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Abstract

Global environmental change is driven by multiple anthropogenic stressors. Conser-

vation and restoration require understanding the individual and joint action of these

stressors to evaluate and prioritize management measures. To date, most studies on

multiple stressor effects have sought to identify potential stressor interactions,

defined as deviations from null models, and related meta-analyses have focused on

quantifying the relative proportion of stressor interactions across studies. These

studies have provided valuable insights about the complexity of multiple stressor

effects, but remain largely devoid of a theoretical framework for null model selec-

tion and prediction of effects. We suggest that multiple stressor research would

benefit by (1) integrating and developing additional null models and (2) selecting null

models based on their mechanistic assumptions of the stressor mode of action and

organism sensitivities as well as stressor–effect relationships for individuals and pop-

ulations. We present a range of null models and outline their underlying assump-

tions and application in multiple stressor research. Moving beyond mere description

requires multiple stressor research to shift its focus from identifying statistically sig-

nificant interactions to the use and development of mechanistic (null) models. Justi-

fied selection of the appropriate null model is a first step to achieve this.

K E YWORD S

antagonism, mechanism, mixtures, multiple stress, null models, stressors, synergism

Glossary: antagonism, interaction between stressors that results in a lesser combined effect than that predicted by a null model; ecological entity, individual, population, community or

ecosystem; effect limit, maximum effect size for a response (e.g. 100% mortality, zero growth or reproduction); effect type, a measurable property of an ecological entity that is affected by a

stressor such as growth, reproduction or survival of individuals termed endpoint in ecotoxicology.; effect, a change in a response resulting from a cause, typically from a stressor in the

context of multiple stressor research; interaction, modification of (1) a stressor’s intensity or (2) the sensitivity of an organism towards this stressor by another stressor or multiple other

stressors (see introduction for example); null model for multiple stressors, a model that predicts the joint effect assuming the absence of interactions; response, a quantifiable biological or

ecological property (e.g. survival, abundance, respiration), constituting the response variable during data analysis. We use response in this narrow sense for terminological clarity, that is, we

exclusively use “effect” to refer to a stressor-driven change in a property in comparison to a reference state (e.g. control in experiment); sensitivity distribution, absolute frequency or relative

frequency (i.e. density) distribution of sensitivities within populations or communities. Not to be confused with the concept of species sensitivity distribution (SSD) used in ecological risk

assessment, which represents a cumulative distribution. Note that in our context, for mortality as effect, the stressor–effect relationship represents the cumulative distribution of the

sensitivity density distribution.; sensitivity, the minimum stressor intensity at which an ecological entity shows an effect; stress capacity, the opposite of sensitivity in a conceptual sense, that

is, the maximum stressor intensity that an ecological entity can tolerate without showing an effect (introduced in Liess, Foit, Knillmann, Sch€afer, & Liess, 2016).; stressor intensity, quantifiable

strength of a stressor (e.g. wind speed, concentration, temperature); stressor mode of action (SMOA), describes how a stressor affects an organism and informs whether stressors act similarly

or dissimilarly. We tentatively distinguish, from an idealized perspective, three modes of action: stressors acting (1) from the outside on the whole organism such as predation, flood or storm,

leading to physical destruction or displacement, (2) from the inside or outside relatively nonspecifically on the physiology of an organism such as competition, salinity and heat (but also

predation, floods or storms), leading to physiological effects through energy costs or (3) from the inside relatively specifically on the physiology of an organism such as many toxicants, leading

to physiological effects through alteration of specific physiological processes; Stressor, a natural or anthropogenic environmental factor that can affect an individual; synergism, interaction

between stressors that results in a stronger combined effect of stressors than that predicted by a null model.
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1 | INTRODUCTION

The current epoch is characterized by the unprecedented impact of

human activities on ecosystems through multiple anthropogenic stres-

sors (Lewis & Maslin, 2015). The co-occurrence of these stressors is

rather the norm (Sch€afer, K€uhn, Malaj, K€onig, & Gergs, 2016) and

many studies in a variety of ecosystems have examined interaction

effects, for example, antagonistic and synergistic effects (Côt�e, Dar-

ling, & Brown, 2016). Studies to date have largely focused on two-

stressor interactions (Griffen, Belgrad, Cannizzo, Knotts, & Hancock,

2016; but see for example Piggott, Salis, Lear, Townsend, & Matthaei,

2015), whereby one stressor modifies (1) the second stressor’s inten-

sity (e.g. change in toxicant concentration by UV radiation) or (2) the

sensitivity of organisms towards the other stressor (e.g. change in sus-

ceptibility to predation (stressor 1) through behavioural effects of

stressor 2 such as reduced mobility; for details see Kroeker, Kordas, &

Harley, 2017). Stressor interactions are determined in reference to a

null model that predicts the joint effect assuming the absence of inter-

actions, that is, the stressors are operating independently. If this is the

case, the joint effect can be predicted from knowledge of single stres-

sor effects (Kendler & Gardner, 2010; Piggott, Townsend, & Matthaei,

2015). If the joint effect deviates (more than an acceptable margin, fur-

ther details below) from the null model as a result of antagonistic or

synergistic interaction between stressors, more complex models

accounting for stressor interactions may be required for reliable pre-

diction (Thompson, MacLennan, & Vinebrooke, 2018).

Recent meta-analyses of studies on two-stressor interactions

across ecosystems (and their constituent ecological entities) dis-

played a high variability in the prevalence of antagonistic or syner-

gistic interactions (Côt�e et al., 2016). For example, a meta-analysis of

148 studies on the interactions of chemicals with natural stressors,

predominantly focusing on single species experiments on the physio-

logical and population level, reported 68% of studies with synergism

(Holmstrup et al., 2010). By contrast, interactions of multiple inva-

ders on populations and communities were rarely synergistic (4%,

n = 45) (Jackson, 2015), and of 286 responses of freshwater ecosys-

tems for different paired stressors, the interactions were more fre-

quently antagonistic (41%) than synergistic (28%) (Jackson, Loewen,

Vinebrooke, & Chimimba, 2016). Moreover, a meta-analysis of 171

studies on multiple stressor interactions in the marine system found

that two-stressor interactions were often context dependent (67%),

that is, conditioned by a third variable, which, compared to the ambi-

ent level, mostly (75%) exacerbated the negative effect (Crain, Kroe-

ker, & Halpern, 2008). However, the variability in the interaction

types was not well explained by covariables such as ecosystem type,

stressor type, taxonomic group and type of study (Côt�e et al., 2016),

although antagonism rarely occurred on the physiological level and

synergism was uncommon on the community level, respectively. This

in turn limits our ability to predict the effects of multiple stressors as

well as to effectively manage ecosystems (Brudvig, 2017).

Although the complexity of the systems in which responses are

measured may hamper generalizable explanations and prediction,

differences in (1) interaction classification frameworks, which define

mathematically what constitutes a synergistic and antagonistic inter-

action (for details see Piggott, Townsend et al., 2015; Hale, Piggott,

& Swearer, 2017) and (2) the type of null models underlying such

frameworks add to the variability in reported interaction types, thus

limiting comparability. The selected null model should ideally be

underpinned by a mechanistic understanding of single/multiple stres-

sor effects, determined by the stressor/s mode of action and stres-

sor–effect relationship/s (Figure 1a), although to date this has been

largely overlooked due to statistical convenience. In this article, we

address this issue by providing an overview of a range of null mod-

els, including those rarely considered by ecologists and discuss their

underlying mechanistic assumptions and study design requirements

for their application. In addition, we provide null model selection

guidelines. We focus our examples on interactions between two

stressors and suggest that before higher order interactions are tack-

led, we should strive to understand two-way interactions in terms of

(1) the guidelines for null model selection and (2) novel models that

can predict the effects of potentially interacting stressors, which are

not covered by any of the current frameworks.

2 | MECHANISTICALLY BASED NULL
MODELS FOR MULTIPLE STRESSORS

Stressors generally act on individuals (Maltby, 1999). The stressor

can have physical (e.g. flood dislocating an organism, storm removing

leafs from a tree) and physiological (e.g. toxicants acting on the

physiology of an organism) effects, depending on the stressor mode

of action. The magnitude of the effect depends on the stressor

intensity and the sensitivity of an individual (Liess et al., 2016)(Fig-

ure 1a). For multiple individuals, the average magnitude of effect,

which is often reported (e.g. average growth reduction, average mor-

tality), depends, beside the stressor intensity, on the sensitivity dis-

tribution across individuals. Although most studies report only

summary statistics (e.g. confidence interval for average growth

reduction) and few studies provide the raw data to derive this distri-

bution, it can, at least if the effect is mortality, be derived from the

stressor–effect relationship (Figure 1a). Although the term stressor–

response relationship has been used more frequently, we suggest

that establishing the relationship with the effect is more consistent

with null model notations relating to effects (see Côt�e et al., 2016).

Idealized shapes of two commonly employed stressor–effect rela-

tionships (linear and sigmoidal) for populations are presented in Fig-

ure 1a. For mortality as the effect, a linear stressor–effect

relationship implies that the sensitivity distribution is uniform. This

is, because for a linear relationship, each unit increase in stressor

intensity removes an equal-sized fraction of the population (e.g. a

two-fold increase in stressor intensity yields to a two-fold increase

in the affected fraction), which translates to a uniform density distri-

bution of individuals’ sensitivities. Conversely, a sigmoid stressor–ef-

fect relationship implies that the sensitivities in a population follow a

unimodal density distribution (Figure 1a).
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In the context of two stressors, the stressor–effect relationship is

described by a surface (see for example Lange, Townsend, & Mat-

thaei, 2014) and its shape will depend on potential interactions

between stressors. As mentioned earlier, null models assume that

such interactions are absent and predict the joint effect of two

stressors based on the effects of single stressors (Figure 1b, details

on null models given below).

Many ecological studies have employed the simple addition

model (Table 1) (Crain et al., 2008; Jackson et al., 2016), presumably

because this represents the most parsimonious null model. More-

over, the simple addition model is imposed when using analysis of

variance (ANOVA), which is often selected for statistical analysis of

response data from factorial studies (Dunne, 2010; Quinn & Keough,

2002). This imposition of null models associated with selecting a sta-

tistical model is frequently overlooked by researchers (Griffen et al.,

2016), who typically select the statistical model based on the type

of response variable rather than the knowledge of the potential

mechanisms underlying joint stressor effects. For example, ANOVA

imposes the simple addition model, whereas the same statistical

model for log-transformed data imposes the multiplicative null model

(see below for details). A recent analysis suggested that this change

in the null model is ignored in approximately 1/3 of marine multiple

stressor studies (Griffen et al., 2016). However, the simple addition

and multiplicative null model can result in different interaction classi-

fications for many data sets and have different underlying mechanis-

tic assumptions, although both models share the similarity that the

stressors can be conceptualized as acting sequentially (cf. Vine-

brooke et al., 2004). The simple addition model assumes a linear

stressor–effect relationship (cf. Figure 1a). If mortality is the effect

and the stressors are conceptualized as acting sequentially, the sim-

ple addition model translates into the assumption that the sensitivi-

ties of single individuals in the population are strongly negatively

correlated, for example, individuals sensitive to stressor A would be

tolerant to stressor B and vice versa. Then, each stressor would

independently kill a fraction of the population (Figure 2, Table 1). By

contrast, for the same conditions, the multiplicative null model

implies the assumption that the sensitivities are noncorrelated for

mortality as the effect (Figure 2). For nonlethal responses (e.g.

growth or reproduction), the null models do not imply the specific

assumptions regarding the correlation of sensitivities outlined above

for mortality. In other words, the respective null models match the

data if the sensitivities are correlated as is described for mortality

F IGURE 1 Conceptual representation of (a) elements involved in the determination of single stressor effects and in the estimation of
stressor–effect relationships as well as sensitivity density distributions and (b) their relationship with null models for multiple stressor effects.
Thin and thick arrows indicate mathematical and causal relations respectively. To enhance visual clarity, only most relevant relations are
displayed. “Estimation” (dashed arrow) refers to parameter estimation from observations through fitting of a statistical model. “Deterministic
calculation” (solid arrow) refers to calculations based on deterministic equations as in Table 1. Null models calculated from same input data are
placed into the same circle to enhance visual clarity. SI: Stressor intensity; f(SI), Stressor effect as a function of SI; Simple add., Simple addition;
CA, Concentration addition; SAM, Stressor addition model
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(Figure 2), but they can also match data with different underlying

sensitivity correlations.

Another model type frequently used in ecological studies is dom-

inance (also termed comparative effects model) that predicts that

the effect of stressors in combination is equal to that of the worst

or dominant stressor (Table 1; Folt, Chen, Moore, & Burnaford,

1999). Under such model, the dominant stressor takes precedence

over lesser stressors that have no additional impact. Mechanistically,

if the stressors are conceptualized as acting sequentially, this null

model implies the assumption that stressor sensitivities are strongly

positively correlated (Figure 2).

Similar and additional null models have been developed in scien-

tific disciplines such as toxicology and ecotoxicology dealing with the

effects of chemicals on biological systems. We believe that the models

and mechanisms developed in ecotoxicological research represent

approaches that may, at least partially, be adopted by ecologists for

predicting effects of multiple stressors. The two fundamental null

models to study the effects of multiple chemicals that have been

developed in the first half of the 20th century are effect addition (EA),

which corresponds to the above-mentioned multiplicative null model

used in ecological studies, and concentration addition (CA) (Backhaus

& Faust, 2012). Note that interchangeable terms have been used for

these models in toxicology and ecotoxicology (see Cedergreen, 2014).

The EA model (Bliss, 1939) assumes additivity of two effects in terms

of the probabilistic sum, which accounts for the probability that, in the

case of mortality, an individual is killed by both chemical concentra-

tions by subtracting the product of their effects:

fABðcA; cBÞ ¼ fAðcAÞ þ fBðcBÞ � fAðcAÞ fBðcBÞ (1)

where fi(ci) is the effect of concentration ci of a chemical i for a

given concentration–effect relationship fi. The EA model is typically

used if chemicals are expected to act on different target sites in the

organism (Escher, 2013). For example, the chemical A inhibits a neu-

rotransmitter, whereas the chemical B inhibits the mitochondrial

energy transport. Substituting the concentrations c with stressor

intensities (SI) in Equation (1) proves the general equivalence of the

multiplicative and the EA model. Therefore, the assumption for the

multiplicative model, that the sensitivities are noncorrelated (Fig-

ure 2), also applies to the EA model. The EA and multiplicative

model are generally to be used with data that have been trans-

formed to proportions (%), where the control is typically set to

100% (e.g. growth, survival)(Folt et al., 1999).

The CA model (Loewe & Muischnek, 1926) assumes that the

concentrations c of chemicals are exchangeable if scaled by their

potency. In analogy to two stressors, we consider the case of two

chemicals A and B (notation following Howard & Webster, 2009),

for which exchangeable potency can be expressed as:

1 ¼ cA
ECxA

þ cB
ECxB

(2)

where ECxA and ECxB are the concentrations, where x% effect is

observed under standardized conditions. Thus, ECxA can be

expressed as:

ECxA ¼ cA þ ECxA
ECxB

cB (3)

Equation 3 only describes the exchangeability between chemicals

but lacks a link to effects of the concentrations, that is, fi(ci). Under

the assumption of exchangeability, the joint effect fAB(cA, cB) can be

expressed in terms of fA (ECxA):

fABðcA; cBÞ ¼ fAðECxAÞ ¼ fA cA þ ECxA
ECxB

cB

� �
(4)

The CA model is typically used if chemicals are expected to have

the same mode of action (Escher, 2013). For example, both

TABLE 1 Overview on different null models for two stressors or chemicals formulated according to the notation suggested by Howard and
Webster (2009) with required input data for calculation

Ecological
model

(Eco)toxicological
model

Null model equation for multiple
stressor research Required input data

Simple addition – fAB(SIA, SIB) = fA(SIA) + fB(SIB) Effects for A and B

Multiplicative Effect addition fAB(SIA, SIB) = fA(SIA) + fB(SIB) – fA(SIA) fB(SIB) Effects for A and B as proportions (%)b

Dominance – fAB(SIA, SIB) = max(fA(SIA), fB(SIB)) Effects for A and B

– Concentration

additiona (CA)

fAB(SIA, SIB) = fA(SIA + cSIB) with c = SIxA/SIxB Stressor–effect relationship for A, stressor intensity for A and B

and stressor intensities SIxA and SIxB that result in the same

effect size x (x = fA(SIxA) = fB(SIxB)), where x is typically

selected as half the effect limit

– Stressor addition

(SAM)

fAB(SIA, SIB) = FStrcap(FStrcap
�1(fA(SIA))

+ FStrcap
�1(fB(SIB)))

Generalized density function for the distribution of the stress

capacity fStrcap
c and effects for A and B (fA(SIA) and (fB(SIB))

aNote that under generalized concentration addition the assumption that c is constant (=SIxA/SIxB) is dropped (for details see Howard & Webster,

2009).
bResponse for the control is required to calculate the % effect. For example, see Figure 2.
cvisualized in Figure 1b as sensitivity distribution for the purpose of simplicity and consistency within Figure 1.

SIA, Stressor Intensity of stressor A; SIB, Stressor Intensity of stressor B; fA(SIA) = Effect of stressor A for intensity SIA and a given stressor–effect rela-

tionship fA; fB(SIB) = Effect of stressor B for intensity SIB and a given stressor–effect relationship fB; fAB(SIA, SIB) = Joint effect of stressors A and B for

intensities SIA and SIB given a stressor–effect relationship fAB; fStrcap = generalized density function for the density distribution of the stress capacity

(Stresscap), FStrcap represents the cumulative density function.
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chemicals A and B in the mixture inhibit the same neurotransmitter.

No directly corresponding model used in ecology has been devel-

oped, but the model can be adopted for nonchemical stressors, by

translating the concentrations c to stressor intensities (SI), and effect

concentrations ECx to effect levels SIxA and SIxB (see Table 1). The

translated model inherits the assumption that the stressors have a

similar or shared mode of action and, consequently, that the sensitiv-

ities to the different stressors are similar. An important difference to

the null models discussed above is that the CA model relies on a

stressor–effect relationship. It assumes that different stressor intensi-

ties can be converted into the intensities of one of the stressors, for

example, stressor A. The joint effect is then given using the sum of

stressor intensities as input for the stressor–effect function fA

(Table 1), which also implies that the stressors act simultaneously.

The surface of the effects for two stressors is reduced to a curve or

line. Note that the simple addition and dominance models can be

regarded as special cases of CA. Simple addition is derived from CA

if both stressors have the same potency (c = 1) and shape of the

stressor–effect relationship (fA = fB) and if this stressor–effect rela-

tionship is linear (f(SIA + SIB) = f(SIA) + f(SIB)). Similarly, the domi-

nance model is derived by setting the potency of the stressor with

the lesser effect to zero (c = 0). However, from the differences in

perspectives, with stressors conceptualized as acting sequentially for

dominance and simple addition but as acting simultaneously for CA,

follows that the assumptions of the null models relate to different

phenomena and are not directly comparable.

F IGURE 2 Implications of stressor mode of action (SMOA, see glossary) and correlations (corr.) of sensitivities for joint effects and
matching null models. For details on stressor notation and formulas for calculation, see Table 1. The single and joint effects are exemplified for
survival of caddisfly larvae and growth of gammarids, numbers above organisms refer to a reduction in survival (hereafter and in figure:
mortality) in number of dead individuals and reduction in growth in g biomass respectively. The control (100%) survival and growth are 10
individuals and 20 g respectively. Note that if the effect is expressed as (%) of control in the multiplicative model, the formula notation
fA(SIA) 9 fB(SIB) as in analysis of variance (A 9 B, for details see Folt et al., 1999) applies (e.g. 70% and 80% survival of control:
0.7 9 0.8 = 0.56 = 56%, which is equivalent to the result in Figure 2: 100%–56% = 44% mortality). Mortality visualized as crosses, a reduction
in growth as smaller body sizes. Individuals are identifiable through their position in the box. The stressors are conceptualized as acting
sequentially and are interchangeable, that is, mathematically commutative. CA and SAM not included because their calculation requires
additional input data besides the effects for A and B (Table 1), see Liess et al. (2016) for visualization
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Additional (eco-)toxicological models have been developed in the

last decade that extend the underlying concepts of CA: Generalized

concentration addition (GCA) that extends the classical CA model to

compounds with different concentration–effect curves (Howard &

Webster, 2009; Tanaka & Tada, 2017) and the Stressor Addition

Model (SAM) that focuses on predicting the effects for one chemical

under different levels of an environmental stressor (Liess et al., 2016)

(Table 1). The latter differs more fundamentally from CA (and GCA) in

that instead of stressor–effect relationships, the density of stress

capacities in a population forms the basis of the calculation. To date,

SAM has only been described for mortality as effect. Mechanistically,

SAM assumes that all types of stressors act on a universal stress

capacity and that the joint effect is estimated by adding up the individ-

ual effects on the universal stress capacity (for details see Liess et al.,

2016). By contrast, the CA model relies on adding up stressor intensi-

ties. SAM is the only approach that explicitly considers the sensitivity

distribution (Figure 1a,b), measured as the density of stress capacities,

which is unknown in most cases, but can be derived from the stressor–

effect relationship for mortality as effect (Figure 1a). Note that if the

density distribution of stress capacities is uniform, SAM predictions

equal those of the simple addition model.

For application in multiple stressor studies, the presented null

models require different types of input data (Figure 1b, Table 1).

The simple addition, multiplicative, and dominance models require

information on fA(SIA) and fB(SIB), that is, the individual effects of the

stressors A and B (or the related responses if directly used in a sta-

tistical model). Such data as well as data on the joint effect, which

can be used to confront null model predictions with observations,

are typically available from multiple stressor studies. By contrast, CA

and SAM require stressor–effect relationships and sensitivity distri-

butions, respectively. Such relationships and distributions are much

less frequently available because (1) most multiple stressors studies

employ too few treatment levels (see below for details) and (2) par-

ticularly in the case of SAM, few studies provide the raw data that is

required to derive these.

3 | STRESSOR–EFFECT RELATIONSHIPS:
ISSUES OF STUDY DESIGN AND CROSS-
STUDY VARIABILITY

The majority of studies on multiple stressors employs a factorial

design. To establish a reliable stressor–effect relationship from a fac-

torial experiment, we suggest that a minimum of five treatment

levels (measured on an interval or ratio scale) are needed (cf. Liess

et al., 2016) given that typically at least two parameters are

F IGURE 3 Guidelines for the selection
of a null model for prediction of joint
stressor effects on individuals (or
populations, but see end of section 3 for
caveats). Stressor notation follows Table 1.
Stressor sensitivity correlations for simple
addition, dominance and multiplicative null
model conceptualized under the
perspective of sequential stressor action
(cf. Figure 2). For details on stressor modes
of action, see glossary. Terms in brackets
indicate the required information. SMOA,
stressor mode of action (see glossary); CS,
correlation of sensitivities; SE, stressor–
effect relationship; ET, effect type; ES,
effect size
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estimated (slope and intercept in a linear model or steepness and

inflection point in the most parsimonious log-logistic model, which is

sigmoidal; for details, see Ritz, Baty, Streibig, & Gerhard, 2016). The

number of stressor levels is rarely reported in meta-analyses, but a

recent meta-analysis of multiple stressor effects on fish found that

only 5 of 33 studies used five or more treatment levels of a factor

(Matthaei & Lange, 2016). Similarly, a reanalysis of studies on multi-

ple stressors in marine systems reported that only 18 of 143 studies

used five or more treatment levels of a factor (Griffen et al., 2016).

While lack of data hampers the estimation of stressor–effect rela-

tionships and in turn excludes the selection of some null models, we

argue that it also limits our capacity to understand and predict

effects beyond the treatment levels and that this may partly explain

the variability in reported interaction types in meta-analyses. To

illustrate this point, we use data from a study on the production of

salmon under different levels of water flow and rearing density in

aquaculture conducted in 1982 (Banks, 1994). We define the water

inflow of 2,271 L/min and the rearing density of 60,000 fish as con-

trol condition with an associated adult production of 167. A water

inflow of 1,514 L/min (SIA1) and a density of 40,000 (SIB1) led to

individual reductions in adult production by approximately 20 and

40 individuals (fA(1,514 L/min) = 0.5 fB(40,000)), respectively, and

the joint effect fAB1 (1,514 L/min, 40,000) was a reduction in 58

adults compared to the control. The simple addition null model

would relatively accurately predict the joint effect (predicted:

40 + 20 = 60, observed: 58). Water inflow of 757 L/min (SIA2) and a

rearing density of 20,000 (SIB2) individually led to an effect of 94

and 40, respectively, and the joint effect was fAB2 (757 L/min,

20,000) = 81. Here, the simple additive prediction would be too

high (predicted: 94 + 40 = 134, observed: 81). Thus, the same stres-

sors and experimental setting might be assigned different interaction

types, that is, additive (first data set) and antagonistic (second data

set), because of differences in treatment levels. Moreover, in the

case of nonlinear effects (e.g. sigmoidal stressor–effect relationship),

we cannot accurately predict the effects of untested intensities even

of single stressors without knowing the stressor–effect relationships.

For example, the effect of, for example, 1,000 or 2,000 L/min flow

and of a density of 50,000 would be uncertain. Such uncertainty

would be even higher for joint stressor effects. This is because joint

stressor–effect relationships are very unlikely to follow the simple

additive null model for all stressor combinations, and a high number

of observations across the stressor gradients are required to allow

for reliable prediction (Lange et al., 2014; Sett et al., 2014). For

example, if for the fish study above the effect of one stressor would

reduce fish production close to zero, the second stressor could only

have minor additional effects on the fish production. Hence, in two-

stressor experiments, if one stressor approaches the effect limit, first

antagonism with respect to a simple additive null model and later

dominance is likely to occur.

Comparing stressor–effect relationships between studies would

decrease the variability originating from different treatment levels.

Although some stressor variables are difficult to quantify and defy

the derivation of stressor–effect relationships (e.g. habitat alteration,

alien species invasion), the majority of stressors could be imple-

mented at many different levels in multiple stressor studies. More-

over, in situations where studies have been conducted under similar

conditions, stressor–effect relationships may be inferred by pooling

treatment-level effects among studies. Ultimately, this would

enhance our ability to predict beyond the treatment levels of an

individual study (i.e. to inter- and extrapolate, depending on the

stressor and range of tested levels).

Regarding the application domain of stressor–effect relationships,

we suggest that they should mainly focus on the level of individuals.

This is because stressors act on this level and the established rela-

tionships are therefore presumably most robust (Hodgson, Essington,

& Halpern, 2017; Maltby, 1999). On the population and community

level and above, stressor–effect relationships are influenced by multi-

ple ecological processes such as density dependence, biotic interac-

tions or dispersal dynamics (Vellend, 2010)(Hodgson et al., 2017).

Consequently, these processes will interfere with the identification

of the direct stressor effect, also termed environmental filtering, ren-

dering results of such studies strongly context dependent (cf.

Cadotte & Tucker, 2017). Notwithstanding, many populations are

density regulated (Brook & Bradshaw, 2006; but see Knape & de

Valpine, 2012) and if the stressor–effect relationship accounts for

this density regulation (e.g. by running experiments at the densities

typical for the field situation or through modelling; Hodgson et al.,

2017) and if meta-population dynamics can be incorporated or are

irrelevant (e.g. population is isolated), extrapolation to the population

level can be straightforward. Hence, we argue that while multiple

stressor studies on the population and community level and above

provide valuable information unless stressors are the only drivers of

population regulation and community assembly, they require differ-

ent theoretical frameworks for prediction and development of addi-

tional null models. Such a framework would, for example, link

individual-level effects with process-based models describing popula-

tion or community dynamics. Rising to this challenge, the recent

development of a new model, the so-called compositional null model

by Thompson et al. (2018) bases its predictions on the effects of

stressors on individual species, calculated using the simple additive

null model that are subsequently aggregated to the community level.

This compositional null model could also be integrated with the

other (individual level) null models presented for predicting the

effects on individual species. Finally, statistical approaches can aid in

deriving stressor–effect relationships on all levels of biological orga-

nization, supporting null model development and evaluation (Wagen-

hoff, Liess et al., 2017).

4 | ADEQUACY AND SELECTION
GUIDELINES FOR NULL MODELS

Studies on multiple stressors typically reject the selected null model

in the case of a statistically significant interaction term. While dis-

covery of a statistically significant interaction may explain a given

phenomenon, such detection does not in itself advance our
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predictive capacity. Conversely, our predictive capacity is higher if

the null model better explains the data than models including inter-

action terms (i.e. interaction terms not significant and model without

interactions have a lower information criterion such as the AIC). The

null model would ideally be selected before data analysis based on

mechanistic understanding such as knowledge on the stressor mode

of action (SMOA) as outlined below. Furthermore, whether an inter-

action that is statistically significant depends partly on the sample

size of the study, which means that of two interactions with the

same effect size, only the one related to the study with a higher

sample size may be significant. Therefore, evaluation of the null

model fit for the study data should take the size of the deviation

from null model predictions into account, rather than rejecting a null

model and accepting a model including interaction terms based on

statistical significance or information criterion alone. Meta-analyses

on multiple stressors have so far largely ignored the effect sizes of

statistically significant interactions, that is, of deviations from the null

model. By contrast, in the context of chemical risk assessment, the

mixture models outlined above (CA and EA) were regarded as fitting

as long as they deviated less than a factor of 2 from the observation

(Belden, Gilliom, & Lydy, 2007) in terms of the stressor concentra-

tion in experiments, for example, the concentration that is predicted

to harm 50% of the individuals is compared to the observed concen-

tration harming 50%. Similar deviation ranges could arguably be

adopted in multiple stressor studies.

The vastly different ecosystem types, organism groups and stres-

sor modes of actions complicate defining universal rules for null

model selection for prediction of the joint effects on individuals (or

populations, but see previous section on the application domain of

stressor–effect relationships for caveats). However, we suggest gen-

eral guidelines (Figure 3) that are informed by elements of the mech-

anistic understanding of stressor effects such as SMOA (see

glossary), correlation of sensitivities (see Figure 2), effect type and

the stressor–effect relationship. These elements of mechanistic

understanding are necessary for application of the guidelines and

should, wherever possible, be justified from previous research. More-

over, the effect sizes of the stressors contribute to the selection of a

null model for predicting the joint effect.

The first step in the application of the guidelines is to identify

the effect type and the stressor intensities, for which the prediction

is intended and for which effect sizes for the individual stressors (i.e.

fA(SIA) and fB(SIB), Table 1) are available. Subsequently, information,

if available, on the SMOA, correlation of sensitivities and stressor–

effect relationships should be compiled. In the absence of knowledge

on the stressor–effect relationship or the sensitivity distribution, the

concentration addition and stressor addition null models cannot be

applied. If the stressor–effect relationship is available and the stres-

sors are either known or can be assumed to act similarly on organ-

isms (i.e. same SMOA), concentration addition should be applied as

the null model. In instances where neither concentration addition

nor stressor addition null models can (information lacking) or should

(conditions regarding SMOA or effect type not met) be applied, the

next step is to check whether to apply the dominance null model

(Figure 3). The latter should be applied if the stressors are either

known or can be assumed to be highly positively correlated (Fig-

ure 2) or if the effect size of any stressor is close to the effect limit

(Figure 3). For example, if one of the stressors reduced the growth

of a plant close to zero, the dominance model should be applied.

The remaining steps provide guidance to select between the simple

addition and multiplicative null model. The multiplicative model

should be applied when the effect is mortality or when summing the

effect sizes of the individual stressors exceeds or can be assumed to

exceed the effect limit (Figure 3, cf. Figure 2 for calculation). There

are likely to be exceptions to these guidelines that provide an oppor-

tunity for further testing and refinement, but in the absence of other

frameworks, may inform null model selection for prediction in multi-

ple stressor research and management. In situations where SMOA

and stressor correlations are unknown and no reasonable assump-

tions can be made, all null models that match the remaining decision

criteria (e.g. effect size) can be calculated to obtain a range of pre-

dictions instead of ignoring the uncertainty.

Finally, the relevance of selecting the correct null model will

depend on the effect sizes of the stressors involved. If the effect

size of one of the stressors is close to the effect limit or its effect

size is approximately a factor of 10 (i.e. effect size (ES)1 = 10 ES2) or

more higher than that of the other stressor, the selection of the null

model is likely less relevant as the null model predictions will be rela-

tively congruent (e.g. a factor 10 difference yields: domi-

nance = ES1 < multiplicative < simple addition = ES1 + ES2 = 1.1

ES1), though exceptions may exist for SAM and CA.

5 | CONCLUSIONS

Understanding and predicting of the effects of multiple stressors pre-

sents one of the most pressing challenges in conservation and applied

ecology. Rising to this challenge is a growing body of empirical

research seeking to quantify multiple stressor effects, and notably, to

identify instances where stressors interact yielding complex synergistic

or antagonistic outcomes. While a sufficient number of studies have

now permitted formal meta-analyses into the prevalence of simple

(e.g. additive) and complex joint effects, due to the lack of conceptual

consensus in methodical and operational definitions, studies are rarely

comparable or explanatory. At the centre of this issue is the apparent

absence of a mechanistic basis for null model selection and a preoccu-

pation with detecting statistically significant interactions to the detri-

ment of improved capacity to predict and explain (but see Wagenhoff,

Liess et al., 2017; Wagenhoff, Clapcott, Lau, Lewis, & Young, 2017).

With the ultimate goal of maximizing our ability to predict and explain

effects, multiple stressor research must move towards mechanistically

justified selection and fitting of null models—to which we contributed

here—typically on the level of individuals and populations. Managing

ecosystems in the face of global change requires understanding and

predicting how multiple stressor effects scale from individuals to

ecosystems, justified selection of the appropriate null model is a first

step to achieving this.
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