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Abstract

Neural Network Ensembles for Financial Time-Series Prediction and Risk Manage­

ment

John G. Carney

Supervisor: Dr. Padraig Cunningham

Recently, neural networks have become popular tools for modelling financial m ar­

kets. Much of this popularity can be attributed to the fact th a t neural networks are 

universal approximators i.e. they can (in theory at least) approximate any complex 

non-linear function to arbitrary accuracy. Given the complexity of modern financial 

markets, and the non-linearity tha t is widely accepted as driving the relationships 

between related financial variables, neural networks are potentially very powerful. 

This was recognised by financial market practitioners and researchers very early on. 

However, when systems were developed and tested, performance was typically poor. 

This is because non-parametric universal approximators such as neural networks can 

have serious limitations, especially when applied to model noisy, real-world systems 

such as financial markets.

One of the most serious is high-variance or instability i.e. small changes in tra in ­

ing set and /o r param eter selection can cause significant changes in generalisation 

(prediction) performance. Another problem (closely related to instability) is the ten­

dency of neural networks to over-fit, essentially “memorize” their training sets, which 

also causes poor generalisation performance. The final, but probably most serious 

lim itation of neural networks in the context of financial modelling, is the absence of
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model transparency - neural networks are “black-box” estimators. Given the regula­

tory pressures today on financial institutions and traders to manage and lim it their 

exposure to risk, such black-box models are just not good enough -  the trader cannot 

determine what factors drive the model or more im portantly how much confidence he 

can have in specific predictions.

In this thesis we attem pt to (at least partly) solve these problems. To address 

the stability and over-fitting issues we focus on ensemble techniques and argue th a t 

bagging, an established statistical ensemble technique based on bootstrapping is par­

ticularly suitable for neural networks applied to financial time-series prediction. An 

im portant feature of our work on bagging is th a t we recognise the im portance of 

diversity amongst individual members in a bagged ensemble. This m otivates the de­

velopment of a new early-stopping technique (the NeuralBAG algorithm) th a t tunes 

diversity by varying the fit of the individual networks in an ensemble. Significant 

advantages of NeuralBAG over other ensemble techniques (in the context of financial 

time-series prediction) include its robustness to noise and the availability of model 

variance (confidence) estimates from the bootstrapping process.

To address the issues relating to the absence of transparency in neural network 

models, we propose a new technique for generating prediction intervals i.e. esti­

mates of bounds on the possible error of our prediction of the targets. A unique 

feature of this technique is the way in which it incorporates uncertainty caused by 

model variance (estimated using bootstrapping as outlined above) and noise variance 

(estimated using an established econometric technique). These prediction intervals 

essentially allow a trader to anticipate the quality of an ensemble prediction before 

the prediction horizon expires. This enables him to manage risk more effectively and 

essentially circumvents the problems relating to the absence of transparency -  the 

trader is provided with a quantitative measure of how much faith he can put in a 

prediction.
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Chapter 1

Introduction

“I  can calculate the m ovem ents o f heavenly bodies, but not the m adness o f people” 

Sir Issac Newton, after losing £20,000 on the London stock-market.

1.1 Introduction

Possibly the most central (and difficult) problem in finance is predicting future market 

behaviour. Every time a trader places a trade, it is motivated by some prediction 

of future market prices. Traditionally, traders have relied on their own internal or 

instinctive models of market dynamics, developed over years of m arket participation 

to do this. However, over the last few decades more scientific methods have evolved 

th a t have recently begun to show significant promise. Neural networks have emerged 

as one of the most popular scientific prediction methodologies. However, despite 

their powerful universal approximation properties, neural networks have some serious 

lim itations, especially when applied to difficult noisy problems such as financial time- 

series prediction. In this thesis we recognise these lim itations and a ttem pt to minimise 

the adverse effect they can have on the quality and usefulness of predictions.

We begin the thesis in this chapter by providing some background to financial pre­

diction and describing in general terms the variety of modern statistical and econo­

metric techniques th a t could be applied to solve the problems we aim to address.

1



C H A P T E R  1. INTRODUCTION 2

We focus on ensemble techniques and argue th a t bagging (an abreviation for “boot­

strap  aggregation” ) (Breiman, 1996a) is particularly suitable for stabilising neural 

networks trained for financial time-series prediction. In this chapter we also describe 

the financial data-sets th a t we use, we describe the training vector set-up used for 

the experiments performed in later chapters, and outline the main contributions of 

the thesis.

In chapter 2 we begin to focus on the problems of instability and over-fitting in 

neural networks in more detail. In particular, we focus on the importance of diversity 

amongst neural networks in bagged ensembles and suggest a new approach th a t tunes 

this diversity by varying the fit of the individual networks in an ensemble. We continue 

this theme in chapter 3 by proposing a new early-stopping technique (the NeuralBAG 

algorithm) th a t optimises ensemble generalisation performance by tuning diversity in 

this way. Im portant features of NeuralBAG (in the context of financial time-series 

prediction) are its robustness to noise and the availability of model variance estimates 

from the bootstrapping process, which forms a core part of bagging.

In chapter 4 we attem pt to address the issues relating to the absence of trans­

parency in neural network models. We propose a new technique th a t provides esti­

m ates of model variance for bagged ensembles th a t can be used to generate confidence 

intervals with very good coverage (confidence intervals provide estimates of confidence 

in our prediction of the underlying true regression of the data). We then extend this 

work to develop a new technique tha t provides estimates of noise variance for ensem­

ble predictions th a t can be combined with the estimates of model variance to generate 

prediction intervals with very good coverage (prediction intervals provide estim ates 

of confidence in our prediction of the targets themselves). These prediction intervals 

essentially allow a trader to anticipate the quality of an ensemble prediction before 

the prediction horizon expires. This enables him to manage risk more effectively.

In chapter 5, using 8 financial time-series data-sets, we evaluate the performance 

of all techniques proposed in this thesis by measuring the predictive accuracy of the 

ensembles compared to econometric benchmarks. In this chapter we also identify 

recurring features in the results such as the sensitivity of the ensemble predictions to 

m arket volatility and prediction horizon. Finally in chapter 6 we conclude the thesis
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by summarising its main contributions and identifying what further work should to 

be done to improve the techniques proposed in the thesis.

1.2 Predictability in financial markets

One of the most fundamental questions in finance is whether or not financial markets 

are predictable. This topic has been a focus of considerable attention amongst both 

researchers and practitioners in the financial world ever since financial markets have 

existed. In this section we briefly review this area of research. We focus on the pop­

ular Efficient Markets Hypothesis and discuss its relevance in the context of modern 

financial markets and practice.

Possibly the earliest published work on this subject is the doctoral thesis of the 

French m athem atician Louis Bachelier (1900). He developed the foundations of a 

theory which, in essence, proposes th a t all stock market prices follow a random walk. 

His work was initially ignored by the financial world, but quickly gained recognition 

in other fields such as physics and is rumored by many (e.g. Granger and Morgenstern 

(1970)) to have inspired Einstein’s seminal work on Brownian motion (Einstein, 1905). 

O ther im portant early work on this subject includes the empirical study of Cowles 

(1933) who attem pted to evaluate how accurately stock market analysts could predict 

prices. He found th a t they rarely out-performed a random walk and suggested tha t 

those who did were just very lucky. Similar theoretical and empirical contributions 

followed for several decades th a t supported the work of Bachelier and Cowles. Some of 

the most significant include (Kendall, 1953), (Mandelbrot, 1963), (Samuelson, 1965) 

and (Malkiel, 1992). Over the decades, this random walk theory of financial markets 

was refined and extended. Today, it is known as the Efficient Markets Hypothesis.

The Efficient Markets Hypothesis essentially consists of several random walk the­

ories of financial markets. These theories differ primarily in how strict their definition 

of randomness is. A comprehensive review can be found in (Campbell et a l,  1997 

(chapter 2)). The simplest and possibly most recognised of these is the martingale 

model. There are a number of ways in which this model can be expressed. However,
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possibly the most natural is as

Pt =  Pt-i +  (1-1)

where pt denotes the price at time t (of a stock for example) and et denotes the residual 

(error) at time t. The residual is assumed to have zero mean and to be uncorrelated 

with all previous residuals. If this model holds true, then essentially it implies tha t 

the best predictor of tomorrow’s price is today’s price. It can also be applied to other 

prediction horizons e.g. the best predictor of next week’s price is today’s price.

Despite the simplicity of this model, it has been consistently m isinterpreted by 

many in the financial world. The most common m isinterpretation is tha t it implies 

all financial markets are unpredictable. However, a closer look at the model reveals 

th a t it is in fact much more specific than this. The exact, correct interpretation 

is th a t price changes are unpredictable if only linear combinations of previous price 

changes from the same market are used to generate the predictions -  see (Granger 

and Morgenstern, 1970) for details. So, if one builds a model to predict prices tha t 

uses non-iznear combinations of previous price changes, the martingale does not claim 

th a t it would be unsucessful. Likewise, if one builds a m ultivariate model th a t uses 

exogenous financial predictor variables, the martingale model does not claim this 

would be unsuccessful either.

Although more sophisticated random walk models have been developed th a t also 

include, for example, the restriction tha t price changes are unpredictable even if non­

linear combinations of previous price changes are used (see (Campbell et a i, 1997 

(chapter 2))), they still over-simplify the dynamics of financial markets and under­

estim ate the models th a t can be built to predict their movements. It is generally 

accepted today th a t the Efficient Markets Hypothesis has been over-emphasised in 

the econometrics literature. Many leading practitioners and academics e.g. Campbell 

et al. (1997), Farmer (1998) and Soros (1987) believe th a t all random walk theories 

of financial markets over-simplify the dynamics of a system th a t is ultim ately driven 

by complex human behaviour. Models such as Farm er’s theory of financial ecology 

(Farmer, 1998) are more sensible and, significantly, concur with the concensus view
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today amongst practitioners th a t at least some predictability in financial markets ex­

ists. For example, changing business conditions and cycles, non-linear behaviour and 

relationships amongst financial instruments and markets and friction in the markets 

all naturally contribute towards a certain degree of predictability.

It is this modern view th a t we take in this thesis. We do not expect markets 

to follow a random walk, but do expect the predictability th a t does exist to be 

very difficult to find and exploit. We will show how the particular model of neural 

network learning th a t we use and develop plays a key role in finding and exploiting this 

predictability. Our analysis of its predictive performance on financial m arket da ta ­

sets will confirm th a t a limited amount of predictability does exist in most financial 

markets and can be exploited.

1.3 Financial market prediction techniques

The financial market prediction techniques used today can be roughly divided into 

four main categories; fundamental analysis techniques, charting techniques, econo­

metric techniques and modern “exotic” techniques such as chaos theory and hidden 

Markov models. In this section we review some of the more popular techniques th a t 

make up these categories.

1.3.1 Fundamental analysis

This category of financial prediction can be used for a wide variety of prediction 

tasks in finance. For example, changes in individual stock prices can be predicted 

by analysing the fundamental financial conditions and operating performance of a 

company. Usually, information such as the price/earnings ratio, profit/loss history, 

quality of the competition and the track-record of the management are used. To 

predict other financial market movements, such as a country’s future foreign exchange 

rate, other fundamental indicators are used e.g. interest rates, inflation and growth 

rates relative to other economies. A discussion and general review of some popular 

fundamental analysis techniques and strategies can be found in (Garret, 1997).
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This traditional method of financial prediction enjoys widespread use in most fi­

nancial institutions. However, it does have some serious limitations. For example, 

predictions generated using fundamental analysis techniques are typically very subjec­

tive i.e. humans play a very im portant role in the process. Although some objective 

quantitative analysis usually exists in the form of balance sheets, economic indicators 

and so on, typically the only “model” tha t exists is in the mind of an analyst or 

economist. Humans can be influenced by any number of subjective and emotional 

factors e.g. greed, fear and ulterior motive, all of which can corrupt the process of 

generating a prediction.

Another problem regarding the role played by humans in fundam ental analysis 

is th a t we cannot easily identify complex non-linear relationships between variables 

and markets. It is widely accepted today th a t non-linearity exists in all financial 

markets. Indeed, as mentioned in section 1.2 it is an im portant source of predictability. 

Excluding the possibility th a t non-linearity may exist in modern financial markets will 

inevitably lead to poor predictions.

Finally, most fundamental analysis techniques operate under the assum ption that 

every financial asset has an intrinsic value tha t can be determined by analysing fun­

dam ental indicators. However, in modern sophisticated financial markets the concept 

of value is no longer easy to identify or clearly define. For example, technology (es­

pecially internet) companies can consistently make a loss but still m aintain a very 

high stock price. These companies are unique in tha t most of their current value is 

based on their projected future performance and future potential markets for their 

products. Integrating this into a fundamental anlysis strategy is very difficult -  fun­

dam ental analysis essentially assumes tha t the current value of a company is mostly 

reflected in its current fundamental indicators. This can be carried over to economic 

analysis as well. For example, the effect th a t “globalisation” has on financial markets 

is not very well understood. No economy today operates in isolation, rather, they 

influence each other in very complex ways. Therefore, the “value” of an economy is 

very difficult to determine and predict if only simple linear analyses of fundamental 

indicators are used.
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1.3.2 Charting

Charting (sometimes called technical analysis) is an approach to financial prediction 

th a t is based on the belief tha t financial time-series exhibit trends and regularities in 

the form of geometric patterns. Predictions are usually generated by deducing from 

the historical trends or geometry of a series the probable future trend. A review of 

some popular charting techniques can be found in (Murphy, 1986).

Traditionally, charting has been unpopular amongst academics but popular with 

practitioners. Academics are uncomfortable with charting because it is not based on 

sound, proven principles but instead largely on intuition and interpretation. However, 

recently the differences between charting, fundamental analysis and econometrics have 

become somewhat blurred. For example, fundamental indicators such as earnings and 

econometric indicators such as volatility^ are being integrated into the charts th a t 

charting practitioners use. However, despite this, charting still remains somewhat 

unprincipled and trends or projections open to interpretation. Also, most charting 

techniques can only identify linear trends and relationships. Those techniques tha t 

claim to identify and exploit non-linear trends usually use econometric indicators.

Although some recent studies by leading academics (e.g. Blume et al. (1994), 

Brock et al. (1992) and LeBaron (1996)) have given charting some credibility by 

highlighting various similarities with econometrics, there is still significant suspicion 

amongst academics.

1.3.3 Econom etrics

Econometric techniques are amongst the most popular financial prediction techniques 

in modern financial institutions. They include simple moving average techniques, 

sophisticated volatility prediction techniques such as autoregressive conditional het- 

eroskedastic (ARCH) methods and pricing models such as the Capital Asset Pricing

^The volatility of a financial market is a measure of how turbulent it is. Unlike prices, volatility 
cannot be observed and must be estimated. A rough estimate of volatility over a specified period 
is given by the corresponding standard deviation of prices over that period. More sophisticated  
estimates of volatility also exist (see e.g. (Alexander, 1998 (chapter 4))). We will re-visit this issue 
in significant depth in chapter 5.
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Model (CAPM) and its variations. Other econometric theories such as the Black- 

Scholes option pricing model can also be manipulated to predict future market move­

ments (see e.g. (Alexander, 1998 (chapter 4)) for some examples). All econometric 

techniques are based on proven principles and theories and are very popular amongst 

both academics and (sophisticated) practitioners. They are also objective and some 

can model non-linearities. A comprehensive review of the most popular modern 

econometric tools and techniques can be found in (Campbell et ai,  1997).

Econometric techniques are rarely used to predict the absolute value of a financial 

asset. Most applications lie in risk management (see (Alexander, 1998 (chapter 4)) 

for a survey of some popular applications). For example, the predicted volatility 

of an asset is an im portant factor in determining risk exposure. Today it is very 

difficult to distinguish between these econometric techniques and some of the so- 

called “exotic” techniques. For example, amongst some academics and practitioners 

in finance neural networks are no longer seen as some obscure artificial intelligence 

technique but instead are beginning to be accepted as a valid non-param etric, non­

linear econometric modelling tool. For example, in (Zapranis and Refenes, 1999) an 

econometric framework is developed tha t shows how neural networks fit into theories 

such as the CAPM.

In this thesis we view neural networks in this way. The techniques we develop 

have the statistical rigour and theoretical foundations necessary to support this. We 

also support this by integrating an established ARCH volatility prediction method 

into our technique for generating prediction intervals.

1.3.4 “E xotic” techniques

It is quite difficult to define what constitutes an “exotic” financial prediction tech­

nique. For example, neural networks have traditionally belonged to this group, but as 

discussed above, are now beginning to be accepted as an econometric modelling tech­

nique. We will therefore restrict our definition of “exotic” as meaning a theoretically 

promising, but empirically unproven non-linear financial modelling technique.

Currently, one of the most popular (and fashionable) of these techniques is chaos
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theory which has its origins in the physics literature (Lorenz, 1963). Its main con­

tribution is th a t it shows how relatively simple systems of ordinary diflFerential and 

difference equations can exhibit extremely complex dynamics. However, although 

chaos theory is quite m ature in physics and a number of possible financial applica­

tions have been proposed (see e.g. (Scheinkman and Woodford, 1994), (Kennan and 

O ’Brien, 1993) and (Pesaran and Potter, 1992)), there is little compelling evidence to 

suggest th a t it will emerge as an im portant modelling tool in finance. As discussed 

in (Campbell et a i,  1997) financial markets are not specific about functional forms 

and econometricians have no theoretical reason for expecting to find one form of non- 

linearity rather than another. Chaos theory is a very active area of research however 

and it is possible th a t current theoretical lim itations and assumptions may not exist 

in the future.

Another technique th a t is gaining popularity as a financial prediction tool is the 

hidden Markov model method, which is widely used in speech recognition (Huang 

et a l, 1990). In (Fraser and Dimitriadis, 1994) hidden Markov models are used to 

predict entire conditional probability distributions^ of future foreign exchange rates. 

In (Weigend and Shi, 1998) they are used to predict rare events such as stock market 

crashes by modelling the tails of conditional target distributions. Although hidden 

Markov models are relatively new as a financial prediction technique, they do seem 

to show promise for some specific applications.

The techniques described above are examples of only a few “exotic” techniques 

th a t have been applied to predict financial market movements. There are count­

less other techniques th a t have not been mentioned e.g. Markov-switching methods 

(Hamilton, 1989; Sclove, 1983), support vector machines (Vapnik, 1995; Mukherjee et 

a i,  1997) and wavelet transforms (Starck et a l, 1998; Aussem et a i,  1998). Given the 

significant activity and diversity of research in financial prediction, it is very difficult 

to predict what will be the most powerful technique of the future. However, with 

the possible exception of neural networks, few so-called “exotic” techniques have 

made the transition from academic research to financial practice. Most prediction 

^Typically, models are built that only predict the mean of this distribution.
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techniques th a t are currently used in finance were developed in the econometrics lit­

erature. Therefore, if an unusual new technique is to be accepted by practitioners it 

should first be adopted by the econometrics community. Keeping this in mind, we 

follow the lead of (Zapranis and Refenes, 1999) in this thesis and attem pt to develop 

neural networks as an econometric technique th a t is statistically viable and robust. 

The terminology and methods th a t we adopt will reflect this.

1.4 Neural networks for financial tim e-series pre­

diction

In this section we review neural network approaches to financial prediction and discuss 

their advantages and disadvantages relative to the techniques described in section 1.3 

above.

Neural networks are essentially devices for non-parametric statistical inference i.e. 

when they are trained no assumptions about model or data  are made a priori. Sig­

nificantly, they are also universal function approximators -  W hite (1988a), Cybenko 

(1989) and Ito (1993) have all shown how neural networks with a single hidden layer 

can approximate arbitrarily well any continuous function. These non-parametric, 

imiversal approximation properties give rise to a number of im portant advantages 

and disadvantages, especially when neural networks are applied to model financial 

time-series.

One of the most im portant advantages is th a t they can easily identify and model 

subtle non-linearities between variables and markets. These non-linearites are “learned” 

by the neural network and so are objective and require little input by the user. This 

learning process is robust to noise if a suitable network regularisation algorithm  is 

used. Given the peculiar nature of financial time-series da ta  i.e. no specific func­

tional form, more stochastic than deterministic, non-stationary etc. these universal 

approximation properties are potentially very powerful.

It is these key advantages tha t have motivated most of the work in the literature 

th a t applies neural networks to financial prediction. One of the most im portant early
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works was published by an econometrician (White, 1988b). This work gave credibility 

to neural networks amongst financial practitioners and paved the way for a large 

num ber of other works in th is  area. Good overviews of this work and summaries of 

im portant specific papers can be found in (Refenes, 1994), (Zapranis and Refenes, 

1999) and (Campbell et a i ,  1997).

However, the flexibility and power afforded by the advantages of neural networks 

outlined above also introduce some serious limitations. Few of these lim itations hav(  ̂

been addressed by existing work in the literature. Possibly the most serious is instabil­

ity or high-variance. When neural networks are trained, especially on noisy, non-linear 

da ta  (such as financial time-series data), small changes in param eters an d /o r training 

da ta  can cause large changes in prediction performance. This is a serious lim itation 

in an application area such as finance which is very sensitive to risk. Another disad­

vantage of neural networks is th a t typically they are “black-box” i.e. the particular 

functional form of the data learned by the neural network is not easy to identify given 

the complexity of the relationships between the inputs, weights and hidden units in 

the network. Finally, neural networks have traditionally been seen as very com puta­

tionally expensive given the significant (usually gradient descent) optim isation th a t 

must be performed to estim ate a good set of weights.

So how can we justify the use of neural networks given these disadvantages? Can 

the above problems be solved or at least partially overcome? In this thesis we a t­

tem pt to do just tha t. We recognise the power and potential of neural networks as a 

financial time-series prediction tool and attem pt to overcome the problems identified 

above using some novel statistical, econometric and com putational techniques. In 

chapters 2 and 3 we develop our own particular variety of neural network ensemble 

technique to stabilise the networks and significantly improve prediction performance. 

In chapter 4 we combine our ensemble technique with an established econometric 

volatility prediction technique to estimate prediction intervals which in essence throw 

light onto the modelling process and can be used to manage risk. The com puta­

tional problems are a little more difficult to overcome especially given th a t ensemble 

techniques require an increased level of com putational power. However, the speed of 

modern computers minimises the negative impact of this. Also, in this thesis all code
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was w ritten in C-M PP. This made running the experiments for even large ensembles 

very manageable. The final neural network models of financial time-series th a t we 

use for our evaluation in chapter 5 do not suffer in any serious way from the problems 

summarised above. Moreover, the universal approximation properties and related 

advantages remain the same.

1.5 Neural network ensemble learning

In this section we briefly review some popular neural network ensemble techniques 

and discuss in general terms how they can significantly improve the generalisation 

performance of neural networks. We put particular emphasis on bagging, the ensemble 

technicjue of choice for this thesis.

Recently, neural network ensemble techniques have gained widespread use amongst 

neural network practitioners (see (Sharkey, 1999) for a review of this research). There 

are many different varieties, but the most popular include some elaboration of bag­

ging or boosting (Freund and Schapire. 1995). The basic idea of these techniques is to 

generate multiple versions of a predictor. When predictions from these versions are 

combined (averaged for example), smoother more stable predictions are generated. 

Wlien applied to neural networks, these techniques can yield dram atic improvements 

in generalization performance (see e.g. (Carney and Cunningham, 1999a; Maclin and 

Opitz, 1997)). This is because neural networks are inherently unstable (Breiman, 

1994; Breiman, 1996a) i.e. small changes in training set and /or param eter selection 

can produce large changes in performance. This idea of combining predictions from 

multiple versions has been around for quite a while -  its origins in the neural network 

literature can be traced back to as early as 1965 (Nilsson, 1965). Significantly, it 

has also been used in other fields such as econometrics where it is called “forecast 

combining” (Granger, 1989). However, it has not gained widepread use until recently,

^This is the C programming language with MPI (Message Passing Interface) library extensions. 
C-MPI allows parallel code to be written that can run on any MPI compatible super-computer or 
workstation cluster. We use the TCD CS Department SCI Cluster (for more information on this 
machine see http://www.cs.tcd.ie).
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largely because it requires significant computational resources, especially when ap­

plied to learners such as neural networks.

Bagging is widely accepted as one of the most popular neural network ensemble 

techniques. It uses the bootstrap (Efron and Tibshirani, 1993), a very popular sta­

tistical re-sampling technique, to generate multiple training sets and networks for an 

ensemble. Each ensemble training set is the same size as the original training set, but 

given th a t the bootstrap samples da ta  with replacement, individual training samples 

may appear several times in an ensemble training set while others may be left out. 

O utputs from the trained networks in a bagged ensemble are combined using a simple 

average to produce smoother, more stable predictions. There are many works on bag­

ging in the literature th a t study the technique in general terms i.e. w ithout reference 

to any specific predictor e.g. (Breirnan, 1996a; Breiman, 1996b; Rao and Tibshirani, 

1997; W olpert and Macready, 1996; Wolpert and Macready, 1996). Works th a t study 

bagging solely in the context of neural networks include (Carney and Cunningham, 

1999a; Heskes, 1997a; Zhang, 1999).

Boosting techniques use more elaborate training set generation and network com­

bination methods. There are a number of related boosting techniques, the most 

popular being arcing (Breiman, 1996c) and ada-boosting (Freund and Schapire, 1996). 

Unlike bagging, all boosting techniques are inherently sequential in nature -  the prob­

ability of selecting a training example for a new ensemble training set is not equal 

across the original set of training examples; instead, this probability depends upon 

how often th a t example performed poorly across the set of previously trained net­

works. The idea here is to put more emphasis on training examples th a t are difficult to 

learn, which in essence (using machine learning terminology) pushes a “weak-learner” 

towards being a “strong-learner” . The primary difference between arcing and ada- 

boosting is th a t ada-boosting uses a weighted average to combine the networks in the 

ensemble whereas arcing uses a simple average.

Bagging has a number of im portant advantages over boosting techniques when 

applied to noisy real-world tasks such as financial time-series prediction. One of the 

most im portant is the ease with which confidence and prediction intervals can be



C H A P T E R  1. INTRODUCTION 14

computed (Carney et a/., 1999; Heskes, 1997b). Another is the robustness and s ta ­

bility of the technique itself -  it can be shown th a t it will always perform at least as 

well as an individual predictor, as long as the predictor is unstable (Breiman, 1996a). 

Boosting techniques on the other hand have been shown to be sometimes quite un­

stable. Maclin and Opitz (1997) showed th a t arcing sometimes produces results tha t 

are the same as or worse than a single network. However, other times it significantly 

out-performs individual classifiers and bagging. Maclin and Opitz (1997) also showed 

th a t on some data-sets ada-boosting produces results tha t are significantly worse than  

using a single network whereas on other data-sets it significantly out-performs any 

other method. Most of this erratic behaviour has been attribu ted  to the sensitivity 

of boosting techniques to noise. Freund and Schapire (1996) suggest th a t the re­

sampling procedure used by boosting techniques can over-emphasise noisy training 

examples by interpreting them as training examples th a t are just difficult to learn 

(but contain useful information). Boosting techniques cannot recognise the difference 

between training examples th a t are diflficult to learn and those th a t are just noise.

Given the robustness of bagging to noise, its stability and the ease with which 

confidence and prediction intervals can be computed, bagging (or some elaboration 

of the technique) is the natural choice for financial time-series prediction.

1.6 Finding predictability

In this section we describe how we attem pt to uncover hidden predictive structure in 

the financial market data-sets studied in this thesis. We use a number of new empirical 

results from the econometrics literature th a t uncover dependancies amongst related 

financial variables and markets.

Possibly the most valuable and interesting predictive structure th a t exists in fi­

nancial markets is the relationship between financial market prices, trading volume^ 

and volatility. For example, in rising markets volume increases. In volatile m arkets 

volume also increases. Although these dependencies seem quite linear, the most valu­

able and predictive structure is expected to be non-linear and difficult to identify in 

■*The volume of a market is the number of shares traded in tha t market over a specified period.
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most markets -  see (Gallant et aL, 1993; Karpov, 1987; LeBaron, 1982) for some 

interesting discussions and results on this topic. To exploit any such predictive struc­

ture, we include volume and volatility information as part of each training vector in 

each data-set.

For foreign exchange markets, interest rate changes can play an im portant role. 

For example, if interest rates increase in an economy there is likely to be an increase 

in the flow of foreign currency into th a t economy. However, this relationship is not 

always linear and easy to identify e.g. increases in interest rates have been known to 

devalue a currency under certain circumstances (see Corden, 1995 for a discussion). 

Nevertheless, it is generally accepted tha t an im portant relationship does exist, albeit 

potentially non-linear. To exploit any contribution changes in interest rates may make 

to the process of generating a prediction, we include the difference in the discount 

rate of interest between the two economies th a t determine a foreign exchange (cross-) 

rate (e.g. U SD /JPY  (US-Dollar/Japanese-Yen)). The exact set-up is described in 

section 1.7.

O ther sources of predictive structure th a t have been identified in the econometrics 

literature are so-called “calender effects” . It is generally accepted th a t all financial 

markets exhibit calender effects. One of the most documented is the “January Effect” 

-  the fact th a t smaller capitalisation stocks out-perform larger capitalisation stocks 

at the turn  of the year. Keim (1989) provides some elaborate econometric reasons 

for the occurance of this effect. Other calender effects on smaller time-scales are also 

suspected to exist. For example, trading behaviour at specific times over certain time 

horizons can sometimes be very similar in terms of volume, volatility and so on. Some 

interesting discussions relating to these effects can be found in (Campbell et aL, 1997 

(chapter 1)).

Related to these calender effects are “lead-lag” structures. Here, some markets 

lead while others follow. Examples include the phenomenon of larger capitalisa­

tion stocks leading smaller capitalisation stocks. Also, general movements in indices 

can move stocks in directions tha t do not reflect their individual performance. See 

(Campbell et aL, 1997 (chapter 1)) for a discussion of these lead-lag structures and 

a summary of some useful econometric tools th a t can identify when they occur. To
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exploit (at least in part) these calender effects and lead-lag structures we include the 

date, day of the week and (for the stock-market data) the m ajor indices (S&P500^, 

NYSE® , DJIA^) in each training vector for the data-sets in this thesis. Again, the 

exact set-up is described below in section 1.7.

1.7 The data

In this section we describe the exact set-up of the financial time-series data-sets® 

used for the experiments performed in this thesis. We also outline our motivation 

for including each data-set and describe how exogenous variables are combined with 

price information to create training vectors.

1.7.1 Stocks

In to tal we use 4 stock-market data-sets. We use 11 years (1 /9 /88-1 /9 /99) of daily 

closing price data  from two mainstream industry stocks General Electric Corporation 

(GEC) and Coca-Cola and two mainstream technology stocks Microsoft Corporation 

and International Business Machines (IBM). These stocks have histories th a t are long 

enough to build useful models th a t generate good predictions. We also believe tha t 

together they broadly represent the behaviour of the m ajority of stocks in the financial 

markets. We use the following training vector set-up for each data-set

(rt_4, {vlt-4,  {vt t -4,  { spt ,ny t , d j t ) ,  {dt , r r i t ,wdt ) , r t+i .  (1.2)

^Standard and Poor’s 500 index.
®New York Stock-Exchange index.
^Dow-Jones Industrial Average index.
®A11 (unprocessed) stock-market data was provided by Riskmetrics Ltd. and foreign exchange 

data by Beacon Foreign Exchange Ltd..
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Here Vt denotes the log-return® at time t. Note th a t we use 5-day lagged log-returns. 

Wt do this to model any temporal structure tha t may exist in the returns series. 

Our motivation for using a 5-day lag is simply th a t it seems reasonable -  it is long 

en(ugh to model temporal structure (markets can change significantly over a 5 day 

peiiod) but sufficiently short enough so as to m aintain parsimony in the models. For 

th( same reason we also use 5-day lagged returns of volume and volatility, where vlt 

is ihe volume and vtt is the volatility at time t. To model any lead-lag structure 

betw'een the stocks and the major indices we include the log-returns at tim e t of the 

S&P500, the NYSE and the DJIA indicies {spt, nyt, djt). To model any calender 

efftcts we include at time t the day of the month, the month, and the day of the week 

{dt rrit^wdt). Given these input features we expect the neural network to generate 

preiictions 1-day ahead i.e. for rt+i. We also perform experiments th a t generate 

prelictions over other time horizons. In chapter 5 we will re-visit this issue.

1.7.2 Stock-market indices

We use 11 years (1 /9 /88-1 /9 /99) of 3 stock-market index data-sets of the major 

U.S. indices S&P500, NYSE and D.IIA. The training vector set-up is very similar to 

the stock-market training vector set-up. To generate 1-day ahead predictions for the 

S&?*500 index we use

{ s p t - 4 , s p t ) ,  { v l t - 4 , v l t ) ,  {vtt-A, .., vtt), {nyt, djt), {dt, rrit, wdt), spt+i • (1-3)

Here, as for the stock-market data-sets, we use 5-day lagged returns for our target 

series. W"e also include 5-day lags of volume, volatility, related index and date infor- 

maiion. Using a similar training vector set-up we also generated predictions for the 

NYSE data-set and predictions over other time horizons. We also will re-visit this in

®riie log-return is a m easure of relative change in prices over a fixed period. T he log-return at 
time t is given by log{pt) — l o g {p t - \ ) ,  where pt  is the price at tim e t. A lm ost every econom etric 
stud / o f financial markets uses returns rather than prices. There are a variety of reasons for this, 
but '.he m ost im portant in the context of this thesis is that returns exhibit som e desirable statistica l 
properties such as stationarity and ergodicity. See (Lucas, 1978) and (Cam pbell et  al., 1997 (chapter 
1)) f)r a discussion.
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chap ter 5.

1.7.3 Foreign exchange

We use 5 years (2 0 /5 /9 2 -2 0 /5 /9 7 ) of 2 foreign exchange m arket data-se ts U S D /JP Y  

and C H F /JP Y  (Sw iss-Franc/Japanese-Y en). The tra in ing  vector set-up for each d a ta ­

set is

( r t _ 4 , rt), {vtt-4, ■; vtt),  {it-4, h),  {du m ,  wdt), n + i. (1.4)

Here {rt-A, ft ) denotes a 5-day lag of foreign exchange ra te  returns, (ut«_4 , a

5-day lag of volatility  and {it-4 , ■■jh) a 5-day lag of discount in terest ra te  differences. 

Again, we also perform  experim ents th a t generate predictions over o ther tim e horizons 

and in chap ter 5 will re-visit th is issue.

1.8 Thesis contributions

In th is section we sunm iarise the m ain contributions of the  thesis:

•  We propose a new neural network ensemble technique (the NeuralBA G algorithm ) 

based on bagging th a t optim ises generalisation perform ance by tun ing  diversity. A d­

vantages of th is technique over o ther ensemble techniques (in the context of financial 

tim e-series prediction) are its robustness to noise and the availability of b o o ts trap  

m odel variance estim ates.

•  We propose a new technique for  estimating model variance (confidence interval) 

estim ates for neural network ensembles. These estim ates ad just the  model variance 

estim ates provided by bagging so th a t they b e tte r reflect the (lower) variance of en­

semble predictions. We show how these confidence intervals have significantly b e tte r  

coverage th a n  those generated by an alternative m ethod.

•  We propose a new technique for  generating prediction intervals. These intervals 

incorporate b o th  the uncertain ty  caused by model variance (estim ated as above) and
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noise variance (estimated using an established econometric technique). We demon­

strate  the excellent coverage tha t these intervals have and also discuss how they can 

be applied to manage risk in trading.

•  We use a number of new and established empirical research results from the econo­

metrics literature to propose a number of new novel training vector structures. We 

also perform extensive experimentation to estimate good model parameters for  the 

econometric noise variance prediction technique used for estim ating the prediction 

intervals.

•  We perform a large number of experiments to test our techniques. The results 

of these experiments both validate our techniques but can also be used to draw more 

general inferences such as the suitability of machine learning techniques for financial 

market prediction and their sensitivity to the volatility of m arkets and prediction 

horizons.

•  The success of the multi-disciplinary approach taken in this thesis dem onstrates 

the potential of this approach for solving other difficult real-world prediction prob­

lems.

1.9 Summary

In this chapter we discussed the nature of predictability in financial markets and re­

viewed some popular econometric, economic and exotic techniques used to generate 

predictions. We positioned neural networks relative to these techniques, discussing 

their strengths and weaknesses. We proposed how instability in neural networks can 

be overcome using ensemble methods and reviewed some of the more popular tech­

niques. We argued th a t for financial time-series prediction bagging shows significant 

promise and is the natural choice especially given its robustness to noisy da ta  and 

the ease with which measures of model uncertainty can be estimated. We described 

in significant detail the financial data-sets used for the experiments in this thesis and



C H A PT E R 1. INTRODUCTION  20

the training vector set-up. Finally, we outlined the main contributions of the thesis.



Chapter 2 

Bagging and bootstrapping

2.1 Introduction

In chapter 1 we briefly reviewed a variety of neural network ensemble techniques 

and discussed in general terms how bagging is particularly suited to financial time- 

series prediction. In this chapter we study bagging in more detail. We begin in 

section 2.2 by outlining the underlying principles of bootstrapping, the statistical 

resampling technique at the heart of bagging. In section 2.3 we introduce some 

notation, provide a concrete description of bagging and analytically show how it 

improves the performance of neural networks. This analytical work highlights the 

im portance of diversity amongst networks in a bagged ensemble and in section 2.4 we 

discuss the implications this has for how a bagged ensemble should be trained. Note 

th a t all the work presented in this chapter is descriptive and analytical. Any claims 

made will be substantiated by extensive experimentation in chapter 3.

2.2 Bootstrapping

To understand how bagging works, one must first understand how bootstrapping 

works. Bootstrapping is a very general computer intensive statistical re-sampling 

technique. In its simplest form bootstrapping is used for estim ating measures of

21
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uncertainty and bias in parameters generated from independent and identically dis­

tributed  variables. It was proposed by Efron (1979) and has become very popular as 

computers have become more powerful. The term  “bootstrap” was well chosen by 

Efron -  it implies “pulling oneself up by the bootstraps” . As will be illustrated in this 

section, in a statistical sense, this is exactly what the bootstrap does. The technique 

has been generalised extensively and applied to problems such as confidence interval 

estim ation e.g. (DiCicco and Tibshirani, 1987), (Efron and Tibshirani, 1993); model 

selection e.g. (Efron and Tibshirani, 1997) and (Breiman, 1996b); and variance cor­

rection e.g. (Breiman, 1996a). A popular way to illustrate in general terms how the 

bootstrap works (see e.g. (Hjorth, 1994)) is to present two versions of a simple esti­

m ation problem; an artificial bootstrap version and a real version. Comparisons are 

drawn between the real and artificial versions to highlight the underlying principles 

of the technique.

In the real version of the problem we are given a set of n observations X\, ...,x„. 

However, very little information about the underlying distribution P  of these obser­

vations is available -  we might know it is continuous for example, but little more. A 

param eter 9 =  g[P{.)),  defined by the distribution, is estim ated using the observed 

da ta  to give us 9 = s{x\,  ...,x„). This param eter could be the median or mean of the 

distribution for example.

In the bootstrap version of the problem, the true distribution P  is replaced by 

an empirical version of it. This empirical distribution, which we will denote as P,  

is the discrete distribution th a t puts probability 1 /n  on each of the observed values 

Xi, ...,Xn- A more exact expression of this is given by

P(^) = # (£ i££ l_  (2.1)
n

where # { ^ }  denotes the number of times the event A  occurs. An example set of 

observations and its corresponding empirical distribution is illustrated in figure 2.1.

A param eter 6 =  g{P{.)), the empirical analogue of 6, is also defined. It is 

estim ated using “observations” drawn from the empirical distribution P.  A single set 

of n  observations drawn from the empirical distribution P  is called a bootstrap  sample
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Figure 2.1: 50 rolls of a die. The possible roll outcomes 1, 2, 3, 4, 5, 6 occurred 7, 
8, 8, 10, 9, 8 times respectively. Therefore the empirical distribution is (7/50, 8/50, 
8/50, 10/50, 9/50, 9/50).

X*, ...,x* where x* G P{x). A single estimate for the param eter 0 is therefore given 

by 6* = s { x l , x ^ ) .  If we repeat this procedure many times (i.e.) generate a large 

number of bootstrap samples, we can generate multiple estim ates for the param eter 

9. From these we can estim ate statistics of interest for the bootstrap version of the 

problem. For example, we can compute the standard error of 9* from

sepiO*) = \B  ̂ 6=1

where
B  Q*

^  B

( 2 .2 )

(2.3)
6=1

and B  is the number of bootstrap samples. Note tha t the ideal number of bootstrap 

samples generated takes B  = oo. However, in practice, the value for B  chosen is 

largely determined by the amount of computer processing power available^

Now th a t we have established how statistics of interest can be estim ated for the 

artificial bootstrap version of the problem, how do we relate this to the real problem? 

The bold claim of the bootstrap is tha t the estimation properties of the bootstrap 

problem can be used to judge the estimation properties of the real problem. Using

^See (Efron and Tibshirani, 1993) for more on this.
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Real problem Bootstrap problem

Bootstrapdistribution
sample

Sample 
observationsUnknown true 

distribution 

P

7
9=s{x\,..., JCn)

Parameter 
estimate

9 =SKX^  x j
Bootstrap
parameter
estimate

Figure 2.2: A comparison of the real and bootstrap versions of a param eter estimation 
problem. In the real version of the problem we are given a finite set of n  observa­
tions from some unknown probability distribution P. We use these observations to 
generate a single param eter estimate 9. We also use these observations to generate 
an empirical distribution P. Note that in the diagram both the original observations 
and the empirical distribution are enclosed in the large arrow. This is to denote th a t 
observations from the empirical distribution are generated by just sampling a t ran­
dom with replacement from the original set of observations. Using this any number 
of bootstrap samples from the empirical distribution can be generated and therefore 
also any number of bootstrap parameter estimates 6*.

this we can use the standard error estimate for 9* in the bootstrap problem as an 

estim ate for the standard error of 9 in the real problem. This idea can be generalised 

for a large number of parameters and statistics of interest. A diagram th a t illustrates 

the relationship between the real and artificial bootstrap versions of a param eter 

estim ation problem is given in hgure 2.2.

To the theoretical purist the bootstrap may seem difficult to accept. However, its 

success is reflected in the excellent results yielded by many studies of its application 

in a variety of domains -  see (Efron and Tibshirani, 1993) and (Davidson and Hink- 

ley, 1997) for just a sample. A more comprehensive introduction to the technique 

can be found in (Efron and Tibshirani, 1993). Some asymtotic results, theoretical 

analyses and comparisons to similar techiques can also be found here and in (Bickel 

and Freedman, 1981).
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2.3 Bagging

To describe bagging (in the context of regression) in concrete terms, let us now 

introduce some notation. Assume we are given a set of N  data  pairs T  =  {(t„, 

described by the distribution P  and generated according to

t =  /(x )  +  e(x), (2.4)

where t is the observed target value, / (x )  is the true regression and e(x) is noise with 

zero mean. When we train a neural network on such data, our aim is for the network to 

approximate /(x ) .  Let us denote this neural network approximation as </>(x). Bagging 

aims to improve this individual network approximation by generating bootstrap  re­

samples of T  and using these re-sampled training sets to generate multiple

bootstrap versions. Each bootstrap re-sample T^ consists of N  da ta  pairs, sampled 

at random with replacement from the empirical distribution P.  The training sets 

{T^)b=i give us a set of networks Bagging aggregates these bootstrap

versions by averaging to form a bagged prediction,

(t>bagi^) =  (2-5)
^  6=1

See figure 2.3 for a schematic outline of this.

The description of bagging given above does not quantify the extent to which 

bagging can improve the generalisation performance of neural networks or under what 

circumstances. To study bagging in more depth and clearly illustrate its properties

and limitations, we will now show how the general work of Krogh and Vedelsby (1995)

on neural network ensembles applies to bagged ensembles.

Using the notation introduced above and the terminology introduced in (Krogh 

and Vedelsby, 1995), let us define the ambiguity of a single member of a bagged 

ensemble on a prediction for t as

“6(X) =  (0J(X) - (2 .6)
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P

Figure 2.3; A bagged neural network ensemble. Training sets are generated by sam­
pling from the bootstrap empirical distribution P.  These training sets are used to 
train  an ensemble of neural networks. The outputs of the networks in the ensemble 
are averaged to produce the bagged ensemble prediction.

and the ensemble ambiguity to be

Ofcaglx) =  ^  Z ('^6  W  -  06as(x))^ (2.7)
^  6=1

The ensemble ambiguity is a variance measure -  it quantifies the disagreement or 

diversity amongst the networks in an ensemble on a prediction for t. Define the 

generalisation error of an individual network on a single prediction for t as

eft(x) =  ((/>;(x) -  ^)^ (2.8)

and on an ensemble prediction as

ebagi^) =  (06as(x) -  t)'^. (2.9)

Note th a t here we assume the inputs are independent of the training set i.e. they 

are test set inputs. We also define the average of the generalisation errors of the 

individual networks across the ensemble as

6=1

(2 .10 )
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This important measure will be compared to the ensemble generalisation error to 

provide valuable insights. It can be rewritten as

W  -  </’6ag(x) +  A a g { ^ )  ~  t f  (2 .1 1 )
6 = 1

and after a little manipulation (see (Zenobi, 1999) for details) as

^  -  <̂ f>ag(x))̂  +  (</>bag(x) -  t)^. ( 2 .12 )
6 = 1

Using equations (2.4) and (2.6) above this gives us

e(x) = ( i h a g i x )  +  e b a g ( x ) ,  (2.13)

or

e6as(x) =  e(x) -  abag(x). (2.14)

For statistical rigour we now average this over the input distribution P. We begin 

by denoting the average generalisation error over P  of an individual network in an 
ensemble to be

El, = y  dxP(x)eft(x). (2.15)

Using this and equation (2.7), we express the average generalisation over P  across all 
the networks in an ensemble as E. Similarly we denote the average ambiguity over 
P  for an individual network in an ensemble as

Ab = j  d:s.P{x)ab{x.), (2.16)

and across all the networks in an ensemble as A. Finally, using equation (2.6) we
express the average bagged ensemble generalisation error over P  as

£■ = y d x P { x ) e h a g { x ) . (2 . 17)
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Using equation (2.11) this gives us

E  =  E - A .  (2.18)

This expression is extrem ely valuable. It relates diversity (ensemble am biguity) in 

a bagged ensemble to  the generalisation error of a bagged ensemble. As  long as the 

average of the individual network generalisation errors in an ensemble remains con­

stant, increasing diversity will improve generalisation performance. It also confirms 

in tu ition  -  an ensemble th a t consists of a thousand identical networks will not per­

form any b e tte r th a n  an individual network. Note th a t, as described in (Krogh and 

Vedelsby, 1995), th is  expression is a general result and  can be applied to  m ost neural 

network ensembles.

W hat specific im plications does it have for bagged ensembles? The tra in ing  sets 

in a bagged ensemble are generated by sam pling w ith replacem ent from the  original 

tra in ing  set T. The probability an individual tra in ing  sam ple from T  will no t be 

p a rt of a b o o ts trap  re-sam pled train ing  set is (1 — 1/iV )^ ft; 0.368, where N  is the 

num ber of train ing  samples in T. This m eans th a t only approxim ately 63% d istinct 

tra in ing  samples from T  will be included in a b o o ts trap  tra in ing  set. This, of course, 

d irectly  affects the average individual network generalisation error E  -  given fewer 

d istinct tra in ing  sam ples it may not rem ain constant bu t instead  may fall. However, 

the boo ts trap  sam pling dram atically  increases the diversity am ongst the tra in ing  sets 

in the ensemble and this combined w ith the inherent in stab ility  in neural networks 

will increase the am biguity term  A. This is a key point -  as long as the  increase 

in am biguity is larger than  the decrease in average individual network generalisation 

error it is worthwhile bagging a predictor. This is easy to  achieve for neural networks 

because they are unstab le and so bagging can consistently improve generalisation 

perform ance. So, in sum m ary, we can conclude th a t the more unstable  a predic tor 

is the more can be gained from bagging. B reim an dem onstrates th is em pirically 

by bagging stable and unstable predictors and com paring relative im provem ents in 

generalisation error (Breim an, 1996a). However, he does not quantify  this analy tically  

by including an am biguity term  in his derivations.
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2.4 Diversity and ensemble generalization perfor­

mance

Now th a t we have established the importance of generating diversity in neural network 

ensembles, the question th a t remains is: how do we tune diversity so th a t ensemble 

generalisation performance is optimised? In this section we discuss the merits and 

disadvantages of two possible methods for tuning diversity. Our conclusions are used 

as motivation for techniques developed in later sections th a t optimise ensemble gen­

eralisation performance.

We will begin by discussing the effectiveness of training set resampling as a method 

for generating diversity. In the previous two sections we discussed how bagged ensem­

bles use bootstrapping to generate diversity. How can we adjust this process to tune 

diversity? As outlined in (Krogh and Vedelsby, 1995), but in the context of simple 

linear ensembles, one could adjust the re-sarnpling process. Applying this to bagged 

ensembles, to generate more diversity fewer distinct training examples could be sam ­

pled, pushing down the standard bootstrap distinct sample rate of ~  63%. Similarly, 

to generate less diversity more distinct training examples could be sampled. This 

approach may seem promising at first, but in practice it has some m ajor drawbacks. 

For example, the optimal resampling rate will vary depending on a number of factors 

including the level of noise in the training set, the size of the training set and the size 

of the ensemble. Therefore a global optimal resampling rate does not exist. Instead, 

it would have to estim ated for each individual training scenario. Another more se­

rious drawback is th a t such “pseudo-bootstrapping” does not have a large body of 

theoretical work to support it as does conventional bootstrapping. It would therefore 

be unwise (and possibly incorrect) to use this form of bootstrapping as a m ethod 

for generating other statistics of interest such as confidence and prediction intervals, 

which can be conveniently estimated as part of the bootstrapping process in bagged 

ensemble training (Carney et ai, 1999), (Heskes, 1997b). Losing such valuable side 

effects of standard bootstrapping is a high price to pay. These drawbacks motivate 

the search for an alternative method for tuning ambiguity.
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One possible approach highUghts a fascinating feature of neural network ensem­

bles. If we over-fit the networks in an ensemble we generate more diversity. If we 
under-fit the networks we generate less diversity. Therefore, if we use standard boot­

strapping to generate a basic level of diversity we can fine-tune the diversity by con­
trolling the fit of each network in the ensemble. In chapter 3 we develop and evaluate 
a new technique that optimises the generalisation performance of bagged ensembles 
using this idea. The results of our analysis highlight an interesting feature of bagged 

(back-propagation) ensembles -  a controlled level of over-fitting can consistently im­
prove overall ensemble generalisation performance. This result is consistent with work 

performed on other ensembles, e.g. in (SolUch and Krogh, 1996) it is demonstrated 
for simple linear ensembles and in (Husmeier, 1999) it is demonstrated for Random 

Vector Functional Link (RVFL) ensembles. A key advantage of this approach is that 
ensemble diversity tuning and individual network parameter tuning can be unified 
and performed simultaneously using the same algorithm.

2.5 Sum m ary

In this chapter we examined in significant detail the underlying principles of bag­
ging and bootstrapping. In particular, we analytically justified the use of bagging 
as a technique for stabilising high variance predictors such as neural networks and 
discussed the importance of diversity. We proposed a new method for tuning this di­
versity so that ensemble generalisation performance is optimised and outlined its key 
advantages compared to other approaches. The analytical results and claims made 
in this chapter will be supported by extensive experimentation in chapter 3.



Chapter 3

O ptim izing generalisation  
performance

3.1 Introduction

In chap ter 2 we dem onstrated  the im portance of diversity in bagged ensembles and 

suggested th a t it should be tuned to optim ise ensemble generalisation perform ance. 

We argued th a t  a  good way to  do this is to vary the fit of the individual networks in 

an ensemble. In th is chapter we support these claims by developing and evaluating 

a new technique which we call the NeuralBAG  algorithm  th a t optim ises ensemble 

generalisation perform ance by tun ing  diversity in this way.

A m ore specific outline of this chapter goes as follows. In section 3.2 we discuss 

the  m erits and  disadvantages of different approaches to  optim ising generalisation per­

form ance and argue th a t early-stopping is particu larly  su itable for bagged ensembles. 

In section 3.3 we support th is argum ent by describing a simple bu t effective technique 

th a t applies early-stopping to  bagged ensembles. In section 3.4 we detail the  N eural­

BAG algorithm  and in section 3.5 evaluate its perform ance on some of the  financial 

tim e-series d a ta-se ts  sum m arised in chapter 1. Finally, in section 3.6 we discuss how 

our work relates to  sim ilar work on neural network ensembles.

31
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3.2 O ptim ising generalisation perform ance using  

early-stopping

To optimise a neural network’s generalisation performance is to optimise its per­

formance on test or out-of-sample data  i.e. data  not used during training. Much of 

modern neural network research is focused on developing techniques th a t optimise the 

performance of neural networks in this way. A large number of these techniques exist. 

They can however be loosely divided into two main categories -  pruning techniques 

and regularisation techniques.

Pruning techniques work by explicitly choosing an optimal number of hidden 

units and weights for a network. Examples include optimal brain damage pruning 

(Le Cun et ai,  1990) and optimal brain surgeon pruning (Hassibi and Stork, 1993). 

Regularisation techniques work by constraining or penalising the training of a network 

so th a t smoother, more general models are built. Examples of this approach include 

weight decay (Hertz et ai,  1991) and early-stopping, which cannot be fairly a ttributed  

to any single author.

It is generally accepted that, in practice, early-stopping based techniques are 

amongst the most popular for optimising generalisation performance. This is espe­

cially true for ensemble learning -  see e.g. (Heskes, 1997a). We a ttribu te  this to a 

number of factors. Firstly, they are much more general than pruning techniques and 

can be easily adapted to a large variety of architectures and algorithms. Secondly, 

they do not require any a priori assumptions about the model (network) or training 

da ta  -- all pruning algorithms require prior assumptions, some of which are difficult to 

justify -  see e.g. (Reed, 1993). Thirdly, they are easy to understand and implement. 

Finally, and most im portantly for this thesis, they work very well with ensembles. 

For example, as we will show in this section 3.4 they allow diversity to be easily 

tuned, which as discussed in chapter 2, is a very im portant consideration for bagged 

ensemble training. Given these factors, we pursue the development and evaluation of 

an early-stopping based technique in this thesis.

The basic idea of early-stopping is to term inate neural network training as soon
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as some estim ate of generalisation error begins to increase. This estim ate of general- 

istion error is usually generated using cross-validation (Stone, 1974) or some related 

statistical re-sampling technique. The simplest and possibly most popular early- 

stopping technique for neural networks uses “hold-out validation” (often just called 

cross-validation) to estimate generalisation error.

Hold-out validation consists of using N  — Ny oi the available N  training examples 

for training the network i.e. estimating the network weights and the remain­

ing Ny examples for computing the generalisation error estimate. This generalisation 

error estim ate can be expressed in terms of a neural network cost function as

1 ^
Ghov N-nS)) j (3-1)

n=N-Nv-l-l

The estim ate Ghov is measured at regular intervals during training (usually every 

epoch or training iteration). When it begins to increase, training is stopped.

This is early-stopping in its simplest form. However, it is widely accepted tha t 

the estim ate Ghov (^an fluctuate during training if there is noise and /o r non-linearity 

in the training data. Therefore, to simply term inate training as soon as it begins to 

increase can result in choosing a sub-optimal set of weights. One way to overcome 

this is to train  a network to convergence and then choose the set of weights tha t 

correspond to the minimum value of Ghov as the optimal set. O ther more elaborate 

techniques also exist. For example, in (Prechelt, 1994a) a patience threshold, set 

by the user, is used to determine for how long training should continue after Ghov 

begins to increase during training. Although such techniques can improve overall 

training speed by circumventing the requirement th a t a network should be trained 

to convergence, the patience threshold is not easy to estim ate given tha t it can vary 

significantly depending on the training data and network architecture used. The 

simpler option of training a network to convergence and then choosing the optimal 

set of weights will always be more robust and reliable. Given this, combined with 

the general view today tha t training speed is not as vital an issue as it used to be 

given modern computer processing power, we will pursue the simpler approach in this 

thesis.
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To describe in more concrete terms the variety of early-stopping adopted in this 

thesis, let us extend equation (3.1) above so th a t the generalisation error estimates 

and the network weights are “indexed” by the number of epochs they correspond to,

1 ^
Ghov{e)=^—  Y .  (̂ n -  0(Xn; W A r _ A T ^ ( e ) ) ) ^  (3.2)

n = N - N ^  +  \

Here, Ghov[e) is the hold-out validation estimate of generalisation error for a network 

trained to epoch e. Values for Ghov{^) are found for e =  where E  is the

“maximum” number of epochs and chosen to ensure convergence. A simple patience 

threshold idea, similar to th a t used above could be used here e.g. if training error 

does not change significantly for 100 epochs, term inate training. Once the network 

has been trained through the range of epochs specified, the user chooses the value 

for e th a t provides the best estimated generalisation performance. The set of weights 

saved on disk corresponding to this best e is chosen as the optim al set.

An obvious drawback of early-stopping techniques th a t use hold-out validation is 

th a t only of the available training data can be used for estim ating network

weights. This damages the generalisation performance of a network. If a small value 

for Ny is chosen to minimise this effect, then the estim ate of generalisation error will 

be compromised. One way to overcome this dilemma is to use a different variety 

of cross-validation. For example, “leave-one-out” cross-validation (Stone, 1974) does 

not require any training da ta  to be sacrificed by the user. There are a number of 

different ways this technique (and elaborations of it such as A:-fold cross-validation) 

can be applied to estimate generalisation error for neural networks - see (Geman et 

ai,  1992) for a general discussion.

However, in the context of this paper, a key point regarding the leave-one-out 

cross-validation family of techniques is th a t when applied to bagged ensembles they 

fail. This is because the bootstrapped training sets in a bagged ensemble are gener­

ated by sampling with replacement. This means th a t a single training example may 

occur several times in a training set. If a training example is removed from a training 

set for leave-one-out cross-validation, a replicate of it may still remain. This will 

produce an estim ate of generalisation error tha t is biased downwards, as the training
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example removed for cross-validation is not truly out-of-sample. However, sampling 

with replacement also has some im portant advantages in the context of bagged en­

sembles. As we will describe in the next section, it can be used as the basis for a 

simple but effective method for applying early-stopping to bagged ensembles.

Most criticism of early-stopping techniques comes from the statistics community. 

This is largely because, until recently, no theoretical analyses have been performed 

th a t verify in any concrete way the potential of early-stopping as a technique for 

improving generaUsation performance. However, the work of (Wang et a i,  1994), 

which is rarely cited in the statistics literature, provides some very valuable insights. 

Here it is shown th a t early-stopping is (ironically) closely related to ridge regression, 

one of the most popular and successful statistical regularisation methods.

3.3 A pplying early-stopping to  bagged ensem bles

As described in section 3.2, training sets in a bagged ensemble are generated by 

sampling with replacement from the original training set T. As previously described 

in section 2.3, the probability a training example from T  will not be part of a bootstrap 

re-sampled training set is (1 — 1/A^)^ 0.368, where N  is the number of training

examples in T . This means th a t approximately 37% of the original training examples 

in T  will not be used for training i.e. they will be out-of-sample. These can be used 

to estim ate generalisation error.

Let us describe this in more concrete terms by outlining a technique th a t uses 

these out-of-sample training examples for estim ating generalisation error in an early- 

stopping context. We present the technique in algorithmic form for clarity.

S te p  1: Set-up bootstrap training sets 

Generate B  bootstrap re-samples of T  : T^.T ^ , ■■■,T̂  where T  =  {(t„, x„)}^^j.

S te p  2: Compute generalisation error estimates for each network in the ensemble

for  6 = 1  to B  

for e = 1 to E
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Com pute:

Gb{e) =  Y. ̂ n { t n  -  0 (x„; w t ; (e)))^ (3.3)
n = l

where 7 ^ =  1 is an indicator variable th a t indicates w hether tra in ing  sam ple n  is 

out-of-sam ple for tra in ing  set ; 7 ^  =  1 if it is and 7 ^  =  0 if it is not. A value for 

E  th a t guarantees convergence is chosen as discussed in section 3.2 above. In section 

3.5, we discuss w hat value for B  should be chosen.

S te p  3: Find the best value fo r  e fo r  each network in the ensemble 

fo r  b = 1 to B  

Com pute:

O PT,{e) {G,{e)) (3.4)

Here, for each network in the  ensemble, the user finds the  value for e th a t m inimises 

generalisation error. The corresponding networks are chosen as the optim al set for 

the ensemble.

A lthough there is no record of this technique in the neural network litera tu re , it 

is generally accepted th a t, in practice, it enjoys widespread use. It is fast, easy to 

im plem ent and easy to  understand. More im portantly , it does not require d a ta  to  

be sacrificed for estim ating  generalisation error. However, as we will discuss in much 

detail in the next section, it only provides “local” estim ates of generalisation error 

i.e. it does not consider how diversity am ongst networks in an ensemble can signif­

icantly  influence overall ensemble generalisation error. This po in t was highlighted 

in chapter 2  a controlled level of over-fitting can in fact im prove overall ensemble 

generalisation perform ance by generating more diversity. We support these assertions 

by experim entation in section 3.5.

3.4 The NeuralBAG  algorithm

In th is section we propose a new early-stopping algorithm  we call N euralBAG  th a t 

optim izes generalisation perform ance in bagged neural network ensembles. It oper­

ates in a sim ilar fashion to the technique presented in section 3.3 above and is also
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presented in algorithmic form for clarity. However, it tunes diversity i.e. it will over­

fit/under-fit networks in an ensemble if it estimates th a t this will improve overall 

ensemble generalisation performance. An earlier version of NeuralBAG was first in­

troduced in (Carney and Cunningham, 1999a). However this presentation was only 

an outline of the technique -  no concrete justification or evaluation was included.

So how does NeuralBAG tune diversity? The key to solving this problem is to 

compute estimates of ensemble generalisation error rather than individual network 

generalisation error. This issue has not been directly addressed for neural networks 

-  most techniques proposed have concentrated on optimising the networks in an 

ensemble locally e.g. in (Zhang, 1999) weight-decay is used to regularise the individual 

networks. Although some techniques do use estimates of ensemble generalisation error 

e.g. (Heskes, 1997a) they are used for a different purpose and not with the explicit 

aim of tuning diversity. The details of the NeuralBAG algorithm go as follows.

Step  1 : Set-up bootstrap training sets

Step  2: Compute ensemble generalisation error estimates for each training ex­

ample

for n = I to N  

for e = I to E  

Compute:

Here we find the networks in the ensemble tha t were trained with bootstrap resampled 

training sets th a t do not contain training example n. We propagate training example 

n  through these netw^orks, average (bag) their outputs and calculate the squared 

error. This error is an estim ate of the ensemble generalisation performance for a single 

test example. We repeat this procedure for each training example in T  throughout 

the specified range of epochs. At the end of this step the user will have ensemble 

generalisation error estimates for each of the N  training examples in T  for e =  1,

Generate B  bootstrap re-samples of T  : .. . ,T^  where T  =  {(i„, x„)}^^j.

(3.5)
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S te p  3: Aggregate the ensemble generalisation error estimates specific to each 

network in the ensemble 

for b = 1 to B  

for e = 1 to E

where Nf, = J2n=i 7n denotes the number of training examples for training set T^. At 

the end of this step, for each network in the ensemble, the user will have aggregated 

ensemble generalisation error estimates throughout the range e =

S te p  4 : Find the best value for  e for each network in the ensemble 

for  6 =  1 to B

Here, for each network in the ensemble, the user finds the value for e th a t minimises 

generalisation error. The corresponding networks are chosen as the optim al set for 

the ensemble.

As already mentioned, the very im portant difference of this algorithm is th a t 

diversity is tuned. This is achieved by computing estimates of ensemble generalisation 

error as opposed to estimates of individual network generalisation error. From these 

we can approximate the optimal number of epochs individual networks should be 

trained for so tha t overall ensemble generalisation performance is optimised.

Up to now we have not mentioned the number of hidden units each network in a 

bagged ensemble should have. In (Carney and Cunningham, 1999a), a different ver­

sion of NeuralBAG is presented th a t includes another loop to estim ate experimentally 

a (possibly) different number of hidden units for each network in the ensemble. Over a 

small range of hidden units this provides modest improvements in performance. How­

ever, computationally, a very high price is paid. We suggest th a t for small problems 

i.e. problems represented by small training sets and relatively few dim ensions/inputs, 

such an approach should be adopted. However, for larger problems we suggest tha t 

the version of NeuralBAG presented in this section should be used. The number of

Compute:

(3.6)

Compute;
argm in

OPT,{e) (3.7)
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hidden units can be estim ated prior to training using some simpler m ethod (e.g. the 

technique described in (Baum and Haussler, 1988)) and remain fixed for each network 

in the ensemble.

3.5 Evaluation

In this section we analyse the results of 4 sets of experiments th a t evaluate the 

performance and highlight the properties of ensembles trained using NeuralBAG. 

We use 4 of the financial data-sets summarised in section 1.7; C H F /JP Y , C H F/JPY , 

S&P500 and NYSE. Each foreign exchange rate data-set is arranged into 1230 training 

vectors th a t are set-up as described by equation 1.4. The stock market index da ta ­

sets are also arranged into 1230 training vectors and are set up as described equation 

1.3.

3.5.1 E xperim ent 1: Are N euralB A G  estim ates o f generali­

sation error better than local estim ates?

In this experiment we compare the generalisation performance of ensembles trained 

using NeuralBAG to the generalisation performance of ensembles trained using 2 

techniques th a t both use only local estimates of generalisation error to optimise en­

semble performance. The first local technique tha t we compare NeuralBAG to is a 

benchmark technique th a t we adapt from (Breiman, 1996b). The second is the simple 

early-stopping technique described in section 3.3.

Let us first describe how the benchmark technique works. Breiman showed in 

(Breiman, 1996b) th a t a good measure of the quality of any generalisation error 

estim ate based on the training set can be found by comparing its accuracy to the 

estim ate one would get using an independent validation set which is the same size as 

the training set. Adapting this idea to our problem, we train  ensembles th a t have each 

individual network optimised locally using estimates of generalisation error generated 

from independent validation sets tha t are the same size as the training sets.
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Our reasoning behind this idea goes as follows. If we optimise the individual net­

works of an ensemble as described above, then we can expect the performance of such 

an ensemble to be close to the best achievable for an ensemble where only local esti­

mates of generalisation error based on the training set are used, and the importance 

of tuning diversity is not considered. Therefore, if we compare the generalisation per­

formance of such ensembles to the generalisation performance of ensembles trained 

using NeuralBAG, any improvement in performance yielded by NeuralBAG can be 

attribu ted  (mostly) to tuning diversity.

The experiments were set up as follows. We generated 10 randomly sampled 

training, validation and test sets for each data-set and averaged results across 10 

experiments. Randomising the data-sets in this fashion is not normally done for 

time-series prediction experiments -  one usually trains on the past and predicts the 

future. However, this convention for evaluating time-series models combined with the 

use of validation sets in this experiment severely limits the statistical significance of 

results. This is because only one test set for each data-set would be available for 

evaluating generalisation performance. Treating the process as a standard function 

approximation task as we do here allows us to generate more test sets and suffices as 

a m ethod to increase the statistical significance of results.

For all of the data-sets the training, validation and test sets were of size 500, 

500 and 230 respectively. Each combination of training, validation and test set for 

each data-set are independent of each other. Note tha t the same training and test 

set combinations are used for ensembles trained using NeuralBAG, the benchmark 

technique and the simple early-stopping technique so as to get a direct comparison of 

performance. All ensembles trained had 30 networks (in experiment 4 below we justify 

this), a learning rate of 0.2 and momentum rate of 0.9. Ensembles trained with the 

foreign exchange rate data-sets had 7 hidden units and with the stock-market index 

data-sets 6 hidden units. We used the the technique described in (Baum and Haussler, 

1988) to estimate these figures. The results are presented in table 3.1 and discussed 

in section 3.5.5.
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Table 3.1: Experiment 1 results. Generalisation (test set) mean-squared error perfor­
mance of ensembles trained using NeuralBAG (NBAG) compared to the benchmark 
technique adapted from (Breiman, 1996b) th a t uses local estimates of generalisation 
error (B-LOCAL) and the simple technique described in section 3.3 th a t also uses lo­
cal estimates of generalisation error (S-LOCAL). Note th a t the U SD /CH F, S&P500 
and NYSE results have been adjusted for clarity and ease of comparison. For example, 
all of the S&P500 results have been multiplied by 10“ .̂

Dataset NBAG stdev B-LOCAL stdev S-LOCAL stdev
C H F /JP Y 1.23 0.07 1.26 0.06 1.26 0.06
U SD /JPY 1.98 0.16 1.99 0.14 2.00 0.15

S&P500 (*1Q2) 3.71 0.42 3.75 0.41 3.76 0.39
NYSE (*10) 7.62 0.88 7.97 0.80 8.17 0.78

3.5.2 Experiment 2: Does NeuralBAG over-fit or under-fit?

In this experiment we compare the average number of epochs or training iterations 

tha t each of the 3 technicjues (NBAG, B-LOCAL and S-LOCAL) estim ate as opti­

mal. The aim is to determine whether NeuralBAG over-fits or under-fits the training 

sets (relative to the other two techniques) when it tunes diversity. Using estim ates 

recorded from experiment 1, we average the optimal number of epochs estim ated for 

each network in each ensemble. This gives us a single average number of epochs for 

each ensemble. We then average these figures across the 10 experiments performed 

for each data-set. Note tha t we do not include standard deviations with the results. 

This is because in the context of this experiment they are not meaningful or useful. 

The results are presented in table 3.2 and discussed in section 3.5.5.

3.5.3 Experiment 3: How does ambiguity and generalisation  

error evolve during training?

In this experiment we attem pt to illustrate the importance and value of tuning diver­

sity by plotting the ensemble test set (generalisation) performance (an estim ate for 

E)  against the corresponding ensemble ambiguity (an estim ate for A)  and the average 

individual network test set performance (an estim ate for E)  as training evolves. We
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Table 3.2: Experiment 2 results. Average optimal number of epochs estim ated for 
each ensemble and data-set in experiment 1.____________________

Dataset NBAG B-LOCAL S-LOCAL
C H F/JP Y 2577 964 1412
U SD /JPY 2359 1736 1439

S&P500 2713 2002 1675
NYSE 2820 1935 1665

do this for a single training and test set pair of the CHF/ JPY  data  and the S&P500 

data.

Note tha t we could not directly use NeuralBAG to generate such a plot. This is 

because it estimates a (possibly) different optimal number of epochs for each network 

in the ensemble. This makes a single plot th a t compares these measures at each 

epoch impossible. To overcome this and to generate a meaningful plot, w’e recorded 

the responses generated by each network in the ensemble at each epoch for the test 

set. Following training we computed the ensemble test set performance, the ensemble 

ambiguity and the average individual network test set performance at each epoch. 

The resulting plots are illustrated in figures 3.1 and 3.2 and discussed in section 

3.5.5.

3.5.4 E xperim ent 4: How m any networks should th e  ensem ­

bles have?

In this experiment we a ttem pt to investigate the effect the size of the ensemble has on 

NeuralBAG and how it tunes diversity. Using the 10 C H F /JP Y  and S&P500 training 

and test set pairs, ŵ e plot the average test set performance across 10 experiments 

against the number of networks in the ensemble. We also plot the average number of 

epochs across 10 experiments against the number of networks in the ensemble. The 

plots are illustrated in figures 3.2 and 3.3 and discussed in section 3.5.3.
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Figure 3.1: Experiment 3 results, CHF/.IPY data. Here we compare the ensemble 
generalisation performance to the ensemble ambiguity and the average individual 
network generalisation performance as training evolves for a single training and test 
set pair of the C H F /JP Y  data.

3.5.5 D iscussion

In this section we discuss the results of the experiments described above. The re­

sults of experiment 1 dem onstrate the potential of NeuralBAG as a technique for 

tuning diversity. On every data-set, it out-performs the benchmark local technique 

(B-LOCAL). It does this despite having fewer validation samples (fti 63% the number 

of samples used in benchmark technique per network in each ensemble). As expected 

it also out-performs the simple local technique (S-LOCAL). The simple local tech­

nique has approximately the same number of validation samples per network in each 

ensemble but does not tune diversity.

One of the key aims of these experiments is to verify th a t NeuralBAG improves
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Figure 3.2: Experiment 3 results, SfePoOO data. As above for hgure 3.1 but with the 
S&P500 data.

performance by tuning diversity and not by any other means. The results of experi­

ments 2 and 3 help to confirm this. Taking experiment 2 first, the average number of 

epochs estim ated as optimal for NeuralBAG is consistently larger than th a t for the 

benchmark technique and the simple technique. This suggests th a t networks are over­

fitting their training sets (relative to the other techniques) in order to tune (which 

translates to generating more) diversity. It is im portant to note however th a t the 

ensemble generalisation error begins to increase after the optim al number of epochs 

-  it does not converge, instead the ensemble itself begins to over-fit the training set. 

This is im portant as it implies th a t it is not good enough to just train  every network 

in a bagged ensemble to convergence -  a controlled level of over-fitting is required. 

The results of experiment 3 illustrate this effect very clearly. For the CH F/ JPY  data, 

the average individual network generalisation error is minimised much earlier (epoch
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Figure 3.3; Experiment 4 results, CHF/'JPY data, part 1. Here we plot the average 
generalisation error across 10 experiments on the CHE/  JPY  data  as a function of the 
number of networks in ensembles trained with NeuralBAG.

970) than the ensemble generalisation error (epoch 1590). For the S&P500 data, the 

average individual network generalisation error is minimised at epoch 1005 and the 

ensemble generalisation error at epoch 1910. However, for both data-sets the ensem­

ble generalisation error begins to increase again following the ensemble generalisation 

error minima.

In experiment 4 we attem pt to investigate what effect the size of an ensemble has 

on NeuralBAG. The results for the first part of the experiment are not a surprise -  

as the size of an ensemble increases, generalisation error decreases. However, little 

is to be gained by using more than 30 networks and improvements seem to level out 

at around 100 networks. This is consistent with previous work on bagged ensembles 

e.g. (Breiman, 1996a) and (Heskes, 1997a). The results on the second part of the 

experiment are a little more interesting. Here, the average optimal number of epochs
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Figure 3.4: Experiment 4 results, S&P500 data, part 1. As above for figure 3.3 but 
with the S&P500 data.

increases because the variance (and therefore also the diversity) of a larger ensemble 

will naturally be lower. To compensate for this effect NeuralBAG will over-fit the 

networks a little more to generate more diversity.

Note th a t this work is also presented in (Carney and Cunningham, 1999b). How­

ever, popular benchmark regression data-sets were used for the experiments instead 

of the financial data-sets used here.

3.6 R elation to  other work

In this section we discuss how the work presented in this chapter relates to similar, 

previous studies on neural network ensembles. Much of the work presented in this 

chapter was inspired by the the work of Sollich and Krogh (1996). They studied the
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Figure 3.5: Experiment 4 results, C H F/JPY  data, part 2. Here we plot the average 
estim ated optimal number of epochs across 10 experiments on the C H F /JP Y  d a ta  as 
a function of the number of networks in ensembles trained with NeuralBAG.

characteristics and properties of simple linear ensembles and together with Krogh 

and Vedelsby’s work (Krogh and Vedelsby, 1995) were the first to study in depth 

the importance and value of diversity in neural network ensembles. More specifi­

cally, in (Sollich and Krogh, 1996) they proposed tha t for large linear ensembles, 

under-regularized networks should be used and tha t a globally optim al ensemble gen­

eralisation error can be reached by also varying the training set sizes of the individual 

networks. If only small ensembles can be trained due to com putational restrictions, 

then they suggested th a t varying the re-sampling rate of the training sets is unneces­

sary (especially if the original training set is very noisy) and th a t a better approach 

is to use an optimised weighted average to combine the networks in the ensemble.

So, how does their work relate to ours? Although there are a number of obvious 

similarities in some of the conclusions, there are a number of im portant differences in
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Figure 3.6; Experiment 4 results, S&P500 data, part 2. As above for figure 3.5 but 
with the S&P500 data.
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the analysis and aims of their research. Firstly, our analysis is based on experiments 

performed using ensembles of non-linear back-propagation neural networks trained 

using noisy, real-world data. Secondly, we use an early-stopping technique to regu­

larise the networks, they use weight-decay. Thirdly, we are only interested in bagged 

ensembles -  we do not attem pt or desire to vary the re-sampling rate of the boot­

strapping process. As discussed in section 2.4, we believe th a t this can potentionally 

be cumbersome to optimise and may cause difficulties when confidence and prediction 

intervals are estimated. Finally, we don’t attem pt to use a weighted average -  we 

find the robustness of a simple average very attractive. We prefer to simply increase 

the size of the ensemble to compensate for any problems caused by poorly performing 

individual networks. Given the wide availability of significant com puter processing 

power today, we believe this approach is justified. Also, as described in (Carney et 

ai,  1999) and chapter 4, an added advantage of this approach is th a t large ensembles 

can produce more accurate confidence and prediction intervals.

O ther related work includes Husmeier’s analysis of RVFL  ensembles (Husmeier, 

1999). He was the first to provide empirical evidence th a t over-fitting an ensemble of 

non-linear networks can be useful. However, his focus is solely on RVFL  ensembles 

whose properties are significantly different to conventional back-propagation ensem­

bles. For example, in (Husmeier, 1999) he showed how bagging does not usually 

improve the performance RVFL  networks. He suggests th a t enough inherent insta­

bility exists in RVFL  networks and introducing more by re-sampling the training sets 

will not improve performance. Also, his focus is a little different from ours in tha t he 

doesn’t expicitly attem pt to tune diversity.

Finally, the work of Heskes also has some similarites with ours. In (Heskes, 1997a), 

he develops and evaluates a technique for optimising the performance of weighted 

back-propagation ensembles. Although he does compute estimates of ensemble gen­

eralisation error he uses them for a different purpose and does not explicitly attem pt 

to tune diversity.
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3.7 Summary

In this chapter we dem onstrated the importance and value of tuning diversity in 

bagged neural network ensembles. Our approach of tuning diversity by varying the 

fit of the networks is a simple idea, but nevertheless works very well for bagged 

ensembles in practice. Also, it has one key advantage over other approaches ~ diversity 

tuning and network param eter (weights) tuning are unified - both can be performed 

simultaneously using the same algorithm. This would not be easy to achieve if a 

different method (e.g. varying the re-sampling rate of the training set) were used to 

tune diversity.

Also, an im portant finding of our work th a t must be stressed is th a t although some 

over-fitting amongst networks in a bagged ensemble is usually required, it must be 

controlled. If it is not, even large ensembles will over-fit and ensemble generalisation 

performance will be compromised. Nevertheless however, it is fascinating to observe 

over-fitting improving the generalisation performance of neural networks for a change.



Chapter 4 

Predicting uncertainty

4.1 Introduction

In chapter 3 we proposed a new technique for optimising the generalisation perfor­

mance of bagged neural network ensembles. However, the predictions generated by 

these ensembles are point predictions i.e. they do not include any measure of predic­

tion uncertainty. In reality, the quality of these predictions can vary significantly. For 

example, there may be a large amount of unpredictable noise in the test da ta  caused 

by high volatility or other extreme market events. Given the im portance placed on 

managing risk in financial institutions today point predictions are therefore of little 

practical value. In this chapter we develop a new technique th a t generates inter­

val predictions th a t provide a valuable insight into the ensemble models and market 

behaviour.

In section 4.2 we introduce the underlying theory of interval prediction by describ­

ing how uncertainty in regression is represented and outlining the difference between 

confidence and prediction intervals. In section 4.3 we propose a new m ethod for com­

puting confidence intervals for neural network ensembles and illustrate the perfor­

mance gains it produces over previous techniques using a popular synthetic data-set. 

In section 4.4 we show how the confidence intervals can be combined with econo­

m etric estimates of future volatility movements to generate prediction intervals. Our 

approach is novel and in chapter 5 is shown to provide excellent interval predictions

51
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of financial market movements over a number of prediction horizons.

4.2 U ncertainty in regression

In this section we introduce an analytical framework through which uncertainty in 

regression can be described. Let us assume we are given a set of N  training pairs 

{ ( i „ , , generated according to

where t is the observed target value, / (x )  is the true regression and e(x) is noise with 

zero mean. When we train  a neural network on such data, our aim is for the network 

to approximate the true regression /(x ) . Using the notation introduced in section 2.3 

let us denote this neural network approximation as 0(x), which can be interpreted 

as an estimate of the mean of the distribution of target values given an input vector 

X .  For many real-world regression applications, it is highly desirable to have some 

measure of confidence in this point prediction.

There are two “components” of confidence however. The first is concerned with 

the accuracy of our estim ate of the true regression i.e. the distribution of the quantity 

/ ( x )  —(/)(x). This distribution is a conditional distribution and in statistics is normally 

expressed as F ( /(x ) |0 (x )) . In a regression context, measures of confidence based on 

this distribution are usually termed confidence intervals (Heskes, 1997b). The second 

component of confidence is concerned with our prediction of the targets themselves 

i.e. the distribution of the quantity t — (j){'}c) or P ( t|0 (x )) . These estimates are usually 

term ed prediction intervals (Heskes, 1997b). As illustrated below in equation (4.2), a 

confidence interval is enclosed in a prediction interval

Prediction intervals are of more practical use than confidence intervals for real- 

world (especially financial) applications. This is because prediction intervals are con­

cerned with the accuracy with which we can predict the targets or observed values

t =  / (x )  + e(x) (4 1 )

(4^2)
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themselves, not just the accuracy of our prediction of the true regression.

4.3 Confidence intervals

As described in section 4.2 above, confidence intervals are enclosed in prediction 

intervals and are concerned with the accuracy of our estimate of the true regression i.e. 

the distribution of the quantity / (x)  — ^(x) or P(/(x)|^(x)).  When we use a bagged 

neural network ensemble, we are interested in the distribution of the quantity / (x )  — 

06ag(x) or P(/(x)|(/)(,ag(x)), where 4>bag{' )̂ denotes the bagged ensemble prediction as 
described in section 2.3. In this section we show how confidence intervals can be 

computed for the estimate (t)bagi )̂-

4.3.1 Theory

To generate the confidence (and prediction) intervals we must assume our neural 
networks provide unbiased estimates of the true regression / (x) .  In other words (for 
confidence intervals) we must assume the distribution P(/(x)l0bag(x)) is centered on 

the estimate (f)bag{̂ )- This assumption, of course, does not hold in practice -  as with 
any other estimator, neural networks can and usually are biased i.e. residual errors 
are not caused by variance alone. However, it is generally accepted that the variance 
component of residual error in neural network learning dominates the bias component 
-  see (Geman et al., 1992) for a comprehensive study of this issue.

To form our confidence intervals, we need to estimate the variance of the distribu­

tion P{f{x)\(f)bag{'^))- However, we have no direct access to this distribution and (for 
real-world tasks) do not know what the true regression / (x )  is. Using the outputs 

of the bootstrap re-sampled networks in the ensemble, we can however approximate 
it. The bootstrap outputs provide us with an empirical estimate of the distribution 

P(0ha9(x)|/(x)) which is the “inverse” of the distribution P(/(x)|0ftag(x)). This em­
pirical estimate of P(0iag(x)|/(x)) is P(0(x)|0ftap(x)). Here, 06ap(x) replaces the true 

regression to which we have no access. The variance of this distribution can be found 

by calculating the variance across the bootstrap outputs. Note that by assuming
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P(/(x)|(/)bap(x)) is Gaussian we also assume its inverse P(0bag(x)|/(x)) is Gaussian 

and so any estimates of variance for P((/)ftag(x)|/(x)) can be used as estimates of 

variance for P(/(x)|</)hap(x)). This gives us

-  (f>bag{̂ ))  ̂ (4.3)
^   ̂ 6=1

In (Heskes, 1997b), this variance measure is used to construct standard Gaussian 
confidence intervals for weighted neural network bootstrap ensemble predictions.

This variance estimate however will be biased upwards for most predictions. This 
is because it more accurately reflects the variance of the distribution P (/(x ) |0 (x )) , 

not P(/(x)|06a(,(x)). In other words, it really only provides a variance measure suit­
able for computing a confidence interval for a single network prediction 0(x). As 
discussed in chapter 2 bagging has the effect of significantly reducing the variance of 
neural networks. This reduced variance should be reflected in the confidence interval. 
We wall now propose a way to do this.

Using a large number of bootstrap networks for the ensemble (we use 200, but 

fewer would suffice) we divide the ensemble into M smaller ensembles (we use 8 groups 
of 25 networks each). This gives us a set of M ^hap(x) values

C = { C ,(x )} i^ i  (4.4)

from which we approximate a more accurate variance measure for the distribution 
P(06a5(x)|/(x)). However, we don’t simply compute a variance measure across (in 
our case) the 8 ensemble outputs - this variance measure itself would be highly variable 

and unreliable. Instead we undergo one more iteration of bootstrapping and use the 
technique for which it was originally designed as described in section 2.2. We form P  

(we use P  =  1000) bootstrap re-sampled sets of C

(4.5)
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where

Cj =  W ’ •••’ ^bagi^)} (4-6)

each containing M  (ptagi^) values sampled with replacement from C. We calculate  

a variance measure for each of these sets and then calculate an average of these  

to provide a sm oother, lower variance estim ate of the variance of the distribution  

P { ( i ) b a g { ^ ) \ f { ^ ) ) -  ^

=  (4-7)
 ̂ i= i

where
1 ^

"  M -  K v g i ^ ) ?  (4-8)
k=\

and
1 M

(Pivgi^) =  77 E  4'agi^)- (4-9)
fc=l

N ote that here, to estim ate the true regression, we use the com bination of values 

across all the B  networks in the ensemble and denote this as 4>b a g {' )̂- In other 

words, we approxim ate the distribution r((^6Q j,(x)l/(x)) from P((;i)hag(x)l^jg^G(x)). 

T his second iteration of bootstraj)ping is not com putationally  intensive (there are no 

networks to train) and is easy to implement.

Now that we have a good variance estim ate for the distribution P (/(x ) |0 ( ,a g (x )) ,  

which ŵ e assum e to be G aussian, we can calculate a confidence interval in the usual 

fashion

0 b ^ g (x ) -  2<^""^(7s(x) <  / ( x )  <  0 b a g (x )  +  ẑ “̂ “V 5 (x) (4.10)

The factor depends on the desired level of confidence ((e.g .) 90%, 95% etc.)

and can be taken from a standard Gaussian distribution table.

It should be noted that this technique can be applied to any neural network 

ensem ble technique that uses the bootstrap to generate the training sets for the  

ensem ble e.g. balancing (Heskes, 1997a) which uses a weighted average to com bine  

the ensemble outputs. See (Carney et a i ,  1999) for a more general description of the  

technique.
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Figure 4.1; Synthetic test data  generated using W ahba’s function.

4.3.2 Illustration

In this section we attem pt to illustrate the properties and performance of our confi­

dence interval technique by testing it on synthetic data. Our motivation behind using 

synthetic data  here is to maintain some statistical transparency and flexibility e.g. we 

can exclude any noise and estimate how biased our ensembles are by comparing their 

prediction to the true regression. Note tha t this section is merely an illustration of 

the technique. A complete evaluation using financial data  will be provided in chapter 

5.

The synthetic data-set th a t we used is generated as follows. Inputs are uniformly 

drawn at random from the interval [0,2], Here, the input vectors contain only a single 

value. The target values are generated according to

(4 . 11 )



CHAPTER 4. PREDICTING UNCERTAINTY 57

Table 4.1: Illustration of confidence interval performance expressed in terms of in­
terval non-coverage i.e. number of times the actual target value was not covered by 
the interval (see section 5.2.5 for an exact description of this metric). Given that we 
used 1000 test points for each experiment we would expect non-coverage of 200 for 
an 80% interval for example._______________________________

INTERVAL NEW SIMPLE IDEAL
80% 220 35 200
90% 112 0 100
95% 58 0 50
99% 13 0 10

This function was first introduced in (Wahba and Wold, 1975) and is known as the 
Wahba’s function. We generated 1000 data pairs for training and 1000 for testing. 
The test set is illustrated in figure 4.1.

For our experiments, 200 networks were trained for the bagged ensemble. We ran 
the test set through our ensemble following the steps outlined in section 4.3.1 above 
to produce 80%, 90%, 95% and 99% confidence intervals for each test point. We 
repeated the experiment using the simpler technique described in (Heskes, 1997b). 
As illustrated by the results which are summarised in table 4.1, the simpler technique 
produces intervals that are consistently too wide for ensemble predictions and provide 
no non-coverage for the 90%, 95% and 99% intervals.

4.4 Prediction intervals

As described above in section 4.2 prediction intervals are concerned with the distri­

bution of the quantity i — </)bag(x) or P{t\<phag{'^)) i-e. they estimate the accuracy with 
w^hich we can predict the targets or observed values themselves. To estimate predic­
tion intervals, we must incorporate the noise variance factor of a regression. This is 

the variance of the noise component e(x) in equations 4.1 and 4.2. Incorporating this 

factor, the variance of the complete regression can be given as

s^(x) =  {(t -  0b.4g(x))^) =  ( ( /(x )  -  (/>b4g(x))^) +  (e^(x)) (4.12)
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where (.) denotes expectation. Note th a t we already have an estim ate of the  model 

variance from our boo ts trap  technique described in section 4.3,

( ( / ( x )  -  <^b/1g (x ))^ ) =  a |( x ) .  (4.13)

In th is section we will develop a new technique to  m odel the noise variance so th a t 

s^(x) can be estim ated  and prediction intervals generated.

The key to  solving this problem  is recognising th a t noise variance in regression is 

equivalent to  m arket volatility  in econometrics. This is an im portan t connection to  

make -  volatility  has been shown to  be very predictable given the clustered na tu re  of 

its behaviour i.e. clusters of high volatility  are followed by clusters of low volatility  

(see (Alexander, 1998 (chapter 4) for a discussion and some illustrations of th is ef­

fect). Using this, we propose to  use an established econom etric volatility  prediction 

technique to  generate predictions of volatility and combine these w ith predictions 

of the model variance (estim ated using the boo tstrap  as in section 4.3) to  generate 

prediction intervals.

Before we illu stra te  th is equivalence of noise variance and volatility  and  show how 

it can be used to  generate accurate prediction intervals, we will first describe how 

volatility  is estim ated and predicted in econometrics.

4.4.1 V olatility

T he volatility  of a financial m arket is a m easure of how tu rbu len t it is i.e. a m easure 

of how much prices “jum p ab o u t” . Given this, volatility  cannot be observed and so 

m ust be estim ated. Traditionally, the n-period historic volatility (HV) estim ate  has 

been used to  do this. The HV estim ate a t tim e T  is usually expressed in term s of an 

annualised percentage s tandard  deviation^ which we will denote as

(100i>rV^)%  (4.14)

^This is done to standardise the volatility estimates so that volatilities of different maturities 
may be compared on the same scale -  see (Alexander, 1998 (chapter 4)).
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where A  denotes the number of observations per year and

E  (4-15)
i = T —n

Note th a t here denotes the log-return at time i and n  the period. This tech­

nique for estim ating volatihty has been replaced by more sophisticated general auto­

regressive conditional heteroskedastic (GARCH) and exponentially weighted moving 

average (EWMA)^ methods in most financial institutions today. The EWMA tech­

nique has been popularised by it use for generating the RiskMetrics volatility da ta ­

sets and is generally accepted as the industry standard for volatility estim ation (and 

prediction) today (Alexander, 1998 (chapter 4)).

The EWMA approach differs from the HV approach in th a t it places a higher 

weight on more recent observations in the calculation for Ot - This approach has 

two im portant advantages over the HV approach. The first is th a t the volatility 

estim ate reacts faster to an abrupt change in the market i.e. a very large return. 

The second is tha t following a shock the estimate of volatility declines exponentially 

as tlie market reverts to normal behaviour and the weight of the shock observation 

falls. HV methods on the other hand introduce what are known as “ghost features” 

-  the effect of a shock can be reflected in the volatility estim ate long after the market 

returns to normal behaviour. For an EWMA volatility estim ate at time T,

OO

(1 -  A) V\ i= l
(4.16)

which can be re-written in recursive form as

i>T = Ŷ (l -  A )4 _ i -h (4.17)

Here it is assumed th a t we have access to an infinite set of returns^. This recursive

 ̂An EWMA is equivalent to an integrated GARCH (I-GARCH) without a constant term (Alexan­
der, 1998 (chapter 4); Zangari, 1996).

^In reality we never have access to an infinite set of returns and so the EWMA is usually “seeded” 
using a simple squared log-return for example.
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form makes it convenient to use the EWMA technique for predicting volatility 1-step 

(e.g. day) ahead,

Zangari (1996) shows how this can be easily adapted to conveniently generate multiple- 

step ahead predictions of volatility by using a simple multiple of a 1-step ahead pre­

diction,

Here h denotes the prediction horizon e.g. h = 5 will generate a prediction 5-steps 

ahead.

4 .4 .2  E stim a tin g  th e  d eca y  factor

The obvious drawback of using EWMA methods over HV methods is th a t the decay 

factor A must be estim ated for each data-set and volatility horizon (e.g. 1-day volatil­

ity, weekly volatility etc.). We use the simple cross-validation technique outlined in 

(Zangari, 1996) (which he calls the root mean squared error (RMSE) criterion) to do 

this. This technique uses a variance prediction error which is defined as

(4.18)

(4.19)

or

(4.20)

Ct +1 = 4+1 -  T̂+1- (4.21)

See (Zangari, 1996) for an analytical justification for the use of this error. 

Using this, the root mean squared prediction error is defined as

R M S E (4.22)

Here the variance prediction is written as a function of A. This RMSE is com­

puted for a range of A values and the value th a t generates the minimum RMSE is 

chosen as optimal for the data-set in question. Note th a t H  denotes the number of
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Table 4.2: Estimates for the decay factor A for each data-set used in this thesis. We 
use 11 years of observations for the stock-market experiments {H = 2780) and 5 years 
of observations for the foreign exchange experiments {H =  1238). We tested for 18 
values of A (0.1,0.15, ...,0.9,0.95) for each volatility horizon.

DATASET 1-day 5-day 10-day 20-day
Coca-Cola 0.93 0.20 0.10 0.10

GEC 0.93 0.25 0.15 0.10
IBM 0.98 0.10 0.10 0.10

Microsoft 0.95 0.13 0.10 0.10
C H F/JP Y 0.98 0.30 0.20 0.15
U SD /JPY 0.98 0.30 0.25 0.15

S&P500 0.92 0.20 0.10 0.10
NYSE 0.93 0.15 0.10 0.10

observations th a t are used to compute the RMSE.

Unlike the RiskMetrics methodology outlined in (Zangari, 1996) which estimates 

global estimates for A for each volatility horizon (e.g. A =  0.94 for all daily market 

data, A =  0.97 for all monthly market data) we estimate a different A for each data-set 

and volatility horizon used. The results are summarised in table 4.2.

4.4.3 C om bining volatility  w ith m odel variance

In this section we will illustrate the equivalence of noise variance and volatility. We 

also outline how we combine the model variance with the volatility estim ates to 

generate prediction intervals.

Consider the following standard econometric model of financial returns (taken 

from (Alexander, 1998 (chapter 4))),

Tj’ = C €x- (4.23)

Here tt is the return at time T, C is a constant and er is the residual error or noise 

a t time T.  Note tha t is assumed to be normally distributed with variance In 

econometrics this noise variance is called the volatility.

If we build a more sophisticated model of financial returns e.g. using a neural
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network ensemble, this noise variance (volatility) term does not change. However, 

it is usually expressed in a different form e.g. as a function of the input vector x  

as in equation (4.12). Therefore, the only hurdle to overcome if we want to use an 

econometric volatility prediction technique to estimate noise variance is notational -  

we need to somehow connect the econometric notation with the functional (regression) 

notation.

To do this, we simply include the subscript T  to denote the target that the volatil­

ity estimate Pt  corresponds to. More specifically

«^(x) =  ( { t r  -  0 b 4g (x ))̂ ) =  ( ( / ( x )  -  (/)b a g (x ))̂ ) +  (e^(x)) =  a |( x )  +  z>|. (4.24)

Here the EWMA technique outlined in sections 4.4.1 and 4.4.2 is used to estimate 

9^. To generate a prediction interval we use

4>b a g { ^ )  -  2̂ “̂“^s(x) < t r  <  b̂ ĝ (x ) +  2̂ “̂“^s(x) (4.25)

Again the factor depends on the desired level of confidence and can be taken

from a standard Gaussian distribution table.

4.5 Sum m ary

In this chapter we proposed new techniques for generating confidence and prediction 

intervals for bagged neural network ensembles used for financial time-series prediction. 

A unique feature of the prediction interval technique is that it relies on techniques 

from a number of disciplines; statistics (the bootstrap), econometrics (the EWMA  

technique) and machine learning (bagged ensembles). This multi-disciplinary ap­

proach is key to the technique’s success. In the next chapter we will empirically 

evaluate all of the techniques proposed in this chapter.



Chapter 5

Evaluation

5.1 Introduction

In this chapter we evahiate the ability of our ensembles to predict future prices, 

directional change and prediction uncertainty across the 8 financial time-series da ta­

sets (described in section 1.7).

We begin in section 5.2 by describing the statistical metrics used to evalute pre­

diction performance. In this section we also attem pt to justify why a revenue (profit) 

based evaluation method was not used. In section 5.3 we outline the experimental 

set-up of the experiments and in section 5.4 analyse the results of the experiments 

in detail. One of our main aims in section 5.4 is to highlight im portant recurring 

features in the results. As we shall illustrate and discuss in detail, the most consis­

tent recurring feature in the results is the dependancy of the predictions (of price and 

directional change) on the magnitude of volatility -  any poor results correspond to 

periods of excessive volatility, any excellent results to periods of low volatility. An­

other im portant feature related to this is the quality and stability of the prediction 

intervals even over such periods of excessive volatility -  as we shall show, this has 

significant implications for risk management in real-world trading scenarios.

Overall, the results of this chapter clearly illustrate the potential of the techniques 

proposed in earlier chapters for predicting future financial market behaviour.

63
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5.2 Evaluation m etrics

In this section the metrics used to measure the relative and absolute prediction perfor­

mance of ensembles trained using our techniques are described. Most of them  are well 

known; they include the root mean squared error (RMSE), the correlation coefficient 

(CC), the information coefficient (IC) (also known as the ^-test or Theil’s coefficient 

of inequality) and the d-statistic (DC) (used to measure directional change prediction 

accuracy). We also describe how we evaluate the accuracy of the prediction intervals 

(and therefore also implictly the confidence intervals) by measuring the non-coverage 

(NC) of the intervals over the test sets.

Note tha t in this thesis we do not attem pt to evaluate the performance of the 

ensembles by tracking profits earned during simulated trading sessions or some other 

revenue based method. This is because our techniques generate predictions, not trad ­

ing (e.g. buy or sell) signals. Using predictions to generate such signals requires 

expertise th a t is beyond the scope of this thesis and, in any case, is sensitive to a 

large number of situation specific variables e.g. transaction costs, gearing (percentage 

of money borrowed to make the trade), market liquidity, portfolio value-at-risk and 

so on. It is generally accepted today tha t to effectively evaluate a prediction system 

using revenue based techniques, actual trades with real money should be executed. 

However, this is not usually an option for academic research -  using objective sta­

tistical measures of prediction performance such as those described in this section is 

perhaps the best alternative.

5.2.1 Root mean squared error

The RM SE  is probably the most widely used measure of estim ator performance in 

times-series prediction and econometrics. We have already used it in section 4.4.2 for 

param eter tuning. Here we use it to measure prediction accuracy in absolute terms 

across a test set of size N ,

R M S E  = ,
\  n = l

(5.1)
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where yn is the predicted vahie and the target value.

5.2.2 Correlation coefficient

The CC  is another popular measure of absolute prediction accuracy. It measures the

where y =  l /n Y ,n = \yn  and t =  =  1 denotes perfect correlation

5.2.3 Inform ation coefficient

It is very im portant to compare the performance of the ensembles against the perfor­

mance of trivial predictors. The IC  gives a good measure of the ensemble prediction 

performance relative to the martingale random walk model (see section 1.2),

For /C  > 1, the neural network is worse than the martingale; for IC  < \ it is better 

than the martingale. As IC  approaches zero the ensemble is doing infinitely better 

than the martingale.

This equation can be easily adjusted to estimate the information coefficient for 

predictions more than one day ahead. For example if we wanted to compare the 

accuracy of the ensemble against the performance of the m artingale for 5-day ahead 

predictions we would used the following,

linear correlation between predicted values (?/„) and actual values (i„), averaged over 

all observations,

A'(i„ -  i)(i„  -  t)
(5.2)

between actual and predicted values and CC^ =  0 signifies no correlation.

(6.3)

I C  = (5.4)
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5.2.4 Directional change

Although predicting the levels of price changes is desirable, in many cases the direction 

of the change is equally important. To estimate the directional prediction accuracy 

we use the following test statistic,

D C = ^ T < ‘n (5-5)
n = l

where =  1 if (t„ — ~ tn-i) > 0 and =  0 otherwise (for 1-day ahead
predictions). Any estimator with DC > 0.5 is doing better than tossing a coin, 
DC — 1 implies the estimator is predicting 100% of the directional changes and 
d =  0, 0% of the directional changes.

5.2.5 Interval non-coverage

The NC  is a measure of the number of times the actual target value is not covered 
by or falls outside an interval. We use the following statistic to measure this,

7VC =  ^  f :  c„ (5.6)
n = l

where c„ =  1 if (t„ — ln){Un — tn) > 0 and c„ =  0 otherwise. Here In denotes the 
prediction for the lower bound of an interval and denotes the prediction for the 
upper bound of an interval. If c„ = 0 .1  for example, then 10% of the targets are not 
covered by the intervals -  this would be a perfect result for a 90% interval.

5.3 Experim ental set-up

In this section we describe the experimental set-up of the experiments used to evaluate 

the predictive ability of the ensembles. For each data-set we perform experiments 

over 4 different prediction horizons; 1-day, 5-days, 10-days and 20-days ahead^ Our

5-day prediction horizon for example spans a week of trading -  if today is Monday then a 
5-day ahead prediction aims to predict the closing price of the following Monday.
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1/9/88 2̂IAi/99 1/9/99

Training
set

Test
set

SIMLIVE

1/9/88 13/11/98 9/4/99 1/9/99

BACKTEST1Training Test Training
set set set

1/9/8816/4/97 5/9/97

Test Training
set set

1/9/99

BACKTESTS

Figure 5.1; Training and test set organisation for the the BACKTEST and SIMLIVE 
experiments (1-day ahead). Each data-set used has identical training and test set 
organisations. However the dates will obviously differ amongst the different prediction 
horizons.

motivation for using these prediction horizons is tha t they are typical in real-world 

trading scenarios, particularly for options and forwards trades. We perform two 

types of experiment for each data-set also. The first, which we call “simulated live” 

(SIMLIVE), uses 100 test vectors (approximately 20 weeks of trading) which were not 

used in any part of the training process i.e. for building the ensemble or estim ating 

the decay factor for the EWMA volatility model. Therefore the test set is completely 

new to all of the models used to generate the predictions and so simulates a live 

trading scenario. The SIMLIVE experiments are classical time-series experiments -  

the test sets are made up of the most recent observations in the time-series and so 

we train on the past and test on the future.
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The second, called “back-testing” (BACKTEST) also uses 100 test vectors. How­

ever we perform 5 BACKTEST experiments for each data-set and time horizon. The 

BACKTEST experiments are used to increase the statistical significance of the results 

-  the test sets here consist of contiguous sets of vectors th a t may occur before some 

training vectors in the time series. Although these test vectors will not have been 

used for training the ensembles, they will have been used to estim ate the decay factor 

for the EWMA volatility model. Figure 5.1 illustrates this set-up.

5.3.1 Stocks

As described in section 1.7.1 we test the prediction performance of the ensembles 

on 11 years (1 /9 /88 -1 /9 /99 ) of 4 stock-market data-sets; General Electic Corpora­

tion (GEC), Coca-Cola, Microsoft Corporation and International Business Machines 

(IBM). The training vector set-up for each data-set is the same.

Using the notation introduced in section 1.7.1 but a more detailed expression for 

the training vector, the 1-day ahead vector set-up is

^Xdayi '^^Idayi ^^'Xdayt ( •̂' )̂

where

T i d a y  =  ( r t _ 4 , r t _ 3 , r ( _ 2 , r t _ i , r « ) , (5.8)

^^ I day  4) 3 ) 2 ) 1 ) ^^f.)! (5.9)

V t i d a y  =  { v t t - 4 , v t t - 3 , v t t - 2 , v t t - i , v t t ) , (5.10)

i d i d a y  =  (spt,nyt,djt), (5.11)

d t u a y  =  {dt,mt,wdt). (5.12)

Here we use a more elaborate expression for the 1-day ahead training vector set-up 

than  th a t used in section 1.7.1 to allow it to be clearly distinguishable from training 

vector set-ups used for other prediction horizons.
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The 5-day ahead training vector set-up is

(5^13)

where

1"5d,ay ~  { ^ 1 - 2 0 ,  1^1-15, f t - l O ,  f t - 5 ,  f t )  , 

'^l‘5d a y  —  ( ^ ^ t —20) 15i 10) 5)

'^ tb d a y  —  20) 15) 1 0 ) 5 >  )

idMay  =  [ spu niju dj t),

(5.14)

(5.15)

(5.16)

(5.17)

and

(5.18)

Note th a t here the lagged series {r^day, vkday and vt^day) includes tem poral information 

spanning 20 days of trading. Note also th a t we use 5-day returns (i.e. rt =  log{pt) — 

log{pt-^)) and 5-day (weekly) volatilites. These changes are necessary to enable the 

ensembles to identify 5-day temporal structures (if they exist) in the training data.

The 10-day ahead training vector set-up is

For reasons identical to those for the 5-day ahead prediction horizon the lagged series

^ l Oda yt  ^ ^ W d a y i  ^^ lO day)  ^^lOdaj/)  d t \ Q d a y i  ^ t +1 0 (5.19)

where

f l O d a y  =  ( ^ t - 4 0 )  ^ « - 3 0 ) ’’ i - 2 0 )  J’ f - l O )  ?'«))

Vhoday =  { v h - A 0 , v l t - S 0 , v l t - 2 0 , v l t - l Q , v l t ) ,  

V t w d a y  =  { v t t - A 0 , V t t - S 0 , V t t - 2 0 , V t t - W , V t t ) .  

^d\Qday {^Pti ^Vti djt} 1

(5.20)

(5.21)

(5.22)

(5.23)

and

dtioday — {dt, 7Tlt, wdt) ■ (5.24)
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includes tem poral information spanning 40 days of trading and we use 10-day returns 

and volatilities.

The 20-day ahead training vector set-up is

^20dayi ^^20dayi ^̂ 20da?/? ^^20daj/) ^ 2̂0da?/) ^t+20 ( 5.25)

where

'>'2i)day =  ( ? ' t - 8 0 5 ^4 -6 0 )  5 ^ t - 2 0 > )> (5.26)

vhoday =  {vlt-80^ vlt-eOi vlt-io, vlt-20, vlt), (5-27)

Vt20day = (vtt-80, Vtt-eo, Vtt-iO, Wt(_20, Vtt), (5.28)

i d 20day ^  {spt, nyt, djt), (5.29)

and

d t 2 0 d a y  ^  { d t , m t , w d t ) .  (5.30)

Here the lagged series includes temporal information spanning 80 days of trading and 

we use 20-day returns and volatilities.

The results of all experiments performed on the stock-market data-sets are sum­

marised in tables 5.1, 5.2, 5.3 and 5.4 and analysed in section 5.4.1. Note th a t the 

predicted returns for these (and experiments performed on all other data-sets) are 

transformed back to prices for reporting the results.

5.3.2 Stock-market indices

We also test the prediction performance of the ensembles on 11 years (1 /9 /88-1/9 /99) 

of 2 stock-market index (S&P500 and NYSE) data-sets. The training vector set-up 

is very similar to tha t used above for the stock-market data-sets. For example, the 

1-day ahead training vector set-up for the S&P500 data-set is

^ P l d a y i  ^ ^ \ d a y j  ^ t l d a y i  ^ P t + l (5.31)
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where

S P l d a y  =  { s p t - 4 ,  S P t - 3 ,  S p t - 2 , S P t - U  S P t ) ,

^^i day  4 5  3 )  2 i  1 )  ) )

V t i d a y  =  { v t t - 4 , v t t - 3 , v t t - 2 , v t t - u v t t ) ,  

^dlday

(5.32)

(5.33)

(5.34)

(5.35)

and

(5.36)

The training vectors for the other index data-sets and for all the prediction horizons 

can be trivially derived from this.

The results of all experiments performed on the stock-market index data-sets are 

summarised in tables 5.5 and 5.6 and analysed in section 5.4.2.

5.3.3 Foreign exchange

We test the ensembles using 5 years (20/5/92 - 20/5/97) of 2 foreign exchange market 

data-sets; C H F /JP Y  and U SD /JPY . Again, the training vector set-up is very similar 

to th a t used for the stock-market data-sets. However, the dates spanning the training 

and test sets will be different but can be trivially derived. The 1-day ahead training 

vector set-up for each foreign exchange data-set is

\̂day-i ̂ tldayj ̂ Idayj dtidayi ̂ t+l (5.37)

where

riday = {rt-4,rt-3,rt-2,rt-i,rt), 

v t i d a y  =  { v t t - 4 , v t t - 3 , v t t - 2 , v t t - u v t t )  

^ I day  (^t—4) 3) 2) 1) ))

(5.38)

(5.39)

(5.40)

and

dtiday =  {dt,mt,wdt). (5.41)
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As for the stock-market index data-sets we will not detail the exact make-up of each 

training vector set-up for each prediction horizon as it can be trivially derived from 

this.

The results of all experiments performed on the foreign exchange data-sets are 

summarised in tables 5.7 and 5.8 and analysed in section 5.4.3.

5.4 A nalysis o f results

In this section we discuss and analyse the results of all the experiments described 
in this chapter. The aim is to establish the overall predictive accuracy of the en­
sembles and to highlight important properties of the ensembles such as dependancies 
of predictive accuracy on the volatility of the test sets and on the prediction hori­

zons. Determining what constitutes “good” prediction performance is not easy in 
the context of financial time-series prediction. However, as a guideline we expect the 
ensembles to at least out-perform the martingale random walk model and achieve a 
directional prediction accuracy of above 50%^.

Each table (5.1-5.8) consists of results for a single data-set (e.g. Coca-Cola) across 
4 prediction horizons -  1-day, 5-days, 10-days and 20-days ahead. For each prediction 
horizon we include the results of 6 experiments -  simulated-live (SIMLIVE) and back­
tests 1-5 (BACKTESTl-5). The evaluation metrics that we include in each table are 
the root mean squared error (RMSE), the root mean squared error of the martingale 
random walk model {RW), the information coefficient {IC), the correlation coefficient 
squared (CC^) and the directional prediction accuracy (expressed as a percentage) 
{DC). We also include the average volatility of the market over a test set {VT) and 

the interval non-coverage (expressed as a percentage) for 80%, 90%, 95% and 99% 
intervals.

Note that for all experiments we trained ensembles of 200 networks. Each ensem­

ble required approximately 1 hour of compute time to be trained using the C-MPI

•^Anything above a directional prediction accuracy of 52% should recover costs and generate a 
profit. The best traders predict directional change correctly 55-60% of the time (personal commu­
nication Beacon Systems Ltd.).
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implementation of NeuralBAG and 8 processing nodes on the TCD CS Departm ent 

SCI Cluster.

5.4.1 Stocks

In this section we discuss the results of the experiments performed on the stock-market 

data-sets (tables 5.1-5.4).

Overall the results of the Coca-Cola experiments are quite promising. The 1-day 

ahead and 5-day ahead predictions are consistent and the BACKTEST3 and BACK- 

TEST4 experiments over these horizons are particularly good. The average interval 

non-coverage is also very good over these horizons. The results for the 10-day ahead 

and 20-day ahead predictions (although on average are roughly equivalent to the 

5-day and 10-day ahead results) are highly variable however -  although the BACK- 

TEST3 and BACKTEST4 results are excellent, the SIMLIVE, BA CK TESTl and 

BACKTEST2 results are poor. Note tha t the very poor results e.g. BACKTEST2 

correspond to periods of very high volatility. This is a phenomenon we will see recur­

ring in the results of experiments performed on the other data-sets also - it confirms 

what one would expect -  more volatility implies more noise variance (randomness) 

and therefore poorer predictions. Another significant feature of the Coca-Cola results 

is th a t the quality of the prediction intervals are not sensitive to the quality of the 

predictions. This also confirms what one would expect -  the quality of a volatility 

prediction does not deteriorate as the magnitude of the volatility increases. Overall 

these predictions if traded live on the market could generate a reasonable return.

The GEC results are more promising than the Coca-Cola results. They are gen­

erally more consistent and over the 5-day, 10-day and 20-day prediction horizons are 

excellent in terms of directional prediction accuracy, peaking twice at 76% for the 

20-day ahead predictions. Again the poor results (e.g. BACKTEST2, 20-day ahead) 

correspond to periods of very high volatility. Also, the prediction intervals are not 

sensitive to the magnitude of the volatility. However, the prediction intervals do seem 

to be sensitive to the prediction horizon -- although on average the quality of all the 

intervals are roughly equivalent, the 10-day and 20-day intervals are significantly more
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variable. We will re-visit this issue in section 5.4.3. Overall, these predictions could 

generate a profit, especially the 10-day and 20-day ahead predictions.

The IBM results are excellent. The 5-day ahead predictions are particularly 

promising -  an average directional prediction accuracy of 70% is exceptional, espe­

cially given the consistency of the results across all 6 of the 5-day ahead experiments. 

The BACKTESTS results for the 10-day ahead predictions which have a directional 

prediction accuracy of 81% are also exceptional. A significant feature of all the IBM 

results is th a t there are no very poor results. This is due (in large part a t least) to the 

absence of periods of very high volatility -  volatility instead is relatively stable. This 

introduces consistency to the results and perhaps even predictable structure th a t the 

ensembles model to generate the excellent predictions^. The prediction intervals for 

the 1-day, 5-day and 10-day ahead predictions are similar in quality to those for the 

previous data-sets. However the 20-day predictions are consistently too wide. As 

previously mentioned we will re-visit this issue in section 5.4.3. Overall, the IBM 

results are excellent and could generate a significant profit if applied to real-world 

trading.

The Microsoft Corporation results are quite promising. The BACKTEST3 and 

BACKTEST4 experiments across all prediction horizons are particularly good. These 

experiments correspond to periods of low volatility. The prediction intervals are very 

good for the 1-day, 5-day and 10-day ahead prediction horizons but quite poor for 

the 20-day ahead horizon. However, they still remain good enough to be useful.

For illustrative purposes, in figure 5.2 we plot the results of the first 20 days of 

the GEC SIMLIVE 20-day ahead experiment. In this illustration the correspondance 

between the quality of the predictions and the width of the prediction intervals is 

clearly observable. In practical trading scenarios this is very valuable -  if a trader 

can observe the quality of a prediction before its horizon expires then he can manage 

risk more effectively e.g. if an interval is relatively narrow he can place a larger trade 

to bet on the corresponding prediction than if the interval is relatively wide.

^This is merely speculation - significantly more analysis would be needed to confirm this.
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Table 5.1: Coca-Cola 1-day, 5-days, 10-days and 20-days a'
1-DAY RMSE RW IC CC'^ DC VT 80% 90% 95% 99%

SIMLIVE 1.00 1.00 1.00 0.82 52 25.50 16 10 3 0
BACKTESTl 1.26 1.26 1.00 0.86 56 30.36 23 9 3 2
BACKTEST2 1.67 1.66 1.01 0.97 55 34.76 18 11 5 3
BACKTESTS 1.04 1.05 0.98 0.95 60 22.64 19 8 5 2
BACKTEST4 1.09 1.10 0.98 0.90 53 29.24 17 11 5 3
BACKTEST5 1.10 1.11 1.00 0.93 53 28.54 16 8 4 2

AVG 1.19 1.20 1.00 0.90 54.83 28.51 18.17 9.50 4.17 2.00
STDEV 0.25 0.24 0.01 0.06 2.93 4.16 2.64 1.38 0.98 1.10
5-DAY RMSE RW IC CC ‘̂ DC VT 80% 90% 95% 99%

SIMLIVE 1.94 1.92 1.01 0.62 55 44.34 23 14 7 0
BACKTESTl 2.91 2.93 0.99 0.37 47 61.43 23 11 8 0
BACKTEST2 4.S7 4.09 1.07 0.83 50 68.87 24 13 8 2
BACKTESTS 2.09 2.25 0.93 0.82 62 41.17 24 13 6 2
BACKTEST4 2.05 2.18 0.94 0.65 72 49.33 22 13 6 3
BACKTEST5 2.37 2.37 1.00 0.72 52 47.60 24 14 5 0

AVG 2.62 2.62 0.99 0.67 56.33 52.12 23.33 13.00 6.67 1.17
STDEV 0.92 0.79 0.05 0.17 9.22 10.73 0.82 1.10 1.21 1.33
10-DAY RMSE RW IC CC- DC VT 80% 90% 95% 99%
SIMLIVE 2.66 2.61 1.02 0.32 50 57.72 24 14 9 2

BACKTESTl 3.44 3.62 0.95 0.38 42 72.89 23 13 7 3
BACKTEST2 6.84 6.41 1.07 0.62 36 113.47 21 11 4 1
BACKTESTS 2.75 3.31 0.83 0.85 80 57.95 16 6 3 1
BACKTEST4 2.85 3.23 0.88 0.63 61 60.98 23 10 7 2
BACKTEST5 3.53 3.62 0.97 0.67 50 70.50 17 9 6 2

AVG 3.68 3.80 0.95 0.58 53.17 72.25 20.67 10.50 6.00 1.83
STDEV 1.59 l.SS 0.09 0.20 15.63 21.19 3.39 2.88 2.19 0.75

20-DAY RMSE RW IC C C ‘̂ DC VT 80% 90% 95% 99%
SIMLIVE 3.33 3.15 1.06 0.07 47 75.80 21 7 5 1

BACKTESTl 3.07 3.56 0.86 0.13 43 75.52 24 9 4 1
BACKTEST2 12.52 10.76 1.16 0.19 33 188.53 16 6 3 0
BACKTESTS 3.86 4.94 0.78 0.54 81 87.20 16 7 3 1
BACKTEST4 5.57 14.95 0.37 0.76 92 93.08 16 8 3 0
BACKTEST5 4.48 5.64 0.79 0.33 57 119.99 17 9 4 0

AVG 5.47 7.17 0.84 0.34 58.83 106.69 18.33 7.67 3.67 0.50
STDEV 3.57 4.69 0.27 0.27 23.03 43.28 3.39 1.21 0.82 0.55

lead prediction results.
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Table 5.2: General Electric Corporation 1-day, 5-days, 10-days and 20-days ahead 
prediction results.___________________________________________________________

1-DAY RMSE RW IC CC^ DC VT 80% 90% 95% 99%
SIMLIVE 2.00 2.01 0.99 0.85 44 29.01 19 8 3 1

BACKTESTl 1.81 1.85 0.98 0.94 52 28.58 17 10 7 1
BACKTEST2 1.8S 1.84 0.99 0.91 54 33.56 16 9 5 3
BACKTEST3 0.95 0.97 0.98 0.99 51 19.43 16 9 3 2
BACKTEST4 1.26 1.28 0.98 0.96 58 30.04 18 7 5 3
BACKTEST5 l.OS 1.06 0.98 0.96 57 26.07 22 8 4 2

AVG 1.38 1.40 0.98 0.95 52.67 27.53 18.00 8.50 4.50 2.00
STDEV 0.42 0.42 0.01 0.03 5.05 5.28 2.28 1.05 1.52 0.89
5-DAY RMSE RW IC CC^ DC VT 80% 90% 95% 99%

SIMLIVE 4.43 4.48 0.99 0.36 50 56.82 22 7 4 1
BACKTESTl 3.87 3.95 0.98 0.74 66 54.41 23 12 4 0
BACKTEST2 4.39 4.23 1.04 0.55 60 65.39 16 7 3 0
BACKTESTS 1.96 1.96 1.00 0.76 57 32.36 16 7 3 1
BACKTEST4 2.51 2.53 0.99 0.96 61 47.51 19 8 4 0
BACKTEST5 2.28 2.39 0.95 0.86 60 52.78 15 7 2 0

AVG 3.00 3.01 0.99 0.77 59.00 50.49 18.50 8.00 3.33 0.33
STDEV 1.06 1.01 0.03 0.15 5.29 12.04 3.39 2.00 0.82 0.52
10-DAY RMSE RW IC CC^ DC VT 80% 90% 95% 99%
SIMLIVE 5.77 5.71 1.01 0.10 54 71.08 25 10 4 1

BACKTESTl 5.14 5.68 0.91 0.58 74 70.47 16 11 5 0
BACKTEST2 6.24 6.38 0.98 0.23 50 99.01 14 6 3 1
BACKTESTS 2.57 2.81 0.92 0.58 60 45.08 16 3 2 0
BACKTEST4 2.50 2.81 0.89 0.52 69 53.13 14 3 2 0
BACKTESTS 3.35 3.69 0.91 0.76 65 81.57 16 5 2 0

AVG 3.96 4.27 0.92 0.53 62.00 69.85 16.83 6.33 3.00 0.33
STDEV 1.66 1.66 0.03 0.19 9.10 21.69 4.12 3.44 1.26 0.52

20-DAY RMSE RW IC CC^ DC VT 80% 90% 95% 99%
SIMLIVE 7.73 8.01 0.97 0.02 52 96.12 22 11 5 2

BACKTESTl 5.45 7.52 0.73 0.59 76 84.07 19 7 6 4
BACKTEST2 7.67 7.59 1.01 0.03 45 101.41 25 15 8 4
BACKTESTS 4.08 4.37 0.93 0.41 76 66.06 15 5 2 0
BACKTEST4 3.90 3.96 0.98 0.23 65 74.03 19 9 6 1
BACKTEST5 4.94 5.54 0.89 0.56 50 134.70 16 4 3 1

AVG 5.21 5.80 0.92 0.37 60.67 92.05 19.33 8.50 5.00 2.00
STDEV 1.52 1.71 0.10 0.24 13.59 27.25 3.72 4.09 2.19 1.67
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Table 5.3: International Business Machines 1-day, 5-days, 10-days and 20-days ahead 
prediction results.___________________________________________________________

1-DAY RMSE RW IC CC^ DC VT 80% 90% 95% 99%
SIMLIVE 2.85 2.89 0.99 0.95 54 40.46 16 6 4 2

BACKTESTl 1.98 1.99 1.00 0.90 57 34.41 16 8 6 1
BACKTEST2 1.27 1.34 0.95 0.91 56 31.99 19 7 5 1
BACKTEST3 0.88 0.88 1.00 0.89 58 30.14 22 8 7 2
BACKTEST4 1.28 1.29 0.99 0.97 52 37.32 17 6 3 0
BACKTESTS 0.85 0.88 0.96 0.98 68 31.50 16 6 4 0

AVG 1.52 1.54 0.98 0.93 57.50 34.30 17.67 6.83 4.83 1.00
STDEV 0.77 0.77 0.02 0.04 5.58 3.94 2.42 0.98 1.47 0.89
5-DAY RMSE RW IC CC^ DC VT 80% 90% 95% 99%

SIMLIVE 6.79 6.76 1.00 0.76 64 73.37 24 14 7 3
BACKTESTl 4.15 4.23 0.98 0.82 64 64.54 24 14 7 1
BACKTEST2 2.85 3.08 0.93 0.81 65 63.03 22 12 5 1
BACKTESTS 1.99 2.03 0.98 0.95 82 54.36 22 13 5 0
BACKTEST4 2.20 2.37 0.93 0.91 75 61.69 23 10 3 1
BACKTESTS 1.84 1.93 0.95 0.92 72 56.73 20 9 4 0

AVG S.SO 3.40 0.96 0.86 70.33 62.29 22.50 12.00 5.17 1.00
STDEV 1.91 1.86 0.03 0.07 7.34 6.67 1.52 2.10 1.60 1.10
10-DAY RMSE RW IC CC^ DC VT 80% 90% 95% 99%
SIMLIVE 9.33 9.30 1.00 0.66 61 105.97 19 14 7 1

BACKTESTl 5.44 5.52 0.99 0.72 62 85.50 18 13 7 0
BACKTEST2 4.25 4.28 0.99 0.71 54 89.57 22 12 7 1
BACKTESTS 2.69 2.82 0.95 0.95 81 54.36 17 8 4 1
BACKTEST4 2.78 2.80 0.99 0.91 53 73.54 16 9 5 1
BACKTEST5 2.85 2.87 0.99 0.87 51 85.78 22 11 7 2

AVG 4.56 4.60 0.99 0.80 60.33 82.45 19.00 11.17 6.17 1.00
STDEV 2.58 2.55 0.02 0.12 11.06 17.28 2.53 2.32 1.33 0.63

20-DAY RMSE RW IC CC'^ DC VT 80% 90% 95% 99%
SIMLIVE 14.08 14.03 1.00 0.50 66 155.02 13 4 3 3

BACKTESTl 7.47 7.49 1.00 0.55 60 125.59 13 6 5 1
BACKTEST2 6.01 6.03 1.00 0.41 62 116.33 12 5 3 0
BACKTESTS 3.11 4.00 0.78 0.92 76 54.36 16 8 2 1
BACKTEST4 2.85 3.08 0.93 0.66 69 79.48 17 7 3 2
BACKTEST5 4.83 4.83 1.00 0.21 54 146.38 16 6 3 2

AVG 6.39 6.57 0.95 0.54 64.50 112.86 14.50 6.00 3.17 1.50
STDEV 4.15 3.97 0.09 0.24 7.64 39.02 2.07 1.41 0.98 1.05
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Table 5.4: Microsoft Corporation 1-day, 5-days, 10-days and 20-days ahead prediction 
results._____________________________________________________________________

1-DAY RMSE RW IC CC^ DC VT 80% 90% 95% 99%
SIMLIVE 2.0S 2.05 0.99 0.87 54 37.59 17 9 5 1

BACKTESTl 2.01 1.99 1.01 0.81 50 42.07 19 8 3 0
BACKTEST2 1.38 1.40 0.98 0.91 53 41.42 22 9 5 1
BACKTEST3 0.91 0.91 1.00 0.84 57 30.86 18 11 4 2
BACKTEST4 0.59 0.63 0.93 0.97 65 30.05 21 8 4 1
BACKTEST5 0.68 0.70 0.97 0.95 64 34.67 17 9 3 0

AVG 1.27 1.28 0.98 0.89 57.17 36.11 19.00 9.00 4.00 0.83
STDEV 0.64 0.63 0.03 0.06 6.11 5.14 2.10 1.10 0.89 0.75
5-DAY RMSE RW IC CC^ DC VT 80% 90% 95% 99%

SIMLIVE 4.10 4.25 0.97 0.47 50 65.10 21 9 3 0
BACKTESTl 4.41 4.40 1.00 0.52 52 80.00 20 7 3 1
BACKTEST2 3.16 3.16 1.00 0.43 49 80.97 22 11 5 2
BACKTESTS 1.89 2.11 0.90 0.86 77 47.16 17 8 6 0
BACKTEST4 1.36 1.37 0.99 0.81 66 52.49 16 8 6 1
BACKTEST5 1.55 1.58 0.98 0.83 59 63.72 18 9 5 0

A\^G 2.75 2.81 0.97 0.65 58.83 64.91 19.00 8.67 4.67 0.67
STDEV 1.33 1.33 0.04 0.20 10.98 13.83 2.37 1.37 1.37 0.82
10-DAY RMSE RW IC C C ‘̂ DC VT 80% 90% 95% 99%
SIMLIVE 5.82 5.92 0.98 0.17 52 94.36 23 14 8 0

BACKTESTl 6.49 6.49 1.00 0.16 49 121.92 16 5 3 0
BACKTEST2 4.72 4.74 1.00 0.15 51 125.87 17 9 4 1
BACKTESTS 2.65 2.81 0.94 0.83 81 43.04 20 7 6 1
BACKTEST4 1.89 1.91 0.99 0.67 76 67.57 18 11 3 0
BACKTEST5 2.13 2.13 1.00 0.18 54 85.25 16 7 3 0

AVG 3.95 4.00 0.98 0.36 60.50 89.67 18.33 8.83 4.50 0.33
STDEV 1.99 1.99 0.02 0.31 14.12 31.80 2.73 3.25 2.07 0.52

20-DAY RMSE RW IC CC'^ DC VT 80% 90% 95% 99%
SIMLIVE 7.27 8.45 0.86 0.01 54 135.14 22 11 5 2

BACKTESTl 10.01 10.10 0.99 0.02 50 199.79 18 8 4 1
BACKTEST2 6.15 6.18 1.00 0.15 51 147.58 10 2 0 0
BACKTESTS 3.95 3.97 0.99 0.19 58 127.14 12 3 1 1
BACKTEST4 2.22 2.28 0.98 0.52 64 79.92 16 8 3 2
BACKTEST5 3.01 3.10 0.97 0.21 53 137.50 19 9 4 1

AVG 5.43 5.68 0.96 0.18 55.00 137.85 16.17 6.83 2.83 1.17
STDEV 2.94 3.12 0.05 0.19 5.22 38.49 4.49 3.54 1.94 0.75
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Figure 5.2: 20 days of GEC SIMLIVE 20-day ahead predictions with 90% prediction 
intervals.

5.4.2 Foreign exchange and stock-market indices

In this section we discuss the results of the experiments performed with the the foreign 

exchange and stock-market index data-sets (tables 5.4-5.8). In general, all of these 

results have properties very similar to those observed for the stock-market results and 

so do not merit much extra discussion.

One unique feature of these results however is their consistency. This is no sur­

prise for the stock-market index results -  the fact th a t a daily stock-market index 

observation is essentially an aggregate of a large number of daily stock prices sta- 

blises the returns series somewhat which reduces volatility. However, consistency 

across most of the foreign exchange results is a surprise given tha t foreign exchange
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markets are traditionally very volatile. However, the data-sets chosen for the exper­

iments (C H F/JPY  and U SD /JPY ) are widely accepted as amongst those with the 

lowest volatility given the relative stability of the underlying economies th a t drive the 

exchange rates. Experiments performed on other exchange rate data-sets (especially 

those subject to occasional government intervention e.g. the Thai Bhat, Brazilian 

Real) would not likely be as fruitful.

5.4.3 Prediction interval performance

Given th a t the prediction intervals are an im portant focus of this thesis, in this section 

we discuss their performance in more detail.

Overall, the quality of the prediction intervals is very high. This is especially 

significant given the number of possible sources of error e.g. bias in the ensemble 

predictions (the mean of the predicted conditional distribution), bias in the volatility 

predictions e.g. caused by a poorly chosen decay param eter in the EWMA model, 

bias in the model variance estimate and “extreme” or non-Gaussian m arket condi­

tions (which can occur quite frequently in most stock and foreign exchange financial 

markets).

The most encouraging result is the performance of the intervals over the SIM- 

LIVE experiments. This is im portant -  as discussed in section 5.3 these are the 

only truly “out-of-sample” experiments for the prediction intervals. These results are 

summarised in table 5.9. Note th a t although, on average, the performance of the 

SIMLIVE intervals is roughly equivalent across all horizons there is more variablility 

across the 10-day and 20-day ahead horizons. This phenomenon was also observed 

for the BACKTEST intervals as discussed in section 5.4.1. Also, for some of the 

BACKTEST experiments, the interval non-coverage for the 10-day and 20-day ahead 

horizons is poorer.

The reason for this poorer performance of the intervals over longer horizons can 

be a ttributed  (at least in large part) to two related factors. Firstly, the ensemble 

predictions over the longer horizons are likely to be more biased than over the shorter 

horizons. This is simply because it is a more difBcult prediction task. Secondly, for
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Table 5.5: CH F/JPY  1-day, 5-days, 10-days and 20-days ahead prediction results.
1-DAY RMSE RW IC CC^ DC VT 80% 90% 95% 99%

SIMLIVE 0.46 0.47 0.98 0.97 52 31.06 22 11 5 1
BACKTESTl 0.44 0.46 0.97 0.98 58 29.46 18 7 3 1
BACKTEST2 0.41 0.41 1.00 0.99 71 33.09 17 6 2 0
BACKTEST3 0.45 0.45 1.00 0.89 62 35.20 19 8 5 2
BACKTEST4 0.46 0.47 0.98 0.89 53 31.60 22 9 7 1
BACKTEST5 1.89 1.88 1.00 0.88 49 41.91 21 10 3 1

AVG 0.69 0.69 0.99 0.93 57.50 33.72 19.83 8.50 4.17 1.00
STDEV 0.59 0.59 0.01 0.05 8.07 4.46 2.14 1.87 1.83 0.63
5-DAY RMSE RW IC CC^ DC VT 80% 90% 95% 99%

SIMLIVE 1.10 1.10 1.00 0.82 52 52.64 20 9 3 1
BACKTESTl 0.89 0.88 1.01 0.54 48 75.81 19 8 2 0
BACKTEST2 1.01 1.04 0.97 0.91 62 36.39 21 7 4 1
BACKTEST3 1.00 1.11 0.90 0.93 59 37.90 19 9 6 2
BACKTEST4 1.25 1.26 1.00 0.65 63 41.21 23 8 5 1
BACKTESTS 1.28 1.28 0.99 0.69 54 37.13 20 8 6 2

AVG 1.09 1.11 0.98 0.76 56.33 46.85 20.33 8.17 4.33 1.17
STDEV 0.15 0.15 0.04 0.16 5.96 15.41 1.51 0.75 1.63 0.75
10-DAY RAISE RW IC CC^ DC VT 80% 90% 95% 99%
SIMLIVE 1.57 1.58 1.00 0.85 52 23.81 17 9 4 0

BACKTESTl 1.27 1.27 0.99 0.72 56 18.07 15 5 2 0
BACKTEST2 1.49 l.SS 0.96 0.81 76 19.12 17 7 3 1
BACKTESTS 1.60 1.62 0.99 0.76 61 24.79 19 6 2 0
BACKTEST4 2.02 2.01 1.00 0.53 52 31.23 21 9 5 0
BACKTEST5 1.66 1.67 0.99 0.63 54 26.16 19 8 3 1

AVG 1.60 1.62 0.99 0.72 58.50 23.86 18.00 7.33 3.17 0.33
STDEV 0.25 0.24 0.02 0.12 9.20 4.83 2.10 1.63 1.17 0.52

20-DAY RMSE RW IC CC'^ DC VT 80% 90% 95% 99%
SIMLIVE 2.02 2.03 1.00 0.58 51 31.21 24 12 7 3

BACKTESTl 1.57 1.57 1.00 0.79 69 23.70 23 8 4 1
BACKTEST2 1.53 1.55 0.99 0.67 56 34.42 27 13 6 2
BACKTEST3 2.28 2.31 0.99 0.81 59 36.31 24 11 4 1
BACKTEST4 3.52 3.51 1.00 0.16 54 55.91 22 10 6 2
BACKTESTS 3.51 3.53 1.00 0.44 68 51.98 23 12 4 1

AVG 2.41 2.42 0.99 0.58 59.50 38.92 23.83 11.00 5.17 1.67
STDEV 0.91 0.90 0.01 0.25 7.45 12.47 1.72 1.79 1.33 0.82
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Table 5.6: USD/JPY 1-day, 5-days, 10-days and 20-days ahead prediction results.
1-DAY RMSE RW IC CC^ DC VT 80% 90% 95% 99%

SIMLIVE 0.62 0.62 0.99 0.91 55 7.79 22 11 4 1
BACKTESTl 0.44 0.46 0.97 0.98 62 6.41 20 10 6 0
BACKTEST2 0.50 0.50 1.00 0.96 53 7.57 21 13 4 2
BACKTESTS 0.59 0.59 1.00 0.92 51 9.84 19 11 3 1
BACKTEST4 0.95 0.9S 1.02 0.85 50 15.36 21 8 4 0
BACKTESTS 0.76 0.76 1.00 0.91 50 11.53 17 7 3 0

AVG 0.64 0.64 1.00 0.92 53.50 9.75 20.00 10.00 4.00 0.67
STDEV 0.18 0.18 0.02 0.05 4.59 3.30 1.79 2.19 1.10 0.82
5-DAY RMSE RW IC CC^ DC VT 80% 90% 95% 99%

SIMLIVE 1.48 1.50 0.99 0.65 53 16.43 23 13 6 2
BACKTESTl l.OS 1.04 0.99 0.72 72 13.11 22 12 6 2
BACKTEST2 1.11 1.11 0.99 0.69 66 13.91 19 8 3 0
BACKTESTS 1.14 1.15 0.99 0.65 58 14.51 24 7 6 1
BACKTEST4 2.21 2.17 1.02 0.23 45 29.98 22 8 4 0
BACKTEST5 1.88 1.87 1.01 0.38 50 24.53 20 11 6 2

AVG 1.47 1.47 1.00 0.55 57.33 18.74 21.67 9.83 5.17 1.17
STDEV 0.48 0.46 0.01 0.20 10.15 6.90 1.86 2.48 1.33 0.98
10-DAY RMSE RW IC CC^ DC VT 80% 90% 95% 99%
SIMLIVE 2.29 2.SO 1.00 0.51 53 24.88 18 9 3 1

BACKTESTl 1.47 1.48 0.99 0.46 55 18.68 15 5 2 0
BACKTEST2 1.62 1.65 0.98 0.39 57 22.16 15 6 3 0
BACKTESTS 1.48 1.52 0.98 0.72 63 18.62 17 7 2 0
BACKTEST4 S.22 S.20 1.01 0.08 47 44.38 16 5 4 1
BACKTEST5 2.90 2.82 1.03 0.12 51 36.42 18 9 3 0

AVG 2.16 2.16 1.00 0.38 54.33 27.52 16.50 6.83 2.83 0.33
STDEV 0.76 0.7S 0.02 0.24 5.47 10.55 1.38 1.83 0.75 0.52

20-DAY RMSE RW IC C C ‘̂ DC VT 80% 90% 95% 99%
SIMLIVE S.70 S.68 1.00 0.13 50 41.44 16 7 2 0

BACKTESTl 1.87 1.95 0.96 0.65 68 24.67 17 8 3 1
BACKTEST2 1.51 1.65 0.91 0.68 72 26.50 15 7 3 2
BACKTESTS 2.2S 2.26 0.99 0.59 65 28.51 19 8 3 1
BACKTEST4 4.79 4.78 1.00 0.02 47 69.87 22 7 4 2
BACKTEST5 4.75 4.73 1.00 0.05 51 64.52 12 4 2 0

AVG S.14 S.18 0.98 0.35 58.83 42.59 16.83 6.83 2.83 1.00
STDEV 1.46 1.41 0.04 0.32 10.72 20.02 3.43 1.47 0.75 0.89
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Table 5.7: SfcPSOO 1-day, 5-days, 10-days and 20-days ahead prediction results.
1-DAY RMSE RW IC CC^ DC VT 80% 90% 95% 99%

SIMLIVE 14.48 14.51 1.00 0.98 65 17.12 19 10 4 2
BACKTESTl IS.SI 15.31 1.00 0.90 57 19.30 23 13 6 2
BACKTEST2 17.26 17.18 1.00 0.93 56 24.54 21 11 3 1
BACKTESTS 8.90 8.92 1.00 0.96 75 12.78 19 9 4 0
BACKTEST4 12.67 12.67 1.00 0.95 53 20.35 21 7 2 1
BACKTESTS 9.14 9.15 1.00 0.98 73 16.44 23 11 7 1

AVG 12.96 12.96 1.00 0.95 63.17 18.42 21.00 10.17 4.33 1.17
STDEV S.S9 3.37 0.00 0.03 9.30 3.98 1.79 2.04 1.86 0.75
5-DAY RMSE RW IC CC‘̂ DC VT 80% 90% 95% 99%

SIMLIVE S2.2S 33.47 0.96 0.54 56 34.89 22 11 8 2
BACKTESTl SI.54 31.45 1.00 0.27 46 47.66 19 10 6 1
BACKTEST2 S7.97 39.04 0.97 0.77 69 24.23 23 13 7 2
BACKTESTS 18.99 19.07 1.00 0.63 54 32.93 22 11 7 0
BACKTEST4 23.98 23.99 1.00 0.68 53 29.10 24 12 5 1
BACKTESTS 19.39 19.38 1.00 0.72 55 34.45 23 11 7 2

AVG 27.35 27.73 0.99 0.60 55.50 33.88 22.17 11.33 6.67 1.33
STDEV 7.73 8.17 0.02 0.18 7.50 7.85 1.72 1.03 1.03 0.82
10-DAY RMSE RW 1C c c - DC VT 80% 90% 95% 99%
SIMLIVE 41.00 41.06 1.00 0.56 52 41.02 29 16 7 7

BACKTESTl 39.18 39.19 1.00 0.67 55 41.43 23 12 6 3
BACKTEST2 57.98 56.93 1.02 0.21 49 74.44 24 13 8 2
BACKTESTS 24.19 24.91 0.97 0.87 71 32.55 23 11 7 1
BACKTEST4 24.13 24.57 0.98 0.72 63 33.83 24 12 6 2
BACKTESTS 28.23 28.24 1.00 0.82 54 43.71 23 12 7 2

AVG 35.79 35.82 0.99 0.64 57.33 44.50 24.33 12.67 6.83 2.83
STDEV 13.11 12.55 0.02 0.24 8.16 15.33 2.34 1.75 0.75 2.14
20-DAY RMSE RW IC CC'̂ DC VT 80% 90% 95% 99%
SIMLIVE 38.34 39.69 0.97 0.55 54 54.01 24 8 6 2

BACKTESTl 56.35 56.16 1.00 0.09 49 65.26 12 6 3 0
BACKTEST2 74.36 72.93 1.02 0.13 50 91.17 15 5 2 0
BACKTESTS 40.13 42.87 0.94 0.79 62 52.80 14 4 1 0
BACKTEST4 26.93 32.34 0.83 0.83 75 45.93 19 7 3 0
BACKTESTS 47.15 46.07 1.02 0.20 54 76.59 21 7 3 1

AVG 47.21 48.34 0.96 0.43 57.33 64.29 17.50 6.17 3.00 0.50
STDEV 16.50 14.36 0.07 0.34 9.79 17.03 4.59 1.47 1.67 0.84



CHAPTER 5. EVALUATION  84

Table 5.8: NYSE 1-day, 5-days, 10-days and 20-days ahead prediction results.
1-DAY RMSE RW IC CC^ DC VT 80% 90% 95% 99%

SIMLIVE 5.53 5.67 0.97 0.98 68 14.16 21 11 4 1
BACKTESTl 6.04 6.05 1.00 0.92 54 16.10 22 9 6 0
BACKTEST2 7.99 7.93 1.01 0.88 48 22.66 22 11 6 2
BACKTESTS 4.26 4.27 1.00 0.96 58 11.76 20 9 5 1
BACKTEST4 6.03 6.02 1.00 0.91 52 18.20 21 8 4 0
BACKTEST5 4.15 4.17 1.00 0.95 56 14.60 20 9 5 2

AVG 5.67 5.69 1.00 0.93 56.00 16.25 21.00 9.50 5.00 1.00
STDEV 1.41 1.38 0.01 0.04 6.81 S.80 0.89 1.22 0.89 0.89
5-DAY RMSE RW IC CC^ DC VT 80% 90% 95% 99%

SIMLIVE 13.46 13.48 1.00 0.68 58 29.13 23 13 > -r 1
BACKTESTl 12.91 12.93 1.00 0.72 57 30.08 22 11 8 2
BACKTEST2 18.90 18.90 1.00 0.43 51 45.39 22 11 7 1
BACKTEST3 9.47 9.48 1.00 0.76 63 23.03 19 12 6 0
BACKTEST4 11.98 11.96 1.00 0.40 52 31.02 21 11 5 1
BACKTEST5 9.11 9.12 1.00 0.65 60 26.07 22 10 6 2

AVG 12.64 12.64 1.00 0.61 56.83 30.79 21.50 11.33 6.50 1.17
STDEV 3.55 S.54 0.00 0.15 4.62 7.73 1.38 1.03 1.05 0.75
10-DAY RMSE RW IC C C ' DC VT 80% 90% 95% 99%
SIMLIVE 17.16 17.20 1.00 0.53 62 36.25 22 12 7 1

BACKTESTl 16.18 16.44 0.98 0.65 63 35.62 21 11 6 1
BACKTEST2 29.99 28.06 1.07 0.30 50 72.56 23 12 7 2
BACKTESTS 11.89 12.59 0.94 0.87 71 31.95 19 9 4 0
BACKTEST4 12.01 12.22 0.98 0.77 56 32.79 22 11 7 2
BACKTESTS 1S.53 13.57 1.00 0.66 53 40.41 23 12 6 1

AVG 16.79 16.68 1.00 0.63 59.17 41.60 21.67 11.17 6.17 1.17
STDEV 6.81 5.94 0.04 0.20 7.68 15.46 1.51 1.17 1.17 0.75

20-DAY RMSE RW IC CC^ DC VT 80% 90% 95% 99%
SIMLIVE 38.89 37.09 1.05 0.03 50 49.58 25 13 8 2

BACKTESTl 21.45 22.10 0.97 0.69 62 49.73 24 13 8 1
BACKTEST2 39.56 37.30 1.06 0.12 48 92.02 22 11 6 2
BACKTESTS 19.57 21.58 0.91 0.82 80 51.59 23 14 7 2
BACKTEST4 15.29 16.41 0.93 0.75 67 44.56 22 11 7 1
BACKTEST5 23.92 22.31 1.07 0.09 51 71.63 24 11 7 1

AVG 26.45 26.13 1.00 0.42 59.67 59.85 23.33 12.17 7.17 1.50
STDEV 10.29 8.84 0.07 0.37 12.47 18.35 1.21 1.33 0.75 0.55
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Table 5.9: Average interval non-coverage across all of the SIMLIVE experiments for
80%, 90%, 95% and 99% prediction interva s.

80% STDEV 90% STDEV 95% STDEV 99% STDEV
1-day 19.00 2.51 9.5 1.77 4 0.76 1.13 0.64
5-day 22.25 1.28 11.25 2.66 5.63 1.99 1.25 1.04
10-day 22.13 4.02 12.25 2.66 6.13 2.17 1.63 2.26
20-day 20.88 4.22 9.13 3.09 5.13 1.96 1.88 0.99

essentially the same reason the volatility predictions are likely to be more biased -  

volatility predictions over longer horizons are never as accurate as those over shorter 

horizons -  see (Alexander, 1998) for a discussion. However, despite this occasional 

poor performance of the prediction intervals, on average they are excellent and po­

tentially very valuable in real-world trading scenarios.

5.5 Sum m ary

In this chapter we evaluated the prediction performance of our ensembles. We used 

a number of popular objective statistical measures to do this including the root- 

mean-squared-error, the correlation coefficient, the information coefficient and the 

d-statistic. We also evaluated the ability of our ensembles to predict uncertainty by 

measuring the prediction interval non-coverage.

Overall, the performance of the ensembles is promising. Although there are ex­

amples of poor prediction performance, we showed how these are mostly caused by 

excessive volatility in the corresponding test sets. However, we also showed how this 

minority of poor predictions are anticipated by the prediction intervals and so in a 

real-world trading scenario a trader can adjust his trading behaviour accordingly -  

essentially manage risk more effectively. The overall quality of the prediction inter­

vals is excellent. Although there is some degradation in their quality over the longer 

prediction horizons on average even the performance of these intervals is good.

In summary, we can conclude from the results presented in this chapter th a t the 

ensembles do provide valuable insights into future market behaviour (future prices and 

directional change) if market volatility is not excessive. However, a unique feature of
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the prediction methodology th a t we propose is tha t the risk th a t traders are exposed 

to during such periods of excessive volatility can at least be more effectively managed 

using the prediction intervals.



Chapter 6

Conclusion

6.1 Introduction

In this chapter we conclude the thesis. In section 6.2 we discuss the main contribu­

tions or novel aspects of the thesis by identifying the contributions to the individual 

disciplines from which new techniques in the thesis were derived. In section 6.3 we 

discuss future work i.e. approaches tha t could be taken to improve the performance 

of the techniques proposed in the thesis. Finally, in section 6.4 we summarise the 

main conclusions of the thesis.

6.2 Thesis contributions

In this section we attem pt to identify the main contributions of the thesis. The 

approach is different to tha t taken in section 1.8 -  given the multi-disciplinary nature 

of the thesis we attem pt to identify contributions to the individual disciplines from 

which techniques in the thesis were inspired or adapted.

6.2.1 M achine learning

The main contribution of the thesis to the discipline of machine learning is the devel­

opment and evaluation of the NeuralBAG ensemble technique proposed in chapter 3.

87
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Although most work on neural network ensembles has recognised the im portance of 

diversity in ensembles, very little work has attem pted to explicitly tune diversity as 

the NeuralBAG technique does. The simplicity and stability of NeuralBAG is par­

ticularly attractive, especially in the context of difficult, noisy, real-world prediction 

tasks.

Another key feature of the NeuralBAG algorithm is th a t estimates of model vari­

ance are readily available from the outputs of the individual networks in the ensemble. 

In chapter 4 we show how these estimates can be adapted to provide better estimates 

of ensemble model variance which can be used to generate confidence intervals with 

very good coverage. This method for generating confidence intervals can be applied 

to any ensemble technique th a t uses the bootstrap to generate the training sets for 

the ensemble e.g. balancing (Heskes, 1997a).

6.2.2 Tim e-series prediction

It is difficult to identify any specific contribution to the field of (modern) time-series 

prediction as it is itself very multi-disciplinary. However it is useful to position our 

prediction methodology relative to some classical time-series prediction approaches.

Using the classical time-series prediction terminology, the models th a t we build are 

low-variance, non-linear, multi-variate and semi-parametric (the neural networks and 

bootstrapping techniques are non-parametric, but the volatility models and interpre­

tation of the predicted conditional distributions are param etric). Classical time-series 

prediction techniques e.g. auto-regressive moving-average (ARMA) methods are also 

typically low-variance but they are also usually linear, univariate and param etric.

The big difference here is tha t the classical time-series prediction techniques do 

not have the attractive universal approximation properties th a t neural networks have. 

Also, most will not have prediction intervals of the sophistication and accuracy of 

those proposed in this thesis. The big criticism of universal approximators such as 

neural networks from the classical time-series prediction and statistics communities 

has always been related to issues of variance or instability. However, this problem 

has been largely solved using ensemble techniques. In this context, the contribution
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of this thesis to the time-series prediction community is significant -  much more 

powerful and accurate models of time-series can be built w ithout any significant loss 

in stability.

6.2.3 Econom etrics

The main contribution of this thesis to the field of econometrics is our prediction 

interval technique proposed in chapter 4. Here we show how classical param etric 

econometric (EWMA) volatility predictions can be combined with non-param etric 

(bootstrap) predictions for model variance and non-parametric (neural network) pre­

dictions for price to produce estimates for the future conditional distribution of m arket 

prices. The novelty here is the successful combination of econometric techniques with 

techniques from machine learning and statistics.

Another contribution is the set of decay factor estimates uesd for the EWMA 

models. Unlike previous attem pts (see e.g. Zangari, 1996), we estim ate a different 

decay factor for each data-set and volatility horizon. These could be used in a variety 

of other econometric studies.

6.2.4 Finance

The contributions of the thesis to the field of finance are easy to identify. Firstly, the 

ensembles generate predictions of financial market movements th a t could be applied in 

real-world trading to generate a significant profit. Secondly, each prediction generated 

by the ensembles has a quantifiable measure of confidence associated with it. This is 

potentially very valuable for managing risk in real-world trading scenarios.

6.3 Future work

In this section we identify the areas of research th a t could be pursued to improve the 

predictions generated by the techniques described in this thesis.
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6.3.1 Feature selection

One area of research th a t was not pursued in any significant depth in this thesis is 

feature selection i.e. determining what are the best inputs or training vectors for the 

ensembles. There are two approaches to solving this problem. The first is to use 

expert knowledge e.g. in the context of financial markets an experienced trader or 

econometrician who has a feel for what influences or drives a specific market. This 

is essentially the approach taken in this thesis i.e. established relationships between 

im portant financial market variables were identified by surveying the econometrics 

literature.

The second is much more systematic and essentially attem pts to “learn” which 

variables are im portant. Examples of this approach applied to neural networks in­

clude the automatic relevance determination (ARD) technique of (Neal, 1996). This 

rather more principled approach should at least be investigated as a more convenient 

technique for feature selection and compared to the expert based approach.

6.3.2 Ensembles

Although the issue of stabilising the neural networks using ensemble techniques was 

pursued in depth in this thesis, there is still scope for improving the techniques. For, 

example more novel combination techniques than averaging could be investigated. We 

do not expect the improvements in performance to be dram atic (such sophisticated 

combination techniques usually only yield significant improvements for small ensem­

bles -  we use ensembles of 200 networks). However, a small change in performance 

can translate to large sums of money being lost or earned in financial prediction.

6.3.3 Prediction intervals

This is possibly the area where there is most scope for improvement. There are two 

possible approaches th a t could be taken to improve performance. The first is to refine 

the current technique. The most obvious improvement th a t could be made here is 

to use a more sophisticated technique for predicting volatility. For example, some 

GARCH techniques can provide predictions of volatility over long horizons tha t are
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significantly better than those provided by EWMA models -  see (Alexander, 1998) 

for a discussion. Another way in which the current technique could be refined is 

to investigate using ^-distribution tables instead of Gaussian distribution tables for 

the z-values used in the prediction intervals. These ^-distributions have fatter tails 

than  Gaussian distributions which should better model the occurance of very large 

movements in prices which are often observed in financial markets. However, it is not 

clear how many degrees of freedom should be chosen for the ^-distributions.

The second is to interpret the problem in a completely different way and use 

mixture density networks (MDNs) (Bishop, 1994) to predict entire conditional distri­

butions, not just means and variances. Here no prior assumptions are made about the 

form of the conditional distribution and rare or extreme market events can (in theory 

at least) be captured by the predictions (e.g. by predicting a very fat tailed distri­

bution). However, this is not a m ature area of research and such MDNs have serious 

lim itations when applied to anything other than toy problems e.g. they need very 

large quantities of data and have serious stability (local minima) problems (see (Hus- 

meier, 1999) for a discussion). However, they do seem very attractive as a technique 

for predicting financial time-series and managing risk and will certainly be pursued 

in the future.

6.4 Summary

In this chapter we outlined the main contributions of the thesis and suggested some 

possible future areas of research th a t could be pursued to improve the performance 

of the techniques introduced in the thesis.

Overall, the research was a success -  its ultim ate aim i.e. to develop a new 

neural network prediction methodology tha t generates accurate, stable, risk-adjusted 

(interval) predictions of financial market movements was achieved. Significantly, a 

large part of this success can be a ttributed  to the multi-disciplinary approach th a t 

was taken to solve the difficult specific problems.
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NeuralBA G  C-M PI code

* NeuralBAG vl.O - C-MPI cluster version
 *------------------------------------
*

* bagmain.c ; Mainline of NeuralBAG (C-MPI)
*

* c. John Carney 13/5/99
*

#include "/CAGclusterl/CAG32/Software/Ensemble/ 
MPI/MPICH/MPICHl_l_l/Binaries/include/mpi.h" 
#include "bagmain.h"
#include <stdio.h>
#include <stdlib.h>

#define MASTER 0
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/* Variables global to all files */
double **train_array;
double **test_array;
int **bs_indices;
int **bs_waste_indices;
int *count_waste;
int *nodes;
int *rand_index;
int *stop_epoch;
double **idiff;
double **agg_errors;
double *agg_errorsld;
double *+inter;
double ***wgts;
double ***batchbuf;
double ***wdiff;
int *count_voccur;
int ntrainpat;
int ntestpat;
int ninput;
int nhidden_nodes;
int raaxepochs;
int num_bs;
double Irate;
double mom;
double offset;
double scale;
int nlayer=3;
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*

* mainO : This is the main parallel
* engine function
*

void main(int argc, char *argv[])
{

/*** DECLARATIONS ***/
/*--------------------- j(c/

MPI_Status status;

/* Mainline variables */
int numtasks;
int numworkers;
int taskid;
int indexmsg=l;
int arraymsgld=3;
int rc;
int start_index;
int dest;
int source;
int bs_partit;
double *W_agg_errorsld;

/* Miscellaneous */
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char db_filename[32]; 
char pr_filename[32]; 
char *task; 
int i, j, k;

/*** INITIALISE COMM WORLD ***/
/* */

rc = MPI_Init (feargc, feargv);
rc = MPI_Comni_size (MPI_COMM_WORLD, &numtasks) ; 
rc = MPI_Coinm_rank (MPI_COMM_WORLD, fetaskid);

/* Check this worked */ 
if (rc != 0)
{
printf ("Error initialising MPI...exiting\n"); 
MPI_Finalize (); 
exit (0) ;
}

/*** READ DATA AND PARAMS ***/ 
/* */
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/* Each task will have its own copy */
/* of data ajid params */

task = "input"; /* This is temporary */
sprintf (pr_filename, ""/.sy.s", task, ".par")
sprintf (db_filenajTie, "%syoS", task, ".dat")
read_params (pr_filename);
read_patterns (db_filename);

/* Error checking */ 
if (num_bs°/onumtasks != 0)
{
printf ("Error with num_bs...exiting\n"); 
MPI_Finalize (); 
exit (0) ;
}
bs_partit = num_bs/numtasks; 
numworkers = numtasks-1;

/* Create bootstrap reScimpled datasets */ 
create_bs_datasets ();

MASTER ***/ 
/* */

if (taskid == MASTER)
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/*** CALCULATE OUT-OF-BAG ERRORS ***/
/*---------------------------------

/* Send slaves their share of the work */ 
start_index = 0;
for (dest=l; dest <= numworkers; dest++)
{
start_index += bs_partit;
MPI_Send (&start_index, 1, MPI_INT, 
dest, indexmsg, MPI_COMM_WORLD);
}

/* Master must do work too */ 
start_index = 0;
printf ("\nCreating error matrix..."); 
create_error_matrix (start_index, 
bs_partit, taskid);

/* Receive back work done by slaves */ 
W_agg_errorsld = (double *)
malloc (sizeof (double) * (ntrainpat*maxepochs)) 
for (i=l; i <= numworkers; i++)
{
source = i;
MPI_Recv (&W_agg_errorsld[0], 
ntrainpat*maxepochs, MPI_DOUBLE, 

source, arraymsgld, i 
MPI_COMM_WORLD, festatus);
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!* Merge */
for (j=0; j < (ntrainpat*maxepochs); j++) 
agg_errorsld[j] += W_agg_errorsld[j] ;
}

/* Convert 1-d back to 2-d for convenience 
k = 0;
for (i=0; i < ntrainpat; i++) 
for (j=0; j < maxepochs; j++)

agg_errors[i][j] = agg_errorsld[k]; 
k++;
}

/* Combine out-of-bag errors */ 
combine_errors () ;

/*** TRAIN NETWORKS ***/
/ *----------------------- */

/* Send slaves their share of the work */ 
start_index = 0;
for (dest=l; dest <= numworkers; dest++)
{
start_index +- bs_partit;
MPI_Send (&stop_epoch[0] ,
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nuin_bs, MPI_INT, dest, 
arraymsgld, MPI_COMM_WORLD);
MPI_Send (&start_index,
1, MPI_INT, dest, 
indexmsg, MPI_COMM_WORLD);

}

/* Master works too */
start_index = 0;
printf ("\nTraining networks");
train_bs_ensemble (start_index, bs_partit, taskid) 

calc_val_res (numtasks);
}

/*** WORKERS
/*------------- * /

if (taskid > MASTER)
{
/*** CALCULATE OUT-OF-BAG ERRORS ***/
fif---------------------------------

source = MASTER;
MPI_Recv (&start_index,
1, MPI_INT, source, 
indexmsg, MPI_COMM_WORLD, festatus); 
create_error_matrix (start_index, 
bs_partit, taskid);
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/* Send agg_errorsld versions 
back to master to be merged */ 
dest = MASTER;
MPI_Send (&agg_errorsld[0] , 
ntrainpat*maxepochs, MPI_DOUBLE, 
dest, arraymsgld, MPI_COMM_WORLD);

/*** TRAIN NETWORKS ***/
/*--------------------------if/

stop_epoch = (int *) malloc 
(sizeof (int) * num_bs) ;
MPI_Recv (&stop_epoch[0], num_bs, 
MPI_INT, source, arraymsgld, 
MPI_COMM_WORLD, festatus);
MPI_Recv (&start_index,
1, MPI_INT, source,
indexmsg, MPI_COMM_WORLD, festatus);

/* Train */
train_bs_ensemble (start_index, 
bs_partit, taskid);
}

MPI_Finalize ();

}
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*

* bootstrap.c: The boostrap data-sets to be used
* for the ensemble are created here
*

* c. John Carney 11/9/98
*

#include <stdio.h>
#include <time.h>
#include <stdlib.h>

/* Prototypes */
static void seed_randnums ();
void create_bs_datasets ();

/* External variables */ 
extern int **bs_indices; 
extern int *count_waste; 
extern int **bs_waste_indices; 
extern int ntrainpat; 
extern int num_bs;

*

* create_bs_datasets0  : Create the boostrap indices
* These are int * []
*
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void create_bs_datasets () 

{

int i , j , b ; 
int rand_num; 
int index; 
int **waste_tag;

/* Allocate bs_indices memory */
bs_indices = (int **)
malloc (sizeof (int *) * num_bs);
for (i=0; i < num_bs; i++)
bs_indices[i] = (int *)
malloc (sizeof (int) * ntrainpat);

/* Allocate waste_tag memory and initialise it */
waste_tag = (int **)
malloc (sizeof (int *) * num_bs);
for (i=0; i < num_bs; i++)
waste_tag[i] = (int *)
malloc (sizeof (int) * ntrainpat);
for (b=0; b < num_bs; b++)
for (i=0; i < ntrainpat; i++)
waste_tag[b] [i] =0;
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/* Generate bootstrap indices */
seed_randnums ();
for (b=0; b < num_bs; b++)
{
for (i=0; i < ntrainpat; i++)
{
raiid_nuin = randO % (ntrainpat) ; 
bs_indices[b][i] = rand_num; 
waste_tag[b][rand_num] = 1;
}
}

/* Allocate count_waste memory 
and bs_waste_indices memory */ 
count.waste = (int *) 
malloc (sizeof (int) * num_bs); 
bs_waste_indices = (int **) 
malloc (sizeof (int *) * num_bs); 
for (i=0; i < num_bs; i++) 
bs_waste_indices[i] = (int *) 
malloc (sizeof (int) * (ntrainpat/2));

/* Generate waste indices */ 
for (b=0; b < num_bs; b++)
{
count_waste[b] = 0; 
index = 0;
for (i=0; i < ntrainpat; i++)
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if (waste_tag[b][i] == 0)
{
count_waste[b]++; 
bs_waste_indices[b][index] = i; 
index++;
}
}

/* Free waste_tag memory */ 
for (i=0; i < num_bs; i++) 
free (waste_tag[i]); 
free (waste_tag);

}

*

* seed_randnums (): Seed the random number generator
*



A P P E N D IX  A. N E U R A LB A G  C-MPI CODE

static void seed_randnums ()

int Itime; 
int utime;

Itime = time (NULL);
utime = (unsigned int) ltime/2;
srand (utime);

}

*

* combine.c : File for code to combine agg_errors
*

* John Carney 18/3/98
*

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

/* Prototypes */ 
void combine_errors0;
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/* External variables */ 
extern int *stop_epoch; 
extern int *count_waste; 
extern int **bs_waste_indices; 
extern double **train_array; 
extern double **agg_errors; 
extern int *count_voccur; 
extern int maxepochs; 
extern int num_bs; 
extern int ntrainpat; 
extern int ninput;

*

* combine_errors () : combine agg_errors
*

void combine_errors ()

{

int i, b, e, j; 
int found; 
double b_fx; 
double y; 
double min_err; 
double terror;
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FILE *fp;

/* Allocate memory */ 
error = (double *)
malloc (sizeof (double) * maxepochs);
stop_epoch = (int *)
malloc (sizeof (int) * num_bs);
count_voccur = (int *)
malloc (sizeof (int) * ntrainpat);

/* Make count_voccur */ 

for (i=0; i < ntrainpat; i++) 
count_voccur[i] = 0; 
for (1=0; i < ntrainpat; i++) 
for (b=0; b < num_bs; b++)
{
found = 0;
j = 0;
while ((j<count_waste[b]) && (found == 0)) 
{
if (bs_waste_indices[b][j] == i)
{
count_voccur[i]++; 
found = 1;
}

}
}
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/ * Combine errors * /  

f o r  (b=0; b < num_bs; b++)

for (e=0; e < maxepochs; e++)
-C
error[e] = 0.0;
for (j=0; j < count_waste[b] ; j++)
{
b_fx =
agg_errors[(bs_waste_indices[b] Cj])] [e] /

count_voccur[(bs_waste_indices[b] [j])] ;
y =
train_array[(bs_waste_indices[b][j])][ninput]; 
error[el += pow ((y-b_fx), 2.0);
}
error[e] /= count_waste[b];
}
stop_epoch [b] = 0;
min_err = error [0];
for (e=l; e < maxepochs; e++)
{
if (error[e] < min_err)
{
min_err = error [e]; 
stop_epoch[b] = e;
}
}
}
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/* Free memory */ 
free (error);

fp = fopen ("stopepochs.out", "w+"); 
for (b=0; b < num_bs; b++) 
fprintf (fp, "%d\n", stop_epoch[b]); 

fclose (fp);

}

*

* errors.c : Header file of code for calculating validation
* errors for each training vector
*

* c. John Carney 21/8/98
=t!

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "neural.h"

/* Function prototypes */
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void create_error_matrix (int start_index, int bs_partit, int taskid); 
static void allocate_mem (int ntrainpat, int maxepochs);

/* External variables */
extern int *rand_index;
extern int *count_waste;
extern int *nodes;
extern double **idiff;
extern double **agg_errors;
extern double *agg_errorsld;
extern int **bs_indices;
extern double **train_array;
extern int **bs_waste_indices
extern double **inter;
extern double ***wgts;
extern double ***batchbuf;
extern double ***wdiff;
extern int ntrainpat;
extern int maxepochs;
extern int ninput;
extern double Irate;
extern double mom;

*

* create_error_matrix: create the error
* validation matrix
*
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void create_error_matrix (int start_index, int bs_partit, int taskid) 

{

int i,j,b,k; 
int epoch; 
double actual_out; 
double net_out; 
double *in;

/* Allocate memory */
allocate_mem (ntrainpat, maxepochs);
in = (double *) malloc (sizeof (double) * ninput);

/* Initialise agg_errors */ 
for (i=0; i < ntrainpat; i++) 
for (j=0; j < maxepochs; j++) 
agg_errors[i][j] = 0.0;

/* Train each bootstrap re-sample */
for (b=start_index; b < (start_index+bs_partit); b++)
{
if (taskid == 0)
printf ("\nMASTER: Error matrix %d", (b+D);

init_weights (ninput); 
epoch = 0;
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for (i=0; i < ntrainpat; i++) 
rand_index[i] = bs_indices[b][i] ;

do
{
/* Present training patterns */ 
for (j=0; j < ntrainpat; j++)
{
for (k=0; k < ninput; k++) 
inCk] =
train_array[(rajid_index[j])] [k] ; 
actual_out =
train_array [(rcLnd_index[j] )] [ninput] ; 
net_out = feed_forward (in); 
compute_difference (actual_out); 
propagate_back«ards (); 
update_weights (epoch);
}

/* Create errors matrix */
for (j=0; j < count_waste[b]; j++)
-C
for (k=0; k < ninput; k++) 
in[k] =
train_array[(bs_waste_indices[b][j])][k]; 
net_out = feed_forward (in);
agg_errors[(bs_waste_indices[b][j])][epoch] += net_out;

}
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} while (++epoch < maxepochs);
}

/* Convert agg_errors to 1-d for message passing */ 
!* This is done to overcome apparent bug in n-d */ 
/* array message passing */ 
k = 0;
for (i=0; i < ntrainpat; i++) 
for (j=0; j < maxepochs; j++)

agg_errorsld[k] = agg_errors[i][j] ; 
k++;
}

}

*

* allocate_mem (): allocate memory
*

static void allocate_mem (int ntrainpat, int maxepochs) 

{

int i, j ;
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/* Allocate memory */
rand_index = (int *) malloc (sizeof (float) * ntrainpat);

inter = (double **) malloc (sizeof (double *) * 3); 
for (i=0; i < 3; i++)
inter [i] = (double *) malloc (sizeof (double) * (nodes[i]+1));

wgts = (double ***) malloc (sizeof (double **) * 2); 
for (i=l; i < 3; i++)
{
wgts[i-l] = (double **) malloc (sizeof (double *) * nodes[i]); 
for (j=0; j < nodes[i]; j++)
wgts[i-l][j] = (double *) malloc (sizeof (double) * (nodes[i-1]+1)); 
}

batchbuf = (double ***) malloc (sizeof (double **) * 2); 
wdiff = (double ***) malloc (sizeof (double **) * 2); 
for (i=l; i < 3; i++)
{
batchbuf[i-1] = (double **) malloc (sizeof (double *) * nodes[i]); 
wdiff[i-1] = (double **) malloc (sizeof (double *) * nodes [i]); 
for (j=0; j < nodes[i]; j++)

batchbuf[i-1][j] = (double *)
malloc (sizeof (double) * (nodes[i-1]+1));
wdiff[i-1][j] = (double *)
malloc (sizeof (double) * (nodes[i-1]+1));
}
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}

idiff = (double **) malloc (sizeof (double *) * 3); 
for (i=0; i < 3; i++)
idiff [i] = (double *) malloc (sizeof (double) * (nodes[i]+1));

agg_errors = (double **) malloc (sizeof (double *) * ntrainpat); 
for (i=0; i < ntrainpat; i++)
agg_errors[i] = (double *) malloc (sizeof (double) * maxepochs); 

agg_errorsld = (double *) malloc (sizeof (double) * (ntrainpat*maxepochs)) 

}

*

* neural.c : File of NN functions
*

* John Carney 16/3/98
*

#include <math.h>
#include <stdlib.h>

/* Function prototypes */
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void init_weights (int ninput);
double feed_forward (double *in);
void compute_difference (double actual_out);
void propagate_backwards ();
void update_weights (int epoch);
static double momentum (int epoch);
void setup_index ();

/* External variables */ 
extern int ntrainpat; 
extern double mom; 
extern double Irate; 
extern double **inter; 
extern double ***wgts; 
extern double ***wdiff; 
extern double **idiff; 
extern int *nodes; 
extern double ***batchbuf; 
extern int *rand_index;

*

* init_weights () : Initialise network weights
*

void init_weights (int ninput)
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int i, j , k ; 
double beta, v_old;

/* Basis for learning thresholds */ 
for (i=0; i < 3; i++) 
inter[i][nodes[i]] = 1.0;

/* Randomise weights */
beta = 0.7*( pow((double)nodes[1] , (1.0/((double)ninput))) );

for (i=l; i < 3; i++)
for (j=0; j < nodes[i]; j++)
for (k=0; k < nodes[i-1]; k++)
■C
wgts[i-1][j] [k] =
((((double) (randomO 7.65535) )/65535)-0.5) ; 
wdiff[i-1] [j][k] = 0.0;
}

for (j=0; j < nodes[l]; j++)
{
v_old = 0.0;
for (i=0; i < nodes[0]; i++) 
v_old += pow( wgts[0] [j] [i] , 2.0 ); 
v_old = sqrt(v_old);

for (k=0; k < nodes[0]; k++)
wgts[0][j][k] = (beta * wgts[0][j][k]) / v_old;
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}

}

*

* feed_forward () : Feed input values forward
* to output
*

double feed_forward (double *in)

{

int i, j, k; 
double net; 
double net_out;

for (k=0; k < nodes[0]; k++) 
inter [0] [k] = in[k] ;
/* Feed forward */ 
for (i=l; i < 3; i++)
{
for (j=0; j < nodesCi]; j++) 

net = 0.0;
for (k=0; k < nodes[i-1]+1; k++)



APPENDIX A. NEURALBAG C-MPl CODE

net += wgts[i-1][j][k] * inter[i-1][k];
/* Thresholding */
inter[i][j] = (1.0-exp(-2.0*net))/(1.0+exp(-2.0*net)) 
}
}
for (k=0; k < nodes[2]; k++) 
net_out = inter[2][k];

return (net_out);

}

*

* compute_difference () : Compute difference
* between desired and
* actual output
*

void compute_difference (double actual_out)

-C

int i ; 
double val;

for (i=0; i < nodes[2]; i++)
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-C
val = inter[2] [i] ;
idif f [2] [i] = (1+val) * (1-val) * (actual_out - val) 
}
}

*

* propagate_backwards 0  : Propagate errors
* backward
*

void propagate_backwards ()

{

int i, j, k; 
double val;

for (i=l; i >= 0; i— )
{
/* Compute weight differences */ 
for (j=0; j < nodes[i+l]; j++)
{
for (k=0; k < nodes[i]+l; k++)
{
batchbuf [i] [j] [k] = wdiff [i] [j] [k] ;
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wdiff[i][j][k] = lrate*idiff[i+1][j]winter[i] [k];
}
}
/* Compute deltas */

for (j=0; j < nodes[i]; j++)
{
val = 0.0;
for (k=0; k < nodes[i+1]; k++) 
val += idiff[i+1] [k] * wgts[i] [k] [j]; 
idiff[i][j] = val * (1+inter [i] [j]) * (1-inter [i] [j] ); 
}
}
}

*

* update_weights () : update the weights after
* backpropagation

void update_weights (int epoch)

{

int i, j , k ;

for (i=l; i>=0; i— )
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for (j=0; j<nodes[i+1]; j++) 
for (k=0; k < nodes[i]+l; k++)
{
wgts [i] [j] [k] +=
wdiff[i][j][k]+(momentum(epoch) * batchbuf[i][j][k]); 
}
}

*

* momentum () : incremental momentum value
*

static double momentum (int epoch)

{
if (epoch < 100) return ((((double) (epoch))/lOO.0) * mom); 
return (mom);
}

*

* setup_index ()
*
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void setup_index ()

int firstlndex; 
int secondlndex, r; 
int holding!ank;

for (firstlndex = 0; firstlndex < ntrainpat; firstlndex++) 
{
secondlndex = rand () "/.ntrainpat; 
holding!ank = rand_index[firstlndex]; 
rand_index[firstlndex] = rand_index[secondlndex]; 
rand_index[secondlndex] = holding!ank;
}
}

*

* read.c: File for reading the parameters and
* database files
*

* c. John Carney 21/8/98
*

#include <stdio.h>
#include <stdlib.h>

/* Function Prototypes */
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void read_params (char *pr_filename); 
void read_patterns (char *db_filename);

/* External variables */ 

extern double **train_array; 
extern double **test_array; 
extern int *nodes; 
extern int ntrainpat; 
extern int ntestpat; 
extern int ninput; 
extern int nhidden_nodes; 
extern int maxepochs; 
extern int num_bs; 
extern double Irate; 
extern double mom; 
extern double offset; 
extern double scale;

*

* read_params () : process parameter file
*

void read_params (char *pr_filename)

-C
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FILE *fp;

/*Open parameter file*/
fp = fopen (pr_filename, "r");

/* Read parameters */

fscanf 
fscanf 
fscanf 
f scanf 
fscanf 
f scanf 
fscanf 
f scanf 
f scanf 
fscanf

(fp,
(fp.
(fp,
(fp,
(fp,
(fp,
(fp,
(fp,
(fp,
(fp.

y,d", fentrainpat);
y.d", 

y.d". 

y.d". 

y.d". 

y.d". 

y . i f  

y . i f  

y . i f  

y . i f

fentestpat); 
feninput); 
&nhidden_nodes); 
femaxepochs); 
&num_bs);
, felrate);
, &mom);
, fescale);
, feoffset);

fclose (fp);

*

* read_patterns () : read patterns from database
*
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void read_patterns (char *db_filename)

FILE *fp; 

int i , j ;

/* Allocate memory */
train_array = (double **) malloc (sizeof (double *) 
for (i=0; i < ntrainpat; i++)
train_array[i] = (double *) malloc (sizeof (double) 
test_array = (double malloc (sizeof (double *) * 
for (i=0; i < ntestpat; i++)
test_array[i] = (double *) malloc (sizeof (double) * 
nodes = (int *) malloc (sizeof (int) * 3);

/* Initialise nodes */ 
nodes [0] = ninput; 
nodes [1] = nhidden_nodes; 
nodes [2] = 1;

/* Read data */
fp = fopen (db_filename, "r");
for (i=0; i < ntrainpat; i++)

* (ntrainpat))

* (ninput+D); 
(ntestpat));

(ninput+1));
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{
for (j=0; j < (ninput+1); j++)
{
fscajif (fp, "°/olf", &train_array [i] Cj]); 
}
}
fclose (fp);

fp = fopen ("test.dat", "r"); 
for (i=0; i < ntestpat; i++)
{
for (j=0; j < (ninput+1); j++) 

fscanf (fp, "°/.lf", &test_array [i] [j] ) ;
}
}

fclose (fp);

}

*

* train.c : Once we have found the
* optimal epochs we train the nets
=t=

* c. John Carney 21/8/98
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#include <math.h> 
#include <stdlib.h> 
#include <stdio.h> 
#include "neural.h"

/* Function prototypes */

void train_bs_enserable (int start_index, int bs_partit, int taskid);

/* External variables */ 

extern int *rand_index; 
extern int +*bs_indices; 
extern double **train_array; 
extern double **test_array; 
extern int *stop_epoch; 
extern int *nodes; 
extern double ***wgts; 
extern int ntrainpat; 
extern int ntestpat; 
extern int ninput; 
extern int nlayer; 
extern double Irate; 
extern double mom;
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*

* train_bs_ensemble ()
*

void train_bs_ensemble (int start_index, int bs_partit, int taskid)

int b, i, j, k; 
int epoch; 
double actual_out; 
double net_out; 
double *in;
FILE +fp;

char savefile[32];

/* We need a different save_weights file for each task */ 
sprintf (savefile, "%s.yod", "weights", taskid);

/* Open save network weights file */ 
fp = fopen (savefile, "w");

/* Allocate memory for in */
in = (double *) malloc (sizeof (double) * ninput);

/* Train each bootstrap re-sample */
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for (b=start_index; b < (start_index+bs_partit); b++) 
{

if (taskid == 0)
printf ("\nMASTER: Training network 7«d", (b+D);

init_weights (ninput); 
epoch = 0;

for (i=0; i < ntrainpat; i++) 
rand_index[i] = bs_indices[b][i];

/* Train and test 1 network */ 
do 
{
/* Present training patterns */ 
for (j=0; j < ntrainpat; j++)
{
for (k=0; k < ninput; k++)
in[k] = train_array[(rand_index[j])][k];
actual_out = train_array [(raiid_index[j] )] [ninput] ;
net_out = feed_forward (in);
compute_difference (actual_out);
propagate_backwards ();
update_weights (epoch);
}
} while (++epoch < stop_epoch[b]);

/* Save weights */
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for (i=l; i < nlayer; i++)
{
for (j=0; j < nodes[i]; j++) 

for (k=0; k < nodes[i-1]+1; k++)
{
fprintf (fp, "“/.If ", wgts [i-1] [j] [k]) ;
}
fprintf (fp, "\n");
}
fprintf (fp, "\n");
}

}
fclose (fp);

}

*

* bagmain.h : header for bagmain.c
*

* c. John Carney 10/9/98
*

void create_bs_datasets ();
void create_error_matrix (int start_index, int bs_partit, int taskid);
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void read_params (char *pr_filename); 
void read_patterns (char *db_filename); 
void combine_errors ();
void train_bs_ensemble (int start_index, int bs_partit, int taskid); 
void calc_val_res (int numtasks);

*

* errors.h; Header file for errors.c
*

* c . John Carney 21/8/98
*

void init_weights (int ninput);
double feed_forward (double *in);
void propagate_backwards ();
void update_weights (int epoch);
void compute.difference (double actual_out);

*

* train.h: Header file for train.c
*

* c. John Carney 21/8/98
*
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void init_weights0; 
double feed_forwardO ;
void compute_difference(double actual_out) 
void propagate_backwards0; 
void update.weights(int epoch);
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