Neural Information Processing Systems 8 , 190-196, MIT Press, 1996.

(Soros, 1987) G. Soros. The Alchemy of Finance, John Wiley and Sons, New York,

1987.

(Stone, 1974) M. Stone. Cross-validatory choice and assesment of statistical predic­

tion, Journal of the Royal Statistical Society 36:111-147, 1974.

(Starck et a i, 1998) J.L. Starck, F. M urtagh and A. Bijaoui. Image Processing and

Data Analysis: The Multi-Scale Approach, Cambridge University Press, 1998.

(Vapnik, 1995) V. Vapnik. The Nature of Statistical Learning Theory, Springer-

Verlag, London, 1995.

(Wahba and Wold, 1975) G. Wahba and S. Wold. A completely autom atic French

curve, Commun. Statist., 4:1-17, 1975.

B IB L IO G R A P H Y 144

(Wang et al., 1994) C. Wang, S.S. Venkatesh and J.S. Judd. Optim al stopping

and effective machine complexity in learning. In Advances in Neural Information

Processing Systems 6, 303-310, MIT Press, 1994.

(Weigend and Shi, 1998) A. Weigend and S. Shi. Predicting daily probability dis­

tributions of S&P500 returns. Working paper IS-98-33, Departm ent of Information

Systems, Stern School of Business, New York University, 1998.

(White, 1988a) H. W hite. Multilayer feedforward networks can learn arbitrary

mappings: Connectionist non-parametric regression with autom atic and semi­

autom atic determ ination of network complexity. University of California, San Diego,

Departm ent of Economics discussion paper, 1988.

(White, 1988b) H. W hite. Economic prediction using neural netw'orks: the case

of IBM daily stock returns. University of California, San Diego, Departm ent of

Economics discussion paper, 1988.

(Wolpert and Macready, 1996a) D. Wolpert and W. Macready. Combining stacking

with bagging to improve a learning algorithm. Technical report, Santa Fe Institute,

1996.

(Wolpert and Macready, 1996b) D. Wolpert and W. Macready. An efficient method

to estim ate bagging’s generalization error. Technical report 96-06-038, Santa Fe

Institute, 1996.

(Wolpert, 1992) D. H. Wolpert. Stacked generalization. Neural Networks , 8:1341-

1390, 1996.

B IB L IO G R A P H Y 145

(Zaiigari, 1996) P. Zangari. Estim ation and forecast. In Riskmetrics - Technical

Document, J.P. Morgan, New York, 1996.

(Zapranis and Refenes, 1999) A. Zapranis and A.P. Refenes. Principles of Neural

Model Identification, Selection and Adequacy, Springer-Verlag, London, 1999.

(Zenobi, 1999) G. Zenobi. Technical report TCD-CS-1999-76, Departm ent of Com­

puter Science, University of Dublin, Trinity College, 1999.

(Zhang, 1999) J. Zhang. Developing robust non-linear models through bootstrap

aggregated neural networks, Neurocomputing , 25:93-113, 1999.

