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ABSTRACT: Reliability-based design optimization (RBDO) offers a framework to optimize the design 

of engineering structures while ensuring an adequate safety level. This contribution considers RBDO of 

linear structural dynamic systems subjected to Gaussian process excitation with reliability constraints 

defined in terms of the first-passage failure probability. We develop a novel stochastic search technique 

for design optimization based on the cross-entropy (CE) method. The CE method is a Monte Carlo 

technique originally developed for rare event estimation. Based on the idea that locating an optimal 

solution using a naïve random search can be viewed as a rare event simulation, the method was later 

extended for unconstrained optimization. The present study aims to adapt and reinforce the CE method 

to tackle the RBDO problem. Constraint handling is a crucial step in design optimization. To this end, 

we investigate a feasibility-based stochastic ranking technique to efficiently incorporate the reliability 

constraints in the generation of candidate designs during exploration. The efficacy of the proposed 

method is demonstrated by means of a numerical example. 

1. INTRODUCTION 

There is an increasing use of complex designs in 

modern structural and infrastructural systems. 

Therefore, the need for accurate and efficient 

approaches to handle uncertainties in structural 

parameters (e.g., geometric and material 

properties, deterioration processes, etc.) and 

environmental loads (e.g., dynamic excitations 

due to earthquakes and winds) has increased 

significantly. These uncertainties can severely 

affect the performance and integrity of the final 

design, causing failures and subsequent economic 

and societal distress. The framework of 

reliability-based design optimization (RBDO) 

offers a rational approach for safe design under 

uncertainties by incorporating structural 

reliability measures as constraints into the design 

optimization problem. 

The RBDO problem is challenging to solve 

due to the continuous interplay between 

calculating reliability (to ensure that safety 

constraints are met) and moving the candidate 

design point to optimize the objective, i.e., the 

minimization of a cost function (Gasser and 

Schuëller 1997). Developing an RBDO 

procedure, therefore, requires two key 

ingredients: (a) an efficient approach to accurately 

evaluate the structure failure probability, which is 

typically small in engineering applications, and 

(b) an efficient search technique to locate the 

optimal solution from the feasible design set. In 

this work, we consider RBDO of linear structures 

subjected to random dynamic excitation. Herein, 

first-passage probability (Lin and Cai 1995) is 

used as a measure of reliability. The associated 

reliability constraints are defined in terms of 

multi-dimensional probability integrals, which 

need to be evaluated by means of specialized 

algorithms based on advanced Monte Carlo 
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methods (Schuëller et al. 2004, Schuëller and 

Pradlwarter 2007).  

Several approaches have been developed for 

RBDO of structures under random excitation 

(Jerez et al. 2022), such as sequential 

approximation schemes (Jensen et al. 2009, 

Valdebenito and Schuëller 2011), stochastic 

search-based techniques (Wang and Katafygiotis 

2011, Jensen et al. 2021) and formulations based 

on augmented reliability spaces (Ching and Hsieh 

2007). These methods differ in the search strategy 

and the information required during the 

optimization process. In this study, we consider 

stochastic search-based optimization methods for 

RBDO. The salient feature of these methods is the 

artificial randomization of the design variables 

and the transformation of optimization problem 

into the task of obtaining samples according to a 

target probability density function (PDF) that is 

degenerate at the optimal solution.  

In the available stochastic search schemes for 

linear dynamical systems, the target (degenerate) 

PDF of the design variables usually corresponds 

to the posterior density of an equivalent Bayesian 

model updating problem (Jerez et al. 2022). The 

equivalent problem is formulated based on the 

concept of annealing (Kirkpatrick et al. 1983) and 

is solved by Markov chain Monte Carlo methods 

or importance sampling. Based on the viewpoint 

that locating the optimal solution in the feasible 

design space is essentially a problem of rare event 

(reliability) estimation, alternative stochastic 

search algorithms have been developed to 

leverage rare event estimation techniques. These 

include the subset simulation method (Li and Au 

2010) and the cross-entropy (CE) method 

(Rubinstein 1999, Rubinstein and Kroese 2016). 

The CE method has been applied for structural 

design optimization with reliability constraints in 

a static setting (Depina et al. 2017). However, the 

potential of this class of stochastic search 

techniques to tackle design optimization of 

structural dynamic systems under uncertainties 

remains unexplored.  

The present study aims to put forward a novel 

stochastic search-based procedure for the RBDO 

problem of linear structural dynamic systems. We 

build the method within the framework of the CE 

method for optimization (Rubinstein 1999). 

Constraint handling is crucial in RBDO. To this 

end, we augment the CE method with a 

feasibility-based stochastic ranking technique 

such that the proposed algorithm can intelligently 

prioritize the feasible solutions and, 

simultaneously, optimize the objective function in 

a natural way. 

2. PROBLEM SETTING 

2.1. Optimization problem 

We consider the reliability-based design 

optimization problem defined as 

𝒙∗ = argmin𝒙∈𝒳𝑐(𝒙)              (1) 

where 𝒳 ⊂ ℝ𝑛𝑥  is the feasible design space 

defined by the constraints 

            𝑔𝑗(𝒙) ≤ 0, 𝑗 = 1, … , 𝑛𝑔          

             𝑟𝑗(𝒙) ≤ 0, 𝑗 = 1, … , 𝑛𝑟                  (2) 

          𝑥𝑗
𝐿 ≤ 𝑥𝑗 ≤ 𝑥𝑗

𝑈 , 𝑗 = 1, … , 𝑛𝑥 

In above equations, 𝒙 = 〈𝑥1, … , 𝑥𝑛𝑥
〉T  is the 

vector of 𝑛𝑥  design variables with side 

constraints, 𝑐(𝒙) denotes the objective function, 

typically expressed in terms of costs (e.g., 

construction and maintenance cost and cost of 

failure), {𝑔𝑗(𝒙) ≤ 0, 𝑗 = 1, … , 𝑛𝑔}  represent 

standard constraints associated with design 

conditions and {𝑟𝑗(𝒙) ≤ 0, 𝑗 = 1, … , 𝑛𝑟}  denote 

the constraints on system reliability. The 

reliability constraints are defined in terms of 

failure probabilities as  

                   𝑟𝑗(𝒙) = 𝑃𝐹𝑗
(𝒙) − 𝑃𝐹𝑗

∗ ,     (3) 

where 𝑃𝐹𝑗
(𝒙) is the probability of the structure 

failure event 𝐹𝑗, evaluated at the design 𝒙, and 𝑃𝐹𝑗

∗  

is the corresponding allowable value. If the risk 

due to structural failure is included in the 

objective, failure probabilities enter the definition 
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of the cost function of Eq. (1), leading to a risk-

based optimization (Depina et al. 2017).  

2.2. Reliability measures for dynamical systems 

We consider the complement of the first-passage 

failure probability as the measure of reliability of 

the dynamical system. Herein, failure occurs if a 

critical response of the structure exceeds (in 

magnitude) a corresponding threshold value over 

the reference period of the dynamic excitation. 

Thus, the first-passage failure event over a time 

duration [0, 𝑇] can be expressed as 

𝐹(𝒙) = {𝝃 ∈ Ω𝝃: max0<𝑡≤𝑇|𝑠(𝑡; 𝒙, 𝝃)| ≥ 𝑠∗ }(4) 

where 𝝃 ∈ Ω𝜉 ⊂ ℝ𝑛𝜉 is a realization of the vector 

of random variables characterizing the uncertain 

load and structural parameters and 𝑠(𝑡; 𝒙, 𝝃) is a 

critical response, evaluated at design 𝒙 and at a 

given realization 𝝃, with a maximum allowable 

value 𝑠∗. The corresponding probability of failure 

is given by the multidimensional integral 

𝑃𝐹(𝒙) = ∫ I{𝝃 ∈ 𝐹(𝒙)}
𝝃∈Ω𝜉

𝑞(𝝃|𝒙)d𝝃               (5) 

where I{𝝃 ∈ 𝐹(𝒙)} is the indicator function of the 

failure event 𝐹(𝒙) and 𝑞(𝝃|𝒙) is the joint PDF of 

the random variables. This PDF can depend on the 

design variables 𝒙, when distribution parameters 

of the random variables are associated with the 

design variables.  

In this work, we focus on the specific case 

of deterministic linear structures subjected to 

random excitation modeled by a Gaussian 

process. In this case, 𝝃 is comprised of 

independent standard Gaussian random variables 

characterizing the dynamic input and 𝑞(𝝃|𝒙) ≡
𝑞(𝝃). Also, we consider critical responses that can 

be expressed in terms of the dynamic input 

through the linear relationship 

𝑠(𝑡; 𝒙, 𝝃) = ∫ 𝐾(𝑡 − 𝜏; 𝒙)𝑓(𝜏; 𝝃)d𝜏
𝑡

0
   (6) 

where  𝐾(𝑡; 𝒙) denotes the unit impulse response 

function of the structure evaluated at design 𝒙 and 

𝑓(𝜏; 𝝃)  is the dynamic load. Several efficient 

advanced Monte Carlo procedures have been 

developed to evaluate the first-passage probability 

𝑃𝐹(𝒙)  for this special case. Here we adopt the 

elementary failure event-based importance 

sampling approach by Au and Beck (2001).  

3. PROPOSED RBDO PROCEDURE 

The proposed method expresses the optimization 

problem in Eqs. (1) and (2) in terms of an 

equivalent rare event estimation problem by 

considering artificial randomness in the design 

variables. One assigns a valid PDF of the design 

variables over the feasible domain. Consider the 

hypothetical failure event 𝐹̃(𝛾) = {𝒙 ∈
𝒳: 𝑐(𝒙) − 𝛾 ≤ 0}, where  𝛾 is a real-valued scalar 

variable representing a threshold limit for the cost. 

Let 𝑐∗  denote the global minimum of the cost 

function at the optimal design 𝒙∗. If 𝛾 is chosen 

close to the optimal solutions 𝑐∗, 𝐹̃(𝛾) is a rare 

event under the assumed probability space of the 

design parameters. Hence, one can employ a rare 

event simulation algorithm to generate samples in 

the neighborhood of 𝒙∗  for an appropriately 

chosen 𝛾 ≈ 𝑐∗. Here, we employ the CE method, 

which is an adaptive Monte Carlo method 

originally developed for estimating rare event 

probabilities.  

3.1. Cross-entropy method for optimization  

In the cross-entropy method for optimization, the 

idea is to approach the optimal solution gradually 

by fitting a sequence of intermediate parametric 

sampling distributions over the feasible design 

space (Rubinstein and Kroese 2016). Let 
{ℎ(𝒙; 𝝂); 𝝂 ∈ 𝒱}  be a family of probability 

densities on 𝒳  parametrized by a real-valued 

parameter vector 𝝂 . We aim to estimate a 

sequence of parameter vectors {𝝂𝑘, 𝑘 = 1, … , 𝑚} 

such that the PDFs ℎ(𝒙; 𝝂1), ⋯ , ℎ(𝒙; 𝝂𝑚) 

converge to a degenerate measure at a state 𝒙𝑇 ≈
𝒙∗ at which the cost function is either minimum or 

very close to it. Thus, any sample drawn from the 

final density ℎ(𝒙; 𝝂𝑚)  can be used as an 

approximation to the optimal design 𝒙∗  and the 

corresponding objective function value as an 

approximation to the optimal cost. 
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Consider a sequence of (hypothetical) 

failure events on the feasible design space 𝒳 , 

given by 𝐹̃(𝛾1) ⊇ 𝐹̃(𝛾2) ⊇ ⋯ ⊇ 𝐹̃(𝛾𝑚) ≈ 𝐹̃(𝑐∗), 

for various threshold levels {𝛾𝑖, 𝑖 = 1, … , 𝑚} 

satisfying 𝛾1 ≥ 𝛾2 ≥ ⋯ ≥ 𝛾𝑚 ≈ 𝑐∗. The domains 

of these failure events represent a nested sequence 

of subsets of 𝒳  that converges to the optimal 

solution set. The desired sequence of parameter 

vectors {𝝂𝑘, 𝑘 = 1, … , 𝑚} can be constructed in a 

sequential manner, whereby independent samples 

{𝒙(𝑖,𝑘), 𝑖 = 1, … , 𝑁}  from each fitted parametric 

density ℎ(𝒙; 𝝂̂𝑘−1) are employed to estimate the 

parameter 𝝂𝑘 through solving the program 

𝝂̂𝑘 =   argmax𝝂∈𝓥 ∑ [I{𝒙(𝑖,𝑘) ∈ 𝐹̃(𝛾𝑘)}𝑁
𝑖=1   

                                           lnℎ(𝒙(𝑖,𝑘), 𝝂)]   (7) 

The intermediate thresholds 𝛾𝑘  are computed 

iteratively to ensure that a minimum number of 

so-called elite samples take non-zero values in the 

objective function of Eq. (7). In unconstrained 

optimization, this is achieved through choosing 

𝛾𝑘  as a pre-chosen order statistic of the cost 

function values of the samples. However, when 

constraints are present, this approach is inefficient 

as it might require a large sample size 𝑁 to obtain 

an adequate number of feasible design samples. 

Next, we discuss an approach for efficient 

handling of constraints within the CE method. 

3.2. Strategy for constraint function handling 

Constraint handling is crucial in RBDO. A 

convenient approach to handle constraints in 

population-based search techniques is to use the 

constraint fitness priority-based ranking method, 

originally studied in the context of particle swarm 

optimization (Dong et al. 2005) and later 

developed in (Li and Au 2010).  Herein, the 

fitness level of a candidate design 𝒙 to the feasible 

domain is evaluated by means of a constraint 

fitness function, defined as  

𝐹con(𝒙) =   

  -max {0, 𝑔1(𝒙), … , 𝑔𝑛𝑔
(𝒙), 𝑟1(𝒙), … 𝑟𝑛𝑟

(𝒙)}   (8) 

Note that 𝐹con(𝒙) = 0 only when all constraints 

are satisfied. On the other hand, if 𝐹con(𝒙) < 0, 

the smaller the 𝐹con(𝒙) is, further is the design 

state 𝒙 from the feasible domain.  

We adopt a double criterion ranking technique 

to prioritize the generated samples during CE 

minimization. For a given set of samples 

{𝒙(𝑖,𝑘), 𝑖 = 1, … , 𝑁}  generated from ℎ(𝒙; 𝝂̂𝑘−1) , 

the idea is to first sort the samples in ascending 

order of their constraint fitness function values 

𝐹con(𝒙(𝑖,𝑘)). In the next step, the feasible samples, 

i.e., those with 𝐹con(𝒙(𝑖,𝑘)) = 0 , are sorted in 

descending order of their cost function values 

𝑐(𝒙(𝑖,𝑘)). Let {𝒙̃(𝑖,𝑘), 𝑖 = 1, … , 𝑁} denote the final 

sorted sequence. We select the threshold level 

𝛾𝑘 = 𝑐(𝒙̃(⌈(1−𝜌)𝑁⌉,𝑘)) where ⌈⋅⌉ rounds up to the 

nearest integer. Here 𝜌 ∈ (0,1) is a parameter that 

controls the fraction of the generated samples 

belonging to 𝐹̃(𝛾𝑘). In the present work, we take 

𝜌 = 0.1. In this manner, the searching process for 

the feasible domain and the optimal solution 

proceed together.  

The CE method proceeds iteratively, updating 

𝛾 and the parameter vector 𝝂 in each step, until a 

convergence criterion is satisfied. Usually, 

convergence is measured based on the variance of 

the fitted parametric density. 

4. NUMERICAL EXAMPLE 

This section illustrates the performance of the 

proposed RBDO procedure by application to a 

numerical example that is a modified version of 

an example given in (Jerez et al. 2021). It 

concerns the optimal design of a two-story linear 

shear frame that is excited by stochastic ground 

acceleration. The structure is idealized by a two 

degree-of-freedom mass-spring-dashpot system, 

as shown in Fig. 1. Here 𝑚 = 30 × 103 kg 

represents the lumped mass of each floor. 𝑘1 and 

𝑘2 represent the stiffnesses of the first and second 

floors and are given by 𝑘𝑖 = 𝑥𝑖𝛼 , with 𝛼 =
18 × 106 N m⁄ . Modal damping is considered 

with 4% critical damping in each mode.  
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Figure 1: Two-degree of freedom linear shear frame 

The base acceleration 𝑝(𝑡)  is modeled by 

Kanai-Tajimi-Clough-Penzien filtered Gaussian 

white noise: 

𝑝(𝑡) = 𝜔𝑑
2𝑦𝑑(𝑡) + 2𝜂𝑑𝜔𝑑𝑦̇𝑑(𝑡) 

                    −𝜔𝑔
2𝑦𝑔(𝑡) − 2𝜂𝑔𝜔𝑔𝑦̇𝑔(𝑡),      (9) 

where 𝜔𝑑 = 15.6 rad s⁄   and 𝜂𝑑 = 0.6  are the 

parameters of the first filter and 𝜔𝑔 = 1.0 rad s⁄   

and 𝜂𝑔 = 0.9  are the parameters of the second 

filter. The white noise process 𝑊(𝑡) has spectral 

intensity 𝑆 = 10−4 , time duration of 15s and a 

modulating function given by 

ℎ(𝑡) = {   
(𝑡/5)2         𝑡 ≤ 5s
1      5s ≤ 𝑡 ≤ 10s

𝑒−(𝑡−10)2
  𝑡 ≥ 10s

                 (10) 

The sampling time interval is taken to be ∆𝑡 =
0.01s so that the number of time instants is 𝑛𝑇 =
1501 . The random vector 𝝃  is comprised of 

independent standard Gaussian random variables 

generating the white noise at the discrete time 

instants, {𝑊(𝑡𝑘) = √𝐼ℎ(𝑡𝑘)𝜉𝑘; 𝑘 = 1, … , 𝑛𝑇} 

where 𝐼 = 2𝜋𝑆/∆𝑡. 

In this example, the stiffness parameters 𝑥1 

and 𝑥2 are considered as the design variables with 

the design interval given by 𝑥1, 𝑥2 ∈ [0.5,1.5] . 

The objective function of the RBDO problem is 

defined in terms of the structural cost with respect 

to the inter-story stiffnesses and the expected cost 

of failure. Failure is defined as the event where the 

displacement at the top floor exceeds a threshold 

value of 0.006m over the time duration [0,15]s. 

The reliability constraint is that the probability of 

failure should not exceed 10−3 . The RBDO 

problem is given by: 

𝒙∗ = argmin 𝑥1 + 𝑥2 + 𝐶𝐹𝑃𝐹(𝒙)  

subject to  

             𝑃𝐹(𝒙) ≤ 10−3                               (11) 

             0.5 ≤ 𝑥1, 𝑥2 ≤ 1.5  

We consider two cases. First, we assume 𝐶𝐹 = 0. 

In this case the objective function is deterministic 

and represents the structural cost. In the second 

case we assume 𝐶𝐹 = 300 . This incorporates a 

risk term into the objective function, defined as a 

product of the failure cost 𝐶𝐹  and the failure 

probability.  

4.1. Parametric density and convergence 

We implement the proposed method with a 

multivariate Gaussian density, with independent 

components, as the parametric family, i.e.,  

ℎ(𝒙; 𝝂) = ∏
1

√2𝜋𝜎𝑗
𝑒

−
1

2
(

𝑥𝑗−𝜇𝑗

𝜎𝑗
)

2

𝑛𝑥
𝑗=1  ,      (12) 

The parameter vector 𝝂 = {𝜇1, … , 𝜇𝑛𝑥
, 𝜎1, … , 𝜎𝑛𝑥

} 

is updated at each iteration of the optimization 

procedure according to Eq. (7), which can be 

solved in closed form (Rubinstein and Kroese 

2016). Note that 𝑛𝑥 = 2 in this example. At the 

start, we obtain the initial parameter vector 𝝂̂0 by 

selecting 𝜇̂𝑗
0 uniformly from the interval [𝑥𝑗

𝐿 , 𝑥𝑗
𝑈] 

and setting 𝜎̂𝑗
0 to a large value. In the numerical 

implementation we assume 𝜎̂1
0 = 𝜎̂2

0 = 10 . The 

optimization is considered to have converged if 

the coefficient of variation, along every 

dimension, of the fitted parametric density is 

smaller than 𝜖 = 0.01 . The minimum of the 

sample estimates of the objective function values 

evaluated based on samples from the final fitted 

density is taken as an estimate of the optimal cost, 

and the corresponding sample provides an 

estimate 𝒙̂∗ of the optimal design. 
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Figure 2: Feasible design space (in blue) and contours 

of the objective function for 𝐶𝐹 = 0. ‘x’ indicates the 

optimal design given by 𝒙∗ = (1.30,1.00)  with 

𝑐(𝒙∗) = 2.30. 

4.2. Results and discussion 

Figs. 2 and 3 show the contours of the objective 

function for 𝐶𝐹 = 0 (Case 1) and 𝐶𝐹 = 300 (Case 

2), respectively. The feasible design space (shown 

in blue) is constructed by estimating the 

probability of failure by the importance sampling 

(IS) method of Au and Beck (2001), using 1000 

samples (of the dynamic excitation) in the IS 

estimator. The use of this sampling method for 

reliability estimation induces numerical noise in 

the estimates of the failure probability, which 

leads to a noisy objective function for the case of 

𝐶𝐹 = 300, as shown in Fig. 3. The figures also 

show the optimal design, which is given by 𝒙∗ =
(1.30,1.00) for 𝐶𝐹 = 0 and 𝒙∗ = (1.38,1.02) for 

𝐶𝐹 = 300 . The corresponding optimal cost is 

𝑐(𝒙∗) = 2.30  and 𝑐(𝒙∗) = 2.53 , respectively. 

The probability of failure evaluated at the optimal 

design is, respectively, 1.0 × 10−3  and  4.4 ×
10−4. These are taken as the reference solution to 

assess the accuracy of the design estimated by the 

proposed method.  

The proposed method is applied with 𝑁 =
100  samples per level in the CE method. The 

probability of failure for the candidate designs is 

estimated by importance sampling (Au and Beck 

2001), with 10 (Cases 1.1 and 2.1) and 100 (Cases 

1.2 and 2.2) samples in the IS estimator. The 

simulation results for 𝐶𝐹 = 0  and 300 are 

reported in Tables 1 and 2, respectively. In these 

tables 𝑥̂1
∗ and 𝑥̂2

∗ denote the optimal values of 𝑥1 

and 𝑥2  estimated by the proposed method. 𝑁𝐶𝐷 

denotes the number of candidate designs 

generated by the algorithm.  𝑐(𝒙̂∗)  denotes the 

estimated minimum value of the objective 

function. 𝑃̂𝐹(𝒙̂∗) denotes the probability of failure 

at the optimal design estimated by large-scale 

importance sampling with 1000 samples.  The 

above quantities are averaged over 20 

independent runs. 𝛿𝑥̂1
∗ , 𝛿𝑥̂2

∗ , 𝛿𝑐(𝒙̂∗) , δ𝑃̂𝐹(𝒙̂∗)  and 

𝛿𝑁𝐶𝐷
 denote the coefficient of variation of the 

sample estimates.  

Figure 3: Feasible design space (in blue) and contours 

of the objective function for 𝐶𝐹 = 300. ‘x’ indicates 

the optimal design given by 𝒙∗ = (1.38,1.02)  with 

𝑐(𝒙∗) = 2.53. 

The results in the tables show that the 

estimates of the optimal design and the optimal 

cost obtained from the proposed method are closer 

to the reference solution for Case 2 in comparison 

to Case 1. In fact, the result in Case 2.2, obtained 

with 100 samples in the IS estimator of the failure 

probability, shows good agreement with the 

reference value. There is a small bias in the 

estimates with a decrease in the sample size of the 

IS estimator. This is more in Case 2.2 since the 

objective function in this case involves the 

(scaled) probability of failure. The coefficient of 

variation of the estimates of the optimal solution 
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is small in both cases, indicating that the solution 

delivered by the proposed method is consistent.  

Table 1: Results for Case 1 with 𝐶𝐹 = 0. During CE 

minimization, the probability of failure is estimated by 

importance sampling (Au and Beck 2001) with 10 and 

100 samples (of the dynamic excitation) in Cases 1.1 

and 1.2, respectively. The reference value for the 

optimal design is given by 𝒙∗ = (1.30,1.00)  with 

𝑐(𝒙∗) = 2.30. 

 Case 1.1 Case 1.2 

𝑥̂1
∗, 𝑥̂2

∗ 1.22,1.03 1.24,1.06 

𝛿𝑥̂1
∗ , 𝛿𝑥̂2

∗ (%) 2.86,4.24 3.42,5.22 

𝑐(𝒙̂∗) 2.25 2.30 

𝛿𝑐(𝒙̂∗)(%) 0.57 0.69 

𝑃̂𝐹(𝒙̂∗)(× 10−3) 1.47 1.06 

𝛿𝑃̂𝐹(𝒙̂∗)(%) 3.32 2.49 

𝑁𝐶𝐷 2405 2020 

𝛿𝑁𝐶𝐷
(%) 17.46 23.31 

The results in Case 1.1 and Case 2.1 

indicate that using 10 samples (of the dynamic 

excitation) for reliability estimation within the CE 

method results in a negative bias in the failure 

probability estimate at the identified optimal 

solution. This leads to a (small) violation of the 

reliability constraint at the optimal design in Case 

1.1, where the reference solution lies on the 

boundary of the feasible domain. For Case 1.2 and 

Case 2.2, the optimal design estimated by the 

proposed method satisfies the reliability 

constraints and the corresponding probability of 

failure agrees well with the reference solution. 

5. CONCLUSIONS 

This contribution proposes a stochastic search-

based procedure for reliability-based design 

optimization of linear structural dynamic systems. 

The problem of finding the optimal design in the 

feasible design space is viewed as a rare event 

estimation problem and is solved within the 

framework of the cross-entropy method. The 

scheme is integrated with an efficient importance 

sampling method that allows one to estimate the 

first-passage failure probability with only a few 

samples. A feasibility-based stochastic ranking 

technique is incorporated into the optimization 

strategy to prioritize the feasible solution while 

optimizing the objective in a natural way.    

The capabilities of the proposed method are 

demonstrated through numerical studies on a two-

degree of freedom structural dynamic system. The 

results obtained through initial investigations 

underline the potential of the method for the 

RBDO problem. Strategies to further improve the 

performance of the method in terms of the number 

of dynamic response computations employed to 

estimate the reliability constraints and tackling 

structural parameter uncertainties are currently 

developed by the authors.   

Table 2: Results for Case 2 with 𝐶𝐹 = 300. During CE 

minimization, the probability of failure is estimated by 

importance sampling (Au and Beck 2001) with 10 and 

100 samples (of the dynamic excitation) in Cases 1.1 

and 1.2, respectively. The reference value for the 

optimal design is given by 𝒙∗ = (1.38,1.02)  with 

𝑐(𝒙∗) = 2.53. 

 Case 2.1 Case 2.2 

𝑥̂1
∗, 𝑥̂2

∗ 1.34,1.01 1.37,1.03 

𝛿𝑥̂1
∗ , 𝛿𝑥̂2

∗ (%) 1.95,2.32 1.01,1.31 

𝑐(𝒙̂∗) 2.45 2.51 

𝛿𝑐(𝒙̂∗)(%) 0.39 0.18 

𝑃̂𝐹(𝒙̂∗)(× 10−4) 6.31 4.57 

𝛿𝑃̂𝐹(𝒙̂∗)(%) 2.05 2.73 

𝑁𝐶𝐷 1430 870 

𝛿𝑁𝐶𝐷
(%) 28.35 22.71 
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