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ABSTRACT: In practical engineering, existing aging structures and infrastructure may suffer from 

aggressive external load and environmental conditions during their service life, which conditions may 

cause the deterioration of structural resistance to fall below an acceptable level as specified ones. To 

analyze and predict the reliability of structure in the whole service period, the development of a time-

dependent reliability analysis method is particularly important. PHI2 is one of the most commonly used 

time-dependent reliability analysis methods, where outcrossing rate is determined by the joint probability 

with reliability indexes at successive time instants. However, the joint probability is numerical integration 

essentially, the computational efficiency of which is lower than that of explicit one. To improve 

efficiency, an explicit outcrossing rate of PHI2 is proposed in this study. Firstly, ourcrossing rate in PHI2 

is expressed on the geometric plane with the aid of the definition of outcrossing rate. Secondly, the 

geometrical relationship of each component is derived from the geometric expression of ourcrossing rate 

in PHI2. Finally, the explicit outcrossing rate in PHI2 is constructed. The accuracy and efficiency of 

explicit ourcrossing rate in PHI2 are studied by three numerical examples. The results show that the 

proposed explicit ourcrossing rate in PHI2 improves the efficiency and keeps accuracy in structural time-

dependent reliability analysis. 

1. INTRODUCTION 

During the service life, the material 

properties, environmental conditions and loads on 

the structure are random. And the structural 

parameters are uncertain and time-varying [1]. 

Therefore, the development of time-dependent 

reliability analysis (TRA) methods for structures 

is of great importance. 

In recent years, a number of structural TRA 

methods have been developed, which fall into two 

main categories: simulation-based methods and 

outcrossing-based methods. Among the 

simulation-based methods, the most 

straightforward and easy-to-understand method is 

the Monte Carlo simulation (MCS) [2]. MCS 

method is a relatively accurate method, and a 

large number of sampling operations are required 

which is time-consuming. To improve 

computational efficiency, extreme value-based 

methods [3, 4] have been developed in recent 

years. 

Another approach is the outcrossing-based 

method, which was first proposed by Rice [5] in 

the 1940s. Ditlevsen [6] considered the structural 

time-dependent reliability problem as the weakest 

link problem and studied the outcrossing model 

for Gaussian processes. Madsen and Tvedt [7] 
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proposed a structural TRA method for Gaussian 

processes or Gaussian vector processes. Li and 

Melchers [8] developed an analytical solution for 

the outcrossing rate of non-stationary Gaussian 

processes. Hagen and Tvedt [9] proposed a TRA 

method based on sensitivity analysis of parallel 

systems. In 2004, Andrieu-Renaud proposed the 

PHI2 method [10], which treats the outcrossing 

event as a time-invariant reliability problem and 

estimates the joint probability of two successive 

time instants. The PHI2 method is one of the more 

commonly used methods nowadays [11] since its 

theoretical concept is simple and easy to 

implement. In PHI2 method, the joint probability 

is a two-dimensional normal cumulative 

distribution function that has no explicit 

expression and still requires numerical integration. 

Although the difference in computational time 

between numerical integration and explicit 

calculation at each instant is not obvious, it may 

be a non-negligible problem for structural TRA, 

since the evaluation of the outcrossing rate of 

PHI2 method depends on the divided length of the 

time interval (usually greater than 100 times). If 

the original numerical integration is used, the 

calculation may not be efficient. Therefore, it is 

essential to develop an explicit expression for 

outcrossing rate of PHI2 method. 

An analytical method for calculating the joint 

probability of a series system [12] provides a 

channel for the explicit expression of outcrossing 

rate of PHI2 method. and it has been effectively 

applied in the time-invariant reliability analysis. 

However, outcrossing rate of PHI2 method is 

based on the joint probability of a parallel system, 

which cannot be directly applied by existing 

methods. Therefore, this paper proposes an 

accurate explicit expression of outcrossing rate of 

PHI2 method by geometric construction. First, the 

original PHI2 method is briefly reviewed. Then, 

an explicit expression for outcrossing rate of PHI2 

method is derived. Then, the structural TRA 

procedure for the proposed model is summarized. 

Finally, the accuracy and efficiency of the explicit 

model of outcrossing rate are analyzed by two 

examples. 

2. PHI2 METHOD 

A limit state function G(X, Y(t), t) is 

considered in the structural TRA, where X=[x1, 

x2, …, xn] is a n-dimensional random variable; 

Y(t)=[y1(t), y2(t), …, ym(t)] is a m-dimensional 

random process; and t is time instant. The failure 

of the structure in the time period [0, T] is defined 

as { t, T: G(X, Y(t), t)≤0}. In the 

outcrossing-based methods, the failure event 

refers to the set of failure events at the initial 

instant and subsequent outcrossing events from 

the safety domain to the failure domain within the 

time period [0, T], and the corresponding failure 

probability Pf,c(0, T) is [13] 

, (0, ) Prob({ ( , (0),0) 0} { (0, ) 0})f cP T G N T+=  X Y (1) 

where N+(0, T) is the number of outcrossings. 

Since outcrossings rarely occur, they can be 

followed by a Poisson process [13]. Thus, the 

upper bound of failure is [13] 

 , ,
0

(0, ) (0) ( )
T

f c f iP T P v t dt+ +   (2) 

where Pf,i(0) is the failure probability at the initial 

instant; v+(t) is outcrossing rate at t, which is 

considered as the system probability of the limit 

state functions G(X, Y(t), t) and G(X, Y(t+t), 

t+t) at two successive time instants, and can be 

expanded as [9] 

 
0, 0

Prob{ ( ) 0 ( ) 0}
( ) lim

t t

G t G t t
v t

t

+

 →  

 +  
=

  

(3) 

where G(t) = G(X, Y(t), t)，G(t+t) = G(X, 

Y(t+t), t+t). Based on Eq.(3), v+(t) can be 

formulated with Gaussian model as [10] 

 
 2

PHI2

( ), ( ); ( , )
( )

Gt t t t t t
v t

t

  
+

 − +  + 
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 2

( ) ( )

2

( ), ( ); ( , )

[ ( ), ( ), ( , )] ( ) ( )

G

t t t

G

t t t t t t

x t x t t t t t dx t dx t t
 

  

 
− +

− −

 − +  +  =

+  +  +  
 (5) 

where 2[,;] is a two-dimensional normal 

cumulative distribution function; (t) and (t+t) 

are reliability indexes of G(X, Y(t), t) and G(X, 

Y(t+t), t+t) at t and t+t; G(t, t+t) is 

correlation coefficient of G(X, Y(t), t) and G(X, 

Y(t+t), t+t) in the Gaussian space, which can 

be expressed as [10] 



14th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP14 

Dublin, Ireland, July 9-13, 2023 

 3 

 ( , ) ( ) ( )Τ

G t t t t t t +  = −  +    (6) 

where (t) = u*(t)/(t) and (t+t) = 

u*(t+t)/(t+t); u*(t) and u*(t+t) are design 

points at limit state surface. Eqs. (4)-(6) show that 

the outcrossing rate model can be constructed 

using a two-dimensional normal cumulative 

distribution function, which is implicit and 

requires numerical integration. Therefore, it is 

necessary to express the outcrossing rate model 

explicitly using an explicit two-dimensional 

normal cumulative distribution function. 

3. PROPOSED EXPLICIT MODEL OF 

OUTCROSSING RATE 

Theoretically, v+(t) by Eq.(4) can be denoted as 
Prob[ ( ) 0] Prob[ ( ) 0 ( ) 0]

( )

[ ( )] Prob[ ( ) 0 ( ) 0]
        =

G t t G t G t t
v t

t

t t G t G t t

t



+ +   −  +  
=



 − +  −  +  



(7) 

where () is the normal cumulative distribution 

function. Eq.(7) can be formulated with Gaussian 

model as 

 2[ ( )] ( ), ( ); ( , )
( )

Gt t t t t t t t
v t

t

   
+

 − +  −  − − +  + 
=


(8) 

 

Figure 1: Geometrical relationship of V1、V2 and 

V12 . 

To derive conveniently, G(X, Y(t), t) and 

G(X, Y(t+t), t+t) are seen as G1 and G2. 

(t) and (t+t) are seen as 1 and 2. G(t, t+t) 

are seen as G. To derive an explicit expression 

for outcrossing rate, this section first discusses 

2[−(t),−(t+t); G(t, t+t)]. From Eqs.(3)-(4), 

2[−(t),−(t+t); G(t, t+t)] is equivalent to the 

probability corresponding to the region 

{G1≤0∩G2≤0}, so an explicit expression for 

outcrossing rate can be derived by the geometric 

relationship between G1 and G2. After 1 and 2 

are obtained, u*(t) and u*(t+t) can be determined. 

The lines are conducted by crossing u*(t) and 

u*(t+t) and perpendicular to 1 and 2. It can be 

seen as limit state surface G1=0 and G2=0 in 

Gaussian space. The geometric representation of 

G1=0 and G2=0 is shown in Figure 1, where O is 

the origin point of the Gaussian space; Di (i=1, 2) 

is the design point of Gi; L is the intersection point 

of G1=0 and G2=0; 1 and 2 are the shortest 

distance of G1=0 and G2=0; l1 is the line 

perpendicular to G1=0 through the point L; l2 is 

the line perpendicular to G2=0 through the point L; 

V1 and V2 are the regions enclosed by G1=0 and 

G2=0 with l1 and l2, respectively; V is the region 

enclosed by the angle ; V12 is the region 

{G1≤0∩G2≤0}. From Figure 1, it can be found 

that 
 

12 1 2V V V V= + −  (9) 

 

Figure 2: Geometrical expression of Vi (i=1, 2).  

 

The probability P12 corresponding to the region 

V12 is 
 

12 1 2P P P P= + −  (10) 

where P1、P2 and P are the probability of V1、

V2 and V. P1 and P1 are calculated as shown in 

Figure 2, in which l0 is the line perpendicular to 

Gi = 0 (i=1, 2) through the point L; D0 is the point 

perpendicular to the line l0 and through the point 

O; and 0 is the length of the line segment OL. 

According to the sine theorem, 0 can be 

formulated as 

 
0

sin

i

i





=  (11) 

The length of OD0 is i cot(i), and then Pi is 
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(12) 

Substituting Eq.(12) into Eq.(10) 

 ( ) ( )i i i jP a =  −  −  (13) 

 
2

/
c

1
os

1
=

G

G

G

i j

ia
  


 

−
=

−
，  (14) 

where j=3−i (i=1, 2). P can be approximated as 

being proportional to angle , while P1+P1 is 

approximated as being proportional to angle . 

Then it can be obtained as 

 1 2P P
P 



+
=   (15) 

Substituting Eq.(15) into Eq.(8), explicit 

outcrossing rate E ( )v t+
 as 

  E 2 2 1 1( ) (1 ) ( ) ( ) /v t t   + = −  − −  −   (16) 

where i = (1−/)Pi(i=1, 2). 

From Eq.(17), the proposed E ( )v t+
is defined by 

1, 2 and G, which are the same parameters as 

the original model in Eq.(4). It indicates that the 

proposed explicit model does not require the 

additional calculation of other parameters. The 

proposed explicit model is an explicit expression 

that allows the outcrossing rate to be evaluated 

using an explicit method, whereas the original 

model can only be evaluated using numerical 

integration, which is more computationally 

efficient than the original model. 

4. EXAMPLES 

4.1 CANTILEVER TUBE BEAM 

 

Figure 3: Cantilever tube beam. 

 

A cantilever tube beam structure [14] is shown in 

Figure 3. This cantilever beam is subjected to 

external forces F1，F2，P and T(t), where F1，

F2，P are static loads and T(t) is a time-dependent 

load. The material strength of this beam is linearly 

degraded due to corrosion. The yield strength of 

the material R(t) is R(t) = R0(1-0.02t) where R0 is 

the initial yield strength. The structure failure 

when the yield strength R(t) exceeds its maximum 

stress, and the corresponding limit state function 

G(X, Y(t), t) is 

 22 )( ( ) ) (, , 3 ()G t R tt t = − +X Y  (17) 
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4
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32
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 

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 (18) 

 

4 4

( )
( )

[ ( 2 ) ]
16

T t D
t

D D d




=

− −

 (19) 

where L2=60mm is the length of the half pipe; 

L1=120mm is the length of the pipe; 1 and 2 are 

the angles of F1, F2 respectively. The statistical 

information of the random variables and 

processes is listed in Table 1. The autocorrelation 

function of T(t) is 

 ( )
2

( , ) exp /T Tt t t t  +  = − 
 

 (20) 

where T is the autocorrelation length of T(t), with 

values of 1 day, 1 month and 1 year. 

 
Table 1  Statistical information of random variables 

and processes for a tube. 

Variable/

process 
Distribution Mean 

COV 
(%) 

T(t) 
Gaussian 

process 
1900 Nm 10 

F1 Normal 1800 Nm 10 

F2 Normal 1800 Nm 10 

P Gumbel 1000 N 10 

D Normal 0.042 m 1.19 

d Normal 0.005 m  2 

R0 Normal 600 MPa 10 

Note: COV = coefficient of variation. 

 

TRA is performed over the time period [0, 10 

years]. For comparison, the original model and the 

explicit model will be used. The time interval dt 

( )  2 , cot( ),cos cot( )
2

i i i i i i iP


     
  

=  − − =  −  −  
  

L1

L2

y

x

z
F1

F2

T

d

D
P

1 2
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is taken to be 0.005 years. Figure 4 illustrates the 

failure probability with different autocorrelation 

lengths. Table 2 compares the time at different 

autocorrelation lengths. 

 

 
Figure 4  Failure probability of cantilever tube beam  

 
Table 2  Computational time for estimating failure 

probabilities of a tube. 

Time 

period 

Computational time (s) 

T = 1 year 
T = 1 

month 
T = 1 day 

Ori Ex Ori Ex Ori Ex 

[0, 2 

years] 
14.7 8.9 14.1 8.6 13.8 8.6 

[0, 5 

years] 
37.1 22.5 35.2 21.6 35.3 22.0 

[0, 10 

years] 
75.5 45.7 70.2 43.1 68.7 42.9 

Note: Ori = Original model; Ex= Explicit model. 

 

From Figure 4 and Table 2, it can be found that: 

(1) The results of the explicit model and the 

original model are basically the same at different 

autocorrelation lengths, which indicated that the 

explicit model has a high accuracy for TRA. 

(2) Considering different autocorrelation lengths, 

the computation time of the explicit model is 

shorter than that of the original one. The 

difference increases with the length of the time 

period, which indicates that the explicit model can 

improve the computation efficiency of TRA. 

 

4.2 THREE-SPAN SIX-LAYER FRAME 

The frames subjected to loads P1(t)~P6(t) are 

shown in Figure 5. The details of the frame 

members are shown in Table 3. The limit state 

function G(X, Y(t), t) when the frame failure is 
 

max( , ( ), ) (1 0.01 ) ( )G t t t t=  − −X Y  (21) 

 

Figure 5  Three-span six-layer frame  

 
Table 3  Detailed information of frame  

Lay
er 

External 
columns (C1-

C3) 

Internal 
columns  
(C4-C6) 

Beam  
(G1-G3) 

Area 
(cm2) 

Rota-
tional 
inertia 
(cm4) 

Area 
(cm2) 

Rota-
tional 
inertia 
(cm4) 

Area 
(cm2) 

Rota-
tional 
inertia 
(cm4) 

1, 2 301.5 79100 307.1 262600 178.7 112000 

3, 4 250.3 63700 216.1 170000 144.5 87400 

5, 6 187.7 46200 159.4 98600 104.5 56200 

 

where max = 0.05m is the initial allowable 

displacement; (t) is the maximum horizontal 

displacement of the frame (m) calculated by an 

implicit function. P1(t)~P5(t) are external 

horizontal loads and E is Young's modulus. 

P1(t)~P5(t) are random processes with an 

autocorrelation function 2exp( )− . The 

statistical information of the random variables and 

processes is listed in Table 4. 
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Table 4  Statistical information of random variables 

and processes for frame 

Parameter Distribution Mean COV 

P1(t) (kN) Gumbel 27 0.4 

P2(t) (kN) Gumbel 45 0.4 

P3(t) (kN) Gumbel 64 0.4 

P4(t) (kN) Gumbel 83 0.4 

P5(t) (kN) Gumbel 101 0.4 

P6(t) (kN) Gumbel 120 0.4 

E (GPa) Lognormal 200 0.1 

 

 
Figure 6 Failure probability of frame  

  

 
Figure 7  Computational time for estimating failure 

probabilities of frame  

 

TRA for frame within [0, 10 years]. As a 

comparison, the original model and the explicit 

model will be used. The time interval dt is taken 

to be 0.05 years. Figure 6 shows the failure 

probability of frame. Figure 7 compares the 

computational time of the frame by the different 

methods. 

As can be seen in Figures 6-7, the failure 

probability of the original model and the explicit 

model are consistent. The computational time of 

the explicit model is shorter than the original 

model around 60%. The results show that the 

accuracy of the explicit model is enough in the 

TRA of the implicit limit state function. And its 

application is feasible and sufficiently accurate 

for the evaluation of outcrossing rate. The results 

also demonstrate the efficiency of the explicit 

model. 

5. CONCLUSION 

In this paper, an explicit expression of 

outcrossing rate in PHI2 is proposed. A structural 

TRA method for the explicit model is developed, 

and the accuracy and efficiency of the method are 

examined through two examples. The results 

show that: 

(1) The explicit model eliminates numerical 

integration in PHI2 method. The examples show 

that the results of the explicit model are consistent 

with the original model, which demonstrates the 

accuracy of the proposed explicit model. 

(2) The explicit model is easy to understand 

and can be effectively applied to structural TRA 

without additional parameter operations. The 

examples show that the explicit model can reduce 

the time of TRA and improve efficiency. 
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