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Summary 

Every second of every day we are bombarded by a plethora of sensory information, 

which we must rapidly and accurately integrate to make timely decisions. 

Perceptual-decision making is the cornerstone of cognition, with research in this field 

attempting to account for how the mind translates these sensory signals into action. 

Computational models of the perceptual-decision making such as the drift-diffusion 

model allow us to utilise behavioural information to tap into the latent processes 

which underpin these decisions (Ratcliff & McKoon, 2008). However, as 

mathematical models are abstract, they may not accurately represent how decisions 

are actually formed. This leads to issues such as model mimicry, where models can 

provide equally strong fits to the data by employing a combination of parameters 

which make fundamentally different predictions for how the decision unfolds in the 

brain (O’Connell et al., 2018). Furthermore, these models must assume a scaling 

parameter which remains consistent across individuals, groups and conditions, even 

in the face of evidence which shows substantial inter-group and inter-condition 

variability in these scaling parameters (Dosher & Lu, 2017; Manning et al., 2015; 

Tibber et al., 2015). Electrophysiological data can be used to address these issues 

by providing a set of signals that delineate how perceptual decision-making unfolds 

in the brain (Devine et al., 2019; O’Connell, Dockree, et al., 2012; O’Connell & Kelly, 

2021; Twomey et al., 2015). Testing the degree to which a model can account for 

these signals offers a new means of arbitrating between competing variants (Kelly 

et al., 2021). Furthermore, features of neural data can be used to constrain 

parameters (McGovern et al., 2018; Corbett et al., in press), acting as data-driven 

scaling parameters and allowing for the exploration of increasingly complex models. 

This nascent field of neurally-informed modelling aims to synthesise these two 

distinct sources of information, allowing us to overcome some limitations of 

computational modelling efforts alone. Through this we can create data-driven, 

biologically plausible models of the perceptual decision-making process, providing 

new insights into our core perceptual processes. Exploring and investigating these 

potential applications is the aim of this body of work. 
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Chapter One provides a review of the relevant literature. It outlines the key benefits 

of computational modelling and electrophysiological research for the study of 

decision-making while identifying key issues that can be overcome through neurally-

informed modelling. 

 

Chapter Two investigates the benefits of neurally-informed modelling to improve 

between-group comparison. Examining age differences in a well-established Speed-

Accuracy Tradeoff paradigm, it utilised neural data to inform choices regarding which 

parameters to include in a drift-diffusion model (DDM) and to directly estimate certain 

parameters. This furnished new insight into the well-studied paradigm, indicating that 

older adults may not show a more cautious decision style (Forstmann et al., 2011; 

Starns & Ratcliff, 2010), but rather a more consistent one, with smaller boundary 

adjustments in response to speed pressure manipulations, and a more stable 

boundary elevation throughout the time course of each decision. This study 

highlights the benefits of neurally-informed modelling in providing novel insights into 

well-established phenomena. 

 

Chapter Three used neurally-informed modelling to explore the role of within-trial 

noise reductions as a contributing driver of perceptual learning. Psychophysical work 

has long identified reductions in internal perceptual noise as a cause of improved 

behaviour over time on visual-learning tasks (Dosher & Lu, 2017). To date, analysis 

of this within a DDM framework has been unattainable, as within-trial noise is 

traditionally fixed as a scaling parameter that remains constant across individuals 

and time. This study administered a fast behavioural estimate of internal noise, 

previously validated in the psychophysics literature (Tibber et al., 2014). 

Constraining boundaries to remain fixed across sessions and allowing noise to vary, 

we showed consistency between this behavioural measure and the freely-estimated 

model parameters. Using both this behavioural metric and pre-stimulus mu/beta 

levels to inform and constrain the model, our neurally-informed and constrained 

models pointed to reductions in within-trial noise with learning. We also showed the 

potential learning of task demands as a contributory factor to improved performance 

over time. This has not been studied in DDM work to date and was enabled through 

neurally-informed modelling. 

 



5 

Chapter Four aimed to explore methods to improve the reliability of neural signals 

for neurally-informed modelling across groups. Significant between-group 

differences in signals are often seen, however, we cannot always be certain that this 

reflects true behaviourally-relevant effects or are the result of irrelevant features 

such as overlapping signals, or differences in signal conduction which are borne out 

differently across groups. A prime example of this is the P3b, analogous to the CPP, 

which exhibits an anterior frontalisation and less positive amplitudes as we age 

(Kuruvilla-Mathew et al., 2022; O’Connell, Balsters, et al., 2012; Polich, 1997b; van 

Dinteren et al., 2014a, 2014b). However, the nature of the tasks used to study these 

effects may contribute to overlapping sensory-evoked potentials or other ERP 

components (O’Connell et al. 2012; West et al., 2010). This study examined 

frontalisation across a variety of tasks, using ICA to extract an evidence-dependent 

CPP component which showed no frontalisation, but a lower amplitude in older 

adults. Through this, the study presents a novel means for extracting neural indices 

of the decision-making process which may serve to improve neurally-informed 

modelling efforts 

 

Chapter Five concludes with a general overview of this body of work. It outlines the 

key contributions of these experiments. It then discusses some potential limitations 

and avenues for further research.  
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1.1: Introduction 

To study how the mind makes simple perceptual decisions is to investigate 

human experience at its most fundamental level. Each day, and indeed each 

instant, the brain is tasked with integrating a diverse array of sensory inputs to 

reach decisions about which actions to make in response to a rich and constantly 

changing environment. Perceptual decision-making is the bedrock upon which 

all subsequent cognitive processes are built. Without the brain’s accumulation 

and evaluation of sensory inputs, the complex cognitive operations characteristic 

of our everyday life would be impossible. This includes the types of cognitive 

operations more readily recognised as ‘decisions’ in the standard sense - i.e., 

value-based choices including what to eat for dinner, and social choices including 

choosing a partner (Shadlen & Kiani, 2013).  

 

While the area of perceptual decision-making has been studied extensively 

through a range of disciplines and methodologies, the complex mechanisms 

underpinning these operations have yet to be fully understood (Shadlen & Kiani, 

2013). To date, attempts to study the decision-making process have focused on 

either behavioural or neurophysiological data, whilst using computational models 

of reaction time and accuracy to extract latent features of the processes that 

translate sensation into action (e.g., Brown & Heathcote, 2008; Ratcliff et al., 

2016; Ratcliff & McKoon, 2008; Starns & Ratcliff, 2010). Analysis of 

neurophysiological data has in turn provided a range of neural indices which trace 

unique stages of the decision-making process and reflect parameters of 

computational models (Fischer et al., 2018; Kelly et al., 2021; Nunez et al., 2019; 

O’Connell, Dockree, et al., 2012; Twomey et al., 2015). Although each of these 

approaches have provided valuable insight and been successful in their own 

right, thus far the field still lacks a unified and consistent account of perceptual 

decision-making phenomena which can account for neural as well as behavioural 

observations. The mission to provide this unified account has also been 

hampered by the sets of unique drawbacks associated with each respective 

approach that will be discussed in the coming sections - drawbacks which are 

further compounded when we attempt to investigate group differences.  
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For example, oftentimes, competing model variants can provide similarly well-

fitting simulations of the data, however, they achieve this by invoking 

fundamentally different accounts for how behaviour is unfolding in the brain 

(Malhotra et al., 2018; Ratcliff et al., 2016). Neural data provides an array of direct 

readouts of each stage of the decision process as it happens in the brain, 

allowing us to test the assumptions of the model against neural data, and 

arbitrate between competing accounts (Kelly et al., 2021; McGovern et al., 2018). 

We can also utilise this neural data to inform our model construction in cases 

where it provides evidence for the inclusion of novel parameters to represent 

constructs not traditionally allowed for in standard models (e.g., urgency and 

visual encoding time, Ghaderi-Kangavari et al., 2022; Hanks et al., 2014). 

Furthermore, we can constrain parameter values based on the neural data, 

allowing us to investigate increasingly complex models and thus more acutely 

investigate the nuanced processes which underpin decision-making (Kelly et al., 

2021). In combining neurophysiological and computational modelling accounts 

of decision-making, neurally-informed modelling can reveal novel insights into 

perceptual phenomena and create more biologically grounded and 

neurophysiologically plausible models of the decision-making process.   

 

The purpose of the present work is to examine the benefits of this neurally-

informed modelling. This chapter begins with a review of current sequential 

sampling models of decision-making, highlighting their benefits and applications, 

and exploring the electrophysiological work which supports them. Methodological 

drawbacks of current computational models will be discussed, in particular, 

aspects which limit the capacity of sequential sampling models of decision-

making to enable efficacious between-group comparisons. The emerging 

technique of neurally-informed modelling and its potential to assist in overcoming 

some of these limitations will then be examined and discussed. This technique is 

not without its own issues, and potential complications and drawbacks in the use 

of electrophysiology will also be addressed. From this review of the current 

literature, a rationale for the empirical studies contained within this thesis will be 

provided, with the aim of highlighting this work's potential to address some core 

fundamental issues in the extant literature. Collectively, this body of work aims to 
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advance neurally-informed modelling methodology and our understanding of 

perceptual decision-making in general.  
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1.2: Computational Models of Perceptual 

Decision-Making 

1.2.1: Sequential Sampling Models of Decision-Making 

Traditional experimental protocols for studying decision-making extract two 

primary sources of data: reaction time (RT) and choice accuracy. In 

psychophysical models such as Signal Detection Theory, complex task 

manipulations are applied, with psychometric functions fitted to accuracy data 

under differing conditions, giving us estimates of an observer's sensitivity to 

stimuli or any response biases they may have (Lynn & Barrett, 2014). However, 

in reality, decisions almost always operate with respect to time. When driving we 

continuously sample the environment around us to allow us to make correct and 

safe decisions. However, at a certain point, an observer must decide whether 

enough evidence has been accumulated that they are satisfied to commit to a 

particular course of action (Forstmann et al., 2016). If a possible obstruction 

appears on the road, we cannot continue to sample evidence indefinitely for as 

long as it takes us to gain full certainty of its presence or absence, because, by 

the time this perceptual decision has been made, it may be too late to avoid it. 

Therefore, in situations like driving, and a host of other time-contingent 

processes, we must make rapid decisions in which speed is prioritised at the 

expense of accuracy. However, if the decision in question requires more 

precision, for example when a surgeon is performing a difficult and risky 

operation, they will likely apply a slower and more steady approach, resulting in 

decisions which, while slower, are ultimately more accurate. These examples 

illustrate two important features of perceptual decision-making which are 

addressed in sequential sampling models: the continuous sampling of evidence 

over time, and the necessity for some adjustable stopping criterion, or boundary 

to determine when commitment will be reached and the decision process 

terminated (Ratcliff & Smith, 2004).  

 

Sequential sampling models allow for the investigation of the latent processes 

which underpin perceptual decision-making (Forstmann et al., 2016). Each 
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process takes the form of a parameter in the model, and these parameters are 

algorithmically optimised to produce parity between the real and simulated data. 

These parameters can then be compared under different conditions, or across 

different groups, to investigate the effects of various phenomena on unique 

components of the decision process (Forstmann et al., 2016; O’Connell et al., 

2018). For example, when people have to make faster decisions, as in the driving 

example above, they may lower the level of evidence required before committing 

to a decision (Heitz, 2014). Sequential sampling models allow for such 

parameters and effects to be extracted from simple choice and reaction time 

behaviour, meaning they provide a detailed account of the processes which 

determine both the timing and accuracy of our perceptual choices. 

 

A variety of sequential sampling models exist. While all models within this family 

contain the core agreement of evidence accumulation to a bound, they differ in 

the number and nature of the parameters that they invoke. For example, Linear 

Ballistic Accumulator Model (LBA) is among the most parsimonious variants. 

Within a two-choice task, as modelled by the LBA, evidence is accumulated with 

no noise into two independent accumulators, with the rate of each build-up 

depending on the strength of the physical evidence (Brown & Heathcote, 2008; 

Forstmann et al., 2008). These accumulators continue until one crosses a bound, 

at which point a response is made. One significant drawback of the LBA is that it 

assumes the perceptual process at play is one which would be produced by an 

“ideal observer” throughout the course of a given trial, with only between-trial 

variability in the rate of evidence accumulation and starting point of the 

accumulators allowed (Brown & Heathcote, 2008). Therefore, this model might 

provide suitable fits to behaviour, with analytic solutions that dramatically reduce 

the required number of trials and computation time (Brown & Heathcote, 2008), 

but it does not truly reflect how decision-making takes place in the brain. That is 

to say, this simplified characterisation of the decision-making process overlooks 

the fundamental biological limits of human perceptual processing, overestimating 

the efficiency of the human brain, particularly given that the biological systems 

underpinning perception are stochastic in nature. In early perceptual stages, 

transduction of sensory stimuli through the retina and perceptual cortices 

accumulates variance at several points (see Faisal et al., 2008 for review). This 
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ongoing, within-trial noise in the perceptual system is not allowed for in the 

simplified LBA as evidence is forced to accumulate at a fixed rate across a trial. 

In the LBA we see an example of where a computational model may provide a 

fitting mathematical explanation of behaviour, but this does not necessarily mean 

it is providing a direct reproduction or reflection of the biological underpinnings of 

cognition.  

 

1.2.2: The Drift Diffusion Model 

By far the dominant sequential sampling variant is the drift-diffusion model 

(DDM), within which the biological reality of within-trial noise is addressed and 

incorporated to some extent. In the DDM, the decision variable is assumed to 

build over time at a rate proportional to the mean evidence strength, or drift rate, 

which reflects a combination of observer ability and task difficulty (Ratcliff et al., 

2016; Ratcliff & McKoon, 2008). Gaussian noise is added at each sampling point 

until a boundary is crossed (Ratcliff & Smith, 2004). As in the LBA, this boundary 

represents the amount of evidence required before a decision is made. An 

increased boundary results in increased accuracy, as more evidence is 

accumulated, but with slower reaction times, while the lowering of bounds leads 

to faster reaction times at the cost of accuracy (Ratcliff & McKoon, 2008). The 

DDM also includes a non-decision time parameter, which reflects a combination 

of the time required for sensory encoding and motor response execution 

(Ghaderi-Kangavari et al., 2022).  In the full version of the DDM, additional 

variability parameters are also applied to the starting point, non-decision time and 

drift rate (Ratcliff et al., 2018). The additive effects of these noise sources 

represent true noise in the biological system and are reflected elegantly in 

double-pass procedures (Awwad Shiekh Hasan et al., 2012; Vilidaite & Baker, 

2017). Here, identical stimuli are presented several times at various stages 

throughout an experiment. Without variability in the neurocognitive system, 

uniformly consistent responses should be observed, yet exact repetitions of 

stimuli elicit variable behavioural responses in both accuracy and response time. 

Given that external sources of variability in stimulus complexity or perceptual 

features remain constant across repetitions, behavioural variance can only be 

attributed to variability along the observer’s perceptual chain. Starting point 
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variability accounts for Gaussian between-trial variability in the decision's initial 

point. This is mathematically equivalent to trial-by-trial variability in the decision 

bound. Normally distributed drift rate variability allows the mean strength of 

evidence to vary from trial to trial, while non-decision time variability adds 

uniformly distributed variability to the added motor and sensory encoding time 

(Ratcliff et al., 2018). This “full drift-diffusion model” therefore, allows for a range 

of potential sources of variability, both in the ongoing evidence accumulation 

process and at the inter-trial level. 

 

 

Figure 1.1: Illustration of a simple drift-diffusion model. The decision variable begins accumulating from its 

starting point at a mean rate set by the drift rate. Gaussian noise is added at every-time step until one of 

two boundaries is crossed, at which point accumulation stops and a decision is made. Non-decision time 

allows additional time for stimulus encoding and response execution. Between-trial variability is applied to 

drift rate, non-decision time and starting point. Reprinted from Schubert, A.-L., Frischkorn, G., Hagemann, 

D., & Voss, A. (2016). Trait Characteristics of Diffusion Model Parameters. Journal of Intelligence, 4(3), 7. 

https://doi.org/10.3390/jintelligence4030007 

 

To date, the DDM has been applied extensively to the study of perceptual 

decision-making, giving a testable model that enables the study of how cognition 
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may change under different conditions, and there are several prepackaged 

software toolboxes across a range of platforms which enable its use and 

application (Voss & Voss, 2007; Wiecki et al., 2013). It provides excellent fits to 

behavioural data across a wide range of perceptual and cognitive tasks (see 

Ratcliff & McKoon, 2008; Ratcliff et al., 2016 for review) and, in its extraction of 

latent parameters beyond simple behavioural measurement, it provides insight 

into the effects of a particular task or the decision-making differences between 

particular conditions beyond those attainable from the study of behaviour alone. 

This makes it a useful, widely available and widely utilised tool for the study of 

the effects of various demands on decision-making. For example, recent work 

has applied the DDM in explanations of value-based decision-making, finding 

that high-value trials involve a raising of decision bounds (Afacan-Seref et al., 

2018). The DDM has also been used to link response caution on a current trial 

to an individual’s confidence in their performance on a previous trial (Desender 

et al., 2019). Furthermore, perceptual learning has been studied using the DDM, 

showing behavioural improvements over time to be driven by a combination of 

refinements to the perceptual representation via increased drift rates, and 

adjustments to the decision boundary (Ivanov et al., 2022; Zhang & Rowe, 2014, 

see Chapter Three for a more detailed discussion of this literature).  

 

The DDM has also been applied to the study of between-group differences. For 

example, in ageing research, the robust finding of age-related reaction time 

slowing has often been attributed to a general information processing slowdown 

(Finkel et al., 2007; Salthouse, 1996), whereas the application of DDMs showed 

this behaviour was more likely due to age-related adaptations to a decision-

bound and response caution (Starns & Ratcliff, 2010, see Dully et al., 2018 for 

review and Chapter Two for a detailed discussion). This provides a fundamentally 

different viewpoint, where older adults do not exhibit a generalised cognitive 

processing impairment, but rather employ strategic, although potentially 

maladaptive, adjustments to their decision-making criteria. Similarly, DDMs have 

been applied to the study of perceptual performance in people with autism 

(Pirrone et al., 2017). Here, as in older adults, poorer performance on a task was 

driven not by any impairment to the perceptual processing of the stimuli, but by 

increased non-decision times and response caution. Finally, increased reaction-
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time variability in children with attention deficit/hyperactivity disorder (ADHD), is 

driven by reduced drift rates and faster but more variable non-decision times 

(Karalunas et al., 2014; Karalunas & Huang-Pollock, 2013). In summary, it is 

clear that the DDM is a valuable tool for providing explanatory accounts of the 

effects of a range of disorders on perceptual decision-making processes, with 

the examination of latent parameters allowing us to go beyond a simple assertion 

of impaired behaviour. 

 

While the DDM is a powerful model, it is at its core entirely mathematically 

derived. That means its parameters are based solely on a predefined set of 

assumptions as to how decision-making unfolds. As a result, it may fail to capture 

processes that are not explicitly allowed for in the standard DDM. For example, 

significant debate exists in the literature as to whether decision boundaries 

remain fixed at the same level for the duration of a trial, or change dynamically 

across time (Hawkins et al., 2015). While this may seem like an arbitrary 

distinction, it has substantial potential to impact the model's power to explain 

behavioural features and the parameters to which we ascribe this power, 

impacting the accuracy with which other parameters are estimated. 

Behaviourally, participants often exhibit a higher proportion of slow errors. 

Traditionally the DDM attributes a higher proportion of slow errors to increased 

drift rate variability, where randomly lower drift rates result in slower responses 

that are more likely incorrect (Ratcliff et al., 2016). In contrast, the same 

behavioural features can be alternatively explained by a collapsing bound. Within 

the latter account, a boundary which collapses over time results in a higher 

degree of slow errors, as the response criterion continues to reduce for later 

reaction times, and decisions are made on less and less evidence over time. In 

effect, this represents an increasing desire to respond, or “urgency”. This urgency 

may also arise intrinsically from the participant as a means of maximising their 

“reward rate” (Bogacz et al., 2006). Here a participant's desire to increase the 

ratio of correct responses over time generates urgency to respond more quickly 

in order to move on to the next trial and next reward. These collapsing bounds 

have been shown to be optimal (Malhotra et al., 2018), especially in tasks where 

participants are faced with a hard and predictable deadline for response (Frazier 

& Yu, 2007). Here we are presented with a significant issue in modelling 
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research. The DDM, with fixed bounds, may be able to account for features of 

behaviour such as slow errors through between-trial variability parameters, yet 

an alternative account can explain the same behaviour just as reasonably, viably 

and potentially more optimally. Traditionally, model comparison relies solely on 

how well the simulated model data fit the real behaviour, and the number of 

parameters needed to achieve these fits (Vrieze, 2012; Wagenmakers & Farrell, 

2004), meaning that if models with and without collapsing bounds can provide 

equally good fits to data, it becomes difficult to arbitrate between them. This is a 

significant issue for sequential sampling models, as they may provide accurate 

fits to the data, but achieve these fits in a way that does not accurately reflect the 

decision process underneath, or how it evolves in the brain. These issues can be 

addressed through neurally-informed modelling, as will be discussed. However, 

it is first beneficial to assess evidence which has supported the DDM as a viable 

account for how the brain makes decisions. 

 

1.2.3: Electrophysiological Signatures of the Decision-Making 

Process 

In addition to its success in modelling behavioural data, the DDM has been 

supported as a reasonable approximation for how decision-making unfolds in the 

brain by a range of neural studies (Shadlen & Kiani, 2013, see O’Connell et al., 

2018 for review). Electroencephalography (EEG) provides perhaps the best 

method for studying rapidly evolving decisions (O’Connell et al., 2018), due to its 

high temporal resolution, which allows for the extraction of event-related 

potentials (ERPs) at a latency unattainable through other neuroimaging 

techniques such as functional magnetic resonance imaging (fMRI). However, the 

spatial resolution of EEG is limited due to volume conduction through the brain 

and skull, which means that signals measured at the scalp are a summation of 

many neural sources (van den Broek et al., 1998), the possible combinations of 

which are infinite. EEG activity also reflects mostly cortical activity and, while 

possible through decomposition techniques, it is not as readily equipped to 

accurately capture activity in deep-lying, subcortical brain areas (Krishnaswamy 

et al., 2017). As such, while the technique of EEG offers little in the way of brain 
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activity localisation, its rapid timescale provides a valuable lens through which to 

study the emergent cognitive and behavioural processes that underpin 

perceptual decision-making.  

 

To date, electrophysiological research has offered a significant degree of 

empirical support for the DDM. Elegantly designed studies have linked several 

key neural markers with distinct stages of the decision-making process, from 

sensory encoding to motor preparation and response. In animal research, spike 

rates of neurons in the monkey lateral intraparietal (LIP) cortex have been shown 

to exhibit accumulation to bound dynamics which scale in proportion to evidence 

strength and reaction time (Huk & Shadlen, 2005; Huk & Meister, 2012; Rorie et 

al., 2010; Shadlen & Newsome, 1996), mirroring the core predictions of the DDM. 

These accumulation-to-bound dynamics have also been observed in areas such 

as the frontal eye field (FEF; Hanes & Schall, 1996) and superior colliculus in the 

midbrain (Ratcliff et al., 2003, 2007). Collectively these lend support to the DDM, 

showing neuronal firing which accumulates to a threshold before response in 

several regions throughout the brain.   

 

Efforts to find similar signals in the human brain have been complicated due to 

the necessity to use non-invasive techniques. Direct-brain recordings are often 

not attainable in a general population, as they rely on intracranial placements of 

electrodes which is not achievable unless the skull is opened for a clinical 

purpose (e.g., surgery for intractable epilepsy, see Lachaux et al., 2003 for 

review). Instead, we must rely on scalp-recorded EEG which, due to the effects 

of volume conduction outlined above, makes it more difficult to study specific 

brain areas in isolation. However, recently identified EEG signals present easily 

identifiable and reliable neural markers of the decision process in humans. For 

example, the centroparietal positivity (CPP) reflects evidence accumulation for 

any stimulus type in any sensory modality even when no response is required 

(Kelly & O’Connell, 2013; O’Connell, Dockree, et al., 2012). Consistent with 

predictions of the DDM, and analogous single unit signals observed in monkeys, 

the CPP builds at an RT-predictive, evidence-dependent rate and reaches its 

peak at the time of the decision report, reflecting an effector-independent readout 

of accumulated evidence over time (Kelly & O’Connell, 2013). It accumulates 



25 

positively, irrespective of which alternative the evidence favours, indicating it is 

not choice-selective, but rather reflects the absolute value of cumulative 

evidence, and appears over the same brain areas where monkey research has 

identified decision signals (O’Connell, Dockree, et al., 2012). In a study by 

Twomey and colleagues (2015) this signal was shown to be equivalent to the 

classic P300 or P3b. This component is perhaps the most intensively researched 

ERP signals of the past 60 years across a range of tasks. It shows a peak after 

approximately 300ms and was previously linked to a range of potential cognitive 

functions, including context updating (G. McCarthy, & Donchin, 1981), working 

memory (Polich, 2007), and response facilitation (Nieuwenhuis et al., 2005; see 

Verleger, 2020 for a review of theories of P3b function). The P3b is classically 

elicited on oddball tasks, where target stimuli appear irregularly among non-

target stimuli. However, in their 2015 study, Twomey and colleagues used an 

auditory oddball with varying difficulty levels to show that the P3b reached a 

consistent amplitude before response and a build-up that correlated with 

detection difficulty and reproduced the decision variable of a diffusion model. This 

was an important advancement, indicating the evidence accumulation function of 

a well-studied ERP component, and showing it to be functionally equivalent to 

the CPP. Through this it further established the CPP as a marker of evidence 

accumulation, providing a useful readout of cumulative evidence which appears 

across a range of cognitive tasks.  

 

Time-frequency analysis can also provide unique neural indices of the decision-

making process. Mu/beta activity (8-30Hz) measured bilaterally over the motor 

cortex has been shown to be a valuable marker of effector-selective response 

preparations. Mu/beta activity over the motor cortex contralateral to the chosen 

hand desynchronises towards a stereotyped amplitude irrespective of reaction 

time or task difficulty (Donner et al., 2009; Fischer et al., 2018; Kelly et al., 2021; 

Murphy et al., 2016; O’Connell, Dockree, et al., 2012; Rogge et al., 2022). While 

this threshold-crossing effect at response appears consistent across conditions, 

pre-stimulus levels of mu/beta activity in both hemispheres have been shown to 

vary systematically as a function of different contextual variables. For example, 

under speed pressure, both hemispheres show lower pre-evidence mu/beta 

activity, decreasing the excursion to the motor threshold and reflecting indicating 
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increased motor preparation and pre-evidence adaptation to the starting point of 

the decision process (Kelly et al., 2021; Steinemann et al., 2018). Steady-state 

visual evoked potentials (SSVEPs) can also be used to track perception at its 

fundamental sensory encoding level (O’Connell, Dockree, et al., 2012). Using 

either frequency or phase tagging to bind stimulus features to specific 

measurable traits, such as setting the flicker rate for a stimulus at a specific 

frequency, we can extract the representation of that frequency in the visual cortex 

by examining the power of that band over occipital electrodes. This provides a 

readout of the sensory encoding of the stimulus in the brain. Under speed 

pressure, the SSVEP amplitude for the target grating is boosted, likely due to 

top-down attentional control, potentially reflecting increased drift rates at the 

earliest sensory level (Steinemann et al., 2018). 

 

EEG signals may also be useful in decomposing the distinct contributors to non-

decision time in the DDM. For example, motor potentials, measured as EEG 

activity over the motor cortex contralateral to the hand chosen for response, show 

an inflexion point approximately 100ms before response, from which the signal 

begins to ascend positively, indicating a marker of commitment to the motor 

action, and estimating the motor execution component of non-decision time 

(Kelly et al., 2021). Nunez and colleagues (2019) have also shown a relationship 

between the N200, a marker of the onset of visual-sensory processing, and the 

visual-encoding portion of non-decision time. Here, neural data can be used to 

identify distinct components of non-decision time which are usually compiled into 

one value in the DDM. Collectively these studies present a rich roster of neural 

signals which are uniquely related to distinct components of the perceptual 

decision-making process.  
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1.3: Neurally-Informed Modelling 

To date, a substantial body of fMRI, magnetoencephalography (MEG) and EEG 

work has been done that attempts to link parameters of sequential sample 

models to neural data. For example, Jia and colleagues (2018) linked drift rates 

on an LBA model of learning to blood-oxygen-level dependent (BOLD) activity in 

the supplementary eye field (SEF), FEF, and intraparietal sulcus (IPS). Similarly, 

using a speed-accuracy tradeoff paradigm, Forstmann and colleagues (2008) 

correlated increased activity in the striatum and pre-supplementary motor area 

to decreased decision bounds under speed emphasis. These studies are 

beneficial in providing a means of directly associating brain activity with model 

parameters. Through this, they provide neural evidence for various processes in 

sequential sampling models.  

 

While beneficial, these examples are ultimately unidirectional in that they do not 

utilise the observed neural data to inform their models. Neurally-informed 

modelling is a relatively novel approach, which aims to leverage neural data to 

refine, constrain and validate existing decision models and, in so doing, tackle 

some of the limitations of behavioural modelling (O’Connell et al., 2018; 

O’Connell & Kelly, 2021). Neural data can lend support to the inclusion of novel 

parameters that more accurately reflect how decisions are formed in the brain, 

helping us to tackle some of the issues of model mimicry outlined above. 

Furthermore, they provide means for constraining specific model parameters in 

a reasoned way, allowing for increased model parsimony and enabling the 

investigation of increasingly complex effects (Kelly et al., 2021). Finally, they 

provide a data-driven means for estimating scaling parameters across groups 

and conditions, which can help to overcome some of the limitations of the DDM 

in its use of fixed scaling parameters. The following section will introduce some 

novel neurally-driven means for addressing these issues. It will explore some 

studies which have successfully applied neurally-informed modelling to grant 

new insights into the perceptual decision-making process, before outlining some 

potential issues which may impede neurally-informed modelling itself. 
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1.3.2: Applications: Inform Model Parameters 

As outlined, sequential sampling models have provided parameters that are 

linked to psychological constructs and neural indices (Forstmann et al., 2008a; 

Jia et al., 2018; Nunez et al., 2019). However, thus far, the models have been 

almost exclusively evaluated based on their ability to fit behavioural data. While 

a model may be well-fitting, it may not accurately represent the key neural 

processes that determine this behaviour in the brain. As a result, a range of 

different models may successfully reproduce observed behaviour, but each 

model can be driven by fundamentally distinct parameters (O’Connell et al., 

2018). These distinctions are important as each parameter represents unique 

psychological constructs, and therefore each implies different explanations for 

how a decision unfolds in the brain. An example of this competition between 

different model accounts is outlined above in the case of the static vs collapsing 

bounds (Hawkins et al., 2015; Ratcliff et al., 2016, see section 1.2.2). One 

potential benefit of neurally-informed modelling is that close examination of 

neural markers of the decision-making process can grant valuable information 

that allows us to successfully arbitrate between competing models and guide 

which parameters should and should not be included in a model. This results in 

models which are more reflective of how the brain makes decisions and can shed 

new light on how novel or existing parameters contribute to decision-making. 

 

For example, while behavioural modelling alone has struggled to resolve the 

debate between static or collapsing bounds (Malhotra et al., 2018; Ratcliff et al., 

2016), neurophysiological research has consistently pointed to a role for dynamic 

urgency. The CPP builds to a lower amplitude at response for slower reaction 

times indicating a lower level of evidence accumulated before the response is 

made (Steinemann et al., 2018), in line with predictions of slower errors caused 

by a collapsing bound. Recent work from Devine (2019) has indicated the 

frontocentral negativity (FCN) or contingent negative variation (CNV) to be a 

marker of dynamic urgency. The CNV has previously been indicated as a marker 

of perceptual timing or anticipation (Kononowicz & Penney, 2016). However, in 

their work Devine (2019) showed the CNV to be a time-dependent, evidence-

independent marker which shows static pre-stimulus adjustments to amplitude 
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under speed emphasis, reflecting a marker of increasing urgency to respond over 

time. This supports previous modelling efforts showing dynamic urgency by 

Boehm and colleagues (2014) and neural evidence from the macaque's LIP 

(Hanks et al., 2014) which also showed an evidence-independent urgency 

marker which was steeper under speed pressure. A similar urgency component 

is observed in mu/beta signals, where increased speed-pressure bilaterally 

increases the pre-evidence level of desynchronisation, beginning its 

desynchronisation to threshold in advance of any evidence appearing on screen 

(Kelly et al., 2021). Here we see ample evidence for neural signatures of a key 

behavioural feature which is often not allowed for in a standard DDM.  

 

Collectively, the examination of this neural data provides evidence for the 

inclusion of a dynamic urgency parameter in decision models. The benefits of 

incorporating novel parameters based on neural data were demonstrated in the 

study by Kelly and colleagues (2021) outlined above. Here, the inclusion of a 

freely estimated urgency parameter, which set a rate for the linear collapse of the 

boundary across time significantly improved model fits, both in terms of numeric 

model comparison score, and the model’s ability to successfully reproduce 

observed neural data.  

 

1.3.2: Applications: Constrain Model Parameters 

Neurally-informed modelling can go a step beyond correlating brain activity with 

neural information or leveraging this information to add new parameters to a 

model. Utilising established neural markers of the decision-making process, we 

can constrain model parameters based on observed expectations for how these 

parameters should behave based on the neural data. For example, Turner and 

colleagues (2013) jointly fit neural and behavioural data to a Hierarchical LBA 

model. This allowed the model parameters to be constrained in their estimation 

by the neural data, however, these constraints may be imperfect as they assume 

a straightforward relationship between slow-moving BOLD activity and LBA 

parameters. In contrast, the neural EEG signatures outlined in section 1.2.3 

provide empirically characterised and validated indices whose features are 

uniquely related to different stages of the decision process and behaviour. This 
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affords a more nuanced means of directly estimating and constraining specific 

parameters, which, as will be described, create testable models which furnish 

significant advancements to our understanding of decision-making. 

 

To reduce the potential for overfitting models to specific data sets, model 

comparison scores such as Akaike's Information Criterion (AIC) or Bayesian 

Information Criterion (BIC) penalise model complexity (Vrieze, 2012; 

Wagenmakers & Farrell, 2004). In this way, every additional parameter 

introduced increases the comparison score. While this has the benefit of reducing 

the potential for bloated, overfit models with enough parameters to fit any data 

set, it may impede the investigation of paradigms which require the addition of 

novel parameters such as urgency. Similarly, it becomes difficult to assess the 

within or between-group effects of different model parameters in tandem, as each 

parameter that is allowed to vary by condition incurs another cost. Constraining 

models based on neural data provides a data-driven estimation of the parameter 

value, allowing an additional degree of freedom to the model, and enabling the 

investigation of more complex model variants without a cost to the model 

comparison score. These neurally-constrained models can then shed new and 

unique insight into a range of phenomena which is not achievable through 

standard DDMs alone. 

 

For example, Hanks and colleagues (2014) highlighted start point biases in the 

macaque LIP under speed-emphasis on a motion discrimination task. These start 

point increases had the effect of lowering the decision bound. An increasing, 

evidence-independent but time-dependent build-up of the LIP activation was also 

observed. They used this as evidence for an increased urgency component 

under speed pressure and calculated an urgency function based on these firing 

rates for each monkey. Using these values to constrain their model, they 

indicated that both pre-evidence adjustments to the starting point and a linearly 

increasing urgency component were required to provide the best fits to 

behaviour. In this study, we not only see an example of neural evidence being 

used to support the inclusion of an urgency parameter, but the utilisation of 

specific, neurally derived constraints to test these inclusions. 
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A recent study by Corbett and colleagues (in press) aimed to constrain urgency 

in a similar way in their model of value-based decision-making in humans. Here, 

when participants were instructed that a certain choice was more valuable than 

others, a significant pre-evidence adjustment to mu/beta motor preparation was 

observed. For low-value trials, however, the onset of motor preparation was 

slower but built at a significantly steeper rate once it began. This suggests a lower 

pre-evidence anticipation, but an increased urgency to respond once the 

evidence became available. They constrained two elements of their model: the 

pre-evidence adjustments to the starting point by pre-evidence beta amplitude, 

and the rate of urgency by the mean slope of these signals for each value 

condition. This successfully explained both the increased accuracy in the high-

value condition and slow and fast errors in the low-value condition. This neurally-

constrained model was then used to simulate motor signals which successfully 

reproduced distinct pre and post-evidence biases that the standard DDM could 

not achieve.  

 

Constraints of the decision process based on pre-evidence adjustments 

observed in the neural data were also explored by Kelly and colleagues (2021) 

in their study introduced above. Here, they constrained the start-points of the 

decision process based on the pre-evidence mu/beta levels, which were shown 

to exhibit significantly more motor preparation under speed-emphasis. While 

initial standard DDMs only implicated adaptations of the decision boundary under 

speed emphasis, this neurally-constrained model allowed for the investigation of 

a more complex model. That is to say, the boundary adjustments were accounted 

for by the neural constraint, freeing the model to investigate the effects of speed-

emphasis on other parameters, without incurring additional costs to model 

comparison scores that penalise for complexity. Their model was further 

supported by simulating evidence accumulation and motor preparation signals 

based on their neurally-constrained model. These simulations successfully 

reproduced the observed neural signals, showing simulated motor-preparation 

signals that closely resembled beta and an evidence accumulation signal, which 

mirrored the CPP. The close alignment between neurally derived and model-

simulated indices of the decision process lends further evidence in support of the 

neurally-constrained model. Overall, these studies highlight the potential 
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applicability of neurally-informed modelling, granting information which can guide 

the construction of a model. They also illustrate the benefit of simulating model-

estimated decision signals as comparing these signals against neural data can 

provide additional validation and evidence for or against a given model. 

 

Much in the same way as the inclusion of urgency in models helps the model 

better represent the brain, neural constraints have led to the exploration of other 

novel parameters which are not allowed for in the standard DDM. For example, 

the DDM accounts for fast errors as increased start-point variability (Ratcliff et 

al., 2016) where the decision variable begins randomly closer to one of the 

decision bounds. However, in tasks with a period of random, no-evidence 

stimulus lead-in, where participants may not fully know whether evidence has 

begun or not, participants are often seen to begin their evidence accumulation 

signal (CPP) before any evidence becomes available on screen (Devine et al., 

2019). This early build-up forms an important part of the decision process and is 

associated with faster responses and errors (Devine et al., 2019), suggesting a 

period where the decision has begun to form without any evidence on screen. 

This accumulation can only be noise as no evidence is available, yet the DDM 

cannot allow for any accumulation of noise in advance of evidence onset. 

Instead, evidence always accumulates alongside noise from the model's starting 

point.  

 

Recent neurally-informed modelling has shown that early accumulation of noise 

is a distinct phenomenon which may need to be incorporated into models on 

some tasks, and which behaves differently under different conditions. In their 

neurally-informed model, Kelly and colleagues (2021), utilised motor potentials 

measured over the motor cortex contralateral to the chosen response to estimate 

the time at which a motor response was committed to. Constraining the motor-

response execution portion of non-decision time allowed the researchers to 

produce two novel and distinct freely estimated model parameters for sensory 

encoding time and accumulation-onset time. Here, only Gaussian noise was 

accumulated from accumulation-onset time until the sensory encoding time had 

elapsed, while sensory encoding time accounted for the delays in stimulus 

encoding. This pre-evidence accumulation was shown to vary and begin before 



33 

the evidence could have borne an influence on the decision process. This 

allowed the model to produce simulated decision variables which captured the 

pre-evidence accumulation of the CPP. Here neurally-informed modelling 

provides evidence for features of decision-making which are not incorporated into 

the DDM, showing two uniquely adaptable components of non-decision time, and 

granting new and valuable insights into perceptual decision-making.  

 

Work from Ghaderi-Kangavari and colleagues (2022) used neurally-informed 

DDMs to investigate the role of visual encoding time (VET) as a subcomponent 

of non-decision time. Studying the effects of spatial cueing on performance on a 

visual discrimination task, they constructed a DDM which constrained non-

decision time by a linear connection to the single-trial estimate of visual-evoked 

N2 latency. Through this they separated a distinct VET from a motor execution 

time (MET), improving the model’s fit to the real data. A standard DDM would 

suggest that improved performance was due to drift rate biases introduced by 

the cue. However, the neurally-informed model indicated that spatial cueing 

reduced both VET and MET, with no adjustments to the drift rate. While this study 

did not show unique influences of spatial queuing on the two subcomponents of 

non-decision time, this decomposition would be unachievable using standard 

DDMs, which penalise the addition of parameters to separate non-decision time 

into its constituent parts. Here we see another example where the neural data 

can indicate psychological constructs which are not traditionally accounted for in 

the DDM. The introduction of neural constraints allows us to explore novel 

parameters which enable the DDM to more closely resemble how the decision 

unfolds in the brain. This should be a priority. Through this, the models move 

from purely mathematical algorithms to more realistic reflections of how the 

complex chain of perceptual decision-making unfolds. 

 

Beyond introducing novel parameters in within-subject designs, neural 

constraints also grant us new insights into between-group differences 

phenomena which are not achievable through standard modelling alone. For 

example, in recent work by McGovern and colleagues (2018), neurally-informed 

modelling was used to give novel insight into decision-making in older adults. 

Older adults showed higher hit rates on a contrast-change detection task. Initial 
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behavioural modelling attributed improved performance by older adults to a 

combination of higher drift rates and higher decision bounds. However, analyses 

of CPP and mu/beta amplitudes immediately prior to the participants’ decision 

reports suggested no between-group differences in their decision bound or rate 

of evidence accumulation. With this in mind, a new model was implemented in 

which both the boundary and drift rate were constrained to be equal across both 

groups. This improved model comparison scores, with the hard constraint 

resulting in only a slight increase in error score. Importantly, the new neurally-

constrained model indicated a different parameter as driving the behavioural 

difference. Here, there was increased drift rate variability in younger adults, 

rather than lower drift rates and bounds, which resulted in poorer performance 

than older adults. This model was supported by neural data, where examination 

of posterior alpha-band activity, a well-established marker of attentional 

engagement (Dockree et al., 2007), and response-aligned CPP slopes, as a 

marker of evidence accumulation, showed increased variability in younger adults. 

This suggests that older adults achieved better performance through increased 

attentional engagement, leading to more consistent responses. Again, it is shown 

that neurally-informed and constrained modelling can lead to substantially 

different assertions as to the drivers of behavioural differences across groups, 

but ones which are supported by the neural data. 

 

1.3.3: Applications: Data-Driven Scaling Parameters 

Within applications of the DDM, for the model to converge, one parameter is fixed 

at an arbitrary value around which all other parameters are scaled (Ratcliff & 

McKoon, 2008). Other model parameters are then calculated in reference to this 

value, meaning for example, that a doubling of the scaling parameter would 

cause a doubling of all other parameters. Without a scaling parameter, the model 

search space would be massive. Fixing a scaling parameter reduces this set of 

possible parameter combinations drastically, allowing the model to converge 

more fully without falling into local minima. By convention, in the DDM the 

standard deviation of the within-trial Gaussian noise parameter added at each 

time step to the drift rate is used as the scaling parameter and is typically set to 

0.1. This means that, at each time-point, a sample of evidence is taken from a 
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Gaussian distribution with a mean of the model estimated drift rate and a fixed 

standard deviation of 0.1. This within-trial noise parameter, therefore, sets the 

scale of values for drift rate, bound, non-decision time, and all variability 

parameters.  

 

A scaling parameter is therefore useful when examining an individual subject, as 

it assists convergence by allowing all parameters to be searched on the same 

scale. However, when we attempt to model data in which we cannot assume that 

the process reflected in the scaling parameter is stable across groups of 

participants we encounter significant issues. For example, recent work has 

shown that perceptual internal noise (Dosher & Lu, 2017, see Chapter Three for 

detailed discussion) is seen to vary significantly across a range of clinical 

samples, such as individuals with autism and schizophrenia (Chen et al., 2014; 

Park et al., 2017). Similar group differences in ongoing noise levels are often 

seen in neural data. For example, while older adults show equal behavioural 

measures of internal noise relative to younger adults (Pardhan et al., 1996), they 

show decreased neural variability over long time scales and increased variability 

at a moment-to-moment level (Kumral et al., 2020; Sleimen-Malkoun et al., 

2015), with this increased noise in older adults linked to poorer behavioural 

performance and working-memory decline (Voytek et al., 2015). Group 

differences in neural variability across different timescales are also seen in 

individuals with ADHD (Gonen-Yaacovi et al., 2016; Woltering et al., 2012), 

autism (Hecker et al., 2022; Milne, 2011), and schizophrenia (Kim et al., 2018; 

Yang et al., 2014). While some neural noise may be behaviourally-irrelevant 

(Ribeiro & Castelo-Branco, 2022), these behavioural and neural markers of 

ongoing noise in the neural system may indicate important and clinically relevant 

group differences which underpin behavioural impairments across a range of 

populations (Dinstein et al., 2015). The DDM would allow us to directly probe the 

relationship between intra-trial noise and behaviour, however, in its current form, 

it often does not allow for this, as within-trial noise is fixed as a scaling parameter 

across groups. Given the growing body of evidence for potential group 

differences in ongoing variability, it is clear that a fixed within-trial noise level 

across participants of different clinical groups may not be suitable and may result 

in the misattribution of group differences to fundamentally incorrect parameters.  
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Within-trial noise is also fixed as a scaling parameter at an individual level, 

meaning intra-trial variability in the decision process is not allowed to vary as a 

function of any experimental manipulation or effect. This is problematic, as 

psychophysical estimates of internal noise are shown to reduce with perceptual 

learning (Dosher & Lu, 1998, 1999; 2017). As perceptual learning can contribute 

in part to all perceptual decision-making tasks, this is a significant issue in the 

standard DDM. One method to overcome this is to fix an alternative parameter 

as the scaling parameter (Donkin et al., 2009). However, in doing this we 

preclude the possibility of the newly fixed parameter varying across conditions or 

groups. For example, an alternative solution to the study of perceptual learning 

would be to fix the boundary at a constant level across sessions. However, 

perceptual learning has also been shown to induce boundary adaptations (Liu & 

Watanabe, 2012; Zhang & Rowe, 2014). Here, the DDM cannot investigate 

changes to the scaling parameter without fixing another potentially important 

parameter and thus prohibiting it to vary. In essence, scaling parameters are an 

imperfect solution to model convergence, as they enforce at least one parameter 

to remain fixed, irrespective of the evidence for group differences, or changes 

across time or tasks.  

 

A method capable of estimating scaling parameters in a more principled way 

would allow for increased model precision. Neurally-constrained models use 

neural data to set a numeric value for a parameter (Ghaderi-Kangavari et al., 

2022; Hanks et al., 2014; Kelly et al., 2021; McGovern et al., 2018, Corbett et al., 

in press). In effect, this value acts as a scaling parameter around which the 

remaining parameters can be estimated. While not attempted in these papers, 

such a technique allows for within-trial noise to be freely estimated, or to be 

estimated differently across conditions. This presents a data-driven neurally-

informed solution to the scaling problem in the DDM. An alternative method would 

be to utilise behavioural estimates of internal noise from psychophysical work as 

a means of hard constraining the within-trial noise either at the individual or group 

level (Dosher & Lu, 2017; Tibber et al., 2014). This allows for adaptations in 

within-trial noise across individuals, conditions or groups while allowing for 

parameters such as bound to be freely estimated. Both of these methods present 
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compelling means for potentially addressing the scaling problem in DDM 

literature and would engender models with the ability to reflect the complexity of 

the brain’s perceptual decision-making machinery more accurately. Again, we 

see a limitation of DDMs is presented which can potentially be addressed through 

the use of neurally-informed modelling. 
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1.4: Methodological Challenges for Neurally-

Informed Modelling 

While neurally-informed modelling presents an exciting opportunity to refine and 

improve our models of perceptual decision-making, there are certain key 

considerations which must be considered to ensure that neurally-informed 

models are sufficiently useful. These issues must be addressed in order to 

develop a concrete and reliable methodology which accurately informs and 

constrains decision models. 

 

1.4.1: Inter-Individual and Inter-Group Difference in Signal 

Presentation 

Of particular importance to neurally-informed modelling is our ability to 

confidently assert that the neural signals we are measuring accurately depict the 

psychological process of interest. As outlined above, myriad works have used 

intricate paradigms to associate neural indices of the decision-making process 

with DDM parameters (see section 1.2.3). However, there exist significant 

behaviourally-irrelevant inter-individual and inter-group differences in signals 

which may impede the reliability of these signals. For example, there exists 

substantial inter-individual variability in skull thickness and conductivity, which 

may directly influence the amplitudes and presentations of various signals 

measured at the scalp (Antonakakis et al., 2020). When these signals are 

averaged at a group level, individuals with larger amplitudes due to task-

irrelevant differences in head shape or skull thickness may dominate a group's 

average topography. These inter-individual differences can be exacerbated when 

measuring across multiple sessions. Here, issues such as cap placement can 

introduce additional intra-subject variability unless special attention is paid to 

ensure precise and consistent EEG set-up, and these concerns must be 

addressed for us to be able to fully rely on a neural signal as a true indicator of a 

particular underlying psychological construct.  
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The effects of behaviourally-irrelevant differences in signals are even more 

apparent when we compare across groups where the effect of non-decision 

related factors which influence the appearance of the signals, but not the 

processes they represent may become compounded. For example, skull 

thickness has been shown to change with age, meaning that the same signal 

measured in the same location across two age groups may vary in amplitude 

simply due to reduced skull conductivity in older adults (Antonakakis et al., 2020). 

Furthermore, recent evidence from Ribeiro and colleagues (2022) has suggested 

that some components of neural variability may not be behaviourally relevant but 

may impact an ERP’s amplitude at a trial-to-trial level. Here, older adults were 

shown to exhibit reduced ongoing variability in the CNV when compared to 

younger adults. However, this variability was not related to behavioural 

performance. When this was controlled for, older adults' CNV amplitudes were 

more closely aligned with behaviour, suggesting that this non-decision-related 

background activity bore an impact on key signals of decision-making. Given an 

increasing reliance on neural indices as markers of the decision process, efforts 

must be made to identify and correct for potential behaviourally-irrelevant 

differences in EEG signals. Failing to do so may mean that researchers could 

incorrectly infer an adaptation to some component of the decision process that is 

in fact driven by another non-decision-related group difference. 

 

For example, in comparisons between the younger and older brain, there is an 

observed increase in mu/beta-band power at rest and increased 

desynchronisation during movement in older age (Rossiter et al., 2014; Stacey 

et al., 2021). This may be caused by increased GABA inhibition across the motor 

cortex, yet whether this represents any functional impairment remains unclear 

(Muthukumaraswamy et al., 2013). Pharmacological studies which artificially 

increase levels of GABA in younger adults show similar increases in beta 

amplitude but are not associated with any behavioural impairments to movement 

(Muthukumaraswamy et al., 2013). This suggests that elevated beta amplitudes 

seen in older adults may reflect background sources which hold little influence 

on task performance. This could in turn lead to incorrect conclusions regarding 

the effects of ageing on a decision-making process, such as pre-evidence 

starting point adjustments (Kelly et al., 2021). Oftentimes, however, individual 
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differences can be corrected through normalisation. For example, mu/beta 

amplitude is shown to desynchronise toward the same threshold at response, 

independent of the difficulty of a task or reaction time (Kelly et al., 2021, see 

section 1.2.3). This means that differences in observed spectral power can be 

controlled through normalisation of the signal in a manner that maintains inter-

group and inter-condition differences in amplitude and build-up (see Chapters 

Two & Three).   

 

This signal normalisation may create an elegant solution for the comparison of 

accumulation-to-threshold signals such as mu/beta activity across groups. 

However, this normalisation cannot be applied to signals such as the CPP or 

CNV. While some studies have shown consistent CPP thresholds at response 

across RT and difficulty level (Kelly & O’Connell, 2013; Twomey et al., 2015), 

others have shown reduced amplitude at response for more difficult trials and 

slower RTs (Steinemann et al., 2018). Here the CPP amplitude at response may 

be influenced by parameters such as dynamic urgency, meaning we cannot 

assume a stereotyped boundary of the CPP across all trials in the same way we 

do for mu/beta. Without this normalisation, we may be unsure of the extent to 

which differences in CPP presentation across conditions or groups represent 

changes to underlying psychological constructs, or rather a combination of task-

irrelevant effects on scalp potentials. This is especially important for the study of 

ageing, where evidence has suggested lower P3b/CPP amplitudes in older 

adults (see van Dinteren et al., 2014b and Chapter Four for detailed discussion). 

Without a way to normalise these signals, it is difficult to ascertain if these 

differences represent any true functional deficit in older adults. This presents an 

issue for neurally-informed modelling. However, comparing the CPP signal to its 

model-simulated cumulative evidence counterpart may provide a way forward. 

Through this, we can see whether the two align and show concordance. Failure 

for one to reflect the other may signify a model which does not represent how the 

decision unfolds in the brain. However, if the model successfully reproduces 

behaviour and simulates other signals such as the mu/beta motor-preparation 

signal well, it may instead indicate that the observed neural signals are affected 

by behaviourally-irrelevant issues such as volume conductance. Through this, 

steps can be taken that attempt to normalise the observed neural signal, 
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potentially utilising model-derived parameters to rescale the ERPs in a reasoned, 

data-driven way. 

 

1.4.2: Signal Overlap 

A further issue with the study of ERP signals such as the CPP and the CNV is 

the fact that scalp-recorded EEG is an overlapping mix of a range of neural 

sources (van den Broek et al., 1998). This means that an ERP measured through 

electrodes recording from the scalp may not always be a reliable depiction of one 

signal of interest in isolation. This can lead to significant issues, as signals of 

interest such as the CPP may become overshadowed by other nearby signals 

such as the CNV (Kelly & O’Connell, 2013). Furthermore, paradigms can often 

elicit sensory-evoked potentials which may in turn overlap with emerging 

decision-related signals. For example, the auditory oddball task traditionally used 

to study the P3b/CPP (e.g., Polich, 1997; van Dinteren et al., 2018) uses sudden-

onset stimuli which elicit an auditory-evoked potential. This presents an issue as 

it is unclear whether the observed effects of age on P3b/CPP amplitude may be 

driven by ageing-effects on the sensory-evoked potential (Anderer et al., 1996, 

1998; Gajewski et al., 2018; Bertoli et al., 2005; Golob et al., 2001; Kuruvilla-

Mathew et al., 2022; Polich, 1997a). To reduce the influence of these sensory-

evoked potentials on decision signals of interest, the O’Connell lab has designed 

and implemented paradigms in which sensory evidence emerges gradually over 

time, removing sudden sensory signals and allowing for a clearer picture of the 

decision-relevant signals such as the CPP in isolation (McGovern et al., 2018; 

O’Connell, Dockree, et al., 2012; Steinemann et al., 2018, see Chapter Four) 

 

Scalp spatial filters, such as surface Laplacian or current source density (CSD) 

transforms, offer another potential means of reducing the effects of signal overlap 

(Kayser & Tenke, 2015). These filters transform scalp-recorded voltage into 

estimates of current flowing from the brain, aiming to undo a portion of this 

volume conduction (Tenke & Kayser, 2005). This has the effect of reducing signal 

overlap by providing more spatially resolute topographies. The application of 

CSD has been shown to be beneficial to the study of the CPP, removing the 

influence of the neighbouring, but negative going CNV (Kelly & O’Connell, 2013). 



42 

However, in many EEG studies, notably those investigating the effects of ageing 

on P3b/CPP amplitude, these filters are not applied, and thus the influence of 

these overlapping signals may remain (e.g., Polich, 1997; van Dinteren et al., 

2018, O’Connell, Balsters, et al., 2012). Resultantly, we may inappropriately infer 

some effect of ageing on the CPP, and therefore on the decision process, when 

the differences may be driven by age-related changes in another signal entirely. 

 

Independent Component Analysis (ICA) offers another solution for addressing 

signal overlap. The technique allows for the selection of spatially-independent 

but temporally correlated components which reflect ongoing neural activity and 

is often used to remove components that reflect artifactual activity in the data 

during preprocessing stages (Jung et al., 1997). However, it can also be utilised 

as a means for extracting neural markers of cognitive and perceptual processes, 

presenting a valuable tool for the extraction of more refined indices of perceptual 

decision-making. This technique has been applied to varying degrees of success 

in the extraction of P3/P3b components (e.g., Debener et al., 2005, 2005; 

Porcaro et al., 2019; van Dinteren et al., 2018, see Chapter Four). However, to 

date studies have often relied on potentially biassed manual selection features 

based on peak stimulus-locked amplitudes and latencies using oddball tasks. As 

a technique, ICA offers a unique opportunity to extract evidence-dependent 

neural indices of decision formation, leveraging the predictable difference in CPP 

build-up for different evidence levels and reaction times to automatically select 

CPP-like components. This can provide a spatially independent neural index of 

evidence accumulation that reduces the influence of overlapping signals, giving 

a more precise representation of how decisions are formed in the brain. This 

would be of significant benefit to neurally-informed modelling, providing a more 

refined neural index of decision-making. This technique will be explored more 

thoroughly in Chapter Four. 
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1.5: Summary and Current Research 

This review illustrates the exciting possibilities of using neurally-informed 

modelling to enable more biologically grounded and reliable accounts of the 

perceptual decision-making process. Current modelling and electrophysiological 

techniques in isolation face a set of fundamental challenges which limit their 

potential. Computational modelling is often performed without specific reference 

to observed biological realities, and as a result, substantial model mimicry can 

be observed, where various accounts can explain behaviour equally well 

(O’Connell et al., 2018). This complicates our ability to rely on modelling 

accounts, and efforts must be made to routinely use neural markers of the 

decision process to arbitrate between biologically reasonable model variants. 

Furthermore, as models must assume a fixed scaling parameter (Ratcliff & 

McKoon, 2016), significant issues exist when comparing model parameters 

across groups. If computational models are to have significant clinical value, 

novel methods for addressing these problems must be found.  

 

Neurally-informed modelling may allow us to tackle these issues. Using neural 

data allows us to guide parameter selection, giving evidence for the inclusion of 

parameters such as urgency (Devine, 2019, Kelly et al., 2021). It also allows us 

to arbitrate between competing models, giving us evidence in favour of, or 

against, specific models based on how well they reflect what occurs in the brain 

(Corbett et al., in press, McGovern et al., 2018). Furthermore, using neural data 

to provide hard constraints for model parameters allows for the exploration of 

novel and increasingly complex model variants which may more accurately 

reflect the true underlying cognitive processes (Ghaderi-Kangavari et al., 2022; 

Hanks et al., 2014; Kelly et al., 2021; McGovern et al., 2018, Corbett et al., in 

press), without increasing the number of free parameters and thus penalising 

model comparison scores.  These constraints may also allow us to replace 

standard scaling parameters with neurally derived constraints, allowing for the 

investigation of the relationship between within-trial noise and observed 

behaviour (see Chapters Two & Three, Dosher & Lu, 2017). Utilising these 

techniques has already proved fruitful in providing novel insights and 

understanding into cognitive phenomena. However, as has been demonstrated 
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so far, the use of electrophysiological indices to constrain models is complicated 

by significant task-irrelevant, inter-individual, and group differences which can 

significantly impact how these signals present themselves (Antonakakis et al., 

2020; M. Ribeiro & Castelo-Branco, 2022; Rossiter et al., 2014; Stacey et al., 

2021). While signals such as mu/beta which have consistently been shown to 

accumulate to a stereotyped bound can be normalised (e.g., Kelly et al., 2021), 

a more refined and considered approach is needed to ensure signals such as the 

CPP are comparable across groups. Alongside this, a clearer understanding of 

the effects of grouping (e.g., by age) on the localisation and presentation of 

signals is needed, exploring spatially independent means of extracting neural 

signals to reduce the influence of overlapping signals. 

 

It is the purpose of this present body of work to attempt to address some of these 

issues. Chapter Two explores the potential for neurally-informed modelling to 

overcome issues in between-group comparison.  Within this chapter, age 

differences in a classic speed-accuracy tradeoff are assessed using novel 

neurally-informed modelling methods to give new insight into the well-researched 

phenomenon. Chapter Three provides methods for investigating the role of 

within-trial noise in visual perceptual learning through the use of both behavioural 

and neural constraints. In this, it shows a lowering of within-trial noise through 

perceptual learning, with a neurally-constrained model indicating additional 

possible learning of task timings. Finally, Chapter Four highlights and explores 

core issues in the use of neural signals to constrain and refine models. Here, the 

well-studied effects of ageing on P3b/CPP localisation are explored, with specific 

attention paid to the often-overlooked influence of overlapping signals. From this, 

a means of selecting spatially independent neural markers of decision formation 

through ICA are derived. Chapter Five concludes with an overarching view of the 

findings of this body of work.  It is hoped that through this body of experiments, 

an exciting new approach to the synthesis of behaviour and electrophysiology 

can be exhibited. With this new knowledge, the work concludes with an 

assessment of some remaining questions and issues for neurally-informed 

modelling, alongside avenues for further research. 
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46 

2.1: Introduction 

Oftentimes when making decisions, there exists a tradeoff between two key 

considerations; the speed with which you can make the decision, and the level 

of accuracy you wish to achieve. The mind must flexibly adapt and reweight the 

relative importance of each under different circumstances. For example, if we are 

driving at speed, it is more important to react quickly and apply the brakes than 

to be certain of the nature or presence of an obstruction because a crash at 

speed is risky and the benefits of slowing down to avoid an obstruction at all, 

even if there was none, is more important than being entirely certain. Conversely, 

when accuracy is of paramount importance, for example when choosing which 

car to buy in the first place, we may accumulate more evidence over a longer 

period of time, leading on average to more accurate but slower responses. Our 

ability to actively assess and adjust our response styles under different conditions 

is a core facet of decision-making behaviour. These adjustments to emphasise 

speed or accuracy, known as the speed-accuracy tradeoff (SAT), have been 

intensively researched (see Heitz, 2014 for a review), including several studies 

that have examined their susceptibility to natural ageing (Forstmann et al., 2011; 

Starns & Ratcliff, 2010, for a review see Dully, et al., 2018). A consistent finding 

in the literature on cognitive ageing is an apparent diminished capacity of older 

adults to flexibly adapt their decision strategies and response times when placed 

under increased speed pressure (Forstmann et al., 2011; Starns & Ratcliff, 

2010). This is a key insight for our understanding of the brain across the lifespan, 

as it represents a potential reduction in the brain’s capacity to adapt optimally to 

task-relevant demands with age (Starns & Ratcliff, 2012). However, it has 

alternatively been argued that this finding may instead represent a strategic 

difference, whereby older adults choose to pursue a more deliberate and 

cautious response style, either out of preference or in order to compensate for 

impaired perceptual or motor processes (Dully et al., 2018). Arbitration between 

these alternative accounts has important ramifications for our understanding of 

the brain as we age, and significant progress has already been made in teasing 

apart these explanatory accounts, using a combination of mathematical 

modelling and neurophysiological analyses. 
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2.1.2: Mathematical Models of the Speed-Accuracy Tradeoff 

Sequential sampling models, as introduced in Chapter One, allow us to utilise 

reaction time (RT) and accuracy data to investigate mathematical approximations 

of latent cognitive processes and to assess how those processes may change 

under different conditions (Forstmann et al., 2016; Ratcliff & McKoon, 2008; 

Ratcliff & Smith, 2004). Sequential sampling models posit that for a two-choice 

decision, evidence accumulates noisily across time until the crossing of some 

decision bound, with added non-decision time to allow for response execution 

and sensory encoding (Brown & Heathcote, 2008; Ratcliff & McKoon, 2008, see 

Chapter One section 1.2). In sequential sampling models under speed emphasis, 

decision bounds are lowered to facilitate faster responses at the cost of accuracy. 

Behaviourally, this lowering of bounds under speed pressure has been modelled 

extensively across a range of tasks and species (see Heitz, 2014 for review). A 

mathematically equivalent alternative to this lowering would be an increase in the 

starting point of the decision variable, which while performing functionally the 

same as a boundary reduction, implies a strategic pre-stimulus adaptation (Kelly 

et al., 2021). For example, Steinmann and colleagues (2018) have shown that 

beta-band desynchronisation, which builds to a threshold at response (Donner et 

al., 2009; Fischer et al., 2018; Murphy et al., 2016, see Chapter One 1.2.3), is 

lower following a speed emphasis cue well in advance of stimulus onset, 

indicative of an increased pre-evidence motor preparedness under speed 

pressure. In modelling terms, this shift in starting beta levels is reflective of 

starting point adjustments, where the decision process begins closer to its bound. 

Similar pre-evidence adaptations under speed pressure have also been 

observed in the monkey frontal eye field (FEF) and lateral intraparietal area (LIP; 

Hanks et al., 2014; Heitz & Schall, 2012). Functional magnetic resonance 

imaging (fMRI) studies in humans have linked increased starting level 

adjustments under speed pressure with activity in the pre-supplementary motor 

area (pre-SMA; Forstmann et al., 2008), with the capacity to adapt these 

thresholds governed by cortical connectivity between the pre-SMA and the 

striatum (Forstmann et al., 2010). This neural evidence is valuable, as it shows 

that this adaptation to the decision process begins well in advance of any 

evidence appearing on screen. 
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A range of behavioural experiments have investigated the SAT specifically in 

older adults. As mentioned, older adults are routinely shown to be less capable 

of adapting these decision bounds under speed emphasis (Forstmann et al., 

2011; Starns & Ratcliff, 2010). In their work, Starns and Ratcliff (2010) calculated 

the Reward Rate Optimal Boundaries (RROB), which indicate the optimal 

boundary setting for an ideal observer under speed or accuracy emphasis and 

compared these to model estimated boundaries for younger and older adults 

across the two regimes. Here, older adults show suboptimal bound settings, 

consistently setting higher bounds than necessary, and failing to adapt them 

sufficiently under speed emphasis to more closely align with the optimal bound. 

Neural data suggests that this impairment may be underpinned by the 

degradation of white matter tracts connecting the pre-supplementary motor area 

and striatum in older adults, which correlated significantly with more cautious 

boundary setting (Forstmann et al., 2011).  

 

While some previous studies of the SAT have used simpler linear ballistic 

accumulator models (e.g., Forstmann et al., 2008, 2010, 2011), the drift-diffusion 

model (DDM) is uniquely valuable, as it proposes a more comprehensive set of 

parameters which are relatable to psychological constructs and distinct stages of 

the decision-making process that are supported by neural data (see Chapter 

One, section 1.2). However, extant studies of the SAT in ageing have failed to 

link DDMs to observed neural data (e.g., Starns & Ratcliff, 2010, 2012). As a 

result, the model may not directly reflect how the decision unfolds in the brain 

and may overlook important components of the decision process, such as 

urgency. Neural data grants us a means of linking model parameters to 

psychological constructs, allowing us to deliberate between competing models, 

and providing another line of evidence for novel parameters that may better 

capture how decisions are formed (O’Connell et al., 2018, see Chapter One: 1.3). 

For example, neural data suggests that the DDM may not account for important 

components of the decision process which are important in speed-accuracy 

paradigms, such as urgency (Hanks et al., 2014; Steinemann et al., 2018; 

Devine, 2019). To date, the role of urgency adaptations in older adults under 

speed emphasis has not been investigated, and so the extent to which the DDM 

provides a comprehensive account of the effects of ageing on the SAT in older 
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adults is uncertain. As a result, current models may ascribe the effects of ageing 

to the wrong parameters, leading to fundamentally different conclusions on the 

effects of ageing on decision-making and ultimately, different therapeutic 

approaches.  

 

Analysis of electroencephalography (EEG) signals which reflect each distinct 

stage of perceptual decision-making can enable us to deliberate more astutely 

between computing models, potentially furnishing evidence for the inclusion of 

often overlooked parameters such as urgency. Furthermore, utilising neural 

constraints allows us to investigate increasingly complex models without 

incurring a cost to model comparison scores (Kelly et al., 2021, Corbett et al., in 

press). This can allow us to explore the potentially more nuanced effects of 

ageing on the SAT, whilst also allowing for the investigation of between-group 

differences in the traditionally fixed within-trial noise scaling parameters, which 

itself may change as a function of age (Pardhan et al., 1996; Kumral et al., 2020; 

Sleimen-Malkoun et al., 2015). Using a neurally-informed modelling approach 

may reveal novel insights into how older adults adapt their decision-making under 

speed-emphasis, granting a more biologically grounded, neurally-driven account 

for the effects of ageing on the SAT. 
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2.1.3: Issues in Modelling the SAT 

To date, the majority of sequential sampling models rely on the assumption of a 

static decision bound, meaning one which remains set at a constant rate from 

the beginning to the end of a trial (Ratcliff & McKoon 2016; see Chapter One: 

1.2.2). Importantly a growing body of evidence suggests that rather than a fixed 

bound, the amount of evidence required to reach commitment may vary 

throughout the course of a decision (Hawkins et al., 2015; Voss et al., 2019). In 

this way, the bounds “collapse” and the amount of evidence required to make a 

decision reduces over time, resulting in slow errors that reflect an urgency to 

respond before a trial ends. However, some authors suggest that these changes 

can be explained without the implementation of collapsing bounds through 

between-trial variations in drift rate (Ratcliff et al., 2016; Ratcliff & McKoon, 2008). 

Furthermore, some have suggested that even when optimal, collapsing bounds 

may not be an ecologically valid construct, and may only be the result of highly 

specific task dynamics, such as reward rates or the large amounts of practice 

completed in advance of data collection (Hawkins et al., 2015). In this way, they 

suggest that collapsing boundaries may not represent a meaningful dynamic of 

the decision process in the real world, but rather a fallout from the highly 

constructed nature of psychological tasks. Irrespective of the ecological validity 

of collapsing bounds, the fact remains that in perceptual decision-making tasks, 

trials are often constructed with these strict cut-off points and deadlines for 

responding. Behavioural evidence has shown collapsing bounds to be optimal, 

especially in difficult tasks, or those with predictable deadlines such as the 

paradigms traditionally used in the SAT (Frazier & Yu, 2007; Malhotra et al., 

2018). Here it is demonstrated that an optimal observer would be better to 

respond using the evidence they have accumulated rather than suffering the cost 

of failing to respond entirely (Malhotra et al., 2018). These urgency dynamics 

become increasingly important when participants are instructed to prioritise 

speed. With speed emphasis, the cost of missing is often greater, and the rate of 

reward is often yoked to the reaction time, making a more urgent decision style 

optimal.  
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Evidence in support of collapsing bounds and urgency dynamics has been shown 

in the neural data. For example, in a study by Hanks and colleagues (2014), the 

level of firing in the LIP neurons of macaques was shown to exhibit start point 

adjustments under speed pressure and contain an additive, evidence-

independent component which was more prominent under speed emphasis. 

Using this component to constrain an urgency parameter in their model provided 

stronger fits to the behavioural data, highlighting the role of dynamic urgency in 

the task. In humans, Kelly and colleagues (2021), increased motor preparedness 

under speed emphasis was shown to reflect pre-evidence starting point 

adjustments, suggestive of an evidence-independent urgency component that 

brings the decision-making process increasingly closer to its bound well in 

advance of any evidence appearing on screen. As in Hanks and colleagues 

(2014) study, including this urgency in the model greatly improved model fits. 

Notably, it also improved the concordance between model-simulated and real 

neural signals of the decision process, highlighting again the utility of using neural 

data to refine computational models of decision-making. Recent work from 

Devine (2019) illustrated the contingent negative variation (CNV) as another 

potential neural marker of urgency. Here, it was shown to build at an evidence-

independent, but time-dependent rate that increases with speed pressure. An 

important distinction between the CNV and mu/beta motor preparation as a 

marker of urgency is that motor preparation scales with evidence strength, while 

the CNV does not. That means the CNV may provide a more accurate readout 

of urgency, unaffected by any effects of evidence strength. Finally, in Steinemann 

and colleagues (2018), the amplitude of the CPP at response was shown to 

reduce for later reaction times, indicating a lower amount of evidence 

accumulated by the time of response, and reflecting a reduction of the decision 

boundary across time. Collectively, these neural features indicate and are 

mathematically equivalent to collapsing bounds, highlighting an urgency to 

respond which is increased under speed pressure in a range of signals across 

both monkey and human work.  

 

While these urgency dynamics have been exhibited both in behavioural 

modelling and neural data, current DDMs often fail to incorporate collapsing 

bounds into their simulations. Specifically, the influence of these dynamics in 
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older adults remains uninvestigated, especially in the case of SAT tasks, where 

urgency dynamics may play a particularly important role. This is important, as 

failing to incorporate urgency as a parameter raises questions as to the validity 

of findings in the modelling studies of cognitive ageing. For example, while 

current literature points to a failure to adapt their boundary setting (Forstmann et 

al., 2011; Starns & Ratcliff, 2010), behavioural differences in ageing under speed 

pressure may instead reflect a failure to adapt their urgency dynamics to ensure 

a response is made in time. Even if not ascribing the adaptation solely to changes 

in urgency, failing to incorporate urgency as a parameter when it is a true 

psychological phenomenon may impact other parameters. Here, a model without 

urgency is forced to adapt other parameters to account for the behavioural effects 

of a collapsing bound. Therefore, urgency dynamics must at least be explored in 

the context of SAT with ageing, especially as traditional SAT tasks rely on hard 

deadlines and time-based rewards under speed emphasis, which may elicit 

increased urgency (Devine, 2019; Kelly et al., 2021; Steinemann et al., 2018). 

Examining neural signals to establish the potential presence of urgency can 

provide additional evidence for its necessity, and its inclusion in a model may 

reveal new insights into the SAT in older adults. 

 

Beyond the inclusion of novel parameters, neurally-informed modelling offers an 

improvement to the use of computational modelling alone and may help to 

advance our understanding of the effects of ageing on decision-making. Through 

this, the comparison of model parameter estimates and neural signatures across 

age groups may provide valuable information into the complex cognitive 

processes which give rise to the effects of ageing on a range of phenomena. For 

example, recent work from McGovern and colleagues (2018) showed older 

adults outperformed younger adults on a contrast-change detection task. A 

standard DDM attributed this to higher drift rates and decision bounds in the older 

adult group. However, this did not align with the observed neural data. In contrast, 

the CPP as a marker of cumulative evidence was shown to accumulate at the 

same rate to the same threshold at response across older and younger adults. 

This contradicted the model, which estimated higher drift rates and bounds in 

older adults. The neural data was then used as a constraint to enforce consistent 

bounds and drift rates in a neurally-informed model. This model then showed that 
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the poorer performance in younger adults was driven by increased trial-by-trial 

drift rate variability. This novel finding was in turn supported by the neural data, 

which showed increased variability in younger adults' CPP slopes. Furthermore, 

this variability was attributed to increased variability in attentional engagement in 

the task, which was supported by increased variability in between-trial levels of 

posterior alpha-band activity, an indicator of attentional engagement (Dockree et 

al., 2007). Here, a standard DDM attributed the performance difference in older 

adults to a more cautious response criterion and better sensory representation, 

while the neural data created and supported a model which indicated that the 

improved performance was likely driven by increased attentional engagement in 

the older cohort. These insights were unachievable through behavioural 

modelling alone.  

 

Collectively, this presents compelling evidence for the application of neurally-

informed modelling to the study of the SAT in ageing, allowing us to investigate 

the role of novel parameters such as urgency, to constrain our models using 

observed neural data in order to investigate more nuanced models, and to 

deliberate on competing model accounts based on their capacity to reflect neural 

indices of decision making. This has the potential to lead to significant 

advancement in our understanding of the effects of ageing on key facets of 

decision-making such as the SAT. 
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2.1.4: Issues in Between-Group Comparison of Neural Data and 

Model Scaling Parameters 

Neurally-informed modelling is, therefore, an extremely beneficial means for 

investigating the effects of ageing on decision-making. However, to enable 

accurate and reliable insights, we must be certain that the signals we use for 

constraint and comparison represent true group differences and are not unduly 

affected by behaviourally-irrelevant features that may affect their presentation 

uniquely in each cohort. For example, neural signals can present with varying 

strengths across groups for reasons which may be completely unrelated to the 

decision-making process. This may be of particular importance in the study of 

ageing, where changes in physiological features such as skull thickness with age 

have been shown to result in reduced skull conductance (Antonakakis et al., 

2020). This may have a direct influence on how signals present on the scalp, 

without reflecting any changes to the underlying psychological construct that the 

signal is thought to represent. For example, baseline beta power has also been 

shown to be consistently increased in older adults (Stacey et al., 2021). In a 

recent study by Rossiter and colleagues (2014), older adults showed greater beta 

power at rest alongside a greater degree of beta desynchronisation during 

movement. The authors suggest that this is due to stronger levels of GABAergic 

inhibition in the older adult motor cortex. However, as outlined in Chapter One, 

pharmacologically elevating GABA levels in younger adults increases baseline 

beta levels but has no effect on their actual movement (Muthukumaraswamy et 

al., 2013). This may suggest that elevated beta-amplitudes in older adults may 

not reflect any functional difference but are due to behaviourally-irrelevant ageing 

effects. Failing to account for these may lead to incorrect conclusions as to age 

differences in, for example, pre-evidence motor preparation, a feature of 

particular importance for studies of the SAT (e.g., Steinemann et al., 2018). 

Fortunately, as mu/beta is shown to exhibit stereotyped accumulation to 

threshold dynamics (Donner et al., 2009; Fischer et al., 2018; Kelly et al., 2021; 

Murphy et al., 2016; O’Connell, Dockree, et al., 2012; Rogge et al., 2022), this 

signal can be normalised across conditions and groups, reducing the influence 

of behavioural-irrelevant group differences (Kelly et al., 2021). 
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The DDM may also face scaling issues which are not traditionally addressed and 

may present significant challenges to between-group comparisons of model 

parameters. As outlined in Chapter One, behavioural models rely on a scaling 

parameter, a fixed value around which other values are estimated (section 1.3.3). 

This is traditionally pinned as the standard deviation of the Gaussian within-trial 

noise added at each time point, which is fixed by convention at 0.1 across 

conditions, groups and individuals (Ratcliff & McKoon, 2008; Ratcliff & Smith, 

2004; Voss et al., 2004, see section 1.3.3). Any comparison of parameter 

estimates across groups therefore inherently relies on the assumption that within-

trial noise levels do not change. However, the validity of this assumption is called 

into question by a range of recent evidence, especially when studying the effects 

of ageing on decision-making. For example, while behavioural estimates of 

internal noise have pointed to no differences in internal noise levels across older 

and younger adults (Pardhan et al., 1996), EEG signals in the older adult brain 

have been shown to exhibit higher complexity in short time scales both at rest 

and throughout a task (Sleimen-Malkoun et al., 2015). However, when 

considered across longer time scales, older adults exhibit reduced variability in 

both EEG and fMRI BOLD signals (Kumral et al., 2020; Sleimen-Malkoun et al., 

2015). This may be indicative of increased within-trial noise, contributing to 

increased ongoing neural complexity, with reduced inter-trial variability in 

parameters across time. If this increased ongoing variability in older adults is true, 

any behavioural modelling which assumes within-trial noise values to be 

consistent across age groups is false and may attribute behavioural effects to 

differences in other parameters, when in fact they are driven by group differences 

in within-trial noise. However, due to their use of within-trial noise as a consistent 

scaling parameter across groups, the DDM is not currently equipped to 

investigate these differences. 

 

An alternative may be to fix the decision bound as the scaling parameter (Ratcliff 

& Tuerlinckx, 2002), yet this would force the boundary to remain constant across 

speed-accuracy regimen and may also obscure the routinely evidenced cross-

condition and age effects on decision bound setting (Forstmann et al., 2011; 

Starns & Ratcliff, 2010). This is a key limitation of standard modelling 

approaches, as they rely on the assumption that one parameter will not change 
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between conditions, and we can rarely do this with certainty. One solution to this 

issue is to use neural data to constrain a parameter. As it is a fixed value, this 

neurally-constrained parameter then acts as a scaling parameter, thereby freeing 

up within-trial noise to vary, while maintaining space for potential adjustments to 

the decision bound. Recent work from Kelly and colleagues (2021) utilised pre-

evidence mu/beta motor signal levels to great effect to constrain diffusion 

models. As model comparison scores penalise for model complexity, these 

constraints allowed the model to capture the decision-bound adjustments without 

the need for them to be freely estimated by the model, allowing the model to take 

on additional free parameters and detect a wider range of parameter effects than 

previously possible. Similar results were achieved in the McGovern and 

colleagues (2018) ageing study outlined above, however, neither of these studies 

utilised the neural constraints in place of traditional scaling parameters. As such, 

they did not investigate potential changes in within-trial noise as a driver of 

behavioural performance.  

 

The use of these constraints may be uniquely beneficial to the study of between-

group effects such as the SAT in older adults. Here, the groups could be linked 

using scaling parameters directly derived from their neural data, allowing for more 

comparable models and parameter estimates. It also has the added benefit of 

freeing up within-trial noise to be estimated as a free parameter, allowing the 

impact of ageing on this parameter to be reasonably assessed. However, given 

the expressed differences in beta-power outlined above (Rossiter et al., 2014), a 

means of rescaling mu/beta across groups is required, which retains the relative 

differences between conditions. If this could be achieved, the use of a neurally-

derived scaling parameter would represent a truly unique and beneficial tool for 

between-group modelling, which has direct implications not only for the study of 

ageing but could easily be extended to the study of a range of clinical disorders 

such as autism, schizophrenia and ADHD.  

 

2.1.5: Present Study 

The present study aimed to thoroughly investigate the speed-accuracy tradeoff 

in older adults using behavioural modelling informed by electrophysiologically 
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derived indices of the decision process in a data set previously collected by Dully 

(2020). Neurally-informed modelling presents a unique opportunity to investigate 

these effects, enabling parsimonious explanations which synthesise behavioural 

and biological evidence sources. Using neural signals to establish plausible and 

biologically likely effects allows for the examination of more complex models 

without increasing the number of free parameters and thus penalising model 

comparison scores. Neural constraints also have the benefit of providing neurally 

derived and applicable scaling factors which allow for direct between-group 

comparison. Through this it was hoped to provide a more biologically grounded 

model of the speed-accuracy tradeoff in ageing, giving new insight into the effects 

of ageing on this well-studied phenomenon. 

  



58 

2.2 Methods 

2.2.1: Participants 

A total of 30 younger adults, (18-34, mean age = 23 ± 4.4 years), and 30 older 

adults (62-77, mean age = 70 ± 3.5 years) participated in this study. Eleven 

participants were excluded from the analysis for failing to achieve above-chance 

accuracy (>60%) in either of the Speed-Accuracy conditions (6 younger adults, 

and 5 older adults). A post-hoc power analysis was performed using G*Power 

(Faul et al., 2007). This indicated that given a sample size of 49 across two 

groups and two conditions, with a significance criterion of 0.05 and a power of 

80%, the study would have sufficient power to detect effects of small to medium 

effect sizes (f = 0.2) . Participants had normal, or corrected-to-normal, vision and 

were screened for personal and familial history of epilepsy, psychiatric and 

neurological disorders, and personal history of traumatic brain injury and 

photosensitivity. The groups were matched for years of formal education (Young: 

Mean = 17.2 +/- 3.1 years; Older: Mean = 17 +/- 3.8 years; p = 0.38) and all 

participants were required to have a score over 24 points on the Mini-Mental 

State Exam. The National Adult Reading Test (NART; Nelson, 1982) was used 

as a measure of premorbid IQ. Age groups did not differ on this measure. All 

participants were required to give written informed consent prior to any data 

collection and were remunerated €30 in lieu of their time and travel expenses. 

The study was approved by TCD’s School of Psychology Ethics Committee, in 

line with the Declaration of Helsinki. 

 

Upon granting informed consent, participants completed the demographic, NART 

and MMSE components. Participants then completed the task as outlined below 

in a sound-attenuated, darkened EEG booth. The task was presented on a 

40.5cm CRT monitor, 50cm from the participants, who sat in headrests to 

decrease movement and keep viewing distance consistent. The task was 

presented at a refresh rate of 100Hz on a screen with a resolution of 1024 x 768.  
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2.2.2: Contrast Change Discrimination Task: 

Participants were asked to fixate on a central point which appeared for 500ms at 

the beginning of each trial, followed by a cue indicating the required strategy (“go 

fast!” / “be accurate”). This cue was displayed for 500ms, followed by a further 

500ms display of the fixation point. Overlaid left/right gratings flickering at either 

20/25 Hz were displayed with equal contrast (50%) for 400ms. After this period, 

one grating increased in contrast to 60% or 66% (Low/High contrast condition), 

as the other reduced by the same amount. Participants held a mouse in both 

hands and were asked to indicate which of the two gratings had increased in 

contrast, a left click with the left hand for leftward tilted gratings, and a right click 

with the right hand for rightward tilted gratings (See Figure 2.1). Each block 

contained 30 low-contrast trials (60%) and 30 high-contrast trials (66%). The 

flicker frequency of the target grating was balanced. Participants completed 3 

blocks of 60 trials under Accuracy emphasis, and 3 blocks of 60 trials under 

Speed emphasis. The order of these blocks was alternated (e.g., Speed, 

Accuracy, Speed etc.) and the condition of the first block in the sequence was 

counterbalanced by participants. A point system was used to encourage 

adaptation to the required response style. Under speed emphasis participants 

were rewarded a diminishing number of points over time, reducing from 100 

points at a rate of 75 points/second. Errors also incurred a point deduction, rising 

from 20 points at a rate of 4 points/second. Failure to respond before the deadline 

incurred a deduction of 116 points. In the accuracy condition, 60 points were 

awarded for correct and 60 were deducted for incorrect responses regardless of 

response time. There was no penalty for missed responses (0 points). Feedback 

was given after each trial, including the number of points awarded. Before 

commencing the testing session, participants completed an initial practice block 

of 20 trials at which targets were presented at 100% contrast. They then 

proceeded to a further practice block in which stimuli were presented at the 

required 60/66% contrasts until the participant had fully understood the task.  
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Fig. 2.1: Task schematic: from Dully (2020). Participants are shown 500ms of a fixation dot, followed by a 

regime cue. Another 500ms of the fixation dot is followed by the stimulus fading into 50% contrast across 

400ms. The stimulus remains at 50% contrast before the target stimulus emerges, at which point participants 

make a button press to indicate the direction of the high-contrast grating. Participants are given feedback at 

the end of every trial. Reprinted from Dully, J. (2020). The Impact of Natural Aging on Perceptual Decision 

Making [Thesis, Trinity College Dublin. School of Psychology. Discipline of Psychology]. 

http://www.tara.tcd.ie/handle/2262/94134 

 

2.2.3: EEQ Acquisition and Pre-processing 

The task was performed while 128-channel EEG was recorded using an 

ActiveTwo system (BioSemi), with a 512Hz sampling rate. Data were analysed 

using a combination of customised MATLAB scripts implemented using some 

features of the EEGlab toolbox (Delorme & Makeig, 2004). A Low-Pass filter at 

35Hz was applied to the data offline. To enable the reliable extraction of slow-

emerging waveforms such as the CPP, no High-Pass filter was used. Data were 

detrended to remove linear slow drift and channels with excessive noise (>= 3 

SD away from normalised joint probability) were interpolated. A secondary visual 

inspection was performed to identify and interpolate any additional noisy 

channels. These channels were marked and interpolated. After interpolation, an 

average reference was applied across all channels and time points. The data 

were epoched in windows from -500:1800ms centred on target onset. Baseline 

correction was applied, subtracting the mean activity across each electrode in 

the time period of -200:-100ms from the target onset. This baseline was chosen 

http://www.tara.tcd.ie/handle/2262/94134
http://www.tara.tcd.ie/handle/2262/94134


61 

to allow for the pre-stimulus build-up of decision signals. Trials with channel 

activity exceeding 100uv between target onset and 100ms after response were 

labelled as artefacts and removed from EEG analyses and plotting. Response-

locked epochs were extracted in a time range of -600 to 200ms centred around 

response. As a result of having two overlaid gratings flickering at either 25 or 20 

Hz on every trial, all ERP plots (CPP, CNV) below have a 5Hz Boxcar filter 

applied for plotting. This gives a clearer insight into the development of the signal 

over time, removing fast-moving, task-irrelevant oscillations. All statistical 

analyses of the CPP and CNV have been performed with these filters applied. 

 

2.2.4: EEG Signal Electrode Selection 

Extant literature indicates an anterior shift of the P3b/CPP topography in older 

adults, potentially due to changing brain function, with the compensatory 

recruitment of more frontal regions for cognition in older age (Li, Gratton, Fabiani 

& Knight, 2013). In order to ensure appropriate electrode sites were chosen to 

extract the CPP signal, unique electrodes were chosen for individual subjects. 

Electrodes were selected as the site with the maximum amplitude -50ms to 50ms 

from the response (see Figure 2.2.A) along a central “line” of electrodes covering 

traditional central-parietal CPP sites, along with more frontal electrodes. This 

central line was chosen to minimise the influence of lateralised motor activity, 

with the most frontal electrode sites excluded from the selection procedure as 

they may be uniquely affected or contaminated by extraocular muscle activity.  
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Fig. 2.2. A) Scalp topography of 100ms window centred on response showing more dispersed and frontal 

activity in older adults. B) Frequency map of chosen electrodes for CPP analysis showing more frontal 

presentation in older adults.  

 

A similar individual electrode selection procedure was used for selecting CNV 

electrodes as was used for the CPP. CNV electrodes were selected as the two 

electrodes with the most negative going slope from -400 to -100 from the 

response (see Figure 2.3.A), within a cluster of frontal electrodes in line with 

previous literature (Devine et al., 2019). Selected electrode frequencies are 

shown in Figure 2.3.B. 

 

B 

A 
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Fig. 2.3.A) Scalp topography of slopes in the -400:-100ms window centred on response. B) Frequency map 

of chosen electrodes for CNV analysis. 

 

Frequency tagging of target vs. non-target stimuli at either 25 or 20Hz, allowed 

for the extraction of a steady-state visual evoked potential, which tracks the 

encoding of sensory evidence in the occipital cortex across time. A fast-Fourier 

transform of window length 400ms, iterating in 20ms-step windows was used to 

extract the power for each frequency. To further discretise the 20 and 25hz 

frequency bands, the power of each frequency was normalised by the mean 

power of its immediately neighbouring frequency bands. The two frequency 

bands were then collapsed into target and non-target trials, averaging the power 

across the two signals on trials where they were either the target or non-target. 

Two electrodes were selected for each group, choosing the site with maximal 

target vs non-target power difference over the occipital cortex based on the 

stimulus-locked topography (300:500ms post-evidence onset) shown in Figure 

2.4. 

 

B 

A 
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Fig. 2.4. A) Scalp topography of differential SSVEP in 300:500ms from evidence onset showing similar 

occipital presentation for both groups. 

 

Activity in the mu/beta frequency range of 8-30Hz was used to index emerging 

motor response selection (see section 1.2.3). A fast-Fourier transform of window 

size 400ms and step size of 25ms was used. Mu/beta electrodes were selected 

for each group based on the grand average topographies shown in Figure 2.5.  

 

 

Fig. 2.5. Scalp topography of difference in mu/beta amplitude for left minus right trials in the -50:50ms 

centred on response. 
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2.2.5: Analysis Procedure 

Statistical analyses were performed using JASP, and plotting was completed 

using MATLAB custom codes and JASP. Error bars shown represent the 

standard error of the mean. Where no interaction terms are reported the 

interaction was non-significant. Where Mauchly’s test of sphericity indicates the 

assumption of sphericity is violated, Greenhouse-Geisser corrected degrees of 

freedom and statistics are reported. 

 

2.2.6: Modelling Procedure 

Individual data were pooled within each age group for initial model refinement 

procedures. The goodness of fit was quantified as the chi-square error between 

real and simulated group reaction-time quintiles (0.1, 0.3, 0.5, 0.7, 0.9). 

Parameters were optimised using a Bayesian Adaptive Direct Search algorithm 

(BADS; Acerbi & Ma, 2017), which combines local Bayesian search optimisation 

with a polling stage which uses a slower mesh grid search. Akaike’s Information 

Criterion was calculated and compared to enable model selection models, 

penalising more complex models in favour of more parsimonious ones. To find 

initial parameter starting vectors, parameter values were drawn randomly within 

pre-established probable ranges, and 1000 trials were simulated. Behavioural 

features of simulated data were compared to the true data and parameter sets 

were accepted for use as starting points if real and simulated mean RTs differed 

by no more than 20% and real and simulated standard deviations by 0.25. Once 

30 starting parameter vectors were found, individual trials were simulated by a 

factor of 100 for each quantile, giving 7,200 trials simulated per iteration, and 

these probable starting parameters were optimised using BADS. 
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2.3 Results 

2.3.1: Behaviour 

Analysis of behavioural data indicated a significant main effect of Speed 

emphasis on accuracy (F(1,47) = 28.424, p < 0.001), but no significant main effect 

of age (F(1,47)  = 1.547, p = 0.220) or interaction term (F(1,47)   = 1.250, p = 0.269), 

indicating a comparable lowering of mean accuracy under increased speed 

pressure in both groups (MeanSpeed = 81.56%, SD = 9.8, MeanAcc. = 85.71%, SD 

= 9.28, Fig 2.6.a).  

 

A significant shortening of reaction time was observed under increased speed 

emphasis (F(1,47) = 46.574, p < 0.001). There was no significant main effect of 

Age (F(1,47) = 0.155, p = 0.696) on reaction time but a significant Condition-Age 

interaction was observed (F(1,47) = 7.88, p = 0.007). Post-hoc analyses indicated 

an effect of Condition on RT on both age groups (tOlder = 6.882, p = 0.001, tYounger  

= 2.811, p = 0.029) but the RT adjustment was more than twice as large in the 

younger group (Mean DifferenceYounger = -0.13, SD = 0.11, Mean DifferenceOlder 

= -0.05, SD = 0.07, Fig 2.6.b). 
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Fig. 2.6 Plots of behaviour showing raincloud plots, boxplots and probability distributions. The left column 

shows younger adults, the right column shows older adults. a) Accuracy % b) Reaction time in seconds c) 

Average points scored per block. Older adults did not decrease their RT as much under speed emphasis as 

younger adults. There were no group differences in accuracy. There was also no main effect of age on the 

number of points scored. 

 

Analysis of the effects of Speed emphasis on points scored indicated a significant 

effect of Condition (F(1,47) = 48.544, p <0.001), but no significant effect of Age 

(F(1,47) = 0.583, p = 0.449) or interaction (F(1,47) = 0.003, p = 0.956), indicating a 

lower overall score in the speed Condition that was consistent across the older 

and younger groups (MeanAcc.
  = 42.846, SD = 11.135, MeanSpeed = 32.476, SD 

= 15.691, Fig, 2.6.c). 
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2.3.2: Standard Model Fits 

Preliminary analyses used a full DDM, with between trial variability parameters 

for non-decision time. Initially, a “no-change” model with no parameter varying 

by condition was run. Subsequent variants of this model were run, allowing non-

decision time or bound to vary by Speed/Accuracy condition using the best fitting 

parameters from the no-change model as starting parameters. To allow the drift 

rate to vary by condition, a freely estimated drift rate was calculated for the 

Accuracy condition, with a multiplicative ‘drift-boost’ parameter applied to this drift 

rate to calculate the drift rate of the Speed Condition. Initial fits of the full DDM 

were poor for all model variants (AIC Range: 35.9 - 66.47, see Table 2.1) The 

model in which non-decision time was free to vary provided the best fit for both 

groups (Young: G2 = 30.54, AIC = 46.54, Older: G2 = 19.9, AIC = 35.9). The 

different models provided very similar fits in the older group with the non-decision 

time-varying model only slightly outperforming the others. This model suggests 

that older adults show shorter non-decision times in the accuracy condition, 

higher bounds overall and a smaller adaptation to non-decision time under speed 

emphasis (see Table 2.2). From an examination of the real-vs-simulated reaction 

time distributions and conditional accuracy functions, it is evident that the full-

diffusion model fails to capture fast errors in both groups, despite the inclusion of 

starting point variability (see Figure 2.7). The far larger proportion of slow errors 

under speed pressure in the younger adult group has not been captured even 

with the inclusion of drift rate variability. 
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Table 2.1: Table of standard DDM fits, with each model variant allowing each of the parameters in the 

leftmost column to vary by Speed-Accuracy condition. The green highlight indicates the winning model 

with the lowest AIC. 

Standard DDMs  Younger Older 

Parameter Varying N parameters G2  AIC  G2  AIC  

No Change 7 50.41 64.41 23.05 37.05 

Boundary  8 37.57 53.57 20.42 36.42 

Non-Decision Time 8 30.54 46.54 19.90 35.90 

Drift Rate 8 50.47 66.47 23.05 39.05 

 

 

Fig 2.7: Model with non-decision time varying by condition. Top) Real vs model simulated RT distributions, 

with correct responses going up and errors going down. Bars show real accuracy per condition and semi-

transparent bars show model-simulated accuracy. Bottom) Real vs simulated conditional accuracy 

functions. Responses are binned into quintiles by RT and the proportion of correct responses for each 

quintile bin. Full diffusion model incapable of capturing the u-shaped distribution of conditional-accuracy 

function over time. 

 

 

 

 



70 

Table 2.2: Model estimated parameters for the best-performing full diffusion model variant. For condition-

specific parameters, the requisite condition is indicated in subscript. 

 Bound DriftLow DriftHigh TerAcc TerSpd Drift Var Ter Var. S.P. Var G2 AIC 

Younger 
0.056 0.148 0.242 0.61 0.476 0.127 0.308 0.028 30.54 76.71 

Older 
0.06 0.153 0.223 0.539 0.488 0.006 0.297 0.043 19.9 65.87 

 

Collectively, initial applications of the full DDM suggest a winning model which is 

failing to capture a significant proportion of responses. It also produces a model 

which suggests changes to non-decision time under speed emphasis, rather than 

a well-documented boundary adjustment. However, the second leading model 

was one in which the boundary changed by condition. This model only scored 

0.52 AIC points more than the winning non-decision time model in the older group 

and would be in line with the majority of extant literature. The results of this model 

are shown in Table 2.3. Here older adults showed larger bounds overall, with less 

adjustment and higher drift rates. This aligns with the findings of previous studies 

(Forstmann et al., 2011; Starns & Ratcliff, 2010) 

 

 

Fig 2.8: Model with boundary varying by condition and no parameters varying by condition. Top) Real vs 

model simulated RT distributions, with correct responses going up and errors going down. Solid bars show 

real accuracy per condition, and semi-transparent bars show model-simulated accuracy. Bottom) Real vs 

simulated conditional accuracy functions. Responses are binned into quintiles by RT and the proportion of 

correct responses calculated for each quintile bin. 
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Table 2.3: Model estimated parameters for the second-best performing DDM variant with boundary varying 

by condition. For condition-specific parameters, the requisite condition is indicated in subscript. 

 BoundAcc BoundSpd DriftLow DriftHigh Ter Drift Var Ter Var. S.P. Var G2 AIC 

Younger 
0.061 0.047 0.116 0.19 0.513 0.06 0.322 0.005 37.57 53.57 

Older 
0.063 0.058 0.18 0.269 0.547 0.047 0.326 0.051 20.42 36.42 

 

2.3.3: Neurally-Informed Model Construction 

In order to improve these modelling efforts and to create a model which reliably 

captured behaviour in a biologically plausible way, key neural signatures of the 

decision process were analysed.  

 

2.3.3.1: Sensory Encoding 

Figure 2.9 plots this difference in amplitude between target and non-target 

frequencies across time, averaged across trials, for each experimental condition.  

 

 

 

Fig. 2.9: Target minus non-target SSVEP activity in stimulus and response aligned waveforms showing 

largely similar patterns of emergence across groups and conditions 

 

SSVEP traces appeared larger for younger adults than older adults. A mixed-

methods factorial analysis of variance (ANOVA) indicated no significant 
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differences in pre-response amplitude (Age: F(1,47) = 0.006, p=0.937; Speed-

Accuracy: F(1,47)  = 2.341, p = 0.133; Interaction F(1,47)  = 0.5124, p = 0.478). 

Analysis of slope in this window also indicated no significant main effect of 

Condition (F(1,47)  = 0.038, p = 0.847), with no significant effect of Age (F(1,47)  = 

1.998, p = 0.164)  or interaction (F(1,47)  = 0.22, p = 0.641). There were no 

significant main effects of Condition or Age-Condition interaction on stimulus-

locked amplitude or slope measure 300:600ms after evidence onset (all p > 

0.257) This suggests consistency across groups and conditions in the integration 

of sensory information at this earliest perceptual processing stage. 

 

2.3.3.2: Evidence Accumulation  

A mixed-methods ANOVA was used to examine the effects of Age and speed-

accuracy Condition on CPP features. Analysis of CPP amplitude in the 100ms 

window centred on response indicated that older adults had significantly less 

positive amplitudes but there was no effect of speed-accuracy Condition, or 

significant interaction (Age: F(1,47) = 12.604, p < 0.001; Condition: F(1,47) = 0.481  p 

= 0.491; Age-Condition Interaction F(1,47) = 0.226 p = 0.636). Analysis of the pre-

response slope in the window of -400 to -100ms from response indicated a 

significant effect of Age with shallower slopes in the older group but there was 

no effect of speed-accuracy Condition, or significant interaction (Age: F(1,47) = 

13.7, p < 0.001; Speed-Accuracy: F(1,47) = 0.004, p = 0.95; Age-Condition 

Interaction F(1,47) = 0.443 p=0.509). 
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Fig. 2.10: Stimulus and response aligned CPP traces over time, with vertical coloured lines indicating mean 

reaction time for a given condition. Older adults show significantly lower response-locked amplitudes 

 

Previous examinations of the CPP on similar tasks have indicated a substantial 

build-up of the CPP, several hundred milliseconds before any contrast change 

occurs, suggesting pre-evidence decision formation (Devine et al., 2019, see 

section 1.2.2). Here, the contrast grating is on screen with no difference in 

contrast for 400ms in advance of the contrast change, yet the CPP appears to 

begin its accumulation by evidence onset in advance of evidence or any 

temporally feasible input from sensory areas. This is indicative of some pre-

contrast formation of the decision before any evidence becomes available. This 

feature is not accounted for in standard DDMs. To assess if these pre-evidence 

slopes were significantly different from 0, indicative of pre-evidence decision 

formation, a series of independent samples t-tests against 0 were used to 

investigate the early build-up of the CPP prior to coherent motion onset (-200ms 

to 0ms). A Bonferroni corrected p-value for 4 comparisons of 0.0125 was used. 

The slope of this signal in this time window was shown to be significantly greater 

than 0 for older adults under both accuracy (t(23) = 2.79, p = 0.01) and speed 

emphasis (t(23) = 3.589, p = 0.001). There were no significant differences for 

younger adults (all p > 0.23). Analysis of pre-evidence build-up of the CPP was 

performed to assess if groups differed in the rate of this accumulation process 

and whether this differed under speed emphasis. This indicated no significant 

main effect of Age, Condition or interaction on pre-evidence amplitude (Age: p = 
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0.365; Condition: p = 0.481; Interaction p = 0.92) or on the pre-evidence slope 

(Age: p = 0.5; Condition: p = 0.139; Interaction: p = 0.856).  

 

Collectively this suggests pre-evidence accumulation of noise in the older adult 

group. The rate of this noise accumulation did not differ significantly across 

conditions. Considered in conjunction with the high proportion of fast errors seen 

in the behavioural data, this encouraged the inclusion of a parameter which would 

allow for some pre-evidence accumulation of noise. To incorporate this 

observation into our neurally-informed model, a drift-onset parameter replaced 

traditional non-decision time. The accumulation process was allowed to 

commence at evidence onset, accumulating only Gaussian noise until the drift-

onset time was reached.  
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2.3.3.3: Starting Point Adjustments and Urgency 

Pre-evidence mu/beta has been marked as a useful proxy for pre-evidence 

starting point adjustments (Kelly et al., 2021). Initial visual inspection of mu/beta 

signals indicated substantial group differences in amplitude (see Figure 2.11). 

 

 

Fig. 2.11: Non-normalised contralateral and ipsilateral mu/beta-traces over time. A substantial difference in 

average amplitude across the whole trial between older and younger adults is observed 

 

However, these differences were equally evident at the time of the contrast 

change and at the time of response execution suggesting that they may not have 

any bearing on the decision-making process. To test this, trials were split by 

median RT and analysed using a 2 x 2 factorial ANOVA (Condition X RT Bin) for 

each group, allowing us to test whether mu/beta showed a consistent 

desynchronisation to a threshold. There was no significant effect of Condition 

(F(1,49) = 1.125, p = 0.294) or Reaction Time (F(1,49) = 0.742, p = 0.394) on 

contralateral mu/beta at the response in either group consistent with motor 

signals reaching an action-triggering threshold in both groups (see Figure 2.12).  
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Fig. 2.12: Contralateral mu/beta by coherence level (left) and RT bin (right). Contralateral mu/beta 

accumulates to a threshold irrespective of RT or trial difficulty. 

 

This suggested that the group differences in mu/beta amplitude were not 

consequential for the decision process and could reflect general age effects on 

the background EEG in this frequency range, in line with recent work from Stacey 

and colleagues (2021) who showed a considerable age-related increase in beta-

spectral power in older age. In order to eliminate irrelevant differences in spectral 

amplitude and to facilitate group comparisons, we normalised the mu/beta 

signals for each subject relative to its contralateral amplitude prior to response 

execution (-200ms) within each task condition (see Figure 2.13). 
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Fig. 2.13:  Stimulus and response-locked normalised contralateral and ipsilateral mu/beta. Vertical dashed 

lines indicate the mean RT for that group and condition. A vertical dashed purple line indicates the time point 

used for pre-evidence mu/beta calculation. 

 

In order to test for any dynamic pre-evidence adjustments to the decision bound 

a series of independent samples t-tests were used to investigate whether 

mu/beta slope averaged across contralateral and ipsilateral cortexes showed any 

significant build-up prior to coherent motion onset (-300 to -100ms). As the test 

was performed for each age group and condition, a Bonferroni corrected p-value 

for 4 comparisons of 0.0125 was used. Significant negative build-up was shown 

for younger adults in both the Accuracy (t(24) = -1.415., p1 =0.007), and Speed 

conditions (t(24) = -2.58., p1 =0.006). Similar results were seen in the older cohort, 

with significantly negative pre-evidence slopes in the Accuracy (t(24) = -1.332., p1 

=0.007) and  Speed conditions (t(24) = -2.54., p1 =0.006). A mixed-factorial 

ANOVA indicated a significant main effect of Condition (F(1,47) = 4.416, p = 0.04), 

suggesting significantly more negative pre-evidence mu/beta slopes under speed 

emphasis. There was no significant effect of Age (p = 0.99) or Age-Condition 

interaction (p = 0.91). These analyses suggest a motor signal that is building 

towards its threshold before any evidence appears on the screen, and which 

builds at a steeper rate under speed emphasis, indicating potential urgency 

dynamics. 

 

Pre-evidence mu/beta is shown in Figure 2.16 and is seen to show adjustments 

to its amplitude in advance of the contrast difference onset. To assess for age or 
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condition differences in this pre-evidence motor preparation, a mixed factorial 

analysis of variance of pre-evidence mu/beta amplitude in the -300:-100ms 

before stimulus onset was performed on mu/beta signals averaged across 

contralateral and ipsilateral hemispheres to the ultimately chosen direction. No 

significant effect of Condition (p = 0.159), Age (p = 0.695) or Condition by Age 

interaction (p = 0.114) was observed. 

 

The CNV was then analysed as a further marker of urgency. Analysis of 

amplitude in response aligned traces indicated no significant main effects of 

Condition, Age or interaction term (Time Window= -50:50ms, Age: F(1,47) = 0.907, 

p = 0.346, Condition: F(1,47)  = 1.829, p = 0.183, Interaction: F(1,47)  = 2.363, p = 

0.131). Analysis of pre-response slope in the window of -400:-100ms indicated 

no significant main effect of Age (F(1,47) = 0.114, p = 0.737) Condition (F(1,47)  = 

2.696, p = 0.591) or Age-Condition interaction (F(1,47)  = .2.696, p = 0.107, see 

Figure 2.14).  

 

 

Fig. 2.14: Stimulus and response aligned CNV traces over time with vertical coloured lines indicating mean 

response time per condition 

 

CNV features were analysed in the pre-target window of -100:0ms. There was 

no significant main effect of Age on the pre-target CNV slope (F(1,47) = 2.166, p = 

0.148). The main effect of Condition was significant (F(1,47)  = 5.489, p = 0.0234), 

with a non-significant interaction term (F(1,47)  = 1.8952, p = 0.255), indicating a 

significant increase in pre-stimulus CNV slope under Speed emphasis (Mean = -
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0.0184, SD = 0.048,) relative to Accuracy  (Mean = -0.008, SD = 0.044, see 

Figure 2.14). 

 

In sum, mu/beta signals show a clear build-up of motor preparation towards a 

threshold in advance of evidence-onset which is stronger under speed emphasis, 

consistent with an evidence-independent, time-dependent bound collapse. 

Furthermore, the CNV shows a negative going slope which is more pronounced 

under speed emphasis. Both of these features suggest the presence of urgency 

in the decision process. This could explain key features of the behavioural data, 

which contained a high proportion of slow errors. These slow errors can be 

accounted for by an increasing urgency to respond in advance of the end of a 

trial. Collectively this encouraged the inclusion of a dynamic urgency component 

in the model.  
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2.3.4: Neurally-Informed Modelling  

The EEG signatures outlined above were used initially to inform the model 

construction. Analysing these features gave insight into potential model 

parameters which should be incorporated. This provided a foundational model 

framework which would then be constrained by reliable neural estimates of the 

parameter values. 

 

Examination of the shape of the conditional accuracy function suggested the 

presence of potential urgency dynamics, with low accuracy in later quantiles. 

Alternatively, late errors may be attributable to variable drift rates, whereby trials 

with lower drift rates would tend to yield a higher proportion of slow errors. 

However, the inclusion of this parameter in the full-diffusion model above did not 

successfully capture this data feature (see Figure 2.7). In light of these 

behavioural features, and with the evidence of urgency from both the CNV and 

pre-evidence mu/beta signals, urgency was incorporated as a freely estimated 

model parameter. It took the form of a linearly collapsing bound. Furthermore, to 

account for the early accumulation of the CPP and the high number of fast errors 

which were not captured by starting point variability in the full DDM, noise was 

allowed to accumulate from time point 0, until a drift-onset time which was freely 

estimated by the model from which point the drift rate was also incorporated. To 

increase model parsimony, efforts were made to reduce the parameter space by 

removing the variability parameters. These model variants with a reduced 

parameter space were found to be capable of capturing behaviour while 

improving model comparison scores relative to the full DDMs.  

 

These adaptations improved model fits substantially across model variants with 

each of the key parameters varying by condition for both groups (see Table 2.4). 

For example, the simplest model with no parameter varying by condition and no 

variability parameters reduced from an AIC of 64.41 in the Standard DDM for the 

younger group to 41.58 in the neurally-informed model, even with the removal of 

between-trial variability parameters. Notably, with the introduction of a collapsing 

bound, the most efficient model in both raw error score and AIC for both groups 

became one in which the boundary varied by condition (G2 Younger = 14.707, 
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AIC = 26.71, G2 Old = 3.823, AIC = 15.82). Attempts to fit a more complex 

Weibull-function boundary collapse function did not lead to substantial increases 

in raw error scores and, in increasing the number of required parameters, 

significantly reduced model comparison indices. A model which allowed urgency 

to vary was a close second for both the younger and older groups, lending further 

support to the importance of including urgency in the model. 

 

Table 2.4: Table of neurally-informed model fits, with each model variant allowing each of the parameters 

in the leftmost column to vary by Speed-Accuracy condition. The green highlight indicates the winning 

model with the lowest AIC in both groups. These models added an urgency parameter and allowed for 

noisy-accumulation. 

Neurally-Informed Models Younger Older 

Parameter Varying N Params. G2  AIC  G2  AIC  

None 5 31.58 41.58 6.65 16.65 

Boundary  6 14.71 26.71 3.8 15.82 

Drift Onset 6 29.86 41.86 6.23 18.23 

Drift-Boost 6 31.24 43.24 6.48 18.48 

Urgency 6 20.64 32.64 4.28 16.28 
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Fig. 2.15: Real and simulated behaviour for the best fitting neurally-informed model, where the boundary 

was allowed to vary by session. The top row shows real vs simulated reaction time distributions and 

accuracies. The bottom row shows real and simulated accuracy quantiles for five RT quintile bins.  

 

Table 2.5 Model estimated parameters for the neurally-informed model with boundary varying by condition. 

For condition-specific parameters, the requisite condition is indicated in subscript. Older adults show lower 

boundaries overall and less adjustment across conditions, with higher drift-rates. Drift On = Drift-onset time. 

Urg = Urgency component. 

 BoundAcc. BoundSpd DriftLow DriftHigh Urg Drift-On G2 AIC 

Younger 0.186 0.164 0.097 0.156 0.111 0.275 13.11 47.74 

Older 0.172 0.163 0.136 0.197 0.1 0.348 3.78 38.26 
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2.3.5: Neural Constraints 

As outlined, neurally-informed modelling allows for the exploration of a wider 

range of possible group effects without sacrificing model parsimony (Kelly et al., 

2021). To constrain the current data by the neural features, following the 

procedure employed by Kelly and colleagues (2021) pre-evidence mu/beta was 

used as an index for starting-point adjustments to bound, which are 

mathematically equivalent to adaptations of the decision bound. While the 

differences in pre-evidence mu/beta failed to reach statistical significance 

(section 2.3.3.3), the observed trends followed predictions for increased motor 

preparation under speed pressure for both groups, with less adaptation of motor 

preparation in older adults (see Figure 2.16). The group and condition with the 

largest excursion of normalised mu/beta (Figure 2.13) from the pre-evidence 

window (-200ms, dashed purple line) to the mu/beta threshold at response was 

used as the baseline value and assumed to show no starting point adjustments. 

In this dataset it was the Younger-Accuracy condition, meaning this condition 

was assumed to have 0 starting point adjustments. The remaining conditions for 

each group were scaled in reference to this baseline, giving the values in Table 

2.6. To encourage parameter values more numerically similar to the non-

constrained model, bounds were fixed at 0.1 rather than 1, and starting points 

were scaled to reflect this (e.g., Younger-Speed Condition: 0.161/10 = 0.0161). 

Starting point adjustments were then subtracted from a bound of 1 to give a 

bound setting for each condition for each age group. 
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Fig. 2.16. Pre-evidence mu/beta levels averaged across electrode sites contralateral and ipsilateral to the 

chosen response. The dashed-purple line indicates the time at which pre-evidence mu/beta levels were 

calculated. 

 

Table 2.6 Mu/beta derived starting points for each group and condition. These values are subtracted from a 

set bound of 0.1 for each condition, meaning an equal probability of accumulation to a correct or error 

response.  

 Accuracy Starting Point Speed Starting Point % Adjustment:  

Accuracy to Speed 

Younger 0 0.0161 -16% 

Older 0.0151 0.0190 -5% 

 

These constraints acted as a scaling parameter allowing for within-trial noise to 

be estimated for each group without increasing the number of free parameters. 

Again, multiple variants allowing each of the key parameters to vary by condition 

were simulated (See Table 2.3). Through this, it was shown that a model allowing 

urgency to vary by condition benefitted the younger group most significantly (G2 

= 7.21, AIC = 19.21), while the older adults showed good fits using only these 

neural constrained static bound adjustments (G2 = 5.17, AIC = 15.17, Table 2.7). 

These fits were improvements on the neurally-informed models (Table 2.4), 
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highlighting the benefit of neural constraints for allowing more complex 

explanatory models.  

 

Table 2.7. Error scores for each neurally-constrained model variant. All models have starting points set by 

the beta-derived values in Table 2.6. The additional parameters indicated were free to vary by speed-

accuracy condition. The green highlight indicates the winning model for each group. A model with boundary 

constrained and no other parameter varying provided the best fits for older adults, while one with urgency 

varying fit best for the younger cohort. 

Neurally-Constrained Models  Younger Older 

Free Parameters N parameters G2  AIC  G2  AIC  

None 5 12.26 22.26 5.17 15.17 

Urgency  6 7.21 19.21 3.46 15.46 

Drift-onset  6 10.16 22.16 3.67 15.67 

Drift Boost 6 9.75 21.75 3.52 15.52 

 

Although group-level fitting does not allow for statistical comparison of the model-

estimated parameters, Table 2.8 outlines the model-estimated parameters for the 

neurally-constrained model with urgency varying by condition. Here stronger drift 

rates are observed in the older adult group, with roughly equivalent levels of 

within-trial noise across groups. Levels of boundary collapse across conditions 

seem largely consistent in the older adult group, but younger adults show a more 

pronounced boundary collapse component under speed pressure. The winning 

model for the older group was one in which there was no urgency adaptation 

across conditions (Table 2.7), providing further evidence that older adults may 

not adapt their urgency dynamics significantly under speed emphasis. A later 

drift-onset time is also observed in the older adult group. 
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Fig. 2.17. Real and simulated behaviour for the best fitting neurally-constrained model, where the boundary 

was fixed, and urgency allowed to vary by session. The top row shows real vs simulated reaction time 

distributions and accuracies. The bottom row shows real and simulated accuracy quantiles for five RT 

quintile bins.  

 

Table 2.8. The model estimated parameters for the neurally-constrained model with urgency varying by 

condition. For condition-specific parameters, the requisite condition is indicated in subscript Drift-On = Drift-

Onset time, Urg. = Urgency component. 

 BoundAcc. BoundSpd DriftLow DriftHigh UrgAcc UrgSpd Drift. On Noise G2 AIC 

Younger 0.1 0.084 0.051 0.081 0.061 0.055 0.276 0.052 13.11 47.74 

Older 0.085 0.081 0.066 0.096 0.049 0.050 0.342 0.049 3.78 38.26 
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2.3.6: Model Validation Through Neural Signals 

In order to establish whether our winning neurally-constrained model was in 

concordance with the observed neural data, key features of the model were 

simulated and compared to our neural indices following the procedure employed 

by Kelly and colleagues (2021). These comparisons were the evidence 

accumulation variable vs the CPP, the model simulated motor response variables 

vs contra/ipsilateral mu/beta, and the linearly collapsing urgency component vs 

the CNV.  

2.3.6.1 Evidence Accumulation 

Model estimated decision variables from the winning neurally-constrained model 

(Mu/Beta Constrained: Urgency Varying) were simulated and plotted to track 

model concordance with our neural marker of evidence accumulation, the CPP.  

 

 
Fig. 2.18: Real vs simulated decision variables. The top row shows stimulus and response-locked simulated 

cumulative evidence, with diagonal lines showing collapsing bounds for the neurally-constrained model with 

urgency varying. The bright-green vertical line indicates the time at which the drift rate began. The bottom 

row shows real CPPs for each group and condition. Vertical lines indicate the mean RT for each group and 

condition. Real CPP shows a lower amplitude for older adults which is not apparent in the simulated decision 

variable. 

 

Figure 2.18 shows the model simulated stimulus and response-locked 

cumulative decision variable for the model. Descending coloured dashed lines 

illustrate the models' collapsing bounds, with the dashed green line indicating 
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drift-onset time. The bright-green solid line represents drift-onset time. Simulated 

decision variables show a consistent amplitude across conditions in both groups 

at response. However, the real CPP is shown to be significantly lower in older 

adults. This is not in line with model predictions 

 

2.3.6.2: Motor Preparation 

Motor signals were simulated as the negatively signed, cumulative evidence for 

either the chosen or unchosen response with the negative going urgency 

component added. These simulations show a strong concordance with the neural 

data. Simulated motor signals are constrained to match mu/beta-starting levels 

meaning they inherently align early at the start of the trial, however, the simulated 

signals exhibit the same pattern of desynchronisation across time and are highly 

similar by response execution. The large contra-vs-ipsilateral difference early in 

the trial in the younger group in the accuracy condition is not captured by the 

simulated motor preparation signal. 

 

 

Fig. 2.19: Real vs simulated motor signals. The top row shows stimulus and response-locked simulated 

motor signals, with diagonal lines showing collapsing bounds for the neurally-constrained model with 

urgency varying. The bright-green vertical line indicates the time at which the drift rate began. The bottom 

row shows real mu/beta amplitudes for each group and condition. Vertical lines indicate the mean RT for 

each group and condition. Real and simulated signals show a strong concordance. 
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2.3.6.3: Urgency 

Urgency signals were simulated as the time-dependent but evidence-

independent urgency component for each condition, with pre-evidence 

adjustments to the decision-bound subtracted at the beginning of the trial. 

 

 

Fig. 2.20: Real vs simulated urgency signals for the neurally-constrained mode with urgency varying. The 

top row shows stimulus and response-locked simulated urgency signals for each group and condition. The 

bright-green vertical line indicates the time at which the drift rate began. The bottom row shows real CNV 

amplitudes for each group and condition. Vertical lines indicate the mean RT for each group and condition. 

CNV amplitude does not capture speed-accuracy differences at response in the younger group, but strong 

concordance before drift-onset time is seen. 

 

Similar patterns across simulated urgency components and the CNV are 

observed. Simulated urgency components capture differences across conditions 

and groups in the early stages of the trial (see Figure 2.20). Older adults show a 

less negative CNV by response than younger adults in the response-locked 

signal. Simulated urgency components do not show this. Similarly, after an initial 

differentiation between speed and accuracy, with a less negative CNV in the 

accuracy condition, younger adults show a similarly negative CNV amplitude 

across both conditions at response. In the simulated urgency component, a more 

negative urgency component is observed in the speed condition and this 

difference is maintained through to response.  
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2.3.6: Model Fits to Individual Subject Data 

Group level fits provided strong evidence for differences in the strategies used 

by older and younger adults to adapt to changing speed versus accuracy 

demands, with older adults showing lower boundaries and urgency, and less 

adaptation of these parameters across regimes. To enable statistical comparison 

of parameter values across groups, non-neurally-constrained versions of the 

winning Boundary and Urgency varying by condition, and only Boundary varying 

by condition models were fit at the individual level. Due to the high degree of 

inter-subject variability in mu/beta-presentation, neural constraints were not 

appropriate, and models were fit following the same procedure outlined in section 

2.3.4 above. Model fits showed an average AIC of 64 (SD = 15.38) for the model 

with Boundary alone varying, and a mean AIC of 63 (SD = 14.77) for the model 

with Boundary and Urgency varying. There was no significant main effect of Age 

group (F(1,47) = 3 p = 0.09) or Model Type (F(1,47) = 1.73, p = 0.195) on AIC scores 

across the two models. A significant Age-Model interaction (F(1,47) = 7.85, p = 

0.007) was observed, with post-hoc analyses indicating that younger adults 

showed a significant lowering of AIC with the introduction of a varying urgency 

parameter in younger adults (t = -2.94,  p = 0.03), while the difference did not 

reach statistical significance in the older adult group (t = -1.04, p = 0.491). The 

difference in magnitude of these AIC scores is illustrated in Figure 2.21. Notably, 

it is evident that a subset of approximately nine individuals in the younger adult 

group benefited extremely from the inclusion of an urgency component that 

varies by condition. This suggests that urgency adaptation may be an elective 

strategy employed by certain younger individuals. 
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Fig. 2.21. Violin plots of AIC differences between the simple neurally-constrained model and one allowing 

urgency to vary by condition, showing substantial improvements in allowing urgency to vary by condition for 

a subset of younger adults. 

 

2.3.6.2: Individual Subject Modelling: Parameter Differences 

Group differences in parameter estimates on the Bound and Urgency Varying 

model were then compared (see Figure 2.22). A repeated measures ANOVA 

indicated no significant main effect of Age on bound (F(1,47) = 0.537, p = 0.467), 

but a significant main effect of Condition (F(1,47) = 50.05,  p < 0.001), suggesting 

lower boundaries under speed-emphasis (see Figure 2.22). There was also a 

significant Age-Condition interaction term (F(1,47) = 14.81, p < 0.001). Post-hoc 

analyses showed a significant reduction of bound under speed emphasis only in 

the younger group (t = -7.8, p = < 0.001, Mean Reduction = 0.045, SD = 0.036) 

but not in the older group (t = -2.258, p = 0.163, Mean Reduction = 0.013, SD = 

0.028, see Figure 2.21). 
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Figure 2.22 Boundary adaptation across speed-accuracy conditions by age group, showing significant 

adaptation of bound in the younger group but not in older adults. 

 

A similar analysis was performed to investigate group differences in urgency 

adaptation. Here no significant main effect of Age was observed (F(1,47) = 1.625, 

p = 0.209), with a significant effect of Condition (F(1,47) = 14.735, p < 0.001) and 

Age-Condition interaction (F(1,47) = 10.265, p = 0.002). Post-hoc analyses 

indicated that the younger adults showed a significant reduction in urgency under 

speed pressure (t = -5.03, p < 0.001), while this difference was non-significant 

for older adults (t = -0.444, p = 0.1, see Figure 2.23). 

 

*** 
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Fig. 2.23: Urgency adaptation across speed-accuracy conditions by age group, showing significant 

adaptation of urgency in the younger group, but not in older adults. 

  

Analysis of drift-rate differences in low and high contrast trials indicated no 

significant main effect of Age (F(1,47) = 1.131, p = 0.29) or Age-Contrast interaction 

(F(1,47) = 0.066, p = 0.798), but an expected significant effect of Contrast level 

(F(1,47)= 102.272, p < 0.001), with higher drift-rates for high-contrast trials. This 

suggests that the groups do not differ significantly in drift rate across high and 

low-contrast trials.  

 

An independent samples t-test was used to compare drift-onset times across 

groups. A significant difference in drift-onset time was shown (t(1,47) = -2.042 p = 

0.047), indicating a later drift-onset time in the older group (Mean = 0.332, SD = 

0.086) relative to the younger group (Mean = 0.283, SD = 0.8, Figure 2.24).  

 

 

 

*** 
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Figure 2.23, Model simulated drift-onset times in seconds by age group showing slower drift-onset times in 

the older group than younger group. 

 

2.3.7: CPP Scaling by Model Parameters 

As outlined in section 2.1.4, older adults may be subject to a range of task-

irrelevant differences in the presentation of electrophysiological signals. In this 

study, the CPP, whose amplitude at response is thought to reflect the cumulative 

evidence for the chosen alternative, was shown to reach a much lower boundary 

than the model simulated decision variable would predict (see Figure 2.18). While 

this may suggest the model is not successfully representing the decision process, 

it is also possible that CPP amplitude measurements are affected by 

behaviourally-irrelevant group differences which result in a less positive CPP for 

older adults. Features of simulated models may be potentially useful in 

addressing this issue. By constraining features of the CPP to match what is 

observed in the computational model, we may obtain a more representative 

illustration of the CPP's emergence over time. To explore this, the CPP was 

rescaled relative to the model-derived bounds at response (marked with 

horizontal lines in Figure 2.21). The mean CPP at response was taken in the 

window -100:-60ms from the response, to allow for non-decision-related motor 
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response times (time window highlighted in purple in Figure 2.25). The entire 

signal ERP was then scaled by multiplying each time point by the model-derived 

bound at response divided by the mean CPP at response giving the signals 

shown in Figure 2.21. Through this both groups show signals on similar scales, 

illustrating more clearly an earlier build-up of the decision formation signal seen 

in older adults that is reflective of their later drift-onset times.  

 

 

Fig. 2.25) Stimulus and response-locked CPPs rescaled by neurally-constrained model bounds at response, 

The purple bar in the response-locked signal highlights the -100:-60ms window where mean CPP at 

response is calculated, while horizontal bars show the value of the model-derived bound at response. 

 

To test for the statistical significance of these observed differences, a series of 

ANOVAs on CPP features were performed. While the un-rescaled CPP showed 

a significantly shallower slope in older adults, model estimated drift-rates showed 

no group differences. To assess if the rescaled CPP could better represent this, 

pre-response slopes were analysed. There was no significant effect of Age (p = 

0.3), Condition (p = 0.924) or Age-Condition interaction (p = 0.554), reflecting the 

similar drift rates across groups seen in modelling efforts. To assess if the 

rescaled signal better captured the later drift-onset time, and thus the higher 

proportion of accumulated noise in the older adult group, pre-evidence CPP 

slopes were analysed. There was no significant effect of Age (p = 0.08), 

Condition (p = 0.423) or Age-Condition interaction (p = 0.774). There was also 

no significant effect of Age (p = 0.141), Condition (p = 0.613) or Age-Condition 

interaction (p = 0.91) on pre-response amplitudes. While non-significant, visual 
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analysis of the rescaled CPP suggests more pre-evidence accumulation in the 

older adults, which may better reflect the later drift-onsets seen in the older 

cohort, and similar build-ups reflecting the similar model-estimated drift rates 

across groups.   
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2.4: Discussion 

The speed-accuracy tradeoff has been extensively studied in both younger and 

older adults. Using a DDM, an ideal observer is assumed to make this tradeoff 

by lowering their decision bound or raising their starting point in response to 

speed pressure (Heitz, 2014). Older adults have been shown to be less capable 

of making these adjustments at the behavioural level, reflected by a higher 

decision bound and reduced lowering of decision boundaries (Forstmann et al., 

2011; Starns & Ratcliff, 2012). However, the data presented here suggest that 

these alternate decision strategies do not come at any functional cost to older 

adults, given their parity in point scores. Furthermore, reliance on the DDM often 

overlooks core components of the decision process which are observable in the 

neural data such as urgency and early evidence accumulation. This study aimed 

to leverage neurally derived proxies of key parameters of the diffusion model to 

inform and constrain decision models. This led to a range of considerable and 

important new insights into the effects of ageing on the speed-accuracy tradeoff. 

Notably, older adults were shown to exhibit lower boundaries, but less adaptation 

of urgency dynamics. This suggests that rather than simply increasing their 

bounds overall, older adults are adopting a more cautious and consistent 

decision style with less collapse of these bounds over time in order to maximise 

their points scored.  

 

Initially, the standard full DDM indicated poorer regulation of non-decision time 

across conditions in older adults as the best-fitting model. This was not in line 

with accounts of the speed-accuracy tradeoff in an ageing population, which 

suggest adjustments to boundaries as driving the behavioural differences across 

conditions (Forstmann et al., 2011; Starns & Ratcliff, 2010). However, a model 

with boundary varying by condition performed similarly well and was consistent 

with previous reports which highlight higher decision bounds and poorer 

regulation of these bounds in older adults. This presented two similarly well-

performing models, which model comparison scores alone could not conclusively 

adjudicate between. Analysis of the neural data indicated the presence of a range 

of factors which encouraged the revision of the DDM. Behaviourally, both groups 

were shown to exhibit a negative parabolic function of accuracy across reaction 
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time. This indicated the presence of a large proportion of fast and slow errors, 

which standard DDMs have difficulty capturing despite the presence of drift rate 

and starting point variability parameters. Fast errors may be driven by the 

accumulation of noise prior to evidence onset, with slow errors driven by an 

increased urgency to respond as the time limit for response approaches. 

Importantly these features were reflected in the neural data. The CPP evidence 

accumulation signal was seen to have accumulated before any temporally 

feasible feedforward of information from sensory areas in older adults, indicating 

its accumulation of noise in advance of the target contrast. This accumulation of 

noise could therefore help to explain the large proportion of fast errors in early 

reaction time bins. Urgency dynamics were also observed in the neural data, 

where mu/beta signals were seen to begin their negative descent towards the 

bound in advance of the evidence. Furthermore, the CNV, a marker of dynamic 

urgency, was shown to exhibit a more pronounced negative slope under speed 

pressure before the target appeared.  

 

Using this information to inform our models led to the inclusion of a linearly 

collapsing bound to reflect urgency while allowing for noisy accumulation until 

some time point. The inclusion of these parameters greatly improved model fits 

relative to the standard DDMs, even with inter-trial variability parameters 

removed. Importantly, the best-fitting model was one in which the boundary was 

allowed to vary by condition, in line with previous literature (Forstmann et al., 

2011; Starns & Ratcliff, 2010). Here, the neurally-informed model provided a 

clearer adjudication as to the winning model than the standard decision model, 

with a model with boundary varying by condition outperforming other variants. In 

a departure from previous work suggesting increased boundaries in older adults 

(Forstmann et al., 2011; Starns & Ratcliff, 2010), older adults exhibited a lower 

boundary in the accuracy condition (0.172) than younger adults (0.186), with a 

less pronounced reduction in these boundaries under speed-emphasis (Older = 

-0.009, Younger = -0.022). While the reduced boundary adjustment in older 

adults replicates previous studies, the lower boundary in the accuracy condition 

is in direct contrast to previous work which has indicated higher decision bounds 

across conditions in older adults. Though the group-level modelling precluded 

statistical analysis of these differences, they were reflected in the pre-evidence 
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levels of mu/beta, where older adults showed more pre-evidence motor 

preparation, equivalent to lower bounds, than the younger in the accuracy 

condition and a less pronounced adaptation of motor preparation under speed 

emphasis. Here, the neurally-informed model is not only capable of better 

capturing the behavioural data but also produces results which are more in line 

with observable neural metrics.  

 

Using these start-points to constrain the model allowed for the investigation of 

increasingly complex models without penalty to the model comparison scores. 

Neurally-constrained models provided better fits than the neurally-informed 

models while providing a more nuanced account of the adaptation. Here it was 

indicated that individuals regulate both their urgency dynamics across conditions, 

with a more pronounced urgency adaptation in younger adults. This is a highly 

important extension beyond traditional models, which indicate older adults 

adopting more cautious decision styles driven by boundary adjustments alone. 

Instead, the model indicates a smaller boundary adjustment and no urgency 

adaptation in older adults, which enables more consistent responses over time. 

These conclusions may have been unattainable using standard modelling efforts, 

as a more complex model would have been penalised heavily for an increased 

number of parameters. Here, neural constraints allow us to circumvent this 

penalisation to show a second adaptation difference between older and younger 

adults, in the degree to which they change their levels of urgency across regimes. 

Using standard diffusion models without reference to the neural information 

would have led to completely different conclusions. To date, the majority of the 

literature has done just that, implicating higher boundaries in older adults 

(Forstmann et al., 2011; Starns & Ratcliff, 2010, 2012). This work presents the 

key benefit of utilising neural information, allowing us to deliberate between 

similarly well-performing models and create models that more accurately 

describe the effects of ageing on the speed-accuracy tradeoff. 

 

Importantly, these constraints allowed us to investigate group differences in 

within-trial noise, which standard models do not readily allow for. There were 

found to be no substantial group differences in levels of within-trial noise. This, 

combined with evidence for equal drift rates and no group differences in the 
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amplitudes or build-up rate of the sensory-encoding SSVEP signals suggests an 

absence of a deficit in the core information-processing stages of the decision 

process. This represents an important advancement as it offers combined neural 

and behavioural evidence for unimpaired evidence encoding in older adults, both 

in terms of mean evidence representation (drift rate) and the incumbent noise 

incorporated at each time point (within-trial noise). A task which estimates a 

behavioural measure of internal noise (Dosher & Lu, 1998; Tibber et al., 2014), 

would be an additional useful method for assessing group differences in within-

trial noise levels. The absence of a group difference in within-trial noise levels 

may have been due to the nature of the stimulus, which emerged gradually over 

time. In contrast, a stimulus with more ongoing stimulus variability and noise, 

such as a random dot motion task, may elicit different results. Furthermore, as 

our models were reduced, removing variability parameters for parsimony, they 

could not investigate potential differences in inter-trial variability parameters. 

Older adults have been shown to exhibit lower ongoing neural variability, 

correlated with impairments in cognitive flexibility (Kumral et al., 2020; Sleimen-

Malkoun et al., 2015), which may be reflected in maladaptive lower levels of 

intertrial variability.  

 

Finally, the group-level parameter differences were supported statistically by 

fitting the data at the individual level, suggesting the group-level constraints were 

capable of capturing true between-group differences. Older adults were shown 

to exhibit substantially slower drift-onset times, which may be reflective of a 

combined slowing of evidence accumulation-onset time and increased motor 

times. Our capacity to tease apart the relative proportion of evidence onset time 

and motor response delays was one limitation of this study. However, analysis of 

the CPP indicated significant pre-evidence build-up of the decision formation 

signal in the older adult group but not the younger. This lends support to the idea 

that at least some of this increased accumulation of noise may have been driven 

by an increased pre-evidence accumulation of noise in the older adult group. 

Future work may aim to separate these components as individual parameters 

constrained by neural signals. For example, Kelly and colleagues (2021) used 

the lateralised readiness potential as an index of the time at which commitment 

to a motor action was made. This neurally-informed model constrained the motor 
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execution portion of non-decision time, allowing the model to freely estimate an 

accumulation-onset time. This would allow the model-estimated drift-onset time 

to represent sensory encoding more directly.  

 

Individual model fitting also indicated that older adults were less likely to adapt 

their urgency dynamics in response to speed pressure than younger adults. 

However, a close examination of the individual model fits indicated that a large 

minority of younger individuals may have been driving the observed model 

improvements by allowing urgency to vary. This suggests that adapting urgency 

dynamics is a strategy employed by some, but not all, individuals. Future work 

may benefit from finding reliable methods for applying neural constraints to 

individual model data. These individualised neurally-informed models may be 

better capable of representing individual variability in strategy and parameter 

differences. With these individual differences accounted for, any true between-

group effects may become more apparent. Collectively, however, the individual-

level modelling appears to reinforce the idea of a strategic adjustment of decision 

bounds, with less pronounced collapsing of boundaries over time in older adults. 

A combined less pronounced adaptation of the decision bound and the collapse 

of this bound over time may reflect a more cautious decision strategy utilised to 

offset potential differences in motor execution or evidence accumulation-onset 

times. However, this evidence supports differences in strategic adaptation rather 

than any processing deficits and is further bolstered by the equivalence in points 

scored between older and younger adults.  

 

Our attempts at feature scaling reveal key considerations for future work 

comparing older and younger adults. Notably, the normalisation of mu/beta by its 

threshold at response allowed us to bring our groups onto equal scales while 

maintaining our capacity to investigate inter-condition effects. This is pertinent 

given the considerable evidence of increased overall beta amplitude in older 

adults (Stacey et al., 2021). Extant research often fails to account for these 

observations, meaning erroneous conclusions regarding group differences in 

beta may be drawn. When comparing the simulated decision variable to the real 

CPP, we saw that the CPP reached a lower amplitude at response for older 

adults. However, simulated decision variables reached similar amplitudes across 
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groups. This presented a disconnect between model predictions and observed 

neural signals. Given the potential for behaviourally-irrelevant ageing effects on 

volume conduction (Antonakakis et al., 2020), attempts were made to rescale the 

CPP signal based on model-derived parameters. Here, model-based estimates 

of bound at response were used to rescale stimulus and response-locked CPPs. 

This rescaling brought the CPP in line with model expectations, showing more 

early build-up of the CPP in the older group, in line with their slower drift-onset 

times. However, rescaling appeared to result in higher amplitudes of the CPP 

both stimulus and response-locked in older adults than the model would predict. 

Future work may benefit from combining behavioural and electrophysiological 

data in the modelling procedure, to find a model-derived parameter at the 

individual level which could be used to rescale signals like the CPP and 

overcome the influence of individual, and therefore, group differences in signal 

scaling.  

 

Our ability to utilise signals such as the CPP and CNV as neural constraints may 

be limited by a series of factors. Firstly, the location of electrophysiological 

signals has been shown to vary significantly with age. Notably, the P3, or CPP 

has been shown to exhibit a pronounced frontalisation as we age (Fjell & 

Walhovd, 2004; O’Connell, Balsters, et al., 2012). While the direct cause of this 

is not well understood, it has been theorised to reflect the recruitment of largely 

intact frontal regions to compensate for cortical thinning (Davis et al., 2008; van 

Dinteren et al., 2018). Here, individual electrode selection based on peak 

amplitude showed a more frontalised CPP, however, this may have resulted in 

the measurement of potentially overlapping signals (Kelly & O’Connell., 2013; 

West et al., 2010). Furthermore, the P3 component has also shown reduced 

amplitude with ageing (Tsolaki et al., 2015; van Dinteren et al., 2014b), although 

the extent to which this reflects a poorer evidence integration system or task-

irrelevant changes to brain structure is less well understood, as some studies 

have shown these reduced amplitudes without group differences in behaviour 

(O’Connell, Balsters, et al., 2012). A spatially independent method for isolating 

the CPP’s pure decision formation component, which reduces the impact of 

localisation and overlapping signals, may provide a more appropriate neural 
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metric of the model-simulated decision variable. This will be explored in Chapter 

Four. 

 

While our modelling efforts provided strong fits to the data at both the individual 

and group level, future research may benefit from the use of hierarchical models 

capable of estimating both group and individual level parameters in parallel and 

in relation to each other (Turner et al., 2013). However, given the novel nature of 

the mu/beta constraint technique, and the inherent individual variability in 

mu/beta signals, such a model was not achievable for this work. One potential 

avenue for further exploration would be to normalise mu/beta at the individual 

level and constrain by the individual degree of adaptation to motor levels across 

conditions. This could provide a potentially valuable method for constraining 

boundary adaptation while eliminating the potential influence of individual 

variability in signal power.  

 

In conclusion, the present study provides not only a new insight into speed-

accuracy tradeoff dynamics in older adults but an application of a new approach 

to behavioural modelling, which ultimately grounds mathematical models in 

observable neural data to provide a synthesised and more nuanced 

understanding of cognition.  
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Chapter Three:   

Modelling the Role of Internal Noise 

Suppression in Perceptual Learning   
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3.1: Introduction 

Perceptual learning is a core cognitive capacity, representing the ability to learn 

and adapt to the demands of a novel perceptual task. Across an array of 

perceptual domains, including audition, olfaction, and vision, perceptual learning 

has proven to be a popular phenomenon for researchers hoping to understand 

the brain’s capacity to adapt and its underlying neural plasticity (see Gilbert et 

al., 2001; Maniglia & Seitz, 2018 for review). The mechanisms underpinning 

perceptual learning are not well understood and it is not clear what sensory 

and/or cognitive adaptations may underlie it. One dominant psychophysical 

theory of perceptual learning has indicated that a key underlying process may be 

the progressive suppression of sensory noise (Dosher & Lu, 1998, 1999; 2017). 

In essence, the perceptual processing of a stimulus can be simplified to the 

extraction of a signal relative to some degree of noise (Dosher & Lu, 2017; Levi 

et al., 2005). Importantly, these sources of noise exist not only in the external 

sensory environment but also internally in the brain at each stage of information 

processing, which can operate over different timescales from milliseconds to 

minutes and hours (Faisal et al., 2008; Ratcliff et al., 2018). In sequential 

sampling models, such as the drift-diffusion model (DDM) however, learning is 

often attributed not to reductions in noise or variability parameters, but to specific 

mechanisms in the decision process like accelerated drift rates or decision-bound 

adjustments (Ivanov et al., 2022; Petrov et al., 2011; Zhang & Rowe, 2014). This 

may, in part, be driven by the fact that in order to fit behavioural data these 

models must fix a scaling parameter, and by convention that parameter is 

typically within-trial noise (Ratcliff & McKoon, 2008). Consequently, in studies of 

perceptual learning, within-trial noise is set to a fixed value across all sessions, 

preventing the models from identifying any changes to the very parameter that 

has been heavily indicated in the psychophysics literature. The aim of this study, 

therefore, was to leverage a combination of neurophysiological evidence and 

neurally-informed computational modelling to allow for adaptations of within-trial 

noise with learning, further elucidating the neural substrates of perceptual 

learning on a visual perception task. 
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3.1.2: Psychophysical Models of Perceptual Learning 

Psychophysical models of the learning process provide a framework from which 

the changes in the perceptual system which result in learning can be studied. In 

their perceptual template model, Dosher and Lu (2012; 2017) suggest that 

perceptual learning occurs through the suppression of internal sources of 

additive noise and the improved filtering of external noise in the physical stimulus. 

To study these, they apply equivalent noise paradigms which estimate the 

internal noise levels of individual subjects by finely manipulating levels of external 

noise in a stimulus. When levels of external stimulus noise are high, performance 

on a task is governed by improved filtering of this external noise equivalent to 

improved representations of the sensory stimulus. However, when stimulus noise 

is low, external noise filtering is of less importance and performance variability is 

primarily attributable to the levels of intrinsic, or internal, noise in the observer. 

Using this principle, participants complete visual tasks at varying levels of noise, 

and an equivalent noise function is fit to estimate the observer’s threshold level 

of internal noise (Lu & Dosher, 2008). This approach has been used to show 

significant reductions in internal noise with perceptual training on motion direction 

discrimination tasks or texture orientation tasks, where the perceptual 

representation may already be optimised (Dosher & Lu, 2006). Conversely, for 

more complex stimuli, learning may be driven predominantly by improvements to 

the exclusion of stimulus noise, causing better perceptual representations in 

tasks such as Gabor orientation discrimination or facial discrimination (Gold et 

al., 1999; Lu & Dosher, 2004). As such, perceptual learning may be driven by 

distinct mechanisms depending on stimulus complexity, however, the majority of 

studies have shown a combination of reduced internal noise and improved 

sensory representations of the stimulus as drivers of learning (Dosher & Lu, 

1998, 1999; 2017). 

 

3.1.3: Sequential Sampling Models of Perceptual Learning 

Dosher and Lu’s perceptual template model provides a potential schematic for 

the causes of perceptual learning. However, drift-diffusion models (DDM) may 

provide more comprehensive alternatives for investigating perceptual learning, 
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allowing for exploration of the effects of learning on a range of measurable and 

testable parameters, which in turn reflect core perceptual and cognitive 

constructs that can be linked to neural data. To date, DDMs of perceptual 

learning have reported that learning is primarily driven by a combination of 

boundary adjustments and increased drift rates. For example, recent work by 

Ivanov and colleagues (2022) examined learning of orientation discrimination 

using the DDM. Here, participants were trained to indicate the orientation of a 

Gabor grating using a joystick and then were required to repeat the task using 

eye movements. Fitting of the DDM showed learning was associated with both 

increased drift rates and decision bounds. However, these effects were reduced 

when the effector was changed, suggesting that visual perceptual learning may 

be yoked to effector-dependent integrators and therefore, that the enhanced 

perceptual sensitivity that characterises perceptual learning cannot arise 

exclusively from changes in the early stages of sensory processing. Zhang & 

Rowe (2014) investigated perceptual learning in a speed-accuracy tradeoff task 

across multiple testing sessions. Early sessions did show increases in drift and 

bound separation under accuracy emphasis, but only boundary adjustments 

were observed in later sessions, with no further improvements to drift rate. Here, 

the authors argue that initial behavioural improvements may be due to 

refinements of the signal representation via top-down attentional shifting, but the 

prolonged changes associated with perceptual learning arose from strategic 

changes in setting the decision criteria.  

 

However, a growing body of evidence suggests that some of these adaptations 

to the decision bound may be reflective of growing familiarity with task timings. 

For example, modelling by Liu and Watanabe (2012) attributed the reductions in 

RT and increased accuracy exhibited by participants after three days of training 

on a motion discrimination task to a combination of an increased drift rate and a 

reduced decision boundary. They suggest that the lowered decision bound is 

characteristic of a learned speed-accuracy tradeoff, where participants’ 

improving sensory representations of the stimulus, as evidenced by their stronger 

drift rates, allow them to make equally reliable decisions while accumulating 

fewer sensory samples. This grants them an improved “reward rate” (Bogacz et 

al., 2006), where more correct responses due to better sensory representations 
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can be made in a shorter amount of time. Petrov and colleagues (2011) have 

also reported that participants showed improvement not only in their sensory 

processing but also in their knowledge of task timings. Applying the DDM, the 

authors found that participants showed increases in drift rate and reductions in 

non-decision time variability across four testing sessions of a motion 

discrimination task. As non-decision time influences RT alone, this may reflect 

learning of the task timings and improved timing of the initiation of the evidence 

accumulation process.  

 

The above studies disagree markedly on the nature of the boundary adjustments 

accompanying perceptual learning, with some highlighting progressive boundary 

increases and others, decreasing boundaries with training. These divergent 

findings may have arisen from differences in methodology. The studies that 

showed increased boundary separation with learning had random evidence-

onset times and intertrial intervals (Ivanov et al., 2022; Zhang & Rowe, 2014) 

making learning these task timings difficult even with prolonged exposure. 

However, both the Liu and Watanabe (2012) study and the Petrov and colleagues 

(2011) study used tasks preceded by a fixed 500ms interval. This means that 

over time participants could become aware of and learn when to commence 

accumulating evidence and when the deadline for response may be due.   

 

Each of these studies implemented models in which the decision bounds were 

assumed to remain at a constant level across each trial. However, as outlined in 

Chapter One, and evidenced in Chapter Two, there is growing support for the 

inclusion of dynamic urgency in perceptual decision-making tasks (e.g., Malhotra 

et al., 2018; Frazier & Yu, 2007). The possibility of urgency-related changes as 

a component of perceptual learning has received little attention thus far but 

represents a promising avenue for further investigation. For example, studies 

showing boundary collapse adjustments with learning (Liu & Watanabe, 2012; 

Ivanov et al., 2022; Zhang & Rowe, 2014), may in fact be reflective of changes 

to dynamic urgency as participants become attuned with task timings across 

sessions. Thus far, the literature has failed to determine whether the observed 

boundary adjustments were exclusively made to the starting points of the 

decision process and/or are implemented dynamically during decision formation 
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at a rate which itself changes as we learn, meaning a potential contribution to 

perceptual learning has been overlooked. 

 

3.1.4: Neurophysiological Research on Perceptual Learning 

Sequential sampling models are typically fit to behaviour alone, but more recent 

work has attempted to directly associate adaptation of parameters to changes in 

the brain. For example, recent work by Jia and colleagues (2018) studied learning 

on a random dot-motion task using a linear ballistic accumulator model (LBA; see 

Chapter One: 1.2.1) while fMRI data were recorded. Learning was associated 

with both increased drift rates and increased ‘decision caution’, which within this 

model is calculated as the difference between the starting point and decision 

bound. These behavioural improvements were associated with increased signal 

for the trained direction in the frontal eye field (FEF) and ventral premotor cortex 

(PMv), with enhanced connectivity between sensory areas V3A and the PMv. 

This result corresponds with the tuning of connections between early visual areas 

and decision processes proposed in Dosher and Lu’s (2012) model. However, 

as discussed in, LBA models are often too simplistic when compared to the DDM 

and fail to provide a comprehensive account of constructs such as perceptual 

learning. Importantly, in order to reduce computing times during model fits, they 

do not include a within-trial noise parameter at all.  

 

Several electrophysiological studies suggest that learning may be instantiated in 

the progressive reweighting of connections between early sensory areas such as 

V1 and later decision-processing areas (Dosher et al., 2013). For example, Law 

and Gold (2008) trained monkeys on a visual motion task, while recording 

neurons in the lateral intraparietal (LIP) and medial temporal (MT) visual area. 

LIP activity offers a neurophysiological index of the evolving decision process as 

sensory evidence is converted into a motor plan. The authors demonstrated that 

these LIP neurons exhibited faster build-up rates as the monkeys became 

increasingly well-practised on the task. Conversely, MT neurons which encode 

motion direction did not show any increase in their sensitivity. This suggests 

improvement, not to the encoding of the sensory representation itself, but to the 

decision readout which serves to reduce the influence of internal noise. Similar 



110 

evidence has also been shown in humans. Diaz and colleagues (2017) studied 

ERP components of perceptual learning on a visual discrimination task. Using 

single-trial multivariate discriminate analysis they decomposed the 

electroencephalography (EEG) signal into an Early (~=170ms) component, 

which they associated with the basic encoding of sensory evidence, and a Late 

(~=300ms) component, thought to reflect higher-level decision processing. While 

the Early component appeared to be unaffected by perceptual learning, the Late 

component showed increases in amplitude as a function of learning. This may be 

reflective of increased decision bounds (Ivanov et al., 2022; Zhang & Rowe, 

2014), however, in this study ERP changes were not directly linked to any model 

parameters. Collectively, while not directly linking neural data to any model, these 

studies (Diaz et al., 2017; Law & Gold, 2008) suggest that the behavioural 

changes exhibited in perceptual learning may be driven by improvements in the 

latter stages of the decision process, not changes in early sensory encoding. 

 

There are relatively few perceptual learning studies which directly link the DDM 

to EEG data. Recent work from the O’Connell lab investigated the effect of 

perceptual learning on several key electrophysiological markers of perceptual 

decision-making (Devine, 2019). Using an established neurophysiological index 

of sensory encoding, the steady-state visual evoked potential (SSVEP), the 

author found significant boosting in the representation of the contrast evidence 

with increasing exposure to the task, providing some evidence that perceptual 

learning may manifest in modulations at the earliest stages of perceptual 

processing. Furthermore, there was a significantly steeper pre-response build-

up rate of the CPP and higher amplitudes at response with learning. In close 

agreement with Ivanov and colleagues (2022), these results indicate that 

perceptual learning may arise due to a combination of increased decision bound 

(higher CPP at response) and drift rate (steeper SSVEP and CPP slopes). 

Similarly, Song and colleagues (2005) reported that perceptual learning with both 

complex and simple stimuli was associated with modulation of the N1, reflecting 

improvements to early-stage sensory processing. However only learning with 

complex stimuli was associated with increased amplitude of P3. This may reflect 

an increase in decision bound, where participants accumulate more evidence 

before committing to a decision for a complex stimulus. However, no behavioural 
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modelling was performed in either of these studies (Devine, 2019; Song et al., 

2005), meaning these links between neural data and model parameters could 

not be directly assessed. Without modelling, it becomes difficult to directly 

concretely attribute changes to these signals to underlying psychological 

constructs. A combined EEG and modelling effort may assist in determining the 

true effects of learning on the decision process. As demonstrated in Chapter Two, 

EEG data may provide a valuable tool for improving models of perceptual 

decision-making. By informing model construction we may find evidence for the 

necessary incorporation of parameters such as dynamic urgency. Furthermore, 

by constraining these neurally-informed models, we may investigate more 

complex models in order to glean new insights into the dynamic adjustments that 

emerge throughout perceptual learning. 

 

3.1.5: Internal Noise and the DDM 

As outlined, efforts to model perceptual learning using the DDM have found 

improvements to the drift rate and some form of adaptation of the decision bound 

(Ivanov et al., 2022; Petrov et al., 2011; Zhang & Rowe, 2014). However, as 

exhibited in Dosher and Lu’s work (2017), perceptual learning can cause not only 

improved representations in the stimulus, which can be accounted for in a DDM 

by improved drift rates, but also significant reductions in an observer's internal 

noise. In the DDM, an analogue of this internal noise would be the Gaussian 

‘within-trial noise’ applied at each time point to the decision variable. In standard 

DDMs, inter-trial variability is instantiated in a range of parameters (drift rate, 

start-point and non-decision time), but the Gaussian within-trial noise is the only 

source of intra-trial variability (Ratcliff & Tuerlinckx, 2002). Standard DDMs 

cannot account for changes to this within-trial noise with learning, as it is typically 

set as the scaling parameter (see Chapter One: 1.2.3), forcing it to remain at a 

fixed common value for all participants and conditions, or in the case of 

perceptual learning, testing sessions. If one were to allow within-trial noise to 

vary by session, this would require another parameter to be fixed across 

conditions. The most commonly used alternative scaling parameter is the 

decision bound, yet this too is problematic as decision bounds have consistently 

been shown to vary as a function of perceptual learning (Ivanov et al., 2022; Liu 
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& Watanabe, 2012; Zhang & Rowe, 2014). Therefore, to allow noise to vary as a 

function of learning, would necessitate omitting a known component of the 

adjustments that characterise perceptual learning. Conversely, forcing within-trial 

noise to remain consistent across testing sessions may render the model 

incapable of capturing critical alterations to the formation of the decision variable 

across time. Either case may lead to erroneous conclusions about the effects of 

learning on the freely estimated parameters. For example, as all parameter 

values are expressed in proportion to the scaling parameter, what are reported 

to be boundary changes with training could potentially arise in reality from a 

reduction in within-trial noise. One method for investigating training effects on 

within-trial noise would be to directly estimate the value of another parameter 

from neurophysiological measurements, thus ensuring that the previously used 

scaling parameter can vary across testing sessions. With this constraint, within-

trial noise values can be freely fit to the behavioural data. As outlined in Chapter 

Two and previous work (Kelly et al., 2021; Steinemann et al., 2018, Corbett et 

al., in press), it is now well-established that pre-evidence mu/beta amplitude 

measurements over the premotor cortex offer valid estimates of the decision 

variable’s starting points. Constraining the boundary to match mu/beta 

adjustments allows within-trial noise to be freely estimated, as was shown in 

Chapter Two. For studies of perceptual learning, this would afford the opportunity 

for within-trial noise to be estimated across sessions, allowing for investigation of 

how this parameter changes as a function of learning while maintaining the 

model's capacity to represent any changes to the boundary over time. 

 

Psychophysics may offer another principled method to overcome this dilemma 

by providing a means of estimating and individually constraining a participant’s 

internal noise (Tibber et al., 2014). However, classic methods for estimating 

internal noise require double-pass paradigms (e.g., Awwad Shiekh Hasan et al., 

2012; Gold et al., 1999), where the same stimulus is repeated several times, or 

lengthy tasks with varying levels of external stimulus noise (Dosher & Lu, 1999, 

2006; 2017). This makes estimating an individual’s internal noise time-

consuming, meaning it is cumbersome to achieve in tandem with already lengthy 

EEG data collection sessions. However, a novel fast version of this equivalent 

noise (EQN) procedure, estimates maximum levels of tolerable noise and noise-
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free perceptual thresholds, allowing for the estimation of internal noise across 

150 trials, making it easily administrable in conjunction with other behavioural 

paradigms (Tibber et al., 2014). Indeed, group differences in internal noise levels 

estimated using the EQN task have been reported across a range of clinical 

groups when observing a range of stimuli (Chen et al., 2014; Manning et al., 

2015; Tibber et al., 2014), although this specific version of the task has not yet 

been applied in a study of perceptual learning. Using this tool, and in line with 

Dosher and Lu’s (2012) account of perceptual learning, we would expect to see 

a lowering of internal noise estimates as participants learn. The EQN’s measure 

of internal noise may then present a convenient proxy for constraining within-trial 

noise levels in DDMs across sessions. This would allow a model which accounts 

for changes to within-trial noise, allowing it to more successfully pick up on the 

effects of learning in other parameters 

 

3.1.6: Present Study 

The primary aim of this study was to develop a model that can more 

comprehensively account for all of the decision process adjustments made 

during perceptual learning. Initially, we aimed to utilise neural data to inform 

model construction and create a more biologically grounded model of perceptual 

learning. Furthermore, due to the necessity of a scaling parameter, to date, 

sequential sampling models have been unable to test for changes to within-trial 

noise alongside changes to other parameters. To achieve this, decision bounds 

were constrained to match motor preparation signal measurements, allowing for 

the model to account both for changes to the bound and within-trial noise with 

learning. In doing this, we aimed to assess if model-estimated measures of 

within-trial noise were consistent with the behavioural EQN internal noise 

estimate. We then utilised the EQN internal noise estimate as a further constraint, 

allowing for a wider range of possible parameter effects to be explored. In 

particular, this was devised with the intention of testing for possible dynamic 

bound adjustments as participants become more familiar with the temporal 

sequence of the trials. Using this combination of behavioural and 

electrophysiological constraints, we sought to provide a biologically grounded 

behavioural account of perceptual learning that was sufficiently sensitive to 
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capture more subtle changes amidst the more dominant adjustments previously 

reported in perceptual learning studies. 
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3.2: Methods 

3.2.1: Participants 

Sixteen participants took part, four males and twelve females, with a mean age 

of 20.72 years (SD = 2.49). Two participants failed to complete all sessions and 

as a result, were not included in any of the following analyses. A post-hoc power 

analysis was performed using G*Power (Faul et al., 2007). This indicated that 

given a sample size of 14 across three sessions, with a significance criterion of 

0.05 and a power of 80%, the study would have sufficient power to detect effects 

of medium to large effect sizes (f = 0.36)  Participants all had normal or corrected 

to normal vision with no personal or family history of neurological illness or injury 

and were free from medication for psychiatric conditions. Participants were 

recruited via the School of Psychology’s online research portal. Participants were 

reimbursed with research credits. Participants provided informed written consent 

before testing.  

 

3.2.2: Stimulus Features 

Stimuli were generated through MATLAB using PsychToolbox and presented on 

a 51cm gamma-corrected CRT monitor, 1024x768 resolution, with a refresh rate 

of 60Hz. Both tasks used moving dot stimuli which appeared around a fixation 

dot (4 pixels) on a grey background in a circular aperture of 15°. Each stimulus 

consisted of 100 white dots each with a diameter of 0.44 degrees. Dots updated 

their position every 3 frames. Dots moved at a rate of 3°/s and had a lifetime of 

6 frames. 

 

3.2.3: Equivalent Noise Task 

An efficient version of the Equivalent Noise Task was used (EQN: Tibber et al., 

2014; Manning et al., 2015). Rather than using several noise levels, this fast 

version of the EQN uses a zero-noise condition to constrain an Equivalent Noise 

function at their noise-free perceptual threshold, and a high-noise condition to 

estimate the participant’s maximum tolerable noise level. An equivalent noise 
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function is then fit to estimate two parameters: internal noise and sampling 

efficiency. In the high-noise condition, dots moved at a mean direction of +/- 45° 

to the right or left of a vertical line through the fixation point. The standard 

deviation of the dots' direction was titrated using a QUEST system to find the 

maximum level of tolerable noise at which participants achieved 82% accuracy 

(Figure 3.1.B: Right). In the Zero-Noise condition, the standard deviation of dot-

motion was 0, meaning there was no stimulus noise while the mean direction was 

incrementally decreased to find the value at which participants achieved 82% 

accuracy (Figure 3.1.B: Left), estimating a perceptual threshold with no external 

stimulus noise. These trial conditions were interleaved, with participants 

indicating their chosen direction using a mouse click, left or right. Seventy-five 

trials of each condition were presented. Upon completion, these values for 

maximum tolerable noise and minimal sensitivity to directional discrimination 

were used to fit the equivalent noise function shown in Figure 3.1.C.  Prior to their 

first run of the task, participants completed a practice version of 30 trials with 

increasing difficulty.  

 

 

Figure 3.1: Schematic of Equivalent Noise function from Tibber and colleagues (2014). A) Shows coherent 

motion task, where portions of dots move to either right or left, while the remaining dots move randomly. B) 

Left: Zero-noise condition, where all dots move in the same direction and participants are required to indicate 

their motion either to the left or right of a vertical dissecting line. The difficulty is increased by reducing the 
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degree of offset from this vertical. Right: High-noise condition where all dots move with a mean direction of 

±45° from a vertically dissecting line. The difficulty is increased by increasing the standard deviation of the 

dot motion, increasing the stimulus noise. C) Shows the psychometric Equivalent Noise function, 

constrained using individually titrated high and zero-noise conditions. Reprinted from: Tibber, M. S., Kelly, 

M. G., Jansari, A., Dakin, S. C., & Shepherd, A. J. (2014). An Inability to Exclude Visual Noise in Migraine. 

Investigative Ophthalmology & Visual Science, 55(4), 2539–2546. https://doi.org/10.1167/iovs.14-13877.  
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3.2.3: Coherence Task 

The random-dot motion task was adapted from the coherence task introduced in 

Tibber and colleagues’ work (2014). Participants identified the direction of a 

subset of coherently moving dots while the remaining dots moved randomly. A 

lower proportion of these coherently moving dots, therefore, constitutes a lower 

coherence level and a more difficult trial (lower signal-to-noise ratio). Coherent 

dots moved horizontally either right or left and participants indicated their chosen 

direction using a mouse click. The coherent motion was preceded by 1000ms of 

random motion, in which all dots moved randomly. This was done to prevent the 

overlap of visually evoked potentials from stimulus onset with task-relevant 

decision signals. The coherent motion was presented for a total of 1500ms, 

during which a participant could respond at any time. There was an inter-trial 

interval of 750ms before the next trial began, during which only the fixation point 

was presented. To encourage learning, a points system was used. Participants 

were granted 20 points for a correct response, 0 points for an incorrect response 

and -10 points for deciding before the coherent motion began (too fast) or for 

failing to decide the coherent motion ended (miss). After every 60 trials 

participants were given a self-timed break, during which they could see their total 

points score vs the total points achievable. Trial-to-trial feedback was only given 

for misses and too-fast responses; for misses, the central fixation point flashed 

red, and for responses before coherent motion onset, the point flashed blue. 

Participants were informed there would be a point-based monetary reward to 

incentivise improved performance, however, all participants were given the full 

reward amount (€8 per session).  

 

3.2.4: Procedure 

All procedures complied with the Declaration of Helsinki and were approved by 

Trinity College Dublin’s School of Psychology Research Ethics Committee. 

Participants were required to attend 3 sessions across one week, with efforts to 

keep the time of each session consistent. Participants were seated in a darkened, 

sound-attenuated room, using a chin rest to prevent excess movement placed 

approximately 51cm from the screen. In each session, participants began by 



119 

completing one block of the equivalent noise task to estimate internal noise. In 

session one this was followed by a QUEST-titrated staircase of the coherence 

task to obtain a coherence threshold which elicited an estimated 70% accuracy. 

Once the coherence value was chosen, participants completed 5 blocks (180 

trials each) of the coherence task at the given coherence level, giving 900 trials 

total for each session. The session ended with the completion of a second 

internal noise estimation. This procedure was repeated, without the staircase 

procedures in the following two sessions. EEG data were recorded only for the 

coherence task, as the speed of stimulus presentation in the equivalent noise 

precluded the ability to extract event-related potentials free from visually-evoked 

signals. 

 

3.2.5: EEG Acquisition and Pre-processing 

Electrophysiological data were recorded using a continuous 128-channel 

Biosemi ActiveTwo system at a sample rate of 512Hz. Movements of the external 

eye musculature were recorded using two vertical electrooculogram (VEOG) 

electrodes placed above and below the left eye. The data were analysed using 

custom code in MATLAB utilising features of the EEGLAB toolbox (Delorme & 

Makeig, 2004). Data were detrended to remove the first-order linear trend. To 

remove slow drift while allowing for the emergence of slow moving-EEG signals, 

a conservatively low High-Pass filter was applied with a cut-off of 0.01Hz. A Low-

Pass filter with a cut-off frequency of 38Hz was also applied. To remove a 20Hz 

flicker frequency evoked by the dot updating, a 20Hz notch-band filter was 

applied for the plotting of all EEG signals. Statistical analyses were performed on 

unfiltered data. Noisy channels were identified using EEGLAB’s bad channel-

detect function and interpolated. An average reference was then applied, and 

data were epoched into stimulus-locked (-500ms pre-coherent motion onset to 

2000 post coherent motion onset) and response-locked (-800ms pre-response 

and 300ms post-response). Baseline correction was applied to both epochs, 

subtracting the average activity across all sessions in the -500ms to -400ms 

window prior to target onset. This allowed for potential pre-coherent motion build-

up of EEG signals during the 500ms of random motion. Artefact trials were 

identified as trials with over 100 microvolts of activity in any electrode in the 
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stimulus-locked epoch from -200ms pre-coherent motion onset until 100 samples 

after response and for differences in voltage above 175 microvolts across the 

two VEOG channels in the same window. These trials were removed from 

analyses. To enhance signal localisation a Laplacian current-source density 

(CSD) transform was applied. To perform mu/beta power analysis a short-time 

Fourier transform (STFT) was performed, using a boxcar window size of 400 

samples, stepping forward in increments of 25 samples.  

 

3.2.6: EEG Signal Electrode Selection 

Following an approach adopted by Kelly et al (2021), we measured the onset of 

the motor potential contralateral to the responding hand in order to estimate the 

point at which the decision bounds were crossed. This was calculated to allow 

us to identify an appropriate window for measuring the CPP’s amplitude at the 

time of choice commitment. Motor potential electrodes were chosen for each 

hemisphere as the electrode site with the maximal positive difference in 

amplitude between trials in which a left versus a right response was made and 

vice versa, based on a topography centred -150ms to 0ms on response (see 

Figure 3.11).  

 

The CPP was chosen as a marker of evidence accumulation. Based on the timing 

of the motor execution signal of 119ms before response, a window of -135 to -

75ms around the response was analysed to select a search window for individual 

CPP electrode selection. The search space for selecting CPP electrodes was 

constrained to a predefined cluster of electrodes based on a topography of the 

same window shown in Figure 3.4. Individual CPP electrodes were then selected 

for each participant as the electrode with the maximal amplitude in the same 

window.  

 

Mu/beta amplitudes over the motor cortex were used as an index of response 

preparation, pre-evidence starting point adjustments, and urgency (Kelly et al., 

2021). Electrodes were chosen for each individual based on the identification of 

the electrodes contralateral to the responding hand that had the largest excursion 

from their pre-coherence starting levels (-200 to 0ms, see Figure 3.5) to the time 
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of response execution. The CNV was examined as a further, evidence-

independent marker of dynamic urgency (Devine et. al, 2019). Electrodes were 

selected individually for subjects as the electrode with the most negative going 

slope in the period of -400ms to -100ms before response (see Figure 3.8). The 

search range was selected based on the topography of the slopes of the ERP 

over electrodes in the same time window. 

3.2.7: Analysis Procedure 

Statistical analyses were performed using JASP, and plotting was completed 

using MATLAB custom codes and JASP. Error bars shown represent the 

standard error of the mean. Where no interaction terms are reported the 

interaction was non-significant. Where Mauchly’s test of sphericity indicates the 

assumption of sphericity is violated, Greenhouse-Geisser corrected degrees of 

freedom and statistics are reported. 

 

3.2.8: Modelling Procedure 

G2 error was calculated to assess the similarity of real and simulated reaction-

time distributions, binned into 5 equally spaced quintiles. As in Chapter Two, error 

scores were optimised using a Bayesian Adaptive Direct Search algorithm 

(BADS, Acerbi & Ma, 2017) which combines local Bayesian optimisation with a 

slower grid exploration. Model fitting procedures for the standard full DDM, 

neurally-informed and neurally-constrained variants are described below. To 

ensure the reliability of the G2 estimate, each model was run using the winning 

parameters but 100 random seeds. Akaike’s Information Criteria were calculated 

to enable model comparison, penalising more complicated models with additional 

parameters (Vrieze, 2012). Akaike Weights were used to compare the conditional 

probability of the best-performing models (Wagenmakers & Farrell, 2004). These 

compare the log-likelihood of a model to the mean log-likelihood of all models. 

The probability of the winning model compared to another model can then be 

estimated (see Table 3.6).   
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3.3: Results 

3.3.1: Behaviour 

To examine changes in behaviour on the EQN task across and within sessions 

a 3x2 factorial repeated measures was used (Session x EQN Measurement). A 

significant reduction in EQN estimate across sessions was observed (Session: 

F(2,28) = 4.643, p = 0.019). Bonferroni corrected post-hoc tests indicated that this 

reduction was significant only between sessions one and two (t = 3.03, p = 

0.016), with a non-significant increase between sessions two and three (t = 

1.797, p=0.252, Figure 3.2.A). There was no significant change in EQN 

measurement within a session (Estimate: F(1,13) = 0.991, p = 0.338). 

 

 

Fig. 3.2.A) Internal noise estimates by session, showing a significant reduction which plateaus with a slight 

rebound in session 3. B) Significant increase in accuracy between sessions one and two, but no increase 

into session three. C) Significant reduction in reaction time variability as measured by the coefficient of 

variation (mean reaction time/standard deviation). No reduction in session three. D) significant reduction in 

median RT across blocks within one session, but no effect across sessions. 
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Accuracy on the random dot motion task increased significantly across sessions 

(Session: F(1.336, 16.034) = 14.147, p < 0.001, Figure 3.2.B). Post-hoc tests indicated 

that similar to the EQN, this increase occurred from session one to two (Mean 

Difference = 4.4%, t = 4.424, p < 0.001) but plateaued between sessions two and 

three (Mean Difference = 0.3%, t = 0.346, p = 1). No significant improvement 

within a session was observed (Block: F(4,48) = 0.375, p = 0.825). Median reaction 

time was shown to significantly reduce across blocks within a session (Block: 

F(4,48) = 2.867, p = 0.033, Figure 3.2.C), but not across sessions (Session: F(2,24) 

= 1.958, p = 0.163). The reaction time coefficient of variation (ratio of the standard 

deviation to the mean), was shown to reduce significantly across sessions 

(Session: F(2,24) = 8.963, p = 0.001, Figure 3.2.D), but not within sessions (Block: 

F(4.047, 20.29) = 0.621, p = 0.522). Again, post-hoc analyses indicated that this effect 

was significant only between sessions one and two (t = 4.008, p = 0.002), not 

from two to three (t = 0.824, p = 0.418). Overall behavioural metrics indicate 

substantial behavioural improvements between sessions 1 and 2 that were 

maintained, but not increased in session 3.  
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3.3.2: Standard Drift-Diffusion Models 

To investigate the effect of learning on latent psychological variables, standard 

full DDMs were fit to the data, allowing each of the bound, drift and non-decision 

time to vary by session. To investigate potential changes in within-trial noise by 

session, in one model variant, the boundary was fixed at 0.1 for all sessions as 

the scaling parameter, with noise estimated independently for each session. 

 

These model runs gave the results shown in Table 3.1. Here despite 

considerable trial-to-trial flexibility granted by variability parameters, model fits 

are poor (all G2 > 135). A model allowing non-decision time to vary by session 

outperformed others in both raw error (G2 = 135.58), and model comparison 

scores (AIC = 151.58). An increase in non-decision time from 487ms in session 

one to 578ms in session three was observed, with a reduction to 563ms by 

session three (Table 3.2). 

  

Table 3.1) Model variants for initial standard full diffusion model fits, showing the number of parameters, 

raw error score and model comparison score. The column on the left indicates which parameter if any was 

allowed to vary by session. All remaining parameters were fixed across sessions. 

Parameter Varying N params G2 AIC 

None 6 219.64 231.64 

Bound 8 192.82 208.82 

Drift 8 216.59 232.59 

Non-Decision Time 8 135.58 151.58 

Within-Trial Noise 8 188.60 204.60 
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Figure 3.3) Real and simulated behaviour for the best fitting standard DDM, where non-decision time was 

allowed to vary by session. The top row shows real vs simulated reaction time distributions and accuracies. 

The bottom row shows real and simulated accuracy quantiles for five RT quintile bins. 

 

Table 3.2) Shows model estimated parameter values, error scores and model comparison scores for winning 

standard DDM with non-decision time-varying. Non-decision time shows an increase across sessions. Bnd 

= Bound. N.D = Non-decision Time, S.P = Start-Point. G2
100 = G2

 error averaged across simulations with 

100 random seeds. 

Bnd Drift N.D. 
Time 1 

N.D. 
Time 2 

N.D. 
Time 3 

Drift 
Var. 

N.D. 
Time Var. 

S.P. 
Var. 

G2 BIC AIC G2
100 

0.052 0.13 0.5 0.581 0.576 0.13 0.24 0.005 135.6 199 152 135.7 

 

The models failed to accurately capture the shape of reaction time distributions, 

in particular substantially underestimating the rate of fast and slow errors, visible 

in the quintile plots shown in Figure 3.3. Here the real data presents an inverted 

u-shape that the simulated data cannot reproduce. This is a similar outcome to 

that observed for the standard DDM fits outlined in Chapter Two. To improve 

these models, we turned to electrophysiological markers of the decision-making 

process. Through this it was hoped to identify key psychological features which 

were not captured in standard DDM, allowing for a better fitting and more 

comprehensive model. 
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3.3.3: Neurally-Informed Model Construction 

3.3.3.1: Early Accumulation  

Based on evidence for the pre-evidence build-up of noise in advance of stimulus 

onset (Devine et. al, 2019, see section 1.2.2 and Chapter Two), we tested for this 

in order to determine if a period of premature accumulation should be allowed for 

in the model. To this end, the centroparietal positivity was used as a marker of 

effector-independent evidence accumulation.  

 

Fig. 3.4) Pre-evidence CPPs by session showing significant pre-evidence build-up in all sessions. CPP 

electrodes were chosen for individuals from the response-locked topography (-135ms to -75ms) shown.  

 

A series of independent samples t-tests were used to investigate the early build-

up of the CPP in advance of and in the early stages of coherent motion onset (-

200ms to 100ms). A Bonferroni corrected p-value for 3 comparisons of 0.017 was 

used. The slope of this signal in this time window was shown to be significantly 

greater than 0 across all 3 sessions (df = 13, t1 = 5.435, p1 < 0.001, t2 = 4.297, p2 

< 0.001, t3 = 3.408, p3 = 0.005). A repeated measures ANOVA indicated that 

slopes in this time range did not differ significantly across sessions (F(2,26) = 

0.356, p = 0.704).  Consistent with previous observations using paradigms 

involving a zero evidence lead-in between stimulus and evidence onset (e.g., 

Devine, 2019, Chapter Two), these results indicate that participants commenced 

accumulating sensory information before the physical evidence became 

available or sensory encoding time could have elapsed. This neural feature 
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would account for the high proportion of fast errors observed in the behavioural 

data. The full DDM could not accommodate this despite its inclusion of starting 

point variability, as it does not allow accumulation to begin until non-decision time 

has elapsed. 

 

3.3.3.2: Starting Point Adjustments and Urgency 

We aimed to evaluate evidence for the presence of pre-evidence starting point 

adjustments. In a DDM these starting point adjustments are mathematically 

equivalent to a shift in the bound and can be used as measures of pre-evidence 

adaptations to the decision boundary. Pre-evidence mu/beta build-up has also 

been shown to reflect urgency dynamics, with the pre-evidence adjustments 

thought to reflect a decision bound already on its way to collapse (Kelly et al., 

2021). Mu/beta (8-30Hz) activity over the premotor cortex was analysed as an 

indicator of motor preparation and urgency.  

 

Fig. 3.5) Stimulus and response locked non-normalised mu/beta by session. Mu/beta electrodes were 

chosen for individuals from the response-locked topography subtracting trials on which a left response vs a 

right response was made (-100:0ms, shown above). Observed power differences potentially due to task-

irrelevant features, explored in Figure 3.6. 

 

Initial analyses indicated substantial average amplitude differences across the 

whole trial between sessions across stimulus and response-locked epochs (see 

Figure 3.5). Mu/beta however has been shown to desynchronise to a consistent 

threshold across responses, irrespective of evidence strength or reaction time 
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(Kelly et al., 2021). This difference in amplitude across sessions aroused 

suspicion as to whether these observed differences reflected true adjustments to 

mu/beta average amplitude or were the effects of behaviourally-irrelevant 

measurement error across sessions such as cap placement. To test this, trials 

were split by median RT and analysed using a 3 x 2 factorial ANOVA (Session X 

RT Bin), allowing us to test whether, within a session, mu/beta showed a 

consistent desynchronisation to a threshold. Here, there was no significant 

within-session difference in contralateral mu/beta at response between fast and 

slow trials (F(2,13) = 0.085, p = 0.775, see Figure 3.6). This shows that within a 

session, mu/beta is desynchronising to a threshold independent of reaction time 

and that the observed amplitude differences were likely not associated with 

differences in the decision process. To eliminate these differences, the mu/beta 

traces for each session were normalised by subtracting the mean mu/beta-

activity over contralateral electrodes at response for each session, giving the 

signals shown in Figure 3.7.   

 

 

Fig. 3.6) Contralateral and ipsilateral mu/beta traces split by median reaction time for each session. No 

significant difference between contralateral mu/beta at response for fast or slow responses in any session, 

suggesting an accumulation to a motor-bound within a session. This suggests mu/beta acts as a bounded 

signal, legitimising an inter-session baseline. 
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In order to test for pre-evidence adjustments to the starting point, a repeated 

measures ANOVA was used to analyse pre-evidence mu/beta power in the 

window of -200 to 0ms preceding coherent motion onset averaged across 

contralateral and ipsilateral hemispheres. Here there was shown to be no 

significant difference across sessions in pre-evidence amplitude (F(2,26) = 0.813, 

p = 0.454), or slope (F(2,26) = 0.665, p = 0.523). Visual examination of the pre-

evidence window shown in Figure 3.7, however, implied a potential decrease in 

motor preparation by session. 

 

 

Fig. 3.7) Contralateral and ipsilateral mu/beta traces in the pre-evidence window. A significant negative 

slope is observed in the pre-evidence window for session one. While differences in pre-evidence amplitude 

are non-significant, the trend suggests a decrease in pre-evidence motor preparation across sessions. 

 

In order to test for any dynamic pre-evidence adjustments to the decision bound 

a series of independent samples t-tests were used to investigate whether 

mu/beta slope averaged across contralateral and ipsilateral cortexes showed any 

significant build-up prior to coherent motion onset (-200ms to 0ms). As the test 

was performed for each of the three sessions, a Bonferroni corrected p-value for 

3 comparisons of 0.017 was used. Significant negative build-up was shown only 

in Session 1 (t(13) = -3.681., p1 =0.003), but not for the remaining sessions (all p 

>= 0.09). These analyses suggest a motor preparation in session one that is 

building towards its threshold before any evidence appears on the screen.  
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Fig. 3.8) Pre-evidence CNV. Session one shows a significantly negative slope, indicating a build-up of the 

CNV before evidence onset. Response-locked topography shows the slope  in the -400:-100ms before 

response. This was used to select electrodes with the most negative going slope in this window. 

 

The Contingent Negative Variation was investigated as a further source of 

evidence for dynamic urgency. Analysis of the pre-evidence window (-300ms to 

0ms before coherent motion) indicated no significant difference in amplitude 

(F(2,26)  = 1.719, p = 0.199) or slope (F(2,26)  = 1.462, p = 0.250). As was the case 

for mu/beta, one-sample t-tests against 0 indicated slopes were significantly 

different from 0 only in session one (t(13)= 2.873., p = 0.013, all other p > 0.166) 

There was striking correspondence between the CNV waveforms and those 

observed for mu/beta with both exhibiting significant build-up prior to evidence 

onset in Session 1. Combined with the evidence from pre-evidence mu/beta, this 

provides evidence in support of pre-coherence urgency and motor preparation 

by the time of evidence onset, lending support for the inclusion of dynamic 

urgency in the model. 

 

3.3.4: Neurally-Informed Modelling 

Using the evidence from the neural data, we constructed neurally-informed 

models that more accurately reflected the decision processes. Given 

electrophysiological results indicating substantial motor preparation in advance 

of evidence onset, alongside significant pre-evidence CNV build-up, an urgency 
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component was added. As in Chapter 2, this was implemented as a linear 

decrease of the bound over time starting at evidence onset. Similarly, given the 

potential pre-evidence build-up of the CPP in all sessions, standard non-decision 

time was replaced by a drift-onset parameter where only Gaussian noise was 

accumulated from evidence onset until a model estimated “drift-onset time”, from 

which the drift rate was also incorporated at each time point. This allowed for 

noisy accumulation, equivalent to a pre-evidence build-up of the CPP, allowing 

the model to more accurately mimic the neural signals and capture fast errors. 

Changes in drift rate, boundary, urgency and within-trial noise were tested by 

running separate models in which each of these parameters vary by session, 

alongside a model in which no parameter was allowed to vary. In all of these, 

within-trial noise was used as the scaling parameter. However, to test for 

changes in within-trial noise with learning, one model run used the boundary as 

the scaling parameter, set to 0.1 across sessions as outlined in section 3.3.2 

above. These neurally-informed models gave the fits shown in Table 3.3. The 

inclusion of early accumulation and urgency greatly improved model 

performance for all variants, with even the worst performing neurally-informed 

model (No-Change: AIC = 121.5) outperforming the best standard DDM (Non-

Decision Time: AIC = 152). Of these neurally-informed models, a model allowing 

noise to vary by condition provides the lowest error and model comparison score 

(G2 = 23.07, AIC = 41.07).  
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Table 3.3) Showing error and model comparison scores for neurally-informed models. Non-decision time is 

replaced by a drift-onset time, where noise accumulates from 0 until drift-onset time. Urgency is included as 

a linearly collapsing bound. The green highlight indicates the winning model where boundary is constrained 

across sessions and within-trial noise is allowed to vary. 

Parameter Varying N 
parameters 

G2 AIC Scaling 
Parameter 

None 7 107.57 121.57 Within-Trial Noise 

Bound 9 64.11 82.11 Within-Trial Noise 

Drift 9 103.8 121.8 Within-Trial Noise 

Urgency 9 91.95 109.95 Within-Trial Noise 

Drift-Onset  9 61.34 79.34 Within-Trial Noise 

Within-Trial Noise 9 23.07 41.07 Boundary 

 

 

Figure 3.9) Real and simulated behaviour for best fitting neurally-informed model, where within-trial noise 

was allowed to vary by session. The top row shows real vs simulated reaction time distributions and 

accuracies. The bottom row shows real and simulated accuracy quantiles for the five RT quintile bins.  
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Table 3.4) Shows model estimated parameter values and comparison scores. G2100 indicates the average 

G2 when the same parameters are used to simulate trials with 100 fresh random number seeds. Var = 

Variability, S.P = Start Point, W.T. Noise = Within-Trial Noise. 

Drift Bound Drift- 
Onset 

Urg Drift 
Var 

Drift- 
Onset 
Var 

S.P. 
Var 

W.T. 
Noise1 

W.T. 
Noise 
2 

W.T. 
Noise 
3 

G2 

 
BIC AIC G2100 

0.1 0.1 0.462 0.1 0.134 0.133 0.0011 0.054 0.039 0.041 23 94 41 24.3 

 

The plotted accuracy by reaction time quantiles indicated that the best-fitting 

model (variable noise) was successful in capturing behaviour in each session 

(see Figure 3.9). These adaptations allow the model to capture the fast and slow 

errors and the change in these proportions across sessions. Notably, the model 

estimated values of noise track largely with the behaviourally estimated marker 

of internal noise, which indicates a reduction in within-trial drift-rate noise from 

session one to two, and a plateau of this reduction by session three (see Figure 

3.10). In Figure 3.10, the model-estimated noise values have been normalised 

relative to their value in session one to bring them onto a similar scale for plotting. 

This forces parity between behavioural and model-derived noise estimates in 

session one, but session two shows near-perfect agreement with the model-

simulated noise estimate. The model also shows agreement with the EQN in 

identifying an increase in noise from Session 2 to Session 3 although the EQN 

rebound is more pronounced. 

 

 

Fig. 3.10) Comparison of model simulated within-trial noise values (coloured markers) for the neurally-

informed model with a fixed boundary to behavioural estimates of internal noise (dashed black line) for each 

session. Error bars show the standard error of the mean. Significant concordance is observed for sessions 

one and two.  
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3.3.5: Neurally-Constrained Modelling 

Efforts were then made to constrain the models using observable 

electrophysiological indices, in line with the methods outlined in Chapter Two. 

This allows for the exploration of more complex models with minimal impact on 

model comparison scores by not increasing the number of free parameters.  

 

3.3.5.1: Boundary Adjustment Constraint 

Although in these data, the differences in pre-evidence mu/beta were non-

significant, pre-evidence, mu/beta has been shown to be a good estimate of pre-

evidence starting point adjustments to decision bound (Kelly et al., 2021). As 

such, pre-coherence mu/beta was used to constrain boundary estimates by 

session. Pre-evidence starting point adjustments were calculated as the mean 

pre-evidence mu/beta across ipsi and contralateral channels in the -200 to 0ms 

before evidence onset (see Figure 3.7). Values were normalised by the lowest 

starting point (Session 1) and divided by ten to bring them in line with the 

boundary constrained in the Standard-Noise model above 0.1. 

 

3.3.5.2: Motor Time Constraint 

Following the method used by Kelly and colleagues (2021), a motor commitment 

time point was estimated. This has the benefit of enabling the drift-onset 

parameter to accurately reflect noisy accumulation. Without constraining the time 

required for motor response, the relative contribution of true “noisy build-up” 

relative to the motor time in a drift-onset parameter cannot be determined. This 

motor execution time was taken as the pre-response inflection point of ERP 

activity measured over the motor cortex contralateral to the chosen direction (see 

topography in Figure 3.11), calculated as the last point prior to response at which 

there is a non-negative slope. Although motor potential onset appears closer to 

response execution in later sessions, these differences were not statistically 

significant (F(1.418, 18.438) = 0.8, p = 0.424, see Figure 3.11). The average motor 

time across sessions was estimated to be 119ms.  This motor time of 119ms was 

added to the simulated RTs to account for motor execution time. Non-decision 
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time variability was then applied to this motor-time parameter, adding uniformly 

distributed variability.  

 

 

 

Fig. 3.11) Contralateral pre-movement ERP over the motor cortex in the pre-response window. Dashed lines 

indicate the inflection points for these signals after which only a positive slope is observed. These were not 

significantly different across sessions (p = 0.424). Topography shows the difference between trials in which 

a left versus a right response was made. It maps the response-locked activity in the -150:0ms window 

centred on the response used for electrode selection. 

 

3.3.5.3: Equivalent Noise Constraint 

As there was no observed difference in internal noise estimate within a session 

(F(1,13) = 0.991, p = 0.338), the average of the two internal noise estimates for 

each session were used as estimates of within-trial noise for that session. As with 

the boundary constraint, noise values were averaged across subjects and 

normalised relative to the session with the lowest noise estimate (Session 1). 

These were then multiplied by 0.1 to bring them in line with the traditional scaling 

parameter value for within-trial noise.  
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3.3.5.2: Neurally-Constrained Model Fitting Procedure  

Constrained versions of the neurally-informed models were then run. These were 

constrained by either mu/beta or internal noise estimate alone, or by both 

simultaneously. Where both constraints were used, a freely estimated parameter 

was added to scale the noise value in session one. This was done to ensure that 

any arbitrary differences between the magnitude of the noise and mu/beta 

constraints did not unduly affect the search space. In effect, this means that the 

within-trial noise value for Session 1 was freely-estimated and the values for 

Sessions 2 and 3 were fixed to a proportion of the Session 1 value, using the 

percentage changes derived from the EQN estimates. 

 

For each of the constraint methods, models were run allowing each of either 

boundary, drift, urgency or drift-onset time to vary by session. In models where 

only one of beta or noise was constrained, a model variant allowing the remaining 

unconstrained value to vary across sessions was performed (e.g., if the boundary 

was constrained and the noise was not, a model allowing noise to vary by session 

was run).  

 

To allow for the possibility of distinct pre-evidence accumulation times and drift-

onset times, variants that allowed for both an accumulation-onset time and a drift-

onset time were fitted. Here, either accumulation-onset or drift-onset time, or both 

were freely estimated (earliest possible onset of accumulation-onset time set to 

-500ms relative to evidence onset). Again, for each constrained model family, 

variants which allowed accumulation-onset or drift-onset to vary by session were 

also fit. In general, these models did not provide better fits to the data than one 

with only drift-onset time estimated. 
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Table 3.5) Shows a complete breakdown of included parameters in each of the model types. Green ticks 

mean the parameter was included, and red shaded x’s indicate the parameter was not. Variants of all models 

which included either/both a drift-onset and noisy-accumulation-onset time were also run. In this bottom 

row, a yellow “-” indicates the parameter was either included or not included depending on the model variant 

and family. W.T. = Within-Trial Noise. Mot.-Time = motor execution time constrained by the motor potential. 

Acc.-On = accumulation-onset time, or time-point at which the drift rate began. 

 Standard  Variability  Neurally-Informed  Neurally-Constrained 

 

Bound Drift  Ter W.T. Noise Drift  Ter Z Urg. Drift-On Acc.-On Mot. Time Bound  W.T. Noise 
Noise- 
Scaling  

Standard ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘ 

Neurally-Informed ✔ ✔ ✔ ✔ ✔ ✔(mot.-time) ✔ ✔ ✔ ✘ ✔ ✘ ✘ ✘ 

Beta-Constrained ✘ ✔ ✘ ✔ ✔ ✔(mot.-time) ✔ ✔ ✔ ✘ ✔ ✔ ✘ ✘ 

EQN-Constrained ✔ ✔ ✘ ✘ ✔ ✔(mot.-time) ✔ ✔ ✔ ✘ ✔ ✘ ✔ ✘ 

EQN/Beta-Constrained ✘ ✔ ✘ ✘ ✔ ✔(mot.-time) ✔ ✔ ✔ ✘ ✔ ✔ ✔ ✔ 

Accumulation-Onset  ✔ ✔ ~ ✔ ✔ ✔ ✘ ~ ✔ ✔ ~ ~ ~ ~ 

 

3.3.5.3: Constrained Model Fits 

The top two performing models for each constraint family are presented in Table 

3.6. Overall, the neurally-informed but unconstrained model with freely estimated 

noise was shown to provide the best fit to the data, outperforming standard DDMs 

and the constrained models. Models constrained by both mu/beta and internal 

noise estimate with urgency varying provided the next best fits. 
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Table 3.6) Showing two best model fits for each of the variations of neural constraints. A non-constrained 

model with noise varying remains the best model fit. Green shows the winning model: Neurally-informed 

with Within-Trial Noise varying, orange shows the second-best model: EQN & Mu/Beta-Constrained with 

urgency varying, and red shading shows the third best model: EQN & Mu/Beta-Constrained with 

accumulation-onset time varying. Conditional probabilities comparing the probability of the winning model 

to each individual model are calculated based on the Akaike Weights (Wagenmakers & Farrell, 2004). 

Free 
Parameter 

N 
Params. 

G2 AIC BIC G2
100Seed 

AIC: Difference 

from Winning 
Probability 

Standard 

Non-Decision 
Time 

8 135.58 151.58 198.5 134.67 110.51 9.93e+23 

Within-Trial 
Noise 

8 188.6 204.6 251.52 192.74 163.53 3.24E+35 

Neurally-Informed 

Within-Trial 
Noise 

9 23.07 41.07 93.85 24.33 0 1 

Accumulation- 
Onset  

9 30.49 48.49 101.27 31.53 7.42 40.85 

EQN-Constrained 

Drift-Onset  9 35 53 105.78 35.69 11.93 389.55 

Bound  9 37.27 55.27 108.05 39.33 14.2 1211.97 

Beta-Constrained 

Within-Trial 
Noise 

9 39.55 57.55 110.33 43.09 16.48 3789.54 

Drift-Onset  9 44.88 62.88 115.66 44.38 21.81 54447.92 

EQN and Beta-Constrained: 

Urgency  9 25.32 43.32 96.1 24.96 2.25 3.08 

Accumulation- 
Onset and 
Urgency 

11 26.19 48.19 112.7 25.86 7.12 35.16 
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Figure 3.12) Real and simulated behaviour for the best fitting neurally-constrained model, where bound and 

noise are constrained with urgency allowed to vary by session. The top row shows real vs simulated reaction 

time distributions and accuracies. The bottom row shows real and simulated accuracy quantiles for five RT 

quintile bins.  

 

Table 3.7) Shows model estimated parameter values, error scores and model comparison scores for winning 

EQN & Mu/Beta constrained model. Boundary and within-trial noise are constrained by behavioural/neural 

constraints and were not freely estimated. A noise scale parameter was freely estimated to ensure the model 

was not limited by arbitrary differences between the constrained boundary and EQN measure. Participants 

show higher bounds and increasing urgency across sessions. W.T Noise = Within-Trial Noise. Urg. = 

Urgency component. S.Pnt. = Start Point. Var = Variability 

Bound 1 Bound 2 Bound 3 W.T. 

Noise 1 

W.T. 

Noise 2 

W.T. 

Noise 3 

Drift 

Rate 

Drift On Urg. 1 Urg. 2 Urg. 3 

0.1 0.106 0.107 0.069 0.051 0.061 0.11 0.3409 0.065 0.078 0.076 

Drift Var. Mot 

Time Var 

S.Pnt 

Var 

Noise 

Scale 

G2 AIC G2
100     

0.144 0.078 0.007 0.069 25 43 24.96     

 

 

While not outcompeting the neurally-informed model with noise varying, models 

constrained by both mu/beta and the EQN provide a more complex picture of the 

data. These models indicate an increase in noise and decision bound across 

sessions, along with an increase in urgency. However, the accuracy-quantile 

figure shows a poor fit in session three, especially in the proportion of fast errors 

made.  
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The best-performing model was a non-constrained but neurally-informed model 

with boundary fixed and noise reducing across sessions. The second two best-

performing models were the Mu/Beta and EQN-constrained models. However, 

the winning model only outperformed the second-best neurally-constrained 

model by 2 AIC points. To assess how much more probable the winning model 

was compared to the neurally-constrained model, Akaike Weights were 

calculated. These were calculated for all models shown in Table 3.6. These give 

an estimate of how much more probable the winning model is compared to each 

individual model (Wagenmakers & Farrell, 2004). Shown in the rightmost column 

is an estimate of how much more probable the winning, non-constrained model 

is compared to the model in each column. With this, it can be roughly estimated 

that the winning neurally-informed model with fixed bounds and noise-varying is 

roughly 3 times more probable than the winning neurally-constrained Model. 

However, these models were significantly more complex and had either urgency 

varying or both noisy-accumulation-onset time and urgency varying by session. 

This allowed us to investigate more complex effects.  

 

Overall, it is suggested that the main driver of the behavioural improvements 

were adaptations to within-trial noise. This is seen in the neurally-informed model 

where the boundary is fixed across sessions. This is similarly observed when 

boundary adjustments are constrained by pre-evidence mu/beta-constrained 

alone, where within-trial noise levels are also shown to reduce by session (see 

Figure 3.13). Collectively, this provides substantial support for reductions in 

within-trial noise as a contributory factor to perceptual learning. Secondary 

improvements may be driven by the learning of task-timings, which increase 

urgency and reduce the premature onset of accumulation prior to evidence 

appearing. 
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Fig. 3.13) Comparison of model simulated within-trial noise values for the neurally-informed model with a 

fixed boundary (dashed black line) and mu/beta constrained model with within-trial noise varying (dashed 

green line)  to behavioural estimates of internal noise (coloured markers) for each session. Error bars show 

the standard error of the mean. Significant concordance is observed for sessions one and two. 

 

3.3.6: Model Validation through Independent Neural Data 

In order to establish whether our winning neurally-constrained model was in 

concordance with the observed neural data, key features of the model were 

simulated and compared to our neural indices. These comparisons were the 

evidence accumulation variable vs the CPP, the model simulated motor response 

variables vs contra/ipsilateral mu/beta, and the linearly collapsing urgency 

component vs the CNV.  

 

3.3.6.1: Evidence Accumulation 

Model estimated decision variables from the winning neurally-constrained model 

(Mu/Beta & EQN Constrained: Urgency Varying) were simulated and plotted to 

track model concordance with our neural marker of evidence accumulation, the 

CPP.  

 

Figure 3.14 shows the model simulated stimulus and response-locked 

cumulative decision variable for the Mu/Beta and EQN-constrained model with 
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urgency varying. Descending coloured dashed lines illustrate the models' 

collapsing bounds, with the dashed green line indicating drift-onset time. The 

dashed green line represents drift-onset time. 

 

Fig. 3.14) Stimulus and response locked CPP signals by session, compared to model simulated urgency 

components for the neurally-constrained model with urgency varying. Dashed coloured lines represent the 

mean RT for each session. Green dashed lines represent drift-onset time. There is little concordance 

between observed and simulated decision variables. 

 

Comparing these features to the model simulated data, we can see that while 

providing strong fits to the behavioural data, the models do not seem to 

successfully reproduce key features of the CPP, including CPP amplitude at 

response and the increasing build-up by session visible in the stimulus-locked 

traces.  

 

We then compared our neural data to the winning unconstrained neurally-

informed model with Within-Trial Noise varying (see Figure 3.15). Here there is 

a fixed boundary across sessions. Again, there is little concordance between the 

simulated decision variable and the CPP. 
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Fig. 3.15) Stimulus and response locked CPP signals by session, compared to model simulated urgency 

components for the neurally-informed model with within-trial noise varying. Dashed coloured lines represent 

the mean RT for each session. Green dashed lines represent drift-onset time. The boundary is fixed across 

sessions. There is little concordance between observed and simulated decision variables. 

 

3.3.6.2: Motor Signal 

Motor signals were simulated as the negatively signed, cumulative evidence for 

either the chosen or unchosen response with the negative going urgency 

component added. Notably, the neurally-constrained simulations show a strong 

resemblance to the observed neural data. While constrained to match mu/beta-

starting levels, the simulated signals exhibit the same pattern of 

desynchronisation across time (see Figure 3.16). 
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Fig. 3.16 Stimulus and response locked mu/beta signals by session, compared to model simulated urgency 

components for the neurally-constrained model with urgency varying. Dashed coloured lines represent the 

mean RT for each session. Green dashed lines represent drift-onset time. Significant concordance is seen, 

especially around evidence onset. The Green dashed line represents drift-onset  

 

We then compared our neural data to the winning unconstrained neurally-

informed model with within-trial noise varying (see Figure 3.17). Here there is a 

fixed boundary across sessions. Even without pre-evidence starting point 

adjustment, the signals show significant concordance. The increased build-up of 

the motor signal for the chosen response in earlier sessions is driven by the 

higher levels of noise. 

 

 

Fig. 3.17) Stimulus and response locked mu/beta signals by session, compared to model simulated urgency 

components for the neurally-informed model with within-trial noise varying. Dashed coloured lines represent 

the mean RT for each session. Significant concordance is seen, especially around evidence onset. The 

green dashed line represents drift-onset time. 
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3.3.6.3: Urgency 

The raw urgency components, without added evidence, were extracted and 

compared to the CNV as a marker of urgency. The lower amplitude of the CNV 

at evidence onset response aligns with the starting-point adjustments before 

evidence onset. Similarly, the simulated urgency slopes align with the CNV 

slopes across sessions (see Figure 3.18). Concordance between the neural 

signals and model simulated variables at response is less apparent.  

 

 

Fig. 3.18) Stimulus and response locked CNVs by session, compared to model simulated urgency 

components for the neurally-constrained model with urgency varying. Dashed coloured lines represent the 

mean RT for each session. Green dashed lines represent drift-onset time. Significant concordance is seen, 

especially around evidence onset.  

 

We performed the same comparison for the winning neurally-informed model. 

Here as there is a fixed urgency component across sessions, and the simulated 

urgency component is unable to capture the early differences in CNV amplitude 

around evidence onset (see Figure 3.19).  
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Fig. 3.19) Stimulus and response locked CNVs by session, compared to model simulated urgency 

components for the neurally-informed model with within-trial noise varying. Dashed coloured lines represent 

the mean RT for each session. Green dashed lines represent drift-onset time. Urgency is fixed across 

sessions. 
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3.4: Discussion 

The psychological factors which contribute to perceptual learning remain poorly 

understood. These improvements may arise from a combination of increasingly 

precise expectations about the task demands (e.g., stimulus timing, Liu & 

Watanabe, 2012; Petrov et al., 2011) and/or a sharpening of psychophysical 

sensitivity born from the more efficient encoding of the sensory evidence (Dosher 

et al., 2013). This improved sensory representation can be achieved through the 

suppression of internal noise, or improved exclusion of external noise, resulting 

in improvements to sensory encoding (see Dosher & Lu, 2017 for a review). 

These adaptations can be represented in sequential sampling models, like the 

DDM, as strategic adjustments to the decision bounds and increases in drift rate, 

respectively (Ivanov et al., 2022; Petrov et al., 2011; Zhang & Rowe, 2014). 

However, the standard DDM has overlooked potential reductions in within-trial 

noise as a driver of visual perceptual learning. This study aimed to assess the 

contributory factors leading to visual perceptual learning, using neural data to 

inform and constrain existing models. It also aimed to explore psychophysical 

estimates of internal noise as potential estimates of model within-trial variability.  

 

Over the course of repeated exposure to the task, participants exhibited some of 

the behavioural hallmarks of perceptual learning: significant reductions in 

reaction-time variability and increases in accuracy. In addition, we observed a 

reduction in the psychophysical estimate of internal noise using the EQN. 

However, the behavioural effects of time-on-task tapered off after Session 2. This 

may have been due to the nature of the task, which was a basic motion 

discrimination task. Performance on these “low-level” perceptual judgement 

tasks is shown to exhibit relatively small improvements in comparison to learning 

on more complex tasks such as facial discrimination which require input from a 

broader range of perceptual processes (Fine et. al, 2002). However, previous 

studies of perceptual learning on contrast-discrimination tasks have shown 

learning which continues linearly across five sessions (Devine, 2019). Similar 

work on a frequency discrimination task indicated that improvements were only 

shown in participants who completed 900 trials per session, while no 

improvements were shown in participants completing 360 trials per day, 
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suggesting a high number of trials per session may be needed to elicit consistent 

learning on basic perceptual judgments (Wright & Sabin, 2007). Participants in 

this study completed 900 trials per session, and it is possible that with additional 

training days further improvements may have been observed. 

 

Initial standard DDM fits indicated changes in non-decision time as being the 

primary driver of the observed perceptual learning effects. However, this did not 

align with previous research, and the model provided poor fits to the behavioural 

data. Analysis of key neural signatures of the decision process indicated that the 

model was missing important parameters which meant the DDM was not 

reflecting the decision process accurately. For example, urgency dynamics were 

readily apparent in mu/beta activity and the CNV for Session 1, which indicated 

that response preparation began in advance of evidence onset and could 

account for the slow errors in the data. Furthermore, there were signs of pre-

evidence accumulation of noise in all sessions in the early ascent of the CPP. 

This would account for the high rate of fast errors seen in the behavioural data, 

which despite the inclusion of starting point variability, the DDM could not 

accommodate. With this in mind, the DDM was adapted to include urgency as a 

linearly collapsing bound, while allowing for the accumulation of noise up to the 

drift-onset parameter. Model variants which freely estimated both an 

accumulation-onset time and a drift-onset time were tested, however, they did 

not provide better fits to the data when corrected for the number of parameters. 

These neurally-informed models included one model where the boundary was 

fixed across sessions as a scaling parameter and within-trial noise was allowed 

to vary, allowing us to assess the effects of learning on within-trial noise in a 

DDM. The neurally-informed models provided a significant improvement on 

standard models in their fits to behaviour and revealed a novel parameter effect. 

Here, the winning model implemented a consistent bound across sessions, 

attributing the perceptual learning effects to reductions in within-trial noise. 

Critically, these models simulated estimates of within-trial noise were validated 

by the closely aligned behavioural EQN estimates, grounding the parameter 

estimate in an independent empirical index of the efficiency of sensory encoding. 

Collectively, this highlights the importance of referring to the neural data in order 

to aid in constructing a more representative model of the decision process. 
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Examination of mu/beta signals over the motor cortex indicated potential pre-

evidence adjustments to response preparation levels. These indicated an 

increase in motor excursion across sessions, where beta has further to travel 

from its initial point to its threshold at response. As previously outlined, these pre-

evidence adjustments to mu/beta levels have been indicated as analogous to 

starting point adjustments in the DDM, which are in turn mathematically 

equivalent to boundary changes (Kelly et al., 2021). While the effects observed 

here were non-significant, the observed boundary increases were consistent with 

previous DDM studies of perceptual learning which have shown an increasing 

boundary with learning (Ivanov et al., 2022; Zhang & Rowe, 2014). The failure of 

these adjustments to reach statistical significance may have been driven by the 

relatively small sample size of the current study and the resulting low statistical 

power. However, given previous evidence in support of decision boundary 

increases with learning (Ivanov et al., 2022; Zhang & Rowe, 2014), pre-evidence 

mu/beta levels were used to constrain an increasing decision bound across 

sessions. From this, a series of neurally-constrained models using pre-evidence 

beta as a proxy for boundary adjustments and the EQN measurement of internal 

noise in place of within-trial noise were run. The best performing of these 

neurally-constrained models was one which allowed urgency to vary, with 

urgency shown to increase across sessions. These complementary mechanisms 

may work in concert: as elevated decision bounds lead to more accurate 

responses, reduced within-trial noise limits RT variability and a growing urgency 

component across sessions may account for increasing familiarity with task 

timings (Liu & Watanabe, 2012). 

 

Our winning neurally-constrained model provided slightly worse fits to the data 

than the neurally-informed model with decreasing noise. However, the 

differences in AIC were small. Analysis of the Akaike Weights (Wagenmakers & 

Farrell, 2004) for the winning models suggested that the winning neurally-

informed but un-constrained model was approximately 3 times more likely than 

the winning neurally-constrained model with urgency varying. In order to assess 

the extent to which each of these two models reflected the neural data more 

accurately, we simulated the core components of each model and compared 

them to the observed neural signals. The simulated motor preparation and 
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urgency signals of the neurally-constrained models showed a high degree of 

correspondence with their empirical neural signatures. That is, although the 

mu/beta and urgency build-up rates did not vary significantly between sessions, 

they exhibit a highly similar numerical trend to that of the simulated data. Of 

particular note was the concordance between the CNV and simulated urgency 

component, which tracked the ramping of urgency across the trial, alongside its 

pre-evidence adjustments. The neurally-informed model with fixed boundaries 

and no urgency varying by condition was incapable of recreating these 

similarities. Neither the neurally-informed nor neurally-constrained models 

simulated decision variable reflected the CPP, however, the inclusion of noisy 

build-up until a drift-onset captured the early kick-off of the CPP shown in the 

neural data. Clearly, however, the discrepancies raise questions. At a minimum, 

the winning model may not be giving a full account of what is happening in the 

brain. There may be a drift rate increase alongside noise decrease that the model 

is not able to disentangle as they have similar effects on behaviour. There are 

also question marks about how different noise levels should translate to CPP 

amplitude. One possibility is that when there is a lot of sensory noise, the sensory 

evidence is down-weighted at the evidence accumulation stage, causing a 

shallower build-up. This may be thought of as an extension of the work of Law 

and Gold (2008) who showed increased spike rates in the choice-selective 

neurons of the monkey LIP with training, but not the motion-sensitive MT. 

However, the MT neurons were shown to be increasingly predictive of choice 

across sessions, indicative of a reweighted readout of sensory information into 

the decision process with time. Here we suggest that decreasing within-trial noise 

at the visual encoding level may result in an increased reweighting of the 

evidence at the decision-formation stage. While this study did not measure early 

visual neural representations directly, previous work in the O’Connell lab 

supported this (Devine et al., 2019), where an increased differential SSVEP 

signal with perceptual learning indicated an improved sensory representation of 

the stimulus. This was coupled with increases in CPP amplitude and build-up 

across sessions, suggestive of adaptation to both the decision formation stage 

and the earliest neural representation of a stimulus. This may be indicative of 

reduced ongoing perceptual noise in these early sensory stages, which results 

in a stronger reweighting of evidence at the decision-formation stage. This may 



151 

have resulted in a model which, while capturing behaviour, does not successfully 

reflect how these changes to within-trial noise manifest in neural indices of 

evidence accumulation.  

 

The neurally-constrained model did not perform as well as the neurally-informed 

model with a fixed boundary and noise varying freely across sessions. The fact 

that the differences across sessions in pre-evidence mu/beta were non-

significant may have been driven by low statistical power. Instead, it may suggest 

that adaptations to the decision bound were sufficiently small that the 

improvement in the data fits brought about by allowing for a varying bound was 

outweighed by the penalisation applied for increasing the model’s complexity. 

The EQN estimate was also shown to estimate a lower internal noise value than 

a model-simulated noise for session 3 (Figure 3.13). This may have been driven 

by measurement error in the constraints which could have contributed to the 

slightly poorer fits in the neurally-constrained models which incorporated this 

parameter. For example, the EQN internal noise estimate is a faster version of 

traditional estimates of within-trial noise, requiring only 150 trials (Tibber et al., 

2014). A higher number of trials may have yielded better estimates of internal 

noise that may have more closely resembled the model. Increasing the trial 

count, for example to 250 trials, would not substantially lengthen the time of the 

overall testing session and may be beneficial in obtaining more reliable estimates 

of internal noise. Furthermore, as behavioural internal noise estimates may 

potentially encapsulate sources of both between and within-trial variability, the 

measure may not directly reflect within-trial noise in isolation. Future work may 

benefit from collecting internal noise estimates across a large sample, using the 

DDM to assess the extent to which internal noise loads onto between-trial or 

within-trial noise. Alternatively, neurally-derived means of estimating ongoing 

noise in the decision process may provide a more suitable constraint, 

constraining variability within-trial noise in a given trial in isolation.  

 

One future avenue for research may be to analyse within-trial variability features 

of the CPP, such as signal entropy (Sleimen-Malkoun et al., 2015), to attempt to 

find a neural correlate for within-trial noise. This could provide further neural 

evidence for reductions in intra-trial decision noise with learning and would align 
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with Dosher and Lu’s (2017) suggestion that learning occurs through the 

increasingly efficient weighting of visual inputs into a decision formation signal. 

At a methodological level, identifying reliable means of estimating within-trial 

noise via the CPP would present an easily obtainable neural proxy for measuring 

individual differences, distinct from any between-trial variability. This would 

provide a novel and convenient mode for creating neurally-informed models, 

eliminating the need for behaviourally estimated internal noise measurements 

which add to testing time such as the EQN (Tibber et al., 2014). Furthermore, 

neurophysiologically-derived estimates of within-trial noise would provide a 

principled parameter constraint that may prove crucial in allowing neurally-

informed models to capture key subtleties of the decision process, which have 

so far gone undetected. This advance could have profound consequences for 

basic perceptual research and our understanding of the neural underpinnings of 

many clinical disorders. If the CPP is to be used as a neural constraint for the 

diffusion model, some potential limitations must be addressed. As outlined in 

Chapters One and Two and evidenced in the necessity to rescale mu/beta-

signals across sessions in this study, there may be substantial individual, non-

task-related variability in signal presentation (Antonakakis et al., 2020). This may 

also have contributed to the failure of our model-simulated decision variables to 

align with our electrophysiological signals. Potentially novel methods for 

addressing this via Independent Component Analysis will be assessed in the 

coming chapter. 

 

Collectively, the neural and behavioural constraints do offer a promising 

possibility for improving models, but one which could not be fully validated in this 

study. However, the neurally-constrained models did succeed in producing 

simulations which were far more in line with the observed neural data than the 

winning non-constrained model. A larger sample size may have more clearly 

indicated these effects, pointing more conclusively to adaptations both to the 

levels of within-trial noise and urgency dynamics. However, this study is the first 

to devise methods of accommodating changes to within-trial noise in a sequential 

sampling model. These reductions are observed across both neurally-

constrained and unconstrained behavioural modelling and are supported by 

psychophysical estimates of internal noise via the EQN. Overall, this presents 
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compelling evidence for the reduction of ongoing within-trial noise in visual 

perceptual learning.  

 

While the neurally-constrained model did not outperform the winning neurally-

informed model, this work identified potential increases in urgency in perceptual 

learning. Including an urgency parameter significantly improved model fits, 

allowing it to capture the slow errors viewed in the behavioural data. This was 

supported by evidence from the CNV and mu/beta. The winning Mu/Beta and 

EQN-constrained model may suggest possible improved learning of task timings, 

which occurs alongside the improved representation of the sensory stimulus 

through the suppression of noise. Urgency may be suggestive of a high degree 

of specific, non-generalisable learning, which may not be transferable to other 

domains or tasks. This may be in part contributing to the high degree of domain 

and task specificity observed in the perceptual learning literature (Fahle, 2005). 

The reductions to within-trial noise, however, may reflect an improved sensory 

representation, such as a selective tuning of visual neurons (Dosher & Lu, 2017) 

that may be more generalisable to other tasks and domains (McGovern et al., 

2016). It was beyond the scope of this study to test for transferability of learning, 

but this question could be addressed in future research using similar approaches. 

On tasks with variable timings, the effects of urgency on learning should be 

diminished. Such a paradigm could also test across various stimuli to assess the 

extent to which lowering of within-trial noise represents a highly specific tuning of 

visual resources on a specific task or a more global lowering of internal noise, 

potentially through the boosting of top-down attentional resources. 

 

In conclusion, this work presents an in-depth model-based analysis of the factors 

underpinning perceptual learning. Through a novel synthesis of behavioural 

modelling, psychophysical testing and electrophysiology, neurally-informed and 

constrained models point to reductions in within-trial noise. It is the first study to 

use neurally-informed modelling to highlight the reduction in internal noise across 

learning and also demonstrates the value of the EQN as a potential behavioural 

proxy for an individual's average level of within-trial noise. Neurally-constrained 

models also indicated potential boundary increases and increased urgency as 

potential contributors to the observed behavioural improvements. Future work 



154 

may explore the application of these constraint methods to individual-level 

modelling to further our understanding of the complex cognitive processes 

underpinning perceptual learning and decision-making. 
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Comparison of Evidence Accumulation 
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4.1: Introduction 

The high temporal resolution of electrophysiological data makes it possible to 

track the emergence of a range of neural signals which reflect distinct stages of 

the decision-making process (O’Connell, Dockree, et al., 2012), granting us an 

increased understanding of how perceptual decision-making unfolds in the brain. 

As explored in previous chapters, a growing body of work has attempted to 

directly link aspects of these signals to computational model parameters with 

considerable success (Chapters One, Two & Three; Kelly et al., 2021, Turner et 

al., 2013, McGovern et al., 2018, Corbett et al., in press). Neural signals provide 

a valuable tool for improving standard sequential sampling models of decision-

making, enabling us to create biologically-informed models which can produce 

more detailed explanatory accounts. Neurally derived markers of the decision 

process can also be used to directly constrain certain model parameters, allowing 

us to explore increasingly complex models without the risk of overfitting 

behavioural data and removing the need for arbitrary scaling parameters, a major 

limitation for between-group modelling (Chapter Two, Chapter Three, Kelly et al., 

2021, McGovern et al., 2018, Corbet et al., 2018).  

 

While these advancements are promising, our ability to rely on these signals as 

constraints for modelling relies on the extent to which they reflect specific 

decision processes accurately. These assumptions are strongly tested when we 

attempt to compare signals taken from two fundamentally distinct groups. Here, 

differences in signal topography and amplitude may well be attributable to 

differences in the underlying decision-making processes, but they may just as 

well reflect task-irrelevant features of the neural data which are borne out 

differently across different groups. These may include group differences in signal 

location (e.g., O’Connell, Balsters, et al., 2012; van Dinteren et al., 2014b), or 

changes in volume conduction caused by physiological differences in skull 

thickness (e.g., Antonakakis et al., 2020). For example, in Chapter Two and 

previous studies (Stacey et al. 2021), elevated beta-power in older adults is 

observed. As mu/beta is seen to reliably desynchronise to a threshold at 

response, irrespective of response time and difficulty (Kelly et al., 2021), these 

differences do not seem to be related to the decision process and the signal can 



157 

be normalised (see Chapters Two). However, not all signals cross a threshold at 

response; therefore, this normalisation approach cannot be widely applied. For 

example, the centro-parietal positivity (CPP) presents one of the most potentially 

valuable signals to a neurally-informed model. It has been shown to represent 

evidence accumulation (e.g., O’Connell, Dockree, et al., 2012; Twomey et al., 

2015), and to exhibit strong correspondence with cumulative evidence 

timecourses simulated directly from sequential sampling models (e.g., Kelly et 

al., 2021; Corbett et al., in press). The CPP presents an important method for 

validating decision models alongside behavioural data. For instance, in Kelly and 

colleagues (2021) two model variants produced highly similar fits, but only one 

of them was able to successfully recapitulate the CPP. This was used as 

evidence in support of their neurally-informed model. Furthermore, the 

observation of consistent CPP bounds at response across older and younger 

adults was used as a means of constraining the decision bound in a model by 

McGovern and colleagues (2018).  

 

As such, the CPP presents a vital tool for neurally-informed modelling. However, 

while the CPP builds to a peak at response, its peak amplitude varies under 

different conditions, with lower amplitudes for faster reaction times and more 

difficult trials (Steinemann et al., 2018). This is likely due to urgency, where an 

increasing pressure to respond causes a lowering of the decision bound over 

time and a lower amount of evidence accumulated by response. Without a 

distinct and predictable accumulation to threshold across decision-making 

conditions, the CPP cannot be easily rescaled as was done for mu/beta, meaning 

behaviourally-irrelevant influences on its amplitude and slope cannot readily be 

controlled for. This makes it difficult to compare these signals across groups, as 

we cannot be certain that observed differences in CPP amplitude are due to 

differences in the underlying decision-making process being studied or 

behaviourally-irrelevant effects on signal amplitude. This may have contributed 

to the discordance between model-simulated decision variables and the CPP in 

Chapter Two. Here, model-simulated decision variables in older adults predicted 

far higher cumulative evidence levels at response than was indicated by the CPP 

(see section 2.3.6.1: Figure 2.18), making it difficult to assess whether the model 

simulation or CPP better represents differences in decision-making across 
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groups. Without a reliable means of rescaling these signals we cannot be certain 

that the lower CPP amplitudes reflect a true ageing effect on decision formation, 

or rather some physiological difference in the older adult sample (e.g., reduced 

skull conductivity, Antonakakis et al., 2020), which affects the presentation of the 

CPP at the scalp, but not the core underlying decision-making process. 

 

Significant between-group differences in neural data across older and younger 

adults are observed in a wide variety of tasks and brain signals. One of the most 

well-studied examples of these between-group differences in the ageing brain is 

the ageing-frontalisation effect, where both EEG and functional magnetic 

resonance imaging (fMRI) research has indicated an increased level of activity 

in frontal areas in the ageing brain (Davis et al., 2008; O’Connell, Balsters, et al., 

2012; Van de Vondervoort & Hamlin, 2016). Here the P3, which has been shown 

to be analogous to the CPP (Twomey et al., 2015), shows significant 

frontalisation with ageing, potentially representing compensatory recruitment of 

frontal areas (Kuruvilla-Mathew et al., 2022). However, this frontalisation may be 

driven by potentially task-irrelevant reasons, such as the influence of overlapping 

signals or aforementioned differences in skull thickness (Antonakakis et al., 

2020; Kelly & O’Connell, 2013; O’Connell, Balsters, et al., 2012)  

 

This frontalisation effect bears important influence on attempts to incorporate the 

CPP into neurally-informed models of ageing. With increased frontalisation, we 

do not know where it is best to measure signals such as the CPP on the scalp in 

older adults, as it remains unclear as to whether this increased frontal 

presentation reflects a true shift of the evidence-dependent CPP or an ancillary 

process which results in increased frontal amplitudes but is unrelated to the 

decision-making process. As such, we cannot be sure of the extent to which 

these group differences in signal amplitude or build-up represent any true 

changes to the underlying signal, reflecting changes to the process itself, or just 

measurement error due to the movement of its location. Importantly, studies of 

ERP-frontalisation in EEG typically use tasks that elicit sensory-evoked 

potentials (Fabiani et al., 1998; van Dinteren et al., 2014b) that may have different 

amplitudes in older adults (Kolev et al., 2002; O’Connell, Balsters, et al., 2012; 

Anderer et al., 1996, 1998; Gajewski et al., 2018; Bertoli et al., 2005; Golob et 
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al., 2001; Kuruvilla-Mathew et al., 2022; Polich, 1997a). Furthermore, other 

neighbouring signals such as the contingent negative variation (CNV), a signal 

over frontocentral electrodes which peaks negatively at response (Devine et al., 

2019, see Chapter One: 1.1.3), may also overlap with and potentially alter the 

overall topography and amplitudes of the CPP without the signal itself shifting 

position (Kelly & O’Connell, 2013). Collectively, these factors could lead to faulty 

interpretation of the decision process differences between older and younger 

adults.  

 

This study aimed to examine these issues by analysing pre-existing data from 

three tasks; a classic auditory oddball typically used to elicit the P3b, a task 

designed not to elicit any sensory-evoked potentials to remove the potential 

influence of these overlapping signals, and a random dot-motion task with 

varying difficulty (McGovern et al., 2018). In addition, this chapter sought to 

establish the degree to which the CPP can be better isolated from surrounding 

activity through a novel application of independent-component analysis (ICA), 

leveraging the known functional characteristics of the CPP in the selection of 

spatially-independent components. Through the combination of tasks that 

exclude sensory-evoked potentials from the ERP and the application of ICA to 

isolate CPP activation profiles, the study sought to determine whether the 

frontalisation effects reported in the literature are due to a topographical shift in 

the CPP itself, or age-related changes to other signals operating on a similar 

timecourse. Ultimately, this serves to provide a more reliable means of evaluating 

the CPP across groups, improving its utility in neurally-informed modelling. 

  

4.1.2: Brain Activity Frontalisation in Older Adults 

A consistent finding in studies of neural data in older adults is a posterior to 

anterior shift with ageing (PASA; Davis et al., 2008). This has been shown 

extensively in the fMRI literature, where increased prefrontal cortical (PFC) 

activity is consistently observed as we age (Davis et al., 2008; Grady et al., 1994). 

The onset of Alzheimer's Disease has been associated with an increase in this 

frontalisation effect, highlighting it as a potentially clinically relevant feature of the 

ageing brain (P. McCarthy et al., 2014). Several competing hypotheses have 
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been proposed to explain this, with the most dominant of these being that 

frontalisation represents a compensatory mechanism. The PFC is associated 

with executive functions such as top-down attentional control and working 

memory (van Dinteren et al., 2018). As such, increased activation in these areas 

may be reflective of the recruitment of these resources to compensate for the 

effects of ageing on early-stage brain areas and their cognitive processes. This 

is posited by the Compensation-Related Utilisation of Neural Circuits Hypothesis 

(CRUNCH, Reuter-Lorenz & Cappell, 2008), which suggests that heightened 

activity in frontal regions may reflect a top-down compensation for increased 

noise in the early perceptual areas or reduced hippocampal memory capacity. 

Similarly, the Hemispheric Asymmetry Reduction in Older Adults theory 

(HAROLD, Cabeza, 2002) argues that the ageing brain becomes less 

hemispherically lateralised to counteract cognitive decline. This results in 

bilateral recruitment of the PFC and thus increased overall activation in those 

areas (Grady, 2012). These theories have been supported by fMRI data which 

show increased PFC activity irrespective of task difficulty or subjective 

confidence, with this frontalisation associated with a decrease in activation in 

occipital areas and better task performance (Davis et al., 2008). 

 

While this data presents a compelling case for a frontalisation of brain activity 

driven by increased recruitment of the PFC, work by Morcom and Henson (2018) 

has called the compensation hypothesis into question. Here a model-based 

decoder was used to assess the predictive power of models that incorporated 

activity in the PFC, the posterior visual cortex (PVC) or a combination of the two 

across two working memory tasks. While frontalisation was observed as 

increased activity over the PFC in older adults, incorporating PFC voxel activity 

into their predictive model did not improve its predictive power. The authors 

suggest that the increased activity was therefore not performing a compensatory 

role on the task. Instead, they argue that increased activation may reflect 

impaired functional efficiency in the area, where more blood oxygen-level-

dependent (BOLD) activity is needed to achieve the same level of performance. 

 

Electroencephalography (EEG) studies of the PASA phenomenon have also 

been performed. The majority of these studies have focused on the P3, a signal 
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analogous to the CPP. The P3 is shown to exhibit an increased latency of peak 

amplitude with age, with peak amplitude reaching a maximum in adulthood 

before a steady decline in later life (O’Connell, Balsters, et al., 2012; Polich, 

1997b; van Dinteren et al., 2014b). It has also been established that the P3 

undergoes an anterior shift in later life, with increased positive amplitudes over 

frontal electrodes for older adults, alongside decreased amplitude over parietal 

electrodes (e.g., Kuruvilla-Mathew et al., 2022; O’Connell, Balsters, et al., 2012), 

with the magnitude of this frontalisation linked to poorer executive functioning 

(Fabiani et al., 1998; West et al., 2010).  

 

The P3 is often subdivided into two subcomponents with distinct functional 

characteristics; the P3a, with a maximal presentation over frontocentral 

electrodes; and the P3b with a maximal amplitude over parietal areas (Polich, 

2007). These components have been shown to represent two distinct processes, 

with the frontal P3a component specifically elicited by unexpected or novel 

stimuli, and the parietal P3b being elicited by any goal-relevant stimulus 

(Richardson et al., 2011). A study by O’Connell and colleagues (2012) linked 

EEG and fMRI data on a visual oddball task to investigate frontalisation of both 

the P3a and P3b with age. Here, they used target, novel and distractor stimuli to 

elicit both the P3a and P3b components. No behavioural differences between the 

groups were observed, however, both distractor P3a and target P3b amplitudes 

showed smaller amplitudes over parietal electrodes and higher amplitudes over 

frontal electrodes. fMRI data indicated that the frontalisation of the P3a in older 

adults was driven by increased activity in the left inferior frontal cortex and right 

cingulate cortex associated with response inhibition and cognitive control (M. T. 

Diaz et al., 2011; Swick et al., 2008). Conversely, the P3b frontalisation was 

driven by increases in the right dorsolateral prefrontal cortex, associated with 

working memory and response selection (Huettel & McCarthy, 2004). For both 

components, older adults showed increased activation of the right hippocampus, 

which is associated with memory and difference detection (Yamaguchi et al., 

2004). This study illustrates frontalisation of both components, indicating a 

complex mix of brain regions involved in the frontalisation of each, while directly 

linking EEG frontalisation to fMRI data. Notably, frontalisation of the P3b 

component was associated with increased recruitment of frontal attentional 
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control regions, suggesting that older adults may increase their top-down 

attentional regulation to achieve parity in performance.  

 

Frontalisation of the P3b as a compensatory mechanism was also supported in 

a recent study by Kuruvilla-Matthew and colleagues (2022). Here older adults 

showed increasing frontalisation of the P3b on more auditory number recognition 

tasks, with increased frontalisation associated with poorer behavioural 

performance. The authors suggest that frontalisation of the P3b is indicative of 

increased compensatory recruitment of frontal areas, which is more pronounced 

when task demands are greater. Similarly, van Dinteren and colleagues (2014a) 

traced age-related changes to the amplitude of the P3b following an infrequent 

target on an auditory oddball task, measured at either parietal electrodes or 

frontal electrodes. As there were no novel stimuli, they could only investigate 

frontalisation of the P3b in response to target stimuli. When ERPs were averaged 

by age group across 1572 participants, frontal-P3b amplitude was seen to 

increase with age. The authors suggest that increased activity in prefrontal brain 

areas reflects the PASA, as frontal regions are recruited to compensate for 

impairments in early stimulus processing.  

 

While the studies outlined above suggest compensatory frontalisation of the P3b 

with age, other work has shown none. For example, West and colleagues (2010), 

assessed age-related frontalisation on both the P3a and P3b components using 

a combined oddball and novelty detection task. Using a Partial-Least Squares 

(PLS) data reduction analysis, they revealed two latent ERP variables which 

were compared for each group across conditions. The first reflected the N2, P2 

and parietal P3b and showed significant differences between oddball and 

standard stimuli for both groups. The second, a frontally distributed component 

which contained the novelty P3a distinguished the novel stimuli only in younger 

adults but was observed for both novel and oddball stimuli in older adults. This 

increased novelty-P3a in response to both novel and oddball stimuli was more 

strongly observed in older adults with poorer performance on tests of executive 

function. Furthermore, when elicited, this P3a amplitude was associated with an 

attenuation of P3b amplitude. The authors suggest that this reflects older adults' 

inability to adapt to the oddball stimuli, which may be processed similarly to novel 
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stimuli, especially in poorer-performing older adults. Comparatively, the target-

detection P3b variable showed reduced amplitudes in response to target stimuli 

over parietal sites in older adults, but no significant frontalisation, suggesting that 

ageing may impact each P3 component uniquely. It also highlights a potential 

issue with P3-frontalisation studies using oddball tasks alone. If older adults 

process oddball stimuli similarly to novel stimuli, it is difficult to assess if there is 

any true frontalisation of the P3b, or whether more positive amplitudes over 

frontal electrodes in older adults is simply just an expression of a P3a component 

that younger adults do not show.  

 

Recent work has established that the P3b is in fact analogous to the CPP, with 

both components exhibiting the same polarity, topography, response-alignment 

and evidence accumulation dynamics (Twomey et al., 2015, see Introduction 

1.1.3). Therefore, assessing whether the P3b undergoes a progressive 

frontalisation with age has direct implications for efforts to use CPP 

measurements to infer ageing effects on decision-making processes, as it is 

unclear whether activity over frontal electrodes may better represent the 

evidence-dependent CPP in older adults. Collectively, however, the evidence 

remains unclear as to whether this P3b/CPP frontalisation is compensatory, or if 

the observed anterior shift is better thought of as a distinct P3a component in 

older adults that does not arise as strongly in the younger (West et al., 2010). 

This is important, as for appropriate between-group comparison of the P3b/CPP 

we must be sure we are measuring the signal at the appropriate site for each 

group. This is of special importance to neurally-informed modelling, as it is the 

decision-formation function, not novelty detection, that is of interest to the field. If 

the brain areas involved in evidence accumulation shift, yet we choose the same 

electrode sites across groups, we may not be accurately measuring a marker of 

evidence accumulation. This may lead to erroneous conclusions on differences 

in P3b/CPP features across groups. However, the new understanding of the P3b 

as analogous to the CPP allows us to overcome the issue of two functionally 

distinct P3 components that may be affected differently by age. By identifying the 

link between the P3b and CPP as a marker of evidence accumulation using tasks 

which focus solely on this feature (e.g., random-dot motion, Chapter Three: 

3.1.4), we can remove the potential influence of a novelty detection component. 
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While this is a speculative assertion, two-forced-choice alternative tasks with 

varying difficulty levels may enable us to more concretely assess the extent to 

which the P3b/CPP as a marker of decision formation shows any frontalisation 

when other potential P3 components are controlled for.  

 

The studies above indicate that when measured across different electrode sites, 

P3b activity may represent fundamentally different cognitive processes which are 

affected in distinct ways by ageing (van Dinteren et al., 2014a; West et al., 2010). 

However, comparing amplitude measurements from the same electrode site 

across individuals and groups is common practice in the EEG literature 

(McGovern et al., 2018), and it is evident that significant care must be taken to 

ensure that the appropriate location is chosen for each age group to ensure that 

the cognitive process of interest is being measured. A method capable of 

extracting a spatially independent neural signal based on the functional 

properties of the cognitive process of interest could resolve this issue. 

Fortunately, the link between the P3b and CPP enables this, as we can utilise 

the functional differences in the P3b/CPP under different evidence strengths to 

extract spatially independent representations of evidence accumulation. This 

would remove any potential ambiguity as to the function of the component being 

examined, allowing us to focus on the P3b/CPP. This process will be further 

explained in the coming sections. 

 

4.1.3: Spatial Overlap in EEG Signals 

The studies above indicate a mixed picture of the frontalisation effect in older 

adults' EEG data. While this may be due to true shifts in the signal or frontal 

recruitment, it is important to acknowledge that they may not be studying the P3 

in isolation. EEG is not recorded directly from the brain, instead using electrode 

arrays placed on the scalp. This means that the recorded data is subject to the 

effects of volume conduction (van den Broek et al., 1998). As electrical activity 

travels through the brain and skull, it conducts through biological tissue with 

different conductivities, becoming a mix of activity from a number of different 

brain areas (van den Broek et al., 1998). Scalp-recorded ERPs thus represent 

an overlapping picture of several distinct neural sources (Vidal et al., 2015), 
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meaning what we measure at the scalp is a waveform-composite of a range of 

different processes. This is of special importance to comparisons of EEG signals 

across groups. For example, older adults show changes in skull thickness, which 

are unrelated to cognitive processing (Antonakakis et al., 2020). As a result, the 

location or amplitudes of observed signals in the older adult brain may be due to 

changes in volume conductance as a result of physiological changes which are 

not directly relatable to decision-making itself. This makes it more challenging to 

utilise ERP data in its initial form as constraints for neurally-informed modelling, 

because observed differences across groups or conditions may be driven by task 

or group effects on an unknown or irrelevant signal. 

 

One such potential issue with studies of the P3b/CPP is potential overlap from 

visual or auditory evoked potentials. These appear when a stimulus is presented 

suddenly on screen, eliciting a sensory-evoked signal which may overlap with 

signals of interest (O’Connell, Dockree, et al., 2012). For example, the visual N2, 

elicited by the sudden appearance of a visual stimulus, presents in occipital-

parietal areas and shows a more negative amplitude with age (Kolev et al., 2002; 

O’Connell, Balsters, et al., 2012). If overlapping with the P3b/CPP, this may result 

in a more negative P3b/CPP amplitude in older adults when measured over 

parietal areas. In auditory tasks, such as the auditory-oddball tasks typically used 

in studies of P3b frontalisation (e.g., O’Connell, Balsters, et al., 2012; van 

Dinteren et al., 2014a), an auditory N1 is elicited by the sudden onset of a 

stimulus and is maximal over frontocentral electrodes approximately 100ms after 

the stimulus (ElShafei et al., 2022). Research in the field is divided as to whether 

it shows a larger (Anderer et al., 1996, 1998; Gajewski et al., 2018) or smaller 

amplitude (Bertoli et al., 2005; Golob et al., 2001; Kuruvilla-Mathew et al., 2022; 

Polich, 1997a) in older adults, however, in a general sample, it is the latency of 

this signal which correlates with RT, not its amplitude (Ribeiro et al., 2016), 

suggesting that group-differences in amplitude that, while not being relevant to 

behaviour, may potentially overlap with the behaviourally relevant P3b/CPP. In 

either case, the sudden onset of a stimulus can lead to sensory-evoked potentials 

that may impact measurements of the P3b/CPP. For example, a less negative 

overlapping sensory-evoked potential over frontal electrodes may artificially 

inflate the amplitudes of a frontally-measured P3b/CPP in older adults compared 
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to younger adults. Without tasks designed to remove the influence of sensory-

evoked potentials, the effects of frontalisation on the P3b/CPP in the absence of 

an auditory/visual-evoked potential are not clear. The O’Connell lab has 

developed tasks in which the target appears gradually over time, removing these 

sudden-onset sensory signals and providing a clearer picture of the CPP’s 

evolution during decision formation (O’Connell, Dockree, et al., 2012). This is 

important in the comparison of older and younger-CPP profiles, where group 

differences in the amplitudes of these sensory-evoked potentials may impact 

signals of interest such as the P3b/CPP.  

 

To further combat signal overlap, surface Laplacian filters, such as the current 

source density (CSD) transform, are often applied to electrophysiological data. 

These convert recorded voltages, to estimates of current flow (Kayser & Tenke, 

2015). Positive measurements indicate the movement of current from the brain 

toward the scalp, while negative values indicate currents flowing from the scalp 

towards the brain. A key benefit of these transformations is that they are 

successful in teasing apart spatially overlapping ERP components, providing a 

more distinct topography and an increased spatial resolution (Kayser & Tenke, 

2015). For example, the contingent negative variation (CNV, see Chapters Two 

& Three, Devine 2019), is often measured at electrodes close in location to the 

P3b/CPP. This CNV presents many of the same features as the CPP but differs 

in some fundamental ways. It builds during decision formation and is effector-

independent, as is the CPP, but is evidence-independent and shows steeper 

build-up rates under increased speed pressure (Devine 2019). Importantly, 

however, it is a negative going signal, which peaks at a negative amplitude at 

response, in contrast to the positive going CPP. In a study by Kelly and O’Connell 

(2013), an overlapping CNV was shown to “pull down”, or make unduly negative, 

the amplitude of the CPP. In this study, the application of CSD was shown to 

significantly sharpen topographies, isolating CPP and removing the effects of the 

CNV on CPP amplitude at response, highlighting a key benefit of these spatial 

filters. However, the studies of P3 frontalisation to date are typically performed 

on standard ERP data (e.g., O’Connell, Balsters, et al., 2012; van Dinteren et al., 

2014). This presents a fundamental issue, as we cannot be confident that the 

observed frontalisation with age is due to a true movement of the signal, or 
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perhaps a larger CNV in younger adults as seen in Chapter 2, which pulls down 

frontal amplitudes to a greater extent, thus causing older adults to exhibit a 

relative positivity over frontal sites.  

 

Combined with the influence of sensory-evoked potentials and a potentially 

overlapping P3a, our understanding of any true between-group differences in 

P3b/CPP amplitude may be clouded. These issues are less pertinent for within-

subject designs, where differences in skull thickness or topographical shifts 

cannot play a role. However, they are crucial to address for between-group 

comparisons. Without attempting to disentangle the CPP from overlapping 

signals or sensory-evoked potentials, erroneous conclusions as to the effects of, 

for example, ageing on the underlying process the signal represents could be 

drawn. Resultantly, the signals may not be reliable as neural constraints for 

computational modelling across groups. In order to establish the true effects of 

frontalisation on the CPP in older adults, attempts must be made to minimise this 

signal overlap through novel task design and the application of spatial filters such 

as CSD. This present work aimed to leverage CSD and a task in which evidence 

emerged gradually over time, to test for frontalisation where no potential 

overlapping sensory-evoked potential was present, and the impact of overlapping 

signals such as the P3a or CNV is minimised through spatial filtering. 

 

4.1.4: Tackling Spatial Mixing via Independent Components Analysis  

While the application of CSD is beneficial, it is only a filter and does not fully 

isolate overlapping signals. A further method capable of extracting and detecting 

spatially independent components would lend a significant advantage to our 

study of the brain. Independent component analysis (ICA) is a method which can 

achieve this (Onton et al., 2006). ICA assumes that activity across the scalp is a 

composite mix of activity from a range of independent components. Over time, 

activity coming from different sources should be temporally independent (Onton 

et al., 2006). ICA decomposes EEG signals into these temporally and spatially 

independent components. It is traditionally used in the data preprocessing stage, 

where artifactual components such as blinks, muscle activation or background 

electrical activity are identified and removed from the data (Marriott Haresign et 
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al., 2021). To this end, ICA has been successful. However, the removal of 

artifactual components such as blinks may not always be the best practice within 

the study of perceptual decision-making. When endeavouring to link the brain to 

behaviour, there is an assumption that participants have viewed the task in its 

entirety. The removal of artifactual blinks through ICA removes the blink 

component but leaves the remaining EEG data intact. Here, if participants blink 

and are not viewing the stimulus the trial is still counted. For neurally-informed 

modelling, where the model assumes continuous accumulation at every 

timestep, it is more fitting to exclude trials in which a blink or other artefact 

appears. This is common practice in decision-making research and is the 

approach adopted in this body of work.  

 

Beyond its use in data pre-processing, ICA enables the isolation of discrete ERP 

components. ICA can be applied to ERPs in order to extract and identify 

components that reflect signals such as the P3 (Makeig et al., 1999). These 

activations are statistically independent from other components, minimising the 

influence of any potential overlapping signals in raw ERP data. Back-projecting 

these components by multiplying the data by the inverse of their mixing matrix 

provides an estimate of how the activation would appear on the scalp, 

independently of other components. This approach allows us to overcome the 

spatial mixing of standard ERPs. This is beneficial to the study of frontalisation 

in the ageing CPP, as, if the P3b really does undergo a frontalisation, then this 

should be observable in a more frontal activation of the associated independent 

components. Extracting a P3b/CPP component via ICA would allow us to more 

concretely assess if this frontalisation represents a true topographical shift, and 

thus whether it is reasonable to measure the CPP at the same site across groups. 

Beyond this, ICA is of unique benefit to neurally-informed modelling. If reliable 

components reflecting the P3b/CPP build-up dynamics in line with model 

predictions are identifiable, this procedure can be used to isolate components 

which provide more precise estimates of evidence accumulation in perceptual 

decision-making. These components would then serve as principled data-driven 

neural representations of model parameters, providing both useful information 

and more precise neural constraints. 
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To date, some studies have attempted to examine the P3b through ICA. For 

example, Makeig and colleagues (1999) applied ICA to 31-channel EEG on a 

visual spatial attention task. Using PCA to reduce the 31 extracted ICs, they 

identified a component which appeared visually similar to P3b in terms of its peak 

stimulus-locked latency (circa 300ms following stimulus onset) and parietal 

focus. However, this study was performed on a low-density EEG array whose 

dimensionality was further reduced by PCA, limiting the possible number of 

components. This is a concern as such reduced dimensionality risks the 

possibility that distinct cognitive processes may be lumped together. Work from 

Debener and colleagues (2005) used ICA to identify distinct P3a and P3b 

components on an auditory oddball task in a general adult population. Here they 

indicated that an overlapping P3b component may artificially increase observed 

P3a ERP amplitudes when participants were instructed to attend to rare stimuli 

over oddball stimuli, indicating the potential influence of overlapping P3 

components on each other (West et. al, 2010).  

 

A recent study by van Dinteren and colleagues (2018) applied this ICA approach 

to the study of P3 frontalisation in ageing. Using a hierarchical group-level ICA 

they manually selected 4 ICs which bore a visual resemblance to the P3b in their 

topography and stimulus-locked activation time course in older and younger 

adults across an auditory oddball task, a reaction time test and a test of 

continuous attention. They then used source localisation to show evidence of a 

frontalisation effect with age in only one of these components. The group 

differences were attributed to differences in the precentral and parahippocampal 

gyri, with increased amplitudes of this component associated with faster RTs, but 

only on the continuous attention test. No other relationships between this 

component’s features and behaviour on any other task were found. The authors 

suggest this to be evidence for a frontalisation effect in ageing, reflecting 

compensatory recruitment of frontal areas. However, the fact that two of the 

identified P3b components did not exhibit frontalisation suggests that not all P3b-

like activity may be subject to an anterior shift with age. Furthermore, as the 

component was only linked to behaviour on a test of continuous performance, it 

is unclear whether such frontalisation would be observed when examining an 

evidence-dependent decision formation P3b/CPP. This study was also 
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performed with a low-density electrode array (26-channel), further limiting the 

potential reliability of the decomposition.  

 

One significant limiting factor of traditional means for selecting ERP-like ICA 

components is that they often rely on manual selection by the experimenter. 

Here, ICA activation profiles are compared to ERPs for visual similarity in 

windows of interest, presenting a potential source for bias in selection. A recent 

study by (Porcaro et al., 2019) used functional source separation (FSS) on data 

from an episodic memory task to identify a parietal P3b amplitude as a marker of 

cognitive decline in ageing. FSS is similar in principle to ICA but rather than 

purely extracting components based on their temporal independence, it attributes 

neural activity into components in order of its similarity to some predefined 

functional marker. In this study's case, it extracted components with maximal 

amplitude in the 320:480ms after stimulus onset time. The extracted 

component’s amplitude was shown to be reduced in older adults, and a strong 

predictor of performance on cognitive tasks performed outside the EEG booth by 

older adults. The authors suggest that the application of this FFS approach 

allowed them to identify a spatially independent P3b component amplitude which 

acts as a marker of cognitive decline. More recent work has also used machine 

learning to cluster back-projected ICAs based on their topographies, mean 

amplitudes and latencies (Jervis et al., 2020). This was applied to data on an 

auditory oddball task performed by adults with and without confirmed Alzheimer's 

Disease (AD). The derived components were then able to successfully classify 

participants with AD, where standard ERP signals could not, indicating the 

potential clinical utility of such an approach.  

 

Again, however, these EEG analyses relied only on topography and stimulus-

locked peak amplitude and latency. Importantly, the P3b/CPP has been shown 

to be response-aligned, so its amplitude is most appropriately measured 

immediately before response execution (O’Connell, Dockree, et al., 2012). 

Traditionally the P3b has been measured at its stimulus-aligned peak (e.g., van 

Dinteren et al., 2014a/b, Porcaro et al., 2019, Jervis et al., 2020), but these 

measures may be confounded by between-group or condition differences in RT 

variability. Furthermore, the discovery that the P3b/CPP in fact traces an 
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evidence accumulation process points to a far more specific set of functional 

characteristics that can be used to aid its isolation than analysis of amplitude 

alone (O’Connell, et al., 2012; Twomey et al., 2015). The response-aligned CPP 

emerges with stronger build-up rates for stronger evidence and faster RTs 

(Twomey et al., 2015), giving two predictable indicators for how the signal should 

emerge under different conditions. Using this information, we can select and 

cluster components which reflect these dynamics, allowing us to rely not on visual 

similarity or peak amplitudes, but on core functional characteristics of the 

evidence accumulation signal. This presents an exciting opportunity for 

identifying a spatially independent CPP component, which minimises potential 

spatial overlap and may more concretely assess the effects of ageing on this 

signal.  

 

4.1.5: Present Study 

The present study aimed to analyse existing data sets (McGovern et al., 2018) 

to assess the frontalisation of the CPP. Three tasks which elicit distinct 

electrophysiology were analysed. The first, a simple auditory odd-ball task 

allowed us to assess the P3 frontalisation effects in line with previous literature. 

We then assessed if this frontalisation was robust to the use of a spatial filter 

(CSD) to reduce the impact of overlapping signals. We then aimed to assess the 

effect of sensory-evoked potentials on frontalisation. The second task used a 

contrast change detection paradigm where evidence emerges gradually, which 

provides a P3b/CPP unimpeded by potentially overlapping sensory-evoked 

potentials. This allowed us to investigate frontalisation in the absence of any 

sudden-onset sensory-evoked potentials. Finally, to select a spatially-

independent CPP through ICA, a random dot-motion task with two coherence 

levels was used. This was chosen as it provides unique predictions as to the 

emergence of the CPP in the two different coherence conditions. High-coherence 

trials should exhibit steeper build-ups, as should trials with faster RTs. This grants 

two reliable metrics from which to automatically select independent components 

which reflect the evidence accumulation process. These components would be 

ranked and averaged across groups, investigating differences in component 
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activation topographies between older and younger adults to assess if 

frontalisation persisted after this spatial unmixing.  

 

Collectively, these analyses had the goal of identifying if classic studies of 

frontalisation were robust to spatial unmixing techniques, with the ultimate aim of 

providing more precise neural metrics of evidence accumulation.    
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4.2: Methods 

4.2.1: Participants and Procedure 

The study reanalysed data presented in McGovern and colleagues' paper (2018). 

Seventy-eight participants took part of which 40 were classified as older (Mean 

Age = 74.5, SD = 5.2) and 38 as younger (Mean Age = 21.6, SD = 5.2). Older 

participants were recruited through the Trinity College Institute of Neuroscience 

volunteer panel and reimbursed for their travel expenses and time at a rate of 

€10/hour. Younger participants were recruited through the School of Psychology 

and word of mouth. Students were granted one research credit for each hour 

completed. Participants were required to report no history of addiction, brain 

injury or neurological illness, and no family history of the same. Participants were 

matched on key demographic features of gender, handedness, and years of 

education. All participants were required to score higher than 26 on the Mini-

Mental State Examination, performed upon their arrival. One older participant 

was excluded from the analysis on the auditory oddball task due to a high 

proportion of EEG artefacts (>= 66% of trials; 38 younger adults, 39 older adults). 

Twelve participants were excluded from the analysis on the random-dot motion 

task due to a high proportion of EEG artefacts (>= 66% of trials) and technical 

error giving a sample of 35 younger adults and 31 older adults. A post-hoc power 

analysis was performed using G*Power (Faul et al., 2007). This indicated that 

given a sample size of 66 across two groups and three electrode locations, with 

a significance criterion of 0.05 and a power of 80%, the study would have 

sufficient power to detect effects of small to medium effect sizes (f = 0.16). 

Participants completed an auditory oddball, contrast change detection, and 

random-dot motion in a pseudo-randomised order across participants, while 128-

channel EEG data was recorded. Tasks were completed in a sound-attenuated 

room, with stimuli presented on a 51cm CRT monitor positioned 55cm away from 

the participant. A refresh rate of 85Hz was used and the resolution of the screen 

was 1024x768.  
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4.2.2: Auditory Oddball  

Participants were required to indicate their detection of a target tone of 1500 Hz 

among a series of standard tones (1000Hz). All tones were 60ms in duration with 

a pseudo-randomised inter-tone interval of between 1300ms and 2200ms. A 

randomised number of between 3 and 5 standard tones played in sequence prior 

to a target tone. Participants indicated the presence of a target tone by making a 

right mouse click. Participants were instructed not to respond to non-target tones, 

and to maintain fixation throughout. Each block consisted of 54 target tones, with 

participants completing one block per session. A shortened practice version of 

the task was performed prior to recording. 

 

4.2.3: Contrast Change Detection 

Participants monitored a circular checkerboard pattern flickering at 21.25Hz 

continuously for a decrease in contrast from 70% to 40%. This decrease occurred 

gradually across 1600ms, returning to its original 70% contrast over the following 

800ms. Participants indicated their detection by pressing the right mouse button 

with their right index finger. The annulus had an inner radius of 3 degrees, with 

an outer radius of 8 degrees. The inter-target interval varied pseudorandomly on 

each trial as either 3, 5 or 8 seconds. Participants were instructed to respond as 

quickly as possible but only once they were sure, completing 4 blocks composed 

of 24 targets each. 

 

4.2.4: Random Dot Motion 

Participants monitored a circle of 150 randomly moving dots (each dot was 6 x 6 

pixels) presented in an aperture of 8 degrees around a central fixation point. Dots 

moved randomly at a speed of 6 degrees per second for either 3 or 7 seconds. 

A proportion of the dots then moved either to the left or right at either 30% 

coherence (low) or 60% coherence (high). The coherent motion was presented 

for a maximum of 10 seconds, or until 500ms after the participant had responded. 

There was a variable intertrial interval of between 3 and 7 seconds. In total, 30 

targets were presented in each block, with participants completing 6 blocks. 
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Participants completed a practice block to familiarise themselves with task 

demands in which they received feedback for accuracy, misses and false alarms. 

 

4.2.5: EEG Acquisition and Pre-processing 

As in previous chapters, EEG data were collected using the Biosemi ActiveTwo 

system at a sample rate of 512Hz. Vertical electrooculogram electrodes placed 

above and below the left eye recorded eye movements. All data were analysed 

using a combination of custom MATLAB code and features of the EEGLAB 

toolbox (Delorme & Makeig, 2004). A low-pass filter of 40Hz was applied to all 

data, and linear detrending was also applied to remove slow drifts. Noisy 

channels were identified manually and interpolated. An average reference was 

applied to the continuous data. Each dataset was epoched into unique time 

lengths based on stimulus and inter-stimulus durations. Data for the odd-ball task 

were divided into stimulus-aligned epochs from -500:1300ms centred on the 

auditory tones. Response-locked epochs were also extracted from -

650ms:300ms around response. Data were baseline-corrected by removing the 

average activity in the -250ms:0ms before stimulus onset. Data for the random 

dot motion task were stimulus-locked to -750:2500ms to allow for slower reaction 

times and potential pre-stimulus build-up of the CPP during the period of random 

dot motion. Data were baseline-corrected using an average of -600ms:-500ms 

prior to coherent dot motion. Response-locked signals were measured in the -

900ms:300ms around response. For all tasks, artefacts were identified from the 

beginning of each epoch to 150ms following response. Any trial in which any 

channel had an activity exceeding 100 microvolts was removed. Trials in which 

the absolute difference in voltage between the upper and lower VEOG channels 

exceeded a 200-microvolt threshold were labelled as blinks and removed. To 

investigate the potential frontalisation of the CPP, key candidate electrodes were 

selected and plotted based on previous literature (O’Connell, Balsters, et al., 

2012) and the observed topographies. The electrodes selected were the Frontal 

electrode (Fz) the Central Electrode (Cz) and the Parietal electrode (Pz), 

alongside their immediate left and right neighbours. The activity was averaged 

across the three electrodes at each site and the peak stimulus-locked amplitude 

and latency, and response locked-amplitudes and slopes were analysed across 
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each location. Response-locked amplitudes were measured in the -50:50ms 

centred on the response while stimulus-locked peak amplitude and latency were 

measured from 200:600ms from stimulus onset for the oddball and random-dot 

motion task. To account for the slower RTs in the contrast-change detection task, 

a later search window from 500:1200ms was used. Response locked slope was 

measured in the -300:-100ms before a response for the oddball task and the 

contrast change detection task, while it was measured in the -400:-100ms around 

response for the random dot motion task to account for slower reaction times. A 

mixed-factorial ANOVA was then performed, examining the effects of Group and 

Location on each of these signal features. For the auditory oddball task, the data 

was analysed with CSD and non-CSD transformed data to investigate the effects 

of this spatial filter on frontalisation. A CSD transform of spline size 4 was then 

applied to the data for the remaining two tasks. 

 

4.2.6: ICA Decomposition 

To perform ICA on the data from the dots task, a minimally cleaned data set was 

used. VEOG channels were not used to remove blinks, and a more liberal 

threshold of 250uvs was used to reject artefactual trials. Sixty-four component 

ICA was then performed on this minimally cleaned data set with artefact, line-

noise, eye, or movement components identified automatically using the IClabel 

toolbox (Pion-Tonachini et al., 2019) and removed from subsequent analysis. To 

identify components with activity reflective of the CPP, each component was 

back-projected to the raw stimulus and response-locked data and only 

components with a mean positive going signal over the central and parietal 

electrodes at response (-500:-100ms relative to response) and post-stimulus 

(200:600ms post coherent motion onset) were selected for further analysis. A set 

of CPP features were then used to rank ICA activation profiles. The slope for 

each coherence level and each reaction-time bin (fast and slow, based on a 

median split in each coherence level and averaged across coherence levels) 

were calculated in the -500:-100ms before response. The components were then 

ranked based on the difference in their activation build-up rate (slope) for high 

versus low coherence trials with components with more positive differences 

ranking more highly. The components were also ranked based on the difference 
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in their activation build-up rate for fast vs slow reaction times, again with positive 

differences ranking more highly. These two rankings were then averaged and the 

three activations with the highest mean ranks were selected for each individual. 

Each winning activation was back-projected to the raw data and a CPP electrode 

for each activation was chosen based on the same ICA selection criteria above, 

using maximal build-up rate difference for high vs low coherence and fast vs slow 

RT. This search and ranking was performed from a midline set of electrodes 

based on the back-projected topographies. Activity in the highest ranked 

electrode for each of the top 3 back-projected ICA’s was averaged to reconstruct 

each participant’s CPP waveform.  

 

Topographical differences between age groups were tested using cluster-based 

permutation statistics. Electrode clusters were identified using Fieldtrip’s 

(Oostenveld et al., 2010) prepare_neighbour function to cluster electrodes based 

on their 3-D positions, selecting electrodes within 50mm of each other. This gave 

an average cluster size of 5.2 electrodes. These were then compared using a 

cluster-based permutation independent samples t-test using the Mass Univariate 

ERP Toolbox in MATLAB (Groppe et al., 2011). Activity for each electrode 

averaged across the -50:50ms around response for each subject in each group 

was submitted to a two-tailed, two-samples test with a family-wise alpha level of 

0.05. Across 100,000 permutations each subject was randomly assigned to one 

of the two age groups and a t-test was performed at each electrode site. T-values 

associated with p-values of less than 0.05 were summed within a cluster, giving 

each cluster a “mass”. The distribution of t-values in the cluster with the most 

extreme “mass” was used as an approximate distribution of the null hypothesis. 

T-score distributions from each cluster were then compared to the approximate 

null hypothesis distribution, with any cluster giving a p-value of less than 0.05 

considered significant.  
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4.3 Results 

We first tested for group differences in CPP topographies across the three tasks 

using cluster-based t-tests and Age-Location ANOVAs, following the same 

methods used in the literature examining age-related P3 frontalisation (O’Connell 

et al., 2012).  

 

4.3.1: Auditory Oddball 

Behavioural analyses indicated no significant difference in hit rate across groups 

(Mann–Whitney U = 704.5, p = 0.671), but a significant group difference in RT  

(Mann–Whitney U = 310, p < 0.001) with slower RTs in older adults (Median = 

423.3), than younger adults (Median = 335.69). 

 

4.3.1.1: Topography Comparison 

Figure 4.1 shows response-locked topographies of electrode activity in the -

50:50ms centred on response, with no CSD transform applied (upper row), and 

CSD of spline-size 4 applied. In both data sets, group differences in the auditory 

odd-ball response-locked topographies were observed over frontal electrodes, 

where older adults showed more positive amplitudes, and over centroparietal 

electrodes where older adults showed more negative amplitudes compared to 

the younger (see Figure 4.1, electrode-clusters with a significant group difference 

marked in black). Cluster-based t-tests were used to compare group differences 

in topographies with no CSD and CSD applied. The application of CSD reduces 

the number and spread of between-group differences, revealing three distinct 

effects: a more negative amplitude over parietal electrodes in older adults, a 

central negativity and a frontal positivity. This indicates that the application of 

CSD may be successful in providing a more spatially distinct centroparietal 

positivity, while the significantly more positive frontal activity in older adults is 

maintained. 
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Fig. 4.1: Response-locked topographies from -50:50ms with no CSD and CSD of spline size 4 applied, 

showing each group and the difference between younger and older on the right. 

 

4.3.1.2: ERP by Location 

To replicate previous findings of frontalisation effects in an auditory oddball task, 

a Location-by-Group, 3x2 factorial ANOVA was performed to investigate the 

effect of electrode location on non-CSD transformed stimulus-locked peak 

amplitudes and latencies. The results were closely in keeping with the previous 

literature with a significant effect of Location on stimulus-locked peak amplitude 

(F(2, 75) = 62.63, p <0.001), a significant main effect of Age (F(2, 75) = 14.53, p 

<0.001) and Age-Location Interaction (F(2, 75) = 39.99, p <0.001). Post-hoc 

analyses confirmed a significantly more positive amplitude in older adults over 

frontal electrodes (t = 4.778, p <0.001), but a less positive amplitude in older 

adults over central electrodes (t = -3.808, p<0.001) and parietal electrodes (t = -

7.566, p = 0.036). Analysis of the latency of these peaks showed a significant 

effect of Location (F(2, 75) = 9.14, p <0.001), Age  (F(2, 75) = 10.21, p <0.001) and 

Age-Location interaction  (F(2, 75) = 3.22, p = 0.043). Frontal latencies were no 
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different across age groups at frontal electrodes (p = 1) and central electrodes (p 

= 0.2) but slower for older adults over parietal electrodes (t = -3.48, p = 0.007).  

 

Similar results were seen for response-locked amplitudes. There was a 

significant effect of Location on response-locked amplitude (F(2, 75) = 123.05, p 

<0.001), a significant main effect of Age (F(2, 75) = 5.81, p = 0.018) and Age-

Location Interaction (F(2, 75) = 51.77, p <0.001). Post-hoc analyses confirmed a 

significantly higher amplitude in older adults over frontal electrodes (t = 7.72, p 

<0.001), but a lower amplitude in older adults over central electrodes (t = -3.83, 

p<0.001) and parietal electrodes (t = -7.21, p < 0.001). There was no significant 

effect of Age on the response-locked slope (p = 0.618), but a significant effect of 

Location (F(2,75) = 22.63, p < 0.001) and Location-Age interaction (F(2,75) = 43.08, 

p < 0.001). Post-hoc analyses indicated a significantly less positive slope in 

younger adults over frontal electrodes (t = -7.49, p < 0.001), but no significant 

differences over central (p = 0.15) or parietal electrodes (p = 0.193, see Figure 

4.2).  

 

 

Fig. 4.2: Response-locked slope by electrode location for non-CSD transformed data. Separate lines 

indicate different age groups. 
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Collectively these results support previous studies on non-CSD transformed 

data, which indicate higher amplitudes over frontal electrodes for older adults, 

and lower amplitudes over parietal areas. Only parietal areas were associated 

with slower latencies in older subjects, which may be associated with their slower 

RTs. 

 

To examine whether these topographical differences were altered by unmixing 

overlapping signals through spatial filtering, the same analysis was performed on 

CSD-transformed ERP data. Again, a broadly similar pattern of results was 

observed with a significant effect of Location on response-locked amplitude (F(2, 

75) = 69.041, p < 0.001) and a significant Location by Age interaction (F(2, 75) = 

33.951, p < 0.001), although this time there was no significant main effect of Age 

(p = 0.398). Post-hoc analyses were consistent with the non-CSD transformed 

data and confirmed a significantly higher amplitude in older adults over frontal 

electrodes (t = -6.594, p < 0.001), but a lower amplitude in older adults over 

central electrodes (t = 5.369, p < 0.001) and parietal electrodes (t = 2.463, p = 

0.036, see Figure 4.3).  
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Fig. 4.3: Stimulus and response locked CPP amplitudes for the auditory oddball task, using parietal (Pz), 

central (Cz) and frontal (Fz) electrodes and their immediate neighbours. The negativity observed in younger 

adults over frontal electrodes appears more central in older adults. 

 

There was no significant effect of Age on the response-locked slope (p = 0.54), 

but a significant effect of Location (F(2,75) = 24.73, p < 0.001) and Location by Age 

interaction (F(2,75) = 24.5, p < 0.001). Post-hoc analyses indicated a significantly 

less positive slope in younger adults over frontal electrodes (t = -6.4, p < 0.001), 

but a more positive slope over central electrodes (t = 3.429, p < 0.001), with no 

significant differences over parietal electrodes (p = 0.193, see Figure 4.4).  
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Fig. 4.4: Response-locked slope by electrode location for CSD transformed data. Separate lines indicate 

different age groups. CSD transform shows a frontal and parietal positivity in older adults, with a central 

negativity. 

 

As the P3b/CPP has been indicated to be a response-aligned signal, and highly 

similar frontalisation effects are observed for response and stimulus-locked 

measurements, only response-locked statistics are reported in the main body of 

the paper for the remaining studies. Stimulus-locked results are included in the 

Appendices. These analyses indicated that the application of a Laplacian spatial 

filter may reduce the main effect of Age on CPP amplitudes, by unmixing 

overlapping signals (see Table 4.1), however, a frontal positivity with age is still 

observed. For the remainder of the studies, results from the CSD-transformed 

data are reported. The effects from non-CSD transformed data on response-

aligned features are also presented in the Appendices.  
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Table 4.1: Comparison of F-values and effect sizes (η2) of ANOVAs of peak stimulus-locked amplitude and 

latency, and response-locked amplitude analysing the effect of electrode location and age. The effect size 

difference shows a reduction in the effect size of the effect of location on all signals with the application of a 

CSD transform. * = p <0.05, ** = p < 0.01, *** = p < 0.001. 

 

No CSD CSD 

 

 
F η2 F η2 η2 difference 

Peak Amplitude 
     

Location 62.63*** 0.282 24.61*** 0.14 -0.142 

Age 14.53*** 0.033 3.18 0.012 -0.021 

Interaction 40*** 0.18 25.77*** 0.147 -0.033 

Latency: 
    

 

Location 9.14*** 0.068 3.47 * 0.029 -0.039 

Age 10.2** 0.042 8.43 ** 0.031 -0.011 

Interaction 3.22* 0.024 3.61* 0.031 0.007 

R-locked Amplitude 
    

 

Location 123.05*** 0.453 69.04*** 0.343 -0.001 

Age 5.81* 0.006 0.723  0.001 -0.005 

Interaction 51.77*** 0.191 33.95*** 0.169 -0.022 

 

  



185 

4.3.2: Contrast Change Detection 

Behavioural analysis indicated a significant main effect of Age on hit-rate (Mann-

Whitney U = 477.5, p = 0.005), with a significantly higher hit rate in older adults 

(Median = 87.5%) than younger (Median = 77%). Analysis of the effect of Age on 

RT showed no significant group difference (p = 0.925). On this task older adults 

outperformed younger adults, unlike the auditory oddball in which there was no 

difference in hit rate. 

4.3.2.1: Topography Comparison 

The same series of analyses were performed on the continuous contrast change 

detection task with CSD transformation applied to minimise signal overlap. This 

task involves the detection of a gradual and subtle stimulus feature change that 

consequently does not elicit any sensory-evoked potential which would otherwise 

overlap with and obscure decision-related signals. Here again, distinct 

frontocentral negativities and parietal positivities are observed in both groups 

(see Figure 4.5.B). To detect any significant difference in the topographical 

presentation of the CPP in the oddball versus the contrast change task, a cluster-

based permutation t-test was performed to compare response-locked 

topographies of the auditory oddball vs the contrast change detection task for 

each group. There were no significant differences at any cluster for the older 

adults (all p > 0.053). No differences were observed in the younger group over 

any of the electrodes where the CPP is most strongly expressed. There were 

significant differences at just 5 electrode sites over the right central and anterior 

frontal scalp in younger adults, where less negative activity was observed in the 

contrast-change detection task (see Figure 4.5.B: electrode-clusters with a 

significant group difference marked in red). Such differences may reflect the 

influence of overlapping auditory-evoked potentials on the oddball task, however, 

it was not within the scope of this study to thoroughly investigate this. Importantly, 

neither group showed any inter-task differences over centro-parietal electrodes, 

as is evidenced by the lack of a significant difference in the area for either group 

between the two tasks (cluster-based t-tests shown in Figure 4.5.B). This 

indicates that the frontalisation on the auditory oddball task cannot be purely 

driven by overlapping sensory-evoked potentials. 
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Cluster-based t-tests were also used to compare between-group differences in 

ERP topographies on the contrast-change detection task. Similarly, to the 

auditory odd-ball task, this analysis showed more positive amplitudes over frontal 

electrodes for older adults, and more negative over central electrodes compared 

to the younger (see Figure 4.5.B, electrode-clusters with a significant group 

difference marked in black) 

 

 

Fig 4.5 Younger and older response locked topographies (-150ms to 0ms), with the rightmost column 

showing t-values differences for cluster-based t-test between groups for each study (Old - Young). 

Electrodes with a significant difference (p < 0.05) are marked with a black marker. The west colourbar is for 

younger and older ERP topographies. The east colourbar is for t-values. A) Auditory-oddball task. A 

significant frontalisation is seen in older adults with higher amplitudes over frontal electrodes. Significantly 

lower amplitudes are seen over central electrodes. B) Contrast-change detection task. Red markers indicate 

significant within-group differences between the auditory oddball which evokes a sensory-evoked potential 

and the contrast-change task which does not. There are no significant differences for older adults and 3 

over the right hemisphere for younger adults. Group differences show significant frontalisation, with higher 

amplitudes over frontal electrodes, and lower amplitudes over central and parietal. C) Random-dot motion 

task. No significant differences are observed at frontal electrodes, with lower amplitudes over central and 

parietal areas for older adults.  

 

A 

B 

C 
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4.3.2.2: ERP by Location 

ERPs plotted along each of the selected electrode bands are shown in Figure 

4.6. Analysis of these data indicated a significant effect of location on the 

response-locked slope (F(1.76,76) = 64.724, p < 0.001) and a significant Age by 

Location interaction (F(1.76,133.722) = 19.667, p < 0.001). Post-hoc analyses 

indicated that older adults exhibited significantly more positive amplitude values 

over frontal electrodes (t = -4.956, p < 0.001), but less positive amplitude values 

over central electrodes (t = 3.030, p < 0.001). However, there was no significant 

difference over parietal electrodes (t = 0.657, p = 1, see Figure 4.6). The lack of 

a significant difference in P3b/CPP amplitudes over parietal electrodes may 

reflect the fact that older adults had a higher hit rate than the younger cohort. 

This indicates that older adults may not have a lower parietal P3b/CPP amplitude 

under all circumstances. 

 

 

 

Fig. 4.6: Stimulus and response locked CPP amplitudes for contrast-change detection task, using parietal 

(Pz), central (Cz) and frontal (Fz) electrodes and their immediate neighbours.  Mean reaction times for each 

group are shown using vertical lines. The negativity observed in younger adults over frontal electrodes 

appears more central in older adults. 

 

Analysis of response-locked slopes indicated a significant main effect of Location 

(F(2,76) = 36, p < 0.001), no significant effect of Age (p = 0.373), but a significant 

Age by Location interaction (F(2,76) = 16.13, p < 0.001). Post-hoc analyses 

indicated a significantly less positive slope in younger adults over frontal 
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electrodes (t = -4.638, p < 0.001), but a more positive slope over central (t = 4.1, 

p < 0.001), with no significant differences over parietal electrodes (p = 0.318, see 

Figure 4.7). Non-CSD transformed data showed significantly more positive 

slopes for younger adults over parietal electrodes (t = 4.9, p < 0.001, see 

Appendices), suggesting that CSD-transformation may encourage the isolation 

of a distinct positive going parietal P3b, reducing the influence of overlapping 

signals. 

 

 

Fig. 4.7) Response-locked slopes by Age and Location for the contrast-change detection task, showing 

negativity at frontal electrodes in younger adults which moves more centrally for older adults. 
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4.3.3: Random-Dot Motion 

Levene’s test for homogeneity of variance was violated, meaning non-parametric 

equivalents were employed. These indicated a significant effect of Coherence on 

accuracy (Wilcoxon Z = 3.61, p < 0.001), indicating lower accuracy for low-

coherence trials (Median = 93%) than high-coherence trials (Median = 97%). 

There was a significant main effect of Age (Mann-Whitney U = 887.1, p < 0.001), 

indicating lower accuracy for older adults (Median = 91%) than younger adults 

(Median = 97%) 

 

There was a significant main effect of Coherence on RT (Wilcoxon Z = 7.06, p < 

0.001) indicating slower RTs for low-coherence trials (Median= 879.5ms) than 

high-coherence trials (Median= 653.3ms). There was also a significant main 

effect of Age on RT (Mann-Whitney U = 171, p < 0.001), indicating slower RTs 

for older adults (Median = 887.8) than younger adults (Median = 648.1). 

 

4.3.3.1: Topography Comparison 

The results from the previous two tasks suggest that P3 frontalisation remains 

evident in older adults even with the application of a spatial filter and when using 

stimuli that eliminate overlapping sensory-evoked potentials. While the target 

detection tasks above are in line with previous examples of studies investigating 

the P3 frontalisation effect in older adults (see van Dinteren et al., 2014 for 

review), these tasks do not include difficulty manipulation and therefore do not 

allow measurement of a core characteristic of the P3b/CPP: its evidence-

dependent build-up. As such, it becomes difficult to fully isolate the CPP from 

potentially overlapping background activity. Analysis of a random-dot motion task 

containing two coherence levels, and thus, two evidence strength levels, allows 

for a more intricate exploration of CPP localisation and inter-group differences.  

 

CSD-transformed topographies showed a focalised parietal positivity and a 

frontal negativity in both (see Figure 4.5). This negativity appeared more 

centralised in older adults and more frontal in younger adults. Cluster-based t-

tests were also used to compare group differences in ERP topographies. A frontal 
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positivity was observed in older adults, however, compared to the previous two 

tasks, there were fewer significant group differences at frontal electrodes. 

Significant group differences were observed over centro-parietal electrodes, 

where older adults show significantly smaller amplitudes (see Figure 4.5, 

electrode-clusters with a significant group difference marked in black). 

 

4.3.3.2: ERP by Location 

ERPs plotted along each of the selected electrode bands are shown in Figure 

4.8. Analysis of this data indicated a significant main effect of Location (F(1.76,64) 

= 67.336, p < 0.001), Age (F(1,64) = 12.184, p < 0.001) and Coherence (F(1,64) = 

33.602, p < 0.001) on response-locked amplitude. There was a significant Age 

by Location interaction (F(1.76,64) = 21.867, p < 0.001). Post-hoc analyses of the 

Age by Location interaction indicated similar trends as those observed in the 

previous tasks, with a significantly less positive in younger adults over frontal 

electrodes (t = - 4.423, p <0.001), but a more positive amplitude over central (t = 

5.534, p < 0.001), and parietal electrodes (t = 3.364, p = 0.004, see Figure 4.8). 

This reduced amplitude over parietal electrodes may be consistent with the 

finding for lower accuracies in older adults on this task. Comparatively, on the 

contrast-change detection task, there were no group differences over parietal 

sites and higher hit rates for older adults. 
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Fig. 4.8: Response-locked slope by electrode location for non-CSD transformed data. Separate lines 

indicate different age groups. 

 

There was also significant Location by Coherence interaction (F(1.587,64) = 4.232, 

p = 0.025). The Location by Coherence interaction is plotted in Figure 4.9. Post-

hoc analyses indicated that parietal areas show a higher amplitude for high 

coherence trials in both groups (t = 3.601, p = 0.002). The same is seen for frontal 

electrodes (t = 4.437, p < 0.001). There is no difference in amplitude across 

central electrodes (t = 0.251, p = 1). There was no significant Coherence by Age 

interaction (p = 0.174) or three-way interaction (p = 0.451). Similar trends were 

observed for non-CSD transformed data, reported with stimulus-locked analyses 

in the Appendix.  
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Fig. 4.9. Response-locked amplitude by electrode site and coherence. Significant coherence effects are 

observed at frontal and parietal sites, with more positive amplitudes for high coherence trials, but not over 

central electrodes. 

 

Analysis of the effect of Age, Location and Coherence on the pre-response slope 

was also performed. There was a significant effect of Location (F(1.76,64) = 41.926, 

p < 0.001), Age (F(1,64) = 15.101, p < 0.001) and Coherence (F(1,64) = 31.097, p < 

0.001) on response-locked slope. There was a significant Age by Location 

interaction (F(1.76,64) = 19.499, p < 0.001), but no significant Location by 

Coherence interaction (p = 0.167), Coherence by Age interaction (p = 0.548) or 

three-way interaction  (p = 0.385). Figure 4.10 plots the significant Age by 

Location interaction on the response-locked slope. Here younger adults show a 

pattern which goes from more negative slopes at frontal areas, to increasingly 

more positive slopes through central and parietal areas. Post-hoc analyses 

indicated significant age differences at all sites (Frontal: t = -3.848, p < 0.001, 

Central: t = 4.346, p < 0.001, Parietal: t = 4.709, p < 0.001), with the significant 

interaction driven by a cross-over effect. Over central electrodes, older adults 

have negative slopes while the younger have positive slopes. Over parietal 

electrodes, both groups have positive slopes (see Figure 4.10). 
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Fig. 4.10. Response-locked slope by electrode site. Significant differences are observed at all sites, but not 

over central electrodes.  

 

The CPP is shown to accumulate at slower rates to lower amplitudes for slower 

RTs. To investigate this, trials were binned into fast and slow RTs using a median 

split for each coherence level. There was a significant main effect of RT bin on 

response-locked amplitude (F(1,64) = 44.81, p < 0.001) suggesting more negative 

amplitudes for the slower RT bin (Mean = 1.49 SD = 7.99), than the Fast (Mean 

= 5.94, SD = 7.85, see Figure 4.11), with no significant interactions between RT 

bins and other effects (all p > 0.078). There was no significant effect of RT bin on 

response locked-slope (p = 0.537), with no significant interactions between RT 

bins and other effects (all p > 0.247).  
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Fig 4.11. Stimulus and response-locked P3b/CPP amplitudes by location, binned by reaction time. Vertical 

Lines show the 25th (Fast) and 75th (Slow) percentile RT for each group. Significantly more negative 

amplitudes are observed for slower RTs. 

 

4.3.3.3: CNV by Age and Reaction Time 

Collectively, these studies indicate more positive amplitudes over frontal 

electrodes for older adults. They also suggest a negative going signal that is more 

present in frontal electrodes for younger adults but appears more centrally for 

older adults (see Figure 4.12). To investigate this potential shift an Age-Location 

ANOVA was performed across these two locations, using Frontal (Fz) and 

Central (Cz). As discussed, the frontal CNV is a likely candidate signal behind 

these negativities. This signal is shown to be evidence-independent but RT-

dependent. As such, trials were binned into fast and slow responses. These 

ERPs are plotted in Figure 4.12, showing a negative going signal for younger 

adults over the frontal electrode, and a similar negative going signal for older 

adults over the central electrode. 
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Fig. 4.12: Response-locked slope by electrode location for non-CSD transformed data. Separate lines 

indicate different age groups. 

 

There was no significant main effect on response-locked CNV amplitudes for Age 

(p = 0.463), but a significant main effect of RT Bin (F(1,64) = 6.69, p = 0.012) with 

lower amplitudes for slower RTs (Mean = -17.1, SD = 16.9), than fast (Mean = -

13.24, SD = 19.17). There was a significant Age by Location interaction (F(1,64) = 

19.78, p < 0.001), but no Location by RT bin interaction (p = 0.415), or three-way 

interaction (p = 0.67). Post-hoc analyses of the Age by Location interaction 

indicated significantly more negative amplitudes for younger adults over the 

frontal site (t = -3.92, p < 0.001), with significantly more negative amplitudes for 

older adults over the central electrode (t = -2.99, p = 0.014). 

 

Analysis of response-aligned slopes showed a significant main effect of Age 

(F(1,64) = 7.32, p = 0.009), a significant main effect of RT Bin (F(1,64) = 9.84, p = 

0.003) and Location (F(1,64) = 17.77, p < 0.001). There was no significant three-

way interaction (p = 0.38) or Location by RT Bin interaction (p = 0.247). There 

was a significant Age by Location interaction (F(1,64) = 8.97, p = 0.004). Post-hoc 

analyses indicated significantly more negative slopes in younger adults over 

frontal electrodes (t = -4.04, p < 0.001), but no significant age difference in slope 
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across central electrodes (p = 0.75). There was no significant difference between 

younger adults' slopes between frontal and central electrodes (p = 0.754), 

however, older adults showed significantly more negative slopes when over 

central electrodes than frontal electrodes (t = -4.95, p < 0.001).  

 

There was also a significant Age by RT bin interaction (F(1,64) = 4.72, p = 0.034). 

Post-hoc analyses indicated that younger adults showed a significantly more 

negative slope for slow RTs than fast RTs (t = -3.87, p = 0.001), while older adults 

showed no significant difference in slope across RT bin (p = 0.81).  

 

Collectively, this data shows a negative going signal over central locations in 

older adults, while this negativity appears more frontally in the younger group. 

The response-locked slopes and amplitudes of these signals did not differ in their 

RT dependence based on location. As such, it is inconclusive as to whether it 

represents an age-related shift of the CNV. Future work designed to induce other 

specific effects on the CNV such as through a speed-accuracy emphasis 

manipulation would be needed. 
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4.3.4: ICA Decomposition to Isolate the CPP 

Sixty-four component ICA was performed on minimally cleaned data and 

selected as outlined in the Methods section 4.2.6 above. Components were 

ranked based on the degree to which their build-up rates scaled with evidence 

strength (high > low coherence) and RT (fast > slow). IC activation profiles and 

topographies are shown in Figure 4.13. Both groups show highly similar CPP-

component locations with a posterior parietal peak. Older adults show a slightly 

more posterior presentation than younger adults. There appears to be no real 

frontalisation in the older adult group, and the anterior positivity shown in the 

older adults' ERP topographies has been removed. These differ from the ERP 

topographies shown in Figure 4.5. The central negativity seen in older adults is 

also largely removed but is still observable.  

 

4.3.4.1: IC Activations 

Activation topographies were compared between the two groups, using a cluster-

based permutation statistic to correct for multiple comparisons (see Methods). 

No reliable group differences between any group at any cluster point were found 

(all p > 0.382) suggesting no between-group differences in IC activation 

topographies (see Figure 4.13.A). 

 

Analysis of the activation profiles revealed that there was a significant effect of 

Coherence (F(1,64)
 = 20.859, p < 0.001) and Age group  (F(1,64)

 = 5.859, p = 0.018) 

on response-locked activation amplitude, with no significant Age by Coherence 

interaction (p = 0.267), indicating higher IC amplitudes in high coherence in both 

groups, with the younger groups showing higher amplitudes overall (see Figure 

4.13.B). On the pre-response slope, there was an expected significant effect of 

Coherence (F(1,64)
 = 165.938, p < 0.001), with higher slopes for high coherence 

trials and a significant effect of Age (F(1,64)
 = 19.789, p < 0.001), showing higher 

slopes on average for younger adults. There was a significant Age by Coherence 

interaction (F(1,64)
 = 6.123, p = 0.016), driven by the stronger Coherence effect in 

younger (Mean Difference = 0.006, t = 1.479, p < 0.001) than older adults (Mean 

Difference = 0.004, t = 1.003, p < 0.001). 
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Fig 4.13.A) Response locked ICA topographies -50:50ms of top-3 ranked ICA’s based on CPP features. 

ICA activations with negative amplitude over CPP sites at response or 200:600ms stimulus-locked are sign-

inverted for plotting, with group differences between older and younger. B) Stimulus and response locked 

ICA activation profiles for top-3 ranked ICA’s. Vertical lines show mean reaction time by group and condition.  

 

4.3.4.1: Back-Projected ERP 

Back-projected topographies were compared across groups, using a cluster-

based permutation statistic to correct for multiple comparisons (see Methods). 

No reliable group differences between any group at any cluster point were found 

(all p > 0.624, see Figure 4.14.A). In order to assess the strength of evidence in 

favour of the null hypothesis, a Bayesian independent sample t-test was 

performed on activity averaged across clusters in the same time window. Along 

the central line of clusters (POz, Pz, CPz, Cz, FCz Fz), there was found to be 

moderate to anecdotal evidence in support of the null hypothesis (Range: 0.253 

at POz to 0.818 at AFz), suggesting no group differences in back-projected 

response-locked topographies. 

A 

B 
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Fig 4.14 A): Topographies of average response locked back-projected ERPs across each of the top 3 

components per subject -50:50ms, with group difference between older and younger. B) Stimulus and 

response locked average ERPs of top-3 back-projected components at their CPP location. Vertical lines 

show average response times for each group and condition 

 

Response-locked amplitudes and slopes were compared across the same 

Location sites used in the CPP analysis for the back-projected data. Analysis of 

response-locked amplitude showed a non -significant effect of Age (p = 0.842),  

but a significant effect of Location (F(1,64)
 = 10.384, p < 0.001) and Coherence 

(F(1,64)
 = 13.393, p < 0.001). There was no significant Age-Location-Coherence 

interaction (p = 0.479), or Coherence-Age interaction (p = 0.747) but a significant 

Location-Coherence interaction (F(1,64)
 = 3.382, p = 0.037), with post-hoc 

A 

B 
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analyses indicating no significant coherence effect at frontal (p = 0.722), or 

central sites (p = 0.722), but significantly lower amplitudes for low-coherence 

trials over parietal electrodes (t = -4.11, p < 0.001, see Figure 4.15). There was 

also a Location-Age interaction (F(1,64)
 = 3.496, p = 0.033), with post-hoc analyses 

indicating no significant age differences at any location (all p > 0.225). The 

interaction term was likely driven by a cross-over effect where negative 

amplitudes observed over frontal electrodes for younger adults which is not 

present for older adults (see Figure 4.15) 

 

 

Fig 4.15: Response-locked back-projected CPP amplitude, showing a negativity over frontal electrodes in 

younger adults that is not present for older adults.  

 

To assess if the positive-going, coherence-dependent back-projected CPP was 

localised solely to the centroparietal sites, or if coherence effects were also 

shown at frontal sites in either age group, analysis of the response-locked slope 

was performed. Analysis of the response-locked slope showed a predicted 

significant main effect of Coherence (F(2,64) = 32.941, p < 0.001) steeper slopes 

for high-coherence trials, Age (F(2,64) = 5.940, p = 0.018) with steeper slopes for 

younger adults, and Location (F(2,64) = 6.275, p = 0.003). There was a significant 

Age-Location interaction (F(2,64) = 4.466, p = 0.013), however post-hoc analyses 

indicated no significant group differences in response-locked slope at any 

electrode site (all p > 0.18). This interaction was likely driven again by the 
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negative going signal seen in frontal electrodes for younger adults, which is not 

observed in older adults (see Figure 4.14.B). There was also a Location-

Coherence interaction (F(2,64) = 3.685, p = 0.028). Post-hoc analyses indicated 

significantly higher slopes for high compared to low coherence at central sites (t 

= 4.485, p = 0.022) and parietal sites (t = 5.821, p < 0.001, see Figure 4.14.B). 

However, there was no coherence effect at frontal sites (p = 1). There was no 

Age-Location-Coherence effect, (p = 0.062), suggesting consistent coherence 

effects across location in both age groups. Collectively, this analysis indicates 

that the evidence-dependent CPP is localised to centroparietal areas for both 

groups.  
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4.4: Discussion 

Previous studies have shown significant frontalisation of brain activity between 

older and younger adults, potentially representing compensatory mechanisms as 

the brain ages (Davis et al., 2008; van Dinteren et al., 2014b). This presents a 

challenge for the comparison of signals such as the P3b/CPP across groups, as 

their location and profile may be different. This may be due to a true frontalisation 

but may also be driven by a number of signals that are known to evolve on an 

overlapping timescale such as the P3a, CNV and sensory-evoked potentials 

(Kelly & O’Connell, 2013, West et al., 2010). As a result, changes in P3b/CPP 

amplitude at response could be reported as evidence for reductions in decision 

bound, when in fact the differences are due to potentially functionally irrelevant 

differences in signal presentation (Antonakakis et al., 2020; Morcom & Henson, 

2018). As neural signals are becoming increasingly relied upon as estimates of 

underlying psychological processes (Kelly et al., 2021; McGovern et al., 2018), 

studies may then erroneously attribute reductions in P3b/CPP amplitude to 

changes in some cognitive construct. It is evident that the origins of CPP 

frontalisation must be addressed in order to enable accurate between-group 

comparison of signals and extract more accurate neural indices of the decision-

making process. This study aimed to achieve this while establishing a novel, ICA-

driven method for extracting reliable markers of evidence accumulation.  

 

The application of surface Laplacian filters such as the CSD has been shown to 

significantly improve the spatial resolution of EEG data, disentangling ERP 

components from each other (Kelly & O’Connell, 2013). In this study, the use of 

these filters removed the effect of age on stimulus-locked peak amplitude and 

response-locked amplitude but retained the significant interaction and age-by-

location interaction effects. Cluster-based t-tests comparing older and younger 

topographies, and age-by-location ANOVAs on both the non-CSD and CSD 

transformed data indicated more positive amplitudes over frontal electrodes in 

the older group and less positive amplitudes over parietal areas, supporting the 

idea that changes to the P3b amplitude are location-specific (van Dinteren et al., 

2014a). However, the application of this spatial filter reduced the spread and the 

number of these differences, with CSD-transformed data showing more focalised 



203 

amplitude differences in both parietal and frontal areas. Furthermore, the CSD 

transform revealed two distinct signals; a centroparietal positivity, and a 

frontocentral negativity, which may appear more centrally in older adults. This 

represents a significant advancement as the majority of previous work was 

performed on data sets in which no CSD transform was applied (e.g., O’Connell, 

Balsters, et al., 2012; van Dinteren et al., 2014b). These results indicate that 

spatial filters are beneficial to the study of between-group differences in signals, 

providing more spatially resolute topographies. 

 

The frontalisation effect was then examined on a task which removes the impact 

of sensory-evoked potentials on the resulting ERPs. The contrast-change 

detection task also showed a significantly lower amplitude in younger adults over 

frontal electrodes, but a more positive amplitude over central electrodes. 

Comparison of the older adult topography across these two tasks indicated no 

significant differences at any electrode cluster, indicating that the frontalisation 

effect cannot be explained by overlapping sensory-evoked potentials alone. 

Similar frontalisation effects were observed in the random-dot motion task. 

However, one consistency across tasks was the retention of a centroparietal 

positivity in both groups in similar parietal locations regardless of task demands. 

Notably, response-locked parietal amplitudes did not differ across groups in the 

contrast-change detection task where they outperformed younger adults yet 

showed lower amplitudes in the remaining two tasks where older adults 

performed more poorly. This provides tentative evidence that, in spite of an 

observed frontal positivity in older adults, CPPs may be best measured over 

parietal sites as this area seems most linked to task performance.  

 

Of particular note, if the P3b/CPP frontalisation in older age is driven by 

compensatory frontal recruitment (Kuruvilla-Mathew et al., 2022; van Dinteren et 

al., 2014a), it should be most apparent in the random-dot motion task with varying 

difficulty levels. Cluster-based topography comparisons indicated that this was 

not the case, as frontalisation was more strongly observed for the contrast-

change and auditory oddball detection task. This provides tentative support for 

West and colleagues (2010) findings, which suggest no frontalisation of the P3b, 

but an increased P3a in older adults for a novel or oddball stimuli. As both the 
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auditory-oddball and contrast-change detection tasks required target detection, 

the observed differences between group topographies may be driven by an 

increased P3a for novelty detection with age, while the P3b as a marker of 

evidence accumulation appears largely consistent in location across age groups. 

 

In order to further spatially isolate these signals, ICA was performed on data from 

a continuous monitoring version of the random-dot motion task that included two 

coherence levels. A proposed evidence accumulation signal such as the CPP 

builds at a rate that scales with evidence strength and reaction time (e.g., 

Twomey et al., 2015, Steinemann et al., 2018), functional characteristics that 

were leveraged here to cluster relevant components. The selected components, 

and their back-projected ERPs, exhibited topographies with a highly similar 

centroparietal focus for both older and younger adults. There was no observable 

age-related frontalisation of these components, with the elderly group, exhibiting 

a potentially more posterior maximum. This provides further evidence that centro-

parietal sites are a reliable location to measure the CPP for both older and 

younger adults.  

 

Overall, the current results suggest that older and younger groups have highly 

similar P3b/CPP topographies. When CSD is applied to an auditory-oddball task, 

both groups show distinct parietal positivity and frontal negativity in both groups, 

with a second, more anterior positivity in older adults. The use of a gradual-

evidence emergence task to remove sensory-evoked potentials showed similar 

results. Finally, extracting an evidence-dependent CPP-IC to further minimise 

signal overlap confirmed that there was a highly similar parietal focus of the 

P3b/CPP across both age groups. When these CPP-ICs were back-projected to 

the raw EEG, a Location by Age interaction was no longer observed, suggesting 

that the CPP retains its parietal focus into senescence. Furthermore, a significant 

effect of coherence was only observed over parietal electrodes, indicating that 

parietal sites are the most appropriate areas from which to measure the P3b/CPP 

across age groups.  

 

One outstanding question is whether the CNV moves more centrally in older 

adults. Comparing group topographies, we see a potential shift of negativity to 



205 

more central sites in older adults, although these group differences were non-

significant. However, examining the ERPs plotted by location across all tasks we 

can see a potential negativity in central electrodes for older adults that appears 

more frontally in the younger groups. Evidence for a potentially more central 

negativity in the older adult group was also seen in the IC decomposition. Close 

examination of the activation and back-projected topographies indicates the 

potential presence of a central negativity which appears more pronounced in the 

older adult cohort (4.13.A). In the back-projected ERP, a potential negative going 

signal over frontal electrodes is observed in the younger adult data, with a 

positivity over central electrodes. However, older adults show no positivity over 

central electrodes, instead presenting a negative going signal, especially in low-

coherence trials (see Figure 4.14.B). This may have been driven by the IC 

selection criterion. As the CPP and frontocentral CNV align closely in their 

emergence over time and reaction-time dependence, the clustering method 

utilised may have resulted in the incorporation of some CNV activity. As such, 

while successful in extracting a CPP component, this component may contain 

some residual activity from similarly evolving but distinct neural processes. 

 

The aim of this chapter was to exclude the CNV component from the CPP 

measurements rather than to isolate the CNV itself. As such, it contained no 

manipulation, such as a speed-accuracy tradeoff, which would elicit specific 

changes to the CNV. A task which would successfully manipulate levels of 

dynamic urgency, such as the speed-accuracy paradigm outlined in Chapter 

Two, would allow for CNV-ICs to be extracted based on their increased build-up 

under speed pressure, and pre-evidence adaptations to the signal. This would 

give two functional constraints to the ICA selection of a CNV-component. 

Activation and back-projection topographies for distinct CNV and CPP-

components could then be examined and compared across age groups in order 

to establish the extent to which the CNV signal shifts as a function of ageing, and 

whether it may contribute to the observed central negativity in older adults. These 

results would also help to more concretely establish the extent to which CPP 

frontalisation effects may be driven by changes to alternative signals, however, 

this was beyond the scope of this preliminary study. 
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As discussed, functional source separation has also been applied as a means of 

isolating functionally relevant components from EEG data (Porcaro et al., 2019). 

To date, no work has been done to incorporate the evidence-dependent nature 

of the CPP into the functional source cost function, instead relying on the signal's 

stimulus-locked amplitude alone. As signal amplitude can be influenced by a 

range of sources (Kelly & O’Connell, 2013), future work may do well to build upon 

the methods introduced here, utilising the evidence-dependent nature of the CPP 

build-up as additional constraints on an FSS analysis’s cost function. This would 

provide a clearer separation than ICA, extracting components which are more 

reflective of evidence-accumulation. This would also preclude the need to rank 

components as was done in this study and would allow for a more data-driven 

isolation of components. This technique could also be applied to the extraction 

of a CNV-component using the characteristics described above. Through this, 

novel functionally extracted components could provide even more fitting indices 

of cognitive function and may be more suitable for us in refining and constraining 

neurally-informed models of decision-making.  

 

As discussed at several points throughout this thesis, older adults are shown to 

exhibit significantly higher decision bounds than younger adults (Forstmann et 

al., 2011; see Dully et al., 2018 for review). However, P3b/CPP amplitudes are 

shown to be consistently lower in older adults (Chapter Two; O’Connell, Balsters, 

et al., 2012; van Dinteren et al., 2014b for meta-analysis; West et al., 2010). In 

Chapter Two, the modelling presented showed lower bounds in older adults, 

however, the degree of this boundary reduction was not of the same magnitude 

as the between-group difference in CPP (see section 2.3.6.1: Figure 2.18). Even 

through ICA, the extracted evidence-accumulation components depicted here 

show significantly smaller amplitudes at response in older adults. The reduced 

amplitude at response of the CPP is therefore difficult to reconcile with modelling 

efforts such as those shown in Chapter Two. It suggests the possibility that the 

models may be incorrect, failing to provide a good estimate of how evidence 

accumulation occurs in the brain. However, it may instead lend evidence to the 

idea that reduced CPP amplitudes may not be due to a functional difference but 

may be contributed to at least partly by task-irrelevant differences such as 

differences in voltage conduction. For example, changes in skull thickness with 
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age result in a significant reduction of signal conductivity through the skull 

(Antonakakis et al., 2020). Here, a completely task-irrelevant feature of 

physiology which is affected by ageing contributes to signal presentation. When 

comparing groups these effects are compounded, meaning we may conclude 

differences in a cognitive process when in fact the differences are due to some 

task-irrelevant feature. This highlights the benefit of conducting behavioural 

modelling in tandem with EEG recordings. Taking EEG indices at face value as 

markers of some underlying decision process or parameter in a model may result 

in erroneous conclusions. To combat this, and to produce a neural index capable 

of reflecting model parameters such as boundary at response and drift rate, a 

method for scaling the CPP which retains within-group differences while bringing 

the signals into a more comparable scale is required. In Chapter Two, novel 

methods for addressing these scaling issues were introduced, yet significantly 

more work is needed to provide a data-driven solution to this signal scaling 

problem.  

 

Collectively, this study indicated no significant age-related frontalisation of the 

evidence-dependent CPP components. Application of CSD to ERP data was 

shown to significantly reduce the effects of age on signal amplitude, but 

examination of IC activations showed consistent reductions in component 

amplitude in older adults. This suggests that these decision-related sources 

produce signals with truly lower amplitudes and that some, but not all, reductions 

in amplitude can be explained by signal mixing. Of particular note, the CNV may 

present more centrally for older adults, potentially overlapping with and reducing 

the amplitude of the neighbouring CPP. Future work may benefit from exploring 

manipulations which allow for functional predictions for both the CPP and CNV, 

allowing for the extraction of these components via ICA. This would allow this 

assertion to be tested more concretely. Overall, the use of ICA to derive neural 

components based on core functional properties of decision signals presents a 

potentially novel and compelling tool for the extraction of neural indices of the 

decision process. Future work may also apply these techniques to other signals 

of interest such as the motor potentials used as neural constraints in Chapter 

Three. This may serve to provide more refined indices of decision-making 

processes for use in neurally-informed modelling. In conclusion, this study 
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presents novel methods for improving between-group comparisons of the 

P3b/CPP between older and younger adults, while highlighting that the evidence-

dependent P3b/CPP remains best measured at centroparietal sites into 

senescence. 
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Chapter Five:  

General Discussion 
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5.1: Overview 

The field of perceptual decision-making has made critical contributions to our 

understanding of core cognitive and perceptual processes through a combination 

of computational modelling and the analysis of neural data. While each of these 

methods has proven fruitful in its own right, allowing us to probe the latent 

processes which give rise to behaviour, an emerging body of work has pointed 

to the overwhelming need to synthesise these approaches into a neurally-

informed modelling framework (Kelly et al., 2019, 2021; McGovern et al., 2018; 

O’Connell et al., 2018, Chapter One, section 1.3). A range of recent work has 

identified a core set of neural indices capable of reflecting distinct stages of the 

decision-making process (e.g., O’Connell et al., 2012; Twomey et al., 2015; see 

Chapter One, section 1.2.3). Constraining the parameters of decision models, 

such as the drift-diffusion model (DDM), with these neural signatures of the 

decision process has proven useful in detecting subtle and complex adjustments 

to mechanisms underlying ageing (McGovern et al., 2018) and the 

implementation of prior knowledge (Kelly et al., 2021). While in its early stages, 

this nascent field has already contributed significantly to our understanding of the 

brain, allowing us to create biologically-grounded models that both reflect and 

support neural data, and granting an added benefit in allowing us to explore more 

nuanced models of the complex perceptual decision-making process (e.g., Kelly 

et al., 2021; Corbett et al., in press, Ghaderi-Kangavari et al., 2022). However, 

as outlined throughout this thesis, there remain some fundamental shortcomings 

of sequential sampling models which had yet to be addressed thoroughly by 

neurally-informed modelling, such as their inability to accommodate potential 

changes to their scaling parameters across groups (Chen et al., 2014; Park et 

al., 2017), or under conditions such as learning (Dosher & Lu, 1998, 1999; 2017). 

Furthermore, some underlying issues in the isolation of reliable neural indices 

may undermine their capacity as neural markers of the decision-making process, 

especially when comparing these signals across distinct groups (Stacey et al, 

2021; Rossiter et al., 2014, Antonakakis et al., 2020). 

 

The purpose of this body of work was to address these issues while making 

efforts to characterise and explore the key benefits of a neurally-informed 



211 

approach to computational modelling of perceptual decision-making. Across 

three studies this thesis illustrated the potential applications of neurally-informed 

modelling to perceptual decision-making data and developed new techniques 

which can be applied to future work. This final chapter will provide an overview 

of the research presented, summarising and outlining each study’s novel 

contributions to our understanding of perceptual decision-making. Finally, 

potential avenues for future research will be described. In conclusion, a review 

of this work indicates that neurally-informed modelling offers an exciting new 

means for studying the complex process which underpins some of our most basic 

perceptual processes. 
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5.2: Novel Insights into Perceptual Decision-Making 

5.2.1: Speed-Accuracy Tradeoff in Older Adults  

Chapter Two applied neurally-informed modelling to the well-studied field of 

speed-accuracy adaptations in older adults. Existing research into these effects 

suggests that older adults may exhibit poorer performance due to an inability to 

adapt their decision bounds under speed emphasis (e.g., Forstmann et al., 2011; 

Starns & Ratcliff, 2010). This study was distinct from previous work in some key 

ways which allowed us to challenge these assertions. Firstly, this study used a 

points-based system, explicitly rewarding participants for adaptation to the 

regime. Here, it was shown that older adults achieved an equal number of points 

overall as younger adults. This indicates that any differences in behaviour did not 

come at a direct cost to their overall performance. This was further supported by 

modelling which indicated no difference between older and younger adults in 

their rate of evidence accumulation or drift rates. This is suggestive that not all 

differences between older and younger adults can be attributable to overall 

impairments with age (see Dully et al., 2018 for review), at least not on this simple 

two-choice contrast detection task.  

 

To probe for differences in boundary adjustments between older and younger 

adults we applied a DDM. However, the standard DDM failed to capture key 

features of behaviour, such as fast and slow errors, for either group in either 

condition, despite allowing for flexibility through a range of inter-trial variability 

parameters. Exploration of the neural data indicated that pre-evidence boundary 

adjustments were present for both groups, alongside dynamic urgency 

represented in pre-evidence mu/beta and the CNV. Furthermore, pre-evidence 

decision formation was also observed in the build-up of the CPP. Pre-evidence 

mu/beta adjustments were used to constrain the neurally-informed model which 

allowed for both urgency and a period of pure-noise accumulation before the 

onset of the drift rate. Fitting this model at both the group and individual level 

suggested that older adults exhibited lower boundary levels than younger adults 

in the accuracy condition, with a far smaller degree of adaptation to their decision 

bound under speed emphasis. The model also revealed adaptation to dynamic 
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urgency across regimens in younger but not older adults. Individual model fitting 

suggested that this was driven by a subset of younger people who showed 

significant urgency adjustments under speed pressure.  

 

Collectively these results point to a novel interpretation of the adaptations 

employed by older adults under speed emphasis. Specifically, older adults did 

not show an overall increased level of response caution across conditions as 

reported in previous studies (Forstmann et al., 2011; Starns & Ratcliff, 2010), but 

a less pronounced adjustment of these bounds and their urgency dynamics. 

While the extent to which these are voluntary strategic adjustments or represent 

an inability to adapt to task demands remains unclear, the fact that older adults 

were able to achieve an equal number of points on the task suggests that this 

may indeed be a voluntary strategy. Here, more consistent boundaries allow for 

more consistent responses across time in older adults. We show a novel insight 

into the speed-accuracy tradeoff in ageing revealed by neurally-constrained 

modelling that could not have been achieved through the traditional DDM alone. 

 

5.2.2: The Role of Noise in Models of Perceptual Learning 

Chapter Three examined the effects of perceptual learning on within-trial noise 

in a DDM. Existing psychophysical theories of perceptual learning suggest that it 

is at least partly driven by the suppression of internal noise in the perceptual 

system (Dosher & Lu, 1998, 1999; 2017). Sequential sampling models instead 

suggest that learning is driven by increases in the decision bound (Zhang & 

Rowe, 2014) and improved evidence accumulation through larger drift rates with 

training (Ivanov et al., 2022; Zhang & Rowe, 2014). Other modelling work has 

also suggested that some degree of learning may be driven by improved 

familiarity with task timings, instantiated by decreased non-decision time 

variability and reduced bounds with training (Liu & Watanabe, 2012; Petrov et al., 

2011). However, as traditional DDMs fix within-trial noise as a scaling parameter, 

they have as yet been unable to test for changes to this parameter, as choosing 

a different parameter such as boundary, precludes their ability to investigate 

potential changes to within-trial noise in conjunction with the established changes 

to bound.  
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This study used neurally-informed modelling alongside a behavioural measure of 

internal noise (Tibber et al., 2014) to assess the degree to which within-trial noise 

changes as a function of learning. Here, learning was shown to level off after 

session two, with significant improvements to accuracy, alongside reductions to 

reaction time variability and a psychophysical estimate of internal noise (Manning 

et al., 2015; Tibber et al., 2014). Again, behavioural and neural data pointed to 

the necessary inclusion of urgency and some period of noisy accumulation. The 

inclusion of these parameters greatly improved fits, and this neurally-informed 

model indicated that a model with a fixed boundary but reducing within-trial noise 

across sessions best explained the behavioural data. Notably, model-simulated 

within-trial noise levels closely resembled behavioural measures of within-trial 

noise, suggesting a strong degree of overlap between the two values. Pre-

evidence mu/beta was again used to neurally-constrain the model, suggesting 

non-significant but increasing boundaries across sessions, while constraining 

motor execution time via motor potentials. Behavioural measures of internal 

noise were also used as estimates of within-trial noise across sessions. While 

not outperforming the neurally-informed model with within-trial noise varying, the 

neurally-constrained model was a vital component of the study, as it allowed us 

to test for potential reductions in within-trial noise, whilst also allowing for the 

routinely evidenced adaptations to the boundary.  Here it showed potential 

adaptations to dynamic urgency across sessions, revealing a novel insight into 

the possible learning of task demands and timings as a driver of visual-perceptual 

learning. Importantly, these neurally-constrained models successfully 

reconstructed neural markers of motor preparation and urgency. Overall, the 

modelling data points to the important role of within-trial noise reductions in 

internal noise, a feature which is not readily addressed in the standard DDM but 

can be investigated via neurally-informed and constrained models. 

 

5.2.3: Novel Methods for Extracting Model Indices 

One core assumption for neurally-informed modelling is that the signals we use 

to guide and constrain our models directly reflect the process of interest. As has 

been shown in previous work, however, isolating these signals is not always 

straightforward. They can be influenced by distinct neural processes with 
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coalesced scalp topographies (e.g., West et al., 2010; Kelly & O’Connell, 2013), 

and may present differently for different groups (e.g., van Dinteren et al., 2018; 

O’Connell, Balsters et al., 2012; Polich, 1997b). This is especially pertinent when 

we compare the CPPs of older and younger adults. Both fMRI and EEG data 

suggest a frontalisation of these signals with age (Davis et al., 2008; van Dinteren 

et al., 2014b), potentially reflecting age-related recruitment of frontal brain areas 

to compensate for impairments in early-stage visual processing (Reuter-Lorenz 

& Cappell, 2008). On the other hand, it had not yet been established definitively 

whether this frontalisation really reflects a change to the P3b/CPP itself or, 

alternatively, alterations to other signals that evolve on a similar time scale and 

overlap on the scalp (e.g., Debener et al., 2005; Kelly & O’Connell, 2013; West 

et al., 2010). The final experimental chapter of this thesis showed that the 

application of a CSD transform to neural data reduced the difference between 

older and younger adults' amplitude while retaining a frontalisation effect across 

a number of tasks. ICA was applied to extract a coherence and RT-dependent 

CPP component. Thus, rather than selecting components visually (e.g., Makeig 

et al., 1999; van Dinteren et al., 2018), or based on stimulus-locked peak 

amplitudes and latencies (e.g., Porcaro et al., 2019) as has been typical in the 

literature, a novel approach was applied in which ICs were selected based on 

their capacity to reflect key choice-relevant functional characteristics of the CPP. 

Analysis of this component showed no significant frontalisation in older adults, 

with a centroparietal focus in both groups, but a significantly lower response-

locked amplitude in the older cohort. This indicates that not all age differences in 

CPP amplitude are due to overlapping signals, suggesting that the amplitude, but 

not the topography of the CPP changes with age. Through its extraction of an 

evidence and RT-dependent CPP component, this study also presented a novel 

technique for selecting a spatially independent CPP signal which may be applied 

in future work examining the CPP or other neural indices of decision-making such 

as the CNV.  
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5.3: Key Findings & Future Research 

5.3.1: Neurally-Informed Modelling Assists Model Construction 

An important feature of the neurally-informed models in both Chapters Two and 

Three was the inclusion of dynamic urgency i.e., a linearly collapsing bound. To 

date, there is significant debate as to whether the decision bound remains at a 

fixed level throughout the duration of a trial or collapses to reflect a ramping 

urgency to respond (Hawkins et al., 2015; Ratcliff et al., 2016). A hallmark of 

urgency in behavioural data is a large portion of slow errors. The standard DDM 

accounts for these errors with increased start-point variability. However, others 

have argued that urgency represents a very real facet of human decision-making 

which must be accounted for in the model (Kelly et al., 2021; Malhotra et al., 

2018; Murphy et al., 2016; Steinemann et al., 2018). Here, when there are strict 

deadlines, participants must make a response based on lower levels of evidence 

to avoid missing the response deadline. In the absence of any deadline, 

participants may make responses based on less evidence in order to improve 

their “reward rate”, increasing the proportion of correct responses made in a 

given time window (Bogacz et al., 2006). Even in tasks where committing to the 

response does not move the trial onto the next one any more quickly, urgency 

may be beneficial as once a response is chosen, participants can disengage from 

the stimulus, reducing the burden of energy and attention committed over time. 

Our neurally-informed models were able to test for the presence of dynamic 

urgency both in Chapters Two and Three. Behavioural features of both data sets 

indicated the presence of urgency, with substantially lower accuracy rates in later 

RT bins, reflective of a lower level of evidence accumulated by the time of 

response. However, even with the inclusion of starting point variability, the 

standard DDM was failing to capture a significant proportion of these slow errors. 

Turning to the neural data, the role of urgency was supported in both cases, with 

the CNV and mu/beta as markers of urgency beginning their negative descent in 

advance of any evidence presented. When this parameter was included in the 

model, it provided substantial improvements to model fits in both studies, with 

the new, neurally-informed models being able to more accurately capture the 

shape of the accuracy distributions over time. Here we see the benefit of neurally-
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informed modelling in allowing us to incorporate a new parameter, not alone 

because it enables us to achieve better model fits, but because it is evidenced in 

the neural data.  

 

These studies support the inclusion of dynamic urgency or at least strongly 

encourage the need to explore its inclusion on certain tasks. This is shown 

perhaps most clearly in the models of the speed-accuracy tradeoff in Chapter 

Two. Here the neurally-informed model was able to show not only the 

parameter’s necessity, but that we may adapt our urgency dynamics differently 

across different age groups. Older adults were shown to not exhibit any strong 

adaptation of urgency across regimes, while younger adults did. Examining 

individual model fits showed that even within the younger adult group, urgency 

adaptation was only employed by a minority of individuals, suggesting it may be 

a specific strategy employed by a subset of younger individuals. Without neurally-

informed models which supported the inclusion of urgency in the first instance, 

and then neural constraints which granted sufficient flexibility to explore a more 

complex model, these adaptations to urgency dynamics may not have been 

captured.  

 

Collectively, it is clear that urgency plays a key role in at least certain kinds of 

perceptual decisions. The extent to which this role is limited to tasks such as the 

ones employed here, where there are strict deadlines, negative consequences 

for failing to reach these deadlines, and consistent trial lead-in times, is less well 

understood. That said, work from Devine (2019) has indicated that urgency 

dynamics may still play a role in tasks where evidence onset time cannot be 

predicted. The extent to which urgency affects real-world decisions made in 

ecologically valid contexts is also uncertain. In psychological experiments, 

participants complete trial after trial, becoming highly practised and learning the 

timings of the task, which could promote a role for urgency as a strategic 

adjustment (Hawkins et al., 2015). The extent to which urgency affects decisions 

made over a longer period of time, and without the added pressure of the 

knowledge of forthcoming consecutive decisions, remains unclear. Furthermore, 

in tasks of more cognitive complexity such as facial recognition or working 

memory, it may be in fact optimal to continue accumulating until entirely certain, 
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reducing the optimality of a lowering decision criterion across time. It is therefore 

difficult to directly ascertain whether urgency is a generalised feature of decision-

making or represents a strategic adaptation to the highly constrained and ordered 

nature of traditional psychological experiments (Hawkins et al., 2015). However, 

while the inclusion of a parameter in a model may appear initially as an arbitrary 

attempt to include a mathematical construct which provides better fits, the work 

presented here suggests that failure to include a relevant parameter will not only 

prevent us from attaining a well-fitting model but potentially obscure or 

misattribute an observed behavioural difference to a completely different 

underlying mechanism of the decision process. Utilising neural signals as 

evidence for the inclusion of parameters is therefore of key importance, providing 

an additional line of support for urgency’s inclusion or exclusion in a model for a 

given task. 

 

5.3.2: Neural Constraints Can Address Scaling Issues 

Sequential sampling models of perceptual decision-making are limited by their 

need to fix a scaling parameter. As discussed in Chapter One, this is a parameter 

that remains the same, at a fixed value, across experimental conditions and 

groups. This is beneficial as it allows the model to converge more easily, 

constraining the number of possible parameter combinations. By convention, 

within-trial noise, or the amount of Gaussian noise accumulated by the decision 

variable at every timestep is used as this scaling parameter, fixed across groups 

and conditions (Ratcliff et al., 2016). However, our ability to rely on a parameter 

which remains consistent across groups has been called into question by recent 

work. Psychophysical work has suggested that perceptual learning is driven at 

least partly by reductions in internal noise levels (Dosher & Lu, 1998, 1999; 

2017), which may be equivalent to within-trial noise in a DDM. Similarly, different 

levels of noise are seen in different groups. For example, differences in neural 

and behavioural measures of noise are seen for older adults and people with 

ADHD, autism and schizophrenia (Alba et al., 2016; Chen et al., 2014; David et 

al., 2016; Park et al., 2017; Tibber et al., 2015). However, the effects of potential 

differences in within-trial noise on behaviour have thus far gone unexamined in 

a DDM framework. While the DDM does have the capacity to test for changes to 
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within-trial noise, fixing an alternative parameter such as boundary precludes its 

capacity to allow the new scaling parameter to change across sessions, 

conditions or groups.  

 

Neurally-informed modelling presents an elegant solution to this. Parameters can 

be fixed based on neural evidence which shows some adaptation to a specific 

parameter (Kelly et al., 2021; Corbett et al., in press). In both Chapters Two and 

Three, pre-evidence mu/beta was used to constrain model bounds. This allowed 

each study to directly investigate differences in within-trial noise. Chapter Two 

probed differences in noise between older and younger adults, showing no 

appreciable difference in noise levels at the group level, suggesting an equally 

stable evidence accumulation signal in older age. Chapter Three went further, 

creating models which directly supported the role of within-trial noise in 

perceptual learning. Here with a fixed boundary across sessions, within-trial 

noise was shown to reduce. These reductions were directly related to a 

behavioural measure of internal noise. When using pre-evidence mu/beta to 

constrain the model, the best model fit was again one where noise varied by 

session. While not providing the best fit to the data, the neural constraints act as 

a data-driven scaling parameter, allowing for both adjustments to decision 

boundary and within-trial noise. Collectively, this study showed not only the value 

in allowing for noise changes across perceptual learning but also highlighted a 

potentially novel behavioural estimate for constraining these within-trial noise 

estimates; the EQN estimate of internal noise.  

 

The neural constraints in each of these studies allowed for an investigation into 

changes in scaling parameters across or within groups. While promising, there is 

always room for improvement. For example, grand-average signals were used 

as neural constraints to improve the accuracy of the measures in both studies. 

Future experiments would benefit substantially from identifying individual-level 

constraints, allowing for analysis both at the individual and group level, allowing 

for more complex models and the accommodation of individual differences in 

traditionally used scaling parameters. For example, as no scaling parameters 

were available for the individual model fits applied in Chapter Two, we could not 
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assert whether the observed non-difference in noise levels between the older 

and younger adults within-trial noise levels was significantly different.  

 

An individual-level scaling parameter may also be a useful way of scaling within-

trial noise. A large body of work has pointed to a significant degree of individual 

and group differences in neural variability, potentially reflective of ongoing 

differences in within-trial noise (Dinstein et al., 2015; Gonen-Yaacovi et al., 2016; 

Hecker et al., 2022; Kumral et al., 2020; Sleimen-Malkoun et al., 2015; Yang et 

al., 2014). While the degree of association between neural measures of ongoing 

variability and model-estimated values of within-trial noise has not yet been 

ascertained, a measure of reliably capturing this parameter at an individual 

subject level would be beneficial. This would allow not only for constraints of 

within-trial noise across distinct groups but also a means of estimating trial-to-

trial changes in noise over time within a session. One prime candidate for this 

would be the CPP. Given its established relationship with evidence accumulation 

(O’Connell et al., 2012), it is possible that a feature of ongoing variability in this 

signal may be directly relatable to within-trial noise. Future work may benefit from 

investigating the CPP as such a marker. Allowing for variable levels of stimulus 

noise, or through a double-pass procedure that presents the same stimulus 

multiple times (Awwad Shiekh Hasan et al., 2012), the effects of external stimulus 

noise could be controlled. From this, ongoing variability features of the CPP could 

be linked to variability in performance, giving a potential neural constraint for 

within-trial noise. Such an analysis was beyond the scope of this study but would 

prove beneficial to computational models of decision-making. 

 

5.3.3: Neural Indices of Decision-Making are Refinable 

One core assumption for neurally-informed modelling is that the signals we use 

to guide and constrain our models directly reflect the process of interest. As has 

been shown in previous work, however, these signals are not always reliable. 

They can be influenced by a range of potentially overlapping signals (e.g., 

Debener et al., 2005; Kelly & O’Connell, 2013; West et al., 2010), and may 

present differently across groups due to behaviourally-irrelevant reasons (e.g., 

Stacey et al., 2021, Rossiter et al., 2014, Antonakakis et al., 2020, Ribeiro et al., 
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2022). However, this body of work indicated a range of techniques which can 

improve their reliability as neural metrics and constraints. 

 

Mu/beta was normalised in Chapters Two and Three. In both studies, mu/beta 

was shown to desynchronise to the same threshold irrespective of RT. This 

suggested that overall differences in observed amplitude did not contribute to the 

decision process. Resultantly, behaviourally-irrelevant individual and group-level 

differences in mu/beta could be accounted for through normalisation, while 

maintaining the within-trial and between-group dynamics. Importantly it is not the 

raw amplitude of the signal that is of interest to neurally-informed modelling, but 

rather its pre-evidence and emergent dynamics across a trial. This normalisation 

is important, as raw signal amplitude may be taken as sufficient evidence for 

differences between groups on some underlying cognitive construct, such as pre-

evidence starting point adjustments. However, when we correct for these 

differences, as was done in Chapter Two, we see mu/beta levels which are far 

more in line with model predictions. This lends further support for the value of 

applying normalisation to signals where possible, as they allow us to extract the 

important features of the neural signals, without inferring any information from 

potentially decision-irrelevant sources. 

 

As outlined in Chapter One (section 1.4.1), the same cannot be achieved for 

signals such as the CPP. As some signals may not accumulate to a consistent 

bound across coherence or reaction time (Steinemann et al., 2018), they cannot 

be normalised by their boundary at response and instead require the exploration 

of other means for reducing decision-irrelevant contributions. An example of the 

importance of this is seen when we compare older and younger adults’ P3b/CPP 

which shows lower parietal amplitudes in older adults and more frontal positivity 

(see van Dinteren et al., 2014b; and Chapter Four for detailed discussion). 

However, ERP signals such as the P3b/CPP may be affected by overlapping 

signals which emerge differently across age groups, thus potentially influencing 

the observed amplitude and build-up differences of the P3b/CPP in older adults 

(Anderer et al., 1996, 1998; Gajewski et al., 2018; Bertoli et al., 2005; Golob et 

al., 2001; Kuruvilla-Mathew et al., 2022; Polich, 1997a; Kolev et al., 2002; 

O’Connell, Balsters, et al., 2012). Furthermore, physiological changes in skull 
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conductance may affect how the signal appears on the scalp (Antonakakis et al., 

2020), but not the underlying process at hand. Collectively these studies indicate 

a potential range of non-decision-related differences in older adults which may 

affect the older adult P3b/CPP, and thus the interpretations we make when 

comparing signals across groups.  

 

Without a reliable means for removing decision-irrelevant group differences, it is 

difficult to ascertain the true effects of ageing on the processes of decision-

making represented in the CPP. In Chapter Four, the application of a CSD 

transform reduced age differences in amplitude, but maintained a frontalisation 

effect, suggesting that some degree of differences in signal amplitude between 

older and younger adults may be driven by overlapping signals. This is an 

important thing to consider for future research, as previous work has indicated 

significant group differences in stimulus-locked peak amplitude without the 

application of these spatial filters. In this way, the effects of ageing on P3b/CPP 

amplitude may have been overstated to some degree. 

 

This study then selected a functionally derived CPP component via independent 

component analysis (ICA) based on a set of predefined evidence and RT-defined 

difference in the build-up. However, Functional Source Separation (FSS) as 

applied by Porcaro and colleagues (2008, 2011, 2019) allows for a potentially 

more appropriate method. Here, the function constrains the isolation of 

components, meaning independent components can be extracted based on 

temporal independence and similarity on a specified metric, rather than grouping 

similar ICs after they have been isolated, as was done here. Thus far, only 

stimulus-locked P3b/CPP amplitude in a given time window has been used as a 

constraint, however, utilising a technique such as FFS to isolate a CPP 

component based on their response-locked functional differences in coherence 

and reaction time may have provided a more refined neural metric. 

 

As the CNV has been shown to be a potentially useful marker of dynamic urgency 

(Devine, 2019), it presents a key tool for future work. However, as outlined in 

Chapter Four, it may suffer from the effects of overlapping signals in much the 

same way as the CPP and may have to some extent potentially influenced the 
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frontalisation effects observed in older adults. Extraction of a CNV-IC in the same 

way as was done for the CPP was not achievable for this study, as there was no 

manipulation which could be hypothesised to reasonably cause characteristic 

changes to the CNV signal. This would require a task designed to elicit distinct 

effects on the CNV such as a speed-accuracy trade-off manipulation. While 

beyond the scope of this study, the same approach could be applied to the data 

from Chapter Two, which investigated a speed-accuracy tradeoff in older adults. 

This study had the two requirements needed to elicit changes in both the CPP 

and the CNV: namely an evidence strength manipulation and a speed-accuracy 

manipulation. Application of the same ICA technique used in Chapter Four would 

allow for the extraction of both a CNV and CPP-IC profile. This would allow us to 

more conclusively investigate potential topographical shifts of the CNV, 

alongside allowing us to derive a spatially independent CNV component for use 

in neurally-constrained modelling. While beyond the scope of this work, this is an 

exciting next step which will be pursued in the future. 
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5.4: Limitations 

While this body of work was successful in demonstrating the inherent value of 

neurally-informed modelling, it was not without its limitations. Primarily, the 

studies in this thesis may have been limited by a lack of statistical power. 

Chapters Two and Four had relatively large sample sizes (N >= 49 for both), with 

power analyses indicating they were sufficiently powered to detect small-to-

medium effect sizes, Chapter Three only analysed data from 14 participants. 

Although this was a repeated-measures design, and as a result more robust and 

statistically powerful than a between-groups design, a post-hoc analysis 

indicated it may have only been sufficiently powered to detect medium-to-large 

effect sizes (f > 0.36). For example, a repeated-measures ANOVA of the effects 

of session on pre-evidence mu/beta amplitude while non-significant gave an 

effect size of f = 0.25. To detect an effect of this size a sample of 28 participants 

would have been needed. As such the study may have benefitted from a larger 

sample size. This may have been of particular importance for the model 

constraints. Additional data may have engendered more concrete and 

statistically significant differences in pre-evidence mu/beta and internal noise 

reductions, which may have provided more precise means for constraining the 

data. As the sample was smaller, the study may have been incapable of 

extracting some of these more subtle differences.  

 

The studies in this thesis were also limited by the low number of possible 

constraints employed. While the models benefited from neural information which 

encouraged the inclusion of urgency and a period of early accumulation, the only 

constraints employed were pre-evidence mu/beta as a marker of starting-point 

adjustments, and motor time constraints via motor potentials. Additional neural 

constraints would potentially have furnished new results. For example, recent 

work has indicated the utility of visual N1s latencies, measured over the occipital 

cortex, as means for constraining the visual-encoding component of non-decision 

time (Ghaderi-Kangavari et al., 2022; Nunez et al., 2019). In Chapter Three, 

behavioural estimates of internal noise were introduced as a potentially viable 

constraint for within-trial noise. However, this required participants to complete 

an additional task. The shortened version of the EQN that was used (150 trials) 
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may also have resulted in less reliable estimates of internal noise. Future work 

may use a larger number of trials to increase reliability or explore neural indices 

of the CPP, such as signal entropy (Sleimen-Malkoun et al., 2015), or another 

metric of ongoing within-trial signal variability as a means of estimating within-

trial noise parameters. As outlined in Chapter Four, ICA-derived CPP and CNV 

components may be a useful avenue for refining neural constraints, potentially 

providing more precise means of estimating neural constraints of urgency, drift 

rates or within-trial noise. The richer a roster of potential neural constraints, the 

more freedom we have in allowing other parameters to vary by condition, allowing 

us to investigate more nuanced and complex models without any cost to model 

comparison scores. 
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5.5: Concluding Remarks 

The nascent field of neurally-informed modelling has a huge amount to offer the 

world of perceptual decision-making. As has been demonstrated throughout this 

thesis, neurally-informed modelling allows us to explore with more confidence 

novel parameters such as urgency and early accumulation. Furthermore, utilising 

neural constraints enables us to explore increasingly complex models, supported 

by neural data, to give new insights into perceptual decision-making. As a whole, 

this body of work not only presents some of these potential new insights but also 

presents some novel techniques for isolating the neural signatures of decision-

making on which neurally-informed modelling rely. This field is burgeoning with 

possibility, and this work presents a significant advancement in our 

understanding of the potential applications and benefits of neurally-informed 

modelling. Through this, we can bring forth an increasingly nuanced 

understanding of how decisions are formed in the human brain. 
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Appendices 

Chapter Four: Additional Statistics 

Contrast Change Detection 

Stimulus-Locked Peak Amplitude and Latency 

Analysis of the effect of localisation on stimulus-locked peak amplitude showed 

no significant effect of Age (p = 0.118), Location (p = 0.205), or Age by Location 

interaction (p = 0.126). Analysis of the effect of Age and Location on the latency 

of these peaks showed a significant effect of Location (F(2, 76) = 4.616, p = 0.011), 

but not of Age (p = 0.252) or any Interaction (p = 0.124), suggesting no difference 

in latency across age groups at any location. Trends indicated a general linear 

trend, with faster latencies at frontal electrodes and central sites, and slower 

latencies over the parietal cortex.  

 

Non-CSD’d Data Results 

Analysis of this data indicated a significant main effect of Location (F(1.64,76) = 

86.42, p < 0.001), Age (F(1,76) = 9.003, p = 0.003) on response-locked amplitude. 

There was a significant Age by Location interaction (F(1.64,64) = 20.41, p < 0.001). 

Post-hoc analyses indicated significant age-differences trends at all locations, 

with a significantly less positive in younger adults over frontal electrodes (t = -

4.288, p <0.001), but a more positive amplitude over central (t = 4.332, p<0.001),  

and parietal electrodes (t = 5.61, p <0.001). 

 

Analysis of response-locked slopes indicated a significant main effect of Location 

(F(1.44,76) = 23, p < 0.001), Age (F(1,76) = 6.08, p < 0.001) and Age by Location 

interaction (F(1.44,76) = 22.31, p < 0.001). Post-hoc analyses indicated significant 

age-differences trends at all locations, with a significantly less positive slope in 

younger adults over frontal electrodes (t = -4.685, p = 0.007), but a more positive 

slope over central (t = 3.232, p = 0.01),  and parietal electrodes (t = 4.9, p  < 

0.001). 
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Random-Dot Motion  

Stimulus-Locked Peak Amplitude and Latency: 

Analysis of the effect of Age and Location on the stimulus-locked peak amplitude 

of these peaks showed a significant effect of Location (F(2, 66) = 46.82, p < 0.001), 

Age (F(2, 66) = 33.84, p < 0.001) and Coherence (F(2, 66) = 85.19, p < 0.001).  There 

was no Coherence by Age interaction (p = 0.196) or Location-Coherence Age 

interaction (p = 0.324). There was a significant Location by Coherence Interaction  

(F(2, 66) = 9.797, p < 0.001). Post-hoc tests indicated that peak amplitudes were 

significantly lower for low coherence over frontal electrodes (t = -5.266, p < 

0.001), and parietal electrodes (t = -7.375, p < 0.001), but not significantly 

different over central electrodes (p = 0.479). There was a significant Location by 

Age Interaction  (F(2, 66) = 15.11, p < 0.001). Post-hoc tests indicated that peak 

amplitudes were significantly higher for younger adults over parietal electrodes 

(t = 7.193, p < 0.001), and central electrodes (t = 3.442, p < 0.006), but not 

significantly different over frontal electrodes (p = -0.592, p = 1).  

 

Analysis of the effect of localisation on stimulus-locked peak latency showed no 

significant effect of Age (p = 0.383), or Coherence (p = 0.83), or Age-Coherence 

Interaction (p = 0.63). There was a significant effect of Location (F(1.61 64) = 48.12, 

p < 0.001), but no Location-Coherence interaction (p = 0.397). The Location-Age 

interaction was significant (F(1.61 64) = 44.095, p < 0.001), with a significant 

Location-Age-Coherence interaction (F(1.61 64) = 4.99, p = 0.012).  The interaction 

term was likely driven by a complex effect. Young adults showed a linearly 

increasing latency from frontal to parietal electrodes, with a potential but non-

significantly faster latency for low coherence trials over central electrodes (Mean 

Difference = -38.5, p = 0.981), but slower latencies for low-coherence trials over 

parietal regions (Mean Difference = 46.03, p = 0.422). Older participants showed 

no significant coherence effects at any location (all p = 1), but slower latencies 

over central electrodes than for either parietal or frontal regions. 

 

Non-CSD’d Data Results:  

Analysis of non-CSD transformed data indicated a significant main effect of 

Location (F(1.76,64) = 83.93, p < 0.001), Age (F(1,64) = 16.08, p < 0.001) and 



256 

Coherence (F(1,64) = 30.19, p < 0.001) on response-locked amplitude. There was 

a significant Age by Location interaction (F(1.76,64) = 29.17, p < 0.001), no 

significant Location by Coherence interaction (p = 0.095), and no significant 

Coherence by Age interaction (p = 0.135) or three-way interaction  (p = 0.397). 

Post-hoc analyses indicated significant age-difference trends at all locations, with 

a significantly less positive in younger adults over frontal electrodes (t = -4.531, 

p <0.001), but a more positive amplitude over central (t = 5.039, p<0.001), and 

parietal electrodes (t = 5.61, p <0.001). 

 

Analysis of this response-locked slopes indicated a significant main effect of 

Location (F(1.33,64) = 12.17, p < 0.001), Age (F(1,64) = 20.63, p < 0.001) and 

Coherence (F(1,64) = 41.46, p < 0.001). There was a significant Age by Location 

interaction (F(1.38,64) = 20.04, p < 0.001), no significant Location by Coherence 

interaction (p = 0.08), no significant Coherence by Age interaction (p = 0.169) or 

three-way interaction  (p = 0.632). Post-hoc analyses indicated significant age-

difference trends at all locations, with a significantly less positive in younger 

adults over frontal electrodes (t = -3.382, p = 0.007), but a more positive 

amplitude over central (t = 4.352, p < 0.001),  and parietal electrodes (t = 5.49, p  

< 0.001). 

 

 


