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Simple Summary: Survival prediction is an important aspect of oncology and palliative care. Mea-
sures of night-time relative to daytime activity, derived from a motion sensor, have shown promise in
patients receiving chemotherapy. Measuring rest-activity and sleep may, therefore, result in improved
prognostication in advanced cancer patients. Fifty adult outpatients with advanced cancer were
recruited, and rest-activity, sleep, and routine clinical variables were collected just over a one week
period, and used in machine learning models. Our findings confirmed the importance of some
well-established survival predictors and identified new ones. We found that sleep-wake parame-
ters may be useful in prognostication in advanced cancer patients when combined with routinely
collected data.

Abstract: Survival prediction is integral to oncology and palliative care, yet robust prognostic models
remain elusive. We assessed the feasibility of combining actigraphy, sleep diary data, and routine
clinical parameters to prognosticate. Fifty adult outpatients with advanced cancer and estimated
prognosis of <1 year were recruited. Patients were required to wear an Actiwatch® (wrist actigraph)
for 8 days, and complete a sleep diary. Univariate and regularised multivariate regression methods
were used to identify predictors from 66 variables and construct predictive models of survival. A
total of 49 patients completed the study, and 34 patients died within 1 year. Forty-two patients had
disrupted rest-activity rhythms (dichotomy index (I < O ≤ 97.5%) but I < O did not have prognostic
value in univariate analyses. The Lasso regularised derived algorithm was optimal and able to
differentiate participants with shorter/longer survival (log rank p < 0.0001). Predictors associated
with increased survival time were: time of awakening sleep efficiency, subjective sleep quality,
clinician’s estimate of survival and global health status score, and haemoglobin. A shorter survival
time was associated with self-reported sleep disturbance, neutrophil count, serum urea, creatinine,
and C-reactive protein. Applying machine learning to actigraphy and sleep data combined with
routine clinical data is a promising approach for the development of prognostic tools.

Keywords: biomarkers; circadian; machine learning; palliative care; prognosis; survival

1. Introduction

Prognostication (i.e., estimation of survival) is an important aspect of the management
of patients with cancer. It is of particular importance in advanced cancer where it has
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immediate implications for clinicians’ decisions about the treatment of the cancer, treatment
of co-morbidities, so-called “ceilings of care”, and referral to palliative care services [1,2].
Furthermore, it has implications for patients (and families) in terms of current decision-
making, advance care planning, and “getting one’s affairs in order”.

Healthcare professionals are inaccurate prognosticators, often overestimating sur-
vival [3], and the accuracy of estimates is inversely related to survival [2]. Healthcare
professionals are relatively good at predicting if patients will die within a couple of days,
but not so good at predicting if patients will live for a couple of months or longer.

Various prognostic tools/algorithms have been developed to improve prognostication
in patients with cancer [2,4]: these tools vary in their content (e.g., objective items only; sub-
jective items only; objective and subjective items). However, none of these tools have been
shown to be consistently better than clinicians’ predictions of survival [2]. Current prognos-
tication tools often include measures such as performance status, symptoms, venous blood
sample data, and clinician-predicted survival [2,5]. The integration of other physiological
and behavioural parameters, such as rest-activity rhythms (“diurnal or circadian”) and
sleep parameters are yet to be considered in prognostic models. (The term ‘circadian’ is
meant to refer to rhythms that persist in constant conditions. Rhythms assessed in the
presence of environmental rhythms, as in the present study, are referred to as diurnal or
24 h rhythms, although increasingly these rhythms are also referred to as ‘circadian’)

Sleep-wake cycles and circadian rhythms have a key role in sustaining normal body
function and homeostasis [6]. Deterioration of rest-activity rhythmicity (loss of rhythmicity)
and fragmentation of the sleep-wake cycle may be a marker of deterioration of health and,
indeed, a predictor of illness including cancer, as well as cancer survival [7–9].

Several studies in cancer patients have incorporated actigraphy to objectively assess
daytime activity, 24 h variation in rest-activity, as well as nocturnal and daytime sleep [7]. A
number of actigraphy-derived parameters have been used to quantify rest-activity rhythms
in this population including acrophase (time of peak activity), amplitude (peak to nadir
difference, i.e., height of activity rhythm peak), mesor (average activity over a 24 h period),
and the “dichotomy index” (I < O). Of these parameters, the I < O is one of the most
commonly studied rest-activity measures in cancer studies. The I < O has been identified
as an independent prognostic biomarker for overall survival, particularly in patients with
metastatic colorectal cancer [10,11]. The I < O is defined as the percentage of the activity
counts measured when the patient is in bed that are inferior to the median of the activity
counts measured when the patient is out of bed [12]. An I < O of ≤97.5% is indicative of
a disrupted rest-activity circadian rhythm (i.e., increased fragmented sleep and reduced
daytime activity patterns) [7]. However, the I < O has not been used to prognosticate per se,
either alone or in combination with other items. Furthermore, few studies have explored
the potential of actigraphy-derived sleep parameters as prognostic markers in advanced
cancer patients [13].

The first aim of this study was to investigate the feasibility of using I < O and other
actigraphy-derived parameters as stand-alone items, to prognosticate in patients with
advanced cancer. The second aim of the study was to determine whether the I < O and
other actigraphy and sleep parameters should be combined with established prognostic
indicators, e.g., Eastern Cooperative Oncology Group performance status (ECOG-PS),
modified version of the Glasgow Prognostic Score (mGPS), Prognosis in Palliative Care
Study (PiPS) –B, as well as putative prognostic variables from routine clinical data derived
from blood samples, to improve prognostic accuracy. To achieve this second aim we
deployed regularised regression, a supervised machine learning approach which overcomes
some of the limitations of classical multiple regression, to identify effective prognostic
indicators and develop more robust prognostic algorithms [14].
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2. Materials and Methods
2.1. Study Design and Setting

The study was a prospective observational study conducted in a medium-sized district
general hospital/cancer centre in the United Kingdom. The study was sponsored by the
Royal Surrey County Hospital and received ethical approval from the London–Bromley
REC (reference number—16/LO/0243). The study was registered on the CancerTrials.gov
registry (reference number—NCT03283683). The study was funded by the Palliative Care
Research Fund (Prof. Davies—Royal Surrey County Hospital), including an unrestricted
donation from the family of Mr. John Spencer.

2.2. Study Participants

Participants were recruited from outpatients at the study site. All patients that met
the criteria for the study were eligible for entry into the study (convenience sampling,
consecutive recruitment). The inclusion criteria were: (a) age ≥ 18 years; (b) diagnosis of
locally advanced/metastatic cancer; (c) clinician estimated prognosis of more than 2 weeks
but less than 1 year; and (d) known to a specialist palliative care team. The exclusion
criteria were: (a) cognitive impairment; (b) physical disability that affected general activity;
and (c) physical disability that affected non-dominant arm movement.

Patients were diagnosed with locally advanced/metastatic cancer according to NHS
guidelines, which consider TNM staging. All patients who met the inclusion criteria were
deemed eligible for entry into the study. Potentially eligible patients were identified by the
clinical team and approached by a member of the research team and invited to participate
in the study. Any patient referred to the specialist palliative care team was expected to die
within the next twelve months (as per the General Medical Council definition for end-of-life
care [14]).

2.3. Routine Data Collection

Written informed consent was obtained from participants prior to entry into the study.
The initial review (day 0) involved a collection of routine clinical data: patient demograph-
ics, information about cancer diagnosis/treatment, information about co-morbidities/ med-
ication, assessment of Eastern Cooperative Oncology Group performance status (ECOG-PS)
(by clinician and patient) [15], and completion of the Abbreviated Mental Test Score [16],
the Memorial Symptom Assessment Scale—Short Form (MSAS-SF) [17], and the Global
Health Status question from the PiPS-B algorithm [18]. The participant’s pulse was mea-
sured (as part of the PiPS), and a venous blood sample was taken to measure haemoglobin,
white blood cell count (WBC), neutrophil count, lymphocyte count, platelet count, sodium,
potassium, urea, creatinine, albumin, alanine aminotransferase (ALT), alkaline phosphatase
(ALP), and C-reactive protein (CRP). The final review (day 8) involved further assessment
of ECOG-PS (by clinician and patient), completion of the MSAS-SF, the Pittsburgh Sleep
Quality Index (PSQI) [19], and a patient acceptability questionnaire. The blood test results
were used to complete the PiPS-B scoring algorithm, and serum CRP and albumin were
used to calculate the mGPS [20].

2.4. Wrist Actigraphy and Consensus Sleep Diary

Wrist actigraphy was used to measure physical activity and standard sleep measures.
Participants were fitted with the Actiwatch Spectrum Plus® (Philips Respironics, Bend,
OR, USA) on the non-dominant arm after the initial review (day 0) and were instructed
to wear the device for eight consecutive 24 h periods. The Actiwatch Spectrum Plus® is a
CE-marked device with an accelerometer (i.e., motion sensor) that samples movement at
32 Hz [21] with a sensitivity of 0.025 G (at 2 count level). Participants were also given a
Consensus Sleep Dairy in order to provide confirmatory information about specific sleep
parameters (e.g., number of awakenings, time of final awakening) [22]: the “diary” was
completed for eight consecutive sleep periods. The Actiwatches were configured and data
were retrieved using device-specific software (Actiware version 6.0.9: Philips Respironics,
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Bend, OR, USA). The Actiwatches were adjusted to provide an epoch length (sampling
interval) of one minute, which is the most common epoch length used in studies of cancer
patients [23]. The Consensus Sleep Diary was used in conjunction with the Actiwatch to
assist in actigraphy data interpretation (i.e., determine the major sleep/wake periods) [24].

The data from the Actiwatches was downloaded into an Excel spreadsheet, and the
following rest-activity parameters were calculated using a study specific SAS programme
(SAS® Version 9.4 Statistical Analysis Software, SAS Institute, Cary, NC, USA): I < O, r24 (an
autocorrelation coefficient at 24 h, that is “a measure of the regularity and reproducibility of
the activity pattern over a 24 h period from one day to the next”) [25], mean daily activity
(MDA), and mean activity during daytime wakefulness. MDA was calculated as the
average number of wrist movements per minute throughout the recording time [25], and
the mean duration of activity during wakefulness was calculated as the mean activity score
(counts/minute) during the time period between two major sleep period intervals [26].
In addition, the following sleep parameters were calculated both automatically from the
Actiwatches (using the Actiware sleep scoring algorithm) and manually from the sleep
diary [27]: bedtime (BT), get-up time (GUT), time in bed (TIB), sleep onset latency (SOL),
total sleep time (TST), sleep efficiency (SE), wake after sleep onset (WASO), and number of
awake episodes (NA). The sleep parameters derived manually solely from the sleep diary
were: time tried to sleep, time of final awakening and terminal awakening (TWAK) [22].
See Table 1 for definitions of the sleep parameters.

Table 1. Definitions of actigraphy-derived sleep/consensus sleep diary parameters [22,26,28].

Sleep Parameter Definition

Actigraphy and sleep diary

Bed-time (BT) (hh:mm) Clock time attempted to fall asleep based on
actigraphy event marker or sleep diary

Get-up time (GUT) (hh:mm) Clock time attempted to rise from bed for the final
time based on actigraphy event marker or sleep diary

Time in bed (TIB) (hh:mm) Duration between reported BT and GUT (reported in
hours and minutes) or as self-reported in sleep diary

Sleep onset latency (SOL) (min) Duration between reported BT and actigraph scored
sleep onset time or as self-reported in sleep diary

Total sleep time (TST) (hh:mm) Duration of sleep during the major sleep period
calculated by Actiware;

Sleep diary manual calculation: TIB minus (SOL plus
WASO plus TWAK)

Sleep efficiency (SE) (%)
Proportion of time the patient is asleep out of the
total time in bed (reported as a percentage)
calculated by Actiware;

Sleep diary manual calculation: TST divided by TIB
× 100

Wake after sleep onset (WASO) (min)
Sum of wake times from sleep onset to the final
awakening calculated by Actiware or as self-reported
in sleep diary

Number of awake episodes (NA)
Number of continuous blocks of wake during the
major sleep period calculated by Actiware or as
self-reported in sleep diary

Sleep Diary

Time tried to sleep (hh:mm) Self-reported time participant began ‘trying’ to fall
asleep

Time of final awakening (hh:mm) Self-reported time participant last woke up in the
morning

Terminal awakening (TWAK) (hh:mm) GUT minus time of final awakening
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2.5. Follow-Up

During the study period (from time of first patient recruited to six months after last
patient recruited), participants’ survival status (and date of death, if applicable) was deter-
mined every three months by reviewing the hospital clinical records, and/or contacting the
general practitioner.

3. Statistical Analyses

The sample size for the study (n = 50) was derived from guidance on sample sizes for
feasibility studies (and represents the upper range) [29]. Statistical support was provided
by statisticians, within the Research Design Service South-East (based in the Clinical Trials
Unit at the University of Surrey). Descriptive statistics were used to explain much of
the data (e.g., mean and standard error; median and range). The Intraclass Correlation
Coefficient (ICC) was used to assess the robustness of I < O as a marker of the rest-
activity rhythm, and its stability throughout the actigraphy recording. The Spearman’s
Rank correlation coefficient was used to measure the association between I < O and other
actigraphy-derived parameters. The Spearman’s rank correlation ‘r’ values were defined
as follows: 0 ≤ r < 0.3 indicated a negligible correlation, 0.3 ≤ r < 0.5 a low correlation,
0.5 ≤ r < 0.7 a moderate correlation, 0.7 ≤ r < 0.9 a high correlation, and 0.9 ≤ r ≤ 1 a very
high correlation [30]. Kaplan–Meier plots, a non-parametric statistical method, were used
to estimate the probability of survival past a given time point along with the log rank test
to compare the survival distribution of two groups. Statistical significance was evaluated
at 5%.

The “per protocol set” refers to participants that wore the Actiwatch for the eight
consecutive 24 h periods with the corresponding sleep diary, whilst the “full analysis set”
refers to participants that wore the Actiwatch for at least three consecutive 24 h periods
(i.e., 72 h) and completed the corresponding sleep diary for the actigraphy rest-activity and
sleep analysis, or for at least three consecutive or non-consecutive nights in the sleep diary
for the subjective sleep analysis (i.e., calculation of the sleep diary parameters).

4. Machine Learning Methods and Data Analysis

Cox regression has been the standard approach to survival analysis in oncology.
However, Cox regression has a number of limitations. In particular, it is not an adequate
approach for situations in which the number of predictors is high relative to the number
of observations, as is the case in this feasibility study. We therefore opted to use simple
alternative methods that can (1) adequately deal with situations in which the number of
predictors is large relative to the number of observations and (2) yield models that are
interpretable, i.e., are not ‘black box models’. Penalised (Regularised) regression models
represent such an approach.

A supervised machine learning algorithm was used to develop a predictive model,
where the collated subjective and objective parameters (i.e., routine clinical data and
actigraphy-derived rest-activity and sleep parameters) were individual predictor variables
and survival was the ‘response’ variable [31]. Sixty-six predictor variables were tested
for potential predictive value (Appendix A, see Table A1 for descriptive statistics of the
numerical predictor variables). Overall survival was defined as the time from initial review
(day 0) to death or until 14 May 2020 for patients that remained alive until the end of
the study.

4.1. Machine Learning Dataset

All patients recruited into the study (n = 50) were used for the machine learning
analysis. The predictor variables were classified into the relevant variable type (e.g., binary,
categorical_nominal, etc.) and entered into a .csvfile in Excel. Binary variables, such as ‘use
of opioid analgesia’ were transformed into dummy variables (0 or 1). Categorical_ordinal
variables with a numerical ranking, such as ECOG-PS were labelled using the ‘LabelEn-
coder’ approach, where the output integer value from the LabelEncoder function was
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used to reflect the ordering of the original integer. Categorical_ordinal variables with
non-numerical values, such as PSQI sleep disturbance, were assigned a numerical ranking.
Numerical_continuous variables involving sleep/wake times were entered in the 24 h
format. Missing data values were imputed with the average of the group or with the corre-
sponding subjective/objective data from the same participant. Missing data accounted for
<4% of the dataset.

4.2. Regularised Regression Methods

Regularised regression was used to reduce “overfitting” and aid the generalisability
of the model. ‘Regularisation’ corresponds to a penalty that limits the overall weight that
can be assigned across all predictor variables in the model, which reduces model com-
plexity (compared to traditional multivariate regression). For some regularised regression
approaches, the penalty can drive the weight of a variable to zero, effectively selecting the
optimal combination of predictor variables that can be used to predict the given outcome.

Here, three regularised multivariate regression methods were applied and compared:
ridge regression, least absolute shrinkage and selection operator (Lasso) and elastic net. The
ridge regression algorithm includes all the predictor variables, shrinking the coefficients
towards (but not set at) zero in a continuous manner [32]. The Lasso-derived algorithm
combines the method of shrinkage with the sub-selection of predictor variables, using a
penalty ‘L1 norm’ [32,33], creating a ‘sparse’ model (i.e., selecting only a few variables
from the dataset) [32]. The elastic net algorithm is broadly a combination of the ridge
and Lasso [34]. This method simultaneously performs continuous shrinkage and feature
selection, selecting groups of correlated variables, using a penalty of ‘L1 norm’ and ‘L2
norm’ [34]. Highly correlated predictor variables are averaged and entered into the model
to remove any deviances caused by extreme correlations [35]. Since survival data are
censored, i.e., at the end of the observation period some participants may still be alive, we
applied regularised Cox regression using the glmnet package in R.

4.3. Model Development

The models were validated using a k-fold (10 folds used) cross-validation approach [32].
For each of the 50 individuals, the predicted survival was based on a model which was
constructed on ‘k − 1′ subjects, i.e., the model was blind to the participant and the partici-
pant did not contribute to the estimation of the prediction. All analyses were carried out
within the statistical computing environment R (version 3.6.2). For machine learning, ridge,
Lasso and elastic net (alpha = 0.5) regression the package glmnet (version 2.0) was used.
Here, an exhaustive search for lambda able to produce the minimum Mean Cross-Validated
Error (CVM) was performed. All subjects were used as the training set to build a final
model, then k-fold cross-validation for performances (CVM) was performed. Analyses
were performed with different settings of elastic net mixing parameter (alpha), which were
elastic net (alpha = 0.5), Lasso (alpha = 0.99) and ridge (alpha = 0.01). The models generated
a predicted hazard, which was compared to the actual survival in days using Pearson’s
correlation coefficient. To estimate the intra-variable variation in their contribution to
the predictor, we computed the mean cross-validated error of the weights of each of the
variables that were consistently identified in all 50 participants.

5. Results

A total of 50 patients were recruited to the study, and 49 participants completed the
study (Figure 1): the full analysis set consisted of 44 participants, whilst the per protocol
set consisted of 37 participants. See Table 2 for characteristics of the participants. A total of
46 participants were followed up for 12 months (40 in the full analysis set, 33 in the per
protocol set), and 34 died within this time period (28 in the full analysis set, 22 in the per
protocol set). Unless otherwise stated, the following results relate to the full analysis set.
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Figure 1. Study flow chart.

Table 2. Participant characteristics.

Characteristic All Participants (n = 50) “Full Analysis Set” (n = 40)

Age Median—63 yr Median—66 yr
(range 40–81 yr) (range 43–81 yr)

Sex Female—21 (42%) Female–17 (39%)
Male—29 (58%) Male—27 (61%)
Cancer diagnosis Breast—6 (12%) Breast—6 (14%)

Endocrine—1 (2%) Endocrine—1 (2%)
Gastrointestinal—16 (32%) Gastrointestinal—14 (32%)
Gynaecological—6 (12%) Gynaecological—4 (9%)
Haematological—2 (4%) Haematological—2 (5%)
Head and Neck—3 (6%) Head and Neck—2 (5%)
Lung—6 (12%) Lung—6 (14%)
Skin—2 (4%) Skin—2 (5%)
Urological—8 (16%) Urological—7 (16%)

ECOG-PS 0–0 (0%) 0–0 (0%)
(Physician-assessed 1–26 (52%) 1–24 (55%)
at baseline) 2–13 (26%) 2–10 (23%)

3–11 (22%) 3–10 (23%)
4–0 (0%) 4–0 (0%)

Note: Percentages may not sum to 100 due to rounding.

5.1. Acceptability of Actigraphy and Sleep Diary Acceptability

Actigraphy data were missing from one participant due to a technical problem. Forty-
two (84%) participants reported that the Actiwatch was “comfortable to wear”, and only
four (8%) reported that the Actiwatch interfered with their normal activities. No adverse
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effects were reported from using the Actiwatch. Fourteen (28%) participants reported that
the Consensus Sleep Diary was difficult to complete, and two (4%) subjects reported that
the diary interfered with their normal activities.

5.2. Univariate Analyses of Actigraphy Parameters
5.2.1. Characteristics of the Dichotomy Index (I < O) and Correlation with Other
Actigraphy and Sleep Parameters

Table 3 shows the results for the I < O. Forty-two (95%) participants had an I < O
of ≤97.5%, indicating a disrupted rest-activity circadian rhythm [7]. The I < O can be
considered a stable variable since the intraclass correlation coefficient for values obtained
over eight days using the per protocol set, was 0.93 (95% CI: 0.88–1.00; p < 0.0005), which is
considered an “excellent” correlation [36]. In fact, there was a “high” positive correlation
between the I < O for the first three days (72 h) and for the full eight days (Spearman’s
correlation: r = 0.82; p < 0.0005) [31]. Moreover, there was a “high” positive correlation
between the I < O on weekdays and on the weekend (Spearman’s correlation: r = 0.76;
p < 0.0005). Additionally, there was a “very high” positive correlation between the I < O
calculated using 24 h of data, and the I < O calculated using 20 h of data, i.e., excluding the
one-hour periods before/after going to bed, and the one-hour periods before/after getting
out of bed (Spearman’s correlation: r = 0.98; p < 0.0005).

Table 3. Dichotomy Index (I < O) data.

I < O Parameter Full Analysis Set (n = 44) Per Protocol Set (n = 37)

Mean 88.90% 89.90%
(+/− standard error) (+/− 1.04) (+/− 0.97)
Minimum 70.90% 70.90%
25th Centile 86.90% 87.40%
Median 90.40% 90.80%
75th Centile 93.60% 93.60%
Maximum 98.10% 97.60%
Distribution Non-normal Non-normal

(Shapiro-Wilk (Shapiro-Wilk
test: p = 0.001) test: p = 0.001)

There was a “moderate” positive correlation between the I < O and the r24 (Spearman’s
correlation: r = 0.66; p < 0.0005), and the mean activity during wakefulness (Spearman’s
correlation: r = 0.51; p < 0.0005). However, there was only a “low” positive correlation
between the I < O and the mean daily activity (Spearman’s correlation: r = 0.43; p = 0.003).
Other standard actigraphy parameters correlated with the I < O were SE, i.e., number
of minutes of sleep divided by total number of minutes in bed (Spearman’s correlation:
r = 0.47, “low” correlation; p = 0.001), and WASO, i.e., number of minutes awake after
sleep onset during sleep period (Spearman’s correlation: r = −0.51, “moderate” correlation;
p < 0.0005).

5.2.2. I < O: Predictor of Survival and Correlation with ECOG-PS

Amongst participants that completed one year of follow-up (n = 40), there was no
significant difference in overall survival between those separated into two groups (based
on the median I < O; log rank test, p = 0.917), or four groups (based on the quartiles of the
I < O; log rank test, p = 0.838). However, I < O had a “moderate” negative correlation with
the physician assessed ECOG-PS (Spearman rank correlation: r = −0.63; p < 0.0005). The
ECOG-PS was an independent prognostic indicator in this cohort of patients (log rank test,
p < 0.0005). The median survival for participants with an ECOG-PS of 1 (end of study) was
141 days, ECOG-PS of 2 was 135 days, ECOG-PS of 3 was 57 days, and ECOG-PS of 4 was
17 days.
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5.2.3. Autocorrelation Coefficient at 24 h (r24)

The median r24 was 0.16 (range 0.04–0.37). Amongst participants that completed one
year of follow-up (n = 40), there was no significant difference in overall survival between
those separated into two groups (based on the median r24; log rank test, p = 0.318), or four
groups (based on the quartiles of the r24; log rank test, p = 0.800).

5.2.4. Other Actigraphy Parameters

None of the other actigraphy-derived sleep parameters were associated with a de-
creased overall survival: (a) TIB (log rank, p = 0.574: based on group median of 9 h 29 min);
(b) TST (log rank, p = 0.147: based on normative cut-off value of ≥6.5 h [28]; (c) SOL (log
rank, p = 0.283: based on normative cut-off value of ≤30 min [28]; (d) SE log rank, p = 0.224:
based on normative cut-off value of ≥85% [28]; (e) WASO (log rank, p = 0.549: based on
normative cut-off value of >30 min [28]; and (f) NA (log rank, p = 0.972: based on group
median of 23 episodes).

5.3. Multivariate Predictors of Survival: Machine Learning Results

In the machine learning dataset, 46 participants had died within the specified time
period of follow-up (i.e., by 14 May 2020). The Lasso model selected 22 predictor variables,
with 14 variables consistently selected in all 50 participants during the process of validation
(Figure 2). These involved eight predictor variables associated with greater survival time
and six predictor variables, associated with a reduced survival time. The predictor variables
associated with increased survival time, i.e., smaller hazard (in order of the coefficient
associated with the predictor variable) were: later sleep diary time of final awakening,
later actigraphy get up time, longer PiPS-B clinician’s estimate of survival, better PSQI
subjective sleep quality, greater PiPS-B global health status score (indicating better health),
better actigraphy sleep efficiency, and higher haemoglobin values. The variables associated
with reduced survival time were more frequent PSQI sleep disturbance wake middle of
the night/early morning, higher neutrophil count, higher serum urea, serum creatinine,
and serum C-reactive protein. On the contrary, a larger MSAS-SF total symptom distress
was associated with a lower risk of death and a higher I < O was associated with a
worse prognosis. The predicted median hazard was 0.00052, and the model was able to
successfully differentiate between participants with a shorter/longer overall survival (log
rank p < 0.0001) (Figure 3). Figure A1 shows the correlation between the actual survival
and predicted hazard (Pearson’s correlation coefficient r = −0.5; p = 0.0002).

The ridge model consistently identified 28 predictor variables in all 50 participants
(Figure 4). During the process of validation, the top 10 variables consistently selected
involved seven predictors associated with longer survival time and three predictors asso-
ciated with shorter survival time. The seven predictor variables associated with longer
survival time (in order of the coefficient associated with the predictor variable) were: actig-
raphy get-up time, sleep diary time of final awakening, sleep diary get-up time and PSQI
usual get-up time; PiPS-B clinician’s estimate of survival, PSQI subjective sleep quality and
PiPS-B global health status score. The 3 predictor variables associated with shorter survival
time were: use of opioid analgesia, modified Glasgow Prognostic Score and physician-
assessed ECOG-PS day 8. The predicted median hazard was 0.44; however, there was
no significant difference in overall survival when a median split was applied (log rank,
p = 0.0914) (Figure 5). Figure A2 shows the correlation between the actual survival and
predicted hazard (Pearson’s correlation coefficient r = −0.5; p = 0.0002).
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The elastic net model selected 10 predictor variables, with 6 variables being consis-
tently selected during the process of validation: the two consistently selected predictor
variables associated with longer survival time were (in order of the coefficient associated
with the predictor variable): later actigraphy get-up time and greater PiPS-B global health
status score; the 4 consistently selected predictor variables associated with shorter survival
time were: higher serum urea, neutrophil count, serum C-reactive protein, and serum
creatinine (Figure A3). The predicted median hazard was 0.408, but there was no signif-
icant difference in overall survival (log rank, p = 0.9877) (Figure A4). Figure A5 shows
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the correlation between the actual survival and predicted hazard (Pearson’s correlation
coefficient r = −0.08; p = 0.5808).

6. Discussion

The results of this study show that univariate approaches to survival prediction,
based on, for example, the I < O, are not very powerful; whereas, multivariate approaches
appear to hold promise. To the best of our knowledge, this is the first study describ-
ing the application of supervised machine learning methods, involving a combination
of actigraphy-derived rest-activity and sleep parameters, and data collected in routine
clinical practice (i.e., simple questionnaires such as the MSAS-SF, ECOG-PS, PSQI, venous
blood sampling) to prognosticate patients with advanced cancer, receiving supportive
and palliative care [37]. Our study confirmed certain established novel predictors and
identified some for survival in this group of patients and points to the importance of sleep
characteristics for prognostication. The results of the study also confirm that clinicians are
inaccurate prognosticators [3], since 11 (24%) participants were still alive at 1 year (despite
the inclusion criteria of clinician estimated prognosis of more than 2 weeks but less than
1 year).

The literature had suggested that actigraphy-derived parameters, and the I < O index
in particular, could be used as predictors because a low I < O is associated with increased
morbidity (worse symptoms, worse quality of life), and with decreased survival [7]. At the
outset of this study, we therefore focused on the I < O and other parameters describing the
robustness of the rest-activity. We indeed observed a very high prevalence (i.e., 95%) of
disrupted rest-activity rhythms in these advanced cancer patients, which is much higher
than the reported prevalence of 19.1–54.9% [7]. This disparity undoubtedly reflects different
populations, with our population having more advanced disease (and worse performance
status) than previous studies [11,38]. However, in the univariate analyses of the data
in our study there was no direct association between I < O and survival. Furthermore,
other actigraphy-derived parameters, when used in isolation, are also not very accurate in
the population.

However, the results of the study suggest that novel models developed through
machine learning can facilitate improvements in prognostication. Penalised regression
methods implement a feature selection strategy, providing a combination of subjective and
objective predictor variables of survival that are ranked based on their contribution to the
model. The models manage collinearity within the dataset, which is particularly useful in
datasets involving terminal cancer patients, where often the number of features exceeds
the relative sample size. The best performing method was Lasso regression which reduces
the coefficients of variables with a minor contribution to zero and thereby creates a simple
‘model’ with only a few variables. Sleep parameters were amongst the most important
variables, not only in the Lasso model but also in the more complex elastic net and ridge
models. These measures primarily represented positive predictors of survival. Sleep diary
final awakening (lasso and ridge) and actigraphy-derived GUT (all models) were found
to have particular prognostic relevance in our study, suggesting that a later sleep diary
determined ‘time of final awakening’ and a later actigraphy-derived ‘get-up time’ are
associated with a lower risk of death and improved survival. Furthermore, actigraphy-
derived SE, which may be considered an objective measure of sleep quality, was selected
as a positive predictor of survival in the lasso model (i.e., greater sleep efficiency was
associated with enhanced survival) for our population. Whilst actigraphy-derived sleep
quality, as opposed to sleep quantity, has been reported to have prognostic significance in
advanced breast cancer patients [13], we identified quantitative sleep measures as important
contributors to survival prediction.

Studies have reported actigraphy-derived circadian disruption [10,12,39] and frag-
mented sleep [13] to have prognostic implications in cancer patients, yet little is known
about the prognostic impact of subjective sleep measures. A recent study identified the
PSQI sleep duration component as a prognostic indicator in a cohort of advanced hepato-
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biliary/pancreatic cancer patients [40], yet a novel finding in our study was the selection of
other sleep parameters from the PSQI: (1) usual get up time and (2) subjective sleep quality,
where a later get up time and very good sleep quality are associated with longer overall
survival, and (3) PSQI sleep disturbance components—pain, cannot breathe comfortably
and wake up in the middle of the night or early morning—were associated with poorer
survival. Furthermore, subjective sleep parameters, as opposed to actigraphy-derived sleep
parameters, were more commonly identified in all participants in the ridge model.

Venous blood sample measurements were also significant contributors to predicting
survival in our study. Previous studies have reported moderate evidence for the prognostic
significance of an elevated C-reactive protein (CRP) and leucocytosis being associated with
a shorter survival [1,5,18,41]. Whilst our study was able to echo these findings, we were
able to further identify novel biomarkers, such as an elevated urea and serum creatinine,
that may also be associated with a poorer survival, and raised haemoglobin that may be
associated with a lower risk of death. Blood sampling is generally deemed ‘inappropriate’
when patients are in their last days/weeks of life [42], regardless only one of the 94 patients
screened for our study, declined participation. Our findings endorse further evaluation
of biological parameters from venous blood sample data, as they may be beneficial to
improving prognostication in these patients.

Although our multivariate findings controversially imply that a higher I < O is asso-
ciated with a shorter predicted survival time, all participants in our population had poor
health, i.e., an I < O of <99%, which has recently been identified as an optimal cut-off for
distinguishing between healthy controls and patients with advanced cancer [43]. Further
inspection of our data identified that all our participants, whether they had shorter or
longer survival had disrupted rest-activity rhythms, equally both groups had moderate
symptom distress as measured by TMSAS, inevitably expected in an advanced cancer
population. Therefore, whilst it may be a simple way of quantifying rest-activity rhythms,
I < O may be a more meaningful prognostic indicator during the earlier trajectories of
cancer, as opposed to the progressive stages.

In summary, our data suggests that subjective sleep parameters, measured using
the consensus sleep diary and the PSQI, and actigraphy-derived sleep parameters may
be especially useful when combined with routine clinical data using machine learning
approaches, with no substantial additional costs or burden to the health service. Thus,
further investigation of these parameters as prognostic indicators is warranted. Indeed, we
plan to undertake a larger (definitive) study in the near future. Sleep-wake disturbances
and circadian dysregulation are deemed to have a reciprocal relationship [43,44] and our
findings are suggestive of sleep/circadian rhythm parameters as potential prognostic indi-
cators. Whether improving the patient’s sleep disturbance may improve overall survival
remains an open question. Rehabilitation of the circadian system by means of behavioural
and pharmacological strategies, to re-synchronise the circadian system, may ultimately
improve circadian function and sleep, as well as overall survival [44,45].

The Lasso model was the only model able to successfully differentiate between long
and short survival in our study, and the correlation between observed and predicted hazard
was only significant for the Lasso and ridge models. The Lasso model is ‘sparse’ (i.e., only
a few variables from the dataset are selected) [32] and therefore may be favourable if a
consolidated model were needed to aid prognostication. However, the Lasso selects at
most ‘n’ variables before it saturates; therefore, the number of predictors is restricted by
the number of observations [32]. The ridge model, therefore, may be beneficial due to the
greater inclusivity of variables, at the expense of an increased risk of overfitting. Indeed,
the absence of significant results cannot be overlooked with the small sample size in this
feasibility study. In the definitive study, all three supervised machine learning methods
would be deployed after the recruitment of a larger sample size as well as the inclusion
of additional variables that may be clinically relevant (e.g., stage of disease, number of
comorbidities, nutritional status, presence of specific symptoms/problems) [1,2], More data
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would enable robustness of the predictive ability of the models to be assessed as well as
enable generalisability of our findings with further confidence in our observations.

Interestingly, a recent systematic review described the prediction of survival to be a
process as opposed to an event, and that predictors of survival may develop as the disease
progresses [5]. Therefore, there may be added value in predicting the trajectory of death,
as opposed to the time of death in future studies. Machine learning approaches would
be particularly valuable in such cases, where relevant predictor variables may be identi-
fied as the disease trajectory evolves only to ultimately enhance our true understanding
of prognostication.

A few limitations need consideration. Firstly, our small sample size is unlikely to
capture the true variance of the population. Secondly, the Lasso and elastic net models
involve only a subset of predictors and the value of the coefficient associated with each of
these predictor variables is dependent on the presence of the other (non-zero) predictor
variables in the model. Our results are essentially correlational and demonstrate that
the relevant predictor variables (above non-zero coefficient value) may be associated in a
positive or negative way with the risk of death. Thirdly, imputation of missing data values
with the sample population average may not have been a true reflection of the individual
sample’s actual score nor using subjective data to impute objective values, particularly if
the tools were measuring different timeframes, i.e., actigraphy (over a one-week duration)
versus the PSQI questionnaire (measures on average over the previous one month). The
K-fold cross-validation approach also has some limitations. As it is executed ‘k’ times
(where ‘k’ is the number of subsets of observations), this approach may not be resourceful
in a small dataset. Furthermore, K-fold cross-validation is likely to have a high variance as
well as a higher bias, given the small size of the training set from a small dataset. Therefore,
the number ‘k’ highly influences the estimation of the prediction error, and the presence of
outliers can lead to a higher variation. Indeed, it can be a challenge to find the appropriate
‘k’ number to reach a good ‘bias-variance’ trade-off. In future studies, it will be essential to
include an independent validation set.

7. Conclusions

This study suggests that subjective sleep parameters, measured using the consensus
sleep diary and the PSQI, and actigraphy-derived sleep parameters may be useful for
prognostication in patients with advanced cancer, and that it may be especially useful when
combined with routine clinical data and machine learning approaches.
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Appendix A. Prognostic Parameters for Machine Learning

1. Medication: Use of opioid analgesia
2. ECOG-PS at baseline: Physician-assessed
3. ECOG-PS at baseline: Patient-assessed
4. ECOG-PS Day 8: Physician-assessed
5. ECOG-PS Day 8: Patient-assessed
6. MSAS-SF: Number of symptoms
7. MSAS-SF: Physical symptom subscale score (MSASPHYS)
8. MSAS-SF: Psychological symptom subscale score (MSASPSYCH)
9. MSAS-SF: Total symptom distress score (TMSAS)
10. MSAS-SF: Global Distress Index (GDI)
11. PSQI: Usual Bedtime (BT)
12. PSQI: Time to fall asleep (SOL)
13. PSQI: Usual getting up time (GUT)
14. PSQI: Hours of sleep per night (TST)
15. PSQI: Sleep disturbance—Cannot get to sleep within 30 min
16. PSQI: Sleep disturbance—Wake up in the middle of the night or early morning
17. PSQI: Sleep disturbance—Have to get up to use bathroom
18. PSQI Sleep disturbance—Cannot breathe comfortably
19. PSQI Sleep disturbance—Cough or snore loudly
20. PSQI Sleep disturbance—Feel too cold
21. PSQI Sleep disturbance—Feel too hot
22. PSQI: Sleep disturbance—Had bad dreams
23. PSQI: Sleep disturbance—Have pain
24. PSQI: Subjective sleep quality
25. PSQI: Use of medication for sleep
26. PSQI: Daytime dysfunction: Trouble staying awake
27. PSQI: Keep up enough enthusiasm to get things done
28. PSQI: Presence of bed partner or roommate
29. PiPS-B algorithm: Abbreviated Mental Test Score (out of 10)
30. PiPS-B algorithm: Patient’s pulse rate
31. PiPS-B algorithm: Global Health Status Score (1 = extremely poor health; 7 = normal health)
32. PiPS-B algorithm: Clinician’s estimate of survival (Days/Weeks/Months+)
33. Modified Glasgow Prognostic Score (mGPS)
34. Bloods: Haemoglobin (g/L) (130–180)
35. Bloods: White Blood Count (109/L) (4–11)
36. Bloods: Neutrophils (109/L) (2.0–7.5)
37. Bloods: Lymphocytes (109/L) (1.0–4.0)
38. Bloods: Platelets (109/L) (150–450)
39. Bloods: Sodium (mmol/L) (133–146)
40. Bloods: Potassium (mmol/L) (3.5–5.3)
41. Bloods: Urea (mmol/L) (2.5–7.8)
42. Bloods: Creatinine (µmol/L) (64–104)
43. Bloods: ALP (IU/L) (30–130)
44. Bloods: ALT (IU/L) (<50)
45. Bloods: Albumin (g/L) (35–50)
46. Bloods: C-reactive protein (CRP) (mg/L) (<10)
47. Wrist actigraphy: Rest-activity parameter—Dichotomy Index (I < O) at least 72 h
48. Wrist actigraphy: Rest-activity parameter—r24 (autocorrelation coefficient) at least 72 h
49. Wrist actigraphy: Activity parameters—Mean activity during wakefulness at least 72 h
50. Wrist actigraphy: Activity parameters—Mean daily activity (MDA) at least 72 h
51. Wrist actigraphy: Sleep parameter—Bedtime (BT)
52. Wrist actigraphy: Sleep parameter—Get up time (GUT)
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53. Wrist actigraphy: Sleep parameter—Time in bed (TIB)
54. Wrist actigraphy: Sleep parameter—Total sleep time (TST)
55. Wrist actigraphy: Sleep parameter—Sleep onset latency (SOL)
56. Wrist actigraphy: Sleep parameter—Sleep Efficiency (%)
57. Wrist actigraphy: Sleep parameter—Wake after sleep onset (WASO)
58. Wrist actigraphy: Sleep parameter—Number of awake episodes (NA)
59. Consensus Sleep Diary: Time in bed (BT)
60. Consensus Sleep Diary: Time of final awakening
61. Consensus Sleep Diary: Time out of bed (GUT)
62. Consensus Sleep Diary: Time tried to go to sleep
63. Consensus Sleep Diary: Time to fall asleep (SOL)
64. Consensus Sleep Diary: Quality of Sleep
65. Consensus Sleep Diary: Total amount of time awakenings lasted (WASO)
66. Consensus Sleep Diary: Number of times awakened in the night (NA)

Table A1. Mean and standard deviation for prognostic parameters for machine learning.

Numerical Prognostic Parameter (n = 42) Mean Standard Deviation

MSAS-SF: Number of symptoms 11.9 5.2
MSAS-SF: Physical Symptom Subscale Score (MSASPHYS) 2.3 0.7
MSAS-SF: Psychological Symptom Subscale Score
(MSASPSYCH) 1.9 0.8

MSAS-SF: Total symptom distress score (TMSAS) 2.2 0.6
MSAS-SF: Global Distress Index (GDI) 2.3 0.6
PSQI: Usual Bedtime (BT) (hh:mm) 22:28 1:13
PSQI: Time to fall asleep (SOL) (min) 28.3 38.3
PSQI: Usual getting up time (GUT) (hh:mm) 07:51 1:11
PSQI: Hours of sleep per night (TST) (h) 6.7 1.8
PiPS-B algorithm: Patient’s pulse rate (beats per min) 84 16
Bloods: Haemoglobin (g/L) 111.5 20.8
Bloods: White Blood Count (109/L) 7.8 4.3
Bloods: Neutrophils (109/L) 5.7 4.1
Bloods: Lymphocytes (109/L) 1.3 1.2
Bloods: Platelets (109/L) 315.3 166.7
Bloods: Sodium (mmol/L) 138.5 4.0
Bloods: Potassium (mmol/L) 4.3 0.6
Bloods: Urea (mmol/L) 6.2 2.7
Bloods: Creatinine (µmol/L) 71.4 26.1
Bloods: ALP (IU/L) 284.9 436.0
Bloods: ALT (IU/L) 59.4 149.3
Bloods: Albumin (g/L) 37.4 4.3
Bloods: C-reactive protein (CRP) (mg/L) 45.2 48.5
Wrist actigraphy: (I < O) at least 72 h (%) 89.0 6.5
Wrist actigraphy: r24 at least 72 h
(autocorrelation coefficient) 0.17 0.1

Wrist actigraphy: Mean activity during wakefulness at least
72 h (number of accelerations per min) 143.7 62.1

Wrist actigraphy: Mean daily activity (MDA) at least 72 h
(number of accelerations per min) 96.8 39.8

Wrist actigraphy: Bedtime (BT) (hh:mm) 22:41 1:07
Wrist actigraphy: Get up time (GUT) (hh:mm) 08:03 1:01
Wrist actigraphy: Time in bed (TIB) (hh:mm) 09:22 1:33
Wrist actigraphy: Total sleep time (TST) (hh:mm) 7:18 1:39
Wrist actigraphy: Sleep onset latency (SOL) (min) 21.7 21.6
Wrist actigraphy: Sleep efficiency (SE) (%) 78.2 12.0
Wrist actigraphy: Wake after sleep onset (WASO) (min) 68.4 31.6
Wrist actigraphy: Number of awake episodes (NA) 22.4 10.1
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Table A1. Cont.

Numerical Prognostic Parameter (n = 42) Mean Standard Deviation

Consensus Sleep Diary: Time in bed (BT) (hh:mm) 22:35 1:06
Consensus Sleep Diary: Time of final awakening (hh:mm) 07:08 1:05
Consensus Sleep Diary: Time out of bed (GUT) (hh:mm) 08:03 1:01
Consensus Sleep Diary: Time tried to go to sleep (hh:mm) 22:58 1:02
Consensus Sleep Diary: Time to fall asleep (SOL) (min) 32.4 32.7
Consensus Sleep Diary: Total amount of time awakenings
lasted (WASO) (min) 37.7 37.6

Consensus Sleep Diary: Number of times awakened in the
night (NA) 2.5 1.3
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