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ABSTRACT: The capacity deterioration of structures over time may impair their seismic structural
reliability significantly, and thus should be taken into account when assessing their seismic performance.
In this paper, a simple formula is proposed for time-dependent seismic reliability analysis of
deteriorating structures. The capacity deterioration on the temporal scale is captured by the generalized
capacity and deterioration function, and the Fréchet distribution is used to describe the probabilistic
behaviour of the peak ground acceleration. The proposed formula is based on some minor assumptions
on the probability models of the deterioration process and of the seismic hazard, and does not involve the
computation of integrals, which is beneficial for use in practical engineering. A numerical example is
presented to demonstrate the accuracy and applicability of the proposed reliability analysis method.

1. Introduction
Earthquakes are among the significant natural

hazards that threaten structural serviceability and
safety of civil engineering structures. Engineered
structures are expected to withstand the impact of
earthquakes during their service life with acceptable
seismic performance (Cornell et al., 2002; Anbazha-
gan et al., 2009; Wang et al., 2019). However, these
structures often suffer from environmental or oper-
ational conditions such as chloride-induced corro-
sion, leading to degraded seismic performance that
may fall below an acceptable level as assumed for
new ones (Ghosh and Padgett, 2010; Wang et al.,
2021). Taking into account the uncertainties as-
sociated with both the earthquake actions and the
structural properties, a reliability analysis should be
employed to estimate the seismic structural perfor-
mance quantitatively.

The concept of time-dependent fragility curve
has been widely used in the literature to represent
the time-dependent variation of seismic structural

performance (Choe et al., 2010; Song et al., 2019;
Granello et al., 2020). However, the time-dependent
fragility curves are representative of the seismic
structural capacity and demand at a specific time
point, and thus cannot reflect the accumulation of
risks over a reference period of time (note that the
structural damage/failure may occur at any time and
thus the risk increases with the duration of consid-
ered service period). To this end, time-dependent
seismic reliability assessment is a powerful tool to
estimate the structural ability of withstanding future
earthquake loads within a given service period.

The work by Mori and Ellingwood (1993)
was among the early attempts to estimate time-
dependent structural reliability, which modeled the
occurrence of load sequence as a Poisson point pro-
cess. However, a three-fold integral is included
in the estimate of structural reliability when taking
into account the uncertainties associated with ini-
tial structural resistance, the resistance deterioration
and the external load process (Mori and Ellingwood,
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1993), which could hinder its application in prac-
tical engineering. Akiyama et al. (2011) evaluated
the displacement ductility capacity and life-cycle
seismic reliability of corroded reinforced concrete
bridge piers by integrating the probabilistic hazard
of airborne chlorides. In their model, it was as-
sumed that the events of structural failure at dif-
ferent times are statistically independent, and thus
the impact of the temporal correlation associated
with the seismic structural capacity was not con-
sidered. Kurtz et al. (2016) developed a method
for multi-scale network reliability analysis of bridge
networks, using the time-variant fragility models to
represent the time-variation of bridge performance
under earthquake excitations. However, while their
method offers snapshots for the reliability of bridge
network at different time points, it cannot account
for the accumulation of earthquake risk over time.

In this paper, a simple formula is developed for
time-dependent seismic structural reliability assess-
ment. The concept of generalized seismic capacity
is adopted to represent the seismic fragility, which
has a cumulative distribution function (CDF) that
is exactly the same as the fragility curve. The pro-
posed method takes into account the uncertainties
associated with the generalized capacity, the capac-
ity deterioration process and the earthquake loads.
A linear deterioration function is used to model the
time-variation of seismic structural capacity. The
accuracy and applicability of the proposed method
are verified through an example.

2. Deterioration model for seismic struc-
tural capacity

The fragility curves have been extensively used to
represent the vulnerability of a structure subjected
to earthquake excitations, providing the probability
of a certain damage state of the post-hazard struc-
ture (Li and Ellingwood, 2006; Guo et al., 2016; Cui
et al., 2018). A fragility curve can be obtained by
computing the probability that the demand exceeds
the structural capacity conditioned on a specific haz-
ard intensity. A practical approach to understanding
the fragility curve is to adopt the concept of gener-
alized seismic capacity, denoted by 𝑅, whose CDF
is exactly the same as the fragility curve (Baker,
2008; Wang and Zhang, 2020; Wang et al., 2020).

The generalized capacity 𝑅 has the same unit as the
seismic intensity measure, and is a measure of the
performance of a structure in an earthquake event
which, if exceeded by the ground motion intensity,
would result in a damage state. Mathematically,

Pr(𝐷𝑆 |𝑥) = Pr(𝑅 ≤ 𝑥) (1)

in which Pr( ) denotes the probability of the event
in the brackets, 𝐷𝑆 is the damage state, and 𝑥 is
the intensity measure. A fragility curve is typically
assumed to have a lognormal distribution shape in
practice, so the generalized capacity 𝑅 is also log-
normally distributed. With this regard, the proba-
bility density function (PDF) of 𝑅, 𝑓𝑅 (𝑟), takes a
form of

𝑓𝑅 (𝑟) =
1

√
2𝜋𝑟𝜈

exp

[
−1

2

(
ln𝑟 − 𝜅

𝜈

)2
]
, 𝑟 ≥ 0 (2)

where the two parameters 𝜅 and 𝜈 are the mean
value and the standard deviation of ln𝑅, respec-
tively. Note that Eq. (1) has been conditioned on
a specific value of 𝑥. If the uncertainty associated
with the intensity measure is also taken into account,
using the law of total probability, it follows that

Pr(𝐷𝑆) =
∫ ∞

0
Pr(𝐷𝑆 |𝑥) 𝑓𝑋 (𝑥)𝑑𝑥 = Pr(𝑅 ≤ 𝑋) (3)

where 𝑋 , written in the capital form, denotes the
intensity measure as a random variable, and 𝑓𝑋 (𝑥)
is the PDF of 𝑋 conditional on the occurrence of
one earthquake event. Considering the impact of
structural capacity deterioration, as well as the time-
variation of seismic demand, on the temporal do-
main, Eq. (3) is rewritten as follows,

Pr(𝐷𝑆(𝑡)) = Pr(𝑅(𝑡) ≤ 𝑋) (4)

where 𝐷𝑆(𝑡) and 𝑅(𝑡) are the damage state and the
generalized capacity at time 𝑡 respectively. Based on
Eq. (4), a deterioration function, denoted by 𝐺 (𝑡),
is introduced to describe the deterioration process
of the generalized capacity 𝑅(𝑡) (Wang and Zhang,
2020), which is defined as follows,

𝑅(𝑡) = 𝑅0 ·𝐺 (𝑡) (5)
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where 𝑅0 is the initial generalized capacity. Clearly,
𝐺 (0) ≡ 1 deterministically. At any time 𝑡 > 0, 𝐺 (𝑡)
is a random variable varying within an interval of
[0,1]. There are many candidate distribution types
for 𝐺 (𝑡) with a support of [0,1], e.g., Beta distri-
bution, truncated distribution, among others (Wang
et al., 2016). Specifically, the Beta distribution can
be used to derive a simple expression for seismic
structural reliability, as will be shown later (see
Eq. (19)). Another important feature for Beta dis-
tribution is that, a Beta-distributed random variable
can be interpreted as the ratio of two Gamma dis-
tributed variables (with numerator not exceeding
denominator). This is similar to the definition of
𝐺 (𝑡), being equal to the ratio of 𝑅(𝑡) to 𝑅0 (see
Eq. (5)). When 𝐺 (𝑡) is modeled as a Beta random
variable for 𝑡 > 0, the PDF of 𝐺 (𝑡) is written as
follows for 𝑔 ∈ [0,1],

𝑓𝐺 (𝑡) (𝑔) =
Γ(𝑝(𝑡) + 𝑞(𝑡))
Γ(𝑝(𝑡))Γ(𝑞(𝑡)) 𝑔

𝑝(𝑡)−1(1−𝑔)𝑞(𝑡)−1 (6)

where Γ is the Gamma function, Γ(𝑧) =∫ ∞
0 𝑥𝑧−1 exp(−𝑥)𝑑𝑥, 𝑝(𝑡) > 0 and 𝑞(𝑡) > 0 are two

time-variant shape parameters.
In Eq. (5), the deterioration process of generalized

capacity, 𝑅(𝑡), is modeled as follows in this paper
(Wang and Zhang, 2020),

𝐺 (𝑡) = 1−𝛼0 · 𝑡 (7)

in which 𝛼0 > 0 is a rate parameter (random vari-
able). With Eq. (7), 𝐺 (𝑡) can be expressed in terms
of 𝑇 and 𝐺 (𝑇) as follows,

𝐺 (𝑡) = 1− [1−𝐺 (𝑇)] · 𝑡
𝑇

(8)

The deterioration function𝐺 (𝑡) in Eq. (8) enables
that the time-variation of structural generalized ca-
pacity (fragility curve) on the temporal scale can be
described, which is by nature a continuous stochas-
tic process. Such a model is an essential ingredient
in structural time-dependent reliability assessment
(as will be detailed in the following, see Eq. (13)),
and its role cannot be simply achieved through in-
dividual fragility curves.

3. Probabilistic model of seismic load
Frequently-used intensity measures for earth-

quake loads include peak ground acceleration
(PGA), peak ground velocity, and others (Elnashai
and Di Sarno, 2015). In this paper, the PGA will be
used to represent the earthquake load, with uncer-
tainties arising from the earthquake events in terms
of frequency and magnitude. For a reference period
of [0,Δ𝑡] (in years), the Extreme Type II distribution
(also known as Fréchet distribution) can be used to
reasonably model the probabilistic behavior of PGA,
denoted by 𝐴 (Cornell, 1968). Mathematically, the
CDF of 𝐴 takes a form of

𝐹𝐴 (𝑥) = exp
[
−

(𝑥
𝜖

)−𝑘 ]
(9)

in which 𝜖 is a scale parameter and 𝑘 is a shape
parameter. The assignment of a Fréchet distribution
for the PGA is based on the assumption that the
occurrence of earthquakes follows a Poisson point
process.

According to Eq. (9), the mean value and the vari-
ance of 𝐴 are determined as follows, respectively,

𝜇𝐴 = 𝜖Γ

(
1− 1

𝑘

)
, if 𝑘 > 1

𝜎2
𝐴 = 𝜖2

[
Γ

(
1− 2

𝑘

)
−Γ2

(
1− 1

𝑘

)]
, if 𝑘 > 2

(10)

It is assumed in this paper that 𝑘 > 1. Note that in
Eq. (9), the parameter 𝜖 is dependent on the duration
of the time interval Δ𝑡, while 𝑘 only depends on the
characteristics of the site seismicity. In fact, it can be
shown that 𝜖 𝑘 is proportional to Δ𝑡 (Cornell, 1968;
Wang, 2021). Based on this fact, let 𝜖𝑦 denote the
value of 𝜖 associated with a period of one year, and
it follows that

𝜖 𝑘

Δ𝑡
= 𝜖 𝑘𝑦 (11)

With Eq. (9), Eq. (4) can be rewritten as
Pr(𝐷𝑆(𝑡)) = Pr(𝑅(𝑡) ≤ 𝐴) = 𝐹𝐴 (𝑅(𝑡)). Since the
structural capacity 𝑅(𝑡) is typically far greater than
𝐴, at the upper tail, 𝐹𝐴 can be approximated as
follows,

𝐹𝐴 (𝑥) ≈ 1−
(𝑥
𝜖

)−𝑘
= 1− 𝜖 𝑘𝑥−𝑘 = 1−𝐻 (𝑥) (12)
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where 𝐻 (𝑥) = 𝜖 𝑘𝑥−𝑘 is the hazard curve. The ap-
proximation in Eq. (12) was used by Cornell et al.
(2002) to derive a closed-form solution for structural
seismic performance. The parameter 𝑘 in Eqs. (9)
and (12) has a typical value of 1 ∼ 4 for most engi-
neering cases in the US (Yun, 2000; Cornell et al.,
2002).

4. Time-dependent seismic reliability assess-
ment

The occurrence of unsatisfactory structural per-
formance, measured by the damage state, could be at
any time during service life, reflecting the accumu-
lation of seismic risks over time. In this paper, the
structural seismic reliability over a time period of
[0,𝑇] is defined as the probability that the damage
state does not occur over [0,𝑇]. The structural relia-
bility would be essentially dependent on the specific
damage state of interest.

Let Rel(𝑇) denote the time-dependent seismic re-
liability of a structure over [0,𝑇] (in years). First,
the interval [0,𝑇] is subdivided into 𝑛 identical
sections, namely [𝑡0 = 0, 𝑡1], (𝑡1, 𝑡2] . . . (𝑡𝑛−1, 𝑡𝑛 =𝑇],
where 𝑛 is large enough. Let 𝐴𝑖 denote the maxi-
mum PGA within the 𝑖th interval for 𝑖 = 1,2, . . . 𝑛.
Modeling the capacity deterioration using Eq. (5),
it follows that,

Rel(𝑇) = Pr (𝑅0 ·𝐺 (𝑡𝑖) > 𝐴𝑖,∀𝑖 = 1,2, . . . 𝑛) (13)

Correspondingly, the structural failure probability,
denoted by 𝑃 𝑓 (𝑇), is simply 1−Rel(𝑇).

The model in Eq. (8) is used to describe the dete-
rioration process 𝐺 (𝑡). If the uncertainties associ-
ated with both 𝑅0 and 𝐺 (𝑇) are taken into account,
Eq. (13) becomes

Rel(𝑇) =
∫
𝑅0

∫
𝐺 (𝑇)

𝑛∏
𝑖=1

𝐹𝐴𝑛

[
𝑟0 ·

(
1− (1−𝑔) · 𝑡𝑖

𝑇

)]
· 𝑓𝑅0,𝐺 (𝑇) (𝑟0, 𝑔)𝑑𝑔𝑑𝑟0

(14)
in which 𝑓𝑅0,𝐺 (𝑇) (𝑟0, 𝑔) is the joint PDF of 𝑅0 and
𝐺 (𝑇), and 𝐴𝑛 is the maximum PGA within each
time interval (with a duration of 𝑇/𝑛). Assuming
that 𝑅0 is statistically independent of𝐺 (𝑇), Eq. (14)

is rewritten as follows,

Rel(𝑇) =
∫
𝑅0

∫
𝐺 (𝑇)

exp

(
−
𝑟−𝑘0 𝜖 𝑘𝑦𝑇

𝑘 −1
· 𝑔

1−𝑘 −1
1−𝑔

)
· 𝑓𝑅0 (𝑟0) 𝑓𝐺 (𝑇) (𝑔)𝑑𝑔𝑑𝑟0

(15)
in which 𝑓𝐺 (𝑇) (𝑔) is the PDF of 𝐺 (𝑇), and 𝑓𝑅0 (𝑟0)
is the PDF of 𝑅0.

Note that for most engineering structures guided
by structural design standards, the seismic reliability
in Eq. (15) is close to 1. With this context, one can
use the first-order Taylor expansion to approximate
the core of Eq. (15). Note that for a real number 𝑥→
0, exp(𝑥) ≈ 1+𝑥 (an example of this approximation
is in Eq. (12)). Thus, Eq. (15) can be approximated
by

Rel(𝑇) ≈
∫
𝑅0

∫
𝐺 (𝑇)

[
1− 𝑟−𝑘0 𝜖 𝑘𝑦𝑇

𝑔1−𝑘 −1
(1−𝑔) (𝑘 −1)

]
· 𝑓𝑅0 (𝑟0) 𝑓𝐺 (𝑇) (𝑔)𝑑𝑔𝑑𝑟0

= 1−
𝜖 𝑘𝑦𝑇

𝑘 −1

∫
𝑅0

𝑟−𝑘0 𝑓𝑅0 (𝑟0)𝑑𝑟0

∫
𝐺 (𝑇)

𝑔1−𝑘 −1
1−𝑔

𝑓𝐺 (𝑇) (𝑔)𝑑𝑔

(16)
In Eq. (16), 𝑅0 is modeled as a lognormal variable
as discussed before, whose PDF is as in Eq. (2),
with which∫

𝑅0

𝑟−𝑘0 𝑓𝑅0 (𝑟0)𝑑𝑟0 = exp
(
1
2
𝑘2𝜈2 − 𝑘𝜅

)
= 𝜇−𝑘𝑅0

(
1+

𝜎2
𝑅0

𝜇2
𝑅0

) 1
2 (𝑘2+𝑘) (17)

where 𝜇𝑅0 and 𝜎2
𝑅0

are the mean value and the vari-
ance of 𝑅0 respectively. Furthermore, the item𝐺 (𝑇)
in Eq. (16) is assumed to follow a Beta distribution
(see Eq. (6) with 𝑡 = 𝑇). With a requirement that
𝑝(𝑇) > 𝑘 −1 and 𝑞(𝑇) > 1, one has

G(𝑝(𝑇), 𝑞(𝑇), 𝑘) =
∫
𝐺 (𝑇)

𝑔1−𝑘 −1
1−𝑔

𝑓𝐺 (𝑇) (𝑔)𝑑𝑔

=
Γ(𝑝(𝑇) + 𝑞(𝑇))Γ(1− 𝑘 + 𝑝(𝑇))

Γ(𝑝(𝑇) + 𝑞(𝑇) − 𝑘)Γ(𝑝(𝑇)) (𝑞(𝑇) −1) +
1− 𝑝(𝑇) − 𝑞(𝑇)

𝑞(𝑇) −1
(18)

Thus, Eq. (16) becomes

Rel(𝑇) = 1−
𝜖 𝑘𝑦𝑇

𝑘 −1
𝜇−𝑘𝑅0

(
1+

𝜎2
𝑅0

𝜇2
𝑅0

) 1
2 (𝑘2+𝑘)

G(𝑝(𝑇), 𝑞(𝑇), 𝑘)

(19)
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It can be seen from Eq. (19) that the seismic reli-
ability analysis method does not involve the calcula-
tion of integrals, which is beneficial for its applica-
tion in practical engineering. It was mentioned ear-
lier that a closed-form solution for seismic structural
reliability was developed in Cornell et al. (2002)
without considering the impact of seismic capacity
deterioration.

5. Numerical example
In this section, a numerical example will be used

to demonstrate the accuracy and applicability of the
proposed reliability method. Consider the reliabil-
ity of a bridge for reference periods up to 50 years
(that is, 𝑇 is up to 50 years). The fragility curve at
the initial time, with respect to PGA, has a median
value of 1.03𝑔 and a dispersion of 0.7 (and corre-
spondingly, a coefficient of variation (COV) of 0.8
for the generalized seismic capacity), where 𝑔 is the
acceleration of gravity. This condition is consis-
tent with the complete collapse damage state of a
typical multispan continuous concrete bridge in the
central and southeastern US, as reported in Niel-
son and DesRoches (2007). The determination of
fragility curve for structures subjected to earthquake
loads has been extensively discussed in the litera-
ture, which typically requires finite element based
modeling of the structure. Since the aim of this sec-
tion is to examine the applicability of the proposed
reliability method, details on obtaining the fragility
curve will not be repeated herein. Let 𝐴10/50 denote
the characteristic value of PGA with an exceedance
probability of 10% over 50 years, which may be
accessible via the regional seismic maps. One can
then determine 𝜖𝑦 as follows,

𝜖𝑦 =

(
− ln0.9

50

) 1
𝑘

𝐴10/50 (20)

Suppose that the generalized capacity, which has
the same CDF as the fragility curve at the initial
time, degrades by 20% on average over a service
life of 50 years, with which 𝐺 (50) has a mean value
of 0.8. The COV of 𝐺 (50) is assumed to be 0.12
unless otherwise stated. Suppose that 𝑅0 is sta-
tistically independent of the deterioration process,
with which Eq. (19) applies. The resulting PDF of

𝐺 (50) is plotted in Fig. 1(a). According to Eq. (5),
the CDF of 𝑅(50) can be determined uniquely, and
is presented in Fig. 1(b).

(a) (b)

Figure 1: Probability distributions of 𝑅0, 𝐺 (50) and
𝑅(50). (a) PDF of 𝐺 (50). (b) CDFs of 𝑅0 and 𝑅(50).

The bridge’s failure probabilities for reference pe-
riods of 10, 30 and 50 years, obtained by the pro-
posed method (Eq. (19)), are presented in Table 1 for
different values of 𝑘 . It is assumed that 𝐴10/50 = 0.1𝑔
in Table 1. The failure probability increases with a
longer reference period due to the accumulation or
failure risks over time. With a fixed 𝐴10/50, a greater
value of 𝑘 leads to a smaller failure probability. This
can be explained by observing the behaviour of 𝐹𝐴

(CDF of 𝐴 on a yearly basis) at the upper tail, as
shown in Fig. 2. With the same annual exceedance
probability (0.0021) for 0.1𝑔, a greater 𝑘 results in
𝐹𝐴 being closer to 1, and thus a smaller probability
that the PGA exceeds structural capacity.

Figure 2: CDFs of PGA associated with different val-
ues of 𝑘 for 𝐴10/50 = 0.1𝑔.
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In order to verify the accuracy of Eq. (19), a
Monte Carlo simulation (MCS)-based method is
used to approximate the true solution to the seis-
mic reliability. The basic idea is to introduce a
counter 𝑐𝑠𝑖𝑚, having an initial value of 0, which in-
creases by 1 if the sampled structural performance
is satisfactory within each simulation run. With 𝑚
replications of simulation, the seismic structural re-
liability can be approximated by 𝑐𝑠𝑖𝑚/𝑚 when 𝑚 is
sufficiently large.

With 106 simulation runs and 𝑛 = 500, the rela-
tive errors of the analytical results with respect to
the simulated reliabilities are presented in Table 1.
It can be seen that the results of Eq. (19) agree well
with the simulated results. The computation effi-
ciency of the reliability assessment based on the
proposed equations is significantly improved com-
pared with the MCS. For example, with 𝑘 = 1.5
and 𝑇 = 50 years in Table 1, using the commer-
cial software Matlab 2019a on a computer with In-
tel(R) Core(TM) i7-8700 CPU@3.2GHz, the com-
putational times for Eq. (19) and MCS are 0.01s
and 420s, respectively. This is because the reliabil-
ity analysis method in Eq. (19) only involves some
simple algebra without the computation of integrals.

In Eq. (19), the impact of structural generalized
capacity deterioration has been taken into account.
If one simply uses the initial capacity to represent the
case for the whole service life without considering
the time-variation of 𝑅(𝑡), the seismic reliability,
denoted by Rel𝑛𝑑 (𝑇), can be computed as follows,

Rel𝑛𝑑 (𝑇) =
∫ ∞

0
𝐹𝑇
𝐴𝑦
(𝑟0) 𝑓𝑅0 (𝑟0)𝑑𝑟0 (21)

where 𝐴𝑦 is the maximum PGA on a yearly ba-
sis. For comparison purposes, the reliabilities with
a non-degrading generalized capacity are presented
in Table 1. The difference between Eqs. (19) and
(21) is slight when 𝑇 = 10 years, where the role of
capacity deterioration in seismic structural reliabil-
ity is negligible. With a relatively long reference
period, the seismic structural reliability is overesti-
mated if the deterioration of structural capacity is
ignored. This impact is further amplified with a
severer capacity deterioration or greater uncertainty
associated with the deterioration process.

The effects of the initial generalized capacity,
the capacity deterioration and the magnitude of
earthquake loads (measured by 𝐴10/50) on seismic
structural reliability are examined in Fig. 3. First,
Fig. 3(a) presents the time-dependent failure prob-
abilities for reference periods up to 50 years with
different COVs of 𝑅0, assuming that 𝑘 = 3.5 and
𝐴10/50 = 0.1𝑔. The case of COV[𝑅0] = 0.8 cor-
responds to that used in Table 1 (with the dis-
persion of 𝑅0 being 0.7). A greater COV of 𝑅0
leads to a greater failure probability due to the in-
creased structural fragility, and this effect is ampli-
fied in the presence of a smaller reference period.
For example, when the COV of 𝑅0 increases from
0.1 to 1.0, 𝑃 𝑓 (50) increases from 5.01× 10−5 to
2.37× 10−3 (by 46 times), while 𝑃 𝑓 (10) increases
from 6.78× 10−6 to 4.19× 10−4 (by 61 times). It
should be noted that the sensitivity of 𝑃 𝑓 (𝑇) to
the COV of 𝑅0 would be weakened in the pres-
ence of more severe seismic hazard. For example,
if 𝐴10/50 becomes 0.2𝑔 in Fig. 3(a), 𝑃 𝑓 (50) and
𝑃 𝑓 (10) increase by 6 and 7 times respectively as
the COV of 𝑅0 varies from 0.1 to 1.0. This is be-
cause, with a greater value of 𝐴10/50, the role of
seismic hazard becomes increasingly dominant in
the structural failure probability compared with that
of the generalized seismic capacity. The failure
probabilities for reference periods up to 50 years
are presented in Fig. 3(b) with different COVs of
𝐺 (50), where 𝐴10/50 = 0.1𝑔 and 𝑘 = 3.5. The mean
value of 𝐺 (50) equals 0.8 for all cases. When the
COV of 𝐺 (50) varies from 0.1 to 0.25, 𝑃 𝑓 (50) in-
creases from 5.22× 10−4 by 80%. However, the
sensitivity of 𝑃 𝑓 (𝑇) to the COV of 𝐺 (50) is weak-
ened in the presence of a shorter reference period.
In Fig. 3(c), the impacts of 𝐴10/50 (taking a value of
0.1𝑔 or 0.2𝑔) and the mean value of 𝐺 (50) (0.8 or
0.6) on the time-dependent failure probabilities are
presented, assuming that 𝑘 = 3.5. A greater value of
𝐴10/50 or a severer deterioration of the generalized
capacity leads to a greater failure probability due to
the increased seismic risks. For example, with the
mean value of 𝐺 (50) being 0.8, 𝑃 𝑓 (50) increases
from 5.31×10−4 to 5.33×10−3 as 𝐴10/50 increases
from 0.1𝑔 to 0.2𝑔. This effect is amplified with a
shorter reference period, where the seismic hazard
plays a greater role in structural failure probability.
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Table 1: Failure probabilities for reference periods up to 50 years with different values of 𝑘 (𝐴10/50 = 0.1𝑔).

𝑇 Method 𝑘 = 1.5 𝑘 = 2.5 𝑘 = 3.5
𝑃 𝑓 (𝑇) Error (%) 𝑃 𝑓 (𝑇) Error (%) 𝑃 𝑓 (𝑇) Error (%)

10 years
Eq. (19) 1.14×10−3 −3.32 3.01×10−4 1.47 1.30×10−4 2.34
Simulation-based 1.18×10−3 / 2.97×10−4 / 1.27×10−4 /
Non-degrading 1.10×10−3 −6.37 2.86×10−4 −3.80 1.19×10−4 −5.99

30 years
Eq. (19) 3.66×10−3 1.78 1.02×10−3 6.40 4.61×10−4 7.96
Simulation-based 3.60×10−3 / 9.54×10−4 / 4.27×10−4 /
Non-degrading 3.30×10−3 −8.18 8.52×10−4 −10.73 3.50×10−4 −17.99

50 years
Eq. (19) 6.59×10−3 2.18 1.94×10−3 3.37 9.49×10−4 6.98
Simulation-based 6.45×10−3 / 1.88×10−3 / 8.86×10−4 /
Non-degrading 5.49×10−3 −14.97 1.41×10−3 −24.94 5.74×10−4 −35.25

(a) (b) (c)

Figure 3: Time-dependent failure probability for reference periods up to 50 years. (a) Impact of COV of 𝑅0. (b)
Impact of COV of 𝐺 (50). (c) Impacts of PGA and deterioration rate.

6. Concluding remarks
In this paper, a simple formula for time-dependent

seismic reliability analysis of aging structures is de-
veloped, taking into account the uncertainties asso-
ciated with the structural initial capacity, the capac-
ity deterioration and the stochastic seismic loads.
The formula is based on some minor assumptions,
and only involves simple algebra without the com-
putation of integrals.

The accuracy and applicability of the proposed
method are demonstrated through a numerical ex-
ample. The computation efficiency is improved sig-
nificantly by the proposed analytical method com-
pared with the MCS.

Sensitivity analysis shows that with an increasing
COV of 𝑅0 and/or 𝐺 (𝑇), the structural failure prob-

ability increases. Furthermore, the probability dis-
tribution of the maximum PGA affects the seismic
reliability significantly. With a fixed exceedance
probability, a greater value of 𝑘 (shape parameter)
results in a smaller failure probability, as it reduces
the probability that the PGA exceeds the structural
generalized capacity. This result shows the impor-
tance of properly identifying the local seismic load
characteristics for seismic structural reliability as-
sessment.
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