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Abstract

Methods that employ the EM algorithm for parameter esti-

mation typically face a notorious yet unsolved problem that

the initialization input significantly impacts the algorithm

output. We here develop a Reinforced Expectation Maxi-

mization (REM) algorithm for cluster analysis using Gaus-

sian mixture models. The competence of REM is achieved

by introducing two innovative strategies into the EM frame-

work: (1) a mode-finding strategy for initialization that de-

tects non-trivial modes in the data, and (2) a mode-pruning

strategy for detecting true modes/mixture components of

the population. The pruning strategy is well-justified in

the context of mixture modelling, and we present theoretical

guarantees on the quality of the initialization. Extensive ex-

perimental studies on both synthetic and real datasets show

that our approach achieves better performance compared to

state-of-the-art methods.

1 Introduction

Model-based clustering methods utilize mixture models
to partition a collection of objects [12, 4]. The most
widely used mixture model is the Gaussian mixture
model (GMM). The EM algorithm is the most popular
algorithm for parameter estimation of mixture models
and known for its sensitivity to initialization [7, Chapter
9]. A multitude of methods for initializing the EM al-
gorithm have been proposed in the literature [6, 16, 20].
A state-of-the-art approach, mclust [27], provides hard
partitions of the data using a model-based hierarchi-
cal clustering algorithm. The desired clusters are ob-
tained from a large number of small clusters through
recursive merging [3]. Most initialization methods, in-
cluding prominent methods that randomly select ini-
tial parameters from the data, have the drawback that,
when the true number of clusters is not specified, they
struggle to provide similar initializations for multiple
runs with different cluster numbers, making model se-
lection more difficult. This leads to the key driving force
of the present work: to develop a clustering algorithm
for GMMs that provides high-quality initializations and
produces clusterings that are stable across different clus-
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(a) mclust [27] (b) REM

Figure 1: Comparison between mclust and REM, on
a synthetic dataset containing 20 clusters. Optimal
clusterings were selected using BIC [24].

ter numbers.
Our initialization strategy is built on the observa-

tion that the modes of a GMM are symptomatic of the
underlying population structure and can guide the ini-
tialization procedure. In particular, if the Gaussian
components in a GMM are well separated, then the
modes exactly match the Gaussian means; if the compo-
nents overlap somewhat, while in some cases, the modes
may not be limited to the Gaussian means, they well
represent the components of the GMM [2]. Further,
the modes of Gaussian mixture densities have been suc-
cessfully applied for clustering [8, 26]. The peak-finding
method [23] returns the instances of the data that best
approximate the modes of the density, henceforth re-
ferred to as exemplars. Therefore, we apply the peak-
finding technique to detect the exemplars in the data.
By restricting the Gaussian means to the set of exem-
plars, the initialization is robust to outliers and adjusts
to the location of the centers.

From an inclusive pool of initial exemplars, we pro-
duce a hierarchy of clusterings by iteratively pruning
superfluous clusters through the optimization of a con-
vex objective function regularized by an adaptive car-
dinality penalty. We prune exemplars one at a time,
automatically generating a nested sequence of cluster-
ing results. The optimal clustering is determined by a
model selection criterion of the user’s choice.

The initialization-pruning framework is called the
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reinforced EM (REM) algorithm. By selecting the
Gaussian means from the exemplar set only, the REM
algorithm never allows components collapse into one
point at which the likelihood is infinite. Furthermore,
the objective function for exemplar pruning is well-
justified in the context of mixture modelling; it is solved
analytically, leading to efficient run time even for large
datasets. A comparison of the REM method to mclust
on a synthetic dataset is presented in Fig. 1.

The remainder of the paper is organized as follows:
in Section 2, we describe the EM algorithm for GMMs
and review existing approaches; in Section 3, we explain
the peak-finding technique; in Section 4, the REM
algorithm is described; Section 5 presents experimental
evaluations, and Section 6 concludes.

2 Background

Let X ∈ Rn×p denote the data matrix: XT =
[x1, . . . ,xn], where the superscript T is the transpose
operator. A GMM density has the form f(x) =∑m

j=1 πjϕ(x;µj ,Σj), with mixing proportions πj (πj >

0 and
∑m

j=1 πj = 1), and each Gaussian density
ϕ(·;µj ,Σj) has a mean µj and a covariance matrix
Σj . Let π denote the vector of mixing proportions:
π = (π1, . . . , πm)T . The log-likelihood function is

ℓ(π, {µj}mj=1, {Σj}mj=1;X) =

n∑
i=1

log(

m∑
j=1

πjϕ(xi;µj ,Σj)).

The classical method for computing maximum-
likelihood estimates for GMM parameters is the EM
algorithm, consisting of the following steps:

1. Initialize the parameters: {π1, . . . , πm},
{µ1, . . . ,µm} and {Σ1, . . . ,Σm}.

2. Compute the responsibilities: for 1 ≤ i ≤ n and

1 ≤ j ≤ m, rij =
πjϕ(xi;µj ,Σj)∑m

v=1 πvϕ(xi;µv,Σv)
.

3. Update the estimates: πj = 1
n

∑n
i=1 rij , µj =∑n

i=1 rijxi∑n
i=1 rij

, and Σj =
∑n

i=1 rij(xi−µj)(xi−µj)
T∑n

i=1 rij
, for

1 ≤ j ≤ m.

4. Iterate steps 2 and 3 until convergence.

The hill-climbing nature of the EM algorithm, cou-
pled with the multi-modal surface of the log-likelihood
function, lends crucial importance to the quality of the
initialization. The simplest initialization strategy draws
initial values at random from the parameter space or
from the data pool. Jin et al. [15] proved that, with
high probability, the EM algorithm with random ini-
tialization will converge to bad local maxima, whose
log-likelihood could be arbitrarily worse than that of

the global maximum. Another intuitive idea is to run
EM with multiple random starts for each value of m.
The emEM algorithm [6] consists of several short runs
of EM, initialized with random starts, until a loose con-
vergence criterion is satisfied. The solution with the
highest log-likelihood is used to initialize a long run of
EM with strict converge criteria. A related approach,
called Rnd-EM [16], computes the log-likelihood of sev-
eral random starts without running any EM iterations.
The best is used as the initializer for the long EM stage.
The k-means algorithm is also frequently used to pro-
vide an initial partition of the data, from which ini-
tial parameter estimates can be computed. However,
the k-means algorithm itself requires a good initializa-
tion, typically achieved with the k-means++ method
[28]. None of these methods make efforts to ensure the
similarity of initializations for different cluster numbers.
This leads to unstable clusterings and hinders compar-
ison of clusterings using model selection criteria.

The popular mclust package in R provides hard
partitions of the data using an agglommerative model-
based clustering technique. Initializations for different
numbers of clusters are found from partitions extracted
using dendrogram derived from the hierarchical clus-
tering. This approach provides a hard partition of the
data, leading to improper splitting of true components
when the estimated cluster number is greater than the
true number of components.

To decide the optimal cluster number via a model
selection criterion, three criteria predominate in the
literature: the Akaike information criterion (AIC) [1],
the Bayesian information criterion (BIC) [24], and the
integrated completed likelihood (ICL) [5].

3 Exemplar Selection

The peak-finding technique is adopted to detect the
initial set of exemplars [23]. It requires two inputs: (1) a
density estimate at each data point, and (2) the distance
from each point to its nearest neighbor of higher density.
We apply the Gaussian kernel with bandwidth h > 0 for
density estimation:

fh(x) =
1

n · hp

n∑
i=1

K

(
x− xi

h

)
,

where K(·) is the Gaussian kernel. Note that our
density estimate is different from that in [23]; it is more
smooth and better suits the data that are generated
from GMMs. For the distance input, define

b(x) = argmin
x′∈X

{∥x− x′∥ : fh(x) < fh(x
′)} ,

i.e. the nearest neighbor of x with a higher den-
sity. Then the distance from x to its nearest neigh-
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Figure 2: An example with 5 clusters. The left plot
shows the estimated density of the data, with darker
regions having higher density. Also shown are the
locations of the exemplars, with colour and marker
type corresponding to the instances in the right plot.
The right plot is the decision plot, where the red lines
indicate the threshold values. The peak-finding method
selects six initial exemplars, with each true component
well represented.

bor of higher density is simply ω(x) = ∥x − b(x)∥.
For the point with the highest density estimate x =
argmaxx′∈X fh(x

′), the distance is defined as ω(x) =
maxx′∈X ∥x− x′∥.

Intuitively, ω(x) will be large if x has a locally
or globally maximal density, or if x is an outlier.
Therefore, a data point x will be selected as an exemplar
by the peak-finding method, only if both fh(x) and ω(x)
are large. To generate an initial set of exemplars E0 =
{e1, . . . , eκ}, threshold values for the density fh(x) and
the distance ω(x) need to be set: the exemplars are the
data points with the two metric values both above the
thresholds, i.e. E0 = {x ∈ X : fh(x) ≥ l, ω(x) ≥ τ}.
REM provides users with a decision graph, a scatter
plot of {(fh(x), ω(x)) : x ∈ X}, to provide intuition
regarding the threshold values. An example of the
decision graph and the selected exemplars is provided
in Figure 2.

We provide theoretical guarantees on mode recov-
ery in the supplementary material. The theoretical re-
sults claim that the peak-finding technique recovers the
modes of a GMM density consistently. For n large
enough, with high probability, E0 contains unique es-
timates for all the true modes of the GMM. For the
clustering task, the instances selected by the peak-
finding criterion provide appropriate estimates for the
mean parameters of the Gaussian components. For
well-separated components, the modes of the GMM
and the mean parameters correspond exactly. In the
case of overlapping components, the inclusive set of
mode estimates produced by the peak-finding technique
model successfully models the high-density regions of
the GMM. Through the iterative pruning and parame-
ter estimation steps to be introduced in Section 4, the
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Figure 3: Given any exemplar set {ej}, we estimate
the parameters {πj ,Σj} by an EM-type algorithm.
At convergence, we obtain a GMM

∑
j πjϕ(x; ej ,Σj).

Then we optimize a regularized objective function to
force certain πj ’s to be 0. The relevant exemplars
are removed from the exemplar set. The procedure is
repeated producing a sequence of clusterings.

initial set of exemplars is reduced to contain only those
instances which well-represent their associated Gaussian
components.

4 The Iterative Pruning Procedure

The REM algorithm has two blocks: the EM block
and the pruning block; see Figure 3. Given the initial
exemplar set E0 = {e1, . . . , eκ}, our iterative procedure
will produce a sequence of nested clustering results,
respectively with κ−1, κ−2, . . . , 2 mixture components.
An example is given in the supplementary material.
The final optimal clustering is determined by a model
selection criterion of the user’s choice. Note that, if a
data point is in the exemplar set, it is excluded from
the data pool, and once a data point is pruned from
the exemplar set, it will go back to the data pool. In
other words, if ej is pruned in the pruning block, then
we update E = E\{ej}, X = X ∪ {ej} and n = n + 1,
before running the EM block.

4.1 EM Block Given the updated data pool (the
original data without the retained exemplars), the EM
block operates as follows.

1. Input: The retained exemplars {e1, . . . , eκ} and
the responsibilities {rij : i = 1, . . . , n, j = 1, . . . , κ}.

2. Update the estimates: for j = 1, . . . , κ,

πj =

∑n
i=1 rij
n

,Σj =

∑n
i=1 rij(xi − ej)(xi − ej)

T∑n
i=1 rij

.

3. Compute the responsibilities: for i = 1, . . . , n and
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j = 1, . . . , κ,

rij =
πjϕ(xi; ej ,Σj)∑κ

v=1 πvϕ(xi; ev,Σv)
.

4. Iterate steps 2 and 3 until convergence.

In the EM block, the Gaussian means are fixed at
the given exemplars, and only the mixing proportions
and covariance matrices are estimated. Since the ex-
emplars are excluded from the data pool, the iteration
will never converge to a degenerate solution. The GMM
density at convergence is

f(x) =

κ∑
j=1

πjϕ(x; ej ,Σj).

4.2 Pruning Block While the original exemplar set
contains consistent estimates of all the density peaks
of the mixture model, the number of density peaks
can be significantly larger than the number of mixture
components [2]. Hence, the exemplars {e1, . . . , eκ} need
be further filtered to obtain the true mean vectors.

In the pruning block, we prune exemplars by induc-
ing sparsity in the mixing proportion vector π such that,
if πj = 0, then the exemplar ej will be removed from
the exemplar set and returned to the data pool. Let 1n

denote the vector of 1’s of dimension n; let ∆ denote
the probabilistic simplex of the appropriate dimension:
if π ∈ ∆, then π ≥ 0 and ∥π∥1 = 1. Given the exem-
plar set E0 and covariance-matrix estimates {Σj}κj=1,
let D = [dij ]n×κ denote the squared-distance matrix,
where dij = (xi − ej)

TΣ−1
j (xi − ej).

4.2.1 The Objective Function Given
the exemplars, the log-likelihood function is∑n

i=1 log
(∑κ

j=1 πjϕ(xi; ej ,Σj)
)
. We have by Jensen’s

inequality that

− log

 κ∑
j=1

πjϕ(xi; ej ,Σj)

 =

 κ∑
j=1

rij

 log

( ∑κ
j=1 rij∑κ

j=1 πjϕ(xi; ej ,Σj)

)

≤
κ∑

j=1

rij log

(
rij

πjϕ(xi; ej ,Σj)

)
,

where the upper bound is achievable following the log-
sum inequality. Then the negative log-likelihood can be

formulated as an optimization problem:

−
n∑

i=1

log

 κ∑
j=1

πjϕ(xi; ej ,Σj)

 =

min
{Ri·∈∆}n

i=1

n∑
i=1

κ∑
j=1

rij log

(
rij

πjϕ(xi; ej ,Σj)

)
,

where R = [rij ]n×κ and i· indicates the ith row.
Then maximizing the log-likelihood is equivalent to

minimizing
∑n

i=1

∑κ
j=1 rij log

(
rij

πjϕ(xi;ej ,Σj)

)
. In the

pruning block, the ej ’s and Σj ’s are fixed, and hence
the optimization variables are the responsibilities only:

min
{Ri·∈∆}n

i=1

n∑
i=1

κ∑
j=1

rij log

(
rij

πjϕ(xi; ej ,Σj)

)
.

The detailed formulation of the objective function is

n∑
i=1

κ∑
j=1

rij log

(
rij

πjϕ(xi; ej ,Σj)

)
=

n∑
i=1

κ∑
j=1

rij×[
log

(
rij
πj

)
+

1

2
log (|Σj |) +

1

2
(xi − ej)

TΣ−1
j (xi − ej)

]
.

To penalize π, we take out the first term in the brackets;
otherwise, numerical algorithms will behave erratically
when πj → 0. Further motivation for the removal of
this term is given in the supplementary material.

This yields the optimization problem

min
{Ri·∈∆}n

i=1

1

2

n∑
i=1

κ∑
j=1

rij(xi − ej)
TΣ−1

j (xi − ej)+

1

2

n∑
i=1

κ∑
j=1

rij log (|Σj |) .

In matrix-vector notation, the optimization problem is

(4.1) min
{Ri·∈∆}n

i=1

1

2

n∑
i=1

RT
i·(Di· + ξ),

where ξ = (log(|Σ1|), . . . , log(|Σκ|))T .

4.2.2 The Penalty We apply the classical ℓ1-norm
penalty on δ◦π: ∥δ◦π∥1 = δTπ, where ◦ is the element-
wise multiplication operator, and δ = (δ1, . . . , δκ)

T is
a weight vector. We here define δi as the probability
that an instance from the ith mixture component is
misclassified into the jth mixture component:

δi = max
j=1,...,κ

Pr
(
πiϕ(x; ei,Σi) <

πjϕ(x; ej ,Σj)|x ∼ N(ei,Σi)
)
.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited



1 2

1 = 0.006
2 = 0.006

1

2

1 = 0.002
2 = 0.008

1,2

1 = 0.158
2 = 0.158

1

2

1 = 0.015
2 = 0.005

Figure 4: The overlap penalty for typical scenarios with
two components: (1) equal weights and homogeneous
spherical covariance matrices, (2) equal weights and het-
erogeneous covariance matrices, (3) equal weights, com-
mon mean and heterogeneous covariance matrices, (4)
unequal weights and homogeneous covariance matrices.

This definition was introduced by Maitra and Melnykov
[17] to measure the degree of overlap between two Gaus-
sian distributions. The weight δi reflects the likelihood
of the exemplar ei belonging to the group of another
exemplar. Exemplars favoured by this penalty are in
keeping with the peak-finding conception of cluster cen-
ters as instances with high density, and relatively large
distance to other points of higher density.

For Gaussian distributions with homogeneous co-
variance matrices, the computation of the probability
is straightforward and related to the Mahalanobis dis-
tance between the exemplars. For general covariance
matrices, the computation involves evaluating the cu-
mulative distribution function of linear combinations of
independent non-central chi-squared and normal ran-
dom variables. A method using the algorithm AS 155
of [10] has been implemented in C as part of the MixSim
package in R [19]. Example values of the δi’s for four
typical scenarios of two-component mixtures are pro-
vided in Figure 4.

4.2.3 Objective Minimization Our penalized ob-
jective function is

(4.2) min
{Ri·∈∆}n

i=1

1

2

n∑
i=1

RT
i·(Di· + ξ) + θδTRT1n,

where the regularization term will force certain columns
of R to be exactly zero. The objective function (4.2) is
linear and hence can be simplified to be

min
{Ri·∈∆}n

i=1

n∑
i=1

RT
i·bi =

n∑
i=1

min
Ri·∈∆

RT
i·bi,

where bi = 1
2Di· +

1
2ξ + θδ. That is, our optimiza-

tion problem can be decomposed into n independent
optimization problems. Moreover, the solution to each
individual problem R∗

i· = minRi·∈∆ RT
i·bi is trivial:

r∗ij =

{
1, if j = argmin1≤v≤κ{bv};
0, otherwise.

The parameter θ controls the amount of shrinkage on
π(= 1

nR
T1n). The solution path is piecewise linear in θ,

and the whole trajectory of π, as a function of θ, can be
easily computed by piecewise-linear homotopy methods
(details given in the supplementary material). Given
the solution R∗ to problem (4.2) with one zero-column,
the refined exemplar set is E1 = {ej ∈ E0 : π∗

j ̸= 0}. An
example plotting the trajectory of π in each iteration is
also given in the supplementary material.

5 Evaluation

The performance of the REM algorithm is demonstrated
on synthetic and real-world datasets. We compare REM
with popular and state-of-the-art initialization meth-
ods. The following methods are used for comparison:

Random Initialization (riEM) Random sam-
pling from the data pool, and the EM algorithm is run
to convergence. Available in Scikit-Learn [22].

k-means++ Initialization (kmEM) The k-
means++ algorithm is used to provide initial partitions
of the data. Available in Scikit-Learn [22].

emEM [6] Truncated runs of EM with random
initializations provide initial parameter values. Imple-
mented as a wrapper for the Scikit-Learn library.

rndEM [16] Similar to emEM with truncated runs
lasting only one iteration. Implemented as a wrapper
for the Scikit-Learn library.

mclust [27] Model-based hierarchical clustering
provides initial partitions of the data. Implemented in
R and C as part of the mclust package.

REM is implemented in Python and can be readily
invoked. The code for REM and for reproducing the
below experiments is available online.1

We report the execution time for each method
to produce the optimal clustering and the number of
clusters detected. We adopt the widely used Adjusted
Rand Index (ARI) and Normalized Mutual Information
(NMI) for performance evaluation.

5.1 Experimental Setup The bandwidth value in
the Gaussian kernel is set to be the average of the
distances from instances to their k-th nearest neighbor,
where k = min(

√
n, 30). The impact of the bandwidth

parameter on REM performance is further discussed in

1https://github.com/tobinjo96/REM (Github Repository)
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Figure 5: The number of clusters returned by each
algorithm using the AIC (pink), BIC (blue), and ICL
(green) model selection criteria.

Section 5.4 below. For all the benchmark methods, the
range for the number of clusters is required as an input.
If κ exemplars are selected for a given dataset by REM,
then for competitor methods, the cluster number m will
range from 1 to κ + 2. For each value of m, riEM
is initialized 25 times, kmEM is initialized 25 times,
rndEM is initialized 200 times, emEM is initialized
50 times (with the maximum number of iterations of
the truncated EM set to 50, and the tolerance for
convergence of the log-likelihood set to 1× 10−3). The
model selection criteria for REM include the AIC, BIC,
and ICL. For riEM, kmEM, emEM, and rndEM, the
AIC and BIC are used. For mclust, the authors note
a preference for the BIC. For fair comparison between
methods, we allow the covariance matrices to take
any form. The tolerance for convergence of the log-
likelihood for EM is set to 1× 10−5, and the maximum
number of iterations is set to 100 for each method. All
experiments were conducted on a PC running Debian
10 (Buster), consisting of 24 cores and 24GB of RAM.

5.2 Simulated Datasets We first examine the per-
formance of the peak-finding method when no cluster
structure is present in the data. Following [25], we gen-
erate 40 datasets, 20 of dimension p = 2 and p = 50

respectively, from independent χ2 distributions with 10
degrees of freedom. The competitor methods are ini-
tialized with m ∈ [1, 5]. The number of clusters re-
turned by the competitor methods and REM for each
of the datasets is shown in Figure 5 (the Chi-squared
columns). The peak-finding method is adept at cor-
rectly choosing only one potential exemplar in the data.
Since the data are skewed, the competitor methods de-
tect more than one component in the data. This shows
the efficiency of the peak-finding method for initializa-
tion.

We next consider datasets with a large number of
well-separated clusters. Again, 40 datasets are gener-
ated, 20 each of dimension p = 2 and p = 50 respec-
tively. The MixSim package in R is used to generate
40 clusters with no overlap. The competitor methods
were initialized with m ∈ [30, 50]. The number of clus-
ters returned by the competitor methods and REM for
each of the datasets is shown in Figure 5 (the Large m
columns). The advantages of deterministic initialization
methods are clear in this case. Furthermore, kmEM
and REM achieve the correct number of components
for p = 2, while the remaining stochastic initialization
methods struggle to place initial mean vectors in ev-
ery cluster. Due to the high number of parameters in
these models, mclust returns a solution for only two of
the 50-dimensional datasets. REM achieves the correct
number of clusters for each model selection criterion.

Finally, we consider 20 simulations of the mixture
provided in Experiment 3 of [21]. This mixture consists
of three overlapping clusters in 10 dimensions, two with
adjacent mean vectors. The competitor methods are
initialized with m ∈ [1, 5]. The number of clusters
returned by the competitor methods and REM for
each of the datasets is shown in Figure 5 (the Overlap
column). In this case, REM achieves the correct number
of components for the AIC and BIC model-selection
criteria for each dataset. The ICL criterion merges
the components with adjacent mean vectors, in keeping
with its preference for sparser models relative to the
other two criteria. For the competitor methods, mclust
achieves the correct number of clusters for each dataset
and the BIC is seen to generally outperform the AIC.

Name n p m

Ecoli [11] 336 7 8
G2 [18] 2048 128 2
Iris [11] 150 4 3
Satellite [11] 4435 36 6
Seeds [11] 210 7 3
Wine [11] 178 14 3

Table 1: The characteristics of the evaluated datasets.
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Figure 6: The decision graphs for the six real datasets with color representing the true class label. The dashed
lines show the values of τ and l that decide the initial exemplars.

REM riEM kmEM emEM rndEM Mclust
Dataset Metric AIC BIC ICL AIC BIC AIC BIC AIC BIC AIC BIC BIC

Ecoli ARI 0.599 0.599 0.599 0.600 0.282 0.619 0.277 0.608 0.233 0.607 0.294 0.560
NMI 0.566 0.566 0.566 0.601 0.382 0.598 0.370 0.596 0.275 0.574 0.385 0.551

G2 ARI 1.000 1.000 1.000 0.148 0.000 0.699 0.003 0.748 0.000 1.000 0.000 0.000
NMI 1.000 1.000 1.000 0.185 0.004 0.723 0.051 0.764 0.000 1.000 0.000 0.000

Iris ARI 0.904 0.904 0.904 0.742 0.443 0.693 0.693 0.856 0.568 0.904 0.568 0.562
NMI 0.900 0.900 0.900 0.791 0.649 0.769 0.769 0.857 0.734 0.900 0.734 0.761

Satellite ARI 0.524 0.524 0.524 0.443 0.419 0.444 0.465 0.423 0.439 0.465 0.476 0.467
NMI 0.578 0.578 0.578 0.501 0.490 0.565 0.556 0.553 0.521 0.549 0.556 0.563

Seeds ARI 0.766 0.766 0.766 0.594 0.663 0.576 0.621 0.624 0.624 0.644 0.663 0.788
NMI 0.744 0.744 0.744 0.643 0.621 0.646 0.663 0.663 0.663 0.669 0.621 0.744

Wine ARI 0.534 0.501 0.501 0.480 0.008 0.502 0.510 0.507 0.510 0.476 0.510 0.498
NMI 0.526 0.597 0.597 0.559 0.072 0.508 0.573 0.584 0.573 0.520 0.601 0.613

Table 2: Clustering results on the real datasets by different methods. The best results are highlighted in bold.

5.3 Real Datasets Six datasets are used to compare
the clustering performance of REM with the competitor
methods. Details of the datasets can be found in Table
1. Instances with missing values were removed. For each
dataset, the initial exemplars for the REM algorithm are
indicated in the decision graph in Figure 6. For the G2,
Iris and Seeds datasets, the number of components is
immediately obvious from the decision graph. For the
other three datasets, we set the two threshold values to
include all promising exemplars.

The results for clustering the six datasets are pre-
sented in Table 2. For each method, the ARI and NMI
values are calculated from the clustering decided by the
relevant model-selection criterion. REM achieves the
best clustering, in terms of NMI, for four of the six
datasets examined and, in terms of ARI, the best for five
of the six datasets. Moreover, the clustering results from
REM are consistent across the different model-selection
criteria. This is due to the fact that, in REM, the mean
vectors are fixed at the exemplars. Mclust, the other de-
terministic initialization method assessed, outperforms
REM for the Seeds dataset, and achieves comparable
performance for the Satellite and Wine datasets. Un-
like REM, which achieves the perfect clustering on the
G2 dataset, Mclust is not able to detect the two clus-
ters, as the BIC criterion merges the two components in

search of a sparse model. The stochastic initialization
approaches are capable of achieving excellent results,
for example the rndEM on the Iris dataset. However,
the performance is not consistent between different runs,
and the results are not robust to the choice of the model-
selection criterion.

D
at
as
et

R
E
M

ri
E
M

km
E
M

em
E
M

rn
dE

M

M
cl
us
t

Ecoli 1.42 214.7 71.6 19.6 181.9 2.4
G2 32.0 2025.9 52.1 181.1 2433.0 1153.9
Iris 0.3 90.9 4.7 2.26 26.3 0.7
Satellite 295.0 7302.2 1161.9 1020.4 7242.5 437.7
Seeds 0.9 158.2 2.3 4.01 41.2 1.2
Wine 3.9 142.8 4.1 4.69 57.6 0.4

Table 3: Execution time (seconds) for the evaluated
datasets.

The run time, in seconds, for each of the methods
is presented in Table 3. For small datasets, we see that
REM is competitive with Mclust, and both are much
faster than the other methods. REM runs faster for
the low-dimensional datasets, whereas Mclust is faster
for the Wine dataset. The magnitude of difference is
negligible and unlikely to hinder the use of REM in ap-
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Figure 7: The performance of the REM algorithm
evaluated by the ARI (pink) and NMI (blue) as the
parameter h changes.
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Figure 8: The performance of the REM algorithm
evaluated by the ARI (pink) and NMI (blue) as the
number of selected exemplars changes.

plications. We see that, for larger datasets, REM has
the fastest run time. The difference is most pronounced
for the G2 dataset and the Satellite dataset. The exe-
cution times of the stochastic methods are significantly
higher than Mclust and REM. For riEM and rndEM,
this is caused by the slow convergence of the EM algo-
rithm as a result of naive initializations. For emEM and
kmEM, providing the initializations requires significant
computation, slowing down execution significantly.

5.4 Ablation Study REM has two tuning parame-
ters: (1) h, the bandwidth of the Gaussian kernel and
(2) κ, the number of exemplars selected from the deci-
sion graph. To examine the impact of h and κ on the
REM algorithm, we use, for brevity, three real datasets
(Iris, Satellite, Seeds), covering a range of sizes and di-
mensions, with the remainder are included in the sup-
plementary material.

To assess the impact of the bandwidth parameter,
we compute the minimum (dmin) and maximum (dmax)
pairwise distances in the data, and set h = dmin +
λ(dmax−dmin). We increase λ from 0 to 1 in increments
of 0.005 and run REM for each increment. We can
see from Figure 7 that, for the Iris, Satellite and Seeds
datasets, the results are robust to the choice of h, with
REM achieving high quality clusterings over a very
broad range of λ values.

To assess the impact of κ on the clustering quality,
we run REM on the four datasets ten times, initialized
with κ ∈ [m,m+10] centers. The selected exemplars are

Peaks Prune Fixed ARI NMI

M1 ✓ 0.237 0.283
M2 ✓ 0.571 0.541
M3 ✓ ✓ 0.417 0.563
M4 ✓ ✓ 0.578 0.552
REM ✓ ✓ ✓ 0.599 0.566

Table 4: Clustering results on the Ecoli dataset by the
ablation methods.

the κ instances with highest values of fh(x)×ω(x). The
results, shown in Figure 8, demonstrate that the REM
algorithm is robust to the number of initial exemplars.
This confirms the intuition that the penalty introduced
in Section 4.2.2 correctly prunes spurious exemplars.

The importance of the main features of REM are
demonstrated by individually substituting (1) the peak-
finding exemplar selection with random selection, (2)
the iterative pruning algorithm with an ordering of
exemplars based on the magnitude of fh(x)×ω(x), and
(3) the EM-type algorithm with fixed means with the
full EM algorithm detailed in Section 3. The results
for the Ecoli dataset are shown in Table 5 and the
remaining datasets are included in the supplementary
material. Random initialization leads to significantly
poorer results than the peak-finding method as seen
when comparing methods M1 and M2 in the Table 5.
The impact of the pruning approach is also clear when
comparing methods M2 and M4. Finally, it is noted
that REM achieves the best result for each metric on
each of the datasets assessed, highlighting the mutually
beneficial impact of each of the constituent parts.

6 Conclusion and Future Work

This work introduced REM, an algorithmic tool for
model-based clustering, which extricates the EM al-
gorithm from the initialization problem. We showed
that the peak-finding method is an effective tool for
quickly determining high-quality exemplars. For exem-
plar pruning, we developed a novel objective function
that originates from the log-likelihood function, inte-
grates a data-driven penalty, admits analytic solutions,
and allows distributed computing. Through iterative
pruning of the exemplars, our algorithm generates a se-
quence of nested clusterings, from which the preferred
partition can be selected. Experimental results demon-
strated that our method has excellent performance. It
achieves perfect clusterings for datasets containing well-
separated clusters and outperforms prominent bench-
mark methods on a broad range of simulated and real-
world datasets. The hyper-parameters of our model are
conventional and can be handily tuned by users. We
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showed that our algorithm achieves consistent results
over a broad range of hyper-parameter values. In fu-
ture, we envisage incorporating structured covariance
matrices into our method to allow for even faster com-
putation.
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Supplementary Material

Exemplars are consistent mode estimators We
here prove that the exemplars selected by the peak-
finding criterion are consistent estimates of the true
modes of the underlying GMM density. We also discuss
the ability of the peak-finding criterion to control the
types of exemplars through the parameters l and τ . This
analysis is adapted from the theoretical work in [13].

We first prove the uniform consistency of the kernel
density estimator for the underlying mixture density.
The kernel function is defined as K : Rp → R+,
such that

∫
Rp K(u)du = 1. The kernel used in this

work is Gaussian. The Gaussian kernel is spherically
symmetric, non-increasing and has exponential decay.
As such, there exists a non-increasing function k : R+ →
R+ such that K(u) = k(|u|) for u ∈ Rp, and

k(t) ≤ Cρ · exp(tρ), for t > t0.

We bound the error in estimating the true mixture
density f(x) for every x ∈ Rp as follows. As f
is a mixture of Gaussian components, it is globally
Lipschitz; that is, ∃L > 0 s.t. for all x,x′ ∈ Rp,
|f(x) − f(x′)| ≤ L∥x − x∥. A uniform kernel density
estimation bound is provided by [14].

Lemma 1 (Theorem 2 of [14]). There exists a positive
constant C ′, depending on f and K, such that the
following holds with probability at least 1−1/n uniformly
in h > (log n/n)1/p.

∑
x∈Rp

|fh(x)− f(x)| < C ′ ·

(
h+

√
log n

n · hp

)
.

We next define the modes of the underlying density.

Definition 1. The modes of f is the finite set

M = {x : ∃r > 0,∀x′ ∈ B(x, r), f(x′) < f(x)} .

As f is a mixture of Gaussian components, it is
infinitely differentiable at all x. Denoting the gradient
and Hessian of f by ∇f and ∇2f , then ∇2f is negative
definite for all x ∈ M. This yields the following
statement.

Lemma 2 (Lemma 5 of [9]). There exists rM , Ĉ, Č > 0
such that the following holds for all x∗ ∈ M simultane-
ously:

Č · ∥x∗ − x′∥2 ≤ f(x∗)− f(x′) ≤ Ĉ · ∥x∗ − x′∥2,

for all x′ ∈ Ax∗ . Here, Ax∗ is a connected component
of {x : f(x) ≥ infx′∈B(x∗,rM ) f(x

′)}, which contains x∗

and does not intersect with other modes.

This lemma states that the density in a neighbor-
hood around the modes of f can be well-approximated
by a quadratic function, and is useful for the later
proofs.

Following [13], we now define a stronger notion of
a mode that allows clearer analysis of the peak-finding
criterion.

Definition 2. A mode x ∈ M is an (r, ζ, ν)+-mode,
if f(x) > f(x′) + ζ for all x′ ∈ B(x, r)\B(x, rM )
and f(x) > ν + ζ. Let M+

r,ζ,ν ⊆ M denote the set of

(r, ζ, ν)+-modes of f .

If x∗ is an (r, ζ, ν)+-mode, the definition states that
f(x∗) ≥ ν + ζ. Also, x∗ is a maximizer of f in a larger
ball of radius r by at least ζ for points outside the region
of quadratic decay B(x0, rM ), as defined in Lemma 2,
i.e., f(x∗) ≥ f(x′)− ζ, ∀x′ ∈ B(x∗, r)\B(x∗, rM ).

The peak-finding criterion requires the user to spec-
ify a threshold l for the local density value and a thresh-
old τ for the distance to nearest neighbor of higher lo-
cal density. Take the set of instances selected by the
peak-finding criterion as E = {e1, . . . , eκ}. We show
that E contains unique and consistent estimates of the
(τ + ϵ, ζ, l)+-modes of f .

Theorem 1 (Adapted from Theorem 2 of [13]). Let
x∗ ∈ M+

τ+ϵ,ζ,l be a (τ + ϵ, ζ, l)+-mode of f , where
ζ, ϵ > 0. Let h = h(n) be chosen such that h → 0
and log n/(n · hp) → 0 as n → ∞. Then, there exists a
C > 0, depending on f and K, such that the following
holds for n sufficiently large with probability at least
1− 1/n. There exists a unique e ∈ E such that

∥e− x∗∥ < C

(
(log n)4/ρhp +

√
log n

n · hp

)
.

Proof. In order to prove Theorem 1, we require the
following lemma.

Lemma 3 (Lemma 4 of [13]). Suppose the same setting
as Theorem 1. Define

r̄2 := max

{
32Ĉ

Č
(log n)4/ρh2, 17 · C ′

√
log n

n · hp

}
.

Suppose x∗ ∈ M, and x∗ is the unique maximizer of
f on B(x∗, r̄). Define x̂ := argmaxx∈B(x∗,r̄)∩X fh(x),
Then for n sufficiently large, with probability 1−1/n we
have

∥x∗ − x̂∥ < r̄.

Suppose that x∗ ∈ M+
τ+ϵ,ζ,l. Let e =

argmaxx∈B(x∗,τ)∩X fh(x). We show that e ∈ E. By
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Lemma 3, we have ∥x∗ − e∥ ≤ r̃ where

r̃2 = max

{
32Ĉ

Č
(log n)4/ρh2, 17 · C ′

√
log n

n · hd

}
.

It remains to show that e = argmaxx∈B(e,τ)∩X fh(x).
We have B(e, τ) ⊆ B(x∗, τ + r̃). Choose n sufficiently
large such that (i) r̃ < ϵ; (ii) supx∈Rd |fh(x) − f(x)| <
ζ/4; and (iii) r̃2 < ζ/(4Ĉ).

Now

sup
x∈B(x∗,τ+r̃)\B(x∗,τ)

fk(x) ≤ sup
x∈B(x∗,τ+r̃)\B(x∗,τ)

f(x) + ζ/4

≤ f(x∗)− 3ζ/4

≤ f(e) + Ĉr̃2 − 3ζ/4

< f(e)− ζ/2

< fk(e).

Therefore, we have e = argmaxx∈B(e,τ)∩X fh(x). Fur-
thermore, by (ii) we have that fh(x) > l − ζ. Hence,
e ∈ E.

Now we show that it is unique. Suppose that
e′ ∈ E such that ∥e′ − x∗∥ ≤ τ/2. Then,
both e = argmaxx∈B(e,τ)∩X fh(x) and e′ =
argmaxx∈B(e′,τ)∩X fh(x). However, choosing n suffi-
ciently large such that r̃ < τ/2 yields e ∈ B(e′, τ),
implying e = e′.

Theorem 1 proves that the peak-finding criterion
recovers the modes of a GMM density consistently.

Removal of the First Term from the Objective
Function We provide a motivation for the removal of
the first term from the objective discussed in Section
4.2.1. Consider again the original objective function
before removing the first term

min
{Ri·∈∆}n

i=1

n∑
i=1

κ∑
j=1

rij

[
log

(
rij
πj

)
+ bij

]
,

where bij = 1
2dij + 1

2ξj + 1
κθδj is thus a constant

determined by the data and the penalty. Further
expansion yields

min
{Ri·∈∆}n

i=1

[ n∑
i=1

κ∑
j=1

rij log

(
rij
πj

)
+

n∑
i=1

κ∑
j=1

rijbij

]
.

Now, we have that the first term

n∑
i=1

κ∑
j=1

rij log

(
rij
πj

)
,

Figure 9: An illustrative example of the pruning block.

is a bounded function over the product of the n simplex
spaces ∆×∆× . . .×∆. Moreover,

lim
rij→0

rij log

(
rij
πj

)
= 0

lim
πj→0

n∑
i=1

rij log

(
rij
πj

)
= 0.

Therefore, the optimal solution, for the term∑n
i=1

∑κ
j=1 rij log

(
rij
πj

)
, must lie in a region where no

πj = 0 (in fact in a region where no rij = 0). As the
arguments of the function are completely exchangeable
and have equal importance, were say π1 = 0, then it
must be the case that π2 = 0. The solution would thus
reduce to π1 = . . . = πκ−1 = 0 and πκ = 1.

Illustrative Example of the Pruning Block Figure
9 shows a worked example with five clusters. The
colors represent the clusters; the contours represent the
covariance matrices, with red contours indicating the
component to be pruned in the next iteration.

Piecewise Linear Homotopy The parameter θ con-
trols the amount of shrinkage on π. We now provide
details on how the trajectory of π, as a function of θ, is
computed. The objective function (4.2) is equivalent to

min
{Ri·∈∆}n

i=1

n∑
i=1

RT
i· [Di· + ξ + θδ] =

n∑
i=1

min
Ri·∈∆

RT
i·bi,

where bi = Di· + ξ + θδ, and we have incorporated the
factor 1

2 into the parameter θ. The solution to each
individual problem is:

r∗ij =

{
1, if j = argmin1≤v≤κ{bv};
0, otherwise.

If the first exemplar e1 were to be pruned, we would
require a θ value such that:

b11 ≥ min {b12, b13, . . . , b1κ}
b21 ≥ min {b22, b23, . . . , b2κ}

...

bn1 ≥ min {bn2, bn3, . . . , bnκ}
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Therefore, the θ value should satisfy that

d11 + ξ1 + θδ1 ≥ min {d12 + ξ2 + θδ2, d13 + ξ3 + θδ3, . . .}
d21 + ξ1 + θδ1 ≥ min {d22 + ξ2 + θδ2, d23 + ξ3 + θδ3, . . .}

...

dn1 + ξ1 + θδ1 ≥ min {dn2 + ξ2 + θδ2, dn3 + ξ3 + θδ3, . . .}

To simplify notation, define p1ij = (dij + ξj)− (di1+ ξ1),
for j = 2, . . . , κ. We assume w.l.o.g. that δ1 < δ2
and δ1 > δj for j ≥ 3. Then we can find the possible
range of solutions for θ by considering the following set
of intervals:

(6.3)

θ ∈
n⋂

i=1

(−∞,
pi2

δ1 − δ2

]⋃ κ⋃
j=3

[
pij

δ1 − δj
,∞
)

If the interval solutions overlap, then the θ value that
prunes the first exemplar is the lower bound of the
overlapping interval. If the interval solutions do not
overlap, resulting in θ ∈ ∅, then the first exemplar will
not be pruned.

By analogy, we can obtain the critical θ value for
each exemplar, denoted by {θ1, . . . , θn}. Then with θ in
(4.2) gradually increasing from 0, all the proportions in
π change linearly. When θ reaches to min{θ1, . . . , θn},
the exemplar with the minimal critical θ value will be
pruned first, and its proportion value reduces to 0.

Trajectory of Component Proportions Figure 10
shows a toy example tracking the piecewise-linear tra-
jectory of π. Taking initially, two isotropic Gaussian
clusters with four exemplars selected initially, the exem-
plars are labelled in decreasing order of fh(x) × ω(x).
As the iterations of the algorithm continue, the path of
π is seen in the bottom row of figures to consecutively
prune superfluous exemplars from the set. After two
iterations, the optimal clustering is achieved.

Supplementary Experimental Results Figure 11
and Figure 12 present the analysis used to assess the
impact of the bandwidth parameter and the impact
of κ on the clustering quality, as done in Figure 7
and Figure 8 respectively, for the Ecoli, G2 and Wine
datasets. While the Ecoli dataset is seen to be relatively
sensitive to the parameter choice, the range of high-
quality values allows for λ to be selected between 0 and
0.3, a wide range for users to exploit. The other two
datasets exhibit perfect consistency for all values of λ,
emphasising the robustness of the proposed approach.
The Ecoli and G2 datasets are also robust to the choice
of κ. While for the Wine dataset, the quality is seen
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Figure 10: A toy example shows the piecewise-linear tra-
jectory of π. Top Left: The data and the four selected
exemplars, labelled in decreasing order of fh(x)×ω(x).
Top Right: The final clustering obtained by REM. Bot-
tom: The whole trajectory of π, as a function of θ, in
each REM iteration. After the first iteration, exemplar
e3 is pruned; after the second iteration, exemplar e4 is
pruned. The bottom right panel shows that θ needs to
be very large to merge two true cluster centers.
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Figure 11: The performance of the REM algorithm
evaluated by the ARI (pink) and NMI (blue) as the
parameter h changes.

to degrade as κ increases, it should be noted that the
decision graph included in Figure 6 points users to
values that return high-quailty clusterings.

The results for the ablation study for the G2, Iris,
Satellite, Seeds and Wine datasets are shown in Table
5. The strength of the REM method is again demon-
strated. The peak-finding initializations are seen to sig-
nificantly outperform the random initialization used in
M1. Furthermore, the peak-finding initializations are
seen to complement the pruning method introduced in
this work.
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Figure 12: The performance of the REM algorithm
evaluated by the ARI (pink) and NMI (blue) as the
number of selected exemplars changes.

Metric G2 Iris Sat. Seeds Wine

M1 ARI 0.431 0.795 0.516 0.475 0.383
NMI 0.522 0.808 0.572 0.555 0.471

M2 ARI 1.000 0.899 0.463 0.640 0.463
NMI 1.000 0.879 0.559 0.670 0.501

M3 ARI 0.000 0.664 0.492 0.641 0.456
NMI 0.000 0.730 0.597 0.671 0.501

M4 ARI 1.000 0.870 0.524 0.715 0.000
NMI 1.000 0.883 0.578 0.737 0.000

REM ARI 1.000 0.904 0.524 0.766 0.534
NMI 1.000 0.900 0.578 0.744 0.501

Table 5: Clustering results on the real datasets by
ablation methods. The best results are highlighted in
bold.
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