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Abstract—The widely used embedded impulse pilot for chan-
nel estimation of orthogonal time frequency space modulation
(OTFS) has a prohibitively large peak to average power ratio
(PAPR). Hence, in this paper, we propose a novel embedded
pilot with cyclic prefix (PCP) that has a significantly reduced
PAPR compared to the impulse pilot. This is achieved by
spreading the pilot power along the delay dimension using a
constant amplitude Zadoff-Chu (ZC) sequence with a cyclic prefix
(CP). We analytically derive upper bound PAPR expressions
for the impulse pilot and the proposed PCP. Together with our
numerical results, these upper bounds attest the significant PAPR
improvement that is achieved by PCP. We also develop a two-
stage channel estimation technique with a superior performance
to the threshold-based channel estimation for the impulse pilot.
At the first stage, the channel is estimated by a linear estimator
under the assumption of the channel being locally linear time
invariant over each time-slot within the OTFS block. Taking
advantage of the benefits that are offered by the CP in our
proposed pilot structure, we develop a low complexity least
squares based estimator for implementation of the first stage.
At the second stage, we use the channel estimate from the first
stage and the generalized complex exponential basis expansion
model (GCE-BEM) to accurately estimate the full channel.
Finally, we numerically analyse and show the superior estimation
performance of our proposed channel estimator for PCP to the
threshold-based estimator for the impulse pilot.

I. INTRODUCTION

Orthogonal time frequency space modulation (OTFS) has
recently emerged as a strong candidate waveform for the
sixth generation wireless systems (6G), [1]. OTFS is robust
to the time-varying channel effects that are present in the
new application areas such as autonomous driving, hyper-
loop trains, and integrated terrestrial-satellite communication
systems, [2]. OTFS deploys the delay-Doppler (DD) domain
for data transmission. Then it spreads the data symbols onto
the time frequency (TF) plane to take advantage of the full
diversity gain of the time and frequency selective channel in
high mobility scenarios.

To exploit the advantages offered by OTFS, availability of
accurate channel state information at the receiver is crucial.
Hence, several channel estimation techniques for OTFS have
recently emerged, [3]–[9]. In [3], a threshold-based channel
estimation method was proposed. This method utilizes an
embedded impulse pilot along with data that has a large power
and is widely used for channel estimation and synchronisation
in OTFS literature, [7]–[10]. More recently, in [11], a spline
interpolation step in addition to the threshold-based estimation
of [3] was proposed to improve the channel estimation accu-
racy. Embedded pilot sequences that spread the pilot power
in both delay and Doppler dimensions, surrounded by zero
guards, were proposed in [12] and [13] for channel estimation.
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However, the main issue associated with these pilot structures
is their large peak to average power ratio (PAPR), [3], [13].
This is due to both the high power of the pilot and the zero
guards surrounding it, [14], [15].

As another class of pilot structures for OTFS, superimposed
pilots over the entire data symbols in DD domain were
proposed in [4] and [16]. The main issue with this class
is the need for sophisticated channel estimation and data
detection, due to the interference between the data and pilot
signal. Furthermore, the large power of the superimposed
pilots adversely affect the PAPR performance. Preamble-based
pilots are also deployed for channel estimation in OTFS,
[5], [6]. However, the channel estimate becomes outdated in
the data detection phase, i.e., after channel estimation in the
preamble phase.

Accordingly, the existing channel estimation methods for
OTFS either use pilots with prohibitively large PAPR or
preamble-based pilots suffering from the channel ageing issue.
Hence, in this paper, we propose a novel embedded pilot
structure with a significantly reduced PAPR compared to the
widely used impulse pilot. To tackle the PAPR issue, we start
from in-depth PAPR analysis of the embedded impulse pilot.
We analytically derive the PAPR upper bound for the impulse
pilot that reveals the effect of the pilot parameters on the
PAPR. This analysis provides us with valuable insights that
lead to the development of our proposed pilot structure. In
the proposed pilot structure, we spread the pilot power only
along the delay dimension using a constant amplitude Zadoff-
Chu (ZC) sequence. To avoid interference from data, we use
a cyclic prefix (CP) instead of the zero guards. Hence, we
introduce the novel concept of the pilot with a cyclic prefix
(PCP) that not only eliminates the interference from data
symbols to pilot, but it also reduces the PAPR of the OTFS
signal. We also derive the PAPR upper bound expression for
the proposed PCP that represents a significant PAPR reduction
compared to the impulse pilot.

Based on the proposed PCP, we develop a two-stage channel
estimation technique, which outperforms the threshold-based
channel estimator with spline interpolation in [11]. At the first
stage, we propose a linear channel estimator based on the
least square (LS) or minimum mean squared error (MMSE)
criterion. The channel estimate in Stage 1 is obtained assuming
locally linear time invariant (LTI) channels over different time
slots within the OTFS block. Using the initial estimate and
the generalized complex exponential basis expansion model
(GCE-BEM) [17], at the second stage, we estimate the time-
variations within different time slots. Thanks to the presence
of CP in our proposed pilot structure, we have developed a low
complexity implementation for the proposed LS estimator. It
is worth noting that the performance of the method in [11] can



OTFS Transmitter

OTFS Receiver

Information Bits

Pilot
Sequence

Bits to Symbol
Mapping

Mux.
DD to DT Transformation(

DFH
N

) Add
CP

P/S
Tx. RF

Front End

Time Varying Channel

Rx. RF
Front End

S/P
Remove

CP

DT to DD Transformation
(YFN )DeMux.

Equalization &
Detection

Channel Estimation

Detected Symbols

D X S

AWGNYZ

Fig. 1: Block diagram of the OTFS transceiver in baseband.

be substantially improved by replacing the spline interpolation
step with Stage 2 of our proposed estimator. Finally, we
numerically corroborate our claims as well as our analytical
results through simulations. Based on our results, the proposed
PCP has a substantially reduced PAPR compared with the
impulse pilot, i.e., around 14 dB. Additionally, embedding the
PCP along with data reduces the PAPR of the OTFS signal.
Our simulation results also show the superior normalized mean
square error (NMSE) performance of the proposed estimator
to the one in [11]. Finally, the bit error rate (BER) results show
that our proposed estimator provides a performance close to
that of the perfectly known channel at the receiver.

Notations: In this paper, matrices, vectors and scalar quan-
tities are denoted by boldface uppercase, boldface lowercase
and normal letters, respectively. The Hermitian, transpose,
Frobenius norm, and expected value operations are represented
as (·)H, (·)T, ‖ · ‖F and E{·}, respectively. The functions
circ{a} and vec (A) form a circulant matrix with the first
column a and a vector by concatenating the columns of A,
respectively. ~, �, and � indicate the 2D circular convolution,
Hadamard product and Hadamard division, respectively. IM
and 0L×K denote the identity matrix of size M and the
L × K zero matrix, respectively. FN is the normalized N -
point DFT matrix with the elements FN [p, q] = 1√

N
e−j

2πpq
N

for p, q = 0, . . . , N − 1.

II. SYSTEM MODEL

In this paper, we consider an OTFS system with M delay, N
Doppler bins and the delay and Doppler resolution ∆τ = Ts
and ∆ν = 1

MNTs
, respectively, where Ts is the sampling

period. The quadrature amplitude modulated (QAM) data
symbols together with the pilot signal are multiplexed on
the corresponding DD bins to form the matrix D ∈ CM×N
with the elements D[m,n] for m = 0, . . . ,M − 1 and
n = 0, . . . , N − 1. As the first step in OTFS modulation,
the DD domain signal D is translated to the delay-time
(DT) domain by taking N -point IDFT from its rows, i.e.,
X = DFH

N . Then, a cyclic prefix (CP) with the length Mcp,
larger than the channel length L, is appended at the beginning
of each column of the resulting DT domain matrix as

S = AcpX, (1)

where Acp = [GT
cp, I

T
M ]T is the CP addition matrix and the

Mcp × M matrix GCP includes the last Mcp rows of the

identity matrix IM . Finally, the signal S is passed through a
parallel-to-serial converter (P/S), up-converted to the carrier
frequency fc and transmitted into the wireless channel.

After down-conversion to the baseband, serial-to-parallel
conversion (S/P) and CP removal, the received DT domain
signal can be expressed as Y = [y0, . . . ,yN−1] where

yn = RcpHnAcpxn + vn, (2)

vn ∼ CN (0, σ2
vIM ) is the complex additive white Gaus-

sian noise (AWGN) vector with the variance σ2
v , xn is the

nth column of X, Hn is the linear time varying (LTV)
channel matrix at time slot n, and Rcp = [0M×Mcp , IM ]
is the CP removal matrix. Considering the channel gain for
a given tap ` ∈ {0, 1, . . . , L− 1} at the sample index κ,
h [κ, `], the elements of Hn can be represented as Hn [i, j] =
h [n(M +Mcp) + i, i− j] for i, j = 0, . . . ,M+Mcp−1. The
received DD domain symbols can be obtained by taking N -
point DFT from the rows of the received DT domain signal as
Z = YFN , [18]. Considering locally time invariant channels
over different time slots, the elements of Z can be obtained
from 2D circular convolution of the transmit symbols with the
DD domain channel impulse response, [1], as

Z = HDD~D + V, (3)

where Z[m,n] =
∑M−1
l=0

∑N−1
k=0 HDD[m− l, n− k]D[l, k] +

V [m,n], V [m,n]’s are DD domain noise samples, i.e., the
elements of V = VFN , V = [v0, . . . ,vN−1], and HDD[m−
l, n−k] = 1

N

∑N−1
n′=0Hn′ [m, l]e

− j2πn
′(n−k)
N is the DD domain

channel response. Therefore, equation (3) can be represented
in vectorized form as z = HBCd + v where HBC =
(FN ⊗Rcp) H

(
FH
N ⊗Acp

)
, z = vec(Z), d = vec(D), and

v = vec(V). As it is shown in the OTFS transceiver block
diagram in Fig. 1, after estimating the channel using the
received pilot signal, the transmit data symbols are detected.

III. PROPOSED PILOT STRUCTURE

The widely used pilot for channel estimation in OTFS
literature, [3], deploys a strong impulse at a given DD bin,
(mp, np). This pilot is surrounded by zero guards in L − 1
delay and all the Doppler bins above and below it, see
Fig. 2a. The zero guards are required to capture the channel
response and avoid interference between the data symbols
and the pilot. However, the large power of the impulse pilot
results in an increased peak power and hence a large PAPR
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Fig. 2: Different pilot structures.

that is not favourable to practical systems. In the following,
we analytically derive the upper bound expression for the
PAPR of the OTFS signal with embedded impulse pilot1.
This expression reveals the effect of the pilot parameters on
the PAPR. Based on the insights that are gained from this
analysis, we propose an embedded pilot structure that brings
a substantial PAPR reduction compared to the impulse pilot.

The PAPR expression for the OTFS transmit signal is
defined as,

PAPR =
max
m,n

{
|S[m,n]|2

}

Pavg
, (4)

where Pavg = 1
NMT

∑MT−1
m=0

∑N−1
n=0 E

{
|S[m,n]|2

}
represents

the average signal power, and MT = M + Mcp. S[m,n]’s
are the elements of the matrix S in (1), S[m + Mcp, n] =

1√
N

∑N−1
n′=0D[m,n′]ej

2πnn′
N and S[mcp, n] = S[mcp +M,n]

for mcp = 0, . . . ,Mcp − 1, m = 0, . . . ,M − 1 and
n = 0, . . . , N − 1. Since the transmit signal consists of
both data and embedded pilot parts, Pavg can be expressed
as Pavg = 1

MTN
(Pdata + Ppilot). The transmit data symbols

D[m,n′] are taken from a given modulation alphabet, A,
and they are assumed to be i.i.d. random variables with zero
mean and variance σ2

a = E
{
|D[m,n′]|2

}
. Using Parsevel’s

theorem,
∑N−1
n=0 E

{
|S[m,n]|2

}
=
∑N−1
n′=0 E

{
|D[m,n′]|2

}
,

and Pdata =
∑
m∈Γdata

Nσ2
a = N(MT − (2L− 1))σ2

a where
Γdata is the set of the delay indices allocated to data. Hence,
assuming Ppilot = γ,

Pavg =
1

NMT

(
N (MT − (2L− 1))σ2

a + γ
)
. (5)

To find the upper bound for the PAPR of the impulse
pilot, we expand |S[m,n]|2 as | 1√

N

∑N−1
n′=0D[m,n′]ej

2πnn′
N |2.

Consequently, using the Cauchy-Schwarz inequality, we have
|S[m,n]|2 ≤∑N−1

n′=0 |D[m,n′]|2. Therefore,

max
m,n

{
|S[m,n]|2

}
≤ max

m

{
N−1∑

n′=0

|D[m,n′]|2
}
. (6)

If α is the maximum power of the modulated symbol in A,
for m ∈ Γdata, max

m

{∑N−1
n′=0 |D[m,n′]|2

}
= Nα. When the

impulse pilot is transformed into the DT domain, its power

1The PAPR derivations and analyses in this section are for the baseband
signal. As the PAPR of the modulated bandpass signal can be simply found
by addition of 3 dB to the PAPR of the baseband signal [19].

is evenly spread across time, in the delay bin mp. Thus, for
m ∈ Γpilot, where the set Γpilot includes the delay indices allo-
cated to the pilot, max

m

{∑N−1
n′=0 |D[m,n′]|2

}
= γ/N . On this

basis, we conclude that max
m,n

{
|S[m,n]|2

}
≤ max {γ/N,Nα}.

Finally, substituting this result and (5) into (4), an upper bound
for the PAPR of the OTFS transmit signal with the embedded
impulse pilot is obtained as

PAPRImp. ≤ MTmax {γ/N,Nα}
(MT − 2L+ 1)σ2

a + γ/N
. (7)

To study the effect of the pilot on PAPR, we set the PAPR
for the case where the whole DD plane is filled with data
as a benchmark. In this case, Pavg = 1

MTN
Pdata = σ2

a and
max
m,n

{
|S[m,n]|2

}
= Nα and thus,

PAPRFull−Data ≤ Nα/σ2
a . (8)

This is the same as the upper bound derived in [20] for
OTFS with the rectangular transmit pulse-shape. Comparing
the upper bounds in (7) and (8), it can be seen that when
γ/N < Nα and γ/N < (2L − 1)σ2

a , the impulse pilot leads
to a larger PAPR than the full-data case. This is while for
(2L − 1)σ2

a < γ/N < Nα, PAPRImp. < PAPRFull−Data.
As the relative pilot power with respect to data and thus, γ/N
grows large, the PAPR of the impulse pilot is dominated by the
pilot and it tends to the deterministic value of MT. The latter
is often the case, as it is the main requirement for accurate
channel estimation using the threshold based estimator in [3].
Since, MT is usually in the order of a couple of hundreds,
PAPR becomes prohibitively large. As a result, the impulse
pilot is not suitable for practical implementation of OTFS.

An interesting observation in the above analysis is the fact
that the PAPR of the OTFS signal can be controlled by the
embedded pilot and its parameters. In particular, as the pilot
power grows large, the PAPR of the OTFS transmit signal is
dominated by the pilot. However, the issue with the impulse
pilot is the large peak power. To tackle this issue, one may
decide to spread the pilot power to multiple delay and Doppler
bins rather than concentrating all the pilot power in an impulse.
From (6), it is evident that spreading the pilot power along
the Doppler dimension does not have any effect on the peak
power. This is while spreading the pilot power across multiple
delay bins leads to peak power reduction. This creates a great
opportunity to design a pilot that can reduce the PAPR of the
OTFS transmit signal.

Based on the above discussion, we propose to distribute
the pilot power γ along the delay bins that are allocated to
the pilot on a given Doppler bin np. To protect the pilot
against interference from data symbols due to the channel
delay spread, a guard is required to be inserted between them.
An option is to insert zero guards in L− 1 delay and all the
Doppler bins above the pilot. However, this does not allow to
spread the pilot power across all the delay bins allocated to
the pilot. Therefore, in our proposed pilot structure, we place
a pilot sequence with length L on a given Doppler bin np and
the delay bins mp, . . . ,mp +L− 1. Then, we append its last



L−1 samples as a CP on the delay bins mp−L, . . . ,mp−1 so
that it absorbs the interference from data symbols. This allows
for spreading the pilot power γ over all the 2L−1 delay bins.
To minimize the peak power, in our proposed PCP, we deploy
a constant amplitude sequence such as the widely utilized ZC
sequence in wireless standards, e.g., 3GPP LTE and 5G NR,
[21]. The proposed pilot structure is depicted in Fig. 2b.

Allocating the power of γ to our proposed pilot signal, the
peak power can be calculated as max

m

{∑N−1
n′=0 |D[m,n′]|2

}
=

γ/N
2L−1 for m ∈ Γpilot. This is while the average power remains
the same as (5). Consequently, the upper bound expression for
the PAPR of the proposed pilot structure can be obtained as

PAPRPCP ≤
MTmax

{
γ/N
2L−1 , Nα

}

(MT − 2L+ 1)σ2
a + γ/N

. (9)

Comparing (9) with (8), for γ/N
2L−1 < Nα and γ/N

2L−1 < σ2
a ,

one may realize that PAPRPCP > PAPRFull−Data. This is
while for σ2

a <
γ/N
2L−1 < Nα, PAPRPCP < PAPRFull−Data. An

observation from (9), is that as the pilot power with respect
to data and hence, γ/N

2L−1 grows large, PAPRPCP tends to the
deterministic value of MT

2L−1 . This is a similar observation to
the one we had for the impulse pilot. The difference here is
that the PAPR for our proposed PCP is significantly reduced
compared with the impulse pilot, i.e., 2L− 1 times. In 3GPP
LTE and 5G NR standards, Mcp is chosen as 7% and in
the extended CP case 25% the symbol duration. Considering
L = Mcp, as γ grows large, PAPRPCP (in dB) tends to
10 log10( 1.07M

0.14M−1 ) ≈ 9 dB and 10 log10( 1.25M
0.5M−1 ) ≈ 4 dB

for Mcp = 0.07M and for Mcp = 0.25M , respectively.
In Fig. 3, we analyse the behaviour of the derived upper

bound expressions in (7) and (9) with respect to γ while we
compare them with the PAPR that is obtained from simulation.
In our analysis, we consider M = 128, N = 32, Mcp = L =
0.14M , and σ2

a = 1. Based on our results, for large values of
γ, PAPR of both pilots becomes deterministic and coincides
with the PAPR that is calculated using (7) and (9). This proves
the validity of our derivations and discussions above. When
γ takes smaller values, and the PAPR is dominated by data
symbols, both pilot structures have the same performance
for both PAPRs calculated using the derived upper bound
expressions and simulations. However, as γ reaches a certain
value, the PAPR for the impulse pilot dramatically increases,
while the opposite is observed for our proposed pilot. For
PCP, the PAPR from simulations decreases before it settles at
MT

2L−1 . This is because the peak power is still dominated by
data symbols while the average power is increasing.

Based on the above, our proposed pilot structure has a
substantially reduced PAPR compared with the impulse pilot.
Furthermore, as will be discussed shortly, the proposed pilot
structure has other attractive properties that facilitate simple
channel estimation. Since the threshold-based channel estima-
tion method in [3] is not applicable to PCP, in the following
section, we propose a channel estimation technique that is
suitable for both impulse and PCP pilot structures.
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IV. PROPOSED CHANNEL ESTIMATION TECHNIQUE

In this section, we propose a two-stage channel estimation
technique that is applicable to both PCP and impulse pilot
structures. Assuming a locally LTI channel over each time
slot, at the first stage of our proposed technique, we estimate
the channel in the DD domain based on the LS or MMSE
criterion. At the second stage, we capture the time variations
of the channel within each time slot by fitting the channel
estimates from the first stage to the basis expansion model. In
the following, we explain this process in detail.

Stage 1: Considering locally LTI channel over different time
slots, using (3), the received pilot signal in DD domain after
discarding the CP can be obtained as

Zp = Dp~HDD + Vp, (10)

where Dp is the transmit pilot signal excluding the CP and Vp

is the noise effect on the pilot with the elements Dp[i, n] =
D[mp + i, n] and V p[i, n] = V [mp + i, n] for i = 0, . . . , L−1
and n = 0, . . . , N − 1, respectively. Equation (10) can be
rearranged in vectorized form as

zp = DphDD + vp, (11)

where the matrix Dp = circ{[D̃T

p,0, . . . , D̃
T

p,N−1]T} realizes
the 2D circular convolution in (10), with the L× L circulant
matrices D̃p,n whose first columns are the nth column of Dp,
hDD =vec{HDD}, and vp =vec{Vp}. Hence, from (11), hDD

can be estimated using the LS or MMSE criterion, as

ĥLS
DD = D−1

p zp, (12)

or,

ĥMMSE
DD = ChDD

DH
p

(
DpChDD

DH
p + σ2

vINL

)−1

zp, (13)

respectively, where ChDD
= E{hDDhH

DD} is the correlation
matrix of the DD domain channel response. Under the as-
sumption of wide sense stationary and uncorrelated scattering
(WSSUS) property, [17], ChDD is a diagonal matrix with the
elements

ChDD [l, l] = E
{
|HDD[l, n]|2

}
. (14)



Considering Rayleigh-distributed channel coefficients with
Jakes Doppler spectrum, we have

E {h[κi, `i]h
∗[κj , `j ]} = ρ`iJ0 (2πfDTs(κi − κj)) δ[`i − `j ]

(15)
where, ρ`i is the power of the channel tap `i and ΣL−1

i=0 ρ`i = 1,
fD is the maximum Doppler shift, and J0(·) is the zeroth order
Bessel function of the first kind. Substituting HDD[l, n] =
1
N

∑N−1
n′=0 h[n′MT + l, n− l]e−j 2πnn′

N in (14) and using (15),
the diagonal elements of ChDD can be obtained as

ChDD
[l, l]=

N∑

p=−N

(N − |p|)
N2

ρlJ0(2πfDTspMT)e−j
2πpn
N . (16)

Stage 2: Our proposed linear estimators in (12) and (13)
estimate the channel under the assumption of locally LTI
channel over each time slot, i.e., every block of MT samples.
This is also the case for the threshold-based channel estimator
in [3]. However, in practice, this assumption is not very
accurate, [13], and the variations of the channel within the time
slots are not captured using the aforementioned estimators. To
tackle this issue, we take the channel estimates from Stage 1 to
the delay-time domain and approximate the channel variations
within each time slot using GCE-BEM by estimating the
BEM coefficients. To this end, we first stack the consecutive
elements of ĥLS

DD or ĥMMSE
DD in an L×N matrix ĤDD

2. Then,
we take the DD domain channel estimate to the delay-time
domain by taking N -point IDFT from its rows, i.e., ĤDT =

1√
N

ĤDDFH
N . The estimates on the columns, n, of ĤDT can be

thought of as the channel snapshots that are captured at time
instants κ ∈ Ψ = {mp +Mcp + nMT|n = 0, . . . , N − 1}.

Using Q GCE basis functions, the complete DT domain
channel can be expressed as [17],

HFull
DT = ΛB, (17)

where Λ is the L×Q BEM coefficient matrix, and the Q×MN
matrix B = [b0, . . . ,bQ−1]T includes the complex exponen-
tial basis vectors on its rows, i.e., bq(n) = e

j2π(q−Q/2)n
KMN ,

∀n ∈ {iMT +Mcp, . . . , iMT +MT − 1}, 0 ≤ i ≤ N − 1.
For the GCE-BEM to accurately capture the time variations
of the channel, the oversampling factor and number of basis
functions are chosen as K ≥ 1 and Q = d2KMTNfDTse+ 1
[17]. Using (17), by stacking the columns of B with the indices
κ ∈ Ψ in ascending order to form the matrix BΨ, the DT
domain channel estimate from Stage 1 can be approximated
as ĤDT = ΛBΨ. Hence, the BEM coefficient matrix can be
estimated as Λ̂ = ĤDTB†Ψ

where B†Ψ = BH
Ψ(BΨBH

Ψ)−1 is the pseudo-inverse of BΨ.
Finally, the full channel can be estimated by substituting Λ̂
into (17) as ĤFull

DT = Λ̂B which can be simply translated back
to the DD domain as ĤFull

DD =
√
NĤFull

DT FN .
It is worth noting that Stage 2 is also applicable to

the threshold-based channel estimation in [3]. Furthermore,
Stage 2 can be thought of as an interpolation technique. Thus,

2We have not used any superscript for HDD as both LS and MMSE
estimates from Stage 1 can be considered as the input to Stage 2.

in Section VI, we numerically analyze the MSE performance
of our proposed channel estimation technique. We compare
and show the superiority of our proposed technique over the
threshold-based method in [3] and also the spline interpolation
approach in [11] to estimate the full channel, HFull

DD .

V. LOW COMPLEXITY IMPLEMENTATION AND
DETECTION CONSIDERATIONS

In this section, we show that our proposed pilot structure fa-
cilitates a low complexity implementation of the LS estimator.
Then, we provide a detailed complexity analysis of the channel
estimators under study in terms of the number of complex
multiplications (CMs). Finally, we discuss the considerations
that need to be taken into account at data detection stage, as no
guards are present in PCP between the pilot and data symbols.

From (10), one may realize that 2D circular convolution can
be implemented by multiplication in the frequency-time (FT)
domain. Consequently, the received FT domain pilot signal
can be represented as

ZFT
p = DFT

p �HFT + V
FT

p , (18)

where ZFT
p = FLZpFH

N , DFT
p = FLDpFH

N , and V
FT

p =

FLVpFH
N are the FT domain counterparts of the correspond-

ing DD domain signals in (10). It is worth noting that ZFT
p

can be directly calculated as ZFT
p = FLYp where the

L×N matrix Yp includes the DT domain received pilot after
removing its CP. From (18), and using the known pilot signal
at the receiver, the TF channel response can be estimated as

ĤFT = ZFT
p �DFT

p . (19)

From (19), the DT domain channel estimate can be obtained
as ĤDT = 1√

L
FH
LĤFT and fed into Stage 2 of our proposed

channel estimator to find ĤFull
DD .

Due to the presence of ChDD in (13), the block circulant
with circulant block structure of Dp is not retained in the
matrices involved. Thus, low complexity implementation of
the MMSE estimator in FT domain is impossible.

A. Computational Complexity Analysis

Table I summarizes the computational complexity of differ-
ent channel estimators in terms of the number of CMs. Stage 2
of our proposed technique is considered in all the channel
estimators under study, as it substantially improves the channel
estimation accuracy. Computing the pseudo-inverse matrix B†Ψ
offline, Stage 2 channel estimation requires LNQ and LQMN
number of CMs to find Λ̂ and ĤFull

DD , respectively.
As only one of the block matrices, i.e., D̃p,np

forming Dp is
non-zero and D−1

p retains the block circulant structure of Dp,
direct implementation of the proposed LS estimator in (12),
requires NL2 number of CMs. The presence of the diagonal
matrix ChDD

in (13) does not break the block structure of
the matrices involved in the MMSE estimator. Thus, matrix
inversion and multiplications for direct implementation of (13)
require O(NL3 + 2NL2) number of CMs. As the input to
Stage 2, the DD domain channel estimates from (12) and



TABLE I: Computational Complexity of Different Estimators.

Channel Estimator Complex Multiplications (CMs)
LS Direct O(NL2 + LN

2
log2 N + LNQ(MT + 1))

MMSE Direct O(NL3 + 2NL2 + LN
2

log2 N + LNQ(MT + 1))
Low complexity LS O(NL log2 L+NL+ LNQ(MT + 1))

Threshold-based O (LN + LNQ(M + 1))

(13) should be converted to the DT domain. This requires
L number of N -point DFT operations that can be efficiently
implemented using the fast Fourier transform algorithm (FFT)
with LN

2 log2N number of CMs. The proposed low com-
plexity implementation of the LS estimator in (19), requires
the received signal to be taken to the FT domain and then a
simple division3 needs to be performed to find the FT channel
estimate. Ultimately, the estimated channel is converted to
the DT domain using N number of L-point DFT operations.
Finally, the threshold-based channel estimator in [3] requires
only LN complex division operations.

From Table I, it is evident that the threshold-based estimator
in [3] has the lowest complexity. However, this estimator is
not applicable to our proposed pilot structure with low PAPR
as it was originally designed for the impulse pilot structure. To
tackle this issue, we propose our low complexity LS estimator
in this section with a computational load comparable to that
of the threshold-based estimator.

B. Data Detection Considerations

To avoid spectral efficiency loss, in PCP, no guard is con-
sidered between pilot and data symbols. Due to the multipath
effect, after the pilot goes through the channel, it interferes
with data symbols. To tackle this issue, after the channel
is estimated, the interference from pilot to data needs to
be removed, otherwise, it can severely degrade the detection
performance. Hence, the interference from pilot signal can be
regenerated and subtracted from the received signal using the
channel estimate ĤFull

DD . After removing the pilot, the resulting
signal is fed to the OTFS detector.

VI. SIMULATION RESULTS

In this section, we numerically analyze the PAPR perfor-
mance of our proposed pilot structure, while comparing it with
that of the fully loaded OTFS block with data as a benchmark
and the impulse pilot. We also assess and compare our
proposed channel estimator with the threshold-based method
of [3] in terms of channel estimation NMSE, ‖H

Full
DD−Ĥ

Full
DD‖

2
F

‖ĤFull
DD‖2F

,
and BER performance. We consider an OTFS system with
M = 128 delay and N = 32 Doppler bins. The channel
is simulated using the extended vehicular A (EVA) channel
model, [22], at the carrier frequency of fc = 5.9 GHz, the
sampling period of Ts = 133.33 ns and the relative velocity
of 500 km/h. For channel estimation with GCE-BEM, Q = 7
and K = 2 are chosen. In the BER analysis, we consider
both 4-QAM (quadrature amplitude modulation) and 16-QAM.

3Complex division is considered to have the same complexity as complex
multiplication.
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Fig. 4: PAPR performance comparison of OTFS with embed-
ded impulse pilot, PCP and, full data for 16-QAM.
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Fig. 5: NMSE performance comparison of different channel
estimation techniques with different pilot structures.

Finally, we utilize the ZC sequence for PCP, while we set the
pilot power at γdB = 40 dB for both PCP and impulse pilot.

In Fig. 4, we analyze and compare the PAPR performance
of our proposed PCP with that of the impulse pilot and our
benchmark, i.e., fully loaded OTFS block with data. This
shows that PCP not only has a substantially reduced PAPR
compared with the impulse pilot, i.e., around 14 dB, but it
also reduces the PAPR of the OTFS signal by around 5 dB.

To estimate ĤFull
DD using the impulse pilot, threshold-based

estimator followed by spline interpolation was proposed in
[11]. However, as the threshold-based estimator is not suitable
for PCP, we developed a two-stage channel estimator appli-
cable to this pilot structure in Section IV. In Fig. 5, we have
evaluated and shown the superior performance of our proposed
technique compared with the method in [11]. As it is evident
from our results, compared with spline interpolation, our
proposed GCE-BEM based approach leads to the substantial
performance improvement of around 5 dB for all the estima-
tors under study. As it is shown in Fig. 5, the threshold-based
method for the impulse pilot with our proposed GCE-BEM
approach outperforms all the other techniques. However, the
impulse pilot is not suitable for practical applications. Finally,



0 5 10 15 20 25 30

SNR (dB)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
E

R

PCP, 16 -QAM

Impulse, 16-QAM

Perfect CSI, 16-QAM

PCP, 4-QAM

Impulse, 4-QAM

Perfect CSI, 4-QAM

Fig. 6: BER performance comparison of different channel
estimation techniques with different pilot structures.

it should be highlighted that the superiority of the MMSE to
the LS estimator at low SNRs is negligible for the proposed
GCE-BEM approach. Thus, given its low computational load
and performance, we only consider the proposed LS estimator
in our BER analysis in Fig. 6.

In Fig. 6, the BER performance of our proposed channel
estimator for PCP and the threshold-based estimator in [11]
for the impulse pilot are compared. In the method of [11],
spline interpolation is replaced with Stage 2 of our proposed
estimator. The results for both 4-QAM and 16-QAM are
provided. For signal detection, the least squares minimum
residual based technique with interference cancellation in [23]
is deployed. From Fig. 6, it can be observed that our proposed
estimator with PCP offers a BER performance very close to
the perfect channel state information (CSI) case. The superior
performance of the impulse pilot is due to the fact that
the threshold-based estimator with Stage 2 of our proposed
estimator provides more accurate channel estimates. However,
the impulse pilot is not practical.

VII. CONCLUSION

In this paper, we developed an embedded pilot structure
for OTFS with a significantly reduced PAPR compared to
the widely used impulse pilot. This was shown both ana-
lytically and through numerical results. We derived upper
bound expressions for the PAPR of the impulse pilot and the
proposed PCP. In our pilot structure, we spread the pilot power
across a constant amplitude ZC sequence along the delay
dimension to reduce the PAPR. Furthermore, we proposed
a two-stage channel estimation technique for PCP with a
superior performance to the threshold-based estimator for the
impulse pilot. In the first stage, the proposed estimator finds
an initial channel estimate which is refined in its second
stage. We showed that the threshold-based estimator followed
by our proposed GCE-BEM approach improves the channel
estimation accuracy when the impulse pilot is used. However,
impulse pilot is not practical. Finally, we numerically analyzed
the BER performance of our proposed channel estimator with
PCP which led to a performance close to the perfect CSI case.

REFERENCES

[1] R. Hadani, S. Rakib, M. Tsatsanis, A. Monk, A. J. Goldsmith, A. F.
Molisch, and R. Calderbank, “Orthogonal Time Frequency Space Mod-
ulation,” in IEEE Wireless Commun. Netw. Conf. (WCNC), 2017, pp.
1–6.

[2] M. Noor-A-Rahim, Z. Liu, H. Lee, M. O. Khyam, J. He, D. Pesch,
K. Moessner, W. Saad, and H. V. Poor, “6G for Vehicle-to-Everything
(V2X) Communications: Enabling Technologies, Challenges, and Op-
portunities,” Proc. IEEE, vol. 110, no. 6, pp. 712–734, 2022.

[3] P. Raviteja, K. T. Phan, and Y. Hong, “Embedded Pilot-Aided Channel
Estimation for OTFS in Delay–Doppler Channels,” IEEE Trans. Veh.
Technol., vol. 68, no. 5, pp. 4906–4917, 2019.

[4] W. Yuan, S. Li, Z. Wei, J. Yuan, and D. W. K. Ng, “Data-Aided Channel
Estimation for OTFS Systems With a Superimposed Pilot and Data
Transmission Scheme,” IEEE Wireless Commun. Lett., vol. 10, no. 9,
pp. 1954–1958, 2021.

[5] K. R. Murali and A. Chockalingam, “On OTFS Modulation for High-
Doppler Fading Channels,” in Inf. Theory and Appl. Workshop (ITA),
2018, pp. 1–10.

[6] O. K. Rasheed, G. D. Surabhi, and A. Chockalingam, “Sparse Delay-
Doppler Channel Estimation in Rapidly Time-Varying Channels for
Multiuser OTFS on the Uplink,” in IEEE Veh. Technol. Conf. (VTC),
2020, pp. 1–5.

[7] S. G. Neelam and P. R. Sahu, “Channel Estimation and Data detection
of OTFS system in the presence of Receiver IQ Imbalance,” in 2021
National Conf. Commun. (NCC), 2021, pp. 1–6.

[8] Y. Liu, Y. L. Guan, and D. G. G., “Near-Optimal BEM OTFS Receiver
With Low Pilot Overhead for High-Mobility Communications,” IEEE
Trans. Commun., vol. 70, no. 5, pp. 3392–3406, 2022.

[9] Y. Liu, S. Zhang, F. Gao, J. Ma, and X. Wang, “Uplink-Aided High
Mobility Downlink Channel Estimation Over Massive MIMO-OTFS
System,” IEEE J. Sel. Areas Commun., vol. 38, no. 9, pp. 1994–2009,
2020.

[10] M. Bayat and A. Farhang, “Time and Frequency Synchronization for
OTFS,” IEEE Wireless Commun. Lett., pp. 1–1, 2022.

[11] T. Thaj, E. Viterbo, and Y. Hong, “Orthogonal Time Sequency Multi-
plexing Modulation: Analysis and Low-Complexity Receiver Design,”
IEEE Trans. Wireless Commun., vol. 20, no. 12, pp. 7842–7855, 2021.

[12] W. Shen, L. Dai, J. An, P. Fan, and R. W. Heath, “Channel Estimation
for Orthogonal Time Frequency Space (OTFS) Massive MIMO,” IEEE
Trans. Signal Process., vol. 67, no. 16, pp. 4204–4217, 2019.

[13] H. Qu, G. Liu, L. Zhang, M. A. Imran, and S. Wen, “Low-Dimensional
Subspace Estimation of Continuous-Doppler-Spread Channel in OTFS
Systems,” IEEE Trans. Commun., vol. 69, no. 7, pp. 4717–4731, 2021.

[14] R. Marsalek, J. Blumenstein, A. Prokes, and T. Gotthans, “Orthogonal
Time Frequency Space Modulation: Pilot Power Allocation and Nonlin-
ear Power Amplifiers,” in IEEE Int. Symp. Signal Proces. Inf. Technol.
(ISSPIT), 2019, pp. 1–4.

[15] S. Gao and J. Zheng, “Peak-to-Average Power Ratio Reduction in Pilot-
Embedded OTFS Modulation Through Iterative Clipping and Filtering,”
IEEE Commun. Lett., vol. 24, no. 9, pp. 2055–2059, 2020.

[16] H. B. Mishra, P. Singh, A. K. Prasad, and R. Budhiraja, “OTFS Channel
Estimation and Data Detection Designs With Superimposed Pilots,”
IEEE Trans. Wireless Commun., vol. 21, no. 4, pp. 2258–2274, 2022.

[17] F. Hlawatsch and G. Matz, Wireless Communications over Rapidly Time-
Varying Channels. Academic Press, 2011.

[18] A. Farhang, A. RezazadehReyhani, L. E. Doyle, and B. Farhang-
Boroujeny, “Low Complexity Modem Structure for OFDM-Based Or-
thogonal Time Frequency Space Modulation,” IEEE Wireless Commun.
Lett., vol. 7, no. 3, pp. 344–347, 2018.

[19] T. J. Rouphael, RF and Digital Signal processing for Software-defined
radio. Elsevier, 2008.

[20] G. D. Surabhi, R. M. Augustine, and A. Chockalingam, “Peak-to-
Average Power Ratio of OTFS Modulation,” IEEE Commun. Lett.,
vol. 23, no. 6, pp. 999–1002, 2019.

[21] 3GPP, “5G;System architecture for the 5G System (Release 16 ),” 3rd
Generation Partnership Project (3GPP), TS 123.501 V16.6.0, 2020.

[22] ——, “Evolved universal terrestrial radio access (E-UTRA); base station
(BS) radio transmission and reception (Release 12 ),” 3rd Generation
Partnership Project (3GPP), TS 36.104 V15.3.0, 2018.

[23] H. Qu, G. Liu, L. Zhang, S. Wen, and M. A. Imran, “Low-Complexity
Symbol Detection and Interference Cancellation for OTFS System,”
IEEE Trans. Commun., vol. 69, no. 3, pp. 1524–1537, 2021.


