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Abstract— In this study, a novel approach is presented using 

principal component analysis and sample entropy (SampEn) for 

the analysis of continuous blood pressure (BP) data measured 

non-invasively during an active stand (AS) in a large sample of 

older adults. The method allows for the extraction of the bulk 

trends from these data in the form of principal components 

(PCs), which can be used as independent predictors of outcomes, 

and greatly increases the stationarity of the remaining data, 

allowing for secondary analyses such as SampEn. The 

relationship between AS BP measures (SampEn and first 6 PCs) 

and risk of all-cause 8-year mortality was investigated via Cox 

proportional hazards regression models in a sample of 

community-dwelling older adults (n = 4873, with 209 deaths) 

from The Irish Longitudinal Study on Ageing (TILDA). Higher 

SampEn in BP signals was found to be a significant predictor of 

mortality risk. PC scores, which characterize the overall bulk 

changes in response to standing, were not significantly 

predictive of mortality when controlling for age, sex, and 

educational attainment. The quantification of signal entropy in 

continuously measured BP signals during AS could provide a 

clinically useful predictor of risk of death. 

Keywords— Sample Entropy; Principal Component Analysis; 

Cardiovascular; Blood Pressure; Mortality 

I. INTRODUCTION 

The measurement of physiological resilience is of 
increasing interest in the field of ageing research, as this can 
help identify older persons at higher risk of negative 
outcomes when faced with a stressor [1, 2]. The assessment 
of resilience requires continuous tracking of a physiological 
signal related to the body’s response to a stressor, for example 
the beat-to-beat response of the cardiovascular system when 
transitioning from a supine (lying down) to a standing 
position (‘active stand’ (AS)) [3, 4]. Upon standing, blood 
pressure (BP) sustains an initial decline within the first 10 to 
15 seconds and following a stabilization phase that can last 
up to 30 to 40 seconds post-stand, the BP returns to baseline 
pre-stand values. Full recovery has in most cases occurred by 
60 seconds post-stand [5].  

To date, most of the research using continuous AS 
cardiovascular data has been focused on characterizing the 

bulk trends in these data, most commonly in order to identify 
individuals with orthostatic hypotension (OH), an important 
risk factor for falls and other adverse health outcomes [6]. OH 
is defined by consensus as a drop in systolic blood pressure 

(sBP) of ≥ 20 mmHg and/or a drop in diastolic blood 

pressure (dBP) of ≥10 mmHg within 3 minutes of standing 

[6]. Traditionally, this was measured at discrete time points 
using a sphygmomanometer or oscillometric device; 
however, improvements in non-invasive technology mean 
that this response can now be monitored continuously at high 
temporal resolutions via beat-to-beat acquisition, allowing 
for an individual’s response profile to be examined in much 
greater detail.  

It has been previously demonstrated that principal 
component analysis (PCA) can be used to identify common 
bulk trends in large AS datasets [7]. In the present work, we 
expand on this by demonstrating that the inverse is also 
possible, i.e., PCA can also be used to detrend AS data, which 
greatly improves data stationarity, while retaining individual-
specific BP patterns in the data. The motivation for doing this 
is to allow for the measurement of the amount of disorder in 
these detrended data using sample entropy (SampEn), which 
requires the data to be stationary for accurate quantification. 
We hypothesized that abnormalities in physiological control 
mechanisms that are responsible for the dynamic regulation 
of BP may be detectable and quantifiable by the level of 
disorder in continuously measured BP signals during an AS 
challenge. 

Signal entropy is a measure of irregularity or 
unpredictability, assigning lower entropy values to periodic, 
predictable data, and higher entropy values to irregular, 
unpredictable data. In 2000, Richman and Moorman [8] 
introduced SampEn. Briefly, given a time-series of length N, 
SampEn is defined as the negative natural logarithm of the 
conditional probability that two trajectories of length m 
remain similar for m + 1, within a tolerance specified as ±r * 
standard deviation (SD) of the timeseries. For SampEn, self-
matches are not considered in the probability calculation, 
unlike the also widely used approximate entropy (ApEn). 
Additionally, it has been demonstrated that SampEn is largely 
independent of the data length and can potentially provide 
more consistent results than ApEn [8].  
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In the present study, we utilised PCA and SampEn for the 
analysis of cardiovascular signal complexity during the entire 
AS (3 mins), ‘pre-stand’ during supine rest (-60 s to stand), at 
‘stand’ (0 to 60 s), and during post-stand ‘recovery’ (60 to 120 
s) sections of data. We then investigated the associations 
between these AS entropy measures and risk of mortality in a 
large cohort of older individuals (n = 4873, with 209 deaths) 
from the Irish Longitudinal Study on Ageing (TILDA). 

II. METHODS 

A. Design and setting 

This research was carried out as part of TILDA, an 
ongoing nationally-representative prospective cohort study of 
community-dwelling Irish adults, which collects information 
on their health, economic and social circumstances [9]. Wave 
1 of the study took place between October 2009 and February 
2011, and subsequent data was collected approximately every 
2 years over four longitudinal waves. Wave 1 included a 
comprehensive health assessment conducted at a dedicated 
health assessment centre. The full cohort profile has been 
previously described in detail [9]. Ethical approval was 
granted for each wave from the Health Sciences Research 
Ethics Committee at Trinity College Dublin, Dublin, Ireland, 
and all participants provided written informed consent. All 
research was performed in accordance with the Declaration 
of Helsinki. 

B. Cardiovascular measures 

At wave 1 health assessment, beat-to-beat BP was 
measured at 200 Hz in 4873 individuals using a digital 
photoplethysmography device (Finometer MIDI, Finapres 
Medical Systems BV, Amsterdam, The Netherlands). All 
measurements were carried out in a comfortably lit room, at 
an ambient temperature between 21°C and 23°C. Data were 
acquired continuously while participants laid supine for 10 
minutes (data from the last minute of rest was used) before 
transitioning to a standing position and remaining standing 
for 3 minutes (2-minute post-AS data was used). Signals for 
systolic blood pressure (sBP) and diastolic blood pressure 
(dBP) were extracted using MATLAB (R2021a, 
TheMathWorks, Inc, MA, USA). Beat-to-beat data were 
linearly interpolated to 5 Hz prior to analysis, providing N = 
900 datapoints, and no filtering was applied.  

C. PCA processing 

PCA was performed using a built-in MATLAB function 

(‘pca.m’). After applying PCA, the ith curve ( X̂i ) can be 

described by the mean (X̅) plus a linear combination of k PCs 
where α is the score and U is the loading vector (Eq. 1). 

                   X̂i = X ̅+ α1U1 + … + αkUk
 (1) 

In a similar way, the remaining PCs (k+1 to n) can be used 

to describe the remaining data (X̂r), such that, 

                             X̂r = αk+1Uk+1 + … + αnU
n
. (2) 

(Alternatively, one could also simply subtract each 

participant’s X̂i from their raw data to obtain the same result 
in a less computationally demanding manner). A scree plot 
was produced to assess the cumulative variance explained by 
the first 20 modes for sBP, and visual representations of the 
first 6 components (± 2 SDs) were also produced using a 
previously described method termed ‘single component 

reconstruction’ [10]. The upper trace ( X̂U)  for the Rth 
component is given by the mean (X̅) plus the product of the 
loading vector (UR) and twice the SD (σR) of the Rth PC (Eq. 

3). The lower limit (X̂L) is then given by the same equation 
with the addition replaced by a subtraction (Eq. 4). 

          X̂U = X̅ + (2σR)UR (3) 

          X̂L = X̅  − (2σR)UR (4) 

Along with the graphical interpretation, scores were also 
leveraged for statistical inference by using them as 
independent variables in regression (i.e., PC regression). 

D. Data stationarity assesment 

Stationarity of the data was assessed via the augmented 
Dicky-Fuller test on both the original raw AS data (absolute 

and normalized to baseline) and transformed data (X̂r). 

E. Entropy measures 

Entropy analyses were performed on X̂r  in MATLAB 
using freely available scripts [11]. A detailed description of 
the algorithms used to compute SampEn has been previously 
reported in detail [8]; however, below we provide a brief 
overview. Bi

m(r) is defined as the number of template vectors 
xm(j) similar to xm(i) (within r) divided by N − m − 1, where 
j = 1...N – m, with j ≠ i (to avoid self-matches). The average 
Bi

m(r) for all i is given as 

                           Bm(r) = 
1

N−m
∑ Bi

m(r)N−m
i=1 . (5) 

Similarly, we define Ai
m(r)  as the number of template 

vectors xm+1(j) similar to xm+1(i) (within r) divided by N − m 

− 1, where j = 1...N – m, with j ≠ i. The average Ai
m(r) for 

all i is given as 

                           Am(r) = 
1

N−m
∑ Ai

m(r)N−m
i=1 .  (6) 

SampEn was then calculated as 

                 SampEn(m,r,N) = − ln (
Am(r)

Bm(r)
). (7) 

In this study, m (embedding dimension; the length of the 
data segment being compared) was set to 2 and an r 
(similarity criterion) of 0.15 was selected, in line with 
previous recommendations for similar physiological data 
[12]. N (the number of datapoints) was set at 900 for the entire 
AS and 300 for ‘pre-stand’, ‘stand’, and ‘recovery’ sections 
(Fig. 1(a)). 

F. Mortality data linkage and covariates 

The date and cause of death of deceased individuals was 
identified from official death registration data and linked to 
their TILDA survey and health assessment data. Linking was 
performed for all individuals who died between April 2010 
and March 2017. Full details of the data linkage procedures 
are described elsewhere [13]. As part of the TILDA 
assessment, self-reported age, sex, and level of educational 
attainment were also recorded and were included as 
covariates in the models reported herein. 

G. Statistical analysis 

Statistical analysis was performed using STATA 15.1 
(StataCorp, College Station, TX, USA). Cox proportional 
hazards regression models were utilized to estimate the 
hazard ratios (HRs) for the association between SampEn and 
all-cause 8-year mortality. Respondents lost to follow up 
were right-censored at the end of the follow-up-period (31st 
March 2017). Four sets of models were used: (1) unadjusted; 
(2) adjusted for first 6 PC scores (i.e., considering the overall 
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participant-specific trend in response to standing); (3) 
adjusted for first 6 PC scores, age, sex, and education; and (4) 
for each section of the response to standing (pre-stand, stand, 
and recovery) adjusted for age, sex, and education. Results 
from models 1-3 are presented as forest plots and results from 
model 4 are tabulated. 

III. RESULTS 

In total, 8175 participants over the age of 50 years were 
recruited at wave 1 of TILDA, of whom 5035 attended for a 
health centre assessment at wave 1, and adequate AS BP data 
were available for 4873 (209 deaths) individuals (mean (SD) 
age: 61.4 (8.2) years; 54.2% female). Raw AS data for the 
entire cohort is shown in Fig. 1(b).  

Results from the PCA analysis for the entire cohort, with 

data reconstructed using the first 6 PCs (X̂6), are presented in 

Fig. 1(c) and using the remaining 894 PCs (X̂r) in Fig. 1(d). 
Scree plots, which show the variance explained by the first 20 

PCs, are shown in Fig. 2(a) and the first 6 PCs (±2 SDs) are 
illustrated in Fig. 2(b). Augmented Dicky-Fuller tests revealed 
that for the raw data only 0.2% of participant’s sBP and dBP 
data were stationary; this increased to 34.7% and 52.3%, 
respectively, when data were normalized to baseline (pre-
stand), and further to 94.4% and 96.7%, respectively, for data 

reconstructed using the last 894 PCs (X̂r; Fig. 1(d)).  

Results from Cox proportional hazards regression models 
are presented as HRs in Fig. 3 (models 1-3) and Table I (model 
4). Univariate analyses (model 1) of the entire stationary AS 

data (X̂r ) revealed that an increase in SampEn of 0.1 was 
associated with increased risk of mortality month-on-month, 
for both sBP (HR=1.14; 95%CIs=1.00 to 1.29; p=0.046) and 
dBP (HR=1.18; 95%CIs=1.07 to 1.31; p=0.001). Model 2 
showed that in the absence of other confounders both the 

SampEn in X̂r and most PC scores (representing portions of 
the overall shape of the response to standing) were predictive 
of mortality, for both sBP and dBP.  

  
(a) (b) 

  
(c) (d) 

Fig. 1. Plots showing (a) the mean sBP AS data, with ‘Pre-Stand’, ‘Stand’, and ‘Recovery’ sections shown; (b) raw sBP data for all partispants; (c) data 

for all partisipants reconstructed using the first 6 PCs (X̂6); and (d) data for all partisipants reconstructed using the last 894 componants (X̂r). 

  
(a) (b) 

Fig. 2. (a) Scree plot showing the variance explained by the first 20 PCs for sBP and (b) graphical representations of the first 6 PCs for sBP (± 2 SDs) . 
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When the models were extended to also control for age, 
sex, and education (model 3), the association between both 
sBP SampEn (HR=1.16; 95%CIs=1.04 to 1.29; p=0.009) and 
dBP SampEn (HR=1.14; 95%CIs=1.05 to 1.24; p=0.002) 
remained significant; however, the associations with PCs were 
all no longer significant. Model 4 (Table I) showed that 
SampEn calculated for each section of the data (pre-stand, 
stand, and recovery) were also individually associated with 
increased risk of mortality (models controlled for age, sex, and 
education), with the recovery section providing the highest 
HR for sBP (HR=1.16; 95%CIs=1.06 to 1.27; p=0.001) and 
pre-stand for dBP (HR=1.16; 95%CIs=1.06 to 1.26; p=0.001). 
Age, sex, and educational attainment were significantly 
associated with risk of mortality in all models that used these 
covariates; with increased age increasing the risk and being 
female or having a higher level of education reducing the risk.  

IV. DISCUSSION 

This study demonstrated a novel application of PCA to 
AS data, as a method for both extracting the overall bulk 
participant-specific trends in the data, as well as increasing 
the stationarity of the remaining data, to allow for secondary 
analyses that require the data to be stationary, such as 
SampEn. The study also reported associations between BP 
SampEn measurements and risk of 8-year all-cause mortality. 
It was found that for both sBP and dBP, higher SampEn was 
significantly associated with a higher risk of mortality. By 
also utilizing the first 6 PCs in the Cox regression models 
(removed from the stationary data for SampEn calculation), 
it was also possible to extend this investigation to see whether 
the overall, bulk change in AS profiles was also associated 
with mortality risk, within the same models. SampEn in BP 
data during standing predicted mortality, but not overall 
response profiles (when controlling for age, sex, and 
education). Additionally, SampEn was calculated for each 
section of the data (pre-stand, stand, and recovery). It was 
found that SampEn in sBP data during the recovery from 
stand section, and in dBP data during the pre-stand, supine 
stage of the experiment, provided the highest HRs for 
predicting risk of mortality for each BP measure. Age, sex, 
and educational attainment were all significantly associated 
with risk of mortality, with older age increasing the risk and 
being female or having a higher level of education (a proxy 
for socioeconomic status) reducing the risk. 

Most previous work using AS data have been focused on 
investigating the bulk response of neurocardiovascular to 
transitioning from a supine to standing position. Often, to 

TABLE I.  RESULSTS FROM COX PROPORTIONAL HAZARDS 

REGRESSION MODEL 4. 

Data Measure HR P 95% CIs 

     

Model 4a – Age, Sex, Education Controlled – sBP 

Pre-Stand 
(-60 to 0s) 

SampEn (per 0.1) 1.13 0.025 1.02 to 1.25 

Age (per 1 year) 1.11 <0.001 1.09 to 1.13 

Sex (Female) 0.64 0.002 0.49 to 0.85 

Education* 
  Secondary 
  Tertiary/Higher 

0.70 
0.60 

0.030 
0.004 

0.51 to 0.97 
0.43 to 0.85 

Stand  
(0 to 60s) 

SampEn (per 0.1) 1.10 0.049 1.00 to 1.20 

Age (per 1 year) 1.11 <0.001 1.09 to 1.13 

Sex (Female) 0.63 0.001 0.48 to 0.84 

Education* 
  Secondary 
  Tertiary/Higher 

0.69 
0.60 

0.023 
0.003 

0.50 to 0.95 
0.42 to 0.84 

Recovery 
(60 to 120s) 

SampEn (per 0.1) 1.16 0.001 1.06 to 1.27 

Age (per 1 year) 1.11 <0.001 1.09 to 1.13 

Sex (Female) 0.62 0.001 0.47 to 0.81 

Education* 
  Secondary 
  Tertiary/Higher 

0.68 
0.59 

0.021 
0.003 

0.50 to 0.94 
0.42 to 0.84 

Model 4b – Age, Sex, Education Controlled – dBP 

Pre-Stand 
(-60 to 0s) 

SampEn (per 0.1) 1.16 0.001 1.06 to 1.26 

Age (per 1 year) 1.11 <0.001 1.09 to 1.13 

Sex (Female) 0.66 0.004 0.50 to 0.88 

Education* 
  Secondary 
  Tertiary/Higher 

0.70 
0.61 

0.029 
0.005 

0.51 to 0.96 
0.43 to 0.86 

Stand  
(0 to 60s) 

SampEn (per 0.1) 1.10 0.012 1.02 to 1.18 

Age (per 1 year) 1.11 <0.001 1.09 to 1.13 

Sex (Female) 0.66 0.003 0.50 to 0.86 

Education* 
  Secondary 
  Tertiary/Higher 

0.68 
0.58 

0.019 
0.003 

0.49 to 0.94 
0.42 to 0.83 

Recovery 
(60 to 120s) 

SampEn (per 0.1) 1.14 0.001 1.06 to 1.23 

Age (per 1 year) 1.11 <0.001 1.09 to 1.13 

Sex (Female) 0.65 0.002 0.49 to 0.86 

Education* 
  Secondary 
  Tertiary/Higher 

0.69 
0.60 

0.024 
0.004 

0.50 to 0.95 
0.43 to 0.85 

* Reference: primary level education 

simplify the analysis, or to characterize specific physiological 
groupings, such as OH, data are decimated into temporal bins 
of 5-10 seconds [7], or even longer. However, there is a 
growing interest in using more data-driven approaches, 
which draw on the richness of data available as non-invasive 
continuous physiological monitoring technology has 
evolved. In a previous study, we demonstrated the utility of 
PCA for extracting bulk trends from AS data [7]. To the best 
of our knowledge, this is the first study to utilize PCA to both 
increase the stationarity of these types of timeseries data, for 
the purposes of increasing the accuracy of secondary analyses 
(such as SampEn), as well as allowing for bulk trends in the 

                                                                Systolic Blood Pressure (sBP)               Diastolic Blood Pressure (dBP) 

   

Fig. 3. Forest plots showing the results from Cox proportional hazards regression models 1-3. 

​
Model 1: Univariate
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Model 2: Multivariate
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PC2 (per 1SD)
PC3 (per 1SD)
PC4 (per 1SD)
PC5 (per 1SD)
PC6 (per 1SD)

Model 3: Multivariate
SampEn (per 0.1 units)

Age (per year)
Sex (Female)

Education: Secondary (Ref: Primary)
Education: Tertiary/Higher (Ref: Primary)
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Age (per year)
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Education: Tertiary/Higher (Ref: Primary)

PC1 (per 1SD)
PC2 (per 1SD)
PC3 (per 1SD)
PC4 (per 1SD)
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​

​
HR    [95% CI]
1.18 [1.07, 1.31]*
​
1.24 [1.13, 1.35]*
0.80 [0.70, 0.91]*
1.28 [1.13, 1.44]*
1.26 [1.12, 1.42]*
0.97 [0.85, 1.10]
0.87 [0.77, 0.99]*
1.21 [1.07, 1.38]*
​
1.14 [1.05, 1.24]*
1.10 [1.09, 1.12]*
0.64 [0.48, 0.85]*
0.69 [0.50, 0.96]*
0.61 [0.43, 0.87]*
0.92 [0.81, 1.05]
1.02 [0.90, 1.17]
1.12 [0.99, 1.28]
1.01 [0.89, 1.16]
0.93 [0.82, 1.06]
1.06 [0.93, 1.21]
​
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HR (95% CI)
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data to be simultaneously investigated within the same 
models. This technique is not only applicable to these specific 
BP AS data, but to any large timeseries dataset, where there 
is a common experimental paradigm or seasonality that 
produces a trend shared across repeated measures. One of the 
big advantages of such an approach is that it allows for the 
use of all of the data, and as we have demonstrated in the 
present work, this can be advantageous, since for certain data 
there can be information contained within parts of data which 
might otherwise be discarded. 

From a physiological perspective, being able to extract 
measures of ‘disorder’ (such as signal entropy) from 
cardiovascular data during ‘rest’, ‘challenge’, and ‘recovery’ 
is very informative, since these measures can be differentially 
indicative of dysregulation in the body, leading to reduced 
resilience when faced with a stressor [1, 2]. One potential 
cause for this dysregulation could be abnormally modified 
baroreflex sensitivity and/or vagal tone. Another plausible 
cause might be an increase of sympathetic activity and/or 
modulation directed to the heart and/or blood vessels. Other 
possible influencing factors could be changes in arterial 
structure (e.g., increased stiffness, decreased compliance, and 
endothelial dysfunction), modified cardiac reserve, as well as 
changes of diastolic filling and increased collagen in the left 
ventricle. In fact, the entropy measure described in this study 
may be influenced by a composite of the above potential 
factors [14]. Further work will be required elucidate the 
physiological origins of this potential measure of 
cardiovascular dysregulation. 

Although several previous studies have shown higher 
neurovascular and cardiovascular entropy measures, 
calculated in a similar way to that used in the present study, 
to be associated with detrimental health conditions, such as 
frailty, cognitive performance, and accelerated brain aging 
[16-18], this is the first study to demonstrate the utility of 
short-length BP SampEn, calculated in this fashion, for the 
prediction of mortality. There are several strengths to this 
approach, namely: all measures were non-invasive and non-
ionizing; the potentially short data length required (60 
seconds) would be feasible and practical for use in a busy 
clinic; and SampEn provides a single-number measure, 
which is easily tracked and is interpretable to clinicians. 
Further work is required however to fully investigate the 
possible value of this measure as a potential early maker of 
mortality risk.  

There are several limitations to this study which should 
be kept in mind when interpreting the results. Six PCs were 
chosen to demonstrate this approach, since these explained 
>90% of the common variance in the sBP data; however, this 
may not be the optimal amount, as some of the bulk trend 
from the ‘stand’ portion of the experiment is still apparent for 
some participants (as seen in Fig. 1(d)); further work will 
explore the effects of using different numbers of components 
on data stationarity, entropy calculations, and associations 
with clinical markers. 

In conclusion, in this study overall BP response profiles 
to standing were not significantly predictive of mortality risk, 
however, the level of signal entropy in BP signals during AS 
was. This may provide a clinically useful marker to help 
identify those at higher risk of premature death. 
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