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Abstract

Ignorance within non-cooperative games, reflected as a player’s uncertain prefer-
ences towards a game’s outcome, is examined from a probabilistic point of view.
This topic has had scarce treatment in the literature, which emphasises exogenous
uncertainties caused by other players or nature and not by players themselves.
That is primarily because a player’s endogenous uncertainty over an outcome poses
significant challenges and complex sequences of reciprocal expectations. Therefore,
it is often ignored, and preferences are either assumed from a continuous domain
or set using introspection.

Decisions under ignorance could be optimised by permitting a player to com-
pute rational strategies with respect to elicited lower and upper expectations of
an uncertain outcome, allowing them to update these strategies when new obser-
vations are available, and helping them assess the impact and value of acquired
information. Therefore, this dissertation aims to develop a complete framework
for decision optimisation within strategic settings that include uncertainty. We
explore a solution concept based on recent research in imprecise probabilities and
de Finetti’s approach to defining subjective probabilities, which utilises bets to
assess beliefs.

An in-depth literature review of game theory and imprecise probabilities is pro-
vided, focusing on existing normative theories and their plausible generalisations.
The motivation behind a solution permitting ignorance is presented, and founda-
tional issues related to existing approaches are argued. Afterwards, we introduce
a framework that allows a risk-neutral player with constant marginal utilities for
money to incorporate and dynamically learn about uncertain outcomes. This
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framework is then generalised to cover risk-averse players whose marginal utilities
across outcomes are state-dependent.

The resulting framework is proposed as a possible solution to the problem of
utility induction and decision-making in game-theoretic settings that include un-
certainty. It is analysed and demonstrated through motivating examples modified
to include uncertainty. Each example’s correlated equilibria’s convex polytope is
computed and compared to its uncertainty-free equivalent. Exceptional cases such
as extreme ignorance are also examined and assessed through a Monte Carlo sim-
ulation where we demonstrate that, in repeated games, vacuous lower and upper
previsions converge to one linear value that reflects the true expected preference
over the uncertain outcome.

Moreover, inadequate value of information under uncertainty is considered, and
a model to assess the impact of information patterns on strategic interactions is
proposed. This model enables a player to compute their expected and actual values
of a piece of information with respect to a Pareto-efficient strategy. We showcase
it within a game that includes uncertainty by applying utility diagnostics to two
types of players, pessimistic and optimistic.

Finally, since the foundations of the normative game theory introduced by Von
Neumann and Morgenstern assume that all outcomes are known, the consistency
of its axiomatic rules under ignorance is reviewed. We show that uncertainty can
alter relevant games’ zero-sum and symmetry properties and propose an approach
to force these properties.

Thesis Supervisor: Mimi Zhang
Title: Associate Professor
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Introduction

This chapter describes the problem examined in this study. We start by giving

an overview of utility theory and discussing its properties and role in assessing a

decision-maker’s preference. We present game theory and describe the decision-

making setting we are investigating. The issue of ignorance in game theory is then

highlighted, along with present solutions and the need for a probabilistic approach.

Finally, we offer a summary of the following chapters.

1.1 Utility Theory

One of the central and main requirements of decision theories is knowing a decision-

maker’s preferences. Those preferences are reflected and quantified as utilities. As

Von Neumann and Morgenstern [85] outlined, utilities are numerical measurable

quantities that are expected to be complete. Furthermore, based on economics by

Pareto and Bonnet [64], these utilities must be comparable. The decision-maker

is expected to have a clear intuition of preference between two objects, events, or

even a combination of events.

A utility function can measure a decision-maker’s preferences over outcomes.
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As suggested by Bernoulli [12], it is a non-linear function that allows determining

the value of a reward. Formally, a utility function 𝑈 will have a set of outcomes as

domain and a set of real numbers R as co-domain. Furthermore, it will be in line

with the decision-maker’s preferences; that is, if a decision-maker strictly prefers

outcome 𝜑𝜑𝜑1 over 𝜑𝜑𝜑2, then 𝑈(𝜑𝜑𝜑1) > 𝑈(𝜑𝜑𝜑2).

In this study, to avoid misinterpretation, interest lies in the cardinal utility

function that returns the ‘worth’ of each given outcome, in contrast to the ordi-

nal utility function, which ranks outcomes based on preferences. The latter is a

primitive concept often used in Economics and does not measure the degree of

preference.

1.2 Problem Description

Game theory studies the decision-making process in a strategic setting, a situation

where two or more decision-makers, known as players, compete or collaborate to

maximise their utilities. Game theory relies on pre-determined utilities to decide

a player’s optimal move. In literature and practice, a player is required to know

their utility towards each possible outcome in the game and the utilities of all other

players [47]. Therefore, a player is expected to have explicit knowledge about each

outcome, including outcomes that have never been previously experienced. This

knowledge is reflected by having a utility function with the game’s complete set of

outcomes as a domain.

Usually, the utility function is considered to have a fixed form throughout the

entire gameplay. Furthermore, it can be either a defined function, e.g. an expo-

nential utility, or utility values attributed to each possible outcome. Whichever
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way, the possibility that a player may not know in advance an outcome’s payoff

is often ignored, and a utility value is assumed. Hence, classical game-theoretic

approaches fail to handle situations of uncertainty. Moreover, since an assumed

utility value remains fixed throughout the entire gameplay, these approaches don’t

allow the player to be surprised or learn about their preferences once the outcome

is experienced.

Given game theory’s many applications in economy, finance, biology, law, mar-

keting, management, etc., a state of uncertainty over outcomes could arise in many

cases, e.g. when two companies invest in a new market. It is common for different

parties to freely enter a game without having experienced its outcomes before,

sometimes as a trial attempt to learn about their preferences towards these out-

comes. Therefore, stretching the classical theory to allow for cases of ignorance

over an outcome will expand its application. Work done by Nau [56] on extending

de Finetti’s [20] subjective probability approach to non-cooperative games, cou-

pled with the imprecise probabilities toolkit, provides a compelling framework

that could serve our purpose. It allows us to convert a game to a common-

knowledge matrix and subsequently replace an unknown outcome’s payoff with

a gamble. This gamble will generate a random reward whose value depends on

the result of an experiment. Inspired by Walley [86], an elicitation model that

uses a player’s pre-existing beliefs towards the gamble’s outcomes is utilised to de-

termine its supremum buying and infimum selling prices. Furthermore, Houlding

and Coolen’s [38] non-parametric predictive utility inference (NPUI) framework is

used as a dynamic updating mechanism for repeated games. It allows players to

change their preferences towards an unknown outcome based on new observations

and therefore make more desirable moves.

17



1.3 Outline of Thesis

In the remainder of this report, Chapter 2 covers game theory’s literature and

applications in different strategic settings. Chapter 3 gives an overview of var-

ious approaches used to quantify, model, and assess uncertainty, e.g. imprecise

probability, non-parametric utility inference (NPUI), etc. These approaches are

our building blocks to a game theory model that allows for ignorance. Chapter 4

highlights the limitations of game theory under ignorance and suggests a frame-

work that overcomes these limitations. The proposed solution covers one-shot and

repetitive non-cooperative games. It includes an imprecise probability elicitation

approach that allows players to provide initial utility previsions over uncertain out-

comes and a dynamic updating model to adjust these elicited previsions whenever

the relevant outcomes are experienced. In Chapter 5, extreme scenarios are con-

sidered, and the proposed framework is tested using a Monte Carlo simulation on a

variant of the game ‘Matching Pennies’ that involves complete ignorance. Further-

more, this chapter explores how game-theoretic characteristics such as zero-sum

and symmetry are altered by ignorance and proposes an approach to force these

properties. Chapter 6 examines the implication of ignorance on utility diagnostics

and introduces a model to improve the value of information(VOI) under this case.

Finally, we conclude with Chapter 7 and propose possible developments to the

proposed framework.
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Review of Game Theory

This chapter covers the fundamental literature on game theory and its applica-

tion in strategic settings. Section 2.1 briefly overviews game theory and formally

defines a game and its components. Section 2.2 highlights the importance of in-

formation in games. Furthermore, it introduces Value of Information (VOI), an

analytical method to quantify the value of a piece of information. Section 2.3

formally defines a game and the form used to represent it throughout this study.

Section 2.4 discusses the different risk attitudes and their impact on a subject’s

utility function. Furthermore, it gives an introductory example of a game. Sec-

tion 2.5 defines rationality and discusses the problem of rational behaviour within

strategic settings. Finally, the chapter concludes with a discussion in Section 2.6

on game strategies and types of equilibria. We demonstrate through examples how

to achieve each type of equilibrium.

2.1 Game Theory

Game theory studies the decision-making process in a competitive or collaborative

setting. It aims at helping a rational and intelligent decision-maker (DM) select
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the optimal choice amongst a set of available alternatives [52]. A DM is considered

rational if they act in accordance with an accepted system of rationality axioms,

which is discussed in Section 2.5. Furthermore, a DM is considered intelligent if

they completely understand the situation under which a decision should be made

and can make inferences that any other DM can make.

Game theory is used in different disciplines, including but not limited to econ-

omy, finance, biology, law, marketing, management, etc. The decision-making

setting always involves more than one DM. We refer to them as players. They

can either cooperate, e.g. two firms collaborating on a project, or compete, e.g.

two firms fighting on market shares. In both cases, players are interdependent.

The behaviour of one affects the other, either positively or negatively. Situations

of interdependence are known as strategic settings. Under a strategic setting, a

player must consider the actions of other players before making any decision. For

example, if a firm is looking to maximise its shares in the market, it should analyse

the position and activity of its rivals.

Although studies and research published around strategic settings are relatively

new, logical thinking about human behaviour existed long ago. For instance, Par-

lor games, e.g. chess, were studied by mathematicians hundreds of years ago in

an attempt to find optimal strategies. However, the first formal literature around

games, made by Zermelo, appeared in 1913 [93]. Then, a ground-breaking work

by Borel on the concept of strategies followed [14, 15]. In 1928 [84] and 1944 [85],

Von Neumann and Morgenstern, in their revolutionary work, came up with a gen-

eral theory for strategic situations called the theory of games. They meticulously

outlined how games should be represented mathematically and proposed a general

method to analyse them. However, it was limited to specific strategic settings.
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Later on, in the mid-century, Nash [54] extended the method and distinguished

between cooperative and non-cooperative games and created the concept of ratio-

nal behaviour. After that, mathematicians and economists continued building on

the established foundation and made the most powerful toolboxes used today in

social sciences [85].

Developing a systematic understanding of a strategic setting and translating

it into a quantitative model has several advantages. First, it provides a language

to decrypt human behaviour under different strategic settings. Second, it allows

assessing optimal behaviour within a strategic setting. Finally, it can be used as

a framework to build other strategic settings.

Game theory requires a player to assign utilities to each possible outcome in

the game. These utility values are used to assess the optimal choice available to

this player and identify the strategy that maximises their expected utility. Since

the game’s outcome is a multilateral decision, when each player makes a choice,

they should consider that other players are also trying to maximise their expected

utility [47].

Games are classified into two main categories: zero-sum games, where the

net total of all payments made and received by players is zero. In this case,

the exchanged assets, e.g., money, between players are not produced or destroyed

during the game. Non-zero-sum games, where the total of payments is neither

zero nor even constant [85].

Game theory is the standard approach to reasoning within strategic settings

[10]. However, other approaches exist and are beyond the scope of this research.

For instance, adversarial risk analysis (ARA) is an alternative to game theory.

As highlighted by Banks et al. [10], it is a framework that guides a player’s
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decision-making process by analysing the game from their opponent’s perspective.

Uncertainties related to the opponent are partitioned into three separate com-

ponents and then accounted for through subjective probability distributions [50].

ARA could lead to complex mathematical formulations. Nevertheless, it has a

natural and intuitive concept. For example, consider a mental model of what an

employer values (e.g. good performance, creativity, etc.) and their likely reactions

to different discussions about a raise. The more accurate the model, the higher

the likelihood of getting a raise.

2.1.1 Defining a Game

Prior to discussing the quantitative aspect of game theory, the following is an

overview of a game and its components [85].

1. A game is the set of rules that describe it, and every instance of it is a play.

For example, in the game Rock-Scissors-Paper, the rules state that each

player can choose either rock, scissors or paper and that rock overpowers

scissors, paper overpowers rock, scissors overpowers paper.

2. Moves are the component elements of a game. A move is an occasion where

a player is presented with a set of alternatives to choose from, subject to

the game’s rules. Moves fall into two categories: a personal move, when

a player’s choice relies strictly on their free will, e.g. choosing scissors in

the game Rock-Scissors-Paper. A chance move, when the player’s choice is

influenced by probability calculations, e.g. getting dealt a card;

3. Each player is free to base their decisions on pre-determined principles, as
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long as these principles comply with the game’s rules. The set of a player’s

principles is referred to as a strategy and is discussed further in Section 2.6.

2.2 Information in a Game

As previously mentioned, each player has to choose among several alternatives. If

the player is at a chance move, they will rely solely on probability, and nobody’s

opinion influences their decision. However, suppose they are at a personal move.

In that case, the player’s state of information plays a vital role in making deci-

sions because the available information helps them assess optimal decisions that

maximise their expected utility.

At each personal move, the basic set of information accessible to each player

should include all numerical conclusions derived from the game’s rules; that is, the

payoffs of all possible outcomes implied from the players’ alternatives. Therefore,

there is an assumption that the player knows the payoff of each outcome and has

visibility of all the game’s components [85].

Throughout the gameplay, a player becomes aware of all or some of the choices

made by other players at their respective moves. A move is anterior to this player if

it happens chronologically before their current move. However, it is said to be pre-

liminary to the player only if they know the move’s resulting decision. Therefore,

anteriority doesn’t necessarily imply preliminarity. Anterior moves preliminary to

a player will help them adjust their information set and reduce it by excluding the

no longer possible payoffs.

Furthermore, the set of information is sensitive to any extra information regard-

ing the game’s components, i.e. possible outcomes and their payoffs. For instance,
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if, through additional information, a player knows in advance what choices other

players will make, they can narrow the range of possible payoffs further.

Value of information (VOI) is a method used in decision analysis to help a DM

assess the value of an additional piece of information. VOI places a quantitative

measure on available information representing the most a person would pay for

this information. In the classic Theory of Information, Blackwell [13] assumes

that the DM has a prior probability distribution over the possible states of the

world. Before making a decision, they may be able to update their beliefs by

observing available information, yielding a posterior probability distribution. Then

the VOI is computed by calculating the difference between the expected return

of the optimal decision based on prior beliefs and the one based on posterior

beliefs. Therefore, when the amount of information is limited, or no information

is available, VOI tends to zero [69].

2.3 Strategic Form of Games

The unilateral decision-making setting is a basic model that includes only one DM.

The DM maximises their expected utility by choosing from a set of alternatives

and their respective utilities. The strategic form of games extends this unilateral

model to cover strategic settings that include more than one DM, i.e. players [59].

Furthermore, it makes it possible to determine the entire course of a game-play

through each player’s plan of action, known as strategy. The strategic form helps

bring the formal definition of games to the following description [85], which is used

in the remainder of this study.

1. Only personal moves matter;
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2. Each player 𝑘 = 1, ..., 𝐾 has a finite set of alternatives Λ𝑘 = {𝑎𝑘1, ..., 𝑎𝑘𝑚𝑘},

where 𝐾 is the total number of players, and 𝑚𝑘 is the total number of

alternatives available to player 𝑘;

3. When players choose an alternative from their respective set Λ𝑘, they are

not aware of each other’s decisions;

4. The matrix Φ = Λ1 × Λ𝑘 × ... × Λ𝑧, composed of 𝐾-dimensional vectors,

represents all possible combinations of alternatives across players; that is,

the game’s set of possible outcomes. Therefore, after players make their

decisions, the outcome of the play is 𝜑𝜑𝜑 ∈ Φ;

5. For any outcome 𝜑𝜑𝜑 ∈ Φ, each player 𝑘 pays or receives a payment deter-

mined by the payoff function 𝑟𝑘(·). For example, outcome 𝜑𝜑𝜑 has a payoff

𝑟𝑘(𝜑𝜑𝜑). This payoff is denominated in an arbitrary single monetary commod-

ity. Furthermore, it is considered unrestrictedly divisible, substitutable, and

freely transferable;

6. Each player 𝑘 has a utility function 𝑈𝑘(·) whose domain is the set of possible

payoffs in the game. Hence, player 𝑘’s utility towards outcome 𝜑𝜑𝜑 ∈ Φ is

𝑈𝑘(𝑟𝑘(𝜑𝜑𝜑)).

Although the strategic form supports games with sequential decision-making,

a more natural model for these cases is the extensive form introduced by Von Neu-

mann and Morgenstern [85] and Kuhn [43]. In games with perfect information, the

extensive form allows each player to know the previous decisions made by others.

However, using the strategic form suffices for this study. Hence, the extensive form

is out of scope.
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2.4 Risk Attitudes

Besides its role in measuring a player’s preferences over outcomes, a utility function

𝑈𝑘 reflects a player’s risk attitude towards the payoff of these outcomes [40]. This

risk attitude translates to the level of risk a player 𝑘 is willing to accept for a

particular payoff 𝑟𝑘(𝜑𝜑𝜑). Furthermore, it directly influences the curvature and shape

of the utility function.

Consider a gamble where a DM has equal chances to win 5,000$ or lose 1,000$.

The fair actuary premium of this gamble is 3,000. However, the amount that

the DM is willing to pay depends on their risk attitude. As Arrow [1] and Pratt

[68] discussed, a DM who prefers to avoid actuarially fair gambles is considered

risk-averse. Conversely, a DM who prefers pursuing these gambles is considered

risk-seeking. However, a DM indifferent about actuarially fair gambles is deemed

risk-neutral.

In practice, the most common risk attitudes are risk-neutral and risk-averse.

Risk-neutral decision-making is often used for situations involving small risks,

whereas risk-averse decision-making is more frequent for situations with consid-

erable risks. Although a risk-seeking attitude is possible in real life, e.g. in en-

trepreneurs, this study is limited to the risk-neutral and risk-averse cases [41].

In game theory, when a player is risk-neutral, their choices are not affected

by the underlying risk of the available outcomes. For instance, if two outcomes

generate the same payoffs, however, with different levels of a relevant risk, e.g. ,

losing a premium, the player is indifferent about which outcome to choose.

A risk-neutral player’s utility towards an outcome 𝜑𝜑𝜑 ∈ Φ is the reward of

that outcome, i.e. its payoff 𝑟𝑘(𝜑𝜑𝜑). This utility is a linear function of the form
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𝑈𝑘(𝑟𝑘(𝜑𝜑𝜑)) = 𝑎[𝑟𝑘(𝜑𝜑𝜑)] + 𝑏, where 𝑎 > 0, and 𝑏 ∈ R. Since a utility function is

unique up to a positive affine transformation, the payoff function 𝑟𝑘 can be used

to assess the utility of each outcome.

As opposed to the risk-neutral case, if a player is risk-averse, they prefer the

outcome that returns the optimal reward for a particular level of risk. Therefore,

between two outcomes with similar payoffs, they choose the one with the lowest

level of risk.

A risk-averse player’s utility function 𝑈𝑘 is concave downward over the set of

payoffs 𝑟𝑘 [68, Theorem 1]. In the remainder of this study, we use an exponential

utility function to assess a risk-averse player’s utility. However, that’s not a re-

striction, and any relevant concave function can be used instead. This exponential

utility function is formally defined as follows:

𝑈𝑘(𝑟𝑘(𝜑𝜑𝜑)) = 1 − exp(−𝑐× 𝑟𝑘(𝜑𝜑𝜑)), (2.1)

where 𝑐 > 0 represents a risk aversion parameter.

Example 2.4.1. Consider the classic game ‘battle of the sexes’, introduced by Luce

and Ra𝚤̈ffa [47], where two players plan to go for entertainment. They prefer going

together rather than by themselves. Furthermore, if they go together, the player

going to their favourite place gets more satisfaction than the other.

Assume that players are risk-neutral and have two alternatives, either ‘Hockey’

or ‘Cinema’. Player one prefers going to ‘Hockey’, whereas player two prefers

going to the Cinema’.

This game involves two players (𝑧 = 2). Therefore, converting it to its strategic

form is done through a 𝑚1 ×𝑚2 payoff matrix representing the provided informa-
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tion. As seen in Table 2.1, player one has the following 𝑚1 = 2 alternatives:

� Hockey, denoted by Top;

� Cinema, denoted by Bottom.

Player two also has the following 𝑚2 = 2 alternatives:

� Hockey, denoted by Left;

� Cinema, denoted by Right.

Hence, Λ1={Top(T), Bottom(B)}, Λ2={Left(L), Right(R)}, and all possible out-

comes in the game are Φ = Λ1 × Λ2={TL, TR, BL, BR}.

Each cell in Table 2.1 shows both players’ payoffs. For example, for outcome

TL, i.e. row Top and column Left, the values (2,1) indicate that if players one

and two go together to a hockey game, their respective payoffs would be 𝑟1(𝑇𝐿) =

2 and 𝑟2(𝑇𝐿) = 1. Conversely, for outcome TR, if these players go separate

ways, player one to a hockey game and two to the cinema, their payoffs would be

𝑟1(𝑇𝑅) = 𝑟2(𝑇𝑅) = 0.

Table 2.1: ‘Battle of the sexes’ - Payoff matrix.

Left Right
Top 2,1 0,0

Bottom 0,0 1,2

If players are risk-neutral, their utility towards an outcome 𝜑𝜑𝜑 is 𝑈𝑘(𝑟𝑘(𝜑𝜑𝜑)) =

𝑟𝑘(𝜑𝜑𝜑). Hence, the payoff matrix in Table 2.1 can also represent these players’

utility towards each outcome. However, as seen in Example 3.2.2, if players are

risk-averse, the utility function in Equation (2.1) is used to denominate players’

payoffs in utility currency.
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2.5 Rational Behaviour

Like an economic community that involves gaining and spending incomes, the

analysis of a game relies on understanding the behaviour of its agents, i.e. the

players. Amongst the many difficulties that behavioural analysis entails, correctly

describing the players’ assumed motives is one of the main obstacles. However, this

obstacle is overcome by the assumption that all players seek to maximise a single

monetary commodity, an asset freely transferable, divisible, and substitutable with

utility. Therefore, a player that aims to maximise utility is considered rational.

In game theory, rationality is formally defined as follows: let 𝜑𝜑𝜑𝑘
𝑖 ∈ Φ denote an

outcome in which a player 𝑘 chooses the alternative 𝑎𝑘𝑖 . Let Λ𝑘
𝑖 ⊆ Λ𝑘 denote the

subset of all outcomes that include the alternative 𝑎𝑘𝑖 . Player 𝑘 is rational if and

only if they choose the alternative 𝑎𝑘𝑖 that solves the problem 𝑚𝑎𝑥𝑎𝑘𝑖 ∈Λ𝑘
𝑖
𝑈𝑘(𝑟𝑘(𝜑𝜑𝜑𝑘

𝑖 )),

or 𝑚𝑎𝑥𝑎𝑘𝑖 ∈Λ𝑘
𝑖
𝑟𝑘(𝜑𝜑𝜑𝑘

𝑖 ) if the player 𝑘 is risk-neutral [61].

A strategic setting involves multiple players who, if rational, each seek to op-

timise their utility. Therefore, a game’s outcome is not only influenced by the

decision of a particular player but is the result of a combination of decisions made

by all players. Moreover, each player has several alternatives and possibly different

information and understanding of the game. Hence, they have multiple ways to

maximise their utility.

Since a player has several courses of action, rational behaviour is a complete

set of rules that state how they should behave in any possible situation. These

rules are called strategies, and each strategy should indicate the minimum utility

a player gets if they act rationally or if other players behave irrationally.

When a strategy brings stability and balance to a game, i.e. an equilibrium

29



where all players achieve an optimal utility, it becomes a solution to that game

and the problem of rational behaviour.

2.6 The Strategy

During a game-play, each player adopts a strategy that can be either pure or mixed.

A pure strategy is a complete plan that helps the player make a choice from a set

of alternatives for every conceivable scenario.

A mixed strategy is a probability distribution over pure strategies; it allows

randomising pure strategies. It provides the player with a vector of probabilities

that includes the probability of playing each alternative. A mixed strategy is

beneficial for situations where discovering the opponent’s decision is what matters

most. Furthermore, it aids in concealing the player’s intention by pushing them

to play the available alternatives irregularly [85].

A Nash equilibrium is a state where no player can gain a higher payoff by unilat-

erally deviating from their strategy. If no Nash equilibria exist in pure strategies,

then at least one must exist in mixed strategies where each player makes choices

based on a probability distribution over their set of alternatives [53].

In 1974, Aumann studied the impact of players correlating their choices [6].

He used a randomisation device on outcomes where players may disagree. This

approach revealed that a correlated mixed strategy could lead to strictly higher ex-

pected payoffs than Nash equilibria. Furthermore, it could remove the competitive

aspect from non-cooperative games and push players to cooperate.

The following sections discuss Nash and correlated equilibria with further de-

tails, showing how to achieve each type of equilibrium. For the sake of simplicity,
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the provided examples only consider the case of risk-neutral players.

2.6.1 Pure Nash Equilibria

A pure Nash equilibrium is an outcome reached through a tuple of pure strategies,

one strategy per player, where no player can gain a higher utility by solely deviating

from their strategy [53]. It is only possible for a player to get a higher utility if

other players change their strategies. In other words, an outcome is a pure Nash

equilibrium if and only if all players play their best responses to each other’s pure

strategies; for a given state, each player chooses the alternative that returns the

highest utility.

A game can have several pure Nash equilibria. For example, in Table 2.1, both

outcomes 𝑇𝐿 and 𝐵𝑅 are pure Nash equilibria. Players one and two cannot gain

more utility if each unilaterally deviates from their pure strategy. Therefore, at

equilibrium 𝑇𝐿, if player one changes their strategy and chooses the alternative

𝐵, the game’s outcome becomes 𝐵𝐿, resulting in zero utility for both players.

The game in Example 2.4.1 is symmetric, an intuitive concept referring to a

case where a game is the same for all players. Hence, if both players switch places

in ‘battle of the sexes’, their payoffs remain the same. Therefore, similar to player

one, if player two deviates from equilibrium 𝑇𝐿, the game’s outcome becomes 𝑇𝑅,

resulting in zero utility for both players.

If a Nash equilibrium does not exist in pure strategies, one must exist in mixed

strategies [53]. In this case, the Nash equilibrium is reached when each player’s

mixed strategy is their best response.
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2.6.2 Mixed Nash Equilibria

A mixed Nash equilibrium is a profile of mixed strategies, one strategy per player,

where none of these players can get a higher expected utility by solely deviat-

ing from their mixed strategy. Each player’s mixed strategy represents their best

response to the other players’ mixed strategies. Therefore, the mixed Nash equi-

librium leads to a steady state where each player randomises their choice of alter-

natives according to an unchanged vector of probabilities. These randomisations

are statistically independent between players.

Let 𝜀⃗𝑘 denote a vector of probabilities representing player 𝑘’s mixed strategy.

Let 𝜀* denote a profile of mixed strategies. 𝜀* is a mixed Nash equilibrium if and

only if, for each player 𝑘, the expected utility generated by 𝜀* is at least as great

as the expected utility of every other mixed strategy profile (𝜀⃗𝑘, 𝜀⃗−𝑘), where 𝜀⃗−𝑘

is a notation used to represent the list of mixed strategies played by players other

than 𝑘. Formally,

𝑈𝑘(𝜀*) ≥ 𝑈𝑘(𝜀⃗𝑘, 𝜀⃗−𝑘), (2.2)

for all possible mixed strategies 𝜀⃗𝑘 of each player 𝑘, where 𝑈𝑘(𝜀*) is player 𝑘’s

expected utility for a mixed strategy profile 𝜀*.

In a two-player game with a mixed strategy profile (𝜀⃗1, 𝜀⃗2), player 𝑘’s expected

game utility is computed as follows:

𝑈𝑘(𝜀⃗1, 𝜀⃗2) =
∑︁
𝜑𝜑𝜑∈Φ

𝐸𝑘
[︀
𝑈𝑘(𝑟𝑘(𝜑𝜑𝜑))

]︀
=
∑︁
𝑎1𝑖∈Λ1

∑︁
𝑎2𝑗∈Λ2

𝑈𝑘(𝑟𝑘(𝑎1𝑖 𝑎
2
𝑗))𝜀𝑎1𝑖 𝜀𝑎2𝑗 ,

(2.3)
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where 𝜀𝑎𝑘𝑖 denotes the probability of player 𝑘 choosing alternative 𝑎𝑘𝑖 ∈ Λ𝑘.

At a mixed Nash equilibrium, each player 𝑘’s vector of probabilities 𝜀𝑘 makes

the opposite players indifferent to which alternatives to choose. For each player,

all available alternatives return the same expected utility. For example, in a two-

player, two-alternative game, the profile (𝜀⃗1 , 𝜀⃗2) is a Nash equilibrium if and only

if:

– Player two’s expected utility
∑︀

𝑎1𝑖∈Λ1 𝑈2(𝑟2(𝑎1𝑖 𝑎
2
𝑗))𝜀𝑎1𝑖 is the same for all al-

ternatives 𝑎2𝑗 ∈ Λ2;

– Player one’s expected utility
∑︀

𝑎2𝑗∈Λ2 𝑈1(𝑟1(𝑎1𝑖 𝑎
2
𝑗))𝜀𝑎2𝑖 is the same for all al-

ternatives 𝑎1𝑖 ∈ Λ1.

Example 2.6.1. Cont’d. In the game ‘battle of the sexes’, assume that both players

are risk-neutral. Hence, 𝑈1(𝑟1(𝜑𝜑𝜑)) = 𝑟1(𝜑𝜑𝜑) and 𝑈2(𝑟2(𝜑𝜑𝜑)) = 𝑟2(𝜑𝜑𝜑). Given player

one’s strategy 𝜀⃗1, player two’s expected utility for alternative L is:

𝑟2(𝑇𝐿)𝜀𝑇 + 𝑟2(𝐵𝐿)𝜀𝐵,

and their expected utility for alternative R is:

𝑟2(𝑇𝑅)𝜀𝑇 + 𝑟2(𝐵𝑅)𝜀𝐵.

Player two is indifferent between alternatives 𝐿 and 𝑅 if they get the same expected

utility for any for them. Formally, that’s when:

𝑟2(𝑇𝐿)𝜀𝑇 + 𝑟2(𝐵𝐿)𝜀𝐵 = 𝑟2(𝑇𝑅)𝜀𝑇 + 𝑟2(𝐵𝑅)𝜀𝐵.
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Since 𝜀𝑇 + 𝜀𝐵 = 1, alternatives L and R return the same expected utility when:

𝜀𝑇 =
𝑟2(𝐵𝑅) − 𝑟2(𝐵𝐿)

𝑟2(𝑇𝐿) − 𝑟2(𝐵𝐿) − 𝑟2(𝑇𝑅) + 𝑟2(𝐵𝑅)
=

2

3

𝜀𝐵 =
𝑟2(𝑇𝐿) − 𝑟2(𝑇𝑅)

𝑟2(𝑇𝐿) − 𝑟2(𝐵𝐿) − 𝑟2(𝑇𝑅) + 𝑟2(𝐵𝑅)
=

1

3
·

Similarly, given player two’s strategy 𝜀⃗2, player one is indifferent between al-

ternatives 𝑇 and 𝐵 if they get the same expected utility for any of them. Formally,

that’s when 𝜀⃗2 =
{︀
𝜀𝐿 = 1

3
, 𝜀𝑅 = 2

3

}︀
.

A Nash equilibrium is when players one and two respectively play the strategies

𝜀⃗1 and 𝜀⃗2. Therefore, the profile 𝜀* = (𝜀⃗1, 𝜀⃗2) is a mixed Nash equilibrium. Using

Equation 2.3, the expected utility of profile 𝜀* is 2
3
for both players.

2.6.3 Correlated Equilibria

In 1987, Aumann defined a correlated equilibrium as a function that maps a finite

probability space to the set of all possible outcomes Φ [8]. He considered a Nash

equilibrium to be a particular case of it. Unlike Nash equilibria, one of the most

interesting aspects of correlated equilibria is the ease of computing them by simply

solving a system of linear inequalities.

Let 𝜌⃗𝜌𝜌 denote a correlated strategy. It is a probability vector in which an element

𝜌𝜑𝜑𝜑 is the probability of the outcome 𝜑𝜑𝜑 ∈ Φ. In a two-person game, 𝜌⃗𝜌𝜌 is a correlated
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equilibrium if and only if:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜌𝜑𝜑𝜑 ≥ 0,∀𝜑𝜑𝜑 ∈ Φ,

𝜌⃗𝜌𝜌 ′1 = 1,∑︀
𝑎2𝑗∈Λ2(𝑟1(𝑎1𝑖 𝑎

2
𝑗) − 𝑟1(𝑎1𝑞𝑎

2
𝑗))𝜌𝑎1𝑖 𝑎2𝑗 ≥ 0,∀𝑎1𝑖 , 𝑎1𝑞 ∈ Λ1, and 𝑖 ̸= 𝑞,∑︀

𝑎1𝑖∈Λ1(𝑟2(𝑎1𝑖 𝑎
2
𝑗) − 𝑟2(𝑎1𝑖 𝑎

2
𝑘))𝜌𝑎1𝑖 𝑎2𝑗 ≥ 0,∀𝑎2𝑗 , 𝑎2𝑘 ∈ Λ2, and 𝑗 ̸= 𝑘.

(2.4)

Note that 𝜌⃗𝜌𝜌 ′ is the transpose of 𝜌⃗𝜌𝜌.

The system of linear inequalities (2.4) defines a convex polytope of correlated

equilibria. This polytope is the bounded intersection of a finite set of closed half-

spaces and contains all the rational solutions of the game.

For a correlated strategy 𝜌⃗𝜌𝜌, each player 𝑘’s expected utility is computed as

follows:

𝑈𝑘 (⃗𝜌𝜌𝜌) =
∑︁
𝜑𝜑𝜑∈Φ

𝐸𝑘
[︀
𝑈𝑘(𝑟𝑘(𝜑𝜑𝜑))

]︀
=
∑︁
𝜑𝜑𝜑∈Φ

𝑟𝑘(𝜑𝜑𝜑)𝜌𝜑𝜑𝜑.

(2.5)

Let 𝑁 denote the number of possible outcomes in Φ. In System (2.4), the two

constraints 𝜌⃗𝜌𝜌 ≥ 0 and 𝜌⃗𝜌𝜌 ′1 = 1 define a 𝑁 − 1 dimensional simplex, containing all

probability distributions on outcomes Φ. The polytope defined by all constraints

is a subset of this simplex. If the polytope has a dimension smaller than 𝑁 − 1,

the distribution of correlated equilibria will lie on its boundary. Let 𝐼 denote the

set of all joint probability distributions of independent variables (here, players). It
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is the system of nonlinear constraints,

𝐼 =
{︀
𝜌⃗𝜌𝜌 : 𝜌𝜑𝜑𝜑 = 𝜌1(𝑎

1) × 𝜌𝑘(𝑎𝑘) × ...× 𝜌𝑧(𝑎
𝑧), ∀𝜑𝜑𝜑 ∈ Φ

}︀
,

where 𝑎𝑘 ∈ Λ𝑘 and 𝜌𝑘 is the marginal probability distribution on Λ𝑘. In a 2 × 2

game, Nau et al. [57] describe the resulting simplex as a 3-dimensional tetrahedron

and 𝐼 as a 2-dimensional saddle. The set of Nash equilibria is the intersection of

𝐼 and the correlated equilibria polytope. Nash equilibria only rest on the surface

of this polytope.

Example 2.6.2. Cont’d. In ‘battle of the sexes’ with risk-neutral players, the

system of linear inequalities (2.4) results in the following polytope, denoted by 𝐶.

𝐶 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2𝜌𝑇𝐿 − 𝜌𝑇𝑅 ≥ 0,

−2𝜌𝐵𝐿 + 𝜌𝐵𝑅 ≥ 0,

𝜌𝑇𝐿 − 2𝜌𝐵𝐿 ≥ 0,

−𝜌𝑇𝑅 + 2𝜌𝐵𝑅 ≥ 0,

𝜌𝜑𝜑𝜑 ≥ 0,∀ 𝜑𝜑𝜑 ∈ {TL, TR, BL, BR},

𝜌𝑇𝐿 + 𝜌𝑇𝑅 + 𝜌𝐵𝐿 + 𝜌𝐵𝑅 = 1.

Figure 2-1 is a plot of polytope C, generated using the python code [28]. As

seen, 𝐶 is a hexahedron with five vertices, listed in Table 2.2. Furthermore, Figure

2-1 shows three intersections between the polytope 𝐶 and the set of all joint proba-

bility distributions. Intersections TL and BR are pure Nash equilibria, whereas the

intersection (2/3 T, 1/3 B)×(1/3 L, 2/3 R) is a mixed Nash equilibrium that sits
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Figure 2-1: ‘Battle of the sexes’ polytope and set of all joint independent prob-
ability distributions between players - Intersections TL and BR are pure Nash
equilibria, and intersection (2/3 T, 1/3 B)×(1/3 L, 2/3 R) is a mixed Nash equi-
librium.
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at the inefficient frontier of the polytope, hence it is not a Pareto efficient strategy.

Table 2.2: ‘Battle of the sexes’ with risk-neutral players - Polytope vertices.

TL TR BL BR
Vertex 1 1 0 0 0
Vertex 2 0 0 0 1
Vertex 3 2/9 4/9 1/9 2/9
Vertex 4 2/5 0 1/5 2/5
Vertex 5 1/4 1/2 0 1/4
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Imprecise Probabilities and

Related Literature

This chapter briefly overviews different theories used to quantify, model, and as-

sess uncertainty. These theories are building blocks to the model proposed in

subsequent chapters. Section 3.1 introduces the imprecise probabilities framework.

Section 3.2 discusses how a game can be transformed into a revealed-rules matrix

using de Finetti’s approach to defining subjective probabilities, which utilises bets

to assess beliefs. It also discusses how a revealed-rules matrix can compute the

correlated equilibria of a game. Section 3.3 presents a non-parametric predictive

utility inference framework and a utility learning model that, under a non-strategic

setting, helps a decision-maker learn about their preference towards a novel out-

come once it is experienced.

3.1 Imprecise Probabilities

Imprecise probabilities is a well-established framework aimed toward quantifica-

tion and inference under uncertainty, a state of incomplete or vague information.
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Influenced by de Finetti’s work [21] on subjective probability, Williams [88, 89]

worked on an early detailed study of the theory, and Walley [86] then developed

it further to a more mature one.

The imprecise probabilities framework goes beyond classic approaches based on

precise probabilities, where an event is assigned a single probability. It extends

the traditional theories by allowing for incompleteness, imprecision, and indeci-

sion. Therefore, it permits modelling situations where relying on conclusions from

incomplete information is important.

3.1.1 Lower and Upper Previsions

An attractive theory under imprecise probabilities is that of lower and upper pre-

visions, represented by 𝑃 (·) and 𝑃 (·). They are, respectively, the supremum ac-

ceptable buying price and the infimum acceptable selling price of a gamble. Let 𝒳

denote a finite set of an experiment’s exhaustive and mutually exclusive outcomes.

Let 𝑓(·) denote an arbitrary reward function defined on 𝒳 : if 𝑥 is the outcome

of the experiment, then the reward is 𝑓(𝑥), denominated in units of a linear utility-

scale. As the experiment’s outcome is random, the reward of the experiment is

random. Hence, the reward of the experiment is interpreted as a gamble.

The lower and upper previsions of 𝑓 are, respectively, 𝑃 (𝑓) and 𝑃 (𝑓). Further-

more, they are considered a subject’s lower and upper expectations of 𝑓 . Whenever

they coincide, such that 𝑃 (𝑓) := 𝑃 (𝑓) = 𝑃 (𝑓), the resulting 𝑃 (𝑓) is called a linear

prevision. De Finetti sees it as the fair price of 𝑓 [21].
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3.1.2 Desirability

Consider a subject who is publicly willing to buy a gamble 𝑓 for a supremum

acceptable price 𝑃 (𝑓), in arbitrary small positive quantities 𝛼. This decision

indicates that they are willing to accept a payoff vector of 𝛼(𝑓(𝒳 ) − 𝑃 (𝑓)). For

example, let 𝒳 = (𝑂1, 𝑂2, 𝑂3) and 𝑓(𝒳 ) = (0, 3, 5). Buying 𝑓 for 𝑃 (𝑓) = 3 is

equivalent to accepting the payoff vector (−3𝛼, 0𝛼, 2𝛼).

A gamble is said to be desirable when a subject is willing to accept it whenever

offered. This doesn’t necessarily suggest that a non-desirable gamble is rejected.

A non-desirable gamble only reflects that the subject is undecided about whether

to accept it or not. Formally, in Walley’s axioms of desirability [86, p.60], axiom

(D1) considers a gamble 𝑓 to be desirable if inf 𝑓 > 0, i.e. when it increases the

subject’s utility no matter the outcome.

A gamble 𝑓 is said to be almost desirable if ∀ 𝜖 > 0, 𝑓 + 𝜖 is desirable. The

set of almost-desirable gambles includes all desirable gambles. Furthermore, as

per [86, Theorem 3.8.4, p.158], these almost-desirable gambles correspond to some

linear previsions that are greater than or equal to zero: if 𝑓 is almost desirable,

then 𝑃 (𝑓) ≥ 0. This condition and the set of almost-desirable gambles are useful

for eliciting lower previsions, which is demonstrated in the subsequent chapters.

3.1.3 Conditional Previsions

Let𝒜 denote a subset of 𝒳 and 𝛿𝛿𝛿𝒜 a 0-1 binary vector indicating whether the exper-

iment’s outcome belongs to 𝒜 (1 if true). Continuing the example in Section 3.1.2,

let 𝒜 = {𝑂2, 𝑂3}, hence, 𝛿𝛿𝛿𝒜 = (0, 1, 1). A conditional lower prevision 𝑃 (𝑓 |𝒜) is

the supremum buying price of gamble 𝑓 given 𝒜, such that (𝑓(𝒳 )−𝑃 (𝑓 |𝒜))𝛿𝛿𝛿𝒜 is
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desirable. Here, 𝑃 (𝑓 |𝒜) is a scalar, and the multiplication is performed element-

wise.

A subject who is publicly willing to buy 𝑓 for a supremum price 𝑃 (𝑓 |𝒜), in

arbitrary small positive quantities 𝛼, is ready to accept a payoff vector of 𝛼(𝑓(𝒳 )−

𝑃 (𝑓 |𝒜))𝛿𝛿𝛿𝒜. Hence, buying 𝑓 given 𝒜 for 𝑃 (𝑓 |𝒜) = 2 is equivalent to accepting

the payoff vector (0, 𝛼, 3𝛼).

A conditional lower prevision has two different interpretations. 𝑃 (𝑓 |𝒜) could

be considered the supremum buying price of a gamble 𝑓 whose value is zero outside

𝒜. Or, as Walley’s [86] updating principle suggests, it could be considered as the

updated supremum buying price of 𝑓 after receiving information that the outcome

belonged to 𝒜.

3.1.4 Lower and Upper Probabilities

A particular case of upper and lower previsions is when the reward function takes

the form of an indicator function, e.g. 𝑓(𝒳 ) = 𝛿𝛿𝛿𝒜. In that case, these previsions

can be interpreted as lower and upper probabilities of the event that the exper-

iment’s outcome belongs to 𝒜: 𝑃 (𝒜) := 𝑃 (𝑓) and 𝑃 (𝒜) := 𝑃 (𝑓). The lower

probability 𝑃 (𝒜) represents all evidence certainly in favour of 𝒜, and the upper

probability 𝑃 (𝒜) represents all evidence possibly in favour of 𝒜.

3.1.5 Coherence

A lower or upper prevision assessment should not allow any opportunities for

riskless profits through intelligent combinations. It is a rationality requirement

known as coherence. On a linear space, Walley [86] characterizes coherence using

42



the following axioms:

� 𝑃 (𝑓) ≥ inf 𝑓 and 𝑃 (𝑓) ≤ sup f;

� 𝑃 (𝜆𝑓) = 𝜆𝑃 (𝑓) and 𝑃 (𝜆𝑓) = 𝜆𝑃 (𝑓), ∀ 𝜆 ≥ 0;

� 𝑃 (𝑓 + 𝑔) ≥ 𝑃 (𝑓) + 𝑃 (𝑔) and 𝑃 (𝑓 + 𝑔) ≤ 𝑃 (𝑓) + 𝑃 (𝑔).

Coherent lower or upper previsions are challenging to achieve, especially in a non-

linear space. Therefore, the lower and upper previsions theory allows constructing

coherent models from assessments that only avoid sure loss. Avoiding sure loss is

a weaker rationality condition that is easier to satisfy. It requires rejecting any

transaction that generates a sure loss no matter what the outcome of the gamble

is; failing to do so is a fundamental irrationality [86, p.67].

3.2 Revealed-Rules Matrix

Nau [56] utilised imprecise probabilities to create a unified theory between subjec-

tive probability, game theory, and other equilibrium models used for games and

markets. His approach allows converting a non-cooperative game into a revealed-

rules matrix that reveals the rules required to generate a convex set of probability

distributions representing the game’s equilibria.

3.2.1 Risk Neutral Players

Consider a non-cooperative game with 𝐾 risk-neutral players. Let Λ𝑘 denote a

finite set of alternatives available to player 𝑘, and Φ =
∏︁
𝑘∈𝐾

Λ𝑘 denote the set of

all possible outcomes in the game. Let 𝑟𝑘 denote a |Φ|-dimensional vector that
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represents the payoff of player 𝑘 as a function of these outcomes. Therefore, for

outcome 𝜑𝜑𝜑 ∈ Φ, player 𝑘’s payoff is 𝑟𝑘(𝜑𝜑𝜑).

Consider 𝑒𝑘𝑖 to be the event in which player 𝑘 chooses the alternative 𝑎𝑘𝑖 ∈ Λ𝑘

over any other alternatives. Let 𝑟𝑘𝑖 denote the payoff vector available to player 𝑘

after making this choice, i.e. 𝑟𝑘𝑖 = (𝑟𝑘|𝑒𝑘𝑖 ). For example, in the game paper-rock-

scissors, if player one chooses to play ‘rock’, the resulting payoff vector 𝑟𝑘𝑖 has the

payout of outcomes 𝑟𝑜𝑐𝑘 − 𝑟𝑜𝑐𝑘, 𝑟𝑜𝑐𝑘 − 𝑠𝑐𝑖𝑠𝑠𝑜𝑟𝑠, 𝑟𝑜𝑐𝑘 − 𝑝𝑎𝑝𝑒𝑟.

The occurrence of event 𝑒𝑘𝑖 means that player 𝑘 would trade any payoff vector

𝑟𝑘𝑗 (𝑗 ̸= 𝑖) for 𝑟𝑘𝑖 , conditional on 𝑒𝑘𝑖 . This trade-off translates into an unconditional

bet with a true payoff vector of (𝑟𝑘𝑖 − 𝑟𝑘𝑗 )𝑒𝑘𝑖 . Conversely, suppose a player chooses

to publicly accept any small bet whose payoff vector is proportional to (𝑟𝑘𝑖 − 𝑟𝑘𝑗 )𝑒𝑘𝑖 .

In that case, they are making their true payoff function common knowledge at

the discretion of any observer [7]. Following the same logic, if all players in the

game are willing to accept small conditional bets, they make their true payoff

function public knowledge. As a result, a matrix that exhaustively lists each

player’s possible true payoff functions is built. This matrix is defined as follows:

Definition 1. A game’s revealed-rules(GRR) matrix, denoted by 𝑀𝑀𝑀 , represents

the true payoff function of each player for each possible bet they could accept.

Matrix 𝑀𝑀𝑀 ’s columns are indexed by outcomes in Φ, and its rows are indexed by

𝑟𝑘𝑖 − 𝑟𝑘𝑗 . As described by [56] and demonstrated below, a GRR matrix contains all

‘commonly-knowable information about the rules that is actually used in determin-

ing the equilibria of non-cooperative games.’

Nau [58] shows that for risk-neutral players, i.e. players whose utility function

is state-independent, to play the game rationally, they should have jointly coher-
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ent strategies. This condition is fulfilled if and only if a correlated equilibrium

exists. Given the correlated strategy 𝜌⃗𝜌𝜌 and the revealed-rules matrix 𝑀𝑀𝑀 , players

are rational if and only if ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝜌⃗𝜌𝜌 ≥ 0,

𝜌⃗𝜌𝜌 ′1 = 1,

𝑀𝑀𝑀𝜌⃗𝜌𝜌 ≥ 0.

(3.1)

Example 3.2.1. Cont’d. Table 3.1 shows the resulting revealed-rules matrix, 𝑀𝑀𝑀 ,

of ’battle of the sexes’. For instance, the first row represents the case where player

one chooses alternative 𝑇 over 𝐵. This choice exposes them to two possible trans-

actions, 𝑟1(𝑇𝐿)− 𝑟1(𝐵𝐿) = 2, and 𝑟1(𝑇𝑅)− 𝑟1(𝐵𝑅) = −1. Furthermore, System

(3.1) returns a set of linear inequalities resulting in polytope 𝐶. It can be noted

from Example 2.6.2 that these linear inequalities are the same as the linear in-

equalities produced by System (2.4), which defines correlated equilibria.

Table 3.1: ‘Battle of the sexes’ - Revealed-rules matrix 𝑀𝑀𝑀 .

TL TR BL BR
𝑟1𝑇 − 𝑟1𝐵 2 -1 0 0
𝑟1𝐵 − 𝑟1𝑇 0 0 -2 1
𝑟2𝐿 − 𝑟2𝑅 1 0 -2 0
𝑟2𝑅 − 𝑟2𝐿 0 -1 0 2

3.2.2 Risk Averse Players

Nau also examined the more generic case of risk-averse players who hedge and

accept less risky transactions than the risk-neutral ones. The non-linear utility

of these players is affected by the smallest transaction. Therefore, risk aversion

introduces more imprecision and requires a model that considers state-dependent
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marginal utility for money. Furthermore, as seen later, it leads to a more extensive

set of correlated equilibria than the risk-neutral case.

Let 𝑈𝑘 denote a |Φ|-dimensional vector that represents the utility of player 𝑘

as a function of the payoffs of the game’s outcomes. Therefore, for outcome 𝜑𝜑𝜑 ∈ Φ,

player 𝑘’s utility is 𝑈𝑘(𝑟𝑘(𝜑𝜑𝜑𝑘)). Let 𝑈̇𝑘 denote the derivative of 𝑈𝑘 with respect

to the payoff 𝑟𝑘(𝜑𝜑𝜑𝑘), and 𝜎𝑘 a payoff value that represents risk. Suppose that 𝜎𝑘

is larger than the player’s risk tolerance.

As opposed to the risk-neutral case where a player accepts a transaction ac-

cording to its expected utility, a risk-averse player 𝑘 agrees to a transaction based

on its marginal expected utility with respect to 𝜎𝑘. Specifically, this transaction

is acceptable when adding its payoff to 𝜎𝑘 positively impacts the overall expected

utility. Formally, if player 𝑘’s current expected utility is 𝐸𝑘[𝑈𝑘(𝜎𝑘)], transaction

𝜃 is acceptable if 𝐸𝑘
[︀
𝑈𝑘(𝜎𝑘 + 𝜃)

]︀
≥ 𝐸𝑘[𝑈(𝜎)]. Alternatively, if 𝜃 is small in mag-

nitude, 𝜃 is acceptable if 𝐸𝑘[𝑈̇𝑘(𝜎𝑘)𝜃] ≥ 0.

Nau extends the GRR matrix discussed in Section 3.2.1 to cover risk aversion.

Let 𝑈𝑘
𝑖 denote the payoff vector available to player 𝑘 for event 𝑒𝑘𝑖 , i.e. 𝑈

𝑘
𝑖 = (𝑈𝑘|𝑒𝑘𝑖 ).

The occurrence of event 𝑒𝑘𝑖 means that risk-averse player 𝑘 would trade any utility

vector 𝑈𝑘
𝑗 (𝑗 ̸= 𝑖) for 𝑈𝑘

𝑖 , conditional on 𝑒𝑘𝑖 . This trade-off translates into an

unconditional bet with a true utility vector of (𝑈𝑘
𝑖 −𝑈𝑘

𝑗 )𝑒𝑘𝑖 . Conversely, suppose a

player chooses to publicly accept any small bet whose payoff vector is proportional

to (𝑈𝑘
𝑖 − 𝑈𝑘

𝑗 )𝑒𝑘𝑖 . In that case, they are making their true utility function common

knowledge at the discretion of any observer [7], allowing the construction of a GRR

matrix (refer to Section 3.2.1).

In the risk-averse case, each bet 𝑈𝑘
𝑖 − 𝑈𝑘

𝑗 is denominated in utility units and

should be converted to commonly understood units of money. This conversion is
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possible by dividing 𝑈𝑘
𝑖 − 𝑈𝑘

𝑗 by the relevant vector of local marginal utility of

money, i.e. 𝑈̇𝑘
𝑖 . The bet’s resulting true utility vector denominated in monetary

value becomes:
𝑈𝑘
𝑖 − 𝑈𝑘

𝑗

𝑈̇𝑘
𝑖

.

Similarly to the risk-neutral case, if all players in the game are willing to accept

small conditional bets, they make their true utility function public knowledge. As

a result, a revealed-rules matrix 𝑀𝑀𝑀* is built. It exhaustively lists each player’s

possible true utility functions. Matrix 𝑀𝑀𝑀*’s columns are indexed by outcomes in

Φ and its rows are indexed by
𝑈𝑘
𝑖 −𝑈𝑘

𝑗

𝑈̆𝑘
𝑖

.

Nau [56] shows that risk-averse players have jointly coherent strategies if and

only if a risk-neutral equilibrium exists; that is, if at least one correlated equilib-

rium exists. In this case, the set of correlated equilibria is computed by substituting

𝑀𝑀𝑀 with 𝑀𝑀𝑀* in the System (3.1), then solving the resulting inequalities.

Example 3.2.2. Cont’d. Consider that players in ‘battle of the sexes’ are risk-

averse and have an exponential utility of the form

𝑈𝑘(𝑟𝑘(𝜑𝜑𝜑)) = 1 − 𝑒𝑥𝑝(−𝐿𝑁(
√

2) × 𝑟𝑘(𝜑𝜑𝜑)),

where 𝐿𝑁(
√

2) represents a particular risk aversion parameter. Table 3.2 shows

this game’s resulting payoff matrix, denominated in utility units. The derivative of

Table 3.2: ‘Battle of the sexes’ with risk-averse players - Payoff matrix, denomi-
nated in utility units.

Left Right
Top 0.5,0.293 0,0

Bottom 0,0 0.293,0.5
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𝑈𝑘 is 𝑈̇𝑘(𝑟𝑘(𝜑𝜑𝜑)) = 𝐿𝑁(
√

2)𝑒𝑥𝑝(−𝐿𝑁(
√

2) 𝑟𝑘(𝜑𝜑𝜑)), and the resulting revealed-rules

matrix, denominated in monetary value, is as follows:

Table 3.3: ‘Battle of the sexes’ with risk-averse players - Revealed-rules matrix
𝑀*.

TL TR BL BR

𝑈1
𝑇−𝑈1

𝐵

𝑈̆1
𝑇

2.885 -0.845 0 0

𝑈1
𝐵−𝑈1

𝑇

𝑈̆1
𝐵

0 0 -1.442 1.195

𝑈2
𝐿−𝑈2

𝑅

𝑈̆2
𝐿

1.195 0 -1.442 0

𝑈2
𝑅−𝑈2

𝐿

𝑈̆2
𝑅

0 -0.845 0 2.885

In System (3.1), substituting matrix𝑀𝑀𝑀 with𝑀𝑀𝑀* results in the polytope of Figure

3-1, generated using the python code [28]. Similar to Figure 2-1, this polytope is

a hexahedron with five vertices listed in Table 3.4. However, it is greater in size

than that of the risk-neutral case, indicating a more extensive set of equilibria.

Table 3.4: ‘Battle of the sexes’ with risk-averse players - Polytope vertices.

TL TR BL BR
Vertex 1 0.35 0 0.29 0.35
Vertex 2 1 0 0 0
Vertex 3 0.18 0.63 0 0.18
Vertex 4 0.16 0.54 0.13 0.16
Vertex 5 0 0 0 1
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Figure 3-1: ‘Battle of the sexes’ with risk-averse players - Polytope and set of all
joint independent probability distributions between players.
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3.3 Non-parametric Utility Updating

Based on Augustin and Coolen’s work [4], Houlding and Coolen [38] introduced

a non-parametric predictive utility inference (NPUI) framework for utility induc-

tion under extreme ignorance. Their work considers decision-making within non-

strategic settings.

For sequential decision problems, NPUI featured an attractive updating mech-

anism that assesses the impact of additional observations on utility previsions.

This updating mechanism allows the creation of a learning model that adjusts a

decision-maker’s utility previsions towards a novel outcome whenever this outcome

is experienced.

NPUI’s updating mechanism is based on Hill’s assumption A(𝑛) [34, 35, 36].

A(𝑛) is particularly useful for predictions with extremely vague prior knowledge

of the underlying distribution. It assumes that pre-observations are exchangeable

[21], that is, for two random variables 𝑌1 and 𝑌2, 𝑃 (𝑌1 = 𝑦1, 𝑌2 = 𝑦2) = 𝑃 (𝑌1 =

𝑦2, 𝑌2 = 𝑦1) holds for all values 𝑦1 and 𝑦2. Furthermore, one of its main pillars

is assigning equal mass to the probability that a post-observation falls in 𝑛 + 1

distinct intervals created by 𝑛 observations on a domain R.

Assigning equal mass probability to a post-observation might seem restrictive

and require further assumptions. However, when used in an imprecise probability

context, it proves to be effective. The reason is that instead of relying on a single,

precise probability value, uncertainty is quantified using a probability interval

where optimal bounds are taken from realised observations.

In their non-parametric predictive inference (NPI) model, Augustin and Coolen

[4] demonstrated the effectiveness of using lower and upper probabilities within an
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A(𝑛) based inference. They showed that it results in a complete framework that

doesn’t require additional premises. NPI is a well-established framework previously

considered for system reliability problems [90], financial data modelling [9], and

many more. One of its main features is the ability to fully adapt to acquired data,

which makes it attractive for the problem of decision-making and learning under

uncertainty.

In NPUI, observations are restricted to utility values. As opposed to NPI, in-

stead of using a domain R, these observations are bound to the interval [0, 1]. This

is to avoid having an outcome infinitely better or worse than other alternatives.

The values 0 and 1 are, respectively, the worst and best utilities of two actual or

‘hypothetical’ outcomes. Furthermore, the mechanism assumes that pre-observed

utility values within a collection of outcomes are exchangeable. Those outcomes

are considered to be sensibly grouped under a particular taxonomic category, e.g.

sports, computer brands, etc.

Consider a set of ordered known utilities 𝑢(1), 𝑢(2)...𝑢(𝑛), such that 0 < 𝑢(𝑖) <

𝑢(𝑖+1) < 1. These utility values split interval [0, 1] into 𝑛 + 1 intervals. Based on

assumption A(𝑛), a novel outcome whose utility is exchangeable with the existing

known utilities has a probability
1

𝑛 + 1
of falling in one of these intervals. NPUI

then extends this to lower and upper utility previsions.

Let 𝑢̂𝑛𝑒𝑤 denote a pre-observed utility value. Its lower and upper previsions

are defined as follows:

𝑃 (𝑢̂𝑛𝑒𝑤) =
1

𝑛 + 1

𝑛∑︁
𝑖=1

𝑢𝑖, (3.2)

𝑃 (𝑢̂𝑛𝑒𝑤) =
1

𝑛 + 1

(︃
1 +

𝑛∑︁
𝑖=1

𝑢𝑖

)︃
=

1

𝑛 + 1
+ 𝑃 (𝑢̂𝑛𝑒𝑤). (3.3)
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Equations (3.2) and (3.3) show that the difference between the lower and upper

previsions of 𝑢̂𝑛𝑒𝑤 is
1

𝑛 + 1
. This difference indicates that when the number of

experienced outcomes increases, NPUI reduces the range of possible values that

the expected utility of a novel outcome can take. Furthermore, Equations (3.2) and

(3.3) suggest that in the extreme case where there are no previously experienced

outcomes with known and exchangeable utilities, this expected utility can take any

value in the range (0, 1). In the opposite case, where the number of experienced

outcomes is infinite, lower and upper previsions coincide, which indicates that the

expected utility is identified.

If the observed utility of 𝑢̂𝑛𝑒𝑤 is 𝑢𝑛𝑒𝑤, adding it to the set of known utilities

makes it fall in one of the existing intervals. Therefore, the probability of another

novel outcome having its pre-observed utility, 𝑢̂*
𝑛𝑒𝑤, falling in one of the updated

intervals is 1
𝑛+2

. Formally, this leads to the following equations.

𝑃 (𝑢̂*
𝑛𝑒𝑤|𝑢𝑛𝑒𝑤) =

1

𝑛 + 2

(︃
𝑛∑︁

𝑖=1

𝑢𝑖 + 𝑢𝑛𝑒𝑤

)︃
=

𝑛 + 1

𝑛 + 2
𝑃 (𝑢̂𝑛𝑒𝑤) +

𝑢𝑛𝑒𝑤

𝑛 + 2
, (3.4)

𝑃 (𝑢̂*
𝑛𝑒𝑤|𝑢𝑛𝑒𝑤) =

1

𝑛 + 2

(︃
1 +

𝑛∑︁
𝑖=1

𝑢𝑖 + 𝑢𝑛𝑒𝑤

)︃
=

𝑛 + 1

𝑛 + 2
𝑃 (𝑢̂𝑛𝑒𝑤) +

𝑢𝑛𝑒𝑤

𝑛 + 2
. (3.5)

Equations (3.4) and (3.5) highlight how a novel outcome’s lower and upper utility

previsions update when this outcome is experienced. This updating proves to

be useful in a repeated decision-making situation that includes several unfamiliar

outcomes. It allows the decision-maker to improve their utility’s lower and upper

previsions towards exchangeable outcomes every time one is experienced.
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Suggested Model Under Ignorance

This chapter presents the suggested solution to the problem of ignorance within

game theory. Section 4.1 motivates the necessity of having a model that can

handle cases of ignorance. Section 4.2 introduces an enhanced GRR matrix used

as a proxy to reflect a risk-neutral player’s lower and upper expectations towards

the payoff of an unknown outcome and subsequently compute a convex set of

rational strategies. Section 4.3 discusses the rationality requirements for these

lower and upper expectations, whereas Section 4.4 suggests an elicitation model to

estimate them. Section 4.5 proposes a non-parametric predictive utility inference

framework as an updating mechanism that allows players to adjust their lower and

upper expectations dynamically after observing the payoffs of unknown outcomes.

Section 4.6 extends the suggested model to handle the more generic case of risk-

averse players. Sections 4.7 and 4.8 introduce an approach to assess the expected

payoff of a game that includes novel outcomes and the net payoff of each. Finally,

in Section 4.9, we give an example by applying our model to a variant of the game

‘battle of the sexes’.
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4.1 Motivation

As stated by Luce and Raïffa [47], one of the main assumptions in game theory

is expecting the player to know the numerical utilities of all possible outcomes

involved in the decision-making process. However, this is not always possible.

In practice, it is natural to consider that a player has endogenous uncertainty

over an outcome’s utility caused by their ignorance and not external factors, e.g.

other players. Often, this is ignored and either an assumed utility model from a

continuous domain is used, or utility values are set using introspection.

In many cases, relying on assumed utilities is not optimal. For instance, in the

temporal sure preference principle, Chiara et al. [19] show that prior preferences

represent a minimum coherence requirement to link beliefs at different time points.

It suggests that if ‘you have a sure preference for A over B at (future) time t.

Then you should not have a strict preference for B over A now’ ; that is, prior

belief should be coherent with posterior preferences. Therefore, an assumed utility

limits the assessment of conditional belief toward future preferences.

Instead of assuming a known utility function, the uncertain outcome should be

assessed and a player’s prior unknown preferences estimated. Afterwards, these

estimates can be dynamically updated when the outcome is experienced. However,

such a model requires an approach to represent the source of uncertainty. Walley

[86] provides a compelling and straightforward methodology to do that. He models

uncertainty as a gamble bound to the possibility space of an experiment. The true

state of this experiment determines the gamble’s uncertain reward.

The possibility space is required to have mutually exclusive states detailed

enough to describe the subject’s beliefs towards the domain of interest. Hence,
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a pragmatic possibility space can be used to include theoretical and observable

states. As defined by Walley [86], it is not required to be exhaustive and should

consist of sufficiently important and practically possible states, i.e. states with

a non-zero probability of happening. Since beliefs are often incomplete under

uncertainty, the possibility space can evolve and get reformulated to include new

pragmatic possibilities.

Models, such as multiple prior [31] or Choquet expected utility [75], were de-

veloped to solve the problem of decision-making under uncertainty, mainly within

non-strategic settings. However, as per Gajdos et al. [29], these models have cer-

tain limitations. For instance, they assume extreme pessimism, e.g. applying the

maximin criterion to the initial set of information [31]. Furthermore, they do not

allow the decision-maker to incorporate acquired information or expert knowledge

in their decision making-process, hence causing an inconsistency between their

decisions and actual beliefs. In practice, representing decision-maker beliefs is

essential, especially since Ellsberg [27] proved that decision-makers prefer better

information settings. Flexible approaches have been developed to overcome these

limitations. For example, as opposed to using the maximin criterion and choosing

the most pessimistic solution, Troffaes [81] discusses notions of optimality, such

as E-admissibility and maximality, that allow incorporating a DM’s beliefs over

incomplete information. Moreover, Gajdos et al. [29] developed an axiomatic ap-

proach that allows incorporating prior information, enabling the DM to maximise

their minimum expected utility with respect to this information. Nevertheless,

these approaches were never formally extended to cover game theory, i.e. strate-

gic settings.

Bayesian theories have emerged to account for cases where a player is in a
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state of incomplete information about other players’ utilities over outcomes in

the game. Nevertheless, these theories don’t consider a player’s incomplete infor-

mation about their own utilities over these outcomes. This case raises different

challenges and complex sequences of reciprocal expectations [33]. For instance,

in Nau’s [55] operational method to achieve joint coherence and common knowl-

edge of subjective parameters in non-cooperative games that include incomplete

and observable information, a dual characterisation of joint rationality is intro-

duced by generalising Harsanyi’s [33] Bayesian equilibrium concept. However, in

a Bayesian equilibrium, each player is assumed to know their actual type, con-

sidered as a summary of their actions and payoffs, and is only uncertain about

other players’ types [33, p.1811]. This uncertainty towards the game’s structure

is modelled through a common prior distribution over these players’ types. Nau

[55] stretches this assumption further by defining belief-revealing monetary payoff

functions, i.e. gambles, over a set of outcomes composed of players’ joint strategies

and the states that represent exogenous uncertainties caused by other players or

nature and not by players themselves.

Although Nau’s operational method is limited to exogenous uncertainties, it

includes some limitations that should be considered when modelling any type of

uncertainty. First, it shows that an increased number of uncertain states results in

a complex model. That is primarily because a game with incomplete information is

converted into several, each representing a possible state whose lower probability is

set through a belief gamble. The complexity could increase further if these states

require updating due to acquired information, e.g. , in repeated games. Second,

it doesn’t allow simultaneously including lower and upper bounds of a possible

state and computing a solution set given this range; only a scalar value within
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these bounds is permitted. Finally, it doesn’t incorporate a mechanism for players

to update or learn about an uncertain domain through experience or acquired

information.

Non-probabilistic approaches have been developed to treat the problem of play-

ers’ endogenous uncertainty over outcomes. For example, Chakeri et al. [17] and

Astanin and Zhukovskaja [2] apply fuzzy logic to game theory. Ignorance over

outcomes is dealt with using the notion of fuzzy games. Fuzzy logic is a computa-

tional approach described by Elkan [26] as a more generalised propositional logic

that measures degrees of truth on a scale of zero to one, rather than two truth val-

ues, ‘true or false’. Fuzzy logic provides a powerful toolbox to manage situations

of uncertainty in many areas, such as expert systems [92], signal processing [49],

image processing [32], etc.

In game theory, there are different methods to apply fuzzy logic. For instance,

Chakeri et al. [17] use a technique based on prioritising payoffs and measuring the

preference of one against the other. First, the game is defined in fuzzy parameters

by translating the player’s preference degrees to a fuzzy preference relation matrix.

This allows extending the ‘greater than or equal’ logic to one that is more sensitive

to the difference between preferences. Afterwards, a computational algorithm, least

deviation, is run on the fuzzy preference relation matrix to return a priority weight

for each alternative.

Although computational models prove to be successful in certain situations,

there is still no actual probabilistic model that could help with statistical infer-

ence and the quantification of endogenous uncertainty under strategic settings. For

example, how confident can a player be that an outcome will generate a partic-

ular payoff? The interest here is using probability theory to construct a scalable
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model that allows computing a game’s rational solutions based on prior lower

and upper previsions of uncertain domains and updating them through experi-

ence to posterior previsions. This model would enable meaningful approximations

if computation is not feasible and permit the dynamic incorporation of acquired

information. Furthermore, it would provide a way to express expert knowledge,

which is challenging to reflect in computational models [18].

Moreover, interest also lies in examining the consistency of game theory’s ax-

iomatic rules under endogenous uncertainty. Von Neumann and Morgenstern’s

[85] normative foundations of this theory are not extended to handle this situa-

tion. The proposed axioms of behaviour were always studied with the assumption

that players know the payoff of each outcome in the game.

This study also addresses the problem of poor VOI under ignorance and pro-

vides an approach to improve it. As discussed in Section 2.2, this problem is

mainly caused by limited information and can lead to non-optimal decisions.

4.2 Enhanced Revealed-Rules Matrix

Consider a game where players are risk-neutral. In practice, the payoff vectors

𝑟𝑘 (𝑘 = 1, . . . , 𝐾) are not always fully known. We here develop a method for

constructing a state of common knowledge of the key parameters of the payoff

functions. In particular, whenever the payoff 𝑟𝑘(·) for an outcome 𝜑𝜑𝜑 ∈ Φ is un-

known, we introduce an arbitrary reward function 𝑓(·), referred to as a gamble,

such that 𝑟𝑘(𝜑𝜑𝜑) = 𝑓(·). This approach allows modelling ignorance using a source

of uncertainty representing the pragmatic possibility space a player can face when

landing an outcome with an unknown payoff. If the strategic setting involves more
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than one source of uncertainty, a new gamble is required for each.

Table 4.1: Modified version of ‘battle of the sexes’ with risk-neutral players - Payoff
matrix.

L R
T 𝑓, 1 0, 0
B 0, 0 1, 2

Example 4.2.1. Cont’d. In ‘battle of the sexes’, assume that the payoff of the

outcome 𝑇𝐿 is unknown to player one; that is, 𝑟1(𝑇𝐿) is unknown. We hence

utilize a gamble 𝑓 to determine 𝑟1(𝑇𝐿): 𝑟1(TL) = 𝑓(·). Table 4.1 represents the

resulting payoff matrix of this modified version of ‘battle of the sexes’.

By leveraging on the work done by Nau [56], the game can be transformed into

a GRR matrix. However, the existing theory doesn’t support cases of uncertainty.

Therefore, the model should be extended.

Recall, in the event where player 𝑘 chooses the alternative 𝑎𝑘𝑖 over any other

alternative 𝑎𝑘𝑗 , they are practically making a bet that is equivalent to buying the

payoff vector 𝑟𝑘𝑖 and selling 𝑟𝑘𝑗 . However, with the presence of ignorance, if the

payoff 𝑟𝑘𝑖 (𝜑𝜑𝜑) ∈ 𝑟𝑘𝑖 or 𝑟𝑘𝑗 (𝜑𝜑𝜑) ∈ 𝑟𝑘𝑗 is unknown, it is replaced with a gamble.

Example 4.2.2. Cont’d. In ‘battle of the sexes’, replacing the unknown payoff

with gamble 𝑓 results in Table 4.2.

At this stage, the GRR matrix is incomplete. It requires assessing and valuing

the underlying gambles. The value of a gamble is considered to be the supremum

or infimum price it is bought or sold for.

Let 𝑃 𝑘(𝑓) and 𝑃
𝑘
(𝑓) be respectively the lower and upper previsions chosen by

player 𝑘 for gamble 𝑓 . This means a player would be willing to pay 𝛼(𝑃 𝑘(𝑓) − 𝜖)
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Table 4.2: Modified version of ‘battle of the sexes’ with risk-neutral players - GRR
matrix with uncertain payoffs modelled as gambles.

TL TR BL BR
𝑟1𝑇 − 𝑟1𝐵 𝑓 -1 0 0
𝑟1𝐵 − 𝑟1𝑇 0 0 −𝑓 1
𝑟2𝐿 − 𝑟2𝑅 1 0 -2 0
𝑟2𝑅 − 𝑟2𝐿 0 -1 0 2

or get paid 𝛼(𝑃
𝑘
(𝑓) + 𝜖), in exchange for an uncertain reward 𝛼𝑓 , where 𝜖 ≥ 0

and 𝛼 is a small positive number. That said, the GRR matrix can be enhanced as

follows:

PROPOSITION 1. In a non-cooperative game where endogenous uncertainty

over one or several outcomes exists, an enhanced form of the revealed-rules matrix

is achieved when the payoff 𝑟𝑘𝑖 (𝜑𝜑𝜑) of each outcome 𝜑 in the bought vector 𝑟𝑘𝑖 is

replaced with its lower prevision 𝑃 𝑘(𝑟𝑘𝑖 (𝜑𝜑𝜑)), and the payoff 𝑟𝑘𝑗 (𝜑𝜑𝜑) of each outcome

𝜑 in the sold vector 𝑟𝑘𝑗 is replaced with its upper prevision 𝑃
𝑘
(𝑟𝑘𝑗 (𝜑𝜑𝜑)). Furthermore,

the following properties apply:

– ∀𝜑𝜑𝜑 ∈ Φ, if 𝑟𝑘𝑖 (𝜑𝜑𝜑) does not represent a gamble, 𝑃 𝑘(𝑟𝑘𝑖 (𝜑𝜑𝜑)) = 𝑃
𝑘
(𝑟𝑘𝑖 (𝜑𝜑𝜑)) =

𝑟𝑘𝑖 (𝜑𝜑𝜑);

– ∀𝜑𝜑𝜑 ∈ Φ, if 𝑟𝑘𝑗 (𝜑𝜑𝜑) does not represent a gamble, 𝑃 𝑘(𝑟𝑘𝑗 (𝜑𝜑𝜑)) = 𝑃
𝑘
(𝑟𝑘𝑗 (𝜑𝜑𝜑)) =

𝑟𝑘𝑗 (𝜑𝜑𝜑);

– if 𝑟𝑘𝑖 (𝜑𝜑𝜑) is a sold gamble, i.e. 𝑟𝑘𝑖 (𝜑𝜑𝜑) = −𝑓 , then 𝑃 𝑘(𝑟𝑘𝑖 (𝜑𝜑𝜑)) is equal to

−𝑃
𝑘
(−𝑟𝑘𝑖 (𝜑𝜑𝜑));

– if 𝑟𝑘𝑗 (𝜑𝜑𝜑) is a sold gamble, i.e. 𝑟𝑘𝑗 (𝜑𝜑𝜑) = −𝑓 , then 𝑃
𝑘
(𝑟𝑘𝑗 (𝜑𝜑𝜑)) is equal to

−𝑃 𝑘(−𝑟𝑘𝑗 (𝜑𝜑𝜑));
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where 𝑓 denotes an arbitrary payoff function defined on outcome 𝜑’s possibility

space.

Now, the resulting enhanced GRR matrix permits cases of ignorance.

Example 4.2.3. Cont’d. Table 4.3 is the resulting enhanced GRR matrix of ‘battle

of the sexes’.

Table 4.3: Modified version of ‘battle of the sexes’ - Enhanced GRR matrix, where
gamble 𝑓 is replaced by its lower and upper previsions.

TL TR BL BR
𝑟1𝑇 − 𝑟1𝐵 𝑃 1(𝑓) -1 0 0

𝑟1𝐵 − 𝑟1𝑇 0 0 -𝑃
1
(𝑓) 1

𝑟2𝐿 − 𝑟2𝑅 1 0 -2 0
𝑟2𝑅 − 𝑟2𝐿 0 -1 0 2

The enhanced GRR matrix is interpreted as a system of inequalities that re-

turns all correlated equilibria of a game given the specified lower and upper previ-

sions of the underlying payoffs. This essentially means that adopting a correlated

strategy depends on the player’s choice of value amongst the range of possible valu-

ations an outcome can have; that is, all values between and including the gamble’s

lower and upper previsions. Therefore, a choice rule is required.

Houlding and Coolen [38] proposed two choice rules that rely on the decision-

maker’s level of pessimism. The first is based on the attitude of Extreme Pessimism

and requires choosing the outcome or sequential decision path whose lower previ-

sion is greatest. The second is based on the attitude of Extreme Optimism and

requires choosing the outcome or sequential decision path whose upper prevision

is greatest.
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4.3 Rationality Requirements on Lower and Upper

Previsions

Since buying a gamble for a price 𝜇 is equivalent to selling it for a price −𝜇, the

supremum buying price 𝑃 𝑘(𝑓) should equal −𝑃
𝑘
(−𝑓) [86]. This allows shifting

from lower to upper prevision and vice versa. Therefore, it suffices to develop

the model in terms of lower previsions and use upper previsions whenever deemed

necessary.

As discussed earlier, lower previsions should avoid sure loss. Any lower previ-

sion assessment that generates loss no matter a gamble’s payoff should be rejected.

This requirement is ascertained using Equation (4.1), which guarantees at least one

outcome 𝑥 of a gamble’s domain 𝒳 generates a payoff greater or equal to zero.

sup
𝑥∈𝒳

∑︁
𝑓𝑖∈𝐹

[︀
𝑓𝑖(𝑥) − 𝑃 𝑘(𝑓𝑖)

]︀
≥ 0, (4.1)

where 𝐹 is a set of gambles.

For each gamble, a player is required to establish a lower prevision that avoids

a sure loss. Then, all chosen lower previsions can be assessed for coherence using

the following equation:

sup
𝑥∈𝒳

{︃∑︁
𝑓𝑖∈𝐹

[𝑓𝑖(𝑥) − 𝑃 𝑘(𝑓𝑖)] − 𝑙0[𝑓0(𝑥) − 𝑃 𝑘(𝑓0)]

}︃
≥ 0, (4.2)

where 𝑙0 is any positive integer and 𝑓0 is a gamble assessed for coherence.

Equation (4.2) represents the general definition of coherence, suggested by [86].

It shows that if a lower prevision is considered acceptable, any lower prevision that
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generates the same or better return should also be acceptable. Furthermore, it

guarantees that assessments cannot be exploited to generate sure gains; a situation

known as arbitrage that can arise if a gamble 𝑓0 has a similar return to already

accepted gambles 𝑓𝑖, however, with a smaller lower prevision.

Given that lower previsions, 𝑃 𝑘, on gambles in 𝐹 avoid sure loss, coherent lower

previsions can be implied for any new gamble. It is a concept known as natural

extension that is implicitly defined in Equation (4.2). Let ℰ𝑘 denote the natural

extension of 𝑃 𝑘 on 𝐹 such that for any gamble 𝑓 , ℰ𝑘(𝑓) is its supremum buying

price implied from 𝑃 𝑘(𝑓𝑖), through linear operations. Furthermore, ℰ𝑘 dominates

𝑃 𝑘 on 𝐹 , which allows correcting any incoherent assessment. For instance, any pre-

viously set 𝑃 𝑘(𝑓) that is strictly lower than the implied one is deemed incoherent.

Formally, natural extension is defined as follows:

ℰ𝑘(𝑓) = sup

{︃
𝜔 : 𝑓(𝑥) − 𝜔 ≥

∑︁
𝑓𝑖∈𝐹

𝜆𝑖[𝑓𝑖(𝑥) − 𝑃 𝑘(𝑓𝑖)]

}︃
, (4.3)

for some 𝜔 ∈ R and 𝜆𝑖 ≥ 0.

4.4 First Assessment and Refinement

Let 𝒳 denote the set of outcomes of an experiment. Consider 𝑓(·) defined on 𝒳 .

Hence, the payoff 𝑟𝑘(𝜑𝜑𝜑) of an uncertain outcome becomes: 𝑟𝑘(𝜑𝜑𝜑) = 𝑓(𝑥), where

𝑥 ∈ 𝒳 is random and the probability distribution over 𝑥 is unknown. Therefore,

there is a lack of knowledge of the payoff.

It is essential to note that 𝒳 is assumed free from any uncertainty. Each state

𝑥 ∈ 𝒳 becomes a potential consequence if the game results in an uncertain out-

63



come, i.e. a gamble. Furthermore, a player must have complete and consistent

individual preferences across the domains of available gambles and known out-

comes in the game. For example, if a state can arise through gamble 𝑓 , gamble 𝑔

or a known outcome, its payoff is expected to be the same in all cases. Although

beyond the scope of this research, Jansen et al. [39] suggest two user-friendly and

robust preference systems that could assist a player with assessing their preferences

over possible states and outcomes in the game, especially when indecisive. Their

method relies on a few ranking questions that allow setting ordinal preferences.

Then two different approaches can be used to determine the cardinality of these

preferences. The first is a time elicitation approach based on the player’s consid-

eration time for ranking two states. The second is a label elicitation approach that

relies on the player to assign pre-defined labels of preference strength.

After listing rationality requirements in Section 4.3, here we discuss how to

translate beliefs into initial coherent lower previsions. Under extreme ignorance,

when imprecision is at its maximum, vacuous previsions can be used to value

gambles. They are defined as 𝑃 𝑘(𝑓) = inf𝑥∈𝒳 𝑓(𝑥) and 𝑃
𝑘
(𝑓) = sup𝑥∈𝒳 𝑓(𝑥) and

proven by Walley [86] to be coherent, as they respect the coherence requirements

listed in Section 3.1. However, using them to model prior beliefs will lead to

vacuous posterior previsions.

Usually, a player would have some prior information about a gamble, which can

be used to increase the accuracy of their previsions. Therefore, amongst several

methods provided by the imprecise probabilities toolbox, Walley’s [86] general

elicitation can be used to improve a vacuous assessment. It allows modelling pre-

existing beliefs by translating them into explicit judgements. It is by no means

a complete method that could cover all practical examples. Nevertheless, it is
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sufficient enough to build our model.

First, a player starts by making qualitative judgements on elementary events

in 𝒳 . These judgements can be comparative, e.g. an event is more probable than

the other, or classificatory, e.g. an event is probable. Afterwards, judgements are

modelled as almost-desirable gambles. For instance, stating that outcome 𝑥1 is

probable means that a player is willing to accept 𝑥1 with odds better than even

money. This is equivalent to accepting an almost-desirable gamble (𝛿𝛿𝛿𝑥1 − 𝜇) with

a price 𝜇 ≤ 1
2
, where 𝛿𝛿𝛿𝑥1 is an indicator function. Let 𝐷𝑘 denote the set of almost-

desirable gambles resulting from judgements made by player 𝑘. The following is a

list of judgement examples and their relevant almost-desirable gambles:

– If outcome 𝑥1 is probable, then gamble 𝛿𝛿𝛿𝑥1 − 1
2
∈ 𝐷𝑘;

– If outcome 𝑥1 is 𝜆 times as probable as outcome 𝑥2, then gamble 𝛿𝛿𝛿𝑥1−𝜆𝛿𝛿𝛿𝑥2 ∈

𝐷𝑘, where 𝜆 ∈ R;

– If outcomes 𝑥1 and 𝑥2 are equally likely, then gamble 𝛿𝛿𝛿𝑥1 − 𝛿𝛿𝛿𝑥2 ∈ 𝐷𝑘 and

𝛿𝛿𝛿𝑥2 − 𝛿𝛿𝛿𝑥1 ∈ 𝐷𝑘.

Using this elicitation process, a player should be able to construct any judge-

ment representing genuine belief and model it as an almost-desirable gamble de-

nominated in units of probability currency; that is, the payoff of this gamble is the

probability of an elementary event in 𝒳 [86, p.59].

Once the set of almost-desirable gambles 𝐷𝑘 is established, the second stage

is to use Equation (4.4) to check that it avoids a sure loss. This equation takes a
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more straightforward form than Equation (4.1).

sup
𝑥∈𝒳

∑︁
𝑑𝑞∈𝐷𝑘

𝑑𝑞(𝑥) ≥ 0, (4.4)

where 𝑑𝑞 ∈ 𝐷𝑘 is an almost-desirable gamble. If 𝐷𝑘 is proven to avoid sure loss,

the final stage is to compute the relevant lower prevision of each gamble 𝑓 ∈ 𝐹 .

Let 𝐾(𝐷𝑘) denote a closed convex set of linear previsions of all gambles 𝑑𝑞 ∈

𝐷𝑘. It is the intersection of all closed convex half spaces determined by the mass

function (𝑃 𝑘(𝑥1), 𝑃
𝑘(𝑥2), ..., 𝑃

𝑘(𝑥|𝒳 |)) of each 𝑃 𝑘(𝑑𝑞). Since gambles in 𝐷𝑘 are

almost-desirable, 𝑃 𝑘(𝑑𝑞) ≥ 0, ∀𝑑𝑞 ∈ 𝐷𝑘. The geometry of 𝐾(𝐷𝑘) is a polytope

on the probability simplex, satisfying the set of linear constraints applied to the

possibility space 𝒳 . It is a credal set characterised by having a finite number of

extreme points.

Using the lower envelope theorem, a relationship between linear previsions and

coherent lower previsions can be established. The theorem suggests that coherent

lower previsions 𝑃 𝑘 of gambles in 𝐷𝑘 are none other than the lower envelope of

𝑃 𝑘 ∈ 𝐾(𝐷𝑘), which is formally reflected in the following equation:

𝑃 𝑘(𝑑𝑞) = min{𝑃 𝑘(𝑑𝑞) : 𝑃 𝑘 ∈ 𝐾(𝐷𝑘)}. (4.5)

Let ℰ𝑘 denote the natural extension of 𝐷𝑘. It is the set of all almost-desirable

gambles implied by almost-desirable gambles in 𝐷𝑘; defined as

ℰ𝑘 =
∑︁

𝑑𝑞∈𝐷𝑘

𝜆𝑞𝑑𝑞,
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where 𝜆𝑞 ≥ 0. ℰ𝑘 contains all gambles 𝑓 whose 𝑃 𝑘(𝑓) ≥ 0.

Based on an elementary property of polyhedral cones [30, Theorem 2.13], 𝐾 =

𝐾(𝐷𝑘) = 𝐾(ℰ𝑘) is the convex hull of a finite set of linear previsions, and ℰ𝑘

contains all gambles 𝑓 whose 𝑃 𝑘 belongs to this set. Furthermore, the elements of

the latter can be considered the extreme points of 𝐾. Therefore, it is denoted by

𝑒𝑥𝑡(𝐾). Now, lower previsions of gambles in 𝐹 can be computed by simply taking

the lower envelope of 𝑒𝑥𝑡(𝐾). This results in Equation (4.6).

𝑃 𝑘(𝑓) = min{𝑃 𝑘(𝑓) : ∀𝑃 𝑘 ∈ 𝑒𝑥𝑡(𝐾)}. (4.6)

4.4.1 Alternative models

Although this work only covers the general elicitation model, it is possible to use

other methods to assess the gamble’s initial lower and upper previsions.

Ristic et al. [74] review some of the prevalent practical methods used for quanti-

tative modelling under ignorance, specifically when observations and the available

knowledge base are uncertain. Their example-rich work compares four approaches,

including imprecise probabilities, and highlights their performance through test-

ing scenarios. A detailed discussion of each approach is beyond the scope of this

research. However, we will briefly highlight them to describe alternative ways,

i.e. other than ‘imprecise probabilities’, used to value a gamble when information

about its possibility space is scarce.

The first approach is a modified Bayesian probabilistic model. Generally, a

Bayesian model quantifies available observations using a probability function and

then provides inferences using Bayes; it is used to model the known unknowns. In
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its simplest form, such a model might not be suited when observable information is

imprecise or unavailable [74]. Nevertheless, in the literature and practice, attempts

were made to modify it and overcome this limitation [25]. For example, Mahler

[48, Ch.4-8] provides a compelling Bayesian approach to modelling imprecise and

random information. The application of this model can be examined in Ristic’s

work [73].

The second approach is a possibilistic model. It is introduced by Zadeh [91] as

an extension of his work on fuzzy logic (see Section 4.1). The possibility theory

assumes that any statement not deemed impossible cannot be excluded, and this

principle is known as minimal specificity. In the possibilistic model, a possibility

function is used to represent the level of imprecision of each event in 𝒳 . Based on

this function, a pair of lower and upper probabilities is induced.

Finally, the third approach is based on using a belief function. A belief function

was initially introduced by Shafer [76] as a more practical and flexible method

for modelling ignorance over knowledge, judgements, and opinions regarding a

particular event. Inspired by Shafer [76] and Dempster [24], Smets et al. [77,

78, 79] developed a belief function theory, also known as the transferable belief

model framework. This framework provides a generic toolbox that allows the

classification and quantification of any type of uncertainty.

As mentioned by [74], there is no agreement on which approach is better. Nev-

ertheless, the imprecise probabilities framework is sufficiently rich to be considered

a unified uncertainty theory. However, its numerical optimisation requires signifi-

cant computation.

It is important to note that, irrespective of the approach used, the resulting

model should be able to represent the available information accurately [51]. There-
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fore, the imprecision caused by ignorance over elementary events in 𝒳 should not

compromise the integrity of this model.

Furthermore, the true value corresponding to an event must exist in the set of

imprecise information. For example, consider an urn that might contain black or

white balls, and at least two of these balls are known to be white. Any statement

similar to the following represents imprecise information about the number of white

and black balls in the urn: 2 to 8 balls are white; 0 to 6 balls are black; etc. Here,

stating that the urn does not contain white balls would compromise the model’s

integrity. Hence, it leads to erroneous modelling. In practice, a modelling error,

also known as a model-mismatch case, cannot always be avoided, especially in

particular situations where available information is limited.

4.5 Dynamic Updating

In a repeated game, whenever a player reaches an outcome that has an uncertain

payoff, they get to experience it. In the suggested model, this is reflected by

receiving the reward of a gamble. Each time that outcome is experienced, the

player develops a preference for it. This preference evolution should be reflected

through an update to the lower and upper previsions of the outcome’s utility.

Therefore, the lower and upper previsions of the underlying gamble should be

updated. Eventually, when information about the gamble’s domain is complete,

these previsions converge to the gamble’s linear prevision, i.e. its fair value (refer

to Section 3.1.1). This linear prevision represents the other side of the spectrum

where precision is maximal, and the supremum buying price and infimum selling

price of the gamble coincide such that 𝑃 (𝑓) := 𝑃 (𝑓) = 𝑃 (𝑓) [5, p.35].
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Let 𝑛 be the total number of observed values of a gamble 𝑓 , where 𝑓 represents

the uncertain payoff of an outcome 𝜑𝜑𝜑. The lower and upper previsions of 𝑟𝑘(𝜑𝜑𝜑)

are 𝑃 𝑘(𝑓) and 𝑃
𝑘
(𝑓). When 𝑛 = 0, these previsions are estimated using general

elicitation or any of the methods mentioned in Section 4.4.1.

During each game-play, whenever 𝜑𝜑𝜑 is experienced, i.e. 𝑛 > 0, a new payoff

𝑟𝑘(𝜑𝜑𝜑) is observed. This payoff is an arbitrary utility value 𝑢𝑛 that allows the

player to learn more about the uncertain outcome’s expected payoff. Given such

information, the NPUI updating mechanism offers a simple yet robust(refer to

Section 3.3) way to improve the lower and upper previsions of 𝑟𝑘(𝜑𝜑𝜑). Nonetheless,

applying it in a strategic setting requires some modifications.

First, the NPUI model is initially developed on a unit interval [0, 1], where 0

and 1 are, respectively, a DM’s utilities for hypothetical worst and best outcomes.

Since a utility function is unique up to a positive linear transformation, here, this

model is applied to the finite interval [𝑤, 𝑏], where 𝑤 and 𝑏 are respectively the

worst and best payoffs of gamble 𝑓 .

Second, in a strategic setting, the game’s outcomes do not necessarily belong

to the same collection or can be grouped under the same taxonomic category.

Therefore, we won’t adopt an exchangeability assumption across their utility val-

ues. For instance, in Example 2.4.1, outcomes ‘Hockey’ (sports) and ‘Cinema’

(art) belong to two different categories and cannot be grouped under the same

taxonomy. Hence, their utility values are considered unexchangeable. It can be

argued that observed outcomes whose utility values are exchangeable with gam-

ble 𝑓 might exist outside the game. In that case, such information should be

reflected in the gamble’s possibility space or the elicitation model discussed in

Section 4.4. For example, by using the utilities of previously experienced sports
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games, a player can make a judgement about the probability of having a good

experience in a novel sports game. Subsequently, this judgement can be converted

into an almost-desirable gamble and used in an elicitation model. As a result, the

utility’s elicited lower and upper previsions would reflect the player’s past experi-

ences and pre-existing beliefs. Therefore, integrating these elicited previsions into

the updating mechanism allows capturing all information known to, or believed

by, the player before experiencing the novel outcome. To accomplish this, we en-

hance Equations (3.2) and (3.3) to include an elicited component, in this case,

the one devised in Equation (4.6). Equations (4.7) and (4.8) are the result of this

enhancement, which is particularly useful when no observations related to gamble

𝑓 are available.

PROPOSITION 2. Let {𝑢1, ..., 𝑢𝑖, ..., 𝑢𝑛} denote a set of known utilities, where

𝑛 is the total number of observations. In a non-cooperative game, let 𝑓 denote an

arbitrary utility function defined on the possibility space of an uncertain outcome

Φ whose utility is exchangeable with the existing known utilities. Let 𝑃 𝑘(𝑓 |𝑢0) and

𝑃
𝑘
(𝑓 |𝑢0) denote, respectively, player 𝑘’s initial lower and upper previsions of 𝑓

when no observations exist, i.e. 𝑛 = 0. Based on assumption A(𝑛), the lower and

upper previsions of the pre-observed value of 𝑓 are as follows:

𝑃 𝑘(𝑓) =
1

𝑛 + 1

(︃
𝑃 𝑘(𝑓 |𝑢0) +

𝑛∑︁
𝑖=1

𝑢𝑖

)︃
, (4.7)

𝑃
𝑘
(𝑓) =

1

𝑛 + 1

(︃
𝑃

𝑘
(𝑓 |𝑢0) +

𝑛∑︁
𝑖=1

𝑢𝑖

)︃
. (4.8)

The elicited components in Proposition 2 are a positive linear transformation of

the unit interval [0, 1] of Equations (3.2) and (3.3), where 0 and 1 are, respectively,
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the worst and best utilities available. Therefore, the proof provided by [38] is still

applicable. Equations (4.7) and (4.8) show that when 𝑛 = 0, i.e no observations

exist, the elicited previsions 𝑃 𝑘(𝑓 |𝑢0) and 𝑃
𝑘
(𝑓 |𝑢0) are the respective lower and

upper previsions. However, once 𝜑𝜑𝜑 is experienced, and an actual payoff is observed,

uncertainty regarding its underlying gamble is partially eliminated. In this case,

the lower and upper previsions of the subsequent plays are governed by the NPUI

framework.

Third, the NPUI model assumes no future outcome is better (worse) or equal

to the hypothetical best (worst) outcome. In our approach, a weaker assumption

is used. A future outcome can have the same utility as this best (worst) outcome,

i.e. 𝑤 ≤ 𝑢𝑖 ≤ 𝑏.

Finally, we consider that an uncertain outcome in the game should be experi-

enced several times before formulating a proper preference towards it. Hence, the

outcome 𝜑𝜑𝜑 might not necessarily have the same utility every time it is observed.

In practice, such flexibility is required in a strategic setting, especially towards un-

known outcomes. In many circumstances, a sole experience does not reflect actual

preference. The player should be allowed to try an unfamiliar outcome several

times and be surprised about its payoff. This can be achieved as follows:

PROPOSITION 3. Let {𝑢1, ..., 𝑢𝑖, ..., 𝑢𝑛} denote a set of known utilities, where

𝑛 is the total number of observations. In a non-cooperative game, let 𝑓 denote an

arbitrary utility function defined on the possibility space of an uncertain outcome Φ

whose utility is exchangeable with the existing known utilities. Based on assumption

A(𝑛), when a new exchangeable utility 𝑢𝑛+1 is observed, player 𝑘’s lower and upper

previsions of the pre-observed value of 𝑓 , respectively, 𝑃 𝑘(𝑓 |𝑢𝑛) and 𝑃
𝑘
(𝑓 |𝑢𝑛) are
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updated as follows:

𝑃 𝑘(𝑓 |𝑢𝑛+1) =
1

𝑛 + 2

(︃
𝑃 𝑘(𝑓 |𝑢0) +

𝑛∑︁
𝑖=1

𝑢𝑖 + 𝑢𝑛+1

)︃

=
𝑛 + 1

𝑛 + 2
𝑃 𝑘(𝑓 |𝑢𝑛) +

𝑢𝑛+1

𝑛 + 2
,

(4.9)

𝑃
𝑘
(𝑓 |𝑢𝑛+1) =

1

𝑛 + 2

(︃
𝑃

𝑘
(𝑓 |𝑢0) +

𝑛∑︁
𝑖=1

𝑢𝑖 + 𝑢𝑛+1

)︃

=
𝑛 + 1

𝑛 + 2
𝑃

𝑘
(𝑓 |𝑢𝑛) +

𝑢𝑛+1

𝑛 + 2
.

(4.10)

Proposition 3 leverages Equations (3.4) and (3.5) by replacing NPUI’s lower

and upper previsions with the previsions provided by Proposition 2, which include

an elicited component. Therefore, the proof provided by [38] is still applicable.

Equations (4.9) and (4.10) show that the updated lower and upper previsions are

a weighted sum of their respective values before and after observing the payoff 𝑢𝑛+1.

Such updating seems intuitive. If 𝑢𝑛+1 falls below the assessed lower prevision, it

decreases both lower and upper previsions. If it falls above the upper prevision, it

increases both lower and upper previsions. However, if it falls in between, it leads

to an increase in the lower prevision and a decrease in the upper prevision.

It should be noted that the weights used in Equations (4.9) and (4.10) sig-

nificantly impact how new observations are handled. The increase of existing

observations will have a diminishing effect on new ones, which is sensible in a re-

peated game context. In practice, the early experience of an uncertain outcome

greatly influences future game plays.

Updated previsions should comply with rationality requirements discussed in

Section 4.3. According to Augustin and Coolen [4, Theorem 1], lower and upper
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previsions based on applying assumption 𝐴(𝑛) to observed data are totally mono-

tone, and this total-monotonicity leads to coherence. Hence, Equations (4.7) and

(4.8) result in coherent lower and upper previsions, assuming that the elicited pre-

visions are also coherent. Furthermore, Augustin and Coolen [4, Theorem 7] show

a strong internal consistency property in the non-parametric updating mechanism,

therefore, allowing the coherence argument to be extended to cover Equations (4.9)

and (4.10).

4.6 Risk Aversion

As discussed in Section 3.2.2, Nau [56] also worked on a GRR matrix that considers

the non-linearity of a risk-averse player’s utility. Hence, it can account for the

player’s state-dependent marginal utility for money. However, it fails to do so

when the payoffs are unknown.

Similar to the approach used in Section 4.2, we enhance this matrix to allow

for ignorance over outcomes. Consider a game where players are risk-averse. As

opposed to the risk-neutral case, the utility of an outcome 𝜑𝜑𝜑 ∈ Φ cannot be

considered its payoff 𝑟𝑘(𝜑𝜑𝜑). Instead, it’s a non-linear utility function of 𝑟𝑘(𝜑𝜑𝜑), i.e.

𝑈𝑘(𝑟𝑘(𝜑𝜑𝜑)). Therefore, whenever 𝑟𝑘(𝜑𝜑𝜑) is unknown and replaced by a gamble 𝑓(·)

(𝑟𝑘(𝜑𝜑𝜑) = 𝑓(·)), the utility of 𝜑𝜑𝜑 is 𝑈𝑘(𝑓(·)). For example, Table 4.4 represents

the payoff matrix of the modified version of ‘battle of the sexes’ when played by

risk-averse players.
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Table 4.4: Modified version of ‘battle of the sexes’ with risk-averse players - Payoff
matrix.

L R

T 𝑈1(𝑓), 𝑈2(1) 𝑈1(0), 𝑈2(0)

B 𝑈1(0), 𝑈2(0) 𝑈1(1), 𝑈2(2)

To transform this game into a GRR matrix, here, in the event player 𝑘 chooses

the alternative 𝑎𝑘𝑖 over any other alternative 𝑎𝑘𝑗 , they are making a bet that is

equivalent to buying the utility vector 𝑈𝑘
𝑖 and selling 𝑈𝑘

𝑗 . When the payoffs 𝑟𝑘𝑖 (𝜑𝜑𝜑)

or 𝑟𝑘𝑗 (𝜑𝜑𝜑) are uncertain, 𝑈𝑘(𝑟𝑘𝑖 (𝜑𝜑𝜑)) ∈ 𝑈𝑘
𝑖 or 𝑈𝑘(𝑟𝑘(𝜑𝜑𝜑)) ∈ 𝑈𝑘

𝑗 are also uncertain. In

this case 𝑟𝑘𝑖 (𝜑𝜑𝜑) or 𝑟𝑘𝑗 (𝜑𝜑𝜑) are replaced with relevant gambles.

To assess the supremum and infimum utility previsions of each gamble, let

𝑃 𝑘(𝑈𝑘(𝑓)) and 𝑃
𝑘
(𝑈𝑘(𝑓)) be respectively the lower and upper previsions chosen

by player 𝑘 for a gamble 𝑓 . Hence, player 𝑘 is willing to lose 𝛼(𝑃 𝑘(𝑈𝑘(𝑓)) − 𝜖) or

gain 𝛼(𝑃
𝑘
(𝑈𝑘(𝑓)) + 𝜖) in units of utility, in exchange for an uncertain reward 𝛼𝑓 ,

where 𝜖 ≥ 0 and 𝛼 is a small positive number. That said, a generic GRR matrix

that supports ignorance and different risk attitudes can be achieved as follows:

PROPOSITION 4. In a non-cooperative game where endogenous uncertainty

over one or several outcomes exists, an enhanced, generic form of the revealed-rules

matrix that takes into account players’ marginal utilities for money is achieved

when the utility 𝑈𝑘(𝑟𝑘𝑖 (𝜑𝜑𝜑)) of each outcome 𝜑 in the bought vector 𝑈𝑘
𝑖 is replaced

with its lower prevision 𝑃 𝑘(𝑈𝑘(𝑟𝑘𝑖 (𝜑𝜑𝜑))), the utility 𝑈𝑘(𝑟𝑘𝑗 (𝜑𝜑𝜑)) of each outcome 𝜑

in the sold vector 𝑈𝑘
𝑗 is replaced with its upper prevision 𝑃

𝑘
(𝑈𝑘(𝑟𝑘𝑗 (𝜑𝜑𝜑))), and the

marginal utility 𝑈̇𝑘(𝑟𝑘𝑖 (𝜑𝜑𝜑)) required to convert transactions to monetary units is
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replaced by 𝑃 𝑘(𝑈̇𝑘(𝑟𝑘𝑖 (𝜑𝜑𝜑))). Furthermore, the following properties apply:

– ∀𝜑𝜑𝜑 ∈ Φ, if payoff 𝑟𝑘𝑖 (𝜑𝜑𝜑) does not represent a gamble, 𝑃 𝑘(𝑈𝑘(𝑟𝑘𝑖 (𝜑𝜑𝜑))) =

𝑃
𝑘
(𝑈𝑘(𝑟𝑘𝑖 (𝜑𝜑𝜑))) = 𝑈𝑘(𝑟𝑘𝑖 (𝜑𝜑𝜑)). Furthermore, the marginal utility of this payoff

is 𝑃 𝑘(𝑈̇𝑘(𝑟𝑘𝑖 (𝜑𝜑𝜑))) = 𝑃
𝑘
(𝑈̇𝑘(𝑟𝑘𝑖 (𝜑𝜑𝜑))) = 𝑈̇𝑘(𝑟𝑘𝑖 (𝜑𝜑𝜑));

– ∀𝜑𝜑𝜑 ∈ Φ, if payoff 𝑟𝑘𝑗 (𝜑𝜑𝜑) does not represent a gamble, 𝑃 𝑘(𝑈𝑘(𝑟𝑘𝑗 (𝜑𝜑𝜑))) =

𝑃
𝑘
(𝑈𝑘(𝑟𝑘𝑗 (𝜑𝜑𝜑))) = 𝑈𝑘(𝑟𝑘𝑗 (𝜑𝜑𝜑));

– if 𝑟𝑘𝑖 (𝜑𝜑𝜑) is a sold gamble, i.e. 𝑟𝑘𝑖 (𝜑𝜑𝜑) = −𝑓 , then 𝑃 𝑘(𝑈𝑘(𝑟𝑘𝑖 (𝜑𝜑𝜑))) is equal to

−𝑃
𝑘
(𝑈𝑘(−𝑟𝑘𝑖 (𝜑𝜑𝜑))) and 𝑃 𝑘(𝑈̇𝑘(𝑟𝑘𝑖 (𝜑𝜑𝜑))) is equal to −𝑃

𝑘
(𝑈̇𝑘(−𝑟𝑘𝑖 (𝜑𝜑𝜑)));

– if 𝑟𝑘𝑗 (𝜑𝜑𝜑) is a sold gamble, i.e. 𝑟𝑘𝑗 (𝜑𝜑𝜑) = −𝑓 , then 𝑃
𝑘
(𝑈𝑘(𝑟𝑘𝑗 (𝜑𝜑𝜑))) is equal to

−𝑃 𝑘(𝑈𝑘(−𝑟𝑘𝑗 (𝜑𝜑𝜑))).

Example 4.6.1. Cont’d. Assume the modified version of ‘battle of the sexes’ is

played by risk-averse players, this results in the enhanced GRR matrix shown in

Table 4.5.

Table 4.5: Modified version of ‘battle of the sexes’ with risk-averse players - En-
hanced GRR matrix, where gamble 𝑓 ’s utility is replaced by its lower and upper
previsions.

TL TR BL BR

𝑈1
𝑇−𝑈1

𝐵

𝑈̆1
𝑇

𝑃 1(𝑈1(𝑓))−𝑈1(0)

𝑃 1(𝑈̆1(𝑓))

𝑈1(0)−𝑈1(1)

𝑈̆1(0)
0 0

𝑈1
𝐵−𝑈1

𝑇

𝑈̆1
𝐵

0 0 𝑈1(0)−𝑃
1
(𝑈1(𝑓))

𝑈̆1(0)

𝑈1(1)−𝑈1(0)

𝑈̆1(1)

𝑈2
𝐿−𝑈2

𝑅

𝑈̆2
𝐿

𝑈2(1)−𝑈2(0)

𝑈̆2(1)
0 𝑈2(0)−𝑈2(2)

𝑈̆2(0)
0

𝑈2
𝑅−𝑈2

𝐿

𝑈̆2
𝑅

0 𝑈2(0)−𝑈2(1)

𝑈̆2(0)
0 𝑈2(2)−𝑈2(0)

𝑈̆2(2)
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4.6.1 Generic Rationality Requirements on Lower and Up-

per Previsions

In Sections 4.2 and 4.3, utilities are generated based on a gamble’s possible out-

comes with the assumption that players have a state-independent linear utility for

the amount of commodity gained or lost from each outcome. For example, if an

outcome returns double the payoff, it is considered twice better or worse. This

assumption is not valid for the risk-averse case and should be relaxed. Utilities are

not necessarily linear to the payoffs. Therefore, we consider a more generic model

to assess rationality requirements in this section.

The majority of statistical work focuses on inference as opposed to decision-

making. This inference requires a probability assessment without the need for

any utility assessment. Similarly, the imprecise probabilities framework separates

probability from utility. Utility theory is only used to give a behavioural interpre-

tation of probability [86, p.25]. As a result, statistical reasoning and inference can

be conducted irrespective of a decision maker’s attitude towards risk. Therefore,

as Walley [86, p.10] states, there are no restrictions on the domains of definition

of lower and upper previsions. An imprecise probability model can be defined on

arbitrary spaces and extended to larger domains using natural extension.

In Section 4.3, the consistency requirements on lower and upper previsions are

defined for an arbitrary domain [86, p.53]. In the risk-neutral case, this domain

is a linear function 𝑓 that represents the payoff of a gamble. However, in the

more generic case of risk aversion, it is a function that describes the utility of

that payoff, which is not necessarily linear. Therefore, the domain becomes 𝑈𝑘(𝑓),

where 𝑓 ∈ 𝐹 . As a consequence, the lower and upper previsions, respectively,
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𝑃 𝑘(𝑈𝑘(𝑓)) and 𝑃
𝑘
(𝑈𝑘(𝑓)) avoid sure loss when they don’t cause the player to

lose utility no matter the outcome of the gamble. Any lower prevision assessment

that fails to comply with this requirement should be rejected. Formally, this

requirement is ascertained using Equation (4.11), which guarantees at least one

outcome to generate a utility that is greater or equal to zero.

sup
𝑥∈𝒳

∑︁
𝑓𝑖∈𝐹

[︀
𝑈𝑘(𝑓𝑖(𝑥)) − 𝑃 𝑘(𝑈𝑘(𝑓𝑖))

]︀
≥ 0, (4.11)

where 𝐹 is a set of gambles.

A player is required to establish lower previsions that avoid a sure utility loss.

As opposed to Equation (4.1), here, we are referring to a player’s ‘utility’ previsions

for gambles and not payoff previsions. When all these lower previsions are tested

for loss aversion, they can be assessed for coherence using the following equation:

sup
𝑥∈𝒳

{︃∑︁
𝑓𝑖∈𝐹

[𝑈𝑘(𝑓𝑖(𝑥)) − 𝑃 𝑘(𝑈𝑘(𝑓𝑖))] − 𝑙0[𝑈
𝑘(𝑓0(𝑥)) − 𝑃 𝑘(𝑈𝑘(𝑓0))]

}︃
≥ 0, (4.12)

where 𝑙0 is a positive integer and 𝑓0 is a gamble assessed for coherence.

Equation (4.12) shows that if a lower prevision is considered acceptable, any

lower prevision that generates the same or better utility should also be accept-

able. It also guarantees that assessments cannot be exploited to generate sure

utility gains; that is, riskless opportunities where a player can increase their util-

ity. Therefore, if a gamble 𝑓0 has a similar utility payoff to already accepted

gambles 𝑓𝑖, however, with a smaller lower prevision, it should be rejected.

As seen in Section 4.3, coherent lower monetary-payoff previsions can be im-
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plied through natural extension from a given set of lower previsions that avoid sure

loss. The same applies to ‘utility’ assessments. However, in this case, ℰ extends

𝑃 𝑘 on 𝑈𝑘(𝐹 ) such that for any gamble 𝑓 , ℰ𝑘(𝑈𝑘(𝑓)) is its supremum buying price

implied from 𝑃 𝑘(𝑈𝑘(𝑓𝑖)) through linear operations. Therefore, for the risk-averse

case, a natural extension is defined as follows:

ℰ𝑘(𝑈𝑘(𝑓)) = sup

{︃
𝜔 : 𝑈𝑘(𝑓(𝑥)) − 𝜔 ≥

∑︁
𝑓𝑖∈𝐹

𝜆𝑖[𝑈
𝑘(𝑓𝑖(𝑥)) − 𝑃 𝑘(𝑈𝑘(𝑓𝑖))]

}︃
, (4.13)

for some 𝜔 ∈ R, and 𝜆𝑖 ≥ 0.

4.7 Game Expectation Under Uncertainty

In a game that includes ignorance, some payoffs are unknown. Therefore, using

the payoff matrix to compute a correlated strategy’s expected utility is impossible,

and Equation (2.5) is no longer valid. In this case, the enhanced GRR matrix could

be used to compute this expected utility.

The enhanced GRR matrix returns the expected utility based on a player’s

lower and upper utility previsions of each unknown outcome. As seen in Section

3.2.2, in the event player 𝑘 chooses alternative 𝑎𝑘𝑖 over any other alternative 𝑎𝑘𝑗 ,

they are making a transaction equivalent to 𝑈𝑘
𝑖 −𝑈𝑘

𝑗 . The expected utility of this

choice is the dot product of this transaction’s resulting vector and the correlated

strategy 𝜌⃗𝜌𝜌. Therefore, a player’s expected utility for the game is an aggregation of

all expected utilities resulting from each possible choice. Formally, in a two-player

game, this translates to the following.

PROPOSITION 5. In a two-player game’s revealed-rules matrix, player 𝑘’s ex-
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pected utility is

𝐸𝑘 (⃗𝜌𝜌𝜌) =
∑︁
𝑎𝑘𝑖 ∈Λ

[︀
𝑈𝑘
𝑖 − 𝑈𝑘

𝑗

]︀
· 𝜌⃗𝜌𝜌, ∀𝑗 ̸= 𝑖, (4.14)

where 𝑈𝑘
𝑖 and 𝑈𝑘

𝑗 are respectively the bought and sold utility vectors of when player

𝑘 chooses alternative 𝑎𝑘𝑖 over any other alternative 𝑎𝑘𝑗 , and 𝜌⃗𝜌𝜌 is the correlated

strategy of the game.

Example 4.7.1. In the modified version of ‘battle of the sexes’, player one’s ex-

pected utility for a given correlated strategy 𝜌⃗𝜌𝜌 can be assessed by applying Equation

(4.14) to the payoff matrix in Table 4.4. This is done as follows:

𝐸1(⃗𝜌𝜌𝜌) =
[︀
𝑃 1(𝑈1(𝑓)) − 𝑈1(0)

]︀
× 𝜌𝑇𝐿 +

[︀
𝑈1(0) − 𝑈1(1)

]︀
× 𝜌𝑇𝑅

+
[︁
𝑈1(0) − 𝑃

1
(𝑈1(𝑓))

]︁
× 𝜌𝐵𝐿 +

[︀
𝑈1(1) − 𝑈1(0)

]︀
× 𝜌𝐵𝑅.

4.8 Outcome’s Expected Net Payoff

An outcome’s net payoff is the aggregate of all players’ payoffs for that outcome.

For example, outcome 𝜑𝜑𝜑’s net payoff is 𝑟1(𝜑𝜑𝜑) + ... + 𝑟𝐾(𝜑𝜑𝜑).

When particular players are uncertain about an outcome and hence ignorant

about its payoff 𝑟𝑘(𝜑𝜑𝜑), it is challenging to compute this outcome’s net payoff be-

fore observing it. However, the net payoff’s estimated lower prevision can be

calculated in this case. This imprecise probabilistic approach requires determining

each player’s lower prevision of the relevant payoff.

As seen in Sections 3.2.2 and 4.6, the event 𝑒𝑘𝑖 indicates that player 𝑘 would

trade any payoff vector 𝑈𝑘
𝑗 (𝑗 ̸= 𝑖) for 𝑈𝑘

𝑖 . This trade-off translates to the transac-

tion 𝑈𝑘
𝑖 −𝑈𝑘

𝑗 . Therefore, for each outcome 𝜑𝜑𝜑 ∈ Φ, player 𝑘 is making a bet whose

80



payoff is 𝑈𝑘
𝑖 (𝜑𝜑𝜑) − 𝑈𝑘

𝑗 (𝜑𝜑𝜑). This payoff results from an exchange of wealth between

players or the production/destruction of wealth in the game.

Moreover, transaction 𝑈𝑘
𝑖 − 𝑈𝑘

𝑗 signifies that player 𝑘 is buying the vector 𝑈𝑘
𝑖 ,

which contains the alternative 𝑖, and selling 𝑈𝑘
𝑗 . Hence, player 𝑘 is only exposed

to 𝑈𝑘
𝑖 , and their final payoff must be one of its elements.

Given that an outcome 𝜑𝜑𝜑 is the result of each player’s chosen alternative, it is

the intersection of all players’ bought vectors. Therefore, a more generic approach

to computing an outcome’s net payoff is achieved through players’ bought vectors.

If an element in these vectors is uncertain, it can be replaced by its lower prevision

𝑃 𝑘(𝑈𝑘(𝑟𝑘𝑖 (𝜑𝜑𝜑))), or −𝑃
𝑘
(−𝑈𝑘(𝑟𝑘𝑖 (𝜑𝜑𝜑))) if 𝑟𝑘𝑖 (𝜑𝜑𝜑) is a sold gamble. Formally:

PROPOSITION 6. In a non-cooperative game, the net payoff of any outcome 𝜑𝜑𝜑

is

𝑃 1(𝑈1(𝑟1(𝜑𝜑𝜑))) + ... + 𝑃𝐾(𝑈𝐾(𝑟𝐾(𝜑𝜑𝜑))), (4.15)

where 𝑃 𝑘(𝑈𝑘(𝑟𝑘(𝜑𝜑𝜑))) is player 𝑘’s lower utility prevision. If an outcome’s payoff

𝑟𝑘(𝜑𝜑𝜑) is not a gamble, 𝑃 𝑘(𝑈𝑘(𝑟𝑘(𝜑𝜑𝜑))) = 𝑃
𝑘
(𝑈𝑘(𝑟𝑘(𝜑𝜑𝜑))) = 𝑈𝑘(𝑟𝑘(𝜑𝜑𝜑)).

Example 4.8.1. Cont’d. In the modified version of ‘battle of the sexes’, Table

4.6 represents the bought payoff vector of each alternative a risk-neutral player can

choose. Using these vectors and Equation 4.15, the net payoff of each outcome in

this game is listed in Table 4.7.
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Table 4.6: Modified version of ‘battle of the sexes’ - Bought payoff vectors.

TL TR BL BR

𝑟1𝑇 𝑃 1(𝑓) 0 0 0

𝑟1𝐵 0 0 0 1

𝑟2𝐿 1 0 0 0

𝑟2𝑅 0 0 0 2

Table 4.7: Modified version of ‘battle of the sexes’ - Outcomes net payoffs.

TL 𝑃 1(𝑓) + 1

TR 0

BL 0

BR 3

4.9 Example

In the modified version of the game ‘battle of the sexes’ discussed in Section 4.2,

consider that alternatives T and L stand for going to a hockey game, whereas B

and R stand for going to the cinema. Furthermore, assume that player one is not

familiar with hockey. Hence, their preference towards it is uncertain and replaced

by gamble 𝑓 .

The pragmatic possibility space 𝒳 can be defined as 𝒳={Good(G), Neutral(N),

Bad(B)}. It represents the states a player could experience by going to the hockey

game. Therefore, it can include any practically possible state. The gamble 𝑓 is

assigned the following payoffs 𝑓={G:2, N:1, B:0}.
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Based on the player’s attitudes toward risk, the payoff matrices in Tables 4.1

and 4.4 are transformed into enhanced GRR matrices. For the risk-neutral case,

the relevant GRR matrix is reflected in Table 4.3, where 𝑃 1(𝑓) and 𝑃
1
(𝑓) are, re-

spectively, player one’s lower and upper previsions of 𝑓 . Whereas for the risk-averse

case, it is reflected in Table 4.5, where 𝑃 1(𝑈1(𝑓)) and 𝑃
1
(𝑈1(𝑓)) are, respectively,

player one’s lower and upper previsions of 𝑈1(𝑓). These matrices are still incom-

plete and require an assessment of the uncertain component’s lower and upper

previsions.

4.9.1 First Assessment

To assess gamble 𝑓 ’s lower and upper previsions, player one can rely on previous

experiences, which might not be related to hockey, to make qualitative judgements

on elementary events in 𝒳 . Afterwards, these judgements can be converted to

almost-desirable gambles under the set 𝐷1. For example:

– Since they generally like sports, having a good experience is probable. This

corresponds to a gamble 𝑑1 = 𝛿𝛿𝛿𝐺 − 1
2
∈ 𝐷1;

– Since they rarely had a bad experience at sports games in the past, having a

bad experience is improbable. This corresponds to a gamble 𝑑2 = 1
2
− 𝛿𝛿𝛿𝐵 ∈

𝐷1;

– Since they usually like sports more than cinema, a good experience is at least

as probable as a neutral one. This corresponds to a gamble 𝑑3 = 𝛿𝛿𝛿𝐺 − 𝛿𝛿𝛿𝑁 ∈

𝐷1;

– The odds against a neutral experience are no more than 3 to 1. This corre-
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sponds to a gamble 𝑑4 = 𝛿𝛿𝛿𝑁 − 1
3
∈ 𝐷1.

Applying Equation (4.4) to the set of gambles 𝐷1 = {𝑑1, 𝑑2, 𝑑3, 𝑑4} shows that

it avoids a sure loss. Since the linear prevision of each almost-desirable gam-

ble in 𝐷1 is greater or equal to zero and is determined by its mass function

(𝑃 1(𝐺), 𝑃 1(𝐵), 𝑃 1(𝑁)), a credal set 𝐾(𝐷1) can be built. It is the intersection

of the following half-spaces.

𝐾(𝐷1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑃 1(𝑑1) = 𝑃 1(𝐺) − 1
2
≥ 0

𝑃 1(𝑑2) = 1
2
− 𝑃 1(𝐵) ≥ 0

𝑃 1(𝑑3) = 𝑃 1(𝐺) − 𝑃 1(𝑁) ≥ 0

𝑃 1(𝑑4) = 𝑃 1(𝑁) − 1
3
≥ 0

𝑃 1(𝐺), 𝑃 1(𝐵), 𝑃 1(𝑁) ≥ 0

𝑃 1(𝐺) + 𝑃 1(𝐵) + 𝑃 1(𝑁) = 1

The probability simplex in Figure 4-1 shows𝐾(𝐷1) and its corresponding linear

previsions on the possibility space 𝒳 . The equilateral triangle has a height of one,

and the probability of each state is identified with perpendicular distances from

each side of it. The hyperplane of each gamble in 𝐷1 cuts the simplex into a

half-space. The resulting area, coloured in red, is a polyhedron that represents

𝐾(𝐷1). Its intersections are the extreme points, ext(𝐾(𝐷1)) ={(2
3
, 0, 1

3
), (1

2
, 1
6
, 1
3
),

(1
2
, 0, 1

2
)}. The coherent lower and upper probabilities (𝑃 1, 𝑃

1
) of each state in 𝒳

are the lower and upper envelopes of ext(𝐾(𝐷1)). Hence, (1
2
, 2
3
) for ‘good’, (0, 1

6
)

for ‘bad’, and (1
3
, 1
2
) for ‘neutral’. The coherent lower and upper previsions of 𝑓

are, respectively, the minimum and maximum previsions of all extreme points in
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ext(𝐾(𝐷1)).

Figure 4-1: Example’s credal set.

4.9.2 Risk Neutral Use Case

Using Equation (4.6), the coherent lower prevision of gamble 𝑓 is computed as

follows:

𝑃 1(𝑓) = min{𝑃 1(𝑓) : ∀𝑃 1 ∈ 𝑒𝑥𝑡(𝐾(𝐷1))}

= min{
(︂

2

3
× 𝑓(𝐺) + 0 × 𝑓(𝐵) +

1

3
× 𝑓(𝑁)

)︂
,(︂

1

2
× 𝑓(𝐺) +

1

6
× 𝑓(𝐵) +

1

3
× 𝑓(𝑁)

)︂
,(︂

1

2
× 𝑓(𝐺) + 0 × 𝑓(𝐵) +

1

2
× 𝑓(𝑁)

)︂
}

= min{1.66, 1.33, 1.5} = 1.33 .
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Similarly, the coherent upper prevision of gamble 𝑓 is computed as follows:

𝑃
1
(𝑓) = max{𝑃 1(𝑓) : ∀𝑃 1 ∈ 𝑒𝑥𝑡(𝐾(𝐷1))}

= max{
(︂

2

3
× 𝑓(𝐺) + 0 × 𝑓(𝐵) +

1

3
× 𝑓(𝑁)

)︂
,(︂

1

2
× 𝑓(𝐺) +

1

6
× 𝑓(𝐵) +

1

3
× 𝑓(𝑁)

)︂
,(︂

1

2
× 𝑓(𝐺) + 0 × 𝑓(𝐵) +

1

2
× 𝑓(𝑁)

)︂
}

= max{1.66, 1.33, 1.5} = 1.66 .

Table 4.8: Modified version of ‘battle of the sexes’ with risk-neutral players -
Resulting enhanced GRR matrix.

TL TR BL BR
𝑟1𝑇 − 𝑟1𝐵 1.33 -1 0 0
𝑟1𝐵 − 𝑟1𝑇 0 0 -1.66 1
𝑟2𝐿 − 𝑟2𝑅 1 0 -2 0
𝑟2𝑅 − 𝑟2𝐿 0 -1 0 2

Replacing lower and upper previsions in Table 4.3 with their relevant values,

returns the enhanced GRR matrix in Table 4.8. Figure 4-2 shows that the corre-

lated equilibria polytope of this matrix is a heptahedron with six vertices, listed in

Table 4.9. Vertices two and six are pure Nash equilibria that sit at the intersection

between the polytope and the simplex representing all probability distributions on

outcomes, i.e. the tetrahedron. The remaining vertices are correlated equilibria.

It should be noted that the mixed Nash equilibrium of the original version of

the game does not satisfy the correlated equilibria constraints of the modified one.

Hence, on the inefficient frontier, the polytope does not intersect with the saddle

that represents all joint probability distributions that are independent between
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players. That’s because the supremum buying price and infimum selling price of

𝑓 are different. This price mismatch shows that the GRR matrix reveals infor-

mation that is not obvious by just looking at the payoff matrix. Especially under

ignorance, when players might have two different buy and sell values for a specific

payoff.

Optimal solutions for this game sit on the edge connecting 𝑇𝐿 and 𝐵𝑅. Choos-

ing one of them depends on the player’s choice rule (refer to Section 4.2). For

instance, an extremely pessimistic player who chooses the outcome or sequential

decision path with the greatest lower prevision considers 𝑟1(𝑇𝐿) = 𝑃 1(𝑓) = 1.33

[38]. This choice results in an optimal equilibrium 𝜌𝑇𝐿 = 0.7518 and 𝜌𝐵𝑅 = 0.2482,

with an expected game payoff of 1.248 for both players. However, an extremely

optimistic player who chooses the outcome or sequential decision path with the

greatest upper prevision considers 𝑟1(𝑇𝐿) = 𝑃
1
(𝑓) = 1.66. This choice results in

an optimal equilibrium 𝜌𝑇𝐿 = 0.601 and 𝜌𝐵𝑅 = 0.399, with an expected payoff of

1.39 for both players.

Table 4.9: Modified version of ‘battle of the sexes’ with risk-neutral players - First
assessment vertices.

TL TR BL BR
Vertex 1 0.429 0 0.215 0.356
Vertex 2 1 0 0 0
Vertex 3 0.294 0.392 0.118 0.196
Vertex 4 0.334 0.444 0 0.222
Vertex 5 0.273 0.363 0.137 0.227
Vertex 6 0 0 0 1
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Figure 4-2: Modified version of ‘battle of the sexes’ with risk-neutral players - First
assessment polytope.
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4.9.3 Risk Averse Use Case

Consider players are risk averse and have an exponential utility function of the

form 𝑈𝑘(𝑟𝑘(𝜑𝜑𝜑)) = 1 − 𝑒𝑥𝑝(−𝐿𝑁(
√

2) × 𝑟𝑘(𝜑𝜑𝜑)), where 𝐿𝑁(
√

2) is an example of

a risk aversion parameter that reflects the player’s risk tolerance. In practice,

this parameter can be assessed using Arrow-Pratt’s measure 𝑐 = 𝑈 ′′(.)
𝑈 ′(.)

[1] [68], the

certainty equivalent principle (e.g. [87]), or any other relevant method. Using the

defined utility function, player one’s utility for each possible payoff of gamble 𝑓 is

𝑈1(𝑓) = {𝑈1(𝑓(𝐺)) : 0.5, 𝑈1(𝑓(𝑁)) : 0.29, 𝑈1(𝑓(𝐵)) : 0}.

Using Equation (4.6), the coherent lower utility prevision of gamble 𝑓 is com-

puted as follows:

𝑃 1(𝑈1(𝑓)) = min{𝑃 1(𝑈1(𝑓)) : ∀𝑃 1 ∈ 𝑒𝑥𝑡(𝐾(𝐷1))}

= min{
(︂

2

3
× 𝑈1(𝑓(𝐺)) + 0 × 𝑈1(𝑓(𝐵)) +

1

3
× 𝑈1(𝑓(𝑁))

)︂
,(︂

1

2
× 𝑈1(𝑓(𝐺)) +

1

6
× 𝑈1(𝑓(𝐵)) +

1

3
× 𝑈1(𝑓(𝑁))

)︂
,(︂

1

2
× 𝑈1(𝑓(𝐺)) + 0 × 𝑈1(𝑓(𝐵)) +

1

2
× 𝑈1(𝑓(𝑁))

)︂
}

= min{0.43, 0.346, 0.395} = 0.346 .

Similarly, the coherent upper utility prevision of gamble 𝑓 is computed as follows:

𝑃
1
(𝑈1(𝑓)) = max{𝑃 1(𝑈1(𝑓)) : ∀𝑃 1 ∈ 𝑒𝑥𝑡(𝐾(𝐷1))}

= max{0.43, 0.346, 0.395} = 0.43 .

The local marginal utility of money, i.e. the first derivative of the given utility
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function, is 𝑈̇𝑘(𝑟𝑘(𝜑𝜑𝜑)) = 𝐿𝑁(
√

2)𝑒𝑥𝑝(−𝐿𝑁(
√

2) × 𝑟𝑘(𝜑𝜑𝜑)). Therefore, 𝑈̇1(𝑓) =

{𝑈̇1(𝑓(𝐺)) : 0.173, 𝑈̇1(𝑓(𝑁)) : 0.245, 𝑈̇1(𝑓(𝐵)) : 0.346}, and the lower and upper

previsions of 𝑈̇1(𝑓) are computed as follows:

𝑃 1(𝑈̇1(𝑓)) = min{𝑃 1(𝑈̇1(𝑓)) : ∀𝑃 1 ∈ 𝑒𝑥𝑡(𝐾(𝐷1))}

min{
(︂

2

3
× 𝑈̇1(𝑓(𝐺)) + 0 × 𝑈̇1(𝑓(𝐵)) +

1

3
× 𝑈̇1(𝑓(𝑁))

)︂
,(︂

1

2
× 𝑈̇1(𝑓(𝐺)) +

1

6
× 𝑈̇1(𝑓(𝐵)) +

1

3
× 𝑈̇1(𝑓(𝑁))

)︂
,(︂

1

2
× 𝑈̇1(𝑓(𝐺)) + 0 × 𝑈̇1(𝑓(𝐵)) +

1

2
× 𝑈̇1(𝑓(𝑁))

)︂
}

= min{0.197, 0.168, 0.209} = 0.168 ,

and

𝑃
1
(𝑈̇1(𝑓)) = max{𝑃 1(𝑈̇1(𝑓)) : ∀𝑃 1 ∈ 𝑒𝑥𝑡(𝐾(𝐷1))}

= max{0.197, 0.168, 0.209} = 0.209 .

Table 4.10: Modified version of ‘battle of the sexes’ with risk-averse players -
Resulting enhanced GRR matrix.

TL TR BL BR
𝑈1
𝑇−𝑈1

𝐵

𝑈̆1
𝑇

2.05 -0.84 0 0
𝑈1
𝐵−𝑈1

𝑇

𝑈̆1
𝐵

0 0 -1.24 1.19
𝑈2
𝐿−𝑈2

𝑅

𝑈̆2
𝐿

1.19 0 -1.44 0
𝑈2
𝑅−𝑈2

𝐿

𝑈̆2
𝑅

0 -0.84 0 2.89

Replacing lower and upper previsions in Table 4.5 with their relevant values
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returns the enhanced GRR matrix in Table 4.10.

Figure 4-3 shows that the enhanced GRR matrix’s correlated equilibria poly-

tope is a heptahedron with six vertices, listed in Table 4.11. Vertices two and

six are pure Nash equilibria that sit at the intersection between the polytope and

the simplex representing all the probability distributions on outcomes, i.e. the

tetrahedron. The remaining vertices are correlated equilibria. On the inefficient

frontier, the polytope intersects with the saddle representing all joint probabil-

ity distributions independent between players. Therefore, as proven by Nau [57,

Proposition 1], the points of intersections on the surface of the polytope are mixed

Nash Equilibria. That is because a Nash equilibrium satisfies at least one of the

GRR matrix constraints or one of the non-negativity constraints with equality.

Hence, this constraint coupled with the equality constraint i.e. 𝜌⃗𝜌𝜌 ′1 = 1 deter-

mines a face of the correlated equilibria polytope, which indicates that a Nash

equilibrium cannot be an interior point of the latter.

Similar to the risk-neutral case, optimal solutions for this game sit on the edge

connecting 𝑇𝐿 and 𝐵𝑅. Choosing one of them depends on the player’s level of

pessimism. For instance, an extremely pessimistic player would consider 𝑇𝐿’s

utility as the gamble’s lower utility prevision, i.e. 𝑈1(𝑟1(𝑇𝐿)) = 𝑃 1(𝑈1(𝑓)) =

0.346. Furthermore, they would consider the marginal utility as 𝑈̇1(𝑟1(𝑇𝐿)) =

𝑃 1(𝑈̇1(𝑓)) = 0.168. This results in an optimal equilibrium 𝜌𝑇𝐿 = 0.793 and

𝜌𝐵𝑅 = 0.206, where both players have an expected game utility of 0.335 and an

expected monetary payoff of 1.2, denominated in the game’s payoff currency.

Conversely, an extremely optimistic player would assume that 𝑈1(𝑟1(𝑇𝐿)) =

𝑃
1
(𝑈1(𝑓)) = 0.43. This results in an optimal equilibrium 𝜌𝑇𝐿 = 0.6 and 𝜌𝐵𝑅 =

0.4, where both players have an expected game utility of 0.374 and an expected
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Figure 4-3: Modified version of ‘battle of the sexes’ with risk-averse players - First
assessment polytope.
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monetary payoff of 1.4, denominated in the game’s payoff currency.

Table 4.11: Modified version of ‘battle of the sexes’ with risk-averse players - First
assessment vertices.

TL TR BL BR
Vertex 1 0.372 0 0.307 0.320
Vertex 2 1 0 0 0
Vertex 3 0.24 0.587 0 0.171
Vertex 4 0.206 0.504 0.141 0.147
Vertex 5 0.195 0.476 0.16 0.167
Vertex 6 0 0 0 1

Table 4.12: Dynamic updating applied to three different scenarios.

n
Scenario 1 Scenario 2 Scenario 3

𝑢𝑛 = 𝑓(𝑥) 𝑃 1(𝑓) 𝑃
1
(𝑓) 𝑢𝑛 = 𝑓(𝑥) 𝑃 1(𝑓) 𝑃

1
(𝑓) 𝑢𝑛 = 𝑓(𝑥) 𝑃 1(𝑓) 𝑃

1
(𝑓)

0 - 1.33 1.66 - 1.33 1.66 - 1.33 1.66
1 2 1.665 1.83 0 0.665 0.83 0 0.665 0.83
2 2 1.776 1.886 0 - - 2 1.11 1.22
3 2 1.832 1.915 0 - - 2 1.332 1.415

4.9.4 Repeated Game Use Case

Sections 4.9.2 and 4.9.3 showcase two examples of how the initial set of correlated

equilibria is computed for a game that includes ignorance. These examples cover

use cases of risk-neutral and risk-averse players. Furthermore, they are limited

to the first play of a game or a one-shot game. In this section, we cover the

repeated game use case and show how dynamic updating improves lower and upper

previsions whenever a player experiences an uncertain outcome. Subsequently,

these improved previsions return improved correlated equilibria.

The dynamic updating model introduced in Section 4.5 does not depend on

the players’ risk attitudes and can be applied to risk-averse or risk-neutral cases.
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To avoid redundancy, only the latter will be treated in this example. Table 4.12

illustrates three different scenarios of applying dynamic updating to a sequence

of plays. It shows that whenever outcome 𝑇𝐿 has a new payoff, the underlying

gamble’s lower and upper previsions are updated. Consequently, this triggers an

update to the optimal correlated strategy.

Scenario one considers that the first time a play ends with an outcome 𝑇𝐿,

player one enjoys it more than all other outcomes. Hence, the payoff of gamble 𝑓

is 2. Since this observation falls above the elicited 𝑃
1
(𝑓), the updated lower and

upper previsions increase in value. Furthermore, 𝑃 1(𝑓 |𝑢1) = 1.665 indicates that

an extremely optimistic or pessimistic player expects 𝑇𝐿’s payoff to be the highest

amongst all other payoffs still. If player one keeps getting a payoff of 2 for 𝑇𝐿, the

lower and upper previsions will eventually converge towards 2. In this case, the

enhanced GRR matrix returns the correlated equilibria polytope in Figure 2-1.

Scenario two shows the opposite case. After experiencing outcome 𝑇𝐿, player

one considers it the worst outcome in the game. Hence, the payoff is 0. Since

this observation falls below the elicited 𝑃 1(𝑓), both updated previsions decrease in

value. An upper prevision 𝑃
1
(𝑓 |𝑢1) = 0.83 is strictly smaller than the payoff player

one gets from outcome 𝐵𝑅. Therefore, an extremely optimistic or pessimistic

player would stop choosing the alternative 𝑇 and settles for a correlated strategy

of 𝜌𝑇𝐿 = 0 and 𝜌𝐵𝑅 = 1, i.e. the pure Nash equilibrium. However, note that

if only the upper prevision is higher than 𝐵𝑅’s payoff, an extremely optimistic

player would still consider the alternative 𝑇 .

Scenario three shows the case where player one has different experiences re-

lated to outcome 𝑇𝐿. The first time it is observed, its payoff is 0. This payoff

decreases the upper prevision to 𝑃
1
(𝑓 |𝑢1) = 0.83, which is enough for a player
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to discard the alternative 𝑇 . However, in practice, an optimistic player can still

explore the outcome 𝑇𝐿 as a trial attempt. In that case, if the second observa-

tion has a payoff of 2, 𝑃 1(𝑓 |𝑢1) and 𝑃
1
(𝑓 |𝑢2) increase in value and both become

strictly higher than 𝐵𝑅’s payoff. As discussed by Houlding and Coolen [37], trial

attempts are frequently observed in daily life. It is natural for a DM to experiment

with novel outcomes, e.g. try a new item on a food menu. Therefore, having a

model that adjusts to new observations resulting from a trial attempt is beneficial.

Furthermore, it allows customising Houlding and Coolen’s [38] choice rules (refer

to Section 4.2) to include an element of exploring novel outcomes and exploiting

them when relevant.
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Special Cases

This chapter discusses the application of the suggested model to special cases

of uncertainty. In particular, Section 5.1 covers the topic of extreme ignorance,

where a player has completely no information about a specific outcome. A Monte

Carlo simulation is used to demonstrate the effectiveness of the suggested model

under this case. Section 5.2 covers the case of multiple sources of uncertainty in a

game and highlights global rationality requirements across these sources. Finally,

Sections 5.3 and 5.4 discuss the repercussion of adopting an enhanced GRR matrix

and its effect on a game’s structure, precisely zero-sum and symmetry properties.

5.1 Extreme Ignorance

To illustrate our model under a case of extreme ignorance, we consider a variant

of the game ‘Matching Pennies’. Von Neumann and Morgenstern [85] describe

the classic version as a game where two players simultaneously and independently

select ‘Heads’ or ‘Tails’ each and then uncover a penny. If their selections match,

then player two must give a penny to player one. Otherwise, player one gives a

penny to player two. However, we modify the game here so that player two gives
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player one an arbitrary reward generated by a gamble 𝑔. This gamble consists of

drawing a ball from an urn, and depending on its colour, the following rewards are

generated: 0 for red, 1 for black, and 2 for green.

Table 5.1: Modified version of ‘matching pennies’ - Payoff matrix.

T H

T 𝑔,−𝑔 −1, 1

H −1, 1 𝑔,−𝑔

We assume that information is symmetric across players throughout the game-

play and that no information about the composition of the urn is available to

them. Therefore, vacuous lower and upper previsions are used; 𝑃 1(𝑔) = 𝑃 2(𝑔) = 0

and 𝑃
1
(𝑔) = 𝑃

2
(𝑔) = 2. Under these circumstances, whether the game is played

or not depends on the adopted choice rule.

Using the pessimist/optimist decision rules, if any of the players is a pessimist,

they will use the lower previsions of underlying gambles to assess expected payoffs.

For outcomes 𝑇𝑇 and 𝐻𝐻, they would only expect to lose utility when playing

this game. Hence, they don’t have any incentive to play it.

However, if players one and two are optimists, they would expect, respectively,

a payoff of 𝑃
1
(𝑔) = 2 and 𝑃

2
(−𝑔) = −𝑃 2(𝑔) = 0 for both of these outcomes.

Therefore, when no reward is yet observed for gamble 𝑔, the game’s expectation

for both optimists players is 0.5, and its mixed Nash equilibrium is (1/2 H, 1/2

T)×(1/2 H, 1/2 T).

Consider that the urn contains one black, one green, and two red balls. Ap-

plying the suggested dynamic updating algorithm (refer to Section 4.5) to 1000
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simulations of 200 plays each, returns an average lower prevision of 𝑃 1(𝑔|𝑢200) =

𝑃 2(𝑔|𝑢200) = 0.74 and an upper prevision of 𝑃
1
(𝑔|𝑢200) = 𝑃

2
(𝑔|𝑢200) = 0.75.

Figure 5-1: Modified version of ‘matching pennies’ - Average lower and upper
previsions generated using 1000 simulations with 200 plays each

Figure 5-1 shows how gamble 𝑔’s lower and upper previsions converge towards

its linear prevision; that is, the actual expected payoff 𝑃 (𝑔) = 0.75, which is un-

known to the players. The dynamic updating will influence each player’s estimate

of the game’s expected payoff. As seen in Figure 5-2, on average, player one’s

expectation becomes negative after the fifth play, giving them no incentive to keep

playing the game. In contrast, player two’s expectation is always positive. This

indicates that player two has an advantage over player one, which is expected since

the urn contains two red balls.
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Figure 5-2: Modified version of ‘matching pennies’ - Players’ average game expec-
tations generated using 1000 simulations, with 200 plays each.

As Section 4.1 highlights, computational approaches exist for games with in-

complete information. It is noteworthy that these approaches do not necessarily

rely on a gamble nor a pragmatic possibility space, i.e. 𝒳 , to model an uncer-

tain domain. For instance, in this variant of ‘Matching Pennies’, when the game

results with outcome 𝑇𝑇 or 𝐻𝐻, both players are exposed to three states: lose,

win, or draw. Therefore, outcomes 𝑇𝑇 and 𝐻𝐻 involve fuzziness caused by the

uncertainty of their payoffs. In certain fuzzy solution concepts (e.g. [45] and [46]),

this uncertainty is reflected through an interval of payoffs. Such games are known

as matrix games with interval payoffs. The literature offers several methods to

solve these games and compute their optimal strategies. However, some of the ex-

isting methods are limited to specific cases, e.g., zero-sum games. Moreover, some

methods are shown to be incorrect. Verma and Kamit [83] revisited the incorrect
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methods and highlighted their flaws. For example, they showed that Li et al. ’s

[45] method is mathematically inaccurate and that Liu and Kao’s [46] method fails

to return optimal solutions. Verma and Kamit [83] proposed alternative solutions.

Nevertheless, these solutions are still subject to the limitations of computational

models discussed in Section 4.1.

5.2 Multiple Sources of Ignorance

So far, we have dealt with one source of uncertainty modelled as an arbitrary

reward function. However, in some games, a player can be exposed to multiple

sources of ignorance. For example, in Section 4.9, player one may have never been

to the cinema as well; they are ignorant about this outcome. Therefore, they have

to define a second gamble on a new pragmatic possibility space representing the

theoretical and observable states they might get from going to the cinema.

The suggested model is scalable and supports multiple sources of uncertainty.

In this case, each gamble has its possibility space. However, these gambles’ lower

and upper previsions should not be limited to local assessments, i.e. assigning

lower and upper previsions to each gamble independently. Instead, structural as-

sessments that consider the relationship between lower (upper) previsions across

all gambles should be used.

Structural assessments allow a player to express judgements about global prop-

erties related to their beliefs. They cover assessments of independence and sym-

metry. Therefore, they should be integrated into the player’s imprecise probability

model to ensure that local assessments satisfy global properties.

We briefly discuss the structural judgement of independence, particularly epis-
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temic independence. A more in-depth study of imprecise probabilities’ different

types of structural judgements is provided by Walley [86, ch.9]. Further discus-

sions can also be found in [5].

Epistemic independence is used as a conditioning criterion to infer or improve

lower and upper previsions assessments between gambles with different domains.

Based on Kolmogorov’s conditional probability approach [42], a player would con-

sider an outcome 𝑥 ∈ 𝒳 epistemically irrelevant to outcome 𝑦 ∈ 𝒴 when they

assume learning the true state of 𝑥 doesn’t affect their beliefs towards 𝑦. Formally,

𝑃 (𝑦|𝑥) =
𝑃 (𝑥, 𝑦)

𝑃 (𝑥)
= 𝑃 (𝑦), (5.1)

∀(𝑥, 𝑦) ∈ 𝒳 × 𝒴 and 𝑃 (𝑥) ̸= 0.

In an imprecise probabilities context, such assessment is helpful as it allows

inferring or adjusting coherent lower previsions of gambles on 𝒳 from existing

ones on 𝒴 .

Epistemic irrelevance is an asymmetric concept. If 𝑥 is epistemically irrele-

vant to 𝑦, this doesn’t necessarily suggest that 𝑦 is epistemically irrelevant to 𝑥.

However, when 𝑥 and 𝑦 are epistemically irrelevant to each other, they are then

epistemically independent.

Example 5.2.1. Let 𝒳 and 𝒴 represent respectively the pragmatic possibility

spaces of states a player 𝑘 could experience when going to a hockey game or cinema.

They are defined as follows: 𝒳 = 𝒴 = {𝐺𝑜𝑜𝑑(𝐺), 𝑁𝑒𝑢𝑡𝑟𝑎𝑙(𝑁), 𝐵𝑎𝑑(𝐵)}.

Consider the state player 𝑘 gets from going to hockey epistemically irrelevant

to the state they get from going to the cinema. That indicates the lower (upper)

previsions of gambles on 𝒳 have no impact on lower (upper) previsions on 𝒴.
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Therefore no information on 𝒳 can be used to adjust local assessments on 𝒴,

which for an outcome 𝑦 = 𝐺 translates to the following equations:

𝑃 𝑘(𝑦 = 𝐺|𝑥 = 𝐺) = 𝑃 𝑘(𝑦 = 𝐺|𝑥 = 𝐵) = 𝑃 𝑘(𝑦 = 𝐺|𝑥 = 𝑁)

and

𝑃
𝑘
(𝑦 = 𝐺|𝑥 = 𝐺) = 𝑃

𝑘
(𝑦 = 𝐺|𝑥 = 𝐵) = 𝑃

𝑘
(𝑦 = 𝐺|𝑥 = 𝑁).

If the state player 𝑘 gets from hockey impacts the state they get from going to

the cinema, then 𝑥 and 𝑦 are not epistemically irrelevant. If this player considers

a bad experience in hockey leads to a probably good or neutral experience in the

cinema, the resulting equations are as follows: 𝑃 𝑘(𝑦 = 𝐺|𝑥 = 𝐵) = 0.5, 𝑃 𝑘(𝑦 =

𝑁 |𝑥 = 𝐵) = 0.5, and 𝑃 𝑘(𝑦 = 𝐵|𝑥 = 𝐵) = 0.

5.3 Ignorance within Zero-Sum Games

Games can be either zero-sum or non-zero-sum. In non-zero-sum games (e.g.

‘battle of the sexes’), outcomes’ net payoffs (see Section 4.8) are not zero nor

necessarily constant [85, p.46]. However, in zero-sum games, these net payoffs

are always zero. Hence, one player’s loss is another player’s win, and assets (e.g.

money) are not produced externally or destroyed during the game.

Zero-sum games represent extreme states of competition between players [44].

They help model particular strategic settings, mainly in Economics and political

sciences. Furthermore, they are used by Von Neumann and Morgenstern [85] as a

medium for constructing a theory for all games.

Like non-zero-sum games, zero-sum games could include cases of ignorance
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where a player is uncertain about an outcome’s payoff. In these situations, the

enhanced GRR matrix could represent this game as non-zero-sum. That is because

a player’s elicited lower and upper previsions don’t necessarily match other players’

assessments for an uncertain outcome. Hence, players do not agree on the expected

amount that should be paid or received for this outcome.

For example, consider the variant of ‘matching pennies’ described in Section

5.1. In this game, when the selections of both players match, they exchange

an arbitrary reward generated by gamble 𝑔. Therefore, both players have the

exact source of uncertainty. However, each can assess gamble 𝑔’s lower and upper

previsions differently. Hence players are not expecting to pay or receive the same

payoff for the relevant outcomes. As a consequence, the zero-sum property of the

game is not respected.

Table 5.2: Modified version of ‘matching pennies’ with risk-neutral players - En-
hanced GRR matrix.

TT TH HT HH

𝑟1𝑇 − 𝑟1𝐻 𝑃 1(𝑔) + 1 −1 − 𝑃
1
(𝑔) 0 0

𝑟1𝐻 − 𝑟1𝑇 0 0 −1 − 𝑃
1
(𝑔) 𝑃 1(𝑔) + 1

𝑟2𝑇 − 𝑟2𝐻 −𝑃
2
(𝑔) − 1 0 1 + 𝑃 2(𝑔) 0

𝑟2𝐻 − 𝑟2𝑇 0 1 + 𝑃 2(𝑔) 0 −𝑃
2
(𝑔) − 1

Table 5.3: Modified version of ‘matching pennies’ with risk-neutral players - Fi-
nalised enhanced GRR matrix.

TT TH HT HH
𝑟1𝑇 − 𝑟1𝐻 1 −3 0 0
𝑟1𝐻 − 𝑟1𝑇 0 0 −3 1
𝑟2𝑇 − 𝑟2𝐻 −3 0 2 0
𝑟2𝐻 − 𝑟2𝑇 0 2 0 −3

Example 5.3.1. Table 5.2 shows the enhanced GRR matrix of the modified ver-
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sion of ‘matching pennies’. Consider player one is completely ignorant about the

content of the urn used to determine gamble 𝑔’s reward. Therefore, their initial

vacuous lower and upper previsions are 𝑃 1(𝑔) = 0 and 𝑃
1
(𝑔) = 2. However, player

two knows that this urn doesn’t contain any red balls. Hence, the only possible re-

wards are 1 (black) and 2 (green). Such information would influence player two’s

assessments. For instance, it can push them to set their initial vacuous lower and

upper previsions to 𝑃 2(𝑔) = 1 and 𝑃
2
(𝑔) = 2.

As seen in Table 5.3, players’ lower and upper previsions result in a GRR

matrix that doesn’t reflect a zero-sum game. For each relevant outcome, the payoff

of a player’s bet is not expected to be entirely paid or received by the other player.

For instance, events 𝑒1𝐻 and 𝑒2𝐻 lead to outcome 𝐻𝐻. Under this outcome, player

one’s bet has a payoff of 1, whereas player two’s bet has a payoff of −3. Hence,

wealth destruction is expected, which contradicts zero-sum game properties.

When strategic settings involve uncertainty over outcomes, dropping the zero-

sum game assumption is inevitable, especially when players have different sources

of information to assess payoffs. Asymmetric information makes it challenging for

players to agree on the expected payoff of the unknown domain.

In a zero-sum structure, the net payment of each outcome in the game is

expected to be zero. However, when outcomes are uncertain, these payments are

estimates. Therefore, if the estimated net payment of these outcomes is 0, the

game is zero-sum. This net payment is estimated using Equation (4.15), which

allows for ignorance over outcomes.
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Example 5.3.2. The modified version of ‘matching pennies’ is zero-sum if:

𝑃 1(𝑟1(𝑇𝑇 )) + 𝑃 2(𝑟2(𝑇𝑇 )) = 0

𝑃 1(𝑔) + 𝑃 2(−𝑔) = 0

𝑃 1(𝑔) − 𝑃
2
(𝑔) = 0

𝑃 1(𝑔) = 𝑃
2
(𝑔)

and

𝑃 1(𝑟1(𝐻𝐻)) + 𝑃 2(𝑟2(𝐻𝐻)) = 0

𝑃 1(𝑔) + 𝑃 2(−𝑔) = 0

𝑃 1(𝑔) − 𝑃
2
(𝑔) = 0

𝑃 1(𝑔) = 𝑃
2
(𝑔).

These results indicate that players must agree on the bought and sold prices of

gamble 𝑔.

Alternatively, using multiple enhanced GRR matrices for analysing the game

can enforce a zero-sum structure. In this case, each matrix would assume that

elicited previsions across all players align with a single player’s expectations. For

example, two enhanced GRR matrices can be used in the modified version of

‘matching pennies’. The first matrix assumes that player two’s upper prevision

𝑃
2
(𝑔) matches player one’s lower prevision 𝑃 1(𝑔). The second matrix assumes that

player one’s lower prevision 𝑃 1(𝑔) matches player two’s upper prevision 𝑃
2
(𝑔).
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5.4 Ignorance within Symmetric Games

Numerous strategic settings are represented through symmetric games. As dis-

cussed by Cao et al. [16], that is primarily because symmetry often simplifies

the analysis of a problem without compromising its essence. Hence why symmet-

ric games are popular in the game theory literature and treated as benchmarks in

various application areas. Furthermore, Papadimitriou and Roughgarden [62] show

that symmetry in games simplifies representational and computational challenges.

Von Neumann and Morgenstern [84] consider a game ordinary symmetric or

totally symmetric if all players have the same alternatives and payoff function.

Cao et al. [16] extend this definition using elementary concepts of the permutation

group theory. They first define ordinary player symmetry as follows:

Definition 2. Let Σ(𝐾) denote the set of permutations of the set of players 𝐾. A

permutation 𝜋 ∈ Σ(𝐾) is an ordinary player symmetry if for each outcome 𝜑𝜑𝜑 ∈ Φ,

𝜋(𝜑𝜑𝜑) ∈ Φ and 𝑟𝑘(𝜑𝜑𝜑) = 𝑟𝜋(𝑘)(𝜋(𝜑𝜑𝜑)),∀𝑘 ∈ 𝐾.

Subsequently, they define ordinary symmetry as follows:

Definition 3. A game is ordinary symmetric if all permutations 𝜋 ∈ Σ(𝐾) are

ordinary player symmetry.

Example 5.4.1. Consider the game ‘prisoner’s dilemma’, devised by Merrill Flood

and Melvin Dresher in 1950, then named and formalised by Albert Tucker [67] [82].

In this game, two persons are arrested and suspected of a crime. With the available

evidence, they are convicted for a minor offence. The police take each person to

a separate interrogation room and try to acquire further evidence by making them
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confess. Therefore, they have two alternatives, confess (C) or keep quiet (Q). The

game’s set of possible outcomes whose payoffs are denominated in utility units is

as follows:

– If both players keep quiet, they are charged with a minor offence. To introduce

uncertainty, the utility of this outcome is considered unknown and replaced

with a gamble 𝑓 .

– If only one player confesses and the other keeps quiet, the former does not

incur any charges, and the latter is charged two utility units.

– If both players confess, they are charged one utility unit each.

The resulting payoff matrix of this modified version of ‘prisoner’s dilemma’ is

shown in Table 5.4.

Table 5.4: Modified version of ‘prisoner’s dilemma’ with risk-neutral players -
Payoff matrix.

C Q

C −1,−1 0,−2

Q −2, 0 𝑓, 𝑓

Using Definitions 3 and 2, the modified version of ‘prisoner’s dilemma’ is or-

dinary symmetric if:

– 𝑟1(𝐶𝐶) = 𝑟2(𝐶𝐶)

– 𝑟1(𝐶𝑄) = 𝑟2(𝑄𝐶)

– 𝑟1(𝑄𝐶) = 𝑟2(𝐶𝑄)
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– 𝑟1(𝑄𝑄) = 𝑟2(𝑄𝑄)

Hence, for the uncertain outcome 𝑄𝑄, players one and two’s expected utilities

for gamble 𝑓 should be in line. In particular, the players’ lower previsions of 𝑓

should match (see Section 4.8), i.e. 𝑃 1(𝑓) = 𝑃 2(𝑓). It can be noticed that unlike

‘prisoner’s dilemma’, ‘battle of the sexes’ is not ordinary symmetric in its standard

and modified versions, e.g. 𝑟1(𝐻𝐻) ̸= 𝑟2(𝐻𝐻).

Definition 3 is not entirely satisfactory. For instance, a game is not considered

symmetric if players have the same payoff function and alternatives have different

names [16]. Therefore, Peleg et al. [66] and Sudhölter et al. [80] propose a less

restrictive definition known as name-irrelevant symmetric games. It considers the

names of the alternatives irrelevant and focuses solely on the players’ symmetry

and payoffs.

Cao et al. define name-irrelevant symmetric games by extending Definition

3 to use a set of permutations of alternatives available to each player, which is

a notion suggested by Nash [54]. Furthermore, influenced by differences between

the symmetry structures of ’battle of the sexes’ and ‘matching pennies’, Cao et

al. define a new symmetry class known as renaming symmetric games. It relies on

renaming alternatives. Name-irrelevant symmetric games and renaming symmet-

ric games are beyond the scope of this study. However, the analysis of ignorance

within symmetric games, performed in Example 5.4.1, also applies to these classes

of symmetry.

When uncertainty exists, players should agree on the utility previsions of the

uncertain outcomes to get a symmetric structure. In repeated games, these pre-

visions should be in line throughout each game-play. However, this can be chal-
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lenging when asymmetric information exists. For example, players who hold extra

information adjust their previsions accordingly, leading other players to disagree

over these assessments. Another case that could lead to this situation is players

using different elicitation models to assess their previsions.

Multiple enhanced GRR matrices can be used as a workaround to enforce

symmetry and avoid differences between players over expected utilities. In this

case, each matrix would assume that elicited previsions across all players align

with a single player’s expectations. For example, two enhanced GRR matrices can

be used in the modified version of ‘prisoner’s dilemma’. The first matrix assumes

that player two’s lower prevision 𝑃 2(𝑔) matches player one’s lower prevision 𝑃 1(𝑔).

The second matrix assumes that player one’s lower prevision 𝑃 1(𝑔) matches player

two’s lower prevision 𝑃 2(𝑔).
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Utility Diagnostics Under

Uncertainty

This chapter discusses the implication of ignorance on utility diagnostics and in-

troduces an approach that allows assessing the impact of information patterns on

strategic interactions. This approach relies on the enhanced GRR matrix to com-

pute a piece of information’s expected and actual value. We demonstrate it using

the previously introduced variant of ‘battle of the sexes’.

6.1 Value of Information

DeGroot [23] introduced the value of sample information derived from utility diag-

nostics. This concept was further studied in [11, 22, 72] and is limited to decision

theory, which only considers the decision-making process in a non-strategic set-

ting. Decision theory analyses the process and consequence of choosing an option

amongst a set of alternatives. It aims at helping a DM make the best decision

possible.

Houlding and Coolen [37] extend the traditional approach of valuing sample
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information to include cases of uncertainty over preferences. Furthermore, they

discuss trial aversion and introduce an approach to assess the DM’s aversion toward

decisions with high uncertainty.

Here we extend the value of sample information through utility diagnostics to

game theory to assess the impact of information patterns on strategic interactions.

We consider the case where a player is ignorant about a game’s outcomes and

uncertain about their preferences for these outcomes.

This case raises interesting questions regarding the impact of uncertainty on

VOI. To answer these questions and quantify the VOI of a player’s true preferences,

we introduce an approach that complements the enhanced GRR matrix presented

in Section 4.6. The proposed solution allows a player to value new information

based on its impact on their expected utility of a game.

Let Π denote a random variable used to represent a currently unrevealed piece

of information. Let ℐ denote a set of possible information statements and 𝜄 a

statement in ℐ. In a non-strategic setting, the expected amount of information in

Π is considered its fair utility value. It is the supremum amount of utility a subject

would sacrifice to know Π. Furthermore, it is the difference between the supremum

expected utility of a decision where Π is known and the supremum expected utility

of a decision where Π is unknown.

The definition of the expected amount of information under a non-strategic

setting should be extended to a strategic setting. In the latter, the player is not

acting unilaterally. They are part of a group of self-interested entities, and each

entity is trying to maximise its welfare by adopting a strategy for interaction [65].

Therefore, in a game with multiple players, the expected amount of information

of Π differs between players and is relative to each player’s adopted strategy. In
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other words, player 𝑘’s expected amount of information of Π is the difference

between the supremum expected utility of a strategy where Π is known and the

supremum expected utility of a strategy where Π is unknown, while noting that

these strategies don’t have to be the same.

In the decision theory framework, Π is used to provide the DM with information

about the likely outcome of an available decision. For instance, if 𝑟 denotes a

possible payoff and 𝑑 denotes an available decision, there exists a relation between

𝑟, 𝑑, and the information statement 𝜄 such that the probability 𝑃 (𝑟|𝑑,Π = 𝜄) ̸=

𝑃 (𝑟|𝑑). However, as seen in Section 3.2, in game theory, when a decision is made,

player 𝑘 chooses an alternative 𝑎𝑘𝑖 from the set Λ𝑘 and this choice exposes them to

a vector of possible payoffs 𝑟𝑘 whose underlying outcomes include alternative 𝑎𝑘𝑖 .

The outcome of a game is the result of all players’ chosen alternatives. There-

fore, for the set of outcomes that include player 𝑘’s alternative 𝑎𝑘𝑖 , the relation

between the player’s payoff, the player’s decision, and the information statement

𝜄 becomes:

𝑃 (𝑟𝑘|𝑎𝑘𝑖 ,Π = 𝜄) ̸= 𝑃 (𝑟𝑘|𝑎𝑘𝑖 ). (6.1)

Equation (6.1) indicates that player 𝑘’s vector of payoffs 𝑟𝑘𝑖 changes when

an information statement 𝜄 is acquired. The same logic is extended to assess

the relationship between the information provided by Π and the enhanced GRR

matrix.

In the event player 𝑘 chooses alternative 𝑎𝑘𝑖 over any other alternative 𝑎𝑘𝑗 , they

are making a transaction equivalent to buying 𝑈𝑘
𝑖 and selling 𝑈𝑘

𝑗 . Hence, the

impact of an information statement 𝜄 on this transaction’s final payoff vector, i.e.
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𝑈𝑘
𝑖 − 𝑈𝑘

𝑗 , is as follows:

𝑃 (
{︀
𝑈𝑘
𝑖 − 𝑈𝑘

𝑗

}︀
|Π = 𝜄) ̸= 𝑃 (

{︀
𝑈𝑘
𝑖 − 𝑈𝑘

𝑗

}︀
). (6.2)

Let 𝑉 𝑘(𝜄) and 𝑉 𝑘(Π) denote, respectively, the value of information 𝜄 and the

value of unknown information Π with respect to player 𝑘. Inspired by DeGroot,

Raiffa, and Schlaifer’s work [72, 23], we extend the expected value of sample in-

formation to game theory as follows:

PROPOSITION 7. In a strategic setting, the expected value of sample informa-

tion 𝑉 𝑘(Π) can be computed as follows:

𝐸𝑘[𝑉 𝑘(Π)] = 𝐸𝑘[𝑈𝑘 (⃗𝜌𝜌𝜌2)|Π] − 𝐸𝑘[𝑈𝑘 (⃗𝜌𝜌𝜌1)], (6.3)

where 𝜌⃗𝜌𝜌1 is an ex-ante Pareto efficient correlated strategy, 𝜌⃗𝜌𝜌2 is an ex-post Pareto

efficient correlated strategy, and 𝐸𝑘[𝑈𝑘 (⃗𝜌𝜌𝜌2)|Π] is the game’s expected utility given

the information set Π.

Equation (6.3) assesses the value of sample information relative to a Pareto

efficient correlated strategy that reflects the joint beliefs of all players. It is a

correlated equilibrium where no player can be better off without making at least

one player worse off [63].

Using a Pareto efficient correlated strategy to assess the value of sample in-

formation is advantageous. It is more specific than the correlated equilibria set

and reflects a more practical approach toward games that include ignorance. That

is because when particular outcomes are unknown, a piece of relevant informa-

tion could create an opportunity for Pareto improvement and push players to
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re-evaluate their beliefs towards the correlated strategy. Hence, they might nego-

tiate a new Pareto efficient equilibrium. Renegotiating a correlated strategy upon

acquiring information about a novel outcome is not applicable when all outcomes

are known. In this case, payoffs used to agree on a correlated randomisation do not

change. Therefore, players have no incentive to deviate from the agreed correlated

strategy, irrespective of what information they get.

When Π=𝜄 is observed, the distribution 𝑃 (
{︀
𝑈𝑘
𝑖 − 𝑈𝑘

𝑗

}︀
|Π = 𝜄) becomes the

actual beliefs of player 𝑘 upon which a correlated equilibrium should be assessed.

In this case:

PROPOSITION 8. In a strategic setting, the value 𝑉 𝑘(𝜄) of an observed state-

ment 𝜄 is as follows:

𝑉 𝑘(𝜄) = 𝐸𝑘[𝑈𝑘 (⃗𝜌𝜌𝜌𝑝)|𝜄] − 𝐸𝑘[𝑈𝑘 (⃗𝜌𝜌𝜌 *)|𝜄], with 𝜌⃗𝜌𝜌 * = arg max
{︀
𝐸𝑘[𝑈𝑘 (⃗𝜌𝜌𝜌)]

}︀
(6.4)

where 𝜌⃗𝜌𝜌 * is the pre-observation correlated strategy and 𝜌⃗𝜌𝜌𝑝 is the post-observation

correlated strategy.

Equation (6.4) is an extension of the work done by Raiffa & Schlaifer [72] and

DeGroot [23]. As opposed to the ex ante measure 𝐸𝑘[𝑉 𝑘(Π)], 𝑉 𝑘(𝜄) is an ex post

diagnostic. Computing it requires the player to identify the optimal strategy of

the game before the knowledge that Π = 𝜄. Therefore, the player should be able

to determine the strategy 𝜌⃗𝜌𝜌 * that they would have played before acquiring new

information. The knowledge of 𝜌⃗𝜌𝜌 * is essential after Π = 𝜄 becomes known, as

it affects the value of 𝑉 𝑘(𝜄). However, if Π is not known yet, the only relevant

measure is 𝐸𝑘[𝑉 𝑘(Π)], which does not depend on 𝜌⃗𝜌𝜌 *.

In non-strategic settings, DeGroot shows that more information would never
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negatively impact. If a DM wishes, they can ignore it. Hence, 𝑉 𝑘(𝜄) ≥ 0 for all

𝜄 ∈ ℐ. However, Osborne [60] discusses that the same doesn’t necessarily apply

to strategic settings. In particular cases, more information could make a player

worse off when strategies are not correlated. For instance, in [60, p.281], Osborne

showcases a Bayesian game with two possible states. Each state represents a

player’s type (refer to Section 4.1) through a separate payoff matrix. In this game,

player two gets a higher expected payoff from not knowing player one’s type. When

this type is revealed, player two’s expected payoff decreases. Therefore, player two

is better off not acquiring this information.

Houlding and Coolen [37] note that 𝐸𝑘[𝑉 𝑘(Π)] and 𝑉 𝑘(𝜄) are introduced by

Raiffa & Schlaifer [72, Ch.4] as, respectively, the Expected Value of Sample In-

formation (EVSI) and the Conditional Value of Sample Information (CVSI). We

extended these two measures to non-strategic settings, allowing their usage in

game theory. Specifically, in cases where a player is ignorant about the payoff of

an outcome, hence, uncertain about its utility. We showed that EVSI relies on the

following game-theoretic parameters:

– The player 𝑘 = 1, ..., 𝐾, where 𝐾 is the total number of players;

– The sets of alternatives Λ𝑘 = {𝑎𝑘1, ..., 𝑎𝑘𝑚𝑘}, where 𝑚𝑘 is the total number of

alternatives available to player 𝑘;

– The utility function 𝑈𝑘 adopted by each player 𝑘;

– The ex ante correlated equilibrium 𝜌⃗𝜌𝜌1 that is agreed between players, irre-

spective of the information set Π;

– The ex post correlated equilibrium 𝜌⃗𝜌𝜌2 that is achieved by combining the
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likelihood function 𝑃 (Π|𝑈𝑘 (⃗𝜌𝜌𝜌1)) with 𝑃 (𝑈𝑘 (⃗𝜌𝜌𝜌1)). The resulting posterior

expected utility 𝑃 (𝑈𝑘 (⃗𝜌𝜌𝜌1)|Π) pushes the player to negotiate a new Pareto

efficient correlated equilibrium, i.e. 𝜌⃗𝜌𝜌2.

In the suggested model, the additive property of the classical EVSI persists.

Therefore, before making any move, if the player receives multiple pieces of infor-

mation simultaneously, their expected value is equivalent to the expected value of

receiving them sequentially, i.e. one after the other. Formally, when a piece of

information Π1 = 𝜄1 is revealed and the player negotiates a new Pareto efficient

correlated equilibrium accordingly, the EVSI of Π2 is as follows:

𝐸𝑘[𝑉 𝑘(Π1,Π2)] = 𝐸𝑘[𝐸𝑘[𝑉 𝑘(Π2|Π1)] + 𝑉 𝑘(Π1)]

= 𝐸𝑘[𝑉 𝑘(Π2|Π1)] + 𝐸𝑘[𝑉 𝑘(Π1)]

= 𝐸𝑘[𝑈𝑘 (⃗𝜌𝜌𝜌3)|Π2,Π1] − 𝐸𝑘[𝑈𝑘 (⃗𝜌𝜌𝜌2)]+

𝐸𝑘[𝑈𝑘 (⃗𝜌𝜌𝜌2)|Π1] − 𝐸𝑘[𝑈𝑘 (⃗𝜌𝜌𝜌1)]

(6.5)

6.2 Example

In Section 4.9, we compute the correlated equilibria of the modified game ‘battle of

the sexes’ and demonstrate how the enhanced GRR matrix is used when the utility

of an outcome is unknown to the player. Furthermore, we use a general elicitation

model to assess an unknown outcome’s initial lower and upper utility previsions.

Here, we highlight how information acquired by the player can impact these initial

assessments, affecting the computed set of correlated equilibria. In this example,

we only consider information acquired before a player makes their move and show

how the value of this information is assessed through utility diagnostics.
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We previously evaluated the lower and upper previsions of gamble 𝑓 ’s payoff for

a risk-neutral player. We assessed the probability of each event in 𝒳={Good(G),

Neutral(N), Bad(B)}, then computed the lower and upper previsions as follows:

𝑃 1(𝑓) = min{𝑃 1(𝑓) : ∀𝑃 1 ∈ 𝑒𝑥𝑡(𝐾(𝐷1))}

= min{
(︂

2

3
× 𝑓(𝐺) + 0 × 𝑓(𝐵) +

1

3
× 𝑓(𝑁)

)︂
,(︂

1

2
× 𝑓(𝐺) +

1

6
× 𝑓(𝐵) +

1

3
× 𝑓(𝑁)

)︂
,(︂

1

2
× 𝑓(𝐺) + 0 × 𝑓(𝐵) +

1

2
× 𝑓(𝑁)

)︂
}

= min{1.66, 1.33, 1.5} = 1.33

and

𝑃
1
(𝑓) = max{𝑃 1(𝑓) : ∀𝑃 1 ∈ 𝑒𝑥𝑡(𝐾(𝐷1))}

= max{
(︂

2

3
× 𝑓(𝐺) + 0 × 𝑓(𝐵) +

1

3
× 𝑓(𝑁)

)︂
,(︂

1

2
× 𝑓(𝐺) +

1

6
× 𝑓(𝐵) +

1

3
× 𝑓(𝑁)

)︂
,(︂

1

2
× 𝑓(𝐺) + 0 × 𝑓(𝐵) +

1

2
× 𝑓(𝑁)

)︂
}

= max{1.66, 1.33, 1.5} = 1.66

Let Π denote a random variable that informs player one of the probable out-

comes of gamble 𝑓 . For instance, it can represent an unrevealed piece of statistics

about riots in hockey games. Let the set ℐ = {𝑅𝑖𝑜𝑡𝑠, 𝑃𝑒𝑎𝑐𝑒} represent the possible

values that Π can take. Let the probability of a hockey game ending with a riot be
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𝑃 (𝑟𝑖𝑜𝑡) = 𝜃, and the probability of peace 𝑃 (𝑝𝑒𝑎𝑐𝑒) = 1 − 𝜃. Consider that a riot

would certainly lead player one to have a bad experience. Therefore, 𝑃 (𝐵|𝑟𝑖𝑜𝑡) = 1

and 𝑃 (𝐺|𝑟𝑖𝑜𝑡) = 𝑃 (𝑁 |𝑟𝑖𝑜𝑡) = 0. However, a peaceful game would still keep the

player unsure about their preferences towards the hockey game. Hence, they still

rely on the lower and upper utility previsions resulting from the extreme points in

ext(𝐾(𝐷1)) (refer to Section 4.9.1).

In Equation (6.3), to assess the expected value of Π, i.e. 𝐸1[𝑉 1(Π)], player

one needs to determine the expected utilities of the ex-ante and ex-post Pareto

efficient correlated strategies, hence, compute 𝐸1[𝑈1(⃗𝜌𝜌𝜌2)|Π] and 𝐸1[𝑈1(⃗𝜌𝜌𝜌1)].

As seen in Section 4.9, before acquiring any information, an extremely pes-

simistic player one considers the payoff of outcome 𝑇𝐿 to be 𝑟1(𝑇𝐿) = 𝑃 1(𝑓) =

1.33. This assessment results in an optimal equilibrium 𝜌⃗𝜌𝜌1 = {𝜌𝑇𝐿 = 0.75, 𝜌𝐵𝑅 =

0.25}, hence, an expected game payoff of 𝐸1[𝑈1(⃗𝜌𝜌𝜌1)] = 1.25. In contrast, an ex-

tremely optimistic player one considers the payoff of outcome 𝑇𝐿 to be 𝑟1(𝑇𝐿) =

𝑃
1
(𝑓) = 1.66. This results in an optimal equilibrium 𝜌⃗𝜌𝜌1 = {𝜌𝑇𝐿 = 0.6, 𝜌𝐵𝑅 = 0.4},

with an expected utility of 𝐸1[𝑈1(⃗𝜌𝜌𝜌1)] = 1.39.

Computing the conditional expected utility 𝐸1[𝑈1(⃗𝜌𝜌𝜌2)|Π] is not as straightfor-

ward as 𝐸1[𝑈1(⃗𝜌𝜌𝜌1)]. It requires player one to identify the ex-post Pareto efficient

correlated strategy 𝜌⃗𝜌𝜌2; that is, the correlated strategy after acquiring Π. First, the

player should assess the impact of Π on the initial lower and upper previsions 𝑃 1(𝑓)

and 𝑃
1
(𝑓), hence, compute 𝑃 1(𝑓 |Π) and 𝑃

1
(𝑓 |Π). This can be done by assessing

the following conditional probabilities for each extreme point in ext(𝐾(𝐷1)):

– 𝑃 (𝐺|Π) = 𝑃 (𝑟𝑖𝑜𝑡) × 𝑃 (𝐺|𝑟𝑖𝑜𝑡) + 𝑃 (𝑝𝑒𝑎𝑐𝑒) × 𝑃 (𝐺|𝑝𝑒𝑎𝑐𝑒);

– 𝑃 (𝐵|Π) = 𝑃 (𝑟𝑖𝑜𝑡) × 𝑃 (𝐵|𝑟𝑖𝑜𝑡) + 𝑃 (𝑝𝑒𝑎𝑐𝑒) × 𝑃 (𝐵|𝑝𝑒𝑎𝑐𝑒);
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– 𝑃 (𝑁 |Π) = 𝑃 (𝑟𝑖𝑜𝑡) × 𝑃 (𝑁 |𝑟𝑖𝑜𝑡) + 𝑃 (𝑝𝑒𝑎𝑐𝑒) × 𝑃 (𝑁 |𝑝𝑒𝑎𝑐𝑒).

When these conditional probabilities are established for each extreme point in

ext(𝐾(𝐷1)), player one’s conditional lower and upper previsions of gamble 𝑓 ’s

payoff are computed as follows:

𝑃 1(𝑓 |Π) = min{𝑃 1(𝑓 |Π) : ∀𝑃 1 ∈ 𝑒𝑥𝑡(𝐾(𝐷1))}

= min{𝑃 1(𝐺|Π) × 𝑓(𝐺) + 𝑃 1(𝐵|Π) × 𝑓(𝐵)

+ 𝑃 1(𝑁 |Π) × 𝑓(𝑁) : ∀𝑃 1 ∈ 𝑒𝑥𝑡(𝐾)}

= min{
(︂

2(1 − 𝜃)

3
× 𝑓(𝐺) +

(1 − 𝜃)

3
× 𝑓(𝑁)

)︂
(︂

(1 − 𝜃)

2
× 𝑓(𝐺) +

(1 − 𝜃)

3
× 𝑓(𝑁)

)︂
(︂

(1 − 𝜃)

2
× 𝑓(𝐺) +

(1 − 𝜃)

2
× 𝑓(𝑁)

)︂
= min{5(1 − 𝜃)

3
,
4(1 − 𝜃)

3
,
3(1 − 𝜃)

2
} =

4(1 − 𝜃)

3
,

and

𝑃
1
(𝑓 |Π) = max{𝑃 1(𝑓 |Π) : ∀𝑃 1 ∈ 𝑒𝑥𝑡(𝐾(𝐷1))}

= max{5(1 − 𝜃)

3
,
4(1 − 𝜃)

3
,
3(1 − 𝜃)

2
} =

5(1 − 𝜃)

3
.

The game’s conditional expected utility given 𝑃 1(𝑓 |Π) and 𝑃
1
(𝑓 |Π) is com-

puted using Equation(2.5). Subsequently, the expected value of Π is computed

using Equation (6.3). The following demonstrates how this is applied using the

pessimist and optimist decision rules.

If player one is extremely pessimistic, their conditional expected utility is as-
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sessed using the conditional lower prevision of 𝑓 . Hence,

𝐸1[𝑈1(⃗𝜌𝜌𝜌2)|Π] = 𝑃 1(𝑓 |Π) × 𝜌2𝑇𝐿 + 𝑟1(𝑇𝑅) × 𝜌2𝑇𝑅

+ 𝑟1(𝐵𝐿) × 𝜌2𝐵𝐿 + 𝑟1(𝐵𝑅) × 𝜌2𝐵𝑅

=
4(1 − 𝜃)

3
× 𝜌2𝑇𝐿 + 𝜌2𝐵𝑅.

Then, the EVSI of this player is:

𝐸1[𝑉 1(Π)] = 𝐸1[𝑈1(⃗𝜌𝜌𝜌2)|Π] − 𝐸1[𝑈1(⃗𝜌𝜌𝜌1)]

=
4(1 − 𝜃)

3
× 𝜌2𝑇𝐿 + 𝜌2𝐵𝑅 − 1.25

Figure 6-1 shows player one’s conditional lower prevision of gamble 𝑓 as a function

of 𝜃, i.e. the probability of a riot. Furthermore, it shows the conditional expected

payoff of player one given the conditional lower prevision 𝑃 1(𝑓 |Π). For instance, if

the probability of a riot is 𝜃 < 0.25, the conditional lower prevision is 𝑃 1(𝑓 |Π) > 1,

and the conditional expected payoff 𝐸1[𝑈1(⃗𝜌𝜌𝜌2)|Π] > 1. In this case, the payoff

prevision for outcome 𝑇𝐿 is higher than the payoff of 𝐵𝑅. Hence, player one

would still consider a correlated strategy that includes both outcomes.

If the probability of a riot is 𝜃 = 0.25, the conditional lower prevision is

𝑃 1(𝑓 |Π) = 1, and the conditional expected payoff is 𝐸1[𝑈1(⃗𝜌𝜌𝜌2)|Π] = 1. In this

case, the payoff prevision for outcome 𝑇𝐿 is the same as 𝐵𝑅. Hence, player one is

indifferent between 𝑇𝐿 and 𝐵𝑅. Both of these outcomes generate the same util-

ity. Since player two’s payoff is 𝑟2(𝐵𝑅) = 2, a Pareto efficient correlated strategy

would be 𝜌2𝐵𝑅 = 1.

If the probability of a riot is 𝜃 > 0.25, the conditional lower prevision is

𝑃 1(𝑓 |Π) < 1, and the conditional expected payoff 𝐸1[𝑈1(⃗𝜌𝜌𝜌2)|Π] = 1. In this
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case, player one would always prefer the outcome 𝐵𝑅 over 𝑇𝐿 as it returns a

higher payoff. Hence, the Pareto efficient correlated strategy is 𝜌2𝐵𝑅 = 1.

Figure 6-1: Player one’s expected payoff and initial assessment of gamble 𝑓 ’s lower
prevision, given the probability of a riot. The expected payoff is based on a Pareto
efficient correlated strategy and on the assumption that player one is extremely
pessimistic.

For the opposite case, where player one is extremely optimistic, the conditional

upper prevision 𝑃
1
(𝑓 |Π) is used instead to compute the expected conditional pay-

off. Hence,

𝐸1[𝑈1(⃗𝜌𝜌𝜌2)|Π] = 𝑃
1
(𝑓 |Π) × 𝜌2𝑇𝐿 + 𝑟1(𝑇𝑅) × 𝜌2𝑇𝑅

+ 𝑟1(𝐵𝐿) × 𝜌2𝐵𝐿 + 𝑟1(𝐵𝑅) × 𝜌2𝐵𝑅

=
5(1 − 𝜃)

3
× 𝜌2𝑇𝐿 + 𝜌2𝐵𝑅.
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Then, the EVSI of this player is:

𝐸𝑘[𝑉 𝑘(Π)] = 𝐸𝑘[𝑈𝑘 (⃗𝜌𝜌𝜌2)|Π] − 𝐸𝑘[𝑈𝑘 (⃗𝜌𝜌𝜌1)]

=
5(1 − 𝜃)

3
× 𝜌2𝑇𝐿 + 𝜌2𝐵𝑅 − 1.39.

Figure 6-2 shows player one’s conditional upper prevision 𝑓 as a function of

𝜃. Furthermore, it shows the conditional expected payoff of player one given the

conditional upper prevision 𝑃
1
(𝑓 |Π). For instance, if the probability of a riot

is 𝜃 < 0.4, the conditional upper prevision is 𝑃
1
(𝑓 |Π) > 1, and the conditional

expected payoff 𝐸1[𝑈1(⃗𝜌𝜌𝜌2)|Π] > 1. In this case, the payoff prevision for outcome

𝑇𝐿 is higher than the payoff of 𝐵𝑅. Hence, player one would still consider a

correlated strategy that includes both outcomes. Given player one’s choice rule,

this result is expected. Even though the probability of a riot is high, the player is

optimistic about the outcome of 𝑇𝐿 and is still willing to go to a hockey game as

long as 𝜃 < 0.4.

If the probability of a riot is 𝜃 = 0.4, the conditional upper prevision is

𝑃
1
(𝑓 |Π) = 1, and the conditional expected payoff is 𝐸1[𝑈1(⃗𝜌𝜌𝜌2)|Π] = 1. In this

case, the payoff prevision for outcome 𝑇𝐿 is the same as 𝐵𝑅. Hence, player one is

indifferent between 𝑇𝐿 and 𝐵𝑅. Both of these outcomes generate the same util-

ity. Since player two’s payoff is 𝑟2(𝐵𝑅) = 2, a Pareto efficient correlated strategy

would be 𝜌2𝐵𝑅 = 1.

If the probability of a riot is 𝜃 > 0.4, the conditional upper prevision is

𝑃 1(𝑓 |Π) < 1, and the conditional expected payoff 𝐸1[𝑈1(⃗𝜌𝜌𝜌2)|Π] = 1. In this

case, player one would always prefer the outcome 𝐵𝑅 over 𝑇𝐿 as it returns a

higher payoff. Hence, the Pareto efficient correlated strategy is 𝜌2𝐵𝑅 = 1.
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Figure 6-2: Player one’s expected payoff and initial assessment of gamble 𝑓 ’s upper
prevision, given the probability of a riot. The expected payoff is based on a Pareto
efficient correlated strategy and on the assumption that player one is extremely
pessimistic.

Figure 6-3 shows the EVSI of Π, i.e. 𝐸1[𝑉 1(Π)], as a function of 𝜃. It analyses

the impact of the provided information on the expected value of this information.

Here, we analyse the impact of the probability of riot, 𝜃, on the EVSI of Π,

𝐸1[𝑉 1(Π)]. For instance, if the player is informed that hockey games are always

peaceful and riots are uncommon, the initially adopted correlated strategy is not

impacted. Hence, the player’s expected payoff doesn’t change. However, the initial

correlated strategy is significantly impacted if the player is informed that riots are

probable, i.e. 𝜃 = 0.5. Whether the player is extremely optimistic or pessimistic,

this information pushes them to negotiate a new correlated strategy. In this case,

they would only consider going to the cinema. The new correlated strategy causes

their expected payoff to change by −0.25 for the ‘pessimistic’ case and −0.4 for
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the ‘optimistic’ case.

Furthermore, Figure 6-3 shows that any information resulting in 𝜃 > 0.25 is

treated the same by a pessimistic player and has the same EVSI. That is because it

causes the player to switch to a new correlated strategy that excludes the outcome

𝑇𝐿. The same analysis applies to the optimistic player when 𝜃 > 0.4. Moreover,

when 𝜃 < 0.3, the EVSI of an extremely optimistic player is greater than the

EVSI of an extremely pessimistic player. This observation is explained by the fact

that an optimistic player’s conditional expected payoff of outcome 𝑇𝐿 is higher

than that of a pessimistic player. However, when 𝜃 ≥ 0.3, the pessimistic player’s

EVSI becomes higher. That is because the information that makes a player ignore

the outcome 𝑇𝐿 has a more significant impact on an optimistic player than on

a pessimistic player. This information reduces the optimistic player’s expected

utility by −0.4 and the optimistic player’s expected utility by −0.25.

The value of a particular statement 𝜄 in ℐ = {𝑅𝑖𝑜𝑡𝑠, 𝑃𝑒𝑎𝑐𝑒} can be identified

using the following steps. First, we compute the game’s expected utility given the

initial correlated strategy and given the relevant statement 𝜄 ∈ ℐ. For example,

consider that probability of a riot is 𝜃 < 0.25 for an extremely pessimistic player

one or 𝜃 < 0.4 for an extremely optimistic player. Furthermore, consider that the

ex-ante Pareto efficient strategy results in players one and two going to the hockey

match. During the hockey match, riots start and player one’s payoff is zero, i.e.

𝑟1(𝑇𝐿) = 0. Figure 6-4 shows 𝐸1[𝑈1(⃗𝜌𝜌𝜌2)|𝑟𝑖𝑜𝑡] as a function of 𝜃; that is, player

one’s expected payoff given the ex-ante Pareto efficient strategy, 𝜌⃗𝜌𝜌2, and given that

a riot started.

Second, we compute the game’s expected payoff given the new negotiated cor-

related strategy and the relevant statement 𝜄 ∈ ℐ. For instance, the riot event
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Figure 6-3: Expected value of sample information of both a pessimistic and opti-
mistic player one, given the probability of a riot.

pushes players to negotiate a new correlated strategy 𝜌⃗𝜌𝜌𝑝. In this example, con-

sider that they decide to stop going to hockey games. Hence, player one’s ex-

pected payoff given the ex-post correlated strategy and given that a riot starts is

𝐸1[𝑈1(⃗𝜌𝜌𝜌𝑝)|𝑟𝑖𝑜𝑡] = 1.

Finally, using Equation 6.4, the value of a ‘riot’ is computed as follows:

𝑉 1(𝑟𝑖𝑜𝑡) = 𝐸1[𝑈1(⃗𝜌𝜌𝜌𝑝)|𝑟𝑖𝑜𝑡] − 𝐸1[𝑈1(⃗𝜌𝜌𝜌2)|𝑟𝑖𝑜𝑡]

= 1 − 𝜌2𝐵𝑅.

Figure 6-5 shows the value of a ‘riot’ as a function of 𝜃. For a pessimistic

player, when the probability of a riot is 𝜃 = 0, the value of a ‘riot’ statement

is 𝑉 1(𝑟𝑖𝑜𝑡) = 0.75, whereas when 𝜃 = 0.24, the value of a ‘riot’ statement is
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Figure 6-4: Expected payoff of a pessimistic and optimistic player one given the
ex-ante Pareto efficient strategy and given that a riot starts.

𝑉 1(𝑟𝑖𝑜𝑡) = 0.98. These values are expected, a statement informing the player of a

high probability of riot would help them negotiate a better correlated equilibrium.

Then, if a riot happens, its impact on this player would be minimal. However,

a statement informing the player of a low probability of riot, e.g. 𝜃 = 0, is less

valuable. In this case, if a riot happens, the player will lose a significant amount

of utility.
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Figure 6-5: Value of a ‘riot’ for a pessimistic and optimistic player.
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Discussion and Conclusions

7.1 Discussion

The proposed enhanced GRR matrix, dynamic updating model, and utility di-

agnostics approach could help expand the existing scope of application of game

theory and allow it to include cases of ignorance over outcomes. Moreover, we

believe this solution could be extended to cooperative games. For instance, in

oligopoly pricing [3] or repeated partnerships [71], players are assumed to know

the utility of each outcome and the set of correlated distributions over these out-

comes. However, this strong assumption could be relaxed using an enhanced GRR

matrix.

Consider Radner’s [70] work on enhancing the decentralised decision-making

process in an organisation. He studies repeated partnership games in which play-

ers cannot observe each other’s strategies. In his example, two players contribute

separate efforts to an enterprise. The combined effort of all players leads the enter-

prise to succeed or fail. Hence, 𝒳 = {Success(S) = 1, Fail(F)=0 }. Players choose

their effort simultaneously without being able to monitor each other’s choices. The

probability of success is considered 𝑃 (𝑥 = 1) = min(𝑒1 + 𝑒2, 1), where 𝑒1 and 𝑒2
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are the individual efforts of players one and two. Furthermore, the utility payoff of

a player 𝑘 is 𝑓𝑘(𝑥, 𝑒𝑘) = 𝑥− 𝜆(𝑒𝑘)2, where 𝜆 > 0, and 𝜆𝑎𝑘 represents the disutility

of effort.

In this game, when a player contributes high effort, they know it is more likely

to yield success. However, they don’t know the exact probability of a failure when

all players choose to do the same. Therefore, players are uncertain about their

expected payoffs. An enhanced GRR matrix can help assess this uncertainty and

compute the set of correlated equilibria. Consider that a high effort(H) is when

𝑒𝑘 > 0.5 and a low effort(L) is when 𝑒𝑘 ≤ 0.5. Let Λ1 = Λ2 = {H, L} denote

the alternatives available to each player. Hence, the set of possible outcomes is

Φ = {𝐻𝐻,𝐻𝐿,𝐿𝐻,𝐿𝐿}. Outcomes HH and LL represent respectively a sure

success and a sure loss. However, both outcomes, HL and LH, represent either a

success or a loss. Assuming 𝜆 = 1, the payoff functions of these outcomes can be

modelled as follows:

– 𝑟𝑘(𝐻𝐻) = 𝑓𝑘
1 (𝑒𝑘) = 1− (𝑒𝑘)2, this function represents the payoff each player

𝑘 gets when they and the other player choose to contribute high effort.

Since, for the outcome HH, each player has to provide a minimum effort

of 0.5, the lower and upper previsions of 𝑟𝑘(𝐻𝐻) are 𝑃 𝑘(𝑟𝑘(𝐻𝐻)) = 0.75

and 𝑃
𝑘
(𝑟𝑘(𝐻𝐻)) = 0 (assuming that the maximum effort is 1);

– 𝑟𝑘(𝐻𝐿) = 𝑓𝑘
2 (𝑥, 𝑒𝑘) = 𝑥 − (𝑒𝑘)2 and 𝑟𝑘(𝐿𝐻) = 𝑓𝑘

3 (𝑥, 𝑒𝑘) = 𝑥 − (𝑒𝑘)2, these

functions represent the payoff each player 𝑘 gets when they choose to con-

tribute high effort while the other player contributes low effort, and vice

versa. The lower and upper previsions of 𝑟𝑘(𝐻𝐿) are 𝑃 𝑘(𝑟𝑘(𝐻𝐿)) = 𝑃 𝑘(𝑥)−

(𝑃 𝑘(𝑒𝑘))2 and 𝑃
𝑘
(𝑟𝑘(𝐻𝐿)) = 𝑃

𝑘
(𝑥) − (𝑃

𝑘
(𝑒𝑘))2. The same logic applies to
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payoff 𝑟𝑘(𝐿𝐻). Hence, 𝑃 1(𝑟1(𝐻𝐿)) = 𝑃 2(𝑟2(𝐿𝐻)) = 0.25, 𝑃
1
(𝑟1(𝐻𝐿)) =

𝑃
2
(𝑟2(𝐿𝐻)) = 0, 𝑃 1(𝑟1(𝐿𝐻)) = 𝑃 2(𝑟2(𝐻𝐿)) = 0.5, and 𝑃

1
(𝑟1(𝐿𝐻)) =

𝑃
2
(𝑟2(𝐻𝐿)) = 0.75;

– 𝑟𝑘(𝐿𝐿) = 𝑓𝑘
4 (𝑒𝑘) = −(𝑒𝑘)2, this function represents the payoff each player

𝑘 gets when they and the other player choose to contribute low effort. The

lower and upper previsions of 𝑟𝑘(𝐿𝐿) are 𝑃 𝑘(𝑟𝑘(𝐿𝐿)) = 0 and 𝑃
𝑘
(𝑟𝑘(𝐿𝐿))=

-0.25.

The resulting vacuous previsions should be refined using an elicitation model

and used in the enhanced GRR matrix. This matrix will return a convex set

of correlated equilibria based on the uncertain outcomes’ lower and upper utility

previsions. Furthermore, in the repeated version of this game, dynamic updating

can be used to adjust these utility previsions to the behaviour of each player.

Dynamic updating will lead to an improved set of correlated equilibria by providing

a more accurate utility assessment for each outcome. That is because Equations

(4.9) and (4.10) adjust elicited previsions to newly observed utilities based on each

player’s delivered efforts.

7.2 Conclusions

Ignorance over a game’s outcome has had limited treatment in game theory’s

literature, even though such cases are empirically evident. Here, we proposed the

enhanced GRR matrix complemented with an elicitation model and NPUI-based

dynamic updating as a normative solution to those situations.

We developed an enhanced version of Nau’s revealed-rules matrix that allows
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solving the correlated equilibria of a game that includes unknown outcomes. We

conceptualised and built our solution using risk-neutral players, then extended it

to cover the more generic case of risk-averse players.

We showed that the enhanced revealed-rules matrix reveals information that

is not observable within the game’s utility matrix. Specifically, it allows a player

to include their lower and upper expectations towards the utility of an unknown

outcome.

We discussed rationality requirements for lower and upper expectations and

suggested an elicitation model allowing a player to assess them coherently. This

elicitation model uses pre-existing beliefs as information, allowing cases of extreme

ignorance, i.e. when a player has no information regarding an outcome.

We demonstrated that the enhanced matrix complemented with the elicitation

model creates a complete framework for assessing a game’s correlated equilibria

under ignorance. An extensive example of a modified version of ‘battle of the

sexes’, which includes ignorance over outcomes, was provided.

We examined repeated games and introduced a non-parametric updating model

that allows a player to dynamically adjust an uncertain outcome’s lower and upper

expectations whenever it is experienced. To validate this updating model, we

used a case of extreme ignorance and simulated a modified version of the game

‘matching pennies’. The results showed that lower and upper previsions of the

relevant outcome converge towards its linear prevision; that is, its actual expected

payoff, which is initially unknown to the player.

We considered the suggested model’s scalability and ability to support mul-

tiple sources of uncertainty. In such a case, the lower and upper previsions of

unknown outcomes should not be limited to local assessments, i.e. independently
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assign lower and upper previsions to each source of uncertainty. Instead, struc-

tural assessments should be considered, ensuring a coherent relation between lower

(upper) previsions across all gambles.

We studied the impact of ignorance on specific game properties. Precisely,

zero-sum and symmetry properties. We showed that uncertainty over outcomes

could alter these properties and change the analysed structure of the relevant

games. Furthermore, we leveraged the enhanced revealed-rules matrix to provide

a solution that could explicitly force these properties.

Finally, we discussed the implication of ignorance on utility diagnostics and

developed a new approach that allows assessing the impact of information patterns

on strategic interactions. It allows computing the expected and actual value of a

piece of information. We demonstrated this approach using the modified version

of the game ‘battle of the sexes’.

In conclusion, the application of the proposed model could be explored in

several fields of study. For example, in Artificial Intelligence, if a payoff matrix

contains unobserved outcomes, it could be replaced with an enhanced revealed-

rules matrix that includes players’ elicited lower and upper previsions towards these

outcomes. Or within Economics, in rivalry or alliance situations where ignorance

can prevail. For instance, when companies invest in a new market and unforeseen

events arise, this could cause a conflict of interest. In this case, stakeholders could

assess the value of further information through the suggested utility diagnostics

approach and update their preferences using the dynamic updating mechanism.
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List of Symbols

𝑈 Utility function

𝜑𝜑𝜑 Outcome of a game-play

𝑘 Player in a game

Λ Player’s set of all available alternatives in a game

𝑎 Player’s available alternative in a game

𝐾 Total number of players in a game

𝑚 Player’s total number of available alternatives in

a game

Φ Set of all possible outcomes of a game

𝑐 Risk aversion degree

𝑟 Payoff function/vector

𝜀⃗ Player’s mixed strategy

𝜀 Mixed strategy profile

𝐸 Player’s expected payoff function

𝜌⃗𝜌𝜌 A correlated strategy

𝑁 Total number of outcomes in a game
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𝐼 Set of all joint probability distributions that are

independent between players

𝑃 Lower prevision

𝑃 Upper prevision

𝒳 Set of all possible outcomes of an experiment

𝑓 Reward function referred to as a gamble

𝛿𝛿𝛿 Indicator of events function

𝒜 subset of possible outcomes of an experiment

𝑒 An event

𝑀𝑀𝑀 Game revealed-rules matrix for risk neutral play-

ers

𝑈̇ Utility function’s derivative

𝜎 Risk value

𝜃 Transaction’s payoff

𝑀𝑀𝑀* Game revealed-rules matrix for risk averse players

𝑛 Number of observations

𝑢 Observed utility value

𝑢̂ Pre-observed utility value

𝐹 Set of reward functions referred to as a gambles

ℰ Natural extension of the lower prevision of a given

set of gambles

𝑥 Outcome of an experiment

𝐷 Set of almost-desirable gambles
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ℰ Natural extension of the linear prevision of a

given set of gambles

𝑤 Worst payoff of a gamble

𝑏 Best payoff of a gamble

𝑔 Reward function referred to as a gamble

𝒴 Set of all possible outcomes of an experiment

𝑦 Outcome of an experiment

Σ Set of permutations

𝜋 a permutation

Π Random variable that represent unknown infor-

mation statements

ℐ Set of all possible information statements

𝜄 Information statement

𝑉 Value of information function
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