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Abstract		
	
Autonomous	Vehicles	(AVs)	or	self-driving	cars	have	become	the	most	exciting	area	

of	research	in	the	field	of	transportation	in	the	last	decade.	Implementation	of	AVs	in	

real-world	 requires	 further	 investigation	 especially	 in	 the	 contexts	 of	 safety	 and	

comfort	of	vulnerable	road	users	(pedestrians	and	cyclists).	This	thesis	focusses	on	

exploring	 the	 impact	 of	 autonomous	 vehicles	 (AV)	 and	 their	 abilities	 from	 a	

computer-vision-based	perspective.	

The	 thesis	 initiates	 with	 an	 extensive	 literature	 review,	 delving	 into	 the	 current	

landscape	of	 detecting	 and	 embracing	AV.	The	primary	 objective	 is	 to	 explore	 the	

utilization	of	deep	learning	methodologies	for	detection	of	vulnerable	road	users.		

Following	 the	 review	 of	 the	 state-of-the-art,	 a	 technology	 acceptance	 model	 is	

employed	to	evaluate	behavioural	attitudes	both	before	and	after	exposure	to	self-

driving	cars.	The	objective	is	to	glean	insights	into	the	perceived	concerns	associated	

with	AV.	These	initial	investigations	set	the	groundwork	for	carrying	out	experiments	

on	 detecting	 pedestrians	 and	 cyclists	 using	 deep-learning	 based	 object	 detection	

algorithms	analysing	images	captured	from	AVs.	

This	 thesis	 rigorously	 compared	 various	 deep-learning-based	 object	 detection	

algorithms	 using	 benchmark	 datasets	 (Cityscapes,	 Eurocity	 Person,	 and	 Kitti)	 to	

ensure	efficiency	and	real-time	safety	for	AV	development.	Five	distinct	algorithms	

(Faster	 RCNN,	 Cascade	 RCNN,	 FCOS,	 Deformable,	 DETR,	 and	 RetinaNet)	 were	

compared	 for	 the	 detection	 of	 urban	 road	 objects	 across	 various	 datasets.	

Additionally	a	diverse	traffic	benchmark	dataset	was	constructed	combining	several	

benchmark	 datasets	 incorporating	 various	weather,	 lighting,	 and	 traffic	 scenarios,	

evaluating	 state-of-the-art	 detection	 algorithms	 in	 traffic	 situations	 and	 adapting	

them	accordingly.	Lastly,	the	research	made	a	significant	contribution	by	developing	

a	unified	algorithm	for	simultaneous	estimation,	tracking,	and	detection	of	multiple	

road	 objects,	 advancing	 AV	 technology	 and	 promoting	 safer	 autonomous	

transportation	systems.	This	algorithm	was	tested	on	real-life	traffic	images	collected	

through	a	field	study.		

This	 thesis	 underscores	 the	 paramount	 importance	 of	 comprehending	 public	

perception	 and	 acceptance	 of	 autonomous	 vehicles	 (AVs).	 Simultaneously,	 it	

emphasizes	 the	 necessity	 for	 the	 development	 of	 robust	 and	 efficient	 detection	
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algorithms	 to	 ensure	 the	 safety	 of	 AVs	 in	 diverse,	 real-world	 environments.	 The	

creation	 of	 a	 comprehensive	 traffic	 benchmark	 dataset	 is	 a	 notable	 contribution,	

addressing	 the	 need	 for	 varied	 and	 challenging	 test	 cases	 in	 the	 advancement	 of	

autonomous	 vehicle	 technology.	 Furthermore,	 the	 establishment	 of	 a	 unified	

algorithm	 for	 multi-object	 estimation	 and	 tracking	 fills	 a	 crucial	 research	 gap,	

providing	 a	 foundational	 element	 for	 holistic	 approaches	 to	 AV	 technology.	

Collectively,	this	research	marks	a	substantial	leap	forward	in	the	continual	progress	

of	 autonomous	 vehicles,	 offering	 valuable	 insights	 into	 societal	 acceptance,	 safety	

enhancement	through	advanced	algorithms,	and	the	provision	of	essential	tools	for	

the	ongoing	development	and	integration	of	AVs	into	contemporary	transportation	

systems.	
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1 Introduction	
	

1.1 BACKGROUND	AND	MOTIVATION	
 
Autonomous vehicles (AVs), self-driving cars, or driverless cars are widely used phrases 

to describe vehicles that can sense the environment and safely perform driving with no or 

little human input. These cars were introduced to reduce driving efforts, especially on urban 

roads (Aneesh,	Shine,	Pradeep,	&	Sajith,	2019), because of their safety considerations. 

For instance, the United States is considered a country built on wheels; with over 289.5 

million registered passenger cars by 2021(US	VIO	Vehicle	Registration	Statistics:	 See	

How	Many	Cars	in	The	US	n.d.), it is evident that people in the U.S. like to have their own 

cars. A statistical study in 2015 showed that around 94% of traffic accidents in the United 

States were caused by human errors (Deb	et	al.,	2017). It is estimated that the rate of 

penetration of AVs into the traffic fleet can reduce traffic conflicts proportionately, with a 

reduction of over 90% if all vehicles on the road are AVs (Papadoulis,	 Quddus,	 &	

Imprialou,	 2019). Apart from improving safety, the additional benefits of AV would 

include reductions in the stress levels of drivers/passengers, reductions in emissions 

through improved driver behaviour, and improvements in overall efficiency in network 

management.  

With regard to AVs, moving object detection, classification, and tracking algorithms have 

received extensive research attention. The search terms ‘object detection’ and ‘autonomous 

driving’ led to the identification of 321 articles in Scopus. Many of these articles focused 

on multiple sensors, including Light Detection and Ranging (LiDAR), multiple cameras, 

radar, laser, etc., employing sensor fusion methodologies along with advance machine 

learning and deep-learning algorithms. Object detection (Papageorgiou, Oren, & Poggio, 

1998), segmentation (Haralick & Shapiro, 1985), tracking (Jarraya, 2018), semantic 

segmentation (Thoma, 2016), optical flow (Krapp & Hengstenberg, 1996), depth 

estimation (Torralba & Oliva, 2002), and 3D scene reconstruction (Häne, Zach, Cohen, 

Angst, & Pollefeys, 2013) are some of the algorithms used by researchers in analysing the 

environmental information in the surroundings for autonomous driving. 

The object detection algorithms studied in the literature considered multiple classes of 

objects, primarily focusing on pedestrians and road signs.	Region-based	Convolutional	

Neural	Network	(R-CNN) is a common deep learning algorithm used for object detection. 
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Yet, this cannot be implemented for real-time traffic object detection on road because of 

the long computational times. Nevertheless, faster R-CNN was developed to overcome this 

issue (X.	Zhao	et	al.,	2016). Newer algorithms like Single Shot Multi-Box Detector (SSD) 

(W.	Liu	et	al.,	2016)	and You Only Look Once (YOLO) (Redmon,	Divvala,	Girshick,	&	

Farhadi,	2016)	achieved high model performance as they have been able to overcome 

some of the disadvantages present in CNN and R-CNN, such as selective search. The 

selective search uses local cues like texture, intensity, and colour to find the Region of 

Interest (RoI), which is a slow and time-consuming process. Gavrila (Gavrila,	 2000) 

proposed a prototype system for pedestrian detection from a moving vehicle using a two-

step approach algorithm, wherein the first step contour features are used in a hierarchical 

template matching approach. The second step involves utilizing the richer set of intensity 

features in a pattern classification approach. Lee et al. (Lee,	Chiu,	Lin,	&	Hung,	2009)	

developed an object detection algorithm in 3D cues for detecting pedestrians and vehicles. 

They proposed an object detection algorithm for detecting pedestrians and vehicles from a 

moving video, using background modelling to extract frame information into a 3D space. 

The objects are then verified to identify whether or not they are pedestrians (vehicles) by 

the class-specific Support Vector Machine (SVM), based on the 3D cues. This thesis 

focuses on detection, as it is the initial step for all other applications. For instance, almost 

all tracking algorithms require detection of the objects, either in the first frame or in every 

frame; the estimation algorithm also requires a similar approach. Therefore, detection 

algorithms are a must to precisely locate and categorize objects. Hence, the main algorithm 

I shall focus on to increase safety and efficiency is detection.  

For instance, in traffic tracking scenes, an object detection mechanism—either in every 

frame, or when the object first appears in the video—is required. A common approach for 

object detection is to use information in a single frame. However, some object detection 

methods use the temporal information computed from a sequence of frames to reduce the 

number of false detections. This temporal information is usually in frame difference, which 

highlights changing regions in consecutive frames. Given the object regions in the image, 

the task of the tracker is to perform object correspondence from one frame to the next to 

generate the tracks. 

In addition, the field of AVs is developing rapidly; therefore, efficient, complex, and cost-

effective detection and tracking algorithms, which focus mainly on pedestrian and cyclist 

safety, need to be investigated and properly developed. In order to implement these 
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complex computational technologies in a real-world environment, AV connectivity 

technology should be introduced for computational purposes. Furthermore, an urban 

mixed-mode environment is an ecosystem that involves the different components of a 

traffic system, viz., vehicles, cyclists, and pedestrians.  

Moreover, acceptance after making this technology accessible to the public is an area for 

investigation and research. For this reason, the Technology Acceptance Model (TAM) is a 

technique that is being deployed by researchers to analyse public acceptance. However, an 

analysis of their acceptance after the use of such technologies has not been investigated yet. 

This research will highlight the perspective of people on the use of AVs in two phases: 

before their introduction to AV technology and after their experience of it. Hence, in this 

research, the acceptance of AVs before and after making them accessible to the public will 

be assessed, along with the proposal of a real-time object tracking detection algorithm. 

 

1.2 AUTONOMOUS	VEHICLES		
 

1.2.1 History	of	automated	driving	
 

‘Autonomous vehicles’, ‘self-driving cars’, or ‘robocalls’ are phrases used to describe 

vehicles that are capable of sensing their environment and of moving safely with little help, 

or no human involvement. A historical review of autonomous vehicles carried out by Joe 

et al. covers the period from 1925 to 2019. It stated that the first driverless vehicle was 

unveiled by Francis Houdina back in 1925	 (Janai, Güney, Behl, & Geiger, 2020): 

‘American Wonder’ was driven remotely along Broadway in New York City by an operator 

using a radio control in a nearby vehicle. The experiment led General Motors (GM) to 

explore the field of automation, where they proposed several prototypes that used radio 

streams for manoeuvres to be performed. Again, in 1956, Firebird II was unveiled; 

however, nearly all the prototypes were banned from being tested on the road. Owing to 

the high cost and limited scalability, this technology was restricted to ground transportation, 

airports, park shuttles, or automated facilities. Figure 1.1 presents the Firebird II concept 

car, which was never meant to be produced; it was, nevertheless, created to show how 

technology would change the automobile sector.  
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Figure	1.1	The	Firebird	II	concept	car1		

In 1995, a new development occurred, in which a dynamic driving control technology—

electronic stability control (ESC)—was announced (Babak, Hussain, Karakas, & Cetin, 

2017). Several driving assistance technology developments arose in the 1990s, based on 

sensors that measure the status of the respective vehicles, thereby providing relevant 

information and warnings to drivers. For instance, in 1995, Mitsubishi presented the first 

LiDAR-based distance control (Janai et al., 2020) (Motors, M. 2008), while in 1999, 

Mercedes-Benz implemented the radar-assisted adaptive cruise control. Several approaches 

to the issue of autonomous vehicles continued, and manufacturing companies continued to 

develop technologies. Even though driver assistance technologies became a commercial 

success, enriching driving comfort and safety, the goal of producing fully driverless 

vehicles has remained unattained till date.  

1.2.2 Challenges		
 

 
 
1 1956 Firebird II [Photograph], by General Motor https://www.gm.com/heritage/collection/gm-
concept/1956-firebird-II 
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Many	 challenges	 confront	 the	 implementation	 of	 AVs:	 some	 theoretical,	 some	

practical.	 The	 theoretical	 ones	 are	 those	 related	 to	 computer	 vision—for	 instance,	

road	 object	 detection	 and	 recognition	 (Martínez-Díaz	 &	 Soriguera,	 2018).	 The	

computing	 framework	 implemented	 in	 AV	 is	 a	 key	 aspect	 when	 the	 theoretical	

characteristics	of	self-driving	cars	are	considered.	Extracting	relevant	and	accurate	

information	from	the	raw	data	provided	by	sensors	in	real	time,	and	telling	the	vehicle	

how	 it	 must	 proceed	 to	 take	 decisions,	 is	 challenging.	 The	 use	 of	 the	 cloud	 and	

preclusion	 of	 hacking	 are	 issues	 that	 concern	 computer	 scientists.	 Regulation	 and	

policymakers	find	it	challenging	to	devise	laws	and	policies	that	protect	AV	users	and	

manufacturers.	The	introduction	and	acceptance	of	AVs	on	the	roads	is	a	challenge;	

not	all	individuals	can	accept	the	concept	of	self-driving	vehicles.	Researchers	argued	

that	AV	will	contribute	positively	to	traffic	flow	by	optimizing	vehicle	operations	and	

reduce	crashes	and	delays	(C.	Xu,	Ding,	Wang,	&	Li,	2019).	However,	(Meyer,	Becker,	

Bösch,	&	Axhausen,	2017)	stated	that	AV	would	cause	increased	car	use	demand	and	

consequent	 lack	 of	 road	 capacity,	 wherein	 travel	 demand	 by	 the	 elderly,	 the	

handicapped,	and	children	would	increase,	since	it	would	be	no	burden	for	them	to	

travel	on	their	own.	A	study	by	(Park,	Byun,	Kim,	Ahn,	&	Shin,	2021)	concluded	that	

the	use	of	AVs	will	potentially	improve	traffic	flow.	Other	challenges	like	liability	and	

insurance	raise	these	questions:	how	insurance	companies	will	deal	with	AVs,	who	

will	constitute	the	‘driver’,	who	has	ultimate	‘control’,	and	so	on	and	so	forth.	Software	

failure	(Koopman	&	Wagner,	2016)	is	a	crucial	challenge	that	confronts	AVs.	Hence,	

the	implementation	of	AV	remains	a	challenging	topic	and	requires	further	studies.	

	

1.2.3 Automation	levels		
 

The Society of Automotive Engineers (SAE) is an international company based in the 

United States since 1905, with over 138,000 members worldwide. The company is a 

professional association: it is a standards-developing organization, mainly for the different 

engineering industries. In 2018, the organization defined the six levels of driving 

automation, ranging from Level 0, with no driving automation, to Level 5, which is fully 

autonomous (Standard, 2018). On the other hand, in 2013, the National Highway Traffic 

Safety Administration (NHTSA) divided automation levels into five levels, ranging from 

no automation (Level 0) to fully self-driving automation (Level 4)(National Highway 
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Traffic Safety Administration and others, 2017). The main difference between the two 

approaches is that in Levels 0 to 3, according to SAE, the human driver monitors the road. 

In the levels above that, autonomous driving monitors the road. But NHTSA states that the 

levels from 0 to 2 entail human control driving, with no or two automation features. Level 

3 vehicles can have full control in a specific environment. Finally, Level 4 is designed to 

perform all safety-critical driving functions and monitor all different road conditions for 

the entire trip. The table below highlights the different automation levels, based on the SAE 

J3016 (Standard, 2018) standards published in 2018. These define the terms related to 

driving the automation system of the road motor vehicles. 

Table	1.1	Levels	of	automation	based	on	SAE	J3016.	The	word	‘system’	refers	to	the	automated	
driving	system.	

 

Based on the proposed driving level standards, no vehicle is considered as having Level 5 

autonomy. Although car manufacturers have developed many systems to reach full 

System 
capability 
(driving modes)

Fallback 
performance of 
dynamic driving 
task

Monitoring of 
driving 
environment

Execution of 
steering and 
acceleration/ 
deceleration

Definition Name 

Le
ve

l

Human driverHuman driverHuman driver

Human driver monitors the driving environment

_

The full-time performance by the human 
driver of all aspects of the dynamic driving 
task, even when enhanced by warning or 
intervention systems

No automation

0

Some driving 
modesHuman driverHuman driverHuman driver 

and system

The driving mode-specific execution by a 
driver assistance system of either steering 
or acceleration/deceleration using 
information about the driving environment 
and with the expectation that the human 
driver performs all remaining aspects of 
the dynamic driving task.

Driver assistance

1

Some driving 
modesHuman driverHuman driverSystem

The driving mode-specific execution by 
one or more driver assistance systems of 
both steering and acceleration/ 
deceleration using information about the 
driving environment and with the 
expectation that the human driver performs 
all remaining aspects of the dynamic 
driving task

Partial automation

2

Human driverSystemSystem

Automated driving system monitors the driving environment

Some driving 
modes

The driving mode-specific performance by 
an automated driving system of all aspects 
of the dynamic driving task (including 
latitudinal and longitudinal control) with 
the expectation that the human driver will 
respond appropriately to a request to 
intervene

Conditional 
automation

3

Most driving 
modesSystemSystemSystem

The driving mode-specific performance by 
an automated driving system of all aspects 
of the dynamic driving task, even if a 
human driver does not respond 
appropriately to a request to intervene. If 
the human driver fails to take control of the 
vehicle, the system steers the vehicle to the 
side of the road in a controlled manner and 
stops it

High automation

4

All driving 
modesSystemSystemSystem

The full-time performance by an 
automated driving system of all aspects of 
the dynamic driving task under all roadway 
and environmental conditions that can be 
managed by a human driver

Full automation

5
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autonomation, experts and politicians doubt whether full automation (Level 5) with 

driverless private vehicles able to operate on any road is achievable in the conceivable 

future (Nieuwenhuijsen, 2015; Van Witsen, 2016).  

It is worth mentioning that these automation levels have already been implemented in 

transport fleets today—for example, Tesla’s Autopilot system at Level 2 and the 

Guangzhou bus shuttle at Level 4. Figure1.2 shows the automated bus shuttle in 

Guangzhou, which can accommodate up to 6 passengers.  

   

 

Figure	1.2	Guangzhou	L4	bus	shuttle	2	

1.2.4 How	Autonomous	Vehicles	work		
 
Autonomous	 vehicles	 rely	 on	 sensors,	 actuators,	 complex	 algorithms,	 machine	

learning	systems,	and	powerful	processors	to	execute	software.	Vehicles	create	and	

maintain	a	map	of	their	surroundings	on	the	basis	of	a	variety	of	sensors,	located	in	

different	parts	of	the	vehicle.	Radar	sensors	monitor	the	positions	of	nearby	vehicles.	

Video	cameras	detect	traffic	lights,	read	road	signs,	track	other	vehicles,	and	look	for	

pedestrians.	Other	sensors	like	LiDAR,	ultrasonic,	and	radar	are	also	used	to	perform	

 
 
2 Guangzhou	L4	bus	shuttle [Photograph], by the city of Guangzhou’s official WeChat account 
https://mobility-innovators.com/guangzhou-launched-first-driverless-bus-line-with-l4-
autonomous-driving-buses 
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the	different	driving	tasks	(refer	to	Section	1.2.4	for	information	on	the	functionality	

of	different	sensors).	

After	 receiving	all	 information	 from	the	different	 sensors,	 a	 software	processes	all	

inputs,	plots	the	path,	and	sends	the	instruction	to	the	vehicle	actuators,	which	control	

acceleration,	braking,	and	steering.	Hard-coded	rules,	obstacle	avoidance	algorithms,	

predictive	modelling,	and	object	recognition	help	the	software	follow	traffic	rules	and	

navigate	obstacles.	Figure	1.3	 illustrates	 the	processing	of	vehicular	data	 collected	

from	the	sensors	by	the	four	main	functional	modules	of	the	AV	system	(Ignatious,	

Sayed,	&	Khan,	2021).  

 
Figure	1.3	Functional	perspective	of	vehicular	data	

	

1.2.5 Advanced	Driver	Assistance	Systems	(ADAS)	and	autonomous	
vehicle	sensors	

 
Advanced	Driving	Assistance	Systems	(ADAS)	are	technical	elements	that	increase	the	

safety	 of	 cars	 on	 the	 roads.	 They	 can	 be	 also	 defined	 as	 digital	 systems	 that	 help	

drivers	in	routine	navigation	and	parking,	using	computer	networks	to	enable	more	

data-driven	 and	 safer	 driving	 experiences.	 These	 systems	 increase	 the	 driver’s	

potential	to	adapt	to	road	hazards,	through	early	warning	and	automated	systems.	 

ADAS	aim	to	minimize	the	incidence	and	severity	of	automotive	accidents	that	cannot	

be	averted	to	prevent	deaths	and	injuries.	In	this,	systems	are	developed	to	automate,	
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adapt,	 and	 enhance	 vehicle	 technology	 to	 ensure	 safety	 and	 better	 driving.	 Such	

systems	 are	 used	 to	 detect	 human	 driver	 weariness	 and	 distraction,	 and	 issue	

cautionary	signals	 to	analyse	driving	performance	and	offer	recommendations	 like	

cruise	control	systems.	

Moreover,	 ADAS	 have	 been	 adopted	 in	 nearly	 all	 automobiles	 nowadays.	 Some	

examples	of	the	available	systems	are:		

• Adaptive	cruise	control	(ACC)	

• Forward	collision	alert	

• Lane	departure	alert		

• Traffic	light	traction	control	recognition		

• Anti-lock	braking	systems		

These	systems	rely	on	different	sensors	technologies	to	monitor	and	move	though	the	

surroundings.	Figure	1.4	illustrates	the	use	of	the	different	sensors.		

 
Figure	1.4	ADAS	sensors	used	

ADAS	systems	are	grouped	into	two	classes:	

1 Passive	safety	systems	protect	vehicle	occupants	from	injuries	after	a	crash.	

Seat	belts,	padded	dashboards,	whiplash	protection	system,	SOS	system,	and	

airbags	are	some	of	the	examples	of	passive	systems	(Kumar	Kukkala,	Tunnell,	

Pasricha,	&	Bradley,	2018).		
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2 Active	 systems	 are	 those	 in	 which	 the	 car	 provides	 advance	 warning	 e.g.,	

automatic	 emergency	 braking	 (AEB),	 wherein	 the	 system	 detects	 an	

impending	 accident	 and	 applies	 the	 brakes	without	 the	 driver’s	 assistance.	

Functional	features	include	adaptive	cruise	control	(ACC),	lane-keeping	assist	

(LKA),	lane	centring	(LC),	blind	spot	detection	(BSD),	and	traffic	jam	assist.  

These	systems	are	 important	 in	 the	sense	 that	 they	provide	passive	and	active	

safety	mechanisms	that	eliminate	human	driving	errors.		

	

1.2.6 Developments		
	
The success of the automation technologies in the market has been traced by the US 

Defence Advanced Research Projects Agency (DARPA) (Shubbak, 2017). Leading 

companies that provide web-based services, such as Google, have announced that they are 

developing and testing autonomous cars, which will be in the market in the coming years. 

For instance, a Google partner company, Waymo, an American autonomous driving 

technology development company that provides self-driving taxis, has travelled more than 

one million miles between 2009 and 2015 (Lavasani, Jin, & Du, 2016). Again, 

ParkShuttle—a Level 4 bus shuttle that has been operating since 2006—deploys driverless 

buses to connect a metro station with a business park in Rotterdam. This automatic 

transport system has been developed further and is currently being applied in several places 

worldwide, such as Masdar City (Abu Dhabi), as a Personal Rapid Transit (PRT) system 

(2getthere, 2016) (Figure 1.5).  
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Figure	1.5	Masdar	city	PRT3		

Market studies forecast that the adoption of AVs holds promise. Lavasani et al. pointed out 

that AVs will significantly change individual lives. The AV market should be, therefore, 

considerably large (Lavasani et al., 2016). An AV market forecast proposed by Lavasani 

et al. can be seen in Figure 1.6 (Lavasani et al., 2016); it shows that a slight increase in 

purchases will be noticed in from 2030 to 2035; however, a proportionate increase in sales 

will follow, before tending to stabilize by 2060.  

 
 
3 Masdar city PRT [Photograph] by Jeannette https://www.2getthere.eu/news/masdars-prt-system-
functions-99-since-launch-2010/ 
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Figure	1.6	AV	market	forecast	(Lavasani	et	al.,	2016)	

Navya is one of the leading companies in autonomous mobility systems; it has already 

provided the world market more than 170 units in all types of environments (mix mode 

environment and controlled environment). Figure 1.7 provides an example of a Navya 

shuttle operating in Tokyo. 

 

Figure	1.7	Navya	autonomous	bus	in	Tokyo4		

 
 
4 The autopilot bus is seen in Tokyo's Chiyoda Ward [Photograph] by Mainichi/Tatsuya Michinaga 
https://mainichi.jp/english/articles/20210310/p2a/00m/0bu/006000c	  
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It is worth mentioning that challenges like the DARPA Grand Challenge in 2004 forced 

researchers to compete to develop complex systems and automated algorithms to achieve 

the aims of their competition. For these, different sensors—radars, LiDAR, ultrasounds, 

and video sensors—are imbedded in vehicles to capture the information from the 

surroundings and compute distance. Algorithms are then developed to process traffic data 

information to calculate distance, path, and flow, which accordingly enable control of the 

actuators (Thrun, 2010). In 2007, the third DARPA challenge took place: teams from 

different research groups demonstrated the capability of robotic cars to concurrently 

perceive the environment of the vehicle, stabilize its motion, and to react with suitable 

driving manoeuvres (Campbell, Egerstedt, How, & Murray, 2010; Kammel et al., 2008). 

In this challenge, robotic cars drove driverless in a closed urban environment with a 

predefined traffic scenario. Tartan Racing was the first place winner in DARPA 2007: it is 

a collaborative effort between Carnegie Mellon University and General Motors (Urmson 

et al., 2007). Their vehicle was ‘Boss’, wherein their system was loaded on a Chevrolet 

Tahoe chassis, as shown in Figure 1.8. LiDAR, radar, and visual sensors were incorporated 

to safely navigate the urban environment. 

 

Figure	1.8	Boss	the	Tartan	robot,	developed	by	Carnegie	Mellon	University	and	General	Motors	
(Urmson	et	al.,	2007).	
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The Dubai World Challenge for Self-Driving Transport is one of the largest international 

platforms for companies and research and development centres to implement scenarios and 

applications of self-driving technology on Dubai roads. This challenge was organized by 

Dubai’s Roads and Transport Authority (RTA), the aim of which is to develop the 

transportation fleet and achieve 2030 Dubai Self-Driving vision to transfer 25% of all 

passenger trips in Dubai so that they can be smart and driverless. 

1.2.7 The	regulatory	and	legal	framework	
 
Autonomous	vehicles	are	the	future	of	transportation;	regulations	and	policies	are	yet	

to	be	put	in	place	in	this	respect.	However,	countries	like	the	US	and	Australia	have	

devised	 some	 legal	 regulations.	 In	 the	 US,	 for	 instance,	 the	 policy	 of	 the	 National	

Highway	 Traffic	 Safety	 Administration	 (NHTSA)	 is	 the	 active	 policy,	 under	 which	

seven	 states	 and	 Washington	 DC	 have	 passed	 legislation	 aimed	 at	 regulating	

autonomous	vehicles	while	one	state	has	issued	an	executive	order.	However,	those	

regulations	do	not	concern	the	operations, sales,	and	use	of	autonomous	vehicles	for	
the	 public	 but	 rather	 regulate	 the	 testing	 of	 vehicles	 (Tarpley	 &	 Jesma,	 2016).	 In	

Australia,	 AVs	 must	 get	 an	 exception	 from	 current	 regulations	 if	 they	 intend	 to	

operate	on	public	 roads.	Having	 said	 this,	 however,	The	Automated	Vehicle	 Safety	

Law,	 due	 in	 2026,	 will	 establish	 an	 ‘in-service	 regulator’	 for	 the	 technology	 and	

national	standards	for	autonomous	vehicles.	

Germany	 is	 the	 first	 country	 in	 the	 world	 to	 create	 a	 legal	 framework	 for	 fully	

automated	driving	with	autonomous	driving	functionality	for	cars	and	trucks	(Bianco	

Levrin	Giovanna	Larini,	2017).	Across	the	European	Union,	the	European	Commission	

is	 in	 the	 process	 of	 developing	 regulations	 to	 support	 the	 implementation	 of	

connected	 and	 autonomous	 vehicles,	 in	 which	 all	 European	 countries,	 including	

Ireland,	will	significantly	influence	the	legislation	adopted	(Barrett,	Rageade,	Wallis,	

&	Weil,	2021).	

	

1.2.8 Ongoing	work	in	the	EU	
 
In	 the	 international	 context,	 the	 Transport	 Ministers	 of	 the	 G7	 States	 and	 the	

European	Commissioner	for	Transport	underlined	the	need	to	take	appropriate	steps	
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to	establish	a	harmonized	regulatory	framework	that	would	enable	safe	deployment	

of	automated	and	connected	driving	technologies	across	national	borders.		

In	the	framework	of	the	Digital	Agenda	for	Europe	(Force,	2015),	enabling	intelligent	

transport	 systems	 and	 automated	 and	 connected	 vehicles	 is	 a	 horizontal	 task	 for	

transport	 policy	 and	 economic	 policy.	 The	 Connecting	 Europe	 Facility	 and	 the	

Investment	 Plan	 for	 Europe	 (Pillath,	 2016)	 have	 set	 as	 important	 targets	 the	

stimulation	 of	 investments	 in	 broadband	 networks	 and	 transport	 infrastructure,	

which	are	necessary	for	effective	Connected	Intelligent	Transport	Systems	(C-ITS).		

	

1.3 RESEARCH	OBJECTIVES	
 

The thesis investigates aspects of implementation of AV in real-world mobility 

environment. The brief objectives of this thesis are: 

• To analyse people’s perceptions as regards AVs once they have used one, utilising 

a Technology Acceptance Model (TAM). 

• To	 conduct	 a	 comprehensive	 performance	 evaluation	 of	 five	 detection	

algorithms—Faster	R-CNN,	Cascade	R-CNN,	RetinaNet,	FCOS,	and	Deformable	

DETR—utilizing	benchmark	datasets	such	as	Cityscapes,	KITTI,	and	Eurocity	

Person.	 The	 goal	 is	 to	 conduct	 a	 comprehensive	 comparative	 analysis,	

evaluating	how	these	algorithms	perform	in	scenarios	that	closely	mimic	real-

world	 complexities.	 The	 unique	 aspect	 of	 this	 work	 lies	 in	 its	 extensive	

approach,	 comparing	 the	 algorithms	 across	 multiple	 datasets	 and	

benchmarking	 them	 against	 existing	 urban	 road	 datasets.	 The	 overarching	

goal	is	to	scrutinize	the	efficiency	of	the	detection	algorithms	and	ensure	their	

suitability	for	real-time	applications,	thereby	contributing	to	advancements	in	

safety	measures	for	autonomous	systems	and	intelligent	transportation.	

• To create a unique traffic benchmark dataset after taking into consideration 

different kinds of weather, lighting, and traffic scenes, thereby testing the 

efficiency of the state-of-art detection algorithms in traffic scenarios, and further 

modifying them to suit traffic scenes.  

• To develop a single end-to-end algorithm to estimate, track, and detect different 

road objects.  
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The	 work	 in	 the	 thesis	 was	 carried	 out	 to	 achieve	 all	 the	 proposed	 research	

objectives.	 Initially,	 a	 study	was	conducted	 to	carry	out	an	 in-depth	analysis	of	

people's	 perceptions	 concerning	 Autonomous	 Vehicles	 (AVs)	 by	 utilizing	 the	

Technology	Acceptance	Model	(TAM),	shedding	light	on	crucial	insights	into	the	

public's	acceptance	and	concerns	regarding	this	emerging	technology.	This	study	

was	 followed	 by	 comparison	 of	 performances	 of	 various	 deep-learning	 based	

object	 detection	 algorithms	 (Faster	 RCNN,	 Cascade	 RCNN,	 RetinaNet,	 FCOS,	

Deformable	DETR)		using	benchmark	datasets	(Cityscapes,	Eurocity	Person	and	

Kitti),	 comparing	 results	 to	 ensure	 not	 only	 efficiency	 but	 also	 real-time	

application	 safety,	 thus	 advancing	 the	 development	 of	 AVs.	 For	 improved	

comparison	 a	 diverse	 traffic	 benchmark	 dataset	 collating	 images	 depicting	

various	weather	conditions,	lighting	scenarios,	and	traffic	scenes	was	developed.	

This	 dataset	 serves	 as	 a	 vital	 resource	 for	 evaluating	 state-of-the-art	 detection	

algorithms	in	complex	traffic	scenarios	and	facilitating	necessary	modifications.	

Additionally,	a	field	dataset	which	consist	of	about	300	images	was	developed	for	

distance	 estimation	 evaluation	 problem,	 the	 data	was	 collected	 and	 annotated	

manually.	 The	 last	 contribution	 involved	 development	 of	 a	 unified	 algorithm	

capable	 of	 estimating,	 tracking,	 and	 detecting	 multiple	 road	 objects	 These	

contributions	 collectively	 support	 the	 understanding	 and	 advancement	 of	 AV	

technology,	 paving	 the	 way	 for	 safer	 and	 more	 efficient	 autonomous	

transportation	systems.	

	

1.4 ORGANIZATION	OF	THE	THESIS		

This	thesis	is	presented	in	seven	chapters	following	this	one.	In	Chapter	2,	a	short	

description	of	the	available	literature	in	this	field	has	been	provided.	The	review	

has	 been	 followed	 by	 description	 of	 the	 algorithms	 and	 bench-mark	 image	

datasets	used	in	this	thesis.			

Chapter	 3	 presents	 a	 qualitative	 study	 to	 comprehensively	 measure	 the	

acceptance	of	autonomous	vehicles,	to	identify	participant	concerns,	to	develop	

an	 experimental	 evaluation	 of	 AV	 acceptance	 yet	 to	 propose	 solutions	 for	 the	

future	adaptation	of	AVs.	
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Detection	is	an	area	of	investigation	as	it	is	the	first	and	main	step	to	achieve	the	

aim	of	this	thesis.	 In	Chapter	4	will	build	on	the	fundamentals	of	the	previous	

chapters.	 This	 chapter	 will	 evaluate	 detection	 performance	 using	 different	

evaluation	matrices	under	different	conditions	of	datasets	and	different	object	

sizes.		

Chapter	 5	 will	 develop	 an	 urban	 road	 dataset	 where	 it	 will	 standardize	 the	

performance.	It	will	highlight	the	unique	aspects	of	the	dataset	and	the	different	

performance	matrices	used	for	evaluation.		

A	 combined	 model	 will	 be	 developed	 in	 Chapter	 6	 that	 is	 based	 on	 the	

perceptions	gained	 from	the	previous	chapters.	The	model	 is	a	combination	of	

three	 aspects:	 algorithm	 detection,	 tracking,	 and	 estimation.	 The	 aim	 of	 this	

model	 is	 to	 increase	 the	 safety	of	pedestrians	 and	 cyclists	on	 the	 road,	 and	 to	

overcome	the	literature	gap	where	no	combined	algorithm	has	been	developed	

yet	for	road	objects,	mainly	cyclists	and	pedestrians.		

Chapter	7	will	conclude	the	thesis	by	summarizing	the	contributions,	evaluating	

the	overall	performances	of	the	proposed	algorithm,	discussing	the	implications,	

and	indicating	directions	for	future	research.	

The	following	figure	(Figure	1.9)	illustrates	the	roadmap	of	the	thesis.		
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Figure	1.9	Thesis	roadmap	

 
 
1.5 DISSEMINATION	FROM	THESIS	
 

Papers from different chapters in the thesis have been presented at the following 

international transportation conferences: 

 

• Alshkeili, A., and Ghosh, B. 

Introduction

Literature	Review	

TAM(survey	study	of	AV	
acceptance	)

Algorithm	(Discuss	the	different	
object	detection	,	datasets	and	

evaluation	matrices)

Evaluation	of		
OD(Comprehensive	evaluation	
of	five	chosen	well	developed	
algorithm	yet	to	propose	an	
algorithm	that	aims	to	detect	

with	high	accuracy)

Benchmarking	framework	and	
evaluation(Dataset	which	

focuses	in	5	main	road	objects	
are	addressed	under	different	

traffic	conditions)		

DET(Combine different 
algorithms for safer road system)	

General	Conclusion

Theory 

Application 
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Detection	 of	 Pedestrian	 and	 Cyclists	 from	 Automated	 Vehicles	 using	

Image	Analysis	the	55th	UTSG	Annual	Conference	2023	-	Cardiff	

• Alshkeili, A., Qiu, W. and Ghosh, B. 

Cyclist and Pedestrian in Autonomous Vehicles View 

In Proceedings of the Irish Transport Research Network (ITRN2023) 

• Alshkeili, A., and Ghosh, B. 

User Acceptance of Adoption of Autonomous Vehicles  

Transportation Research Procedia  

Transport Research Arena (TRA) Conference (TRA 2022) 

• Alshkeili, A., Qiu, W. and Ghosh, B. 

Detection, Estimation & Tracking Road Objects for Assisting Driving. 

In Proceedings of the 7th International Conference on Vehicle Technology 

and Intelligent Transport Systems (VEHITS 2021) 

• Alshkeili, A., Qiu, W. and Ghosh, B. 

Cyclist and Pedestrian in Autonomous Vehicles View 

In Proceedings of the Irish Transport Research Network (ITRN2019) 
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Chapter	2	
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2 Literature	review		
This	research	looks	at	the	topic	from	two	different	aspects:	one	is	object	tracking	

and	detection	using	machine-learning	algorithms	while	the	other	is	the	technology	

acceptance	of	the	adoption	of	autonomous	vehicles	in	the	transport	system.	The	

most	relevant	research	in	each	of	these	fields	is	discussed	in	this	chapter,	so	as	to	

provide	context	for	the	original	work	to	follow.	

2.1 TECHNOLOGY	ACCEPTANCE	MODEL	
 
The	Technology	Acceptance	Model	(TAM)	is	an	information	systems	theory	that	

illustrates	how	users	accept	and	use	technology.	It	was	tailored	from	the	Theory	of	

Reasoned	 Action	 (TRA).	 TRA	 is	 a	 social	 psychology	 model	 used	 for	 the	

determination	 of	 consciously	 intended	 behaviour	 (Davis,	 Bagozzi,	 &	 Warshaw,	

1989).	In	this	model,	a	person’s	behaviour	is	determined	by	his/her	behavioural	

intention	(BI),	which	determines	the	person’s	attitude	(A)	and	the	subjective	norm	

(SN)	related	to	the	behaviour,	with	a	typical	weight	being	calculated	by:	

𝐵𝐼 = 𝐴 + 𝑆𝑁. 
2.1	

The	following	figure	illustrates	the	path	used	to	estimate	the	actual	behaviour	on	

the	basis	of	TRA.	

	
Figure	2.1	Theory	of	Reasoned	Action	(TRA)	

The	TRA	model	was	used	 in	 various	 research	areas	 that	 aim	 to	understand	 the	

limitations	 of	 theory,	 test	 assumptions,	 and	 analyse	 several	 refinements	 and	

extensions	(Davis	et	al.,	1989).	
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The	TAM	model,	which	is	an	adoption	of	TRA,	was	developed	initially	by	Davis	in	

1986	to	explain	computer	use	behaviour.	The	model	was	adopted	to	examine	users’	

acceptance	of	 information	systems	 (Davis	et	 al.,	 1989).	The	goal	of	TAM	was	 to	

explain	 the	 determination	 of	 computer	 acceptance.	 TAM	was	 also	 developed	 to	

explain	user	acceptance,	deploying	theoretical	and	mathematical	justifications	to	

use	fewer	input	variables.	An	essential	purpose	was	to	provide	a	basis	for	tracing	

the	 input	 of	 external	 factors	 on	 internal	 beliefs,	 attitudes,	 and	 intentions.	 The	

model	 consists	 of	 several	 variables	 that	 explain	 the	 behavioural	 intentions	 in	

relation	 to	 the	use	of	 technology	 (Scherer,	 Siddiq,	&	Tondeur,	2019).	Moreover,	

TAM	 proposed	 two	 theories:	 perceived	 usefulness	 and	 perceived	 ease	 of	 use	

relevant	to	computer	acceptance.	Perceived	usefulness	(U)	is	the	perspective	of	the	

subjective	probability	of	users,	which	refers	to	the	fact	that	the	use	of	such	a	system	

will	 increase	 their	 job	 performance	within	 an	 organizational	 context.	 Perceiver	

ease	of	use	(EOU)	refers	to	the	degree	to	which	potential	users	expect	the	target	

system	to	be	free	of	effort.	

In	TAM,	in	order	to	estimate	BI,	personal	attitude	towards	the	use	of	System	(A)	

and	perceived	usefulness	(U)	are	joined,	and	then	the	following	equation	is	used	to	

calculate	the	estimated	weight:	

𝐵𝐼 = 𝐴 + 𝑈. 
2.2	

The	following	figure	illustrates	the	TAM	computer	acceptance	behaviour.			

	
	

Figure	2.2	Technology	Acceptance	Model	(TAM)	

This	 acceptance	 model	 has	 gone	 through	 several	 extended	 phases.	 In	 2000,	

Venkatesh	and	Davis	conducted	a	study	to	extend	TAM,	which	assessed	how	the	

perceived	 usefulness	 and	 intention	 of	 use	 constructs	 change	 with	 continued	

information	 system	 (IS)	 use	 (Venkatesh	 &	 Davis,	 2000).	 TAM	 2	 included	more	
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information	on	the	acceptance;	it	shows	that	subjective	norms	exert	a	significant	

direct	effect	on	 intentions	of	use	over	and	above	perceived	usefulness	(PU)	and	

perceived	ease	of	use	(PEOU)	for	mandatory	systems.		

The	following	figure	demonstrates	the	modification	made	by	Venkatesh	and	Davis	

for	the	initial	TAM	model.	

	

Figure	2.3	TAM	2	

The	proposed	TAM	2	(Venkatesh	&	Davis,	2000),	as	provided	in	Figure	2.3,	gave	

explanations	 in	 greater	 detail.	 For	 these	 reasons,	 customers	 discovered	 a	 given	

system	that	is	useful	in	respect	of	three	factors	in	time:	pre-implementation,	one-

month	 post-implementation,	 and	 three	 months	 post-implementation.	 TAM2	

theorizes	that	the	mental	evaluation	on	the	part	of	users	of	the	fit	between	essential	

goals	 at	work	 and	 the	 consequences	 of	 performing	 job	 duties	 using	 the	 device	

serves	 as	 a	 foundation	 for	 forming	 perceptions	 related	 to	 the	 usefulness	 of	 the	

system	(Venkatesh	&	Davis,	2000).	TAM2	performed	well	in	every	voluntary	and	

obligatory	 environment	 (Venkatesh	 &	 Bala,	 2008).	 Although	 this	 model	 had	

positively	impacted	the	understanding	of	user	behaviours	towards	the	adoption	of	

IT,	the	model	identified	general	determinants	of	the	perceived	ease	of	use.	It	was	

developed	separately	from	the	initial	TAM;	hence,	there	was	no	idea	if	it	is	valid	to	

combine	them	to	overcome	the	backdrops	of	understanding	behaviour	intention.	

Therefore,	 an	 integrated	 model	 of	 determinants	 of	 perceived	 usefulness	 and	

perceived	ease	of	use	that	empirically	validates	the	model	and	uses	the	integrated	
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model	as	a	springboard	to	propose	future	directions	for	research	on	interventions	

(Venkatesh	&	Bala,	2008)	was	implemented.	

In	2008,	Venkatesh	and	Bala	carried	out	research	that	looks	at	a	broader	view	of	IT	

acceptance.	Their	main	aim	was	to	enable	managers	in	organizations	to	decide	how	

to	 implement	 the	 IT	 system	 that	 can	 lead	 to	 its	 greater	 user	 acceptance	 and	

effective	utilization.	TAM3	presents	a	numerical	network	of	 the	determinants	of	

individuals’	IT	adoption	and	use.	

They	 developed	 an	 integrated	 model	 of	 acceptance	 TAM3	 (Figure	 2.4)	 by	

combining	TAM2	and	the	model	of	the	determinants	of	perceived	ease	of	use	(Davis	

et	al.,	1989).	

	
Figure	2.4	TAM	3	
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TAM3	 consisted	 of	 four	 different	 types:	 individual	 differences,	 system	

characteristics,	 social	 influence,	 and	 facilitating	 conditions,	 which	 were	 the	

determinants	of	perceived	usefulness	and	perceived	ease	of	use.	This	model	was	

then	tested	in	a	real-time	setting	for	IT	implementation.	

Moreover,	a	broader	acceptance	model—Unified	Theory	of	Acceptance	and	Use	of	

Technology	(UTAT)—was	then	developed	by	Venkatesh	et	al.	(Venkatesh,	Morris,	

Davis,	 &	 Davis,	 2003).	 This	model	 was	 found	 to	 understand	 the	 organizational	

outcomes	associated	with	new	technology.				

	

	

2.1.1 Autonomous	Vehicle	acceptance		
 
The	technology	acceptance	model,	which	aims	to	study	the	public	acceptance	of	

adapting	 to	 autonomous	 vehicles	 as	 one	 of	 the	 modes	 of	 transportation,	 is	 a	

research	 area	 that	 researchers	 are	 interested	 in.	 The	 term	 ‘Autonomous	 AND	

Vehicle	AND	Survey’	received	more	than	2,000	results	on	Scups.	Studies	showed	

that	people	are	willing	to	adopt	to	AV,	however	some	concerns	regarding	safety	

and	cost	are	yet	to	be	dealt	with.	For	instance,	a	study	by	P.	Liu	et	al.	(P.	Liu,	Guo,	

Ren,	Wang,	 &	 Xu,	 2019)which	was	 held	 in	 china	 showed	 that	 show	 that	 about	

39.3%	of	participants	are	willing	to	pay	less	than	$2,900	while	34.3%	are	willing	

to	 pay	 $2,900.	 Moreover,	 most	 surveys	 were	 conducted	 online	 using	 different	

online	tools.	Liljamo,	Liimatainen,	and	Pöllänen	(Liljamo,	Liimatainen,	&	Pöllänen,	

2018)	have	conducted	a	study	using	focused	group	in	different	countries	across	the	

globe	with	a	total	participance	of	2036	to	examine	whether	people	are	ready	for	

automated	vehicles	and	what	 concerns	people	have	 that	hinder	 the	adoption	of	

these	vehicles	and	conclude	that	traffic	safety	and	ethical	perspectives	play	a	key	

role	in	the	acceptance	of	automated	vehicles.	A	web	based	survey	study	caried	in	

the	USA	by	Bansal	and	Kockelman	(Bansal	&	Kockelman,	2017)	to	study	the	long-

term	 AV	 adaptation	 in	 the	 US	 and	 the	willingness	 to	 pay	 for	 technology.	 2167	

participated	in	the	survey	and	results	showed	that	by	2045,	Level	4	AVs	are	likely	

to	be	adopted	to	the	extent	of	24.8–87.2%	of	the	vehicle	fleet.	Yuen	et	al.	(Yuen,	Cai,	

Qi,	&	Wang,	2021)	have	developed	a	TAM	study	with	a	total	of	274	participant	to		

examine	the	factors	influencing	a	user’s	behavioural	intention	to	use	AVs.	In	Table	
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2.1	a	 concise	 list	of	 research	studies	 conducted	 to	 investigate	 the	acceptance	of	

autonomous	vehicles	has	been	presented.	This	compilation	serves	as	a	valuable	

resource	 for	 understanding	 the	 evolving	 landscape	 of	 autonomous	 vehicle	

acceptance,	 highlighting	 the	 multifaceted	 perspectives,	 and	 contributing	 to	 a	

broader	 comprehension	 of	 this	 critical	 aspect	 of	 emerging	 transportation	

technology.	Notably,	 it	 is	worth	mentioning	 that	 the	 table	underscores	a	unique	

aspect	of	this	thesis:	a	departure	from	the	conventional	reliance	on	hypothetical	

scenarios	in	previous	studies.	Instead,	this	research	distinguishes	itself	by	directly	

involving	 participants	 with	 access	 to	 autonomous	 vehicles,	 thereby	 analyzing	

acceptance	based	on	real-life	experiences.	This	distinctive	approach	enriches	the	

field	by	offering	a	more	authentic	and	experiential	perspective.	

Table	2.1	Summary	of	AV	acceptance	survey	paper	
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Author	 Location	 Target	
Participants	 Method		 Objectives		 Insights	and	Conclusion		 Sample	

Size		

(Acheampong	
&	Cugurullo,	
2019)	

Dublin	 Random	
Sample	

Two-step	
survey	
process	

Capture	the	
possible	
behavioural	
influences	on	
individuals’	AV	
adoption	decisions.	

A	two-step	survey	was	
conducted,	wherein	the	first	step	
involved	an	online	pilot	survey	
with	50	participants.	The	second	
step	entailed	posting	the	survey	
link	on	social	media	(Twitter	and	
Facebook),	distributing	leaflets	
with	scannable	QR	codes,	and	
sending	emails	to	students	and	
staffers	of	all	major	universities	
in	Dublin.	The	study	showed	(a)	
AV	interest	and	adoption	
intentions	and	(b)	user	adoption	
decisions	regarding	three	
different	AV	modes:	ownership,	
sharing,	and	public	transport.	

507	

(Bansal,	
Kockelman,	&	
Singh,	2016)	

USA	 Random	
Sample	

Internet-
based	

Understand	
participants’	
opinions	on	smart	
car	technologies	
and	strategies.	

The	study	showed	a	willingness	
to	pay	for	adding	full	(Level	4)	
automation,	and	the	results	of	
the	survey	can	be	used	to	
develop	smarter	transportation	
systems	for	more	efficient	and	
sustainable	travel.	

374	
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(P.	Liu,	Guo,	et	
al.,	2019)	 China	 Random	

Sample	 _	

A	survey	to	
investigate	the	
willingness	to	pay	
in	order	to	adopt	
AV	technology	in	
daily	life.	

The	aim	was	to	provide	insights	
to	assess	the	value	of	self-driving	
vehicle	technology	in	the	vehicle	
market.	It	concluded	that	in	
China,	younger	generations	with	
high	incomes	are	willing	to	adopt	
this	technology;	however,	the	
older	generation	has	some	
uncertainty.	Results	show	that	
about	39.3%	of	participants	are	
willing	to	pay	less	than	$2,900	
while	34.3%	are	willing	to	pay	
$2,900.	

1,355	

(Nordhoff,	De	
Winter,	
Kyriakidis,	
Van	Arem,	&	
Happee,	2018)	

116	
countries	

Random	
Sample	

Online	
survey	

A	survey	to	study	
the	acceptance	of	
driverless	vehicles	
and	
sociodemographic	
characteristics.	

The	study	concluded	that	
domain-specific	attitudes	more	
strongly	determine	self-reported	
acceptance	of	driverless	vehicles	
than	sociodemographic	
characteristics.	

10,000	
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(Bansal	&	
Kockelman,	
2017)	

USA	

Participants	
had	a	good	
understanding	
of	AV	

Web-based	
survey	

A	survey	to	study	
long-term	AV	
adoption	in	the	US	
and	the	willingness	
to	pay	for	AV	
technology	to	help	
traffic	engineers,	
planners,	and	
policymakers	
propose	long-term	
plans.	

It	concluded	that	by	2045,	Level	
4	AVs	are	likely	to	be	adopted	to	
the		extent	of	24.8–87.2%	of	the	
vehicle	fleet	

2167	

(Brell,	
Philipsen,	&	
Ziefle,	2019)	

Germany	 _	 Focus	group	

A	survey	to	explore	
risk	perceptions	
towards	connected	
and	autonomous	
driving	compared	
to	conventional	
driving.	

The	results	will	foster	the	
successful	implementation	of	
AVs	on	the	German	market	and	
develop	public	information	
strategies.	

516	

(Kyriakidis,	
Happee,	&	De	
Winter,	2015)	

109	
countries	

Random	
Sample	

Internet-
based	

A	survey	that	
aimed	to	
investigate	user	
acceptance,	
concerns,	and	
willingness	to	buy	
partially,	highly,	
and	fully	
automated	
vehicles.	

The	results	showed	that	the	
public	has	concerns	about	
legislation,	legal	issues,	and	
software	hacking.	

5,000	
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(Liljamo	et	al.,	
2018)	 Finland	

Random	
Sample	(from	
China,	India,	
Japan,	the	
USA,	the	UK,	
and	Australia)	

Focus	group	

This	study	aimed	
to	examine	
whether	people	
are	ready	for	
automated	
vehicles	and	what	
concerns	people	
have	that	hinder	
the	adoption	of	
these	vehicles.	

The	study	dealt	with	the	
concerns	that	people	have	which	
hinder	the	adoption	of	AVs.	The	
results	indicated	that	traffic	
safety	and	ethical	perspectives	
play	a	key	role	in	the	acceptance	
of	automated	vehicles.	

2,036	

(P.	Liu,	Yang,	&	
Xu,	2019)	 China	

Random	
Sample	of	
Tianjin	
citizens	

Direct	
intercepts	
by	well-
trained	
interviewers	

This	study	aimed	
to	understand	the	
acceptance	of	AV	

The	survey	aimed	to	understand	
that	acceptance	is	based	on	three	
main	aspects:	general	
acceptance,	willingness	to	pay,	
and	behavioural	intentions.	The	
results	proved	that	psychological	
factors	influence	initial	public	
acceptance.	

441	
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(Sanbonmatsu,	
Strayer,	Yu,	
Biondi,	&	
Cooper,	2018)	

USA	

Paid	survey:	
Amazon	
Mechanical	
Turk	Workers	

Online	
survey	

A	survey	to	
measure	
consumers’	beliefs	
about	fully	
automated	
vehicles	and	their	
confidence	in	their	
beliefs.	

The	survey	results	showed	that	
AV	tends	to	be	viewed	favourably	
among	knowledgeable	customers	
compared	to	customers	with	less	
knowledge	regarding	AV,	and	
72%	of	respondents	indicated	
that	they	are	‘somewhat	certain’	
or	‘highly	certain’	about	AV	
beliefs.	The	study	concluded	that	
educating	the	nation	about	AV	
will	lead	to	wider	acceptance	and	
adoption	of	such	technology.	

114	

(Huang	&	
Qian,	2021)	 China	 Random	

sample	
Online	
survey	

A	survey	that	
aimed	to	examine	
customers’	
negative	attitudes	
and	intentions	
towards	the	
adoption	of	AV	and	
how	their	
psychological	
traits	moderate	the	
relationships.	

The	survey	concludes	that	the	
psychological	trait	of	the	need	for	
uniqueness	strengthens	the	
association	between	consumers’	
reasoning	for	AVs	and	their	
intention	to	adopt.	

849	
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(Yuen	et	al.,	
2021)	 China	 -	 TAM	

This	study	applied	
an	integrated	
model	based	on	
innovation	
diffusion	theory	
(IDT)	and	the	
technology	
acceptance	model	
(TAM)	to	examine	
the	factors	
influencing	a	user’s	
behavioural	
intention	to	use	
AVs.	

perceived	usefulness	(PU)	and	
perceived	ease	of	use	(PEOU)	
positively	influence	users’	
behavioural	intention	to	use	AV	

274	

(Rejali,	
Aghabayk,	
Esmaeli,	&	
Shiwakoti,	
2023)	

Iran	 Drivers	with	
valid	license		

Online	
survey		

A	survey	to	assess	
user	acceptance	of	
fully	automated	
vehicles	in	a	
middle-income	
country	

comparing	three	popular	user	
acceptance	models:	Technology	
Acceptance	Model	(TAM),	Theory	
of	Planned	Behavior	(TPB),	and	
Unified	Theory	of	Acceptance	
and	Use	of	Technology	(UTAUT)	

1381	
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(Hőgye-Nagy,	
Kovács,	&	
Kurucz,	2023)	

University 
of 
Debrecen 
and 
Széchenyi 
István 
University 
in Győr 	

Member	of	a	
university	
community	

Online	
Survey	

investigates the 
acceptance of 
autonomous cars 
based on the role 
of attitudes 
toward 
autonomous 
vehicles, 
acceptance of 
technology, 
previous 
experiences, and 
gender.	

investigates the acceptance of 
autonomous cars based on the 
role of attitudes toward 
autonomous vehicles, 
acceptance of technology, 
previous experiences, and 
gender. The optimism factor of 
technology adaption propensity 
affected the acceptance. 	

1273	
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2.2 COMPUTER	VISION		
 

Computer	vision	(Keller	&	Wang,	1995)	is	a	field	of	computer	science	that	focuses	

on	replicating	parts	of	the	complexity	of	the	human	visual	system	and	authorizes	

computers	to	identify	and	process	objects	in	both	images	and	videos	in	the	same	

manner	as	humans	do.	For	computers	to	reach	a	high	level	of	analysis,	it	involves	

several	lower-level	processes	like	artificial	intelligence,	which,	in	turn,	consists	of	

several	 lower-level	processes	 like	deep	 learning	 and	others.	 Computer	 vision	 is	

based	 on	 algorithms	 that	 use	 mathematical	 equations	 to	 compute	 3D	 image	

components.	Figure	2.5	illustrates	an	example	of	a	simple	computer	vision	process	

in	which	several	inputs	are	fed	into	the	algorithms	for	the	outputs	to	be	produced.	

Richard	Szeliski,	in	his	book	Computer	Vision:	Algorithms	and	Applications	(Szeliski,	

2010),	 presents	 a	 historical	 review	 of	 computer	 vision.	 In	 the	 early	 1970s,	

computer	 vision	was	viewed	as	 a	 visual	perception	 component	of	 an	 ambitious	

agenda	 to	 mimic	 human	 intelligence	 and	 empower	 robots	 with	 intelligent	

behaviours	 (Szeliski,	 2010).	 Many	 universities	 like	 Massachusetts	 Institute	 of	

Technology	 (MIT),	 Stanford,	 and	 Carnegie	Mellon	 University	 (CMU)	 focused	 on	

developing	 the	 technology.	 In	 the	 1980s,	 a	 more	 complicated	 mathematical	

technique	 was	 developed	 to	 perform	 quantitative	 analysis	 for	 both	 image	 and	

scene.	 In	 the	 1990s,	 developments	 in	 computer	 vision	 continued;	 however,	 a	

significant	development	in	tracking,	optical	flow,	and	a	multi-view	stereo	algorithm	

was	noticed.	In	the	2000s,	a	profound	interplay	between	vision	and	the	graphics	

field	was	noticed.	Progress	in	this	field	continues	till	date.	
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Figure	2.5	Computer	vision	

	
2.3 	IMAGE	PROCESSING	

	
Image	processing	is	a	sub-category	of	signal	processing	and	is	a	common	area	of	

research;	it	is	used	in	most	of	the	different	fields	that	use	technology	for	analytical	

purposes.	These	include	signal	processing,	object	detection,	and	medical	screening.	

Hence,	 it	 helps	 improve	pictorial	 information	 for	 human	 interpretation	 and	 the	

processing	of	scene	data	for	autonomous	machine	perception.	This	improvement		

is	 achieved	 by	 applying	 some	 operations	 on	 images	 to	 enhance	 or	 useful	

information	 extraction	 for	 the	 purposes	 of	 study	 or	 analysis	 (K.	 Chen,	 Lui,	 &	

Modersitzki,	2019).	 Image	processing	is	of	two	main	types:	digital	and	analogue	

processing.	 Analogue	 image	 processing	 is	 used	 for	 hard	 copies	 like	 photos	 and	

printouts.	The	manipulation	of	 information	using	computers	 is	the	digital	 image	

processing	explored	in	more	detail	in	this	literature.		

Digital	image	processing—as	shown	in	Figure	2.5—is	where	the	camera	captures	

an	 image,	 and	 then	 sends	 it	 to	 a	 digital	 system	 in	 which	 processing	 occurs;	 a	

processed	output	is	finally	obtained.	It	involves	three	main	phases:	pre-processing,	

enhancement,	and	display	of	information	extraction.	It	can	be	divided	into	image	

enhancement,	image	restoration,	image	analysis,	and	image	compression	(da	Silva	

&	 Mendonca,	 2005).	 Image	 enhancement	 entails	 extracting	 or	 improving	 the	

perception	of	information	in	images	for	human	viewers	that	can	be	used	for	other	

image	 processing	 techniques	 (Aber,	 Marzolff,	 Ries,	 &	 Aber,	 2019;	 Maini	 &	

Aggarwal,	 2010).	 Image	 restoration	 is	 the	 technique	 used	 to	 re-establish	 an	
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entrapped	 image—usually	 a	blurred	or	noisy	 image—so	 that	 it	 can	be	 reverted	

(Reeves,	2014).	The	image	analysis	technique	provides	numerical	outputs	that	are	

generated	 automatically	 for	 extracting	 information	 from	 processing	 images	 (da	

Silva	 &	Mendonca,	 2005).	 Examples	 of	 image	 analysis	 are	 image	 segmentation,	

edge	extraction,	and	texture	and	motion	analysis.		

	

2.3.1 Image	enhancement		
 

As	mentioned,	image	enhancement	is	the	processing	of	an	image,	so	that	the	output	

image	 is	 enhanced/improved	 without	 losing	 the	 information	 for	 specific	

applications	 (Maini	 &	 Aggarwal,	 2010).	 This	 technique	 is	 used	 to	 increase	 the	

quality	of	the	image	(Ackar,	Almisreb,	&	Saleh,	2019).	It	is	applied	to	different	fields	

in	 which	 images	 must	 be	 understood	 and	 analysed	 (Maini	 &	 Aggarwal,	 2010).	

Several	techniques	are	used	in	image	enhancement,	based	on	application,	 image	

type,	greyscale,	or	coloured	image	scale.	It	is	used	in	various	field	of	imaging,	such	

as	medical	 imaging	 (Kaur,	 Chawla,	 Khiva,	&	Ansari,	 2017),	 underwater	 imaging	

(Sahu,	Gupta,	&	Sharma,	2014),	video	and	image	defogging,	 intelligent	transport	

systems	(Bubeníková,	Muzikářová,	&	Halgaš,	2012),	and	much	more.		

2.3.2 Image	restoration		
 

Researchers	have	defined	image	restoration	as	the	restoration	of	images	that	have	

been	corrupted	by	an	additional	blueness	because	of	a	lack	of	focus	(Woods,	2012).	

It	 is	 considered	 the	 first	 step	 before	 image	 analysis;	 it,	 therefore,	 improves	 the	

quality	of	 the	 image	by	 smoothing	noise	without	 smoothing	edges	 (Descombes,	

2018).	Image	restoration	is	used	in	different	fields,	such	as	the	medical	field,	optics,	

and	astronomy.	M.	Banham	and	A.	Katsaggelos	published	an	extended	review	of	

digital	image	restoration,	wherein	they	mentioned	the	different	fields	where	this	

technology	 is	 used.	 They	 focused	 on	 astronomy	 involving	 several	mathematical	

linear	and	non-linear	equations	(Banham	&	Katsaggelos,	1997).	An	initial	step	in	

restorations	 is	 to	 decode	 signal	 to	 digital	 images:	 many	 research	 papers	 have	

proposed	mathematical	equations	 to	compute	 this	 transformation.	For	 instance,	

Schulz	stated	that	a	common	approach	to	solve	an	image	restoration	is	to	solve	an	
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optimization	problem	(Schulz,	2005),	while	(Galatsanos,	Wernick,	Katsaggelos,	&	

Molina,	2005)	presented	a	mathematical	solution	for	easy	image	restoration	using	

a	 degradation	 operator	 𝐻,	 and	 the	 covariance	 matrix,	 where	 𝐶!
(#)and	 𝐶%& 	 are	

circulant.	

	𝐶%&  is	 the	covariance	matrix	of	 the	multichannel	noise	vector	𝑛𝑙,	 and	𝐶!
(#)	is	 the	

KNM	×	KNM	covariance	matrix	of	the	multichannel	image	vector	f,	defined	as  

𝐶!
(#) = 𝐸{𝑓	𝑓'} = 3

𝐶(( 𝐶() ⋯ 𝐶(*
𝐶)( 𝐶)) ⋯ 𝐶)*
⋯ ⋯ ⋯ ⋯
𝐶*( 𝐶*) ⋯ 𝐶**

	5 

2.3 

E{·}	denotes	the	expectation	operator	(Galatsanos	et	al.,	2005). 

(Descombes,	2018)	viewed	image	restoration	is	an	initial	step	before	analysis	takes	

place.	The	 following	 is	 the	equation	used	by	Huck	at	et.	 for	restoration	(Huck	&	

Fales,	2004):	

𝑟(𝑥, 𝑦; 𝑘) 	= |||#!(𝑥, 𝑦; 𝑘) ⊗ 𝛹(𝑥, 𝑦; 𝑘), 
2.4 

where	|||#!(𝑥, 𝑦; 𝑘)	is	the	zero-padding	operation	that	prepares	the	decoded	signal	

for	 image	 restoration	with	 interpolation	and	 the	operator	𝛹(𝑥, 𝑦; 𝑘)	 to	produce	

𝑟 A𝑥, 𝑦; 𝑘B,	which	refers	to	the	resultant	digital	image	on	the	interpolation	lattice	

|||,	which	is	𝑍	times	denser	than	a	simple	lattice.	

	

2.3.3 Image	analysis		
 

As	mentioned,	 the	 extraction	of	 useful	 quantitatively	 relevant	 information	 from	

images	in	image	processing	is	called	image	analysis.	It	is	used	to	determine	specific	

information	like	the	microscopic	details	of	X-ray	images;	it	is	also	used	for	object	

detection.	Object	detection	for	 image	analysis	 is	used	widely	 for	remote	sensing	

purposes,	as	mentioned	by	(Blaschke,	2010).	Object	Based	Image	Analysis	(OBIA)	

is	an	analysis	based	on	older	 technologies	 like	segmentation,	 feature	extraction,	
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edge	 detection,	 and	 classification,	 according	 to	 (Blaschke,	 2010).	 Moreover,	

microscopic	images	have	complex	and	nonuniform	structures;	hence,	many	images	

have	to	be	taken	for	analysis	to	take	place.	However,	the	use	of	image	processing—

specifically	image	analysis—enables	the	extraction	of	relative	information	like	the	

compositions	 of	 image,	 particle	 size	 and	 density,	 and	 intensity	 profile	 (“Image	

Processing	and	Image	Analysis,”	2008).	Fourier	transformation	is	a	special	image	

analysis	 in	 which	 algorithms	 are	 applied	 to	 determine	 the	 periodicities	 in	

micrographs;	its	main	purpose	is	to	overcome	the	speed	limit	issue	indicated	by	

using	 the	 traditional	 image	 analysis	 algorithms	 (Goda	 &	 Jalali,	 2013).	 In	

transportation	 image	analysis,	 systems	are	used	 to	automatically	analyse	 traffic	

data	collected	from	road	CCTVs.	 It	 is	used	for	particular	applications,	such	as	to	

monitor	 speed,	 the	number	of	 vehicles,	 length,	 and	 lane	occupancy	 information	

(Waterfall	&	Dickinson,	1984).	

	

2.3.4 Applications	of	image	processing			
 
Transportation	 has	 integrated	 the	 IT	 system	 into	 a	 much	 more	 sophisticated,	

developed	intelligent	system.	Transporters	have	introduced	algorithms,	sensors,	

and	software	that	help	detect	and	track	road	objects	to	make	the	transportation	

sector	 comprehensive	 and	 much	 more	 reliable.	 The	 use	 of	 image	 processing	

enabled	 research	 and	 developers	 to	 obtain	 specific	 and	 accurate	 locational	 and	

navigational	information.		

Waterfall	 et	 al.	 (Waterfall	 &	 Dickinson,	 1984)	 conducted	 a	 study	 on	 image	

processing	for	traffic	management	to	monitor	and	measure	the	flow	of	vehicles	and	

pedestrians	 on	 roads	 and	 public	 transport	 systems.	 A	 combination	 of	 image	

processing	and	measurement	techniques	is	used.	Monochrome	sensors	are	used	to	

measure	the	flow;	this	technology	offers	high	reliability	at	a	low	cost,	which	is	why	

it	 is	adopted.	The	other	technology	adopted	 is	based	on	 image	processing.	They	

have	developed	an	image	primitive	algorithm	relatively	unaffected	by	variations	in	

lighting	to	achieve	the	aim	of	the	study.	

Oliver	 et	 al.	 (Oliver,	 Baxter,	 &	 Wallace,	 1996)	 presented	 the	 most	 common	

positioning	techniques,	which	involve	the	use	of	different	distance-	or	direction-

dependent	 measurements.	 They	 covered	 the	 received	 signal	 strength	 (RSS)	
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techniques,	 which	 can	 estimate	 the	 distance	 between	 objects,	 given	 the	 signal-

transmitted	power	on	the	distance	between	a	receiver	and	the	transmitting	source.	

This	 technique	 is	 used	 in	 spoofing	 attacks	 (Figueiredo	 &	 Jain,	 2002).	 Signal	

propagation	time—a	terminology	that	refers	to	time	of	arrival	(TOA)—is	used	to	

describe	 a	 distance-dependent	 technique	 that	 can	 be	 directly	 inferred	 if	 the	

medium	 propagation	 speed	 is	 known.	 The	 angle	 of	 arrival	 observation	 (AOA)	

provides	locational	information	about	the	emitter.		

Locational	 information	 is	 mainly	 provided	 using	 the	 global	 positioning	 system	

(GPS),	where	signals	are	received,	processed,	and	both	location	and	distance	are	

obtained.	This	technology	is	used	widely	in	ITS,	apart	from	detection	and	tracking.	

	

2.4 	DEEP	LEARNING-BASED	OBJECT	DETECTION			
	
Deep	 learning	 is	an	artificial	 intelligence	(AI)	 function;	 it	 is	a	subset	of	machine	

learning,	 as	 shown	 in	 Figure	 2.6.	AI	is	 an	 umbrella	 discipline	 that	 encompasses	

related	 technologies	 involved	 in	 making	 machines	 more	 intelligent.	 Machine	

Learning	(ML)	refers	to	an	AI	system	that	can	self-learn	based	on	the	algorithm,	

and,	 hence,	 it	 refers	 to	 systems	 that	 get	 smarter	 over	 time	 without	 human	

interpolation.	 Deep	 Learning	 (DL)	 is	 a	 machine	 learning	 (ML)	 applied	 to	 large	

datasets.	 Most	 AI	 work	 involves	 ML	 because	 intelligent	 behaviour	 requires	

considerable	knowledge.	Deep	learning	is	a	multi-layer	neural	network	that	is	used	

for	 decision-making.	 It	 is	 treated	 as	 a	 brain	 in	 which	 it	 receives	 new	

information/data	 and	 performs	 several	 computations	 to	 produce	 useful	 output	

information	 (Le	 et	 al.,	 2011).	Deep	 learning	 can	 also	 be	 referred	 to	 as	 a	 neural	

network.	The	early	development	of	the	neural	network	was	in	the	1940s,	where	

the	 initial	 objective	 was	 to	 simulate	 the	 human	 brain	 system	 to	 solve	 general	

learning	problems	in	accordance	with	a	set	of	principles.	Werbos	(Werbos,	1974),	

in	his	doctoral	dissertation	of	1974,	determined	the	method	used	to	train	artificial	

neural	 networks	 by	 deploying	 the	 backpropagation	 of	 errors.	 Hinton	 et	 al.	

(Rumelhart,	Hinton,	&	Williams,	1986)	proposed	a	backpropagation	algorithm	that	

was	popular	in	the	1980s	and	1990s.	Salakhutdinov	et	al.	(Salakhutdinov	&	Hinton,	

2009)	in	2006	introduced	unsupervised	pretraining	and	a	deep	belief	net.	Figure	

2.7	 (Liao	 &	 Poggio,	 2016)	 shows	 a	 deep	 learning	 timeline,	 in	 which	 the	
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development	of	deep	learning	is	highlighted	over	a	time	period,	based	on	several	

deep	learning	papers	between	1940	and	2017.	

	

	
Figure	2.6	Relationship	between	Artificial	Intelligence	(AI),	Machine	Learning	(ML),	and	Deep	

Learning	(DL)	

		

	
Figure	2.7	Deep	learning	timeline	by	Favio	Vazquez:	from	1940	to	2017	

Feeding	the	output	into	the	system	and	mapping	input	to	output	to	produce	more	

accurate	predictions	 is	 how	supervised	 learning	operates.	 Figure	2.8	 shows	 the	

process	that	supervised	learning	follows,	wherein	several	mapping	processes	are	

applied	 to	 the	 input	data;	 it,	 therefore,	 finally	produces	a	classified	output.	This	

type	 of	 learning	 can	 be	 used	 for	 different	 purposes,	 such	 as	 bioinformatics.	 In	

(Russakovsky,	Deng,	Su,	Krause,	Satheesh,	Ma,	Huang,	Karpathy,	Khosla,	Bernstein,	

Berg,	 Fei-Fei,	 et	 al.,	 2015)	 the	 authors	 proposed	 a	 non-discrimination	 from	 the	

perspective	of	supervised	learning,	wherein	the	proposed	method	aimed	to	predict	

Artificial Intelligence: Ability to mimic the behavioural patterns of humans or 
other living entities. 

Machine Learning: The computer can ‘learn’ from data without being 
explicitly programmed to do so. 

Deep Learning: Computation of multi-layer neural networks is 
performed feasibly.    
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an	 actual	 output	 Y	 from	 features	 X	 based	 on	 labelled	 trained	 data.	 Limiting	

disparate	impact	was	proposed	by	Feldman	et	al.	(Hardt,	Price,	&	Srebro,	2016).	

Cunningham	et	al.	 (Cunningham,	Cord,	&	Delany,	2008)	summarized	supervised	

learning	algorithm	in	six	steps:	establishing	the	training	type,	converge	a	training	

set,	resolving	the	input	feature,	resolving	the	formation	of	the	learned	function	and	

comparable	 machine	 learning	 algorithm,	 embrace	 the	 design	 and	 execute	 the	

learning	algorithm	on	the	collected	training	set,	and,	finally,	evaluate	the	accuracy	

of	 the	 learned	 function.	P.	Viola	et	al.	 (Viola	&	 Jones,	2004)	published	a	book	 in	

which	supervised	learning	is	the	focus.	Graves	(Graves,	2012) pointed	out	that	the	

nature	 and	degree	of	 supervision	provided	by	 the	 targets	 vary	greatly	between	

supervised	 learning	 tasks.	 (Waterfall	 &	 Dickinson,	 1984)	 supervised	 learning	

algorithms	induce	models	from	training	data,	and	these	models	then	can	be	used	

to	classify	unlabelled	data.	The	main	 limitation	of	 supervised	 learning	based	on	

(Chaitanya	et	al.,	2020)	is	the	dependence	on	human	labelling,	where	it	limits	the	

number	 of	 categories.	 Secondly,	 the	 discriminative	models	 lack	 interpretability	

because	they	do	not	produce	mid-level	representations.	Furthermore,	for	learning	

to	 be	 completed,	 the	 system	 needs	 data	 for	 training	 models.	 Benchmarking	

datasets	like	Caltech	(Dollár,	Wojek,	Schiele,	&	Perona,	n.d.),	KITTI	(Geiger,	Lenz,	

Stiller,	&	Urtasun,	2013),	ImageNet	(Russakovsky,	Deng,	Su,	Krause,	Satheesh,	Ma,	

Huang,	 Karpathy,	 Khosla,	 Bernstein,	 Berg,	 &	 Fei-Fei,	 2015),	 PASCAL	 VOC,	 MS	

COCO(Caesar,	Uijlings,	&	Ferrari,	2018),	and	Open	Images	V5	(Kuznetsova	et	al.,	

n.d.)	are	used	for	training.	
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Unsupervised	learning	is	the	method	concerned	with	how	the	system	can	learn	to	

represent	 particular	 input	 patterns	 that	 reflect	 the	 statistical	 structure	 of	 the	

overall	 collection	 of	 input	 patterns.	 (Oliver	 et	 al.,	 1996)	 applied	 a	 Minimum	

Message	Length	using	unsupervised	learning	methodology	to	estimate	the	number	

of	components	k.	(Figueiredo	&	Jain,	2002)	used	unsupervised	learning	to	address	

multivariable	data	for	a	finite	mixture	model.	(Le	et	al.,	2011)	proposed	high-level,	

class-specific	 feature	 detectors	 using	 unlabelled	 data.	 Figure	 2.9	 represents	 an	

unsupervised	 learning	method,	where	 raw	 data	 is	 fed	 as	 input	 and	 a	 classified	

output	is	produced.	The	main	difference	between	both	methods	(supervised	and	

unsupervised)	is	that	under	supervised	learning,	the	output	is	known	and	fed	into	

the	system.	In	the	unsupervised	system,	 in	contrast,	 if	 the	outputs	are	unknown	

and	the	data	unlabelled,	the	system	must	learn	on	its	map	outputs.		

	

Figure	2.8	Supervised	learning	architect	
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Figure	2.9	Unsupervised	learning	architect	

(Goldberg,	 2009)	 defined	 semi-supervised	 learning	 as	 the	 learning	 model	

concerned	with	studying	how	computers	and	natural	systems	(i.e.,	humans)	learn	

in	the	presence	of	labelled	and	unlabelled	data.	This	learning	aims	to	change	the	

learning	behaviour	and	proposes	algorithms	that	consider	both	types	of	data.	F.	Du	

et	 al.(Du,	 Zhu,	 Liu,	 &	 Yang,	 2020)	 proposed	 a	 semi-supervised	 method	 for	

productive	mapping:	they	applied	their	proposed	algorithm	in	two	soil	mapping	

case	 studies,	 and	 the	proposed	method	achieved	high	accuracy.	However,	 some	

drawbacks	 can	 be	 seen,	 such	 as	 less	 sensitivity	 to	 certain	 field	 samples.	 K.	

Chaitanya	et	al.	(Chaitanya	et	al.,	2020)	also	used	this	learning	method	for	medical	

imaging,	wherein	they	performed	an	experiment	using	open	data;	 their	 findings	

showed	that	such	technology	is	not	very	useful	for	such	application	performances.	

Figure	2.10	illustrates	a	brief	workflow	of	a	semi-supervised	learning	framework.		

	
Figure	2.10	Semi-supervised	learning	architect	
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2.4.1 Object	detection	and	tracking	

 
Object	detection	aims	to	determine	whether	there	are	any	instances	of	objects	from	

categories	(i.e.,	humans,	vehicles,	animals,	etc.)	in	an	image	frame,	and	to	return	

specific	aspects	like	location,	category,	and	extent	of	each	instance	of	such	objects,	

using	boundary	boxes	(Gerónimo,	López,	Sappa,	&	Graf,	2010;	Russakovsky,	Deng,	

Su,	 Krause,	 Satheesh,	 Ma,	 Huang,	 Karpathy,	 Khosla,	 Bernstein,	 Berg,	 &	 Fei-Fei,	

2015).	 Object	 detection	 consists	 of	 several	 subtasks,	 including	 face	 detection,	

pedestrian	detection,	and	collision	detection.	These	are	especially	used	 in	 fields	

requiring	accurate	analysis	of	objects,	such	as	military	uses,	surveillance	systems,	

and	self-driving	cars.	A.	Gavulová	et	al.	in	2011	(Gavulová,	Pirník,	&	Hudec,	2011)	

established	a	national	 traffic	 information	system	that	uses	real-time	 images	and	

videos	 for	 traffic	 control.	 (Viola	 &	 Jones,	 2004)	 used	 object	 detection	 for	 face	

recognition,	 in	which	algorithms	were	applied	that	 involved	three	main	parts	to	

achieve	the	experiment	detection	goal	with	a	high	rate	of	accuracy.			

Basic	deep	learning-based	object	detection	consists	of	three	main	parts:	backbone,	

which	refers	to	the	feature	extraction	network;	a	neck,	which	refers	to	the	feature	

computational	 region;	 and,	 finally,	 the	 dense	 region,	 wherein	 classification	 is	

performed.	 For	 a	 complete	 understanding	 of	 object	 detection,	 a	 review	 of	 the	

traditional	approach	and	the	modern	approach	will	be	discussed	in	the	following	

subsections.	

A) Traditional	object	detection	approach	

 
The	 traditional	 object	 detection	pipeline	 follows	 three	main	 stages:	 informative	

region	selection,	 feature	extraction,	 and	classification	of	 the	object,	wherein	 the	

first	stage—the	location	of	the	objects	in	the	image	plane—is	determined.	The	next	

entails	categorizing	objects;	finally,	the	object	is	set	to	the	relevant	category.	

Informative	region	selection	is	the	stage	in	which	the	object	location	is	obtained,	

and	sliding	windows	do	this.	In	a	frame,	objects	appear	at	different	locations	

and	have	different	sizes	and	aspect	ratios;	because	of	this	issue,	images	are	

scanned	using	a	multiscale	sliding	window.	However,	this	method	results	in	

high	 computational	 costs	 and	 may	 produce	 irrelevant	 candidates	 (Z.-Q.	

Zhao,	Zheng,	Xu,	&	Wu,	2018).	
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Feature	 extraction	 is	 used	 to	 extract	 visual	 features	 for	 object	 recognition,	

wherein	several	techniques,	such	as	histogram	of	oriented	grenadine	(HOG)	

(Dalal	 &	 Triggs,	 2005),	 Haar-like	 (Papageorgiou	 et	 al.,	 1998),	 and	 Scale-

Invariant	Feature	Transform	(SIFT)	(Lowe,	1999),	are	applied	to	provide	a	

semantic	and	robust	representation.	Owing	to	the	different	viewpoints	and	

backgrounds,	and	on	account	of	the	limitations,	it	is	a	challenge	to	design	a	

manual	robust	feature	descriptor	to	describe	the	various	object	types	(Z.-Q.	

Zhao	et	al.,	2018).		

Classification	is	the	stage	in	which	a	classifier	is	used	to	distinguish/classify	the	

objects	 into	 categories	 to	 make	 the	 representations	 more	 hierarchical,	

semantic,	and	informative	for	visual	recognition.	

The	traditional	approach	is	that	it	is	computationally	expensive	and	requires	many	

sliding	 window	 techniques	 for	 the	 bounding	 boxes	 that	 are	 generated.	 It	 also	

requires	several	manual	engineering	features	and	might	be	insufficient	to	describe	

all	object	categories.	

	

B) Modern	object	detection	approach		

 
The	 emergence	 of	 deep	 learning	 has	 overcome	 some	 of	 the	 drawbacks	 of	 the	

traditional	approach.	Hence,	as	mentioned	earlier,	deep	learning	can	learn	more	

complex	features	using	several	classification	layers.	 In	addition,	the	expressivity	

and	 robust	 training	 algorithms	 applied	 allow	 learning	 informative	 object	

representations	without	the	need	to	design	a	manual	features	extraction.		

Several	object	detections	based	on	deep	learning	algorithms	have	been	developed.	

These	 can	 be	 divided	 into	 two	 categories	 based	 on	 their	 framework.	 The	 first	

comprises	region	proposals,	such	as	Fast	RCNN	(Girshick,	2015a),	Faster	RCNN	(X.	

Zhao	et	al.,	2016),	and	FPN	(Lin	et	al.,	2016)—these	are	also	known	as	two-stage	

object	 detectors.	 The	 second	 category,	 based	 on	 regression,	 includes	 YOLO	

(Redmon	et	al.,	2016),	SSD	(W.	Liu	et	al.,	2016),	and	RetinaNet	(Lin,	Goyal,	Girshick,	

He,	&	Dollár,	2017)—these	are	also	known	as	one-stage	object	detection.		
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i) Two-stage	detectors		
 
Two-stage	 detection	 or	 region	 proposal-based	 detection	 achieves	 a	 high	

recognition	 accuracy	 and	 localization	 precision	 compared	 to	 the	 one-stage	

detection,	which	will	be	discussed	later.	In	two-stage	detection,	the	network	will	

have	an	additional	stage	added	to	the	main	three	parts;	this	produces	a	much	more	

accurate	detection	result,	as	shown	in	Figure	2.11.	For	this	section,	we	will	focus	

on	 the	regional	convolution	network	presented	 in	Fast	RCNN	(Girshick,	2015a),	

Faster	RCNN	(X.	Zhao	et	al.,	2016),	and	FPN	(Lin	et	al.,	2016).	

	

	
Figure	2.11	Two-stage	object	detection	pipeline	

 
(Girshick,	Donahue,	Darrell,	&	Malik,	2014)	proposed	a	method	in	which	a	selective	

search	is	used	to	extract	2,000	features	from	an	image	called	a	regional	proposal.	

However,	 this	 proposed	 algorithm	 is	 not	 suitable	 for	 real-time	 application	 as	 it	

requires	approximately	47	seconds	for	each	image	to	be	tested	and	requires	a	long	

time	to	train;	also,	a	selective	search	algorithm	is	a	fixed	algorithm.	Therefore,	it	

might	produce	bad	candidate	region	proposals.	In	2015,	Girshick	et	al.	(Girshick,	

2015b)	proposed	an	improved	algorithm	for	fast	RCNN,	which	overcomes	some	of	

the	drawbacks	found	in	the	initial	RCNN	algorithm.		

Fast	 RCNN	 (Girshick,	 2015b)	 has	 an	 approach	 similar	 to	 RCNN,	 but,	 instead	 of	

feeding	2,000	regional	proposals	to	the	convolutional	neural	network	every	time,	

the	convolution	operation	is	completed	once	per	command,	and	a	feature	map	is	

generated	 based	 on	 it.	 This	 improvement	 has	 a	 significant	 advantage	 in	
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computational	 time,	 reducing	 as	 it	 does	 the	 time	 required	 for	 both	 testing	 and	

training.			

(X.	 Zhao	 et	 al.,	 2016)	 in	 2016	 proposed	 a	 faster	 RCNN	 which	 eliminates	 the	

selective	 research	 algorithm	 and	 enables	 the	 network	 to	 learn	 the	 region	

proposals.	The	network	is	similar	to	Fast	RCNN,	in	which	an	image	is	given	as	an	

input	to	the	convolution	feature	map,	and	a	separate	network	is	used	to	predict	the	

region	 proposals.	 These	 are	 then	 reshaped	 using	 the	 region	 of	 interest	 (RoI)	

pooling	 layer,	which	 is	 used	 to	 classify	 images	within	 the	 proposed	 region	 and	

predict	the	offset	values	for	the	bounding	boxes.	

	

ii) One-stage	detector		
 
A	single	deep	neural	network	is	used	in	a	one-stage	detection.	The	main	advantage	

of	this	method	is	the	high	inference	speed,	and,	so,	computational	cost	related	to	

time	expense	is	reduced	(Jiao	et	al.,	2019;	Z.-Q.	Zhao	et	al.,	2018).	Figure	2.12	shows	

a	general	pipeline	of	a	one-stage	detector.	YOLO	(Redmon	et	al.,	2016;	Redmon	&	

Farhadi,	2017,	2018),	SSD	(W.	Liu	et	al.,	2016),	FCOS	(Tian,	Shen,	Chen,	&	He,	2019),	

RetinaNet,	and	DetectNet	are	some	examples	of	regression	detectors.	Both	SSD	and	

YOLO	will	be	explored	further.	

	

	
Figure	2.12	One-stage	object	detection	pipeline	

 
You	 Only	 Look	 Once	 (YOLO)	 (Redmon	 et	 al.,	 2016)	 is	 a	 fast	 single-stage	

architecture.	It	overcomes	the	disadvantage	of	two-stage	detection.	The	input	must	
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undergo	 complex	 pipelines	 that	 are	 slow	 and	 hard	 to	 optimize	 because	 each	

component	must	be	trained	separately.	However,	in	YOLO,	the	input	pixels	directly	

pass	 to	 the	 bounding	 box	 coordinates	 and	 class	 probabilities.	 This	 is	 done	 by	

dividing	the	input	image	into	𝑆	𝑥	𝑆				grids;	each	cell	in	the	grid	is	used	for	predicting	

the	object	centre	in	that	particular	cell,	and	then	each	cell	predicts	bounding	boxes	

and	their	corresponding	confidence	scores.	In	this	system,	you	only	look	once	to	

predict	what	is	presented	in	the	image	and	its	location.	In	addition,	the	system	is	

capable	of	processing	45	frames	per	second—it	achieves	relatively	high	accuracy	

for	real-time	detection.	

Furthermore,	the	system	uses	the	topmost	feature	map	to	predict	both	confidences	

for	 multiple	 categories	 and	 bounding	 boxes.	 In	 Figure	 2.13,	 a	 YOLO	 detection	

system	is	presented.	The	system	receives	an	image	pixel,	resizes	the	image,	then	

undergoes	 a	 single	 convolution	 network,	 and,	 finally,	 thresholds	 the	 resultant	

detections	by	the	model’s	confidence.	Moreover,	YOLO	has	gone	through	several	

modifications,	 which	 can	 be	 seen	 in	 YOLO	 v2	 and	 YOLO	 v3.	 However,	 some	

limitations	 can	 be	 found	 in	 allocating	 small	 objects	 caused	 by	 strong	 spatial	

constraints	 imposed	on	bounding	box	predictions.	 It	 struggles	 to	generalize	 the	

objects	in	new	or	unusual	aspect	ratios	or	configurations.	

	

	
Figure	2.13	YOLO	object	detection	system	

(W.	Liu	et	al.,	2016)	proposed	a	single-stage	object	detector	that	overcomes	some	

of	the	limitations	found	in	YOLO,	called	Single	Shot	Detection	(SSD).	SSD	is	made	of	

anchors	adopted	in	the	Region	Proposal	Networks	(RPN),	MultiBox,	and	multiscale	

representation.	In	SSD,	a	fixed	feature	map	is	used	instead	of	fixed	grids,	where	it	

also	takes	advantage	of	a	set	of	default	anchor	boxes	with	different	aspect	ratios	

and	scales	to	discretize	the	output	space	of	bounding	boxes.	As	a	result,	the	system	

can	detect	objects	of	different	sizes,	and	the	network	manages	to	predict	objects	

from	multiple	feature	maps	with	different	resolutions.		

1. Resize image.
2. Run convolutional network.
3. Non-max suppression. 

Car: 0.77
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RetinaNet	is	one	stage-dense	object	detector	that	was	proposed	by	(Lin,	Goyal,	et	

al.,	2017);	it	achieved	high-performance	accuracy	using	anchor.	It	was	introduced	

because	of	RPN	and	uses	a	feature	pyramid	similar	to	SSD.	

	

2.4.2 Detection	of	Autonomous	Vehicles	
 
This	section	presents	a	review	of	recent	 literature	on	detection	 for	autonomous	

vehicles,	which	is	the	focus	of	this	thesis.	However,	as	there	are	not	many	papers	

in	this	field,	the	number	of	resources	found	and	analysed	is	limited.	

Deep	 learning	 was	 adopted	 for	 many	 road	 detection	 applications	 such	 as	

pedestrian	detection.	Zhao	et	al.(Z.	Q.	Zhao,	Bian,	Hu,	Cheng,	&	Glotin,	2017)	used	

RCNN	 to	 extract	 robust	 features	 of	 a	 pedestrian	 in	 a	 complicated	 environment.	

They	imply	the	Edge-Boxes	algorithm	to	generate	effective	region	proposals	from	

an	image,	as	the	quality	of	extracted	region	proposals	can	significantly	affect	the	

detection	performance.	BoBo	et	al.	(Bo	Bo,	Slembrouck,	Veelaert,	&	Philips,	2020)	

conducted	a	study	where	they	used	a	multi-camera	for	tracking	purposes	where	

data	are	fed	into	YOLO	object	detector	for	classification	and	analysis.	The	algorithm	

successfully	detects	using	a	trajectory	in	which	the	accuracy	detection	is	83%,	and	

the	pedestrian's	accuracy	is	93%.	Finally,	Tomè	et	al.(Tomè	et	al.,	2015)	proposed	

research	 for	 pedestrian	 detection	 based	 on	 convolution	 neural	 networks.	 The	

proposed	 system	 with	 a	 reasonable	 computational	 complexity	 involves	 a	

combination	of	Locally	Decorrelated	Channel	Features	(LDCF)	as	a	region	proposal	

algorithm	and	the	fine-tuned	deep	convolutional	neural	network.	

A	 recent	 paper	 by	 Chand	 et	 al.	 (Janai	 et	 al.,	 2020)	 proposed	 a	 framework	 for	

autonomous	 vehicles	 to	 detect	 accidents	 between	 other	 cars	 in	 order	 to	 take	

appropriate	decisions,	 i.e.,	 to	 slow	down	or	 stop.	Feng	et	 al.	 (Feng,	Liu,	 Jiang,	&	

Wang,	 2020)	 proposed	 an	 accurate	 and	 fast	 object	 detection	 and	 localization	

system	based	on	binocular	vision.	They	based	their	algorithm	on	YOLOv3,	in	which	

they	 utilized	MobileNet	 as	 a	 backbone	 and	 tested	 their	 algorithm	 on	 the	 KITTI	

dataset.	Johari	et	al.	(Johari	&	Swami,	2020)	compared	human-centred	autonomy	

and	full	autonomy	for	self-driving	cars.	They	also	compared	three	object	detection-

based	deep	learning	algorithms	(SSD,	R-CNN,	and	R-FCN)	under	different	weather	

conditions.	 DeepTrackNet	 (Amara,	 Karthika,	 &	 Soman,	 2020)	 is	 an	 end-to-end	
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unified	deep	learning	framework	for	real-time	detection,	localization,	and	tracking	

for	autonomous	vehicles:	they	used	Mobilenet	SSD	for	the	proposed	architecture,	

and	they	achieved	satisfactory	results.	Finally,	Li	et	al.	(P.	Li,	Chen,	&	Shen,	2019)	

proposed	 a	 stereo	 R-CNN-based	 3D	 object	 detection	 for	 autonomous	 driving,	

wherein	 they	 outperformed	 the	 state-of-the-art	 stereo-based	 method	 by	 30%	

Average	Precision	(AP).	

 
2.4.3 Pedestrian	and	cyclist	detection		

 
The	suite	of	results	shown	on	Scopus	when	searching	the	terms	‘pedestrian	AND	

cyclist	AND	detection’	revealed	that	some	papers	used	different	methodologies	in	

detecting,	 such	 as	 microwave	 detection,	 multi-layer	 laser	 scanners,	 etc.	 The	

forthcoming	 table	 (Table	 2.2)	 will	 provide	 a	 consolidated	 overview	 of	 various	

research	studies	focused	on	the	detection	of	pedestrians	and	cyclists.	These	studies	

employ	object	detection	algorithms	to	address	the	challenges	in	identifying	these	

vulnerable	 road	 users.	Most	 research	 focused	 on	 evaluating	 a	 single	 object,	 for	

instance,	 pedestrians.	 (Tomè	et	 al.,	 2015)	 carried	 out	 detection	 research	where	

they	focused	on	detecting	pedestrians	from	the	Caltech	Pedestrian	Dataset	using	

the	 CNN	 algorithm.	 Additionally,	 	 (Gaspar	 et	 al.,	 2020)	 implemented	 a	 pattern	

detection	to	detect	pedestrians;	the	proposed	intelligent	transport	system	(ITS-G5)	

is	complex	and	requires	further	modification	to	be	implemented,	yet	it	can	lead	to	

increased	safety	of	pedestrians.	Faster	RCNN	 is	one	of	 the	most	common	object	

detectors	for	pedestrian	and	cyclist	detection.	(Z.	Q.	Zhao	et	al.,	2017)	used	faster	

RCNN	to	detect	pedestrians,	(Saleh,	Hossny,	Hossny,	&	Nahavandi,	2018)	applied	

the	 algorithm	 to	 detect	 cyclists,	 and(K.	 Wang	 &	 Zhou,	 2019)	 used	 the	 same	

detection	 algorithm	 to	 detect	 both	 cyclists	 and	 pedestrians.	 Additionally,	

researchers	often	focus	on	the	detection	of	one	object	across	multiple	datasets,	as	

can	be	seen	in	Table	2.2,	were	(Benenson,	Omran,	Hosang,	&	Schiele,	2015)	focused	

on	the	detection	of	pedestrians	across	several	datasets	(Caltech,	INRIA,	and	KITTI	

datasets).	(Brunetti,	Buongiorno,	Trotta,	&	Bevilacqua,	2018)	carried	a	detection	

experiment	where	they	detected	pedestrians	across	INRIA	and	Caltech	datasets.	

	It	is	to	say	that	most	research	focused	on	training	and	testing	on	a	single	dataset,	

and	few	studies	used	more	than	one	dataset	to	detect	a	single	object.	This	thesis	

focuses	on	detecting	cyclists,	pedestrians,	and	other	road	objects	across	multiple	
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datasets	using	multiple	object	detection	algorithms.	In	addition,	detecting	valuable	

road	objects	under	different	weather,	light	and	driving	conditions.		

	
Table	2.2	Summary	of	reviewed	papers	on	pedestrian	and	cyclist	detection	
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Author	
Detecti
on	
method	

Detection	
objects	 Datasets	 Object	detection	insights	and	techniques	 Conclusion	

(Tomè	et	
al.,	2015)		 CNN	 Pedestrian	

Caltech	
Pedestrian	
Dataset	

Based	on	convolution	neural	networks,	a	system	with	a	
reasonable	computational	complexity	is	proposed	that	
involves	a	combination	of	Locally	De-correlated	Channel	
Features	(LDCF)	as	a	region	proposal	algorithm	and	the	fine-
tuned	deep	convolutional	neural	network.	

Early	deep	learning	technique	that	
achieved	reasonable	detection	
precision,	however,	requires	
modification	for	more	accurate	
and	complex	detection.	

(Z.	Q.	
Zhao	et	
al.,	2017)	

	Fast	
RCNN		 Pedestrian	

INRIA	
(histograms	of	
oriented	
gradients	for	
human	
detection	and	
ETH	Depth	and	
Appearance	for	
Mobile	Scene	
Analysis	
datasets)	

RCNN	is	used	to	extract	robust	features	of	a	pedestrian	in	a	
complicated	environment.	They	imply	the	Edge-Boxes	
algorithm	to	generate	effective	region	proposals	from	an	
image,	as	the	quality	of	extracted	region	proposals	can	
significantly	affect	the	detection	performance.	

Fast	RCNN	achieve	satisfactory	
results	on	the	two	trained	
datasets;	nevertheless,	a	more	
complex	detection	algorithm	has	
to	be	developed	for	detection	of	
crowded	and	complex	scenes.		

(Brunetti	
et	al.,	
2018)	

Mixed	
methods		 Pedestrian	

INRIA	and	
Caltech	
datasets	

A	survey	that	focuses	on	both	2D	and	3D	pedestrian	
detection	highlights	the	different	deep	learning	algorithms	
used	in	detecting	and	classifying	pedestrian	objects.	

Modern	detection	approach	will	
achieve	more	accurate	detection	
and	tracking	results.		

(Benenso
n	et	al.,	
2015)	

Mixed	
methods		 Pedestrian	

Caltech,	INRIA,	
and	KITTI	
datasets	

Reviewed	the	different	algorithms	used	for	benchmark	
datasets	where	it	showed	the	difference	in	detection	
performance.	The	paper	also	suggested	that	deep	networks	
and	(boosted)	decision	forests	achieved	high-performance	
precession	in	pedestrian	detection.	

Detectors	learned	on	one	dataset	
may	not	necessarily	transfer	well	
to	others.		
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(K.	Wang	
&	Zhou,	
2019)	

Fast	
RCNN	

Pedestrian	
and	Cyclist	

Pedestrian	and	
cyclist	database	
established	in	
Beijing’s	urban	
traffic	
environment	

Paper	provided	a	joint	pedestrian	and	cyclist	detection	
framework	based	on	fast	RCNN	detection	method.	

Detecting	small-sized	objects	are	
complex	and	challengeable.			

(Saleh	et	
al.,	2018)	

Faster	
RCNN	 Cyclist	 VGG16		

A	3D	LiDAR	data	with	feed	into	a	faster	RCNN	architecture	
for	simultaneously	detecting	and	localizing	the	cyclist’s	
instance	in	image	depth	proposed.	

Training	and	testing	on	the	same	
dataset	will	result	in	high	
precision	and	accuracy.	

(Bo	Bo	et	
al.,	2020)	

Tracking
-by-
detectio
n	

Road	
objects	

Real-world	
traffic	dataset	
captured	by	
researchers	

Multi-cameras	used	for	tracking	purposes,	wherein	data	are	
fed	into	the	YOLO	object	detector	for	classification	and	
analysis.	The	algorithm	succeeds	in	detecting,	using	
trajectory	in	which	the	accuracy	detection	is	83%	and	the	
pedestrian	accuracy	is	93%.	

YOLO	is	one	of	the	most	recent	
object	detections	able	to	achieve	
high	accuracy.	

(Al-Refai	
&	Al-
Refai,	
2020)	

Yolo	and	
CNN	

Pedestrians,	
Vehicles,	
Tracks,	and	
Cyclists	

KITTI	

CNN	and	YOLO	algorithms	were	adopted	for	the	paper.	A	
front-looking	camera	was	used	to	collect	data	that	were	
processed	and	classified	using	YOLO.	However,	the	research	
manages	to	achieve	the	accuracy	of	cars;	however,	for	small	
objects,	the	adoption	produces	higher	false-negative	results.	

When	mixing	several	detection	
methods	it	will	lead	to	accurate	
detection	results.	

(L.	Wang	
et	al.,	
2020)	

CNN	and	
Feature	
fusion			

Road	object	
with	a	focus	
on	the	
cyclist	
category	

KITTI	

Real-time	object	detection	based	on	both	CNN	and	feature	
fusion	in	smart	cities	where	deep	learning	3D	object	
detection	based	on	voxelization	(the	process	of	converting	
data	structures	that	store	geometric	information	in	a	
continuous	domain	into	a	rasterized	image),	sparse	
convolution,	and	feature	fusion	was	proposed.	

Feature	fusion	network,	better	
than	pyramidal	methods,	and	
concatenation-based	methods.	
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(Gaspar	
et	al.,	
2020)	

Pattern	
detectio
n	

Pedestrian	

Data	from	
motion	
sensors	and	the	
YOLO	software	
(one	or	two	
cameras	
pointing	to	a	
crosswalk	and	
with	the	
standard	YOLO	
trained	dataset)	

The	paper	aims	to	increase	the	safety	of	pedestrians	using	
computer	vision,	in	which	an	ITS-G5	was	applied	to	notify	
drivers	using	a	decentralized	environmental	notification	
message	(DENM)	to	deliver.	

The	proposed	intelligent	
transport	system	(ITS-G5)	is	
complex;	yet	it	can	lead	to	
increased	safety	of	pedestrians.	

(Domingu
ez,	
Sanguino,	
Veliz,	&	
Gonzalez,	
2020)	

Mixed	
methods		

Pedestrians,	
Vehicles,	
and	Cyclists	

_	

Time-frequency	algorithms	based	on	Dopplers,	are	implied	
in	which	pre-processing	is	used	for	improving	radar	signal.	A	
short-time	Fourier	transform	is	then	applied	to	analyse	and	
represent	each	signal	received	from	the	radar.	The	method	
proposed	managed	to	detect	pedestrians	relying	on	their	
micro-Doppler	signatures	accurately.	However,	several	back	
draws	can	detect	vehicles	and	cyclists	on	the	different	
vertical	and	horizontal	lines.	

Provides	decision	support	system	
based	on	time-frequency	pattern	
analysis	for	pedestrian	
recognition.	
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2.5 OBJECT	DETECTION	ALGORITHMS		
 
Object	detection	 is	a	key	technology	behind	advanced	driver	assistance	systems	

(ADAS)	 that	 enable	 cars	 to	 detect	 driving	 lanes	 or	 perform	 pedestrian/cyclist	

detection.	These	algorithms	often	identify	a	bounding	box	around	the	object	and	

classify	the	object	into	one	of	the	various	classes	present.	Apart	from	localization	

and	 intra-class	 variations,	 the	 other	 challenges	 for	 improved	 detection	 include	

variations	 in	 viewpoint,	 resolution,	 aspect	 ratio,	 deformation,	 occlusion,	

background	clutter,	etc.	that	are	present	in	the	images.		

Different	deep	learning	detection	algorithms	are	used	to	capture	road	information	

and	 produce	 an	 informative	 evaluation.	 For	 instance,	 Faster	 Region-based	

Convolutional	Neural	Network	 (Faster	RCNN)(Girshick,	 2015a)	 is	 defined	 as	 an	

object	 detection	 module	 that	 depends	 on	 region	 proposal	 algorithms	 to	

hypothesize	 object	 locations.	 Fully	 Convolution	 One-Stage	 object	 detection	

(FCOS)(Tian	 et	 al.,	 2019)	 is	 an	 anchor-free	 object	 detection	 that	 implies	 an	

Intersection	Over	Union	(IOU)	to	detect	the	location	and	presence	of	objects.	FCOS	

was	used	by	Gao	et	al.	 (Gao	et	al.,	2022)	for	vehicle	detection	in	various	remote	

sensing	 scenes,	wherein	 they	proposed	a	vehicle	double	FCOS	vehicle	detection	

model.	RetinaNet	(Lin,	Goyal,	et	al.,	2017)	is	a	one-stage	object	detection	model	that	

has	proven	to	work	well	with	dense	and	small-scale	objects.	Cascade	RCNN	(Cai	&	

Vasconcelos,	2017)	was	used	 for	object	detection	 that	can	be	applied	as	part	of	

Region-based	 Fully	 Convolutional	 Network	 (R-FCN)	 (Dai,	 Li,	 He,	 &	 Sun,	 2016),	

thereby	yielding	more	accurate	detection	results.	Many	other	detection	algorithms	

were	proposed;	they	have	showed	improvements	in	detection	(Carion	et	al.,	2020;	

W.	Liu	et	al.,	2016;	W.	Liu,	Liao,	Ren,	Hu,	&	Yu,	2020).		

The	 algorithms	 discussed	 were	 generally	 tested	 on	 multiple	 benchmark/stock	

datasets.	The	datasets	used	in	this	thesis	are	listed	here:	COCO,	KITTI,	Cityscapes,	

and	 EuroCity	 Person.	 Many	 of	 the	 abovementioned	 algorithms	 were	 tested	 on	

COCO	(Common	Objects	In	Context)	(Caesar	et	al.,	2018).		

Many	other	researchers	used	different	datasets	for	training	and	testing	purposes.	

However,	 it	 has	 not	 yet	 been	 investigated	 fully	 as	 to	 how	 a	 single	 algorithm	

performs	on	multiple	datasets	related	to	road	object	detection.	Furthermore,	the	
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performance	 of	 an	 algorithm	when	 trained	 on	 a	 certain	 dataset	 and	 tested	 on	

another	 is	 yet	 to	 be	 understood.	 This	 understanding	 is	 key	 for	 real-world	

applications	 of	 any	 algorithm	where	 the	 chosen	 algorithm	 cannot	 be	 trained	 a	

priori.	 In	this	study,	we	are	comparing	a	set	of	chosen	algorithms,	Faster	RCNN,	

Cascade	 RCNN,	 FCOS,	 and	 RetinaNet	 for	 their	 performance	 on	 three	 chosen	

datasets.		

Models	were	trained	and	tested	with	KITTI	(Geiger	et	al.,	2013),	Cityscape	(Cordts	

et	al.,	2016),	and	EuroCity	Persons	(Braun,	Krebs,	Flohr,	&	Gavrila,	2019)	public	

datasets.	 These	 public	 datasets	 carry	 traffic	 and	 road	 scenes	 under	 different	

conditions	 that	 are	 labelled	 for	 testing	 detection	 algorithms.	 Several	 different	

criteria	and	learning	rate	adjustment	methods	were	evaluated	to	test	the	efficiency	

of	the	detection	methodologies.	

2.5.1 Overview	of	Object	Detectors		
 
Most	object	detection	consists	of	two	main	sub-tasks:	

• Localization,	which	 involves	 determining	 the	 location	 of	 an	 object	 in	 an	

image,	and	

• Classification,	 which	 involves	 assigning	 a	 class	 to	 the	 object	 (e.g.,	

‘pedestrian’,	‘cyclist’,	‘car’).	

Figure	 2.14	 illustrates	 a	 taxonomy	 of	 the	 state-of	 the-art	 deep	 learning-based	

object	detectors.	The	taxonomy	of	these	detectors	will	be	discussed	in	the	following	

sub-section.	
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Figure	2.14	Taxonomy	of	object	detectors	

	

2.5.1.1 Network	type		

	

As	indicated	in	Figure	2.14,	there	are	several	network	types,	of	which	two-stage	

and	 one-stage	 detectors	 are	 the	 most	 common	 types.	 However,	 transformer	

detectors	 are	 much	 recent—the	 first	 transformer-based	 object	 detector	 DETR	

(DEtection	TRansformer)	was	developed	by	Facebook	AI	Research	in	2020.	DETR	

is	a	fully	end-to-end	object	detection	model	that	replaces	the	traditional	two-stage	

object	detection	pipeline	with	a	single	transformer-based	architecture.		

Two-stage	 deep	 learning-based	 object	 detectors	 involve	 a	 two-stage	 process	

consisting	of:	

1) 	Region	 proposals	 stage,	 where	 the	 object	 detector	 proposes	 several	

Regions	of	 Interest	 (ROIs)	 in	an	 input	 image	 that	have	high	 likelihood	of	

containing	objects	of	interest.	

2) Object	 classification	 stage,	 where	 the	 most	 promising	 ROIs	 are	 selected	

(with	other	ROIs	being	discarded)	and	objects	within	them	are	classified.	

RCNN,	Fast	RCNN,	 and	Faster	RCNN	are	 some	examples	of	 two-stage	detectors.	

Single-stage	object	detectors	use	a	single	feed-forward	neural	network	that	creates	

bounding	boxes	and	classifies	objects	in	the	same	stage.	These	detectors	have	the	

advantage	of	fast	detection	though	they	are	less	accurate.	SSD,	FCOS,	Retinanet,	and	

YOLO	are	some	of	the	single-stage	detectors.	

Taxonomy	of	Object	Detection	

Network	type	

Two-stage	
detectors

Faster	RCNN Cascade	
RCNN	

Single-stage	
detectors

FCOS	 RetinaNet

Transformer	
detectors

Deformable	
DERT

Data	Type	

2D	Object	detectors	 3D	Object	detectors

Monocular 
Image-based

Point Net-
based



 

73 
 

	

2.5.1.2 Data	type		

	

The	2D	object	detector	uses	2D	image	data	for	detection,	and	typically,	images	in	

those	data	are	gathered	from	cameras.	Recently,	however,	a	sensor-fusion-based	

2D	 object	 detection	 approach	 has	 been	 proposed,	 which	 combines	 data	 from	

camera	and	radar.	2D	object	detectors	provide	bounding	boxes	with	four	Degrees	

of	Freedom	(DOF).	2D	object	detection	can	only	provide	the	position	of	the	object	

on	a	2D	plane	but	does	not	provide	information	about	the	depth	of	the	object.	3D	

object	detectors	use	data	from	different	sources	such	as	camera,	lidar,	and	radar	to	

detect	 objects	 and	 generator	 3D	 bounding	 boxes.	 These	 detectors	 provide	

bounding	boxes	and	depth	information.		

	

2.5.2 Convolutional	Neural	Network	(CNN)	
 
Convolutional	Neural	Networks	(CNN)	are	a	deep	learning	algorithm	that	classifies	

an	 image	by	extracting	 features	and	 image	 information.	 It	 can	also	differentiate	

images	one	from	another.	The	feature	extraction	process	is	often	seen	as	universal	

non-linear	 function	 approximators.	 Significantly,	 the	pre-processing	 required	 in	

CNN	is	much	less	compared	to	other	classification	algorithms	(Wu,	2017).	

More	details	on	the	architecture	of	CNN	will	be	discussed	below.	

	

2.5.2.1 CNN	architecture		

	
The	four	main	layers	in	CNN	are	convolutional	layer,	pooling	layer,	ReLU	correction	

layer,	and	fully	connected	layer;	Figure	2.15	illustrates	the	CNN	model	architecture	

(Purwono	et	al.,	2022).	
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Figure	2.15	CNN	architecture	

A) Convolution	Layer	
	
The	 convolutional	 layer	 is	 the	 main	 component	 of	 the	 convolutional	 neural	

networks	and	the	first	layer	of	the	network.	The	main	purpose	of	this	layer	is	the	

extraction	 of	 features,	 such	 as	 edges,	 colours,	 and	 corners,	 from	 the	 input.	

Additionally,	 as	one	penetrates	 the	network,	more	complex	 features	 like	 shapes,	

digits,	 and	 face	parts	are	 identified	by	 the	network	(Uchida,	Tanaka,	&	Okutomi,	

2018).	
A	 convolution	 is	 a	 linear	 operation	 which	 involves	 a	 multiplication	 of	 a	 set	 of	

weights	with	the	input,	much	like	a	traditional	neural	network.	This	technique	was	

originally	 designed	 for	 two-dimensional	 inputs:	 the	multiplication	 is	 performed	

between	an	array	of	input	data	and	a	two-dimensional	array	of	weights,	called	a	

kernel	or	a	filter.	

The	 convolution	 filter	 is	 mostly	 smaller	 than	 the	 input	 data.	 A	 dot	 product	

multiplication	is	applied	between	a	filter-sized	patch	of	the	input	and	the	filter	to	

filter	it.	The	dot	product	multiplication	produces	a	single	value,	and	this	operation	

is	often	called	the	‘scalar	product’	(T.	Li	et	al.,	2019).	

In	other	words,	a	dot	product	between	two	matrices	is	one	in	which	one	matrix	

(kernel/filter)	is	the	set	of	learnable	material	and	the	other	matrix	is	the	restricted	

portion	of	the	image.	For	instance,	for	an	RGB	image,	a	filter	is	applied	which	will	

have	smaller	height	and	width	compared	to	the	image	though	it	will	have	the	same	

depth	(height	x	width	x	3)	as	the	image.	

Input
Convolution Pooling	

Fully	Connected

Output	

ClassificationFeature	Extraction
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Here,	the	convolution	for	a	pixel	in	the	next	layer	is	calculated	using	the	formula:	

	

𝑦+ =D𝑤,+ ∗ 𝑥 + 𝑏+ 	
2.1	

where	𝑦	 is	 the	 output,	𝑥	 is	 the	 input,	𝑤	 is	 the	 filter	matrix,	 b	 is	 the	 bias,	 and	 *	

represents	the	convolution	operation	(Uchida	et	al.,	2018).		

Using	a	filter	smaller	than	the	input	is	intentional	as	it	allows	the	same	filter	(set	of	

weights)	to	be	multiplied	by	the	input	array	multiple	times	at	different	points	on	

the	input.	Specifically,	the	filter	is	applied	systematically	to	each	overlapping	part	

or	filter-sized	patch	of	the	input	data—	left	to	right,	top	to	bottom.	

The	systematic	application	of	the	filter	across	an	image	produces	a	‘feature	map’,	

which	provides	precise	information	about	the	features	required	to	be	identified	in	

an	 image:	 the	 higher	 the	 value,	 the	more	 the	 corresponding	 place	 in	 the	 image	

resembles	the	feature.	Figure	2.16	illustrates	the	process	of	creating	a	feature	map.	

	
Figure	2.16	Convolution	layer	process(Martin,	2018)	

	
In	convolution,	the	features	are	not	predefined,	but	learned	by	the	network	during	

the	 training.	 Filter	 kernels	 refer	 to	 the	 convolution	 layer	 weights.	 They	 are	

initialized	and	then	updated	by	backpropagation	using	gradient	descent.	
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With	the	feature	map	(feature	matrix)	created—which	has	fewer	dimensions	and	

clearer	 features	 than	 the	 actual	 image—the	 values	 are	 now	 passed	 through	 a	

nonlinearity	layer	for	further	processes,	such	as	pooling	and	ReLU	layers.	

	

B) Pooling	layer		
 
Pooling	layer	is	a	down	sampling	layer,	wherein	the	main	aim	of	pooling	is	to	reduce	

the	complexity	 for	 further	 layers.	This	can	be	achieved	by	reducing	 the	size	of	 the	

image	while	maintaining	 its	 important	 characteristics.	 Pooling	 is	 usually	placed	 in	

between	 two	 layers	 of	 convolution;	 hence,	 it	 receives	 several	 feature	 maps	 and	

applies	 the	 pooling	 operation	 to	 each	 of	 them.	 One	 of	 the	 most	 common	 pooling	

methods	 is	 max-pooling.	 The	 image	 in	 max	 pooling	 is	 divided	 into	 squared	 sub-

regions,	and	it	returns	the	maximum	values	inside	those	sub-regions,	as	can	be	seen	

in	Figure	2.17.	The	most	common	sizes	used	in	max-pooling	is	2x2	adjacent	cells	that	

do	not	overlap,	or	3x3	cells,	separated	from	each	other	by	a	step	of	2	pixels	in	order	

to	preclude	overlapping	(Jie	&	Wanda,	2020).		

 

 
Figure	2.17	Pooling	layer	(2x2	max-pooling	kernel)	

 
i) ReLU	correction	layer		

 
ReLU	(Rectified	Linear	Units)	refers	to	the	real	non-linear	function	defined	by	(Ali	et	

al.,	2020)		

 

ReLU(x) = max(0, x) 
2.2 
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Kernel/Filter	-2x2
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In	other	words		
f(x) = Q1, if	x < 0

0,			otherwise	 
2.3 

This	layer	replaces	all	negative	values	received	as	inputs	by	zeros,	wherein	it	acts	

as	an	activation	function.	This	can	be	depicted	as	below	(Figure	2.18)	

 
Figure	2.18	ReLU	equation	depiction	

 
ii) Fully	connected	layer	

	

The	 fully	 connected	 layer	 is	 usually	 the	 last	 layer	 of	 the	 neural	 network,	

convolution;	or,	in	some	cases,	it	is	not	included.	This	layer	receives	a	vector	input	

and	 outputs	 a	 new	 vector	 (K.	 Liu,	 Kang,	 Zhang,	 &	 Hou,	 2018).	 A	 linear	

combination	and	then	 possibly	 an	 activation	 function	 are	 applied	 to	 the	 input	

values	received	in	order	for	output	to	be	produced,	as	can	be	seen	in	Figure	2.19.	

	
Figure	2.19	Fully	connected	layer	

....

Input layer Convolution layers Fully connected layers Output layer 

s

w
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The	 fully	 connected	 layer	 returns	 a	 vector	 of	𝑁	 size,	where	𝑁	 is	 the	 number	 of	

classes	 in	 the	 scoop	 of	 the	 classification	 problem.	 Each	 element	 of	 the	 vector	

indicates	the	probability	for	the	input	image	to	belong	to	a	class.		

In	 order	 to	 evaluate	 the	 probabilities,	 the	 fully-connected	 layer,	 therefore,	

multiplies	 each	 input	 element	 by	 weight,	 makes	 the	 sum,	 and	 then	 applies	 an	

activation	function	(logistic	if	N=2,	Softmax	if	N>2).	This	is	equivalent	to	multiplying	

the	input	vector	by	the	matrix	containing	the	weights.	The	fact	that	each	input	value	

is	connected	with	all	output	values	explains	the	term‘fully-connected’.	

Moreover,	one	of	the	main	functionalities	of	a	fully-connected	layer	is	to	obtain	the	

relationship	between	the	position	of	features	in	the	images	and	class.	In	this,	since	

the	input	table	is	the	result	of	the	previous	layer,	it	corresponds	to	a	feature	map	for	

a	 given	 feature:	the	 high	 values	 indicate	 the	 location	(more	 or	 less	 precise,	

depending	on	the	pooling)	of	this	feature	in	the	image.	If	the	location	of	a	feature	

at	 a	 certain	 point	 in	 the	 image	 is	 characteristic	 of	 a	 certain	 class,	 then	 the	

corresponding	value	in	the	table	is	given	significant	weight	(K.	Liu	et	al.,	2018).	

	

iii) Softmax		

	

Softmax	 regression	 layer	 or	 multi-class	logistic	 regression	 is	 a	 form	 of	 logistic	

regression	 that	 assigns	 an	 input	 value	 into	 a	 vector	 of	 values	 which	 follows	 a	

probability	 distribution,	 the	 total	 of	which	 sums	 up	 to	 1.	 The	 output	 values	 are	

between	 the	 range	 [0,1],	 which	 is	 nice,	 because	 one	 is	 able	 to	 avoid	 binary	

classification	 and	 accommodate	 as	 many	 classes	 or	 dimensions	 in	 our	 neural	

network	model.	Figure	2.20	illustrates	the	Softmax	layer.	The	Softmax	function	is	

given	as	follows:	

r	(𝑧), =
𝑒-"

∑ 𝑒-#*
+.(

	

2.4	
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where	 r	 is	 the	 Softmax,	 𝑧	 is	 the	 input	 vector,	 𝑒-" 	 is	 the	 standard	 exponential	

function	for	input	vector,	K	is	the	number	of	classes	in	the	multi-class	classifier,	and	

𝑒-# 	is	the	exponential	function	of	the	input	vector	(Dong,	Zhu,	&	Gong,	2019).	

	

	
Figure	2.20	A	Softmax	layer	within	a	neural	network	

	

	

2.5.2.2 CNN	Parameters			

	
For	the	convolution	and	pooling	layer,	there	are	hyperparameters	that	have	to	be	

predefined	to	obtain	the	size	of	the	output	feature	maps.	Each	image	(feature	map)	

has	dimensions	of	𝑊 ×𝐻 × 𝐶.	Here	,	𝑊	stands	for	the	width	in	pixels,	𝐻	is	the	hight	

in	pixels	and	C	is	the	number	of	channels.	For	instance,	𝐶	 = 	1	refers	to	a	grayscale	

image	and	𝐶	 = 	3	refers	to	a	coloured	image	(T.	Zhang,	Zhang,	Shi,	&	Wei,	2019).		

In	a	convolution	layer,	𝑘	is	the	number	of	filters,	𝐹	represents	the	filter	(where	each	

filter	 has	 a	 dimension	 of	 𝐹 × 𝐹 ×C	 pixels),	 and	 S	 is	 the	 step	 of	 the	 window	

corresponding	to	the	filter	on	image.	For	example,	a	step	of	𝑆	 = 	1	means	moving	

the	widow	 one	 step	 at	 a	 time.	 Finally	 comes	𝑃,	which	 is	 the	 zero-padding.	 It	 is	

necessary	to	add	a	black	contour	of	P	pixels	 thickness	to	 the	 input	 image	of	 the	

layer	 so	 as	 to	 ensure	 that	 the	 exit	 dimensions	 are	 not	 smaller	 than	 the	 input.	

Car:	yes/no?

Cyclist:	yes/no?

Pedestrian:	yes/no?

Softmax

hidden

hidden logits
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Additionally,	the	more	convolutional	layers	are	stacked	with	𝑃 = 0,	the	smaller	the	

input	image	of	the	network	is;	this	results	in	the	loss	of	a	lot	of	information	quickly,	

which	makes	the	task	of	extracting	features	difficult	(T.	Zhang	et	al.,	2019).		

For	each	input	image	of	size	𝑊 ×𝐻 × 𝐶,	the	convolution	layer	returns	a	matrix	of	

dimensions	𝑊/ × 𝐻/ × 𝐶/ 	where:	

𝑊/ =
𝑊 − 𝐹 + 2𝑃

𝑆 	+ 1	

2.5	

𝐻/ =
𝐻 − 𝐹 + 2𝑃

𝑆 	+ 1	
2.6	

𝐷/ = 	𝐾	
2.7	

Having	𝑃 = 01(
)
	and	𝑆 = 1	gives	a	feature	map	of	the	same	width	and	height	as	

those	received	in	the	input.	

In	a	pooling	layer	the	image	is	divided	into	square	cells	of	size	𝐹 × 𝐹	pixels,	and	

cells	are	separated	from	each	other’s	by	𝑆	pixels.	Hence,	for	each	input	image	of	size	

𝑊 ×𝐻 × 𝐶,	 the	 convolution	 layer	 returns	 a	matrix	 of	 dimensions	𝑊2 × 𝐻2 × 𝐶2	

where:	

𝑊2 =
𝑊 − 𝐹
𝑆 	+ 1	

2.8	

𝐻2 =
𝐻 − 𝐹
𝑆 	+ 1	

2.9	

𝐷2 = 	𝐷	
2.10	

CNNs	 can	 capture	different	patterns	as	 the	depth	of	 the	network	 increases.	 For	

example,	the	layers	at	the	beginning	of	the	network	capture	the	edges,	while	the	

deep	layers	will	capture	more	complex	features	like	the	shape	of	the	objects	(leaves	

in	trees,	or	tyres	on	a	vehicle).	On	looking	at	the	architecture	of	CNN,	it	can	be	seen	

that	 it	 is	 composed	 of	 two	main	 blocks,	 which	 include	 four	main	 components:	

convolutional	layer,	pooling	layer,	ReLU	correction	layer,	and	fully	connected	layer.		

As	part	of	the	neural	network,	the	main	functionality	of	the	first	block	of	CNN	is	to	

extract	 features;	 here,	 the	 first	 layer	 filters	 the	 image	with	 several	 convolution	
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kernels	and	returns	‘feature	maps’,	which	are	then	normalized	and/or	resized.	This	

process	can	be	repeated	several	times.	The	input	of	each	filter	is	the	result	(output)	

of	 the	 previous	 features	 maps.	 On	 using	 new	 kernels,	 new	 features	 maps	 to	

normalize	and	resize	will	be	obtained,	and	this	process	can	be	repeated.	Finally,	

the	 values	 of	 the	 last	 feature	maps	 are	 concatenated	 into	 a	 vector.	 This	 vector	

defines	the	output	of	the	first	block	and	the	input	of	the	second	(T.	Zhang	et	al.,	

2019).	

The	second	block	can	be	seen	as	the	classifier	block.	The	input	of	this	block	is	the	

vector	values	obtained	from	the	first	block.	The	input	values	are	transformed	to	

return	a	new	vector	to	the	output.	The	output	vector	contains	as	many	elements	as	

there	are	classes:	element	𝑖	represents	the	probability	that	the	image	belongs	to	

class	𝑖.	Each	element,	therefore,	lies	between	0	and	1,	and	the	sum	of	all	is	worth	1.	

These	probabilities	are	calculated	by	the	last	layer	of	this	block	(network),	which	

uses	a	 logistic	 function	(binary	classification)	or	a	Softmax	 function	(multi-class	

classification)	as	an	activation	function.	

Even	though	the	state-of-art	of	CNN	detection	has	achieved	high	results,	several	

object	 detectors	 have	 been	 customized	 for	 different	 tasks,	 such	 as	 road	 object	

detection,	 cars	 detection,	 and	 detection	 of	 pedestrians,	 achieving	 impressive	

results	(for	more	details	on	CNN,	refer	to	(Gad	&	John,	2018;	Z.	Li,	Liu,	Yang,	Peng,	

&	 Zhou,	 2022)).	 Faster	 R-CNN	 (Girshick,	 2015a),	 Cascade	 R-CNN	 (Cai	 &	

Vasconcelos,	 2017),	 End-to-End	 Object	 Detection	 with	 Transformers	 (DETR)	

(Carion	 et	 al.,	 2020),	 Fully	 Convolutional	 One-Stage	 Object	 (FCOS)	 (Tian	 et	 al.,	

2019),	You	Only	Look	Once	(YOLO)	(Redmon	et	al.,	2016),	and	Focal	Loss	for	Dense	

Object	Detection	(RetinaNet)	(Lin,	Goyal,	et	al.,	2017)	are	some	examples	of	object	

detectors.	 The	 following	 section	 will	 highlight	 the	 four	 different	 detection	

algorithms	used	in	this	thesis,	describing	their	performance,	architecture,	and	the	

different	building	blocks.	

 

2.5.3 DESCRIPTION	OF	ALGORITHMS	
 
Five	different	object	detection	algorithms	were	chosen	and	compared	in	this	thesis,	

namely:	 Faster	 Region-based	 Convolutional	 Neural	 Networks	 (Faster	

RCNN)(Girshick,	 2015a),	 Cascade	 Region-based	 Convolutional	 Neural	 Networks	



 

82 
 

(Cascade	RCNN)(Cai	&	Vasconcelos,	2017),	Focal	Loss	for	Dense	Object	Detection	

(RetinaNet)(Lin,	Goyal,	et	al.,	2017),	FCOS	(Fully	Convolutional	One-Stage	Object	

Detection)(Tian	et	al.,	2019),	and	Deformed	Transformers	for	End-to-End	Object	

Detection	(Deformed	DETR)(Zhu	et	al.,	2020).	Following	is	a	Table	2.3	that	present	

the	unique	aspect	of	each	algorithm	and	the	reason	it	was	chosen	for	evaluation	

throw	out	the	thesis.			

	
Table	2.3	Chosen	algorithms	unique	aspects	and	reason	to	be	used	for	evaluation.	

 
	

2.5.3.1 Faster	Region-based	Convolutional	Neural	Networks	(Faster	

RCNN)	

	
Regions	with	convolutional	neural	network	(R-CNN)	(Girshick	et	al.,	2014)	is	a	two-

stage	object	detection	algorithm.	This	network	was	proposed	to	solve	the	issue	of	

locating	an	object	in	an	image.	The	solution	here	was	to	slide	a	window	over	the	

whole	image	with	rectangles	of	different	sizes	and	search	for	the	required	objects.	

However,	this	creates	an	issue:	there	is	a	huge	number	of	smaller	images	that	have	

to	 be	 analysed.	 Therefore,	 regions	 with	 convolution	 neural	 network	 were	

developed.	This	combines	rectangular	region	proposals	with	convolutional	neural	

network	features.	This	network	is	used	for	different	applications	like:		

• Autonomous	driving	(Agnihotri,	Saraf,	&	Rajesh	Bapnad,	2019)	

• Facial	recognition	(C.	Zhang,	Xu,	&	Tu,	2018)	

Why	Unique	aspect	Algo	
It	uses	a	region	proposal	network	to	generate	potential	
object	proposals,	which	are	then	classified	and	refined.	
This	approach	allows	for	more	precise	localization	and	

better	handling	of	overlapping	objects.

Introduce	the	Region	Proposal	Network	(RPN)Faster	RCNN

Addresses	the	class	imbalance	in	object	detection	by	using	
feature	pyramid	network	(FPN)	to	capture	objects	at	
different	scales	and	a	focal	loss	to	give	more	weight	to	

challenging	examples.	

Introduces	Feature	Pyramid	Network	(FPN)	and	focal	
lossRetinaNet

Each	stage	focuses	on	refining	the	detection	results	from	
the	previous	stage,	leading	to	improved	precision	and	
recall.	This	multi-stage	architecture	allows	for	better	
handling	of	challenging	scenarios	and	improves	the	

overall	performance	of	the	detector.	

Implements	a	cascade	structure,	where	multiple	
stages	of	detectors	are	used	to	progressively	refine	

the	object	detection	results.	
Cascade	RCNN

Adopts	a	fully	convolutional	architecture,	which	allows	for	
efficient	and	parallel	computation.	It	eliminates	the	need	
for	anchor	boxes,	reducing	complexity	and	improving	

speed.	

Adopts	a	fully	convolutional	architecture	for	object	
detection.	It	eliminates	the	need	for	anchorFCOS

It	incorporates	deformable	convolutional	layers,	which	
allow	the	model	to	adapt	to	object	deformations	and	
better	capture	spatial	relationships.	This	helps	improve	

the	accuracy	of	object	detection.

Combines	the	power	of	transformer	networks	with	
object	detection.Deformable	DETR
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• Smart	surveillance	systems	(Babanne,	Mahajan,	Sharma,	&	Gargate,	2019)	

The	network	is	made	of	three	modules.	The	first	module	generates	category-

independent	 region	 proposals.	Where	 the	 proposals	 are	 present,	 the	 set	 of	

candidate	detections	available	to	the	detector	are	defined.	The	second	module	

is	 a	 large	 convolutional	 neural	 network	 that	 extracts	 a	 fixed-length	 feature	

vector	 from	 each	 region.	 The	 third	 module	 is	 a	 set	 of	 class-specific	 linear	

support	vector	machines	(SVM)	

	

Region	 proposal.	 This	 method	 is	 implied	 for	 generating	 category-independent	

regions	proposed	for	different	detection	purposes.	For	instance,	objectness	(Alexe,	

Deselaers,	&	Ferrari,	2012),	which	is	a	measurement	that	quantifies	how	likely	it	is	

for	an	image	window	to	contain	an	object	of	any	class,	selective	search	(Uijlings,	

Van	De	Sande,	Gevers,	&	Smeulders,	2013),	and	multi-scale	combinatorial	grouping	

(Arbeláez,	Pont-Tuset,	Barron,	Marques,	&	Malik,	2014).	R-CNN	is	agnostic	to	the	

particular	region	proposal	method,	where	the	selective	search	is	used	to	enable	a	

controlled	comparison	with	earlier	detection	proposed	methods.		

	

Feature	extraction.	It	is	a	dimensionality	reduction	process	in	which	the	initial	set	

of	raw	data	is	reduced	and	combined	into	more	manageable	groups	for	processing	

purposes	 (Jia	 et	 al.,	 2014;	 Krizhevsky,	 Sutskever,	 &	 Hinton,	 2012).	 The	 main	

characteristic	of	datasets	that	favours	this	process	is	a	large	number	of	variables	

that	require	a	lot	of	computing	resources.	The	extraction	process	selects	and/or	

combines	variables	into	features,	effectively	reducing	the	amount	of	data	that	must	

be	 processed	 while	 still	 wholly	 and	 accurately	 describing	 the	 original	 dataset.	

Feature	extraction	can	reduce	the	redundant	data	and	speed	up	the	learning	and	

generalization	in	the	machine	learning	process.		

	
Support	 vector	 machine.	 It	 is	 a	 supervised	 learning	 algorithm	 used	 for	

classification	 and	 regression	 problems.	 The	 algorithm	 creates	 the	 best	 line	 or	

decision	boundary	that	can	segregate	n-dimensional	spaces	into	classes	so	that	the	

new	 data	 point	 can	 be	 placed	 in	 the	 correct	 category	 in	 the	 future.	 This	 best	

decision	boundary	is	called	a	hyperplane.	SVM	chooses	the	extreme	points/vectors	

that	help	create	the	hyperplane.	These	extreme	cases	are	called	support	vectors.	
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Figure	 2.21	 illustrates	 the	 RCNN	 network.	 In	 RCNN,	 the	 input	 image	 enters	 an	

extraction	 feature	 process	 wherein	 the	 selective	 search	 extracts	 around	 2,000	

region	proposals.	Each	proposal	is	then	wrapped	and	forward	propagated	through	

the	CNN	to	compute	features.	Once	there,	it	produces	a	4,096-dimensional	feature	

vector	as	output;	these	features	are	then	fed	into	an	SVM	to	classify	the	presence	

of	the	object	within	that	candidate	region	proposal.	An	SVM	is	created	and	used	for	

detection	purposes	for	each	object	class.	This	means	that	for	each	feature	vector,	n	

outputs	are	created.	Here,	n	is	the	number	of	the	different	objects	that	need	to	be	

detected.	SVM	outputs	a	confidence	score.	The	confidence	score	is	the	score	that	

shows	how	confidently	this	feature	vector	represents	this	particular	class.	

	

	
Figure	2.21	Regions	with	convolutional	neural	network	architecture	

	

However,	RCNN	suffers	from	several	drawbacks.	These	include	the	region	proposal	

extraction,	 which	 requires	 the	 proposal	 of	 about	 2,000	 regions	 per	 image;	 this	

consumes	a	huge	amount	of	time	for	training.	In	addition,	the	network	fails	to	be	

implemented	 for	 real-time	 applications	 as	 it	 requires	 47	 seconds	 for	 each	 test	

image.	Finally,	the	fixed	selective	search	algorithm,	wherein	no	learning	takes	place	

at	this	stage,	can	generate	bad	candidate	region	proposals.	Therefore,	Fast	RCNN	

was	developed	to	overcome	some	of	the	disadvantages	of	RCNN.		

	

A) Fast	RCNN		
	

Fast	RCNN	was	developed	by	(Girshick,	2015a)	in	2015,	wherein	he	combined	the	

different	stages	in	RCNN	into	one	so	as	to	create	a	faster	object	detection	algorithm	

compared	to	RCNN.	Figure	2.22	illustrates	the	architecture	of	Fast	RCNN.	In	fact,	

1. Input image 2. Extraction region
proposal  

Warped region 

3. Compute CNN region 4. Classify
region 

Car? No

Person? Yes

Truck? No

...

...

Regions with CNN features 
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RCNN	and	CNN	process	the	whole	image	and	produce	a	convolution	feature	map.	

From	the	convolution	feature	map,	the	region	proposals	are	identified	and	warped	

into	squares.	Using	the	Region	of	Interest	(RoI)	pooling	layer	the	region-proposals	

are	reshaped	to	a	fixed	size.	This	will	then	be	fed	to	a	fully	connected	layer.	Where	

an	RoI	pooling	layer	is	used	for	utilizing	a	single	feature	map	for	all	the	proposals	

created	by	Region	Proposal	Network	(RPN)	in	a	single	pass,	this	layer	solves	the	

issue	of	fixed	image	size	requirement	for	object	detection	network.	After	this	stage,	

a	feature	vector	with	the	same	size	is	outputted	and	used	as	the	input	of	a	Softmax	

layer.	The	Softmax	layer	is	used	to	predict	the	class	of	object	found	from	the	RoI	

feature	 vector	 and	 the	 bounding	 box	 regressor,	 where	 the	 bounding	 box	

coordinates	for	each	object	are	given.		

Fast	RCNN	is	faster	than	the	original	RCNN;	however,	the	network	remains	slow	

and	 time-consuming,	 especially	 for	 real-time	 applications,	 as	 it	 uses	 selective	

search.	Hence,	it	was	necessary	to	develop	this	algorithm.	A	faster	RCNN	network	

was	developed	to	overcome	those	issues	(Ren,	He,	Girshick,	&	Sun,	2017).	

	

	
Figure	2.22	Fast	RCNN	architecture	

	
B) Fastest	RCNN		

	

In	2016,	Shaoqing	Ren	developed	a	Faster	RCNN	network,	with	Kaiming	He,	Ross	

Girshick,	 and	 Jian	 Sun	 (Ren,	He,	Girshick,	&	 Sun,	 2015a),	 to	 overcome	 the	main	

drawback	 that	 affects	 the	 performance	 of	 the	 network,	 which	 is	 the	 selective	

search.		

Deep ConvNet

RoI projection

RoI
pooling 
layer FCs

FC FC

bbox
regressorsoftmax

Outputs:
Conv feature map

RoI feature vector
For each RoI
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The	 detector	 is	 a	 modified	 version	 of	 Fast	 RCNN,	 in	 which	 it	 comes	 over	 the	

selective	search.	However,	this	proposed	algorithm	is	made	by	a	complex	architect.	

It,	therefore,	comprises	three	parts,	where	an	image	undergoes	through:		

i. Convolution	layer:	This	layer	extracts	the	appropriate	features	of	the	image.	

ii. Region	Proposal	Network	(RPN):	A	small	neural	network	sliding	on	the	last	

feature	map	of	the	convolution	layers,	predicting	whether	there	is	an	object	

or	not;	it	also	predicts	the	bounding	box	of	those	objects.	

iii. Classes	and	Bounding	Boxes	prediction:	Fully	connected	neural	networks	

that	take	as	an	input	the	regions	proposed	by	the	RPN	and	predict	object	

class	(classification)	and	bounding	boxes	(regression).		

Figure	2.23	shows	the	architecture	of	faster	RCNN	where	the	image	is	represented	

as	 Height*Width*Depth.	 Then	 features	 are	 extracted	 using	 multidimensional	

arrays,	passing	through	a	pre-trained	Convolutional	Neural	Network	(CNN).	This	

technique	is	used	to	transfer	learning,	which	is	used	for	training	a	classifier	on	a	

small	dataset	using	the	weights	of	a	network	trained	on	a	bigger	dataset.		

Transfer	learning	is	the	use	of	previously	acquired	knowledge	and	skills	in	new	

learning	or	problem-solving	situations	(Steiner,	2001)	
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Figure	2.23	Faster	RCNN	architecture	

The	 main—and	 the	 hardest	 issue—with	 using	 Deep	 Learning	 (DL)	 for	 object	

detection	of	faces	is	the	generation	of	a	variable-length	list	of	bounding	boxes.	To	

overcome	 this	 issue,	 anchors	 are	 introduced	 in	 the	 Region	 Proposal	 Network	

(RPN).		

	

i) Region	Proposal	Network	(RPN)	
	
RPN	takes	an	input	image	and	outputs	a	set	of	rectangular	object	proposals,	each	with	

an	 objectness	 score.	 A	 fully	 convolutional	 network	 models	 this	 process.	 More	

specifically,	a	small	network	slides	over	the	convolutional	feature	map	outputted	by	

the	last	shared	convolutional	layer.	The	small	network	takes	an	𝑛	 × 	𝑛	window	as	an	

Conv layers

Feature maps 

RoI pooling

Classifier 
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input	of	the	convolutional	feature	map.	Each	sliding	window	is	mapped	to	a	lower-

dimensional	feature.	The	feature	is	fed	into	two	sibling	fully-connected	layers	(box-

regression	layer	(𝑟𝑒𝑔)	and	a	box-classification	layer	(cls)).	Figure	2.24	illustrates	the	

Region	Proposal	Network.	

	

	
Figure	2.24	Region	Proposal	Network	

ii) Anchors	
	
Anchors	 are	 fixed	 reference	 bounding	 boxes	 placed	 uniformly	 throughout	 the	

original	 image.	 Instead	 of	 having	 to	 detect	 where	 objects	 are, 𝑘	 denotes	 the	

maximum	possible	 proposals	 for	 each	 location.	 By	 default,	𝑘 = 9	,	 having	 three	

scales	 of	 (128 ∗ 128, 256 ∗ 256	𝑎𝑛𝑑	512 ∗ 512)and	 three	 aspect	 ratios	 of	

(1: 1, 1: 2	𝑎𝑛𝑑	2: 1)	for	each	of	the	different	sliding	positions	in	the	image.		Hence,	

for	a	convolution	 feature	map	of	𝑊	 × 	𝐻,	 the	 total	number	of	anchor	boxes	are	

𝑊𝐻𝑘.	This	leads	to	the	creation	of	a	list	of	relevant	objects	and	their	location	in	the	

original	images,	and	then	detection	becomes	much	more	straightforward	to	solve.		
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iii) Region	of	Interest	pooling	
	

The	RoI	pooling	 layer	 (Girshick,	2015a)	 is	 the	 layer	deployed	 to	utilize	 a	 single	

feature	map	 for	all	 the	proposals	generated	by	RPN	 in	a	single	pass	match.	 It	 is	

applied	to	match	the	detected	features	with	the	features	extracted	by	CNN	and	the	

bounding	 boxes,	 creating	 a	 new	 tensor	 with	 relevant	 objects.	 Following	 is	 a	

forward	pass	diagram	of	RoI	pooling	layer	(Figure	2.25).		

	
Figure	2.25	RoI	pooling	layer	

RoI	 pooling	 produces	 fixed-size	 feature	 maps	 for	 non-uniform	 inputs	 applying	

max-pooling	on	the	inputs.	The	number	of	output	channels	is	equal	to	the	number	

of	input	channels	for	this	layer.	This	layer	takes	two	inputs:	

• Feature	 map	 obtained	 from	 the	 CNN	 after	 multiple	 convolutions	 and	

pooling	layers.	

• ‘N’	RoI	or	proposals	from	RPN.	Each	proposal	has	five	values,	the	first	value	

indicates	 the	 index,	 and	 the	 remaining	 four	 values	 are	 the	 proposal	

coordinates	(the	top-left	and	the	bottom-right	corner).	

The	output	fixed	dimension	of	RoI	pooling	for	every	RoI	neither	depends	on	the	

input	feature	map	nor	the	proposal	sizes;	it	depends	solely	on	the	layer	parameters.	
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Finally,	after	extracting	 the	relevant	 information,	 the	R-CNN	module	comes	 into	

play,	and	it	uses	the	information	to:		

• Classify	the	content	in	the	bounding	box,	and	

• Adjust	the	bounding	box	coordinates,	so	as,	to	better	fit	the	objects.		

For	more	details	on	Faster	RCNN	please	refer	to	(Ren,	He,	Girshick,	&	Sun,	2015b).	

	

2.5.3.2 Cascade	 Region-based	 Convolutional	 Neural	 Networks	

(Cascade	RCNN)	

 
A) Cascade	RCNN		

 
Cascade	 R-CNN	was	 developed	 in	 order	 to	 overcome	 some	 Faster	 RCNN	 issues.	

Cascade	 RCNN	 is	 an	 object	 detection	 architecture	 that	 addresses	 degrading	

performance	problems	with	increased	Intersection	Over	Union	(IoU)	thresholds.	IoU	

threshold	is	used	to	define	whether	objects	are	positively	or	negatively	detected.	

To	put	it	simply,	the	aim	of	developing	Cascade	RCNN	is	to	overcome	two	main	issues:	

1. Overfitting	 during	 training	 caused	 by	 exponentially	 vanishing	 positive	

samples,	 i.e.,	 many	 positive	 samples	 are	 gone	 when	 the	 IoU	 threshold	

increases.		

2. The	 inference-time	 mismatch	 between	 the	 IoUs	 for	 which	 the	 detector	 is	

optimal	and	those	of	the	input	hypotheses.	For	instance,	training	at	a	higher	

(lower)	IoU	threshold	but	testing	at	a	lower	(higher)	IoU	threshold.	

Cascade	RCNN	 is	 a	multi-stage	 extension	 of	 R-CNN,	 in	which	 the	 detector	 stages	

deeper	into	the	cascade	are	sequentially	more	selective	against	close	false	positives.	

The	network	was	developed	by	Cai	et	al.	(Cai	&	Vasconcelos,	2017)	based	on	RCNN,	

in	which	they	extended	the	two-stage	faster	CNN	architecture	by	introducing	object	

proposals	 for	 all	 images	 that	 enter	 to	produce	preliminary	detection	hypotheses.	

The	network	relays	on	a	cascade	of	specialized	regressors	,	defined	as	follows:		

	

𝑓(𝑥, 𝑏) = 𝑓! ∘ 𝑓!"# ∘···∘ 𝑓#(𝑥, 𝑏)	
2.11	

where	 T	 is	 the	 total	 of	 cascade	 stages—this	 cascade	 improves	 the	 hypothesis	

progressively	as	each	regressor	𝑓3	in	the	cascade	is	optimized	with	respect	to	the	

sample	distribution	{𝑏4}	arriving	at	the	corresponding	stage.		
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Cascade	involve	precise	localization	in	which	it	considers	iterative	bounding	boxes	

(bbox)	architecture,	but	the	main	differences	are:	

• Different	heads	for	each	stage,	i.e.	H1,	H2,	H3,	are	used	as	shown	in	Figure	

3.14,	or	𝑓' ,	𝑓'1(, … , 𝑓(	corresponding	to	the	equation	above.		

• Each	head	is	designed	for	one	specific	IoU	threshold,	from	small	to	large.	

• Cascaded	regression	is	a	resampling	procedure,	where	iterative	bbox	uses	

a	post-processing	procedure	 to	 improve	bounding	boxes.	This	allows	 the	

cascade	to	pass	good	positive	samples	to	the	next	stage.		

• There	 is	 no	 discrepancy	 between	 training	 and	 inference	 since	 the	

architecture	and	IoU	thresholds	are	the	same	during	training	and	inference.	

Figure	2.27	illustrates	cascade	architecture.	
	

	
Figure	2.26	Cascade	RCNN	architecture	

	
i) State-of-the-art	network	architecture		
	

Cascade	 RCNN	 is	 a	 regression	 problem	 involving	 combinations	 of	 different	

regression	and	face	alignment	tasks;	Cascade	RCNN	was	developed	on	the	basis	

of	the	combination	of	several	architectures.	In	this	section,	the	architecture	of	

each	task	will	be	described	to	attain	the	cascade	architecture.	

The	development	started	from	a	Faster	RCNN	(Lin,	Dollár,	et	al.,	2017;	X.	Zhao	

et	al.,	2016)	architecture,	as	shown	in	Figure	2.28;	 in	the	 first	stage,	an	 input	

image	goes	through	several	convolutions,	and	the	output	of	the	convolutional	

features	is	then	passed	to	RPN	(Ren	et	al.,	2015a).	The	proposal	sub-network	

(H0)	 creates	 a	 preliminary	 detection	 hypothesis	 known	 as	 object	 proposals	
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(B0).	Moving	to	the	second	stage,	the	hypotheses	are	then	processed	by	a	region	

of	interest	detection	sub-network	(H1),	denoted	as	the	detection	head.	Finally,	

each	 hypothesis	 gets	 a	 classification	 score	 (C1)	 and	 a	 bounding	 box	 (B1).	

However,	 B1	 is	 inaccurate	 because	 an	 iterative	 bounding	 box	 at	 inference	 is	

applied.	

	

	
Figure	2.27	Faster	RCNN	architecture	

ii) Bounding	box	regression	
	

A	bounding	box	regression	is	a	task	of	regressing	a	candidate	bounding	box	𝑏	

into	 a	 target	 bounding	 box	 𝑔,	 using	 a	 regressor	 𝑓(𝑥, 𝑏).	 Here,	 𝑏 =

r𝑏5 , 	𝑏6 , 𝑏7 , 𝑏8s	 is	 the	 bounding	 box	 coordinates	 of	 an	 image	 patch	 𝑥.	

Regression	is	learned	from	training	sample	{𝑔, , 𝑏,}	as	below,	to	minimize	the	

bounding	box	risk.	

ℛ$%&|𝑓| =,𝐿$%&(𝑓(𝑥' , 𝑏'), 𝑔')
(

')#

	

2.12	

where	𝐿&9/ 	is	the	loss	function,	and	in	order	to	encourage	a	regression	invariant	

to	scale	and	location,	it	operates	on	distance	vector	Δ = (𝛿5 , 𝛿6 , 𝛿7 , 𝛿8)	defined	

as:	
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𝛿* =	
(,!"-!)
-"

	,	𝛿/ =	
(,#"-#)

-$
	

														𝛿0 = 𝑙𝑜𝑔 3,"
-"
4,	𝛿1 = 𝑙𝑜𝑔 3,$

-$
4	

2.13	

n	 order	 to	 improve	 the	 effectiveness	 of	 multi-task	 learning,	 ∆	 is	 usually	

normalized	by	its	mean	and	variance.	Hence,	𝛿5	is	replaced	by	𝛿5: =
(;$1<$)

=$
.	

Figure	2.28	illustrates	the	iterative	bounding	box	regression	added	on	faster	

R-CNN,	 thereby	 adjusting	 the	 performance.	 Researchers	 such	 as	 (Gidaris	 &	

Komodakis,	2016)	have	argued	that	a	single	regression	step	for	𝑓	is	inadequate	

for	accurate	 localization,	hence,	𝑓	 is	applied	 iteratively	as	a	post-processing	

step	to	refine	a	bounding	box	𝑏	as	follows:	

	

𝑓2(𝑥, 𝑏) = 𝑓 ∘ 𝑓 ∘···∘ f(x, b)	
2.14	

This	is	implied,	as	shown	in	Figure	2.28.	B1	is	inputted	into	the	same	H1	again	

to	regress	the	bounding	box	to	obtain	B2,	and	so	on.	This	iterative	approach	

attempts	to	gradually	 fine-tune	the	bounding	box	to	obtain	a	more	accurate	

bounding	box	value.	Not	to	mention	that	all	heads	(H1	in	the	figure	and	𝑓	in	

the	equation)	are	the	same.	However,	the	performance	improvement	obtained	

from	doing	this	is	limited.	

Again,	 while	 training	 (H1)	 is	 the	 only	 head	 available,	 however,	 during	

inference,	multiple	heads	(H1)	are	present,	which	causes	a	mismatch	between	

training	and	testing.	Therefore,	a	 loss	classifier	 is	presented.	 Integral	 loss	 is	

introduced	in	the	next	heading.	
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Figure	2.28	Iterative	BBox	at	Inference	

	
iii) Integral	loss		

	
As	mentioned,	a	mismatch	occurs	between	training	and	testing	on	account	of	the	

presence	of	different	heads	(H);	 for	 this,	an	ensemble	of	classifiers	 is	developed	

with	the	architecture	presented	in	Figure	2.29,	optimized	with	a	loss	that	targets	

various	quality	levels.	

𝐿&$3(ℎ(𝑥), 𝑦) = , 𝐿&$3(ℎ4(𝑥), 𝑦4)
4∈6

	

2.15	

Here	𝐿/&>	 is	the	classic	cross-entropy	loss,	ℎ(𝑥)	denotes	the	classifier	function,	U	

denotes	the	set	of	IoU	thresholds,	and	𝑢	denotes	the	detector	quality.	

However,	high-quality	classifiers	are	prone	to	overfitting.	The	classifiers	are	also	

required	to	process	proposals	of	overwhelming	low	quality	at	inference,	for	which	

they	are	not	optimized	(Cai	&	Vasconcelos,	2017).	
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Figure	2.29	Integral	Loss	

Having	explained	these	building	blocks,	Cascade	RCNN	is	then	formed,	as	shown	in	

Figure	2.29.	Cascade	RCNN	outperformed	many	object	detection	algorithms	 like	

Faster	RCNN	(Ren	et	al.,	2015a),	YOLO	(Redmon	&	Farhadi,	2018),	SSD	(W.	Liu	et	

al.,	2016),	and	R-FCN	(Dai	et	al.,	2016),	in	which	it	achieved	a	higher	mean	average	

performance.	However,	this	method	is	slow,	and	incurs	high	computational	cost.	

For	more	details	on	cascade	RCNN,	refer	to	(Cai	&	Vasconcelos,	2017).	

	

2.5.3.3 Focal	Loss	for	Dense	Object	Detection	(RetinaNet)	

	
RetinaNet	is	a	one-stage	object	detection	model	that	works	well	with	dense	and	

small-scale	objects.	The	model	 is	 formed	by	 improving	two	existing	single-stage	

object	detection:		

• Feature	Pyramid	Network	(FPN)(Lin	et	al.,	2016)	

• Focal	Loss	(Lin,	Goyal,	et	al.,	2017)	

To	define	the	network	architecture,	it	is	important	to	have	a	brief	understanding	

of	FPN.	
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A) Feature	Pyramid	Network	(FPN)		
	
Traditionally,	 in	 computer	 vision,	 in	 order	 to	 detect	 objects,	 featurized	 image	

pyramids	are	used	to	detect	the	different	scale	objects	in	an	image.	Featurized	image	

pyramids	are	 feature	pyramids	built	upon	 image	pyramids.	This	means	one	would	

take	an	image	and	subsample	it	into	lower	resolution	and	smaller	images,	forming	a	

pyramid.	Hand-engineered	features	are	extracted	from	each	layer	in	the	pyramid	to	

detect	the	objects.	This	makes	the	pyramid	scale	invariant.	However,	this	process	is	

computational	and	memory-intensive.		

With	the	development	of	deep	learning,	the	hand-engineered	features	were	replaced	

by	CNN.	The	pyramid	was	formed	by	the	inherent	pyramidal	hierarchical	structure	of	

CNN.	The	output	size	of	feature	maps	in	CNN	decreases	after	each	successive	block	of	

convolutional	operations,	and	a	pyramidal	structure	is	formed.		

Figure	2.31	illustrates	the	various	developments	of	the	feature	pyramid.	Figure	2.30	

illustrates	 the	 featurized	 pyramid	 in	 a	 shortened	 form;	 here	 it	 stands	 for	 feature	

pyramids	 built	 upon	 image	 pyramids.	 Pyramids	 are	 scale-invariant	 where,	 in	 this	

extraction	 technique,	 the	 scale	 of	 the	 objects	 is	 offset	 by	 shifting	 its	 level	 in	 the	

pyramid,	 i.e.,	 as	 we	 move	 up	 the	 pyramid,	 the	 object	 detection	 scale	 changes;	 it,	

therefore,	enables	a	model	 to	detect	objects	across	an	extensive	range	of	scales	by	

scanning	the	model	over	both	positions	and	pyramid	levels.	

	

	
Figure	2.30	Featurized	image	pyramid	

Next	is	a	single	feature	map	(Figure	2.31(a)).	These	maps	were	proposed	for	faster	

and	more	 accurate	detection.	Research	by	 (Lim,	2018)	used	an	 extended	 single	
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feature	 map	 based	 on	 object	 detection.	 The	 proposed	 method	 reduces	 the	

detection	network,	thus	reducing	memory	and	computational	efficiency.		

	

	
Figure	2.31	Different	type	of	pyramids	architecture	

Figure	2.31(b)	is	a	pyramidal	feature	hierarchy	utilized	by	several	models,	such	as	

the	Single	Shot	Detector	(SSD)	(W.	Liu	et	al.,	2016),	but	it	does	not	reuse	the	multi-

scale	feature	maps	from	different	layers.		

Figure	2.31(c)	is	an	illustration	of	the	Feature	Pyramid	Network	(FPN).	FPN	is	a	

feature	 extractor	network,	which	 takes	 a	 single-scale	 image	of	 arbitrary	 size	 as	

input	and	outputs	proportionally	sized	feature	maps	at	multiple	 levels	 in	a	 fully	

convolutional	 fashion	(Lin	et	al.,	2016).	This	 is	achieved	by	creating	a	top-down	

pathway	with	lateral	connections	to	bottom-up	convolutional	 layers.	FPN	uses	a	

top-down	 pathway,	 bottom-up	 pathway,	 and	 lateral	 connections,	 which	will	 be	

explained	in	detail	in	the	following	sub-section.	

predict predict

predict

predict

⨁

⨁

Predict 

Predict 

Predict 

(a)	Single	feature	map	 (b)	Pyramidal	feature	hierarchy	

(c)	Feature	Pyramid	Network



 

98 
 

	
Figure	2.32	RetinaNet	network	architecture	

	
B) Network	architecture	

	
A	RetinaNet	network	architecture	contains	four	components	(Figure	2.32):	

• Bottom-up	Pathway	—The	backbone	network	(e.g.,	ResNet)	calculates	

the	feature	maps	at	different	scales,	irrespective	of	the	input	image	size	

or	the	backbone.	

• Top-down	 Pathway	 and	 Lateral	 Connections—The	 top-down	 pathway	

up-samples	 the	 spatially	 coarser	 feature	 maps	 from	 higher	 pyramid	

levels.	The	 lateral	 connections	merge	 the	 top-down	and	 the	bottom-up	

layers	with	the	same	spatial	size.		

• The	classification	subnetwork	predicts	the	probability	of	an	object	being	

present	at	each	spatial	location	for	each	anchor	box	and	object	class.	

• The	regression	subnetwork	regresses	the	offset	for	the	bounding	boxes	

from	the	anchor	boxes	for	each	ground-truth	object.	

	

C) Focal	Loss		
	
Focal	 Loss	 (FL)	 is	 a	 function	designed	 to	 address	 the	 extreme	 imbalance	between	

foreground	and	background	classes	during	training	for	one-stage	object	detection.	FL	

is	 an	 enhancement	 over	 Cross-Entropy	 Loss	 (CE)	 for	 binary	 classification.	 The	

imbalance	problem	of	 the	single-stage	detector	 is	caused	by	the	dense	sampling	of	

anchor	boxes.	In	RetinaNet,	there	can	be	thousands	of	anchor	boxes	in	each	pyramid	

layer.	However,	only	a	few	anchors	will	be	assigned	to	a	ground-truth	object,	while	
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most	will	be	background	class.	To	define	focal	loss,	we	have	to	start	from	the	cross	

entropy	(CE)	loss	for	binary	classification:	

𝐶𝐸(𝑝, 𝑦) = Q −𝑙𝑜𝑔(𝑝), 𝑖𝑓	𝑦 = 1
−𝑙𝑜𝑔(1 − 𝑝), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.	

2.16	

where	𝑦	 ∈ {±1}	 	 specifies	 the	ground-truth	class	and	𝑝 ∈ [0,1]	 is	 the	estimated	

probability	for	the	class	with	label	𝑦 = 1.	

For	notation,	𝑝3	is	defined	as:	

𝑝3 = Q 𝑝, 𝑖𝑓	𝑦 = 1
1 − 𝑝, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.	

2.17	

The	cross	entropy	is	rewritten	as:		
	

𝐶𝐸(𝑝, 𝑦) = 𝐶𝐸(𝑝3) = −	𝑙𝑜𝑔(𝑝3).	
2.18	

In	order	to	address	the	class	imbalance,	a	weighting	factor	𝜇 ∈ [0, 1]	for	Class	1	and	

1−𝜇	for	Class	−1	is	introduced.	For	notational	convenience,	𝜇3	is	defined	analogously	

to	the	definition	of	𝑝3	is	defined.	Introducing	𝜇 − 	balance	to	CE:	

	

𝐶𝐸(𝑝3) = −𝜇	𝑙𝑜𝑔(𝑝3)	
2.19	

It	is	yet	to	acknowledge	that	CE	is	the	baseline	for	focal	loss.	

For	FL,	a	modulating	factor(1 − 𝑝3)?	is	added	to	the	cross-entropy	loss,	with	tuneable	

focusing	parameter	𝛾 ≥ 	0.	Therefore,	FL	is	defined	as:	

𝐹𝐿(𝑝3) = −(1 − 𝑝3)?𝑙𝑜𝑔(𝑝3).	
2.20	

Focal	 Loss	 reduces	 the	 loss	 contribution	 from	 easy	 examples	 and	 increases	 the	

importance	of	correcting	misclassified	examples.	Further	details	on	RetinaNet	can	

be	found	at	(Lin,	Goyal,	et	al.,	2017).	

	

2.5.3.4 Fully	Convolutional	One-Stage	Object	Detection	(FCOS)	

	

A	Fully	Convolution	One-Stage	object	detection—as	the	name	indicates—is	a	one-

stage	object	detection	developed	by	the	University	of	Adelaide	(Tian	et	al.,	2019).	

FCOS	 is	 anchor	 box-free,	 and,	 so,	 avoids	 all	 related	 hyperparameters	 and	 the	
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complicated	computations	related	to	anchor	boxes,	such	as	computing	overlapping	

during	 training.	 In	 addition,	 it	 is	 a	 proposal-free	 detector.	 FOCS	 uses	 the	

Intersection	Over	Union	(IoU)	between	anchor	boxes	and	ground-truth	boxes	to	

determine	the	label	of	an	anchor	box.	If	the	value	of	IoU	lies	between	[0.5,1],	it	is	a	

positive	anchor.		

FCOS	redefines	object	detection	in	a	per-pixel	prediction	fashion.	It	uses	a	multi-

level	 prediction	 to	 improve	 the	 recall	 and	 resolve	 the	 ambiguity	 resulting	 from	

overlapped	bounding	boxes.	Finally,	a	‘centre-ness’	branch	helps	one	overcome	the	

low	quality	of	the	detected	bounding	boxes	and	improves	the	overall	performance	

by	a	large	margin.	

	

A) Network	Architecture	

	

	
Figure	2.33	FCOSarchitecture	

FCOS	 comprises	 the	 backbone,	 feature	 pyramid,	 and	 classification	 centre-ness	

regression	section.	Figure	2.33	shows	 the	network	architecture	where	𝐻 ×𝑊	is	 the	

height	 and	 the	width	 of	 the	 feature	map	and	′/𝑠′	 is	 the	 down-sampling	 ratio	 of	 the	

feature	maps	at	the	level	to	the	input	image	in	the	figure	(s=8,	16,…,128).	C3,	C4,	and	

C5	denote	the	feature	map	of	the	backbone	network,	and	P3	to	P7	denote	the	feature	

levels	used	for	the	final	prediction.	Finally,	the	classification	is	centre-ness	regression,	

where	each	head	includes	the	three	predictions.	′𝐶′	in	the	classification	represents	the	

total	number	of	classes—for	instance,	3	for	the	KITTI	dataset.		

We	now	move	on	to	the	technical	and	mathematical	aspects	of	FCOS.	
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B) Fully	Convolutional	One-Stage	Object	Detector	

	

	

	Let	𝐹, ∈ ℝ@×B×C 	be	the	feature	maps	at	layer	𝑖	of	a	backbone	CNN	and	𝑠	the	total	stride	

till	the	layer.	The	ground	truth	bounding	boxes	for	an	input	image	are	defined	as	{𝐵,},	

where	 𝐵, = A𝑥4
(,), 𝑦4

(,), 𝑥(
(,), 𝑦(

(,), 𝑐(,)B ∈ ℝD × {1, 2	 … 	𝐶}.	 A𝑥4
(,), 𝑦4

(,)B	 represents	 the	

coordinates	 of	 the	 left-top	 corner	 of	 the	 bounding	 box,	 A𝑥(
(,), 𝑦(

(,)B	 represents	 the	

coordinates	of	the	right-bottom	corner	of	the	bounding	box,	and	𝑐(,)	is	the	class	that	

the	 object	 in	 the	 bounding	 box	 belongs	 to.	

𝐶—as	mentioned	earlier— is	the	total	number	of	classes.	

	In	FCOS,	a	location	with	(𝑥, 𝑎𝑛𝑑	𝑦)	coordinates	is	considered	a	positive	sample	if	it	falls	

into	any	ground-truth	box,	and	the	class	label	𝑐∗	of	the	location	is	the	class	label	of	the	

ground-truth	box.	Otherwise,	it	is	a	negative	sample	and	𝑐∗ = 0,	where	it	represents	a	

background	class.	Additionally,	the	network	has	a	4D	real	vector	regression	target	for	

the	location	𝑡∗ = (𝑙∗, 𝑡∗, 𝑟∗, 𝑏∗).	Here	𝑙∗,	𝑡∗,	𝑟∗and	𝑏∗are	the	distances	from	the	location	

to	the	four	sides	of	the	bounding	box.	If	a	location	(𝑥, 𝑦)	falls	in	multiple	bounding	boxes	

(ambiguous	 sample),	 the	 bounding	 box	 with	 the	 minimal	 area	 is	 considered	 the	

regression	target.	

The	 following	 are	 the	 mathematical	 equation	 used	 to	 calculate	 the	 location	 of	 the	

regression	target	for	training	when	they	have	the	location	(𝑥, 𝑦),	which	is	associated	

with	𝐵, 	bounding	box:	

𝑙∗ = 	𝑥	–	𝑥8
(')	, 𝑡∗ = 	𝑦	–	𝑦8

(')	,	
2.21	

𝑟∗ =	𝑥#
(')	– 	𝑥	, 𝑏∗ =		 𝑦#

(')	– 	𝑦	

2.22	

It	is	worth	noting	that	FCOS	can	leverage	as	many	foreground	samples	as	possible	to	

train	the	regressor.	

C) Network	output		

	

Corresponding	to	the	training	targets,	the	final	layer	of	the	networks	predicts	an	80D	

vector	𝑝	of	classification	labels	and	a	4D	vector	𝑡 = (𝑙, 𝑡, 𝑟, 𝑏)	bounding	box	coordinates.	
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In	addition,	four	convolutional	layers	are	added	after	the	feature	maps	of	the	backbone	

networks	for	classification	and	regression	branches.	

	

D) Loss	function		

	

The	loss	function	in	FCOS	is	defined	as	follows:	

𝐿=>𝑝*,/@, >𝑡*,/@A =
1

𝑁:%3
,𝐿&$3=𝑝*,/ , 𝑐*,/∗ A +

𝜆
𝑁:%3

,𝕝;&!,#∗ <8=𝐿>?,=𝑡*,/ , 𝑡*,/∗ A
*,/*,/

,	

2.23	

where	𝐿/&>	is	focal	loss	(Lin,	Goyal,	et	al.,	2017),	𝐿FGH	is	the	IoU	loss	(Zhou	et	al.,	2017),	

𝑁I9>	is	the	number	of	positive	samples,	and	λ	is	set	to	1	to	balance	weight	for	𝐿FGH.	The	

summation	 is	 calculated	 over	 all	 locations	 on	 the	 feature	 maps	 𝐹, .	 𝕝J/$,&∗ K4L	 is	 the	

indicator	function,	being	1	if	𝑐,∗	if	>	0	and	0	otherwise.	

	

E) Inference	

	

The	image	goes	through	the	network	and	obtains	the	classification	scores	𝑝5,6	and	the	

regression	prediction	𝑡5,6	for	each	location	on	the	feature	maps	𝐹, . Moreover,	to	obtain	

the	predicted	bounding	boxes,	the	location	with	𝑝5,6 > 0.05	is	assumed	to	be	a	positive	

sample,	and	Eq.2.24	is	inverted.	

	

F) Centre-ness	for	FCOS		

	

Centre-ness	 is	 the	 contribution	 proposed	 by	 (Tian	 et	 al.,	 2019).	 It	 is	 a	 simple	 yet	

effective	 strategy	 to	 suppress	 low-quality	 detected	 bounding	 boxes	 without	

introducing	any	hyper-parameters.	The	centre-ness	depicts	 the	normalized	distance	

from	the	location	to	the	centre	of	the	object	that	the	location	is	responsible	for,	and	the	

target	is	defined	as	follows:	

𝑐𝑒𝑛𝑡𝑒𝑟𝑛𝑒𝑠𝑠∗ = K
𝑚𝑖𝑛	(𝑙∗, 𝑟∗)
𝑚𝑎𝑥(𝑙∗, 𝑟∗)

×
𝑚𝑖𝑛(𝑡∗, 𝑏∗)
𝑚𝑎𝑥(𝑡∗, 𝑏∗)

	

2.24	
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The	 results	 of	 centre-ness	 range	 from	0	 to	 1,	 and	 the	 square	 root	 is	 employed	 to	

reduce	the	decay.	Further	details	on	FCOS	can	be	found	in	(Tian	et	al.,	2019).	

	

2.5.3.5 Deformed	 Transformers	 for	 End-to-End	 Object	 Detection	

(Deformed	DETR)		

	

A	deformed	DETR	is	an	extension	of	DETR.	DETR	or	Detection	Transformer	was	

developed	 by	 Facebook	 in	 2020	 using	 transformers,	 as	 the	 name	 indicates,	 to	

detect	objects.	DETR	is	a	set-based	object	detector	using	a	Transformer	on	top	of	a	

convolutional	backbone	(Carion	et	al.,	2020).	 In	DETR,	an	 image	goes	 through	a	

convolution	Neural	Network	Encoder	because	CNN	works	best	with	 images;	 the	

image	features	are	then	conserved.	The	feature	map	of	the	image	thus	produced	is	

given	to	a	transformer	encoder-decoder,	which	outputs	a	set	of	box	predictions.	

Each	of	these	boxes	consists	of	a	tuple.	The	tuple	will	be	a	class	and	a	bounding	box.	

It	 is	 important	to	note	that	a	class	 includes	NULL	or	Nothing	and	its	position	as	

well.	Having	these	classes	causes	a	real	problem,	since	in	annotation,	there	is	no	

object	class	annotated	as	nothing.	To	address	this	problem,	they	(Zhu	et	al.,	2020)	

introduce	a	bipartite	matching	loss.	This	loss	involves	comparing	each	class	and	

the	bounding	box	associated	with	that	class.	It	also	includes	a	"none"	class	and	a	

box	 that	 has	 no	 annotation.	 This	 way,	 ensure	 that	 the	 total	 number	 of	 boxes	

matches	the	value	𝑁.The	assignment	of	the	predicted	to	the	actual	is	a	one-to-one	

assignment,	 such	 that	 the	 total	 loss	 is	minimized.	 The	Hungarian	 (Kuhn,	 1955)	

method	 is	 the	 method	 used	 to	 compute	 such	 minimum	 matching.	 Figure	

2.34illustrates	the	DETR	framework.	

	
Figure	2.34	DETR	framework	

However,	 DETR	 suffers	 from	 slow	 convergence	 and	 limited	 feature	 spatial	

resolution	on	account	of	the	limitation	of	Transformer	attention	modules.		

CNN
Transformer 

encoder-
decoder

Set of images feature Set of box predictions Bipartite matching loss

No object (∅) No object (∅)
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A) Deformable	DETR		

	

Deformed	DETR	(Zhu	et	al.,	2020)	was	introduced	to	overcome	these	limitations.	

Deformed	DETR	aims	to	mitigate	the	slow	convergence	and	high	complexity	issues	

of	DETR.	The	detection	network	combines	 the	advantages	of	deformable	sparse	

spatial	 sampling	 and	 the	 relationship	modelling	 capabilities	 of	 transformers.	 It	

considers	the	point	that	a	small	set	of	key	sampling	points	of	all	feature	map	pixels	

is	 used	 as	 a	 pre-filter	 to	 highlight	 key	 elements.	 The	 module	 can	 be	 naturally	

extended	to	aggregate	multi-scale	features	without	the	help	of	FPN;	in	deformable	

DETR,	 multi-scale	 is	 used.	 The	 deformable	 attention	 module	 replaces	 the	

transformer	 attention	module	 that	 processes	 the	 feature	map,	 as	 shown	 in	 the	

following	figure,	Figure	2.35.	

	

i) Network	Architecture	

	

	
Figure	2.35	Deformed	DETR	framework.	

In	 deformable	 DETR,	 a	 multi-scale	 deformable	 attention	 module	 is	 utilized	 to	

replace	the	Transformer	attention	modules	processing	feature	maps.	Owing	to	its	

fast	 convergence	 its	 computational	 and	 memory	 efficiency,	 deformable	 DETR	
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provides	the	possibility	to	develop	variants	of	end-to-end	object	detectors.	Yet,	the	

model	 explores	 a	 simple	 and	 effective	 iterative	 bounding	 box	 refinement	

mechanism	to	improve	the	detection	performance.	The	discretion	of	the	model	is	

based	on	the	work	by	Carion	et	al.	(Carion	et	al.,	2020).	

	

2.5.4 DESCRIPTION	OF	DATASETS	
 

2.5.4.1 COCO	

	
COCO	 stands	 for	 Common	 Object	 in	 Context;	 it	 is	 one	 of	 the	 largest	 image	

recognition	 datasets.	 The	 datasets	 contain	 challenging	 and	 high-quality	 visual	

datasets	for	computer	vision	and	was	initially	developed	to	push	the	state	of	the	

art	 in	 object	 detection	 forward.	 The	 dataset	 contains	 more	 than	 330k	 images	

(>200K	labelled	images)	with	80	object	categories.	This	dataset	has	gone	through	

several	iterations—each	one	focuses	on	a	different	computer	vision	task,	such	as:	

• Object	detection	

• Keypoint	tracking	

• Image	captioning	

• ‘Stuff’	detection	

For	this	thesis,	we	based	our	work	on	the	third	iteration	(COCO	2017).	This	dataset	

is	used	primarily	for	two	cases:	

• Training	computer	vision	models,	where	the	dataset	provides	a	wide	range	

of	realistic	images,	showing	disorganized	scenes	with	various	backgrounds,	

and	 overlapping	 objects.	 These	 enable	 training	 models	 on	 objects	 and	

people	in	realistic	settings.	

• Comparing	 AI	 models.	 In	 computer	 vision,	 to	 accurately	 compare	

performances,	 a	 model	 must	 be	 trained	 on	 a	 large-scale,	 standardized	

dataset,	such	as	COCO.	

The	following	are	the	sample	images	of	the	dataset	(Figure	2.36).	
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2.5.4.2 Cityscape	

	

Figure	2.36	Sample	of	COCO	dataset	images	
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The	 Cityscapes	 dataset	 was	 created	 in	 2016	 by	 (Cordts	 et	 al.,	 2016)	 in	 order	 to	

understand	the	semantic	of	urban	streets	scenes.	The	data	 is	comprised	of	a	set	of	

stereo	video	sequences	recorded	in	streets	from	50	different	cities.	In	these,	5,000	of	

the	 images	 have	high-quality	 pixel-level	 annotations	 but	 20,000	 additional	 images	

have	coarse	annotations.	This	dataset	includes	30	classes	related	to	road	scenes	like	

roads,	sidewalks,	parking,	pedestrians,	riders,	cars,	 trucks,	motorcycles,	cycles,	and	

other	objects.		Cityscapes	specified	a	set	for	training	which	is	60%	of	the	total	data,	

set	for	validation	which	is	10%	of	the	total	data	and	a	set	for	testing	which	is	30	%	of	

the	total	data	number.	

The	training	set	is	typically	separate	from	the	test	set,	which	is	used	to	evaluate	the	

performance	of	the	trained	model.	The	test	set	is	also	a	subset	of	a	dataset,	typically	

separate	from	the	training	set	used	to	train	the	model.	The	test	set	measures	how	well	

the	model	generalises	to	new,	unseen	data.	The	goal	is	to	build	a	model	that	performs	

well	on	both	the	training	and	testing	sets,	 indicating	that	the	model	has	 learned	to	

recognise	 patterns	 in	 the	 data,	 rather	 than	 simply	memorising	 the	 training	 set.	 A	

validation	set	is	a	subset	of	a	data	set	that	is	used	to	evaluate	the	performance	of	a	

model	during	the	training	process.	 It	 is	used	to	tune	the	model’s	hyperparameters,	

such	as	the	learning	rate	or	the	number	of	layers	in	a	neural	network.	The	goal	is	to	

find	the	best	set	of	hyperparameters	that	will	result	in	a	model	that	generalises	well	

to	new,	unseen	data.	The	validation	set	is	usually	separate	from	the	training	and	test	

sets	and	is	used	to	prevent	overfitting,	which	occurs	when	a	model	learns	to	fit	the	

training	set	too	closely	and	performs	poorly	on	new	data.	

	Cityscape	 is	 used	 for	 deep	 learning	 training	 and	 testing	 purposes,	 especially	 by	

computer	science	and	intelligent	transport	system	researchers.	(Hung,	Tsai,	Liou,	Lin,	

&	Yang,	2018)	used	Cityscape	to	train	and	test	their	proposed	algorithm	to	improve	

semantic	segmentation	accuracy	by	coupling	the	adversarial	loss	with	the	standard	

cross	 entropy	 loss.	 Additionally,	 (Shu	 Liu,	 Qi,	 Qin,	 Shi,	 &	 Jia,	 2018)	 tested	 their	

proposed	network	on	this	dataset;	many	other	researchers	also	used	the	dataset	for	

testing	purposes	(Kim	&	Kim,	2012;	Songtao	Liu,	Huang,	&	Wang,	2020;	Mao,	Xiao,	&	

Jiang,	2017;	Han	Wang,	Li,	&	Wang,	2019)	The	following	Figure	2.37	is	an	example	of	

the	high-quality	image	annotation.	



 

108 
 

	
Figure	2.37	High	quality	cityscapes	image	annotation	

Figure	2.38	illustrates	the	coarse	annotations	of	the	data,	in	which	it	is	notable	that	

data	were	not	annotated	accurately;	the	differences	between	the	annotations	can	

be	seen.		

	
Figure	2.38	Coarse	cityscape	annotation	

Figure	2.39	shows	a	sample	of	cityscapes	images	used	for	testing.	It	is	important	to	

notice	that	images	in	this	dataset	are	saved	in	png	format	and	annotation	in	json.		

Let	us	now	move	on	to	the	second	dataset	used	for	training	and	testing	algorithms,	

KITTI.	
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Figure	2.39	Sample	of	Cityscapes	dataset	
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2.5.4.3 KITTI	

	
Karlsruhe	 Institute	of	Technology	and	Toyota	Technological	 Institute	 introduced	a	

dataset	called	KITTI	dataset	in	2012	(Geiger,	Lenz,	&	Urtasun,	2012),	were	it	contains	

7,481	training	images	and	7,518	test	images,	in	a	total	of	80,256	labelled	objects.	The	

main	purpose	of	developing	and	creating	this	dataset	is	for	use	as	stereo,	optical	flow,	

visual	 odometry/SLAM,	 and	3D	object	 detection	 tasks.	 Images	 for	 this	 dataset	 are	

saved	in	png	and	annotations	in	txt	format.	The	dataset	consists	of	11	classes	like	cars,	

vans,	trucks,	pedestrians,	cyclists,	and	trams.	KITTI	uses	50-0-50	split,	where	50%	of	

the	data	is	specified	as	a	training	set	and	the	remaining	50%	is	specified	as	the	testing	

set.	The	KITTI	dataset	is	used	in	many	researches	for	detecting	pedestrians,	such	as	

the	 autoregressive	 pedestrian	 detection	 (Brazil	 &	 Liu,	 2020;	 Mao	 et	 al.,	 2017),	 in	

which	 the	 dataset	 is	 used	 to	 test	 the	 proposed	 aggregation	 features	 to	 boost	 the	

traditional	pedestrian	detection	methods.	(Al-Refai	&	Al-Refai,	2020)	used	the	dataset	

to	detect	four	classes:	pedestrians,	vehicles,	trucks,	and	cyclists	using	You	Only	Look	

Once	(YOLO)	algorithm.	Feng	et	al.	proposed	a	system	for	 fast	and	accurate	object	

detection	and	localization	based	on	binocular	vision	(Feng	et	al.,	2020).	KITTI	dataset	

in	also	used	for	car	detection,	(Yebes,	Bergasa,	Arroyo,	&	Lazaro,	2014)	carried	out	a	

discussion	on	the	supervised	learning	of	a	car	detector	built	as	a	Discriminative	Part-

based	 Model	 (DPM).	 Figure	 2.40	 depicts	 the	 diversity	 of	 objects	 that	 KITTI	 data	

include,	 where	 the	 images	 belong	 to	 different	 categories—city,	 residential	 road,	

campus,	person	from	left	to	right.		
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Figure	2.40	Sample	of	KITTI	dataset
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2.5.4.4 EuroCity	Persons	

	
EuroCity	 Person	 (ECP)	 dataset—as	 the	 name	 indicates—is	 a	 dataset	 collected	 in	

different	areas	and	cities	around	the	European	cities.	The	data	was	collected	 in	31	

cities	 across	 12	 countries.	 The	 data	 contained	 over	 238,200	 person	 instances,	

manually	 labelled	 in	over	47,300	 images	(Braun	et	al.,	2019).	This	data	 focuses	on	

annotating	persons,	wherein	the	annotation	was	divided	into	three	overlapping	data	

subsets,	which	were	further	defined	after	taking	into	consideration	the	ground-truth	

annotations:	

• Reasonable:	Persons	with	a	bounding	box	height	greater	than	40	px	which	

are	occluded/truncated	less	than	40%		

• 	Small:	 Persons	 with	 a	 height	 between	 30	 px	 and	 60	 px	 which	 are	

occluded/truncated	less	than	40%	

• Occluded:	Persons	with	a	bounding	box	height	greater	than	40	px	which	are	

occluded	between	40%	and	80%	

This	dataset	includes	a	day	and	night	images,	where	images	are	saved	in	png	format	

and	annotations	in	json.	ECP	specified	a	set	for	training	which	is	60%	of	the	total	data,	

set	for	validation	which	is	10%	of	the	total	data	and	a	set	for	testing	which	is	30	%	of	

the	total	data	number.	Having	the	split	explained,	going	onward	in	this	thesis	when	

mentioning	training	set	means	the	training	set	as	specified	by	the	data	itself.			

Research	such	as	Serial-to-Parallel	Backbone	Search	for	Object	Detection	used	ECP	

for	testing	their	desired	backbone	(Jiang,	Xu,	Zhang,	Liang,	&	Li,	2021),	Xie	et	al.	(H.	

Xie,	 Zheng,	 Shin,	 &	 Proença,	 2021)	 developed	 a	 novel	 pedestrian	 detector	 using	 a	

deformable	attention-guided	network	and	used	ECP	for	evaluating	the	network.	(Ren	

et	al.,	2017)	(Hasan,	Liao,	Li,	Ullah	Akram,	&	Shao,	2021)	(J.	Zhang	et	al.,	2020)	were	

the	researchers	who	used	ECP	to	evaluate	network	purposes.	

Figure	2.41	shows	a	sample	image	of	an	ECP	dataset.	

 

 
 



 

113 
 

Figure	2.41	Sample	of	ECP	dataset	
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2.5.4.5 Traffic	field	Dataset		

	
A	customized	traffic	field	dataset	for	this,	consisting	of	300	images	in	five	classes—

cars,	 cyclists,	pedestrians,	buses,	 and	motorcycles—were	 collected	using	a	dash	

camera,	with	a	30	fps	recording	rate,	and	frame	dimension	of	1920	x	1080	pixels,	

and	 a	 70◦	vertical	 field	 of	 view.	 The	 camera	 (Ring	 car	 cam)	was	 located	 first	 at	

height	H	=	155	cm	road	surface	and	tilted	at	an	angle	θc	=	88.5◦.	The	camera	used	

has	two	wide-angle,	motion	alerts,	and	a	build	in	GPS.	The	images	were	collected	

in	the	United	Arab	Emirates	in	July,	where	the	sky	is	sunny	and	clear	and	the	wind	

is	light.	Images	were	then	annotated	manually	using	the	Labellmg	tool.	A	sample	of	

the	 dataset	 is	 shown	 in	 Figure	 2.42.	 Each	 dataset	 has	 its	 own	 resolution	 and	

annotation	style;	in	order	to	use	them	for	this	thesis,	resolutions	and	annotations	

were	modified	for	training	and	testing	purposes.	

	
Figure	2.42	Sample	of	traffic	field	dataset	

	
2.5.4.6 Multiple	Object	Tracking	Dataset		
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The	Multiple	Object	Tracking	(MOT)	benchmark	dataset	is	a	challenging	tracking	

dataset	 and	 has	 several	 variants,	 for	 this	 thesis	 MOT16	 is	 used.	 The	 dataset	

contains	fourteen	challenging	video	sequences	(7	training,	7	test).	The	videos	are	

filmed	in	unconstrained	environments	using	both	static	and	moving	cameras.	All	

sequences	 have	 been	 annotated	 with	 high	 accuracy,	 strictly	 following	 a	 well-

defined	protocol	(Milan	et	al.,	2016).		

	

2.5.4.7 ImageNet	Dataset		

	
ImageNet	dataset	(Deng	et	al.,	2009)	is	an	image	database	organized	according	to	

the	WordNet	hierarchy,	 in	 which	 each	 node	 of	 the	 hierarchy	 is	 depicted	 by	

hundreds	 and	 thousands	 of	 images.	 The	 data	 is	 widely	 used	 to	 build	 various	

architectures	since	it	is	large	enough	to	create	a	generalized	model	(Huh,	Agrawal,	

&	Efros,	2016).	The	dataset	is	made	of	14,197,122	images,	21841	synsets	indexed,	

with	an	average	of	about	500	 images	per	node	 (Russakovsky,	Deng,	Su,	Krause,	

Satheesh,	Ma,	Huang,	Karpathy,	Khosla,	Bernstein,	Berg,	&	Fei-Fei,	2015).	Synsets	

index	refer	 to	 the	process	of	organizing	and	categorizing	 images	based	on	 their	

corresponding	 synset	 identifiers.	 Where	 synsets	 are	 groups	 of	 synonyms	 that	

represent	 a	 concept	 or	 idea.	 In	 ImageNet,	 each	 synset	 is	 assigned	 a	 unique	

identifier,	which	is	used	to	index	the	images	in	that	synset.	ImageNet	has	played	an	

important	key	role	in	advancing	computer	vision	across	applications	such	as	object	

recognition,	image	classification,	and	object	localization.		

	

2.5.5 PERFORMANCE	MEASURES	
	
Different	evaluation	matrics	can	be	adopted	in	order	to	evaluate	the	performance	

of	deep	learning	models.	For	instance,	precision,	recall,	F1	score	and	IoU.	Here,	we	

shall	 implement	 a	 confusion	 matrix	 based	 on	 precision	 and	 recall	 results,	

Intersection	 Over	 Union,	 mean	 average	 precision,	 and	 (for	 model	 complexity)	

Floating	Point	Operation.		

2.5.5.1 Confusion	Matrix		

	

A	 confusion	 matrix	 is	 a	 matrix	 that	 summarizes	 the	 performance	 of	 machine	

learning	model	on	a	set	of	test	data.	It	is	often	used	to	measure	the	performance	of	
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classification	 models,	 which	 aim	 to	 predict	 a	 categorical	 label	 for	 each	 input	

instance.	Precision	and	recall	are	the	performance	metrics	used	in	this	thesis	for	

creating	the	confusion	matrix.		

Two	methods	for	counting	classifiers	in	computer	vision	exist	viz.	the	average	

precision	and	recall.	

Precision	refers	 to	how	well	 the	classifier	 is	able	 to	correctly	predict	whether	a	

character	belongs	to	a	certain	category	or	not.	If	there	is	any	doubt	at	all	whether	

or	not	an	image	contains	a	cat,	then	it	will	most	likely	be	labelled	as	‘not	that’.	This	

can	also	refer	to	classification	tasks	where	each	category	has	different	levels,	e.g.,	

1,	2,	3	and	4	are	represented	by	0/1/2/3	respectively.	Recall	refers	to	the	ability	of	

a	model	to	find	all	the	relevant	cases	within	a	dataset.		

Precision	measures	how	many	of	the	predictions	that	the	model	made	were	correct	

values	ranges	from	0	to	1.	It	is	calculated	as	follows:	

	

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑃	

2.25	

TP	=	True	Positives	(Predicted	as	positive	as	was	correct)	

FP	=	False	Positives	(Predicted	as	positive	but	was	incorrect)	

	

Recall	measures	how	well	the	model	find	all	the	positives	values	ranges	from	0	to	

1;	it	is	calculated	by:	

𝑅𝑒𝑐𝑎𝑙𝑙	 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑁	

2.26	

FN	=	False	Negatives	(Failed	to	predict	an	object	that	was	there)	

	

Worth	noticing	is	the	fact	that	higher	precision	means	that	an	algorithm	returns	more	

relevant	results	than	irrelevant	ones,	and	high	recall	means	that	an	algorithm	returns	

most	of	the	relevant	results.	On	having	those	values,	a	confusion	matrix	is	then	created.	

The	 matrix	 displays	 the	 number	 of	 true	 positives	 (TP),	 true	 negatives	 (TN),	 false	

positives	(FP),	and	false	negatives	(FN)	produced	by	the	model	on	the	test	data.	
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2.5.5.2 F1	score		

	
The	F1	score	is	a	metric	commonly	used	in	machine	learning	and	statistics	to	evaluate	

the	performance	of	a	binary	classification	model.	The	F1	score	is	the	harmonic	mean	

of	 precision	 and	 recall.	 It	 combines	 both	 precision	 and	 recall	 into	 a	 single	 value,	

providing	a	balanced	measure	of	a	model's	performance:	

𝐹1 = 2 ∙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙	

2.27	

Although	 this	 metrics	 was	 discussed	 here	 it	 will	 not	 be	 used	 it	 is	 mentioned	 for	

completion	purposes	This	evaluation	metrics	will	not	be	used	in	this	thesis.	

	

2.5.5.3 Intersection	Over	Union	

	
It	 is	 important	 to	notice	 that	 for	object	detection	systems,	 the	predictions	are	 in	

terms	 of	 a	 bounding	 box	 and	 a	 class	 label.	 For	 each	 bounding	 box,	 the	 overlap	

between	the	predicted	bounding	box	and	the	ground	truth	bounding	box	needs	to	

be	measured.	This	is	measured	by	IoU	(Intersection	Over	Union).	

 

 

 

 

 

𝐼𝑜𝑈	 = 	
𝑎𝑟𝑒𝑎	𝑜𝑓	𝑜𝑣𝑒𝑟𝑙𝑎𝑝
𝑎𝑟𝑒𝑎	𝑜𝑓	𝑢𝑛𝑖𝑜𝑛 	=

………………………………… . . ……………… .…
. .  

2.28	

 

In	addition,	in	tasks	for	object	detection,	Precision	and	Recall	are	calculated	using	

the	IoU	value	for	a	given	IoU	threshold.	For	example,	if	the	IoU	threshold	is	0.5,	and	

the	IoU	value	for	a	prediction	is	0.7,	then	we	classify	the	prediction	as	True	Positive	

(TP).	On	the	other	hand,	if	the	IoU	is	0.3,	we	classify	it	as	False	Positive	(FP).	

	

Prediction box  
 

Ground Truth  
 

Prediction box  
 

Ground Truth  
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2.5.5.4 Mean	Average	Precision		

 

The	mean	 Average	 Precision	 (mAP)	 score	 is	 a	metric	 also	 used	 to	 evaluate	 the	

performance.	It	is	calculated	by	taking	the	average	precision	scores	for	each	query	

in	a	dataset	and	then	averaging	those	scores	across	all	classes	and/or	overall	IoU	

threshold,	depending	on	the	different	detection	challenges	that	exist.		

𝑚𝐴𝑃	 =
1
𝑁D𝐴𝑃,

N

,.(

 

2.29	

where	the	𝐴𝑃, 	is	the	average	precision	(AP)	of	class	i,	N	is	the	number	of	classes.	

Average	Precision	(AP)	at	i	is	the	sum	of	the	precision	at	i	of	the	values	of	i	divided	

by	the	total	number	of	relevant	items	in	the	top	i	results.		

mAP	is	a	popular	metric	because	it	takes	into	account	both	Precision	and	Recall	and	

provides	a	single	number	that	summarizes	the	overall	performance	of	a	retrieval	

system.	

2.5.6 INFERENCE	TIME	MEASUREMENT	
 

For	real	time	application,	inference	time	is	a	variable	that	has	to	be	measured	to	

optimize	a	neutral	network.	Inference	time	can	be	defined	as	the	time	required	for	

forward	propagation.	In	other	words,	it	is	the	amount	of	time	it	takes	a	machine	

learning	model	to	process	new	data	and	make	a	prediction.	This	evaluation	was	

implied	mainly	 in	Chapter	6,	where	Traffic	RetinaNet	was	developed.	To	get	the	

number	of	Frames	per	Second:	

𝐹𝑟𝑎𝑚𝑒𝑠	𝑝𝑒𝑟	𝑆𝑒𝑐𝑜𝑛𝑑 = 	
1

𝑖𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒	𝑡𝑖𝑚𝑒		

2.30	

To	calculate	the	inference	time	of	a	model,	FLOPs,	and	FLOPS	must	be	considered.	
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2.5.6.1 Floating	Point	Operations	(FLOPs)	

A	 Floating	 Point	 Operation	 is	 any	 mathematical	 operation	 (such	 as	 addition,	

subtraction,	 multiplication,	 and	 division)	 or	 assignment	 that	 involves	 floating-

point	 numbers	 (as	 opposed	 to	 binary	 integer	 operations).	 FLOPs	 give	 the	

complexity	of	the	model.	The	total	number	of	computations	the	model	will	have	to	

perform	is	first	calculated.	For	instance,	to	calculate	the	convolution	when	using	a	

sliding	window	and	on	ignoring	the	nonlinear	overhead	computation,	the	FLOPs	is	

calculated	as	follows	(Hurtado	2022):	

𝐹𝐿𝑂𝑃𝑆 = 2𝐻𝑊(𝐶,%	𝐾) + 1)𝐶9P3	
2.31	

Here	𝐻,𝑊	and	𝐶,%	 are	 the	 height,	 width,	 and	 number	 of	 channels	 in	 the	 input	

feature	map.	𝐾	is	the	size	of	kernel	and	𝐶9P3	is	the	number	of	channels	in	the	output.	

	

2.5.6.2 Floating	Point	Operation	per	Second	(FLOPS)	

	
Floating	 Point	 Operation	 per	 second	 refers	 to	 the	 number	 of	 floating-point	

operations	 a	 computing	 entity	 can	 perform	 in	 one	 second.	 FLOPS	 is	 used	 to	

quantify	 the	 performance	 of	 hardware	 (Jeon	 2021).	 The	 more	 operations	 per	

second	can	be	done,	the	faster	the	inference	will	be	it	is	calculated	in	multiplier–

accumulator	(Mac).	

	
Finally,	inference	time	is	calculated	as	follows:	
	

𝑖𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒	𝑡𝑖𝑚𝑒 =
𝐹𝐿𝑂𝑃𝑠
𝐹𝐿𝑂𝑃𝑆	

2.32	

2.6 	Research	Scope		
	
The	concept	of	automated	driving	is	one	of	the	most	recent	and	attractive	fields	for	

research,	 especially	 researches	 into	 the	 intelligent	 transportation	 system,	 since	 it	

comes	 with	 a	 wide	 variety	 of	 possible	 applications.	 Owing	 to	 the	 timeframe	 and	

limited	resources,	a	selection	with	regard	to	the	scope	of	this	research	must	be	made.	

First	of	all,	the	motivation	behind	carrying	out	this	research	is	to	increase	the	safety	

of	pedestrians	and	cyclists.	A	number	of	 research	gaps	 in	 the	 literature	have	been	

identified	after	conducting	the	literature	review.	
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Several	 research	 have	 been	 carried	 to	 study	 the	 acceptance	 of	 AV	 however	most	

studies	 where	 based	 on	 hypothetical	 assumptions.	 This	 research	 will	 focus	 on	

analysing	 the	 before/after	 perception	 of	 autonomous	 vehicles	 by	 utilizing	 a	

technology	acceptance	model.	This	will	provide	insight	into	both	people's	willingness	

to	 adopt	 technology	 and	 their	 associated	 concerns.	 Again,	 our	 results	 will	 help	

researchers	while	conducting	further	research	in	the	field	of	AVs.		

Additionally,	 this	 research	 addresses	 the	 detection	 of	 road	 objects,	 specifically	

pedestrians	and	cyclists,	from	the	perspective	of	autonomous	vehicles.	The	focus	is	

on	 evaluating	 performance	 across	 multiple	 datasets	 using	 various	 algorithms,	

introducing	a	nuanced	analysis	where	the	literature	lacks	in	such	complexity	analysis.	

This	approach	contributes	to	the	advancement	of	knowledge	in	autonomous	vehicle	

technology	and	enhances	our	understanding	of	intricate	object	detection	scenarios.	

Furthermore,	 this	 thesis	 develops	 an	 urban	 benchmark	 dataset	 meticulously	

designed	 to	 account	 for	 diverse	 weather,	 lighting,	 and	 driving	 conditions	 in	 the	

context	 of	 pedestrian	 and	 cyclist	 detection.	 Notably,	 there	 is	 a	 scarcity	 of	 urban	

datasets	 that	 specifically	 address	 the	 variability	 in	 weather,	 lighting,	 and	 driving	

conditions.The	 five	 algorithms	 performance—Faster	 RCNN,	 Cascade	 RCNN,	

RetinaNet,	FCOS,	and	Deformable	DETR—	is	then	evaluated.	

Additionally,	for	our	purpose,	we	will	use	different	methods	to	achieve	the	aim	of	the	

thesis:	 detection,	 tracking-by-detection,	 and	 estimation	 will	 be	 developed	 for	

autonomous	vehicles	use.	However,	we	will	not	fully	go	into	the	details	of	the	driving:	

the	aim	 is	 to	apply	 the	methods	studied	 to	autonomous	vehicles.	 Integrating	 these	

methods	and	algorithms	into	an	autonomous	vehicle	is	beyond	the	scope	of	this	thesis.	

In	the	next	chapter,	the	thesis	delves	into	a	unique	facet	of	the	survey	study,	which	

centers	 around	 the	 acceptance	 of	 AV	 using	 the	 Technology	 Acceptance	 Model.	

Unlike	 many	 existing	 studies	 that	 rely	 on	 hypothesis-based	 evaluations,	 the	

approach	offers	a	distinctive	perspective.	The	study	focus	on	participants	who	have	

had	the	opportunity	to	experience	AV	vehicles	first-hand.	By	doing	so,	I	aim	to	shed	

light	 on	 the	 practical	 acceptance	 of	 AV	 technology,	 drawing	 from	 real-world	

encounters	 and	 user	 experiences.	 The	 chapter	 explores	 the	 invaluable	 insights	

derived	from	this	approach	and	its	implications	for	the	broader	understanding	of	

AV	acceptance.	
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Chapter	3	
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3 The	Acceptance	of	Autonomous	
Vehicles	in	a	Mixed	Mode	Environment		

 
3.1 INTRODUCTION	

	
The	 development	 of	 the	 transportation	 sector	 entails	 the	 introduction	 of	more	

advanced	modes	 of	 transportation	 like	 flying	 taxis,	 autonomous	 vehicles	 (AVs),	

hyperloops,	and	delivery	drones.	AVs	are	a	ground-breaking	concept,	one	that	will	

significantly	change	how	people	travel	in	cars	and	how	cars	will	behave	within	the	

transport	 network.	 The	 inclusion	 of	 AVs	 will	 impact	 the	 safety,	 control,	

convenience,	and	user	perception	of	travel	in	cars	and	also	generate	fundamental	

changes	as	regards	safety	and	behaviour	on	the	roads	where	AVs	are	allowed	to	

operate.	 These	 changes	 are	 extensive	 and	 need	 to	 be	 studied	 for	 their	 possible	

societal	acceptance—or	rejection—if	implemented.	

To	 better	 understand	participant	 acceptance	 of	AVs,	 a	 before-use	 and	 after-use	

survey	of	AVs	was	conducted	(refer	to	Appendix	A).	The	Technology	Acceptance	

Model	(Venkatesh	&	Davis,	2000)	was	used.	Participants	were	asked	to	take	the	

survey	twice:	once	before	using	a	self-driving	vehicle	and	once	after	using	it	to	find	

out	how	it	affects	their	behaviour.	The	different	questions	and	parts	of	the	survey	

focused	 on	 analyses	 of	 the	 four	 different	 aspects	 that	 concerns	 users	 the	most	

(safety,	environment,	contusion,	and	anxiety).		

This	chapter	is	divided	into	five	sections.	The	first	section	highlights	the	theoretical	

concept	of	the	Technology	Acceptance	Model	(TAM);	the	second	section	deals	with	

the	reliability	of	the	experimental	details	and	a	validity	test	analysis,	followed	by	

the	 demographics	 of	 the	 survey	 questionnaire.	 The	 second	 section	 is	 primarily	

about	 the	 safety	 aspect	 of	 autonomous	 vehicles	 and	 includes	 an	 analysis	 of	 the	

responses	of	the	participants.	The	third	section	is	about	the	data	analysis	of	 the	

environmental	impact	of	autonomous	vehicles	while	the	fourth	section	examines	

the	benefits	of	autonomous	vehicles	for	users.	The	fifth	section	investigates	anxiety	

related	to	autonomous	vehicles	while	the	last	section	connects	the	dots.	

EuroCity	Person.	Many	of	 the	abovementioned	algorithms	were	 tested	on	COCO	

(Common	Objects	In	Context)	(Caesar	et	al.,	2018).	
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3.2 TECHNOLOGY	ACCEPTANCE	MODEL	(TAM)	
	
The	potential	 of	 technology	 to	provide	benefits	has	 long	motivated	 information	

systems	 (IS)	 management	 researchers	 to	 examine	 the	 willingness	 of	 the	

acceptance	 of	 innovative	 technology	 by	 individuals	 (Davis	 et	 al.,	 1989).	 In	 the	

1980s,	 the	 adaptation	 of	 technology	 research	 became	 a	 primary	 research	 field,	

thanks	to	the	growth	in	the	use	of	personal	computers.	Several	technological	and	

organizational	 perspectives	 had	 aimed	 to	 advance	 IS-related	 research,	 such	 as	

(Benbasat,	Dexter	&	Todd,	1986;	Robey	&	Farrow,	1982;	Franz	&	Robey,	1986),	

wherein	they	studied	the	acceptance	of	technology.	These	studies,	however,	used	

subjective	 performance	 perception	 scales	 and	 neglected	 the	 validation	 of	 the	

quality	of	those	measures.	As	a	result,	the	correlation	of	these	subjective	measures	

with	actual	use	had	not	been	sufficiently	significant	to	confirm	their	internal	and	

external	 validity	 (De	 Sanctis,	 1983;	 Ginzberg,	 1981;	 Schewe,	 1976;	 Srinivasan,	

1985).	 Hence,	 there	 was	 a	 need	 to	 develop	 reliable	 measures	 to	 investigate	

attitudinal	factors.	In	1989,	Fred	Davis	(Davis	et	al.,	1989)	proposed	a	model	called	

the	Technology	Acceptance	Model	(TAM),	through	which	the	possible	use	of	a	new	

technology/system	can	be	studied	and	predicted	by	the	motivation	of	the	user	and	

the	features	and	capabilities	of	the	system	(Chuttur,	2009).	

TAM	was	initially	developed	to	highlight	the	process	underpinning	the	acceptance	

of	technology,	to	predict	the	behaviour	of—and	provide	a	theoretical	explanation	

for—the	 successful	 implementation	 of	 technology.	 In	 addition,	 the	 objective	 of	

TAM	is	to	inform	practitioners	about	measures	that	they	might	take	prior	to	the	

implementation	of	systems.	For	this,	Davis	embarked	on	the	development	of	the	

model	 of	 technology	 acceptance	 by	 framing	 the	 processes	 mediating	 the	

relationship	between	IS	characteristics	(external	 factors)	and	actual	system	use.	

The	model	was	 based	 on	Theory	 of	 Reasoned	Action	 (Fishbein	&	Ajzen,	 1977),	

which	provided	a	psychological	perspective	on	human	behaviour	that	was	missing	

in	the	IS	literature	at	that	time	(Davis	et	al.,	1989;	Venkatesh	et	al.,	2003).		

The	Technology	Acceptance	Model	 (TAM)—as	 shown	 in	Figure	3.1—is	a	model	

with	two	main	features,	namely	perceived	ease	of	use	and	perceived	usefulness.	

These	 two	 variables	 can	 be	 used	 to	 predict	 how	 innovations	 like	 autonomous	

vehicles	are	being	accepted	or	 rejected	 (Ma	&	Liu,	2005).	Many	research	works	

have	proven	the	effectiveness	of	TAM	and	many	works	still	make	use	of	TAM	to	
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investigate	 the	 acceptance	or	 rejection	of	 an	 innovation	 (Holden	&	Rada,	 2011;	

Lederer,	Maupin,	Sena,	&	Zhuang,	2000;	Ma	&	Liu,	2005;	Wintersberger,	Frison,	&	

Riener,	2018).	Therefore,	TAM	has	emerged	as	the	most	widely	applied	model	to	

study	user	acceptance	and	use	of	information	technology	(Ma	&	Liu,	2005).	In	the	

case	 of	 autonomous	 vehicles	 (AVs),	 TAM	 can	 be	 used	 to	 predict	 how	 the	

participants	in	the	survey	accept	or	reject	autonomous	vehicles.		

In	the	past	few	decades,	the	acceptance	and	adoption	of	innovation	have	received	

large	attention	to	the	extent	that	many	interesting	theoretical	models	have	been	

developed	to	understand	the	end	user’s	acceptance	gestures.	One	of	these	models	

is	the	Technology	Acceptance	Model	(TAM)	which	was	developed	by	Davis	(1989);	

this	 model	 has	 been	 applied	 in	 several	 fields	 to	 evaluate	 the	 acceptance	 of	

information	technologies.	It	must	be	noted	that	TAM	has	been	tested	empirically,	

and	is	effective,	parsimonious,	predictive,	and	robust	(Venkatesh	&	Davis,	2000).	

There	are	great	benefits	attached	to	the	use	of	autonomous	vehicles,	but	one	would	

not	know	how	users	perceive	the	innovation	till	research	is	conducted	on	the	topic.	

Considering	 the	 importance	 and	 relevance	 of	 this	 problem,	 the	 study	 of	 users’	

acceptance	 of	 innovation	 has	 been	 at	 the	 forefront	 of	 the	 research	 subject;	

however,	despite	the	rich	research	that	has	been	conducted	to	 investigate	some	

variables	relating	 to	 individual,	organization,	and	 technology,	 it	 is	still	observed	

that	there	is	inadequate	information	about	the	key	factors	that	determine	users’	

acceptance	or	rejection	of	innovation	(Ma	&	Liu,	2005).	

	

	
Figure	3.1	Technology	Acceptance	Model	(TAM).	
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3.2.1 Perceived	usefulness	and	perceived	ease	of	use	
 
What	motivates	 some	 people	 to	 embrace	 innovation	 and	what	 prompts	 others	 to	

resist	innovation?	Answers	to	these	questions	have	great	potential	to	reveal	the	key	

factors	that	need	to	be	considered	when	innovations	like	autonomous	vehicles	are	to	

be	 adopted.	 According	 to	 the	 literature,	 many	 variables	 determine	 and	 influence	

system	use.	The	two	main	factors—identified	as	exceptionally	important	in	the	study	

of	the	systems—are:	(1)	the	factors	that	make	people	to	use,	or	not	use,	an	innovation	

is	what	is	referred	to	as	perceived	usefulness	and	(2)	the	factor	that	deals	with	the	view	

of	people	in	respect	of	the	complexity	of	innovation	and	the	requisite	knowledge	to	

operate	innovations	like	autonomous	vehicles	is	what	is	referred	to	as	perceived	ease	

of	use	(Davis	et	al.,	1989).	

Perceived	 usefulness	 can	 be	 defined	 as	 the	 extent	 to	which	 a	 user	 believes	 that	 by	

deploying	 information	 technology,	his	or	her	 job	performance	would	be	 improved	

(Davis	et	al.,	1989).	This	definition	stems	from	the	definition	of	the	word	‘usefulness’,	

which	states	that	the	user	believes	that	by	using	a	particular	system	of	information	

technology,	the	accuracy,	precision,	and	speed	of	his	or	her	job	would	be	influenced	

positively,	thereby	increasing	his	or	her	performance	at	the	job	position.	

In	contrast,	perceived	ease	of	use	can	be	defined	as	the	extent	to	which	a	user	believes	

that	deploying	information	technology	at	his	or	her	workplace	would	be	effort-free	

(Davis	et	al.,	1989).	This	stems	from	the	definition	of	the	word	‘ease’,	which	means	

‘freedom	 from	difficulty	 or	 great	 effort’.	Davis	 (1989)	 argued	 that	 the	 information	

technology	with	the	lowest	level	of	complexity	is	more	likely	to	be	received	by	users	

than	the	ones	with	the	higher	levels	of	complexity.		

	

3.2.2 	Mathematical	theory			
 
In	order	to	predict	the	value	of	the	dependent	variable	for	individual	information	

related	to	the	explanatory	variables	that	is	available,	or	to	estimate	the	effects	if	a	

regression	 analysis	 of	 the	 explanatory	 variables	 on	 the	 dependent	 variable	 is	

carried	 out,	 a	 regression	 analysis	was	 conducted	 for	 this	 chapter.	 A	 regression	

analysis	 is	used	 to	 identify	 the	 impact	of	variables	on	 the	 topic	of	 interest.	This	

process	determines	the	factor	that	matters	most,	the	factor(s)	that	can	be	ignored,	

and	how	the	factors	influence	each	other.	It	is	calculated	as	follows:	
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𝑌 = 𝑎 + 𝑏𝑋 + 𝐸	
3.1	

where	Y	is	the	dependent	variable,	X	is	the	independent	variable,	a	is	the	intercept,	

b	is	the	slope,	and	E	is	the	residual.	

Moreover,	 the	 structural	 equation	 modelling	 (Kaplan,	 2001),	 which	 is	 a	

multivariate	statistical	analysis	technique	used	to	analyse	structural	relationships,	

is	the	combination	of	factor	analysis	and	multiple	regression	analysis.	It	is	used	to	

analyse	 the	 structural	 relationship	 between	 measured	 variables	 and	 latent	

constructs.	The	structural	part	is	calculated	as	follows:	

	

𝜂 = 𝐵𝜂 + Γ𝜉 + 𝜁	
3.2	

where	 𝜂	 is	 a	 vector	 of	 endogenous	 (criterion)	 latent	 variables,	𝜉	is	 a	 vector	 of	

exogenous	 (predictor)	 latent	 variables,	 B	 is	 a	 matrix	 of	 regression	 coefficients	

relating	the	latent	endogenous	variables	to	each	other,	Γ	is	a	matrix	of	regression	

coefficients	relating	endogenous	variables	to	exogenous	variables,	and	𝜁	is	a	vector	

of	disturbance	terms.	

Next,	 the	 latent	 variables	 have	 to	 be	 calculated.	When	 the	 latent	 variables	 are	

linked	 to	 observable	 variables	 via	 measurement	 equations	 for	 the	 endogenous	

variables	and	exogenous	variables,	the	equations	are	defined	as	follows	(Kaplan,	

2001):	

𝑦 = Λ6𝜂 + 𝜀	
3.3	

𝑥 = Λ5𝜉 + 𝛿	
3.4	

where	Λ6and	Λ5represent	 the	matrices	 of	 factor	 loadings,	 and	 𝜀	 and	𝛿	 are	 the	

vectors	 of	 uniqueness.	 In	 addition,	 the	 general	 model	 specifies	 variances	 and	

covariances	for	𝜉,	𝜁,	𝜀	and	𝛿	denoted	Φ,Y,ΘQ 	and	Θ;respectively.	

Structural	 equation	 modelling	 is	 a	 methodology	 designed	 to	 test	 substantive	

theories.	As	such,	a	theory	might	be	sufficiently	developed	to	suggest	that	certain	

constructs	 do	 not	 affect	 other	 constructs,	 that	 certain	 variables	 do	 not	 load	 on	

certain	 factors,	 and	 that	 certain	 disturbances	 and	 measurement	 errors	 do	 not	

covary.	Yet,	this	indicates	that	some	elements	of	B,	Γ,	Λ6 ,	Λ5 ,	Φ,Y,ΘQ 	and	Θ;are	fixed	
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to	zero	by	hypothesis,	and	the	remaining	parameters	are	free	to	be	estimated.	The	

pattern	of	fixed	and	free	parameters	implies	a	specific	structure	for	the	covariance	

matrix	of	the	observed	variables.	Hence,	structural	equation	modelling	can	be	seen	

as	a	special	case	of	a	more	general	covariance	structure	model	defined	as	follows:	

	

D=D(Ω)	

3.5	

where	å	 represents	 the	population	 covariance	matrix,	 and	å(W)	represents	 the	

matrix	 valued	 function	 of	 the	 parameter	 vector	Ω	,	 where	 it	 contains	 all	 model	

parameters	(Kaplan,	2001).	

Moreover,	in	order	to	estimate	BI,	personal	attitudes	towards	using	system	(A)	and	

perceived	usefulness	 (U)	 are	 joined,	 and	 then	 the	 following	 equation	 is	 used	 to	

calculate	the	estimated	weight:	

𝐵𝐼 = 𝐴 + 𝑈	
3.6	

	

3.3 EXPERIMENT	AND	DATA	COLLECTION	
 
 
The	TAM	model	was	built	by	collecting	data	after	 carrying	out	a	 survey	 through	a	

group	 of	 volunteers.	 The	 survey	 was	 based	 on	 a	 questionnaire;	 participants	

responded	to	the	same,	or	a	similar,	set	of	questions	at	two	stages:	once	before	using	

AVs,	and	a	second	time	after	using	them.	

	

3.3.1 Survey	Design		
	
The	 survey	 was	 carried	 out	 to	 assess	 the	 role	 and	 acceptance	 of	 connected	

autonomous	 vehicles	 in	 a	 mixed-mode	 urban	 mobility	 environment;	 its	 aim	 is	 to	

measure	the	strengths	and	weaknesses	of	 this	 fast-growing	technology.	 It	contains	

three	 sections.	 One	 section	 investigates	 the	 demographic	 information,	 wherein	 it	

provides	 background	 information	 on	 the	 survey	 participants.	 The	 next	 section	

includes	an	evaluation	of	autonomous	vehicles,	where	open-ended	questions	were	

posed	and	analysed;	finally	comes	the	variables	analysis	section	(safety,	environment,	

conjunction,	and	anxiety),	in	which	section	participants	were	asked	to	rate	AVs,	based	
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on	a	1–5	 scale.	The	 statistical	 analysis	was	 carried	out,	wherein	participants	were	

asked	to	fill	this	section	twice—once	before	using	AVs,	and	the	second	time	after	using	

it.	For	this	section,	it	was	ensured	that	questions	belong	to	different	categories	viz.	

safety,	environment,	conjunction,	and	anxiety.	Questions	for	each	of	the	factors	can	be	

seen	below:	

Table	3.1	Questions	asked	for	TAM	before	and	after	analysis		

Perceived	usefulness:	 (i) Self-driving	vehicles	generate	fewer	accidents.	

Perceived	Ease	of	Use:	 (i) Self-driving	vehicles	offer	more	personal	

freedom	and	independence.	

Attitude	Towards	Use:	 (i) Before/after	using	AVs,	I	was	afraid	an	

emergency	would	arise	as	the	vehicle	might	

malfunction.	

(ii) Before/after	using	AVs,	I	was	worried	if	all	my	

journeys	with	AVs	would	be	successful.	

Behavioural	Intention	to	

Use:	

(i) I	was	afraid	I	would	not	be	able	to	react	in	case	

of	an	emergency.	

The	 full	 survey	can	be	 found	 in	Appendix	A	and	all	before	and	after	questions	are	

clearly	mentioned.	

 
3.3.2 Administration	Method		

	
The	survey	is	a	self-administered	questionnaires	that	was	delivered	online,	using	

the	SurveyMonkey	tool.	A	self-administered	questionnaire	is	a	questionnaire	that	

is	designed	to	be	completed	by	a	respondent	without	the	physical	intervention	of	

the	researcher.	The	before-survey	was	out	in	March	2021	and	remained	open	for	

three	months,	after	which	participants	were	then	asked	to	take	the	after-survey	in	

September	2021.	This	survey	remained	open	till	December	2021.	A	total	of	350	

participants	 from	 different	 backgrounds	 completed	 the	 survey.	 All	 participant	

responses	are	treated	with	the	utmost	confidentiality,	and	personal	information	is	

anonymized	to	eliminate	any	potential	identification.	The	data	was	collected	and	

stored	in	a	secure	and	confidential	manner	where	it	is	accessible	only	to	authorized	

personnel	directly	involved	in	the	research,	and	individuals'	privacy	and	consent	
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were	 upheld	 throughout	 the	 study.	 Additionally,	 any	 potential	 biases	 were	

identified	and	addressed	in	the	analysis	of	the	data.	In	the	following	sections,	the	

responses	will	be	analysed	and	conclusions	drawn	(Wolf,	2008).		

	

3.4 DATA	DESCRIPTION	AND	MEASUREMENTS	
 

3.4.1 Demography	data	analysis	
 
In	this	study,	350	survey	questionnaires	were	administered	to	different	categories	of	

people,	ranging	from	those	working	in	the	automotive	industry,	the	technology	sector,	

regulatory	 agencies,	 and	 so	 on.	 The	 demographic	 details	 included:	 ownership	 of	

autonomous	 vehicles,	 gender,	 age,	 education,	 employment	 sector,	 and	 years	 of	

experience.	

	
	

Figure	3.2	Which	category	describes	you	the	best?	

	

Figure	3.2	show	the	statistics	of	the	category	of	the	participants	with	regard	to	the	

possession	of	autonomous	vehicles	(AVs).	From	these	statistics,	it	can	be	seen	that	‘I	

will	like	to	own	or	use	an	AV’	has	the	highest	percentage	of	53%,	followed	by	‘I	am	not	

sure’	(with	a	percentage	of	20%);	‘I	don’t	want	to	own	or	use	AV’	logs	a	percentage	of	

15%,	and	lastly	‘I	own	or	use	an	AV’	records	a	percentage	of	13%.	It	is	evident	from	

these	 statistics	 that	 the	 largest	 percentage	 of	 the	 participants	 did	 not	 have	 an	
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autonomous	 vehicle	 (AV)	 at	 the	 time	 they	 responded	 to	 the	 survey	 (see	 the	

percentage	 of	 those	 saying	 ‘I	 will	 like	 to	 own	 or	 use	 an	 AV’).	 About	 15%	 of	 the	

participants	declared	that	they	did	not	want	to	own	or	use	an	AV.	Notably,	the	lowest	

percentage	(13%)	of	the	participants	own	or	use	an	autonomous	vehicle	(AV).		

	

	

	
	

Figure	3.3	Gender	&	Age	

	

One	 of	 the	 important	 aspects	 of	 the	 demographic	 data	 is	 the	 gender	 of	 the	

participants.	 In	 this	 work,	 three	 categories	 of	 gender	 were	made	 available	 in	 the	

survey	questionnaire:	Male,	Female,	and	prefer	not	to	say.	From	Figure	3.3,	it	can	be	

observed	that	‘Male’	has	the	highest	percentage	of	50%,	followed	by	Female,	with	a	

percentage	of	33%,	while	the	 ‘Prefer	not	to	say’	category	has	a	percentage	of	17%.	

Therefore,	we	can	conclude	that	about	half	the	participants	in	the	survey	are	Male	and	

33%	are	Female.	Again,	Figure	3.3—which	show	the	percentage	of	 the	ages	of	 the	

participants—the	 age	 categories	 are	 classified	 as	 follows:	 Below	 20	 years,	 20–35	

years,	35–60	years,	above	60	years.	‘35–60	years’	logs	a	percentage	of	52%,	‘20–35	

years’	has	a	percentage	of	28%,	‘Below	20	years’	has	a	percentage	of	14%,	and	‘Above	

60	 years’	 has	 a	 percentage	 of	 7%.	 It	 can,	 therefore,	 be	 deduced	 that	 the	 largest	

percentage	of	participants	in	the	survey	is	within	the	age	range	of	35–60	years,	and	

the	lowest	percentage	of	the	participants	is	in	the	age	group	above	60	years.	A	good	

number	(49)	of	participants	also	are	below	20	years.	
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Figure	3.4	Education	levels.	

	
The	educational	levels	of	the	participants	were	also	found	useful	and	were	included	

in	 the	 survey.	 The	 education	 levels	 were	 classified	 as:	 Ph.D.,	 Master’s,	 Bachelor’s,	

Diploma,	and	Others.	From	Figure	3.4,	Bachelor’s	degree	holders	logged	a	percentage	

of	36%,	 ‘Others’	had	a	percentage	of	20%,	 ‘Ph.D.’	holders	recorded	a	percentage	of	

18%,	‘Diploma’	holders	had	a	percentage	of	15%,	and	‘Master’s’	degree	holders	had	a	

percentage	 of	 12%.	 Therefore,	 the	 majority	 of	 the	 participants	 in	 the	 survey	 are	

Bachelor’s	 degree	 holders,	 followed	 by	 the	 participants	 with	 education	 levels	 not	

included	in	the	survey.	A	very	good	number	(62)	of	the	participants	are	Ph.D.	holders.		

	

	
Figure	3.5	Employment	sector	and	years	of	experience.	

	
The	employment	sectors	in	which	the	participants	worked	were	also	included	in	the	

survey	questionnaire.	The	employment	sectors	considered	in	the	survey	are	primarily	

‘Automotive	Industry’,	‘Technology	Sector’,	and	‘Regulatory	Agencies’.	‘Others’	cover	

< 10 years
> 35 years

20 – 35 years
10 – 15 years
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those	employment	sectors	not	listed	in	the	survey.	From	Figure	3.5	(left),	‘Technology	

Sector’	has	the	highest	percentage	of	42%,	‘Regulatory	Agencies’	has	a	percentage	of	

25%,	 ‘Others’	 accounts	 for	 a	percentage	of	19%,	 and,	 lastly,	 ‘Automotive	 Industry’	

shows	a	percentage	of	14%.	From	these	statistics,	it	can	be	deduced	that	the	largest	

percentage	 of	 the	 participants	 work	 in	 the	 ‘Technology	 Sector’,	 followed	 by	 the	

participants	working	 at	 ‘Regulatory	 Agencies’,	 while	 the	 lowest	 percentage	 of	 the	

participants	 work	 in	 the	 ‘Automotive	 Industry’.	 The	 years	 of	 experience	 of	 the	

participants	 at	 their	 respective	 workplaces	 were	 also	 examined.	 The	 years	 of	

experience	 were	 divided	 into	 four	 categories:	 ‘<	 10	 years’;	 ‘10–15	 years’;	 ‘20–35	

years’;	‘>35	years’.	From	Figure	3.5	(right),	‘10–15	years’	of	experience	has	the	highest	

percentage	of	56%,	‘<10	years’	of	experience	has	the	percentage	of	35%,	‘>35	years’	

of	 experience	 has	 a	 percentage	 of	 6%,	 and	 ‘20–35	 years’	 of	 experience	 shows	 a	

percentage	of	3%.	Therefore,	it	can	be	observed	that	the	participants	with	working	

experience	of	‘10–15	years’	dominated	the	survey	response.	This	was	followed	by	the	

participants	with	less	than	10	years	of	working	experience.	The	participants	with	20–

35	years	of	working	experience	recorded	the	lowest	percentage.		

 
3.4.2 Reliability	and	Validation	of	the	Measurement	Model		

	
To	 ensure	 the	 accuracy	 of	 data,	 reliability	 and	 validity	 tests	 were	 conducted.	

Reliability	refers	to	the	degree	to	which	any	measuring	tool	controls	for	random	error.	

In	 general,	 the	 higher	 the	 reliability	 coefficient	 (Cronbach’s	 alpha),	 the	 more	

repeatable	or	reliable	the	test.	When	the	Cronbach's	alpha	coefficient	is	0.6	or	higher,	

the	reliability	is	considered	high	enough	(Nunnally	et	al.,	1967).	Validity	refers	to	the	

extent	 in	which	a	 concept	 is	accurately	measured	 in	a	quantitative	study	 (Heale	&	

Twycross,	2015).	To	evaluate	the	validity	construct	in	this	study,	convergent	validity	

was	 utilized.	 The	 results	 of	 the	 reliability	 and	 validity	 tests	 were	 reported	 in	 the	

following	table	(Table	3.2):		
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Table	3.2	Reliability	and	Validity	Tests	

Variables	 Reliability	 Validity	

	 Cronbach’s	

alpha	

KMO	 P-value	

Bartlett’s	

Test	

AVE	 Composite	

Reliability	

Threshold	

value	

>0.7	 >0.5	 Sig.	<0.05	 >0.5	 >0.6	

Independent	

Variables	

	 	 	

Safety	 0.829	 0.714	 <0.000	 0.371	 0.646	

Environment	 0.848	 0.706	 <0.000	 0.423	 0.747	

Conjunction	 0.555	 0.601	 <0.000	 0.244	 0.436	

Anxiety	 0.859	 0.857	 <0.000	 0.119	 0.435	

All	variables	 0.939	 0.904	 <0.000	 0.245	 0.828	

	

Table	 3.2	 shows	 the	 reliability	 and	 validity	 test	 results,	which	 include	 Cronbach’s	

alpha,	 Kaiser–Meyer–Olkin	 (KMO)	 test,	 P-value	 Bartlett’s	 Test,	 Average	 Variance	

Extracted	(AVE),	and	Composite	Reliability.	The	test	was	carried	out	on	each	of	the	

independent	variables,	viz.,	safety,	environment,	conjunction,	and	anxiety.	Each	of	the	

independent	variables	was	connected	to	questions,	from	which	the	responses	of	the	

participants	were	recorded.	In	addition,	each	test	was	carried	out	on	the	aggregate	

variable,	i.e.,	the	sum	of	the	independent	variables.	From	these	statistics,	considering	

the	 fact	 that	 Cronbach’s	 alpha	 value	 is	 above	 the	 threshold	 value	 (0.7)	 for	 all	 the	

independent	variables,	except	‘conjunction’	(with	0.555),	it	can	be	concluded	that	the	

survey	 is	 reliable.	 This	 also	 reveals	 that	 the	 responses	 of	 the	 participants	 are	

consistent	across	the	variables.	For	the	validity	of	the	survey,	out	of	the	four	(4)	tests	

carried	out,	 three	 (3)	proved	 the	 validity	 of	 the	 survey.	 Even	 though	 the	AVE	 test	

results	were	below	the	threshold	value,	the	survey	can	still	be	rendered	valid	as	the	

results	of	the	other	tests	appear	to	be	strong	(Fornell	&	Larcker,	1981).	

Descriptive	statistics	shows	the	basic	details	about	the	responses	of	the	participants.	

The	number	of	the	responses	(N)	vary	for	each	measured	independent	variable	(V)	

on	account	of	some	missing	data;	constructs	were	measured	through	multiple	items	

on	a	5-point	Likert	scale,	 ranging	 from	1	(strongly	agree)	 to	5	(strongly	disagree);	
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mean	values	have	their	whole	number	to	be	2	though—when	approximated—some	

of	 the	 responses	 are	 neutral	 on	 average.	 On	 an	 average,	 the	 responses	 of	 the	

participants	range	from	‘Agree’	to	‘Neutral’	(the	statical	representation	can	be	found	

in	Appendix	B	Table	0.1).		

	

3.5 ANALYSIS	AND	RESULTS	
 

3.5.1 Frequency	and	Comparative	Analysis	
	

In	 this	 section,	 the	 responses	 of	 the	 participants	 are	 analysed	 by	 illustrating	 the	

responses	to	each	of	the	sections.	Again,	the	responses	for	each	of	the	independent	

variables	are	now	compared	with	one	another	to	extract	useful	information	and	test	

how	the	decisions	of	the	participants	in	one	variable	relate	to	the	other.	

In	 the	 following,	 each	 independent	 variable	 (hypothesis)	will	 be	 evaluated	 and	 an	

analysis	based	on	the	relevant	sections	conducted.		

	

A) Safety		

The	safety	aspect	of	AVs	was	evaluated	based	on	four	hypotheses:	

• V1:	Self-driving	vehicles	generate	fewer	accidents.	

• V2:	Self-driving	vehicles	decrease	traffic	congestion.	

• V3:	 Unlike	 ordinary	 vehicles,	 which	 may	 well	 be	 operated	 by	 drunk	 or	

distracted	drivers,	self-driving	vehicles	will	reduce	risky	driving	behaviours.	

• V4:	 Self-driving	 vehicles	 outperform	 humans	 in	 detecting	 dangerous	

situations.	
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Figure	 3.6	 Safety	 statistics:	 (a)	 Statistical	 representation	 of	 the	 notion	 that	 self-driving	 vehicles	
generate	fewer	accidents,	(b)	Statistical	representation	of	the	claim	that	self-driving	vehicles	decrease	
traffic	congestion,	(c)	Statistical	representation	of	the	idea	that	self-driving	vehicles	will	reduce	risky	
driving	behaviours,	(d)	Statistical	representation	of	the	assertion	that	self-driving	vehicles	outperform	
humans	in	detecting	dangerous	situations.	

The	 statistics	 related	 to	 the	 responses	 of	 the	 participants	 to	 the	 notion	 that	 self-

driving	vehicles	generate	fewer	accidents	were	analysed.	From	these	statistics,	it	can	

be	observed	that	‘Agree’	and	‘Strongly	Agree’	dominated	the	responses	to	the	survey,	

implying	 that	 the	 majority	 of	 the	 participants	 believed	 that	 self-driving	 vehicles	

generate	fewer	accidents	as	Figure	3.6(a)	presents.		

The	 responses	of	 the	participants	 to	 the	notion	 that	 self-driving	 vehicles	decrease	

traffic	congestion	are	similar	to	the	previous	notion:	the	majority	of	the	participants	

also	chose	‘Agree’	and	‘Strongly	Agree’	as	their	responses	to	the	notion.	Hence,	it	can	

be	 said	 that	 the	 participants	 believed	 that	 self-driving	 vehicles	 decrease	 traffic	

congestion	(	Figure	3.6	(b)).	

The	notion	‘Since	there	would	be	no	drunk	or	distracted	drivers,	self-driving	vehicles	

will	reduce	risky	driving	behaviours’	received	responses	of	the	participants	as	shown	

in	(Figure	3.6(c)).	From	these	statistics,	it	can	be	seen	that	combining	the	responses	

for	‘Agree’	and	‘Strongly	Agree’,	the	majority	of	the	participants	believed	that	since	

there	would	be	no	drunk	or	distracted	drivers,	 self-driving	 vehicles	would	 reduce	

Correlation of V1 and frequency Correlation of V2 and frequency

Correlation of V3 and frequency Correlation of V4 and frequency

(a) (b)

(d)
(c)
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risky	driving	behaviours.	This	is	similar	to	the	patterns	observed	in	connection	with	

the	previous	two	notions.	

Again,	from	Figure	3.6(d),	it	can	be	observed	from	the	responses	of	the	participants	

to	 the	 survey	 that	 both	 ‘Agree’	 and	 ‘Disagree’	 had	 similar	 percentages	 (of	

approximately	23%).	Combining	the	percentages	of	‘Agree’	and	‘Strongly	Agree’,	we	

have	44%,	while	those	of	‘Disagree’	and	‘Strongly	Disagree’	yielded	38%.	Hence,	it	can	

be	deduced	 that	 the	majority	of	 the	participants	believed	 that	self-driving	vehicles	

outperform	humans	in	detecting	dangerous	situations.	

In	comparison	with	the	safety	section	of	the	evaluation	of	autonomous	vehicles,	the	

majority	of	the	participants	in	the	survey	believed	that	self-driving	vehicles	generate	

fewer	accidents	and	self-driving	vehicles	decrease	traffic	congestion,	about	half	of	the	

participants	 believed	 that	 as	 there	would	 be	 no	 drunk	 or	 distracted	 drivers,	 self-

driving	 vehicles	 will	 reduce	 risky	 driving	 behaviours,	 and	 about	 44%	 of	 the	

participants	 believed	 that	 self-driving	 vehicles	 outperform	 humans	 in	 detecting	

dangerous	 situations.	 On	 evaluating	 the	 safety	 aspects	 based	 on	 the	 survey,	most	

participants	agree	that	autonomous	vehicles	appear	to	be	safe,	and	that	they	would	

lead	to	a	safer	transport	fleet.		

	

B) Environment		

The	 environmental	 aspect	 of	AVs	was	 evaluated	 on	 the	 basis	 of	 the	 following	 five	

hypotheses:	

• V5:	Self-driving	vehicles	will	reduce	energy	consumption.	

• V6:	Self-driving	vehicles	are	environmentally	friendly.	

• V7:	Self-driving	vehicles	cause	increases	in	car	use	and	emissions.	

• V8:	Self-driving	vehicles	increase	the	number	of	miles	people	travel,	thereby	

increasing	pollution.	

• V9:	Self-driving	vehicles	will	free	up	public	spaces	and	promote	clean	air. 	
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Figure	 3.7	 Environmental	 statistics:	 (a)	 Statistical	 representation	 of	 the	 notion	 that	 self-driving	
vehicles	will	 reduce	energy	consumption,	 (b)	Statistical	 representation	of	 the	 idea	 that	 self-driving	
vehicles	 are	 environmentally	 friendly,	 (c)	 Statistical	 representation	 of	 the	 notion	 that	 self-driving	
vehicles	cause	an	increase	in	car	use	and	emissions,	(d)	Statistical	representation	of	the	idea	that	self-
driving	vehicles	will	increase	the	number	of	miles	people	travel.		

Under	the	environmental	evaluation	of	autonomous	vehicles,	the	notion	‘self-driving	

vehicles	 will	 reduce	 energy	 consumption’	 received	 responses	 as	 shown	 in	 Figure	

3.7(a).	From	these	statistics,	it	can	be	seen	that	‘Agree’	and	‘Strongly	Agree’	recorded	

the	maximum	percentages.	Hence,	it	can	be	inferred	that	a	substantial	number	of	the	

participants	believed	that	self-driving	vehicles	would	reduce	energy	consumption.	

The	 notion	 that	 ‘self-driving	 vehicles	 are	 environmentally	 friendly’	 received	

responses	as	shown	in	Figure	3.7(b).	The	‘Agree’	level	has	the	highest	percentage	of	

about	 32%,	 followed	 by	 ‘Strongly	 Agree’.	 A	 larger	 number	 of	 the	 participants	

evidently	 believed	 that	 self-driving	 vehicles	 are	 environmentally	 friendly.	 This	

pattern	is	similar	to	the	pattern	of	the	responses	for	the	notion	‘self-driving	vehicles	

will	reduce	energy	consumption’.	

One	of	the	notions	stated	that	‘self-driving	vehicles	cause	an	increase	in	car	use	and	

emissions’.	The	responses	of	the	participants—as	shown	in	Figure	3.7(c)—revealed	

that	the	largest	percentage	of	the	participants	agreed,	since	the	‘Agree’	level	recorded	

the	highest	frequency.	‘Agree’	plus	‘Strongly	Agree’	levels	yielded	55%	while	those	of	

Correlation of V7 and frequency Correlation of V8 and frequency

Correlation of V5 and frequency Correlation of V6 and frequency

(a)

(d)
(c)

(b)
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‘Disagree’	 plus	 ‘Strongly	 Disagree’	 logged	 27%.	 Therefore,	 the	 majority	 of	 the	

participants	believed	that	self-driving	vehicles	cause	car	use	and	emissions	to	rise.	

Figure	3.7(d)	shows	the	responses	of	the	participants	to	the	notion	that	self-driving	

vehicles	will	increase	the	number	of	miles	people	travel,	thereby	increasing	pollution.	

From	 these	 statistics,	 it	 can	 be	 seen	 that	 ‘Agree’	 and	 ‘Strongly	 Agree’	 recorded	 a	

combined	 figure	 of	 67%	while	 ‘Disagree’	 and	 ‘Strongly	Disagree’	 logged	 just	 15%.	

Hence,	the	majority	of	the	participants	believed	that	self-driving	vehicles	will	increase	

the	number	of	miles	people	 travel,	 thereby	 increasing	pollution.	This	 is	 consonant	

with	 the	previous	notion,	 since	 the	majority	 of	 the	 participants	 believed	 that	 self-

driving	vehicles	cause	increases	in	car	use	and	emissions.	

	

	

	
Figure	3.8	Environmental	statistics:	Statistical	representation	of	the	notion	that	self-driving	vehicles	

will	free	up	public	spaces	and	promote	clean	air.	

	

The	statistics	of	the	participants’	responses	to	the	notion	that	 ‘self-driving	vehicles	

will	free	up	public	spaces	and	promote	clean	air’	can	be	seen	in	Figure	3.8.	Combining	

the	 ‘Agree’	 and	 ‘Strongly	 Agree’	 levels,	 we	 had	 a	 figure	 of	 63%,	 while	 those	 of	

‘Disagree’	 and	 ‘Strongly	 Disagree’	 logged	 22%.	 Therefore,	 we	 can	 infer	 that	 the	

majority	 of	 the	 participants	 believed	 that	 self-driving	 vehicles	 will	 free	 up	 public	

spaces	and	promote	clean	air.	

Correlation of V9 and frequency
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In	 comparison,	 in	 the	 environmental	 segment	 of	 the	 evaluation	 of	 autonomous	

vehicles,	it	can	be	inferred	that	autonomous	vehicles	are	environmentally	friendly,	as	

the	majority	of	the	participants	have	positive	perceptions.	However,	on	looking	at	the	

results,	we	can	say	that	most	participants	agreed	that	autonomous	vehicles	have	a	

deleterious	effect	on	the	atmosphere,	which	may	contribute	to	air	pollution.	

	

C) Conjunction	

Under	the	conjunction	aspect,	the	following	hypotheses	were	evaluated:	

• V10:	Self-driving	vehicles	offer	more	convenience	and	productivity.	

• V11:	Self-driving	vehicles	offer	more	personal	freedom	and	independence.	

• V12:	 Mobility	 is	 more	 affordable	 with	 self-driving	 vehicles	 through	

ridesharing.	

• V:13:	Self-driving	vehicles	are	expected	to	reduce	the	efforts	of	driving.	

	
Figure	3.9	Conjunction	 statistics:(a)	 Statistical	 representation	of	 the	 idea	 that	 self-driving	vehicles	

offer	more	convenience	and	productivity,	(b)	Statistical	representation	of	the	point	that	self-driving	

vehicles	offer	more	personal	freedom	and	independence,	(c)	Statistical	representation	of	the	idea	that	

mobility	 is	 more	 affordable	 with	 self-driving	 vehicles	 through	 ridesharing,	 (d)	 Statistical	

representation	of	the	assertion	that	self-driving	vehicles	will	reduce	driving	efforts.		

Correlation of V10 and frequency Correlation of V11 and frequency

Correlation of V12 and frequency Correlation of V13 and frequency

(a)

(c)
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(d)
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The	 statistics	 of	 the	 notion	 that	 self-driving	 vehicles	 offer	 more	 convenience	 and	

productivity	 are	 shown	 in	 Figure	 3.9(a).	 From	 these,	 ‘Agree’	 recorded	 the	 highest	

percentage	followed	by	‘Strongly	Agree’.	Combining	the	levels	of	‘Agree’	and	‘Strongly	

Agree’,	we	can	see	that	53%	of	the	participants	accounted	for	these,	while	those	of	

‘Disagree’	and	‘Strongly	Agree’	were	the	viewpoints	of	29%	of	the	participants.	Hence,	

it	is	evident	that	the	number	of	participants	who	agreed	were	more	than	the	ones	who	

disagreed;	hence,	 the	majority	of	 the	participants	believe	 that	 self-driving	vehicles	

offer	more	convenience	and	productivity.		

Figure	3.9(b):	the	‘Agree’	percentage	plus	‘Strongly	Agree’	percentage	gave	a	figure	of	

57%	while	those	of	‘Disagree’	and	‘Strongly	Disagree’	yielded	24%.	Therefore,	it	can	

be	 inferred	 that	 the	majority	of	 the	participants	believed	 that	 self-driving	vehicles	

offer	 more	 personal	 freedom	 and	 independence.	 This	 is	 in	 consonance	 with	 the	

previous	notion,	which	asserts	that	self-driving	vehicles	offer	more	convenience	and	

productivity.	

Now,	 Figure	 3.9(c)—combining	 the	 percentages	 of	 ‘Agree’	 and	 ‘Strongly	 Agree’—

came	 up	 with	 53%,	 while	 the	 combination	 of	 ‘Disagree’	 and	 ‘Strongly	 Disagree’	

yielded	24%.	 It	would	be	 reasonable	 to	 conclude—based	on	 the	 facts	above—that	

most	 of	 the	 participants	 agreed	 that	mobility	 is	more	 affordable	with	 self-driving	

vehicles	through	ridesharing.		

The	responses	of	participants	to	the	notion	that	‘self-driving	vehicles	are	expected	to	

reduce	the	efforts	of	driving’	are	recorded	in	Figure	3.9(d).	Participants	who	‘Agree’	

and	‘Strongly	Agree’	accounted	for	a	percentage	of	49%	while	those	who	‘Disagree’	

and	 ‘Strongly	Disagree’	accounted	for	a	percentage	of	38%	(which	 is	smaller).	 It	 is	

noteworthy	that	the	participants	who	believe	that	self-driving	vehicles	will	reduce	the	

efforts	of	driving	exceeded	the	ones	that	believed	otherwise.	Nevertheless,	38%	is	a	

substantial	percentage,	implying	that	a	good	number	of	the	participants	also	believed	

that	self-driving	vehicles	will	not	reduce	the	efforts	of	driving.	

Under	 the	 conjunction	 of	 the	 evaluation	 of	 autonomous	 vehicles,	 through	 a	

comparison,	it	can	be	deduced	that	there	appear	to	be	more	advantages	associated	

with	 autonomous	 vehicles	 than	 disadvantages:	 the	 majority	 of	 the	 participants	

responded	positively	to	most	of	the	notions	considered	in	the	survey.	
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D) Anxiety	

Anxiety	can	be	caused	by	different	life	factors,	and	driving	can	be	considered	one	

of	 those	 factors.	 In	 some	 cases,	 it	 requires	 help	 from	 a	 psychologist	 or	 other	

mental	 health	 specialist.	 In	 this	 section,	 we	 examined	 anxiety	 based	 on	 the	

following	hypotheses:	

• V14:	Before	using	AVs,	I	doubted	if	I	would	be	able	to	control	the	vehicle	if	and	

when	an	ethically	complicated	situation	arises.	

• V15:	After	using	AVs,	I	became	confident	that	all	my	journeys	with	AVs	would	

be	successful.	

• V16:	Before	using	AVs,	I	was	worried	that	interacting	with	the	vehicle	would	

require	much	mental	effort.	

• V17:	After	 using	AVs,	 I	 became	 confident	 that	 an	 emergency	would	 hardly	

arise	because	of	malfunctioning.	

• V18:	After	using	AVs,	I	became	confident	that	all	my	journeys	with	AVs	would	

be	successful.	

• V19:	Interacting	with	the	AVs	did	not	require	a	lot	of	mental	effort.	

• V20:	I	would	trust	such	a	vehicle.	

• V21:	I	am	afraid	I	would	not	be	able	to	react	in	case	an	emergency	occurs.	

• V22:	I	was	afraid	an	emergency	would	arise	as	the	vehicle	might	malfunction.	
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Figure	3.10	Anxiety	statistics:	(a)	Statistical	representation	of	the	statement	that	‘before	using	an	AV,	
I	 doubted	 if	 I	would	 be	 able	 to	 control	 the	 vehicle	 if	 an	 ethically	 complicated	 situation	 arises’,	 (b)	
Statistical	 representation	 of	 the	 statement	 that	 ‘after	 using	 an	 AV,	 I	 became	 confident	 that	 all	my	
journeys	with	AVs	would	be	 successful’,	 (c)	 Statistical	 representation	of	 the	 statement	 that	 ‘before	
using	an	AV,	I	was	worried	that	interacting	with	the	vehicle	would	require	much	mental	effort’,	(d)	
Statistical	 representation	 of	 the	 statement	 that	 ‘after	 using	 an	 AV,	 I	 became	 confident	 that	 all	my	
journeys	with	AVs	would	be	successful’.	
	
In	the	interviews	with	different	individuals,	conducted	to	understand	their	concerns	

regarding	autonomous	vehicles,	anxiety	was	the	concern	that	most	of	them	raised.	On	

analysing	and	evaluating	the	different	hypothesis,	we	find:		

‘Before	using	AVs,	I	doubted	I	may	not	be	able	to	control	the	vehicle	if	an	ethically	

complicated	situation	arises’	logged	the	responses	listed	in	Figure	3.10(a).	It	can	be	

seen	that	the	majority	of	the	participants	were	neutral	to	the	notion	and	combining	

the	 percentage	 of	 ‘Agree’	 and	 ‘Strongly	 Agree’—which	 gave	 a	 figure	 of	 46%—it	

implied	that	a	very	good	number	of	the	participants	also	agreed	that	before	using	AVs,	

they	doubted	they	would	not	be	able	to	control	the	vehicle	if	an	ethically	complicated	

situation	arose.		

About	55%	of	the	participants	claimed	that	after	using	AVs,	they	became	confident	

that	all	their	journeys	with	AVs	would	be	successful,	while	some	30%	claimed	that	

after	using	AVs,	 they	were	not	confident	 that	all	 their	 journeys	with	AVs	would	be	

successful	(Figure	3.10(b)).		

Correlation of V14 and frequency Correlation of V15 and frequency

Correlation of V16 and frequency Correlation of V17 and frequency

(a)

(c)

(b)

(d)
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Moreover,	some	57%	of	the	participants	claimed	that	before	using	AVs,	they	had	been	

worried	 that	 interacting	with	 the	 vehicles	 would	 require	much	mental	 effort,	 but	

about	26%	disagreed	with	the	notion	that	before	they	started	using	AVs,	they	were	

worried	that	interacting	with	the	vehicles	would	require	much	mental	effort	as	shown	

in	Figure	3.10(c).	

On	evaluating	the	responses	obtained	from	Hypothesis	V17	(Figure	3.10(d)),	when	

combining	 the	 levels	 of	 ‘Agree’	 and	 ‘Strongly	Agree’	 (which	gave	us	63%)	and	 the	

levels	of	 ‘Disagree’	and	 ‘Strongly	Disagree’	(which	gave	us	15%),	 it	can	be	 inferred	

that	 the	 majority	 of	 the	 participants	 agreed	 that	 after	 using	 AVs,	 they	 became	

confident	 that	 an	 emergency	 would	 hardly	 ever	 arise	 on	 account	 of	 the	 vehicle	

malfunctioning.	

		

Figure	3.11	Anxiety	statistics:	 (a)	Statistical	representation	of	 the	statement	that	 ‘After	using	AV,	 I	
became	confident	that	all	of	my	journeys	with	AVs	will	be	successful’,	(b)	Statistical	representation	of	
the	 statement	 that	 ‘Interacting	 with	 the	 AV	 did	 not	 require	 a	 lot	 of	 mental	 effort’,	 (c)	 Statistical	
representation	of	 the	statement	that	 ‘I	would	trust	 the	vehicle’,	 (d)	Statistical	representation	of	 the	
statement	that	‘I	am	afraid	that	I	won’t	be	able	to	react	in	case	an	emergency	occurs’.	

The	statistical	representation	of	the	notion	that	after	using	AVs,	the	participants	were	

confident	that	all	their	journeys	with	AVs	would	be	successful,	shows	that	about	26%	

of	 the	 participants	 disagreed	 with	 the	 notion	 that	 after	 using	 AVs,	 they	 gained	

confidence	that	all	their	journeys	with	AVs	would	be	successful.	Some	48%	asserted	

Correlation of V18 and frequency

Correlation of V21 and frequencyCorrelation of V20 and frequency

Correlation of V19 and frequency

(a)

(d)

(b)

(c)
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that	after	using	AVs,	they	became	confident	that	all	their	journeys	with	AVs	would	be	

successful	(as	shown	in	Figure	3.11(a).	

Considering	the	statistics	obtained	from	evaluating	the	notion	‘interacting	with	the	

AV	did	not	require	a	lot	of	mental	effort’,	it	can	be	observed	that	‘Agree’	logged	the	

highest	percentage	(30%),	followed	by	‘Strongly	Agree’	(with	a	percentage	of	29%).	

‘Agree’	plus	‘Strongly	Agree’	gave	us	a	figure	of	59%	while	‘Disagree’	plus	‘Strongly	

Disagree’	yielded	21%.	Therefore,	most	of	the	participants	believed	that	interacting	

with	the	AVs	require	a	lot	of	mental	effort.	The	statistical	evaluation	can	be	found	in	

Figure	3.11(b).	

The	participants’	responses	to	the	notion	‘I	would	trust	the	vehicle’	show	that	when	a	

combination	 of	 ‘Agree’	 and	 ‘Strongly	 Agree’	 yielded	 48%,	 those	 of	 ‘Disagree’	 and	

‘Strongly	Disagree’	gave	36%.	There	were	more	participants	who	would,	therefore,	

trust	the	autonomous	vehicle	that	the	ones	who	would	not	as	shown	in	Figure	3.11(c).	

Again,	30%	of	the	participants	were	neutral	to	the	notion	that	‘I	am	afraid	that	I	would	

not	be	able	to	react	in	case	an	emergency	occurs’.	After	combining	the	percentages	of	

‘Agree’	and	‘Strongly	Agree’,	49%	claimed	that	they	were	afraid	that	they	would	not	

be	able	to	react	in	case	an	emergency	occurs.	Some	20%	of	the	participants	disagreed	

with	 the	 idea	 that	 they	 are	 afraid	 that	 they	would	 not	 be	 able	 to	 react	 in	 case	 an	

emergency	occurs	as	presented	in	Figure	3.11(d).	

 
Figure	3.12	Statistical	representation	of	the	notion	‘Before	using	AV,	I	was	afraid	an	emergency	

would	arise	because	the	vehicle	would	malfunction’.	

Correlation of V22 and frequency
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The	idea	that	‘Before	using	AVs,	I	was	afraid	an	emergency	would	arise	because	the	

vehicle	would	malfunction’	recorded	responses	as	shown	in	Figure	3.12.	The	largest	

percentage	of	the	participants	agreed	to	the	notion	(with	a	percentage	of	27%).	The	

combination	of	‘Agree’	and	‘Strongly	Agree’	logged	a	percentage	of	52%	while	that	of	

‘Disagree’	 and	 ‘Strongly	 Disagree’	 led	 to	 a	 percentage	 of	 24%.	 Therefore,	 the	

responses	of	the	participants	inclined	to	the	claim	that	before	using	AVs,	they	were	

afraid	an	emergency	would	arise	on	account	of	the	malfunctioning	of	the	vehicle.	

	

3.5.2 Applying	TAM	TAM	to	autonomous	vehicles	
 
Scrutinizing	the	questions	in	the	survey	under	the	safety	and	environment	variables	

of	autonomous	vehicles,	we	can	deduce	that	the	questions	that	were	posed	examined	

the	 use	 of	 autonomous	 vehicles,	 while	 the	 categories	 ‘conjunction’	 and	 ‘anxiety’	

examined	the	ease	of	use	of	autonomous	vehicles.	The	responses	of	the	participants	

will	 be	 used	 to	 determine	 their	 perceptions	 for	 each	 of	 the	 determinants.	 See	 the	

figure	below	for	details.	

	
Figure	3.13	Results	of	TAM,	determinants,	variables,	and	perceptions.	

	

From	the	analysis,	as	far	as	the	evaluation	of	the	autonomous	vehicles	with	respect	to	

their	safety	aspect	is	concerned,	the	majority	of	the	participants	in	the	survey	believed	

that	self-driving	vehicles	cause	fewer	accidents	and	decrease	traffic	congestion.	More	
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Perceived usefulness
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Perceived ease of use
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than	 half	 the	 participants	 believed	 that	 unlike	 ordinary	 vehicles,	 which	 may	 be	

operated	by	drunk	or	distracted	drivers,	self-driving	vehicles	will	reduce	risky	driving	

behaviours.	Then	again,	a	larger	number	of	the	participants	disagreed	with	the	notion	

that	self-driving	vehicles	outperform	humans	in	detecting	dangerous	situations.	From	

these	statistics	(see	Figure	3.13),	it	can	be	deduced	that	the	participants	in	the	survey	

(more	 than	 55%)	 had	 a	 positive	 perception	 of	 autonomous	 vehicles,	 i.e.,	 they	

perceived	autonomous	vehicles	to	be	useful	to	them.	Less	than	30%	had	a	negative	

perception,	i.e.,	they	were	of	the	view	that	autonomous	vehicles	were	not	useful.	As	

regards	the	environmental	usefulness	of	autonomous	vehicles,	more	than	60%	of	the	

participants	 had	 a	 positive	 perception	 that	 autonomous	 vehicles	 would	 be	

environmentally	useful.	

Under	 the	perceived	ease	of	use	 in	 the	 technology	acceptance	model	 (TAM),	 it	has	

been	 observed	 that	 the	 largest	 percentage	 of	 the	 participants	 believed	 that	 self-

driving	 vehicles	 offer	 more	 convenience	 and	 productivity.	 The	 majority	 of	 the	

participants	 believed	 that	 self-driving	 vehicles	 offer	 more	 personal	 freedom	 and	

independence.	But	most	of	 the	participants	neither	 agreed	nor	disagreed	with	 the	

claim	that	mobility	is	more	affordable	with	self-driving	vehicles	through	ridesharing.	

Again,	very	few	of	the	participants	disagreed	with	the	claim	that	self-driving	vehicles	

will	reduce	driving	efforts.	

From	 Figure	 3.13,	 it	 can	 be	 seen	 that	 on	 an	 aggregate,	 more	 than	 50%	 of	 the	

participants	had	the	positive	perception	that	autonomous	vehicles	would	be	easy	to	

use,	i.e.,	the	level	of	skills	required	to	operate	autonomous	vehicles	is	minimal.	Less	

than	30%	of	the	participants	had	a	negative	perception,	as	they	perceived	the	ease-

of-use	attribute	of	autonomous	vehicles	to	be	a	complex	system.	

Also,	while	considering	the	view	of	the	participants	as	regards	the	anxiety	they	may	

harbour	in	respect	of	autonomous	vehicles,	it	was	observed	that	at	least	around	40%	

showed	that	they	had	some	iota	of	fear	as	far	as	autonomous	vehicles	are	concerned.	

For	instance,	about	45%	(when	the	percentages	of	 ‘Agree’	and	 ‘Strongly	Agree’	are	

added	together)	of	the	participants	said	that	before	using	AVs,	they	doubted	if	they	

would	be	able	to	control	the	vehicle	if	an	ethically	complicated	situation	arises.	But	

less	than	30%	of	the	participants	stated	that	they	had	no	fear	about	using	autonomous	

vehicles,	i.e.,	they	perceived	the	ease	of	use	of	autonomous	vehicles	to	be	high.	
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Therefore,	by	applying	TAM,	it	has	been	observed	that	both	perceived	usefulness	and	

perceived	ease	of	use	of	autonomous	vehicles	have	generated	positive	perceptions	

among	the	participants.	This	implies	that	autonomous	vehicles	have	found	acceptance	

among	the	majority	of	the	participants.	

	

A) The	before	analysis	

 

	
Figure	3.14	Regression	analysis	results	for	before	using	AVs.	

The	 results	 obtained	 from	 the	 regression	 can	 be	 seen	 clearly	 in	 Figure	 3.14.	 The	

intention	of	 creating	Figure	3.14	 stems	 from	 the	 interest	 to	 study	 the	 relationship	

between	some	factors	in	the	TAM	model,	as	stated	by	Masron	(2007).	Masron	(2007)	

studied	 the	 relationship	 between	 Perceived	 Usefulness,	 Perceived	 Ease	 of	 Use,	

Attitude	Towards	Use,	and	Behavioural	 Intention	 to	Use,	and	 found	that	perceived	

usefulness	had	a	significant	effect	on	perceived	ease	of	use.	However,	while	perceived	

usefulness	had	a	significant	effect	on	the	intention	to	use,	attitudes	towards	using	it	

did	not.	In	this	research,	Figure	3.14	was	obtained	by	selectively	identifying	questions	

closely	related	to	the	factors.	Regression	analysis	was	carried	out	on	the	questions:	

one	was	used	to	predict	the	other,	and	the	results	are	shown	in	Figure	3.14.	All	the	

factors	are	significantly	 related	 to	each	other	 (as	shown	by	p-value).	 If	R2	=	0.3	 is	

taken	as	the	threshold	value	to	justify	the	correlation	between	the	factors,	then	it	can	

be	deduced	that	the	effect	on	one	factor	can	be	used	to	predict	the	other.	Remarkably,	

it	has	been	observed	in	this	work	that	perceived	usefulness	and	attitude	towards	use	

have	 the	 strongest	 correlation;	 this	 can	 be	 linked	 to	 the	 fact	 that	 many	 of	 the	
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participants	with	adequate	knowledge	of	the	benefits	of	AVs	were	willing	to	acquire	

such	vehicles.	

	

B) The	after-analysis		

 

	
Figure	3.15 Regression	analysis	results	for	after	using	AVs.	

 
Figure	3.15	shows	the	regression	analysis	of	the	responses	of	the	participants	to	the	

questions	 indicating	 their	 views	 after	 using	 AVs.	 Starting	 with	 the	 relationship	

between	the	‘Perceived	Ease	of	Use’	and	‘Perceived	Usefulness’,	β	=	0.827	and	R2	=	

0.657,	whereas	the	values	for	these	parameters	before	using	AVs	are:	β	=	0.550	and	

R2	 =	 0.299.	 From	 these	 statistics,	 it	 can	 be	 inferred	 that	 there	 has	 been	 an	

improvement	in	the	perceptions	of	the	participants	after	using	AVs;	in	other	words,	

the	 mindset	 of	 the	 participants	 related	 to	 ‘Perceived	 Usefulness’	 towards	 AVs	

improved	 probably	 because	 of	 the	 increase	 in	 their	 ‘Perceived	 Ease	 of	 Use’.	 For	

instance,	a	participant	believed	that	the	operation	of	AVs	would	require	a	high	level	

of	technical	knowledge	before	using	these,	but	after	using	AVs,	he/she	discovered	that	

his/her	perception	was	wrong.	Such	a	participant,	therefore,	would	have	an	improved	

‘Perceived	Ease	of	Use’,	and,	hence,	‘Perceived	Usefulness’.	On	the	other	hand,	it	was	

observed	 that	 a	 decrease	 in	 the	 relationship	 between	 ‘Perceived	 Usefulness’	 and	

‘Behavioural	Intention	to	Use’.	This	can	be	linked	to	the	fact	that	before	using	AVs,	

there	might	have	been	a	high	level	of	curiosity	to	experience	the	use	of	AVs	and	after	

having	such	an	experience,	the	behavioural	intention	to	use	declined.	In	general,	an	

increase	in	the	positive	perceptions	of	the	participants	has	been	observed	from	the	
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regression	analysis,	as	 the	values	of	β	and	R2	 increased	significantly.	This	suggests	

that	there	is	a	high	probability	that	members	of	the	public	will	eventually	admire	and	

cherish	AVs	when	they	acquire	one	each.	Having	their	own	AVs	would	satisfy	their	

curiosity	and	dispel	the	perceptions	of	uncertainties	initially	associated	with	AVs.	

3.6 DISCUSSION	AND	CONCLUSION		
 
This	chapter	analysed	 the	responses	of	participants	 regarding	 their	perceptions	of	

AVs	 using	 the	TAM	model	 to	 evaluate	 the	 acceptance	 of	AVs.	 The	 responses	were	

grouped	into	four	independent	variables:	safety,	environmental	impact,	conjunction,	

and	anxiety.		

As	regards	safety,	the	report	analysed	four	different	statements	related	to	the	safety	

of	autonomous	vehicles.	The	participants	then	had	to	rate	their	levels	of	agreement	

or	disagreement	with	each	of	them.	The	four	statements	were:	

• Self-driving	vehicles	generate	fewer	accidents.	

• Self-driving	vehicles	decrease	traffic	congestion.	

• Unlike	 ordinary	 vehicles,	 which	 may	 be	 operated	 by	 drunk	 or	 distracted	

drivers,	self-driving	vehicles	are	expected	to	reduce	risky	driving	behaviours.	

• Self-driving	vehicles	outperform	humans	in	detecting	dangerous	situations.	

The	analysis	showed	that	a	significant	majority	of	the	participants	believed	that	self-

driving	 vehicles	 generate	 fewer	 accidents	 and	 decrease	 traffic	 congestion.	

Additionally,	 the	 majority	 of	 participants	 believed	 that	 self-driving	 vehicles	 will	

reduce	risky	driving	behaviours,	and	about	half	of	the	participants	believed	that	self-

driving	vehicles	outperform	humans	in	detecting	dangerous	situations.	

These	 results	 are	 in	 line	 with	 the	 general	 perception	 of	 AVs	 as	 being	 safer	 than	

human-driven	vehicles.	Studies	have	shown	that	most	accidents	are	caused	by	human	

errors,	 such	 as	 distraction,	 speeding,	 and	 driving	 under	 the	 influence	 of	 drugs	 or	

alcohol.	AVs,	on	the	other	hand,	do	not	suffer	from	these	limitations;	hence,	they	can	

potentially	reduce	accidents	significantly.	

Based	 on	 these	 findings,	 self-driving	 vehicles	 offer	 more	 personal	 freedom	 and	

independence:	 self-driving	 vehicles	 can	 provide	 more	 personal	 freedom	 and	

independence	for	people	who	are	unable	to	drive	on	account	of	physical	disabilities,	

age,	or	other	reasons.	They	can	also	help	reduce	the	need	for	car	ownership	and	the	

associated	expenses,	giving	people	more	freedom	to	choose	how	they	travel.	
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The	results	showed	that	self-driving	vehicles	will	reduce	the	efforts	of	driving:	self-

driving	vehicles	can	reduce	the	physical	and	mental	efforts	required	for	driving,	which	

can	reduce	stress	and	fatigue	for	drivers.	Yet,	the	TAM	results	showed	the	willingness	

of	people	 to	adapt	 to	AVs,	where	the	after-study	showed	that	 the	attitude	towards	

using	AVs	improved	after	trying	the	technology.		

The	 results	 of	 this	 survey	 can	 be	 useful	 for	 policymakers,	 researchers,	 and	

manufacturers	of	autonomous	vehicles.	Policymakers	can	use	these	results	to	better	

understand	 the	 perceptions	 of	 the	 public	 and	 tailor	 their	 policies	 and	 regulations	

accordingly.	Researchers	can	use	these	results	to	design	better	autonomous	vehicles	

that	address	the	concerns	of	the	public.	Finally,	manufacturers	can	use	these	results	

to	improve	their	marketing	strategies	and	educate	the	public	about	the	safety	benefits	

of	autonomous	vehicles.	

Overall,	the	results	of	this	survey	provide	valuable	insights	into	the	public	perceptions	

of	 the	 safety	 aspect	 of	 AVs.	 As	AVs	 continue	 to	 gain	 popularity	 and	 become	more	

prevalent	 on	 our	 roads,	 understanding	 and	 addressing	 the	 concerns	 of	 the	 public	

about	their	safety	will	be	critical	to	their	success.	

In	 the	next	 chapter,	we	will	delves	 into	 the	 training	and	 testing	phases	of	 the	 five	

chosen	algorithms—Faster	R-CNN,	Cascade	R-CNN,	RetinaNet,	FCOS,	and	Deformable	

DETR	of	the	datasets.	Where	the	intricacies	of	their	performance	will	be	presented	

and	provide	insightful	interpretations	of	the	results.		
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Chapter	4	
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4 Comparative	Evaluation	of	Algorithms		
 
Motivated	by	the	expected	benefits	of	automated	driving	in	terms	of	increased	safety,	

comfort,	and	traffic	efficiency,	research	efforts	are	focused	on	object	recognition	for	

the	automation	of	 the	driving	 task.	As	explained	 in	 the	 introduction	and	 literature	

review,	the	development	of	automated	driving	requires	the	involvement	of	computer	

vision.	Therefore,	a	comprehensive	evaluation	of	the	different	detection	methods	is	

performed	on	the	different	datasets	discussed	in	Chapter	2.	This	chapter	first	presents	

the	 experimental	 setup	 (Section	 4.1).	 The	 next	 section	 (Section	 4.2)	 is	 the	 data	

organisation,	where	the	data	flow,	pre-processing,	data	comparison	and	training	of	

the	different	object	detection	algorithms	are	discussed.	Section	4.3	is	the	evaluation	

of	 the	 training	 on	 each	 individual	 dataset	 using	 the	 different	 algorithms.	 A	 cross	

analysis	is	then	discussed	(Section	4.4).	The	knowledge	gained	allows	Section	4.5	to	

conclude	with	a	discussion	of	the	performance	of	detection	on	the	datasets.			

 
	

4.1 DESIGN	OF	EXPERIMENT	
	
For	 this	 work,	 MMDetection	 is	 the	 platform	 from	 which	 all	 experiments	 were	

performed	(https://github.com/open-mmlab).	MMDetection	is	a	Python	toolbox	built	

as	 a	 codebase	 exclusively	 for	 object	 detection	 and	 instance	 segmentation	 tasks.	

Developed	in	a	modular	way	with	PyTorch	implementation,	it	is	part	of	OpenMMlab,	

an	 open-source	 project	 for	 academic	 and	 industrial	 research	 and	 implementation.	

This	 lab	 covers	 several	 computer	 vision	 research	 topics	 such	 as	 classification,	

detection,	segmentation,	and	super-resolution.	The	tool	allows	fast	training	and	high-

quality	inference.	

MMDetection	acts	as	a	benchmark	with	 the	 flexibility	 to	re-implement	 the	existing	

methods	or	 to	develop	a	new	detector	with	 the	available	modules.	As	a	 result,	 the	

detection	framework	can	be	broken	down	into	different	components	making	it	easy	

to	 customise	 and	 personalise	 an	 object	 detection	 framework	 just	 by	 combining	

different	modules.	

As	 a	 first	 step	 of	 this	work,	 an	 environment	was	 initiated	 on	 anaconda.	 Once	 the	

environment	was	 activated	 and	 all	 prerequisites	were	 downloaded,	 datasets	were	

added,	and	configuration	files	were	modified	(Appendix	C	contains	more	details	on	
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structuring	 the	 dataset	 and	 modifying	 the	 configuration).	 A	 flowchart	 of	 the	

experiment	is	shown	in	Figure	4.1.	

	
Figure	4.1Experiment	framework	

	

4.1.1 Hardware	Requirements		
 
The	hardware	used	to	train	deep	learning	models	refers	to	the	physical	computing	

resources	used	to	perform	the	computations	required	to	train	a	neural	network.	The	

choice	of	hardware	depends	on	the	size	and	complexity	of	the	neural	network	being	

trained,	as	well	as	the	amount	of	data	used	for	training.	GPUs	are	often	used	for	deep	

learning	 because	 they	 can	 perform	 many	 calculations	 in	 parallel,	 which	 can	

significantly	speed	up	training.	A	2080Ti	GPU	was	used	for	the	experiments	in	this	

chapter,	 but	 a	 3090	 GPU	 was	 used	 for	 Chapter	 5	 because	 the	 GPU	 capacity	 was	

exhausted	by	the	experiments	in	that	chapter.		

	

	

 

Dataset	images	
(Cityscapes,KITTI,	ECP) Split	Dataset

Data	Pre-processing	
Training	models	

(Faster	RCNN,	cascade	
RCNN,	RetinaNet,	FCOS,	
Deformable	DETR)

Evaluating Results	
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4.1.2 Software	Requirements		
 
Before	we	actually	start	the	model	building	phase,	we	need	to	make	sure	that	the	right	

libraries	 and	 frameworks	 are	 installed.	MMdetection	works	on	different	 operating	

platforms	(OP)	Linux,	Microsoft	Windows,	or	MacOS.	In	this	thesis,	Linux	is	used	as	

the	OP.	Python	3.7+,	CUDA	9.2+	and	PyTorch	1.6+	are	required	libraries:	

• matplotlib	

• numpy	

• opencv-python	

• sklearn	

Most	of	the	above-mentioned	libraries	will	already	be	present	on	machine	when	

installing	Anaconda.	However,	it	is	necessary	to	ensure	that	they	are	available.		

 
4.2 DATASET	ORGANISATION	AND	TRAINING	

 
4.2.1 Experiment	Summary		

	
The	 experiment	 is	 conducted	 using	 the	 four	 selected	 datasets,	 of	 which,	

approximately	3,000	1333*800	RGB	road	images	are	randomly	selected	from	each	

dataset.	Since	the	resolution	was	too	large,	direct	training	could	cause	GPU	memory	

overflow,	so	a	random	cropping	method	was	used	to	convert	 the	 image	sizes	 to	

1333*800	pixels.	A	total	of	50,900	images	were	used	for	training.	The	images	in	

ECP	 and	 Cityscapes	 contain	 photographs	 from	 different	 seasons	 and	 include	

clouds,	rain,	and	different	weather	conditions.	However,	this	is	not	the	case	for	the	

KITTI	 dataset,	 where	 the	 data	was	 collected	 in	 clear,	 clean	weather	 conditions	

without	fog	or	other	climatic	factors	affecting	the	clarity	of	the	dataset.		

	

4.2.2 Data	Flow	
	
For	 this	 experiment,	 data	 was	 gathered	 from	 different	 urban	 road	 datasets	

available	as	shown	in	figure	4.1.	To	start	applying	MMDetection	to	the	datasets,	the	
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structure	of	the	data	must	be	consistent,	in	which	the	images	and	the	labels	should	

follow	a	certain	format	as	in	Figure	4.2:	

	
Figure	4.2	Dataset	structure	

	

If	 the	data	needs	to	be	organized	according	to	Figure	4.2,	but	still	use	the	modular	

design	of	mmdetection,	once	the	dataset	has	been	prepared,	it	is	time	to	customise	

the	 configuration,	 pipeline,	 models,	 and	 runtime	 setting	 losses,	 and	 fine-tune	 the	

models.	Configuration	file	is	the	file	that	specifies	the	parameters,	options,	settings,	

and	 preferences	 applied	 to	 operating	 systems,	 infrastructure	 devices	 (where	

infrastructure	is	the	framework	that	supports	a	system)	and	applications.	Pipeline	is	

the	end-to-end	construct	that	orchestrates	the	flow	of	data	into	and	out	of	a	machine	

learning	model	(or	set	of	models).	Runtime	describes	the	software/instructions	that	

are	 executed	 while	 your	 program	 is	 running.	 Fine-tuning	 (Gunawan,	 Lau,	 and	

Lindawati	2011)	in	computer	science	is	the	process	of	taking	a	model	that	has	already	

been	 trained	 for	 a	 given	 task	 and	making	 it	 perform	 a	 second	 similar	 task	 using	

transfer	learning.		

For	the	first	experiment,	the	split	provided	by	each	dataset	was	used	for	training	and	

testing	(i.e.	the	Cityscape	dataset	uses	60-10-30	while	KITTI	uses	50-0-50).	For	the	

second	 experiment	 (Chapter	 5),	 the	 data	 followed	 the	 60-10-30	 split.	 Data	 pre-

processing,	which	includes	data	resizing	and	cropping.	Finally,	each	object	detection	

algorithm	is	trained	and	compared.	

 
 

mmdetection 
├── mmdet 
├── tools 
├── configs 
├── data 
│   ├── coco 
│   │   ├── annotations 
│   │   ├── train2017 
│   │   ├── val2017 
│   │   ├── test2017 
│   ├── cityscapes 
│   │   ├── annotations 
│   │   ├── leftImg8bit 
│   │   │   ├── train 
│   │   │   ├── val 
│   │   ├── gtFine 
│   │   │   ├── train 
│   │   │   ├── val 
│   ├── VOCdevkit 
│   │   ├── VOC2007 
│   │   ├── VOC2012 
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4.2.3 Data	Pre-processing	
Data	pre-processing	refers	to	the	cleaning,	transformation,	and	preparation	of	data	

for	analysis/modeling.	This	includes	removing	missing	or	invalid	data,	normalising,	

scaling	data	to	ensure	consistency,	and	converting	data	types	to	ensure	compatibility.	

In	addition,	data	pre-processing	involves	splitting	the	data	into	training	and	test	sets	

to	ensure	that	models	are	validated	on	independent	data.	Yet	data	is	pre-processed	

by	rescaling	each	image	into	an	image	size	of	1333*800	pixels	while	maintaining	the	

aspect	ratio.	

	

4.2.4 Parametrization	of	Object	Detection	Algorithms	and	Training	
Details	

For	object	detection,	models	need	to	be	trained	using	a	set	of	input	images	and	their	

associated	ground	truth	boxes	for	each	of	their	classes.	In	our	approach,	all	the	models	

used	are	pre-trained	on	the	COCO	dataset	before	moving	on	to	the	phase	of	training	

on	the	used	dataset.	To	compare	the	different	object	detection	algorithms	using	real-

time	images,	the	main	aspects	that	we	compare	each	of	the	models	consist	of	their	

precision,	recall,	and	mAP	values	are	the	aspect	used	to	compare	the	performance	of	

the	model	on	the	different	datasets.	However,	confusion	matrix	with	precision	and	

recall	was	carried	for	the	ECP	dataset,	so	it	is	the	most	challenging	dataset	and	used	

as	the	pre-trained	data	for	benchmark	dataset	in	Chapter	5.	In	this	experiment	model	

uses	 PyTorch	 framework,	 model	 were	 trained	 for	 12	 epochs	 Stochastic	 Gradient	

Descent	(SGD)	optimiser.	

For	training,	the	following	table	(Table	4.1)	shows	the	hyperparameter	settings	used	

for	each	algorithm.	
Table	4.1	Hyperparameter	Settings	
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4.2.5 Comparison	of	Performance	Across	Datasets	
	

The	modules	were	trained	and	tested	on	different	datasets	due	to	the	uniqueness	of	

each	 dataset	 and	 challenges,	where	 each	 dataset	 uses	 its	 labelling,	 resolution	 and	

format.	Table	4.2	shows	the	uniqueness	of	each	selected	dataset.	The	COCO	dataset	is	

not	included	in	the	comparison	as	it	is	a	multipurpose	object	detection	dataset.	For	

example,	 the	 ECP	 dataset	 covers	 12	 European	 countries	 in	 4	 different	 seasons,	

whereas	the	KITTI	dataset	was	collected	in	one	country	in	one	season.	This	has	an	

impact	on	the	performance	of	the	modules.	 In	addition,	the	Cityscapes	dataset	was	

collected	over	 three	 seasons.	However,	 the	weather	was	dry	 compared	 to	 the	ECP	

dataset	where	the	weather	was	both	dry	and	wet	in	some	cases.			

In	this	section,	we	will	compare	the	performance	obtained	from	training	and	testing	

the	different	networks	on	the	desired	datasets.	We	will	first	evaluate	the	performance	

on	 individual	datasets	and	 then	perform	a	cross	evaluation.	However,	 it	 should	be	

noted	that	the	ECP	dataset	has	received	extensive	attention	as	it	is	the	data	that	will	

be	used	as	the	pre-trained	model	for	the	desired	benchmark	dataset.	

 

Hyperparameter
16Batch	Size
0.9Optimizer	Momentum
0.001Weight	Decay

Step	/AdamWLearning	Rate	Scheduler
0.01Base	learning	rate	
1Weight	loss
2Gamma	loss
0.25Alpha	loss
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Table	4.2	Comparison	of	datasets	

Since	the	resolution	was	too	large	for	Cityscapes	and	EuroCity	Person,	direct	

training	could	cause	GPU	memory	overflow,	so	a	random	cropping	method	was	used	

to	convert	the	size	of	the	image	to	1333*800-pixels.	

	

4.2.6 Training	of	ODAs	
 
All	datasets	were	well	labelled,	where	labels	were	used	in	deep	learning	algorithms	

to	 learn	 and	 evaluate	 the	 performance	 of	 the	 network.	 The	 experimental	 training	

neural	 network	was	 implemented	 using	 synchronised	 stochastic	 gradient	 descent	

(SGD)	 over	 single	 using	 the	 PyTorch	 framework	 in	 Ubuntu	 20.04,	 3.6GHz	 Core	 i7	

10,700K	CPU,	DDR4	3,200Mhz	2X16-32GB	quad-channel	memory,	 and	RTX2080Ti	

dual-card	GPU,	with	a	total	of	2	images	per	minibatch.	The	initial	learning	rate	was	set	

to	0.0025,	weight	decay	to	0.0001,	and	momentum	to	0.9.	The	datasets	were	split	as	

follows:	

• COCO	dataset:	70%	for	training,	20%	for	validation,	and	10%	for	testing.	

• Cityscapes	dataset:	70%	for	training,	20%	for	validation,	and	10%	for	

testing.	

• KITTI	dataset:	50%	for	training	and	50%	for	validation	and	testing		

• EuropCity	Person:	70%	for	training,	20%	for	validation,	and	10%	for	testing.	

Moreover,	for	training	these	datasets,	modification	on	mmdet	folder	is	a	must.	

‘class_name’	for	example	need	to	be	modified	so	that	it	matches	dataset	classes.	For	

EuroCity PersonsKITTICityscapes

1213Countries

31127Cities

413Seasons

473351499925000Images

183004/	353099400/	-31514/	-Pedestrians	(day	/	night)

18216/	15643300/	-3502/	-Riders	(day	/	night)

75673	/	200322260013172Ignored	regions	(day	/	
night)

1920	x	10241240	x	3762048	x	1024Resolution

Dry	/	WetDry	DryWeather

60	– 10	– 30	50	– 0	– 50	60	– 10	– 30	Train	– val – test	split	(%)
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further	information	regarding	modification	carried	for	this	work	refer	to	(Appendix	

B).	

	

A) Training	and	evaluation	of	RCNN	

	
For	this	thesis,	Faster	RCNN	and	Cascade	RCNN	networks	are	used.	Both	networks	are	

two-stage	object	detection	as	mentioned	 in	 the	previous	chapter.	Faster	RCNN	has	

been	further	developed	by	Cai	and	Vasconcelos	(2017)	to	Cascade	RCNN.	In	order	to	

use	these	networks	on	the	selected	datasets,	modifications	have	to	be	made	to	 the	

configuration	 file.	After	 the	modifications	mentioned	 in	4.2.2,	 the	configuration	 file	

needs	to	be	modified.	

For	Faster	RCNN,	the	number	of	classes	in	bbox_head	need	to	be	modified.	Using	KITTI	

as	an	example,	the	following	changes	are	made:	
#!/usr/bin/env	python3	
#	-*-	coding:	utf-8	-*-	
"""	
Created	on	Wed	Jul	28	2021	
	
@author:	afnan	
"""	
	
_base_	=	[	
				'../_base_/models/faster_rcnn_r50_fpn.py',					'../_base_/datasets/kitti_detection.py',	
				'../_base_/schedules/schedule_1x.py',	'../_base_/default_runtime.py'	
]	
model	=	dict(	
				bbox_head=dict(	
												num_classes=3,	#change	num_class	to	3	to	match	detection	classes		
												))	
	

For	Cascade	RCNN,	we	are	training	using	object	detection	via	bounding	boxes,	and	not	

segmentation.	Therefore,	modifying	the	bbox	head	is	necessary	refer	to	Appandix	C.		

	
B) Training	and	evaluation	of	RetinaNet	

 
RetinaNet,	as	mentioned	in	Chapter	2,	is	a	one-stage	object	detection	model,	where	

the	network	consists	of	a	backbone	network	and	two	task-specific	subnetworks	(Lin	

et	 al.	 (2017)).	 In	 order	 for	 the	 network	 to	 be	 used	 on	 the	 different	 datasets,	 it	 is	

necessary	to	make	several	changes	to	the	original	configuration	file.	First	is	to	create	

a	customised	dataset	file	that	includes	the	dataset	type,	the	data	root	(the	path	where	

the	 data	 is	 stored),	 the	 image	 normalisation	 configuration,	 the	 pipeline	 where	 it	

contains	the	training	and	testing	pipeline,	and	finally	the	evaluation	matrix.				
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The	next	step	is	to	add	the	created	dataset	to	“_init__.py”	to	initiate	the	dataset.	The	

last	 step	 is	 to	 edit	 the	 configuration	 file.	 For	 RetinaNet,	 the	 boundary	 box	 head	

(bbox_head)	 needs	 to	 be	 modified,	 changing	 the	 number	 of	 classes	 to	 match	 the	

classes	identified	for	the	dataset	(refer	to	Appendix	C).	

	

C) Training	and	evaluation	of	FCOS	

	
The	 fully	 convolutional	 one-stage	 object	 detector	 (FCOS)	 is	 a	 one-stage	 object	

detection	model.	As	mentioned	 in	Chapter	2,	 it	 is	 an	 is-anchor	box	 free,	 as	well	 as	

proposal	free	model.	The	network	consists	of	a	ResNet	50	backbone,	a	FPN	backbone,	

and	 an	 FCOS	 head.	 To	 use	 it	 on	 a	 customised	 dataset,	 the	 number	 of	 classes	

(num_classes)	must	be	changed	(refer	to	Appendix	C).	

	

D) Training	and	evaluation	of	DETR	

	
As	 mentioned	 above,	 DETR	 is	 one	 of	 the	 most	 widely	 used	 object	 detection	

framework.	 It	 is	 the	 first	 object	 detection	 framework	 to	 successfully	 integrate	

transformers	as	a	central	building	block	in	the	detection	pipeline,	and	the	network	

achieved	high	average	performance	percentages	when	tested	on	the	COCO	dataset.	

MMDertection	has	integrated	this	network	into	their	tool,	however,	when	training	on	

a	 custom	 dataset,	 the	 network	 failed	 to	 run	 correctly	 where	 AP=0.	 This	 may	 be	

because	the	network	is	new	and	more	testing	is	needed	to	overcome	network	bugs.		

Deformable	 DETR	 (Carion	 et	 al.,	 2020)	 was	 used	 for	 training	 and	 evaluation.	

Deformable	 DETR	 was	 proposed	 to	 overcome	 the	 drawbacks	 of	 DETR	 (low	

convergence	and	limited	spatial	resolution	of	features),	where	it	showed	its	ability	to	

achieve	 better	 performance	 than	 DETR	 with	 10	 times	 fewer	 training	 epochs.	

However,	 it	 is	 important	 to	 modify	 the	 num_classes	 in	 bbox_head	 to	 suit	 the	

customised	dataset	(refer	to	Appendix	C).	For	this	network,	images	were	resized	to	

avoid	overflow	of	data	and	due	to	limited	GPU	space.		

The	following	subsection	will	delve	into	a	comprehensive	examination	of	the	training	

and	 testing	processes	 employed	 for	 the	 five	object	detection	algorithms.	Table	4.3	

presents	the	algorithms	and	datasets	used	for	this	chapter	analysis.	
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Table	4.3	Datasets	and	algorithms	used	for	training	and	testing	in	this	chapter.	

 
	

4.3 TRAINING	AND	EVALUATION	ON	INDIVIDUAL	DATASETS	
	

4.3.1 Cityscapes	Dataset		
The	 Cityscapes	 dataset	 was	 trained	 on	 four	 different	 architectures,	 one-stage	

detection	 (RetinaNet),	 two-stage	 detection	 (Faster	 RCNN),	 cascade	 detection	

(Cascade	RCNN),	 and	 transformer	detection	 (Deformed	DETR).	 The	mean	 average	

precision	(mAP)	results	are	shown	in	Table	4.4.	
Table	4.4Results	of	different	ODAs	on	Cityscapes	

 
AP	detection	results	ranged	from	35.8	with	single-step	RetinaNet	object	detection	to	

42%	with	Cascade	RCNN.	The	 average	precision	 at	 IoU	=	 50%	 (AP50)	 ranges	 from	

58.2%	to	66.7%.	Comparing	these	results	with	the	literature,	Table	4.4	shows	that	the	

results	 obtained	 are	 in	 the	 upper	 range	 of	 cityscape	 detection	 results.	 In	 this	

application,	small	stands	for	objects	with	a	pixel	area	of	<322	pixels.	Medium	stands	

for	objects	with	an	area	range	of	322<area<962	pixels.	Large	represents	objects	with	

Remark	Algorithms	DatasetProcess	

• Each	algorithm	was	pre	trained	
used	COCO

• Faster	RCNN
• Cascade	RCNN
• RetinaNet
• FCOS
• Deformable	DETR

COCOPre	training	

• Used	to	initialize	and	speed	the	
learning	proses.	

• Each	algorithm	was	finetuned	
using	ImageNet

• Faster	RCNN
• Cascade	RCNN
• RetinaNet
• FCOS
• Deformable	DETR

ImageNet	Transfer	learning	\ Finetune

• Trained	and	tested	on	each	
algorithm	(i.e. trained	and	tested	
on	Cityscapes	dataset)

• Faster	RCNN
• Cascade	RCNN
• RetinaNet
• FCOS
• Deformable	DETR

Cityscapes	

ECP	

Kitti

Training	and	Testing	
Detection	Algorithms	

Training	time	AplApmApsAP50APMethod

21h22min	.610.4o1.194.657.40Cascade	RCNN

17h11min	.565.393.189.667.392Faster	RCNN

16	days	17h.011.002~.001~.001~.001FCOS

19h29min.549.353.143.582.358RetinaNet

21h22min	.617.426.196.667.42Cascade	RCNN	with	ResNext
backbone	

19h1min.559.358.155.606.367ResNeXt
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an	area	of	962<area	pixels.	AP	was	evaluated	using	 IoU	(Intersection	over	Union	of	

boundary	boxes)	=	0.5	:	0.05	:	0.95	with	AP:	MaxDets	=	100	(given	100	detections	100	

image).	For	the	road	senses,	we	focus	on	large	and	medium	objects,	as	these	are	the	

most	important	objects	for	predicting	the	movement	of	the	environment.	Looking	at	

the	training	results,	the	models	achieved	60%	accuracy	in	predicting	objects.		However,	

for	safer	traffic	systems,	detection	should	be	more	accurate,	a	modification	was	applied	

using	a	different	backbone	one	stage	detection	as	it	is	the	cheapest	solution.	ResNeXt	

(S.	Xie,	Girshick,	Dollár,	Tu,	&	He,	2017)	detection	is	used	as	the	detection	model	and	

the	 result	 is	 shown	 in	 Table	 4.4.	 ResNeXt	 is	 a	 homogeneous	 neural	 network	 that	

reduces	 the	 number	 of	 hyperparameters	 required	 by	 the	 conventional	 ResNet	 (He,	

Zhang,	Ren,	&	Sun,	2016).	It	was	also	used	as	a	backbone	for	Cascade	RCNN	and	the	

results	are	given	in	Table	4.4.	

When	comparing	the	results	obtained	from	the	tests	using	the	MMdetection	tool,	with	

the	 results	 on	 the	 same	 dataset	 summarised	 in	 Table	 4.5,	 the	 tool	 achieved	 better	

results	than	most	papers.	

	

Table	4.5	Results	of	detection	on	cityscape	provided	in	literature.	

Reference	 AP(%)	 AP50(%)	

(Cordts	et	al.,	2016)	 4.6	 12.9	

(Watanabe	&	Wolf,	2019)	 7.7	 14.9	

(Santarossa	et	al.,	2021)	 8.5	 19.3	

(Uhrig,	 Cordts,	 Franke,	 &	

Brox,	2016)	
8.9	 21.1	

(Mazzini	 &	 Schettini,	

2019)	
9.2	 16.8	

(Ortelt,	 Herrmann,	

Willersinn,	 &	 Beyerer,	

2018)	

12.5	 25.2	

(X.	Xu,	Chiu,	Huang,	&	Shi,	

2020)	
27.5	 48	

(He,	 Gkioxari,	 Dollár,	 &	

Girshick,	2017)	
26.2	 49.9	
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(Shu	 Liu,	 Jia,	 &	 Fidler,	

2017)	
25	 44.9	

(Porzi,	 Rotabuì,	 Colovic,	

Kontschieder,	&	Research,	

2019)	

22.1	 39.4	

(Kendall,	 Gal,	 &	 Cipolla,	

2018)	
21.6	 39	

(De	Brabandere	&	Neven,	

2017)	
17.5	 35.9	

(Hayder	&	He,	2017)	 17.4	 36.7	

(Shu	Liu	et	al.,	2018)	 36.4	 63.1	

(Cheng	et	al.,	2019)	 34.6	 57.3	

(Huiyu	Wang	et	al.,	2020)	 34.0	 55.9	

(Homayounfar,	 Xiong,	

Liang,	 Ma,	 &	 Urtasun,	

2020)	

33.3	 58.2	

(Peng	et	al.,	2020)	 31.7	 58.4	

(L.-C.	Chen,	Wang,	&	Qiao,	

2020)	
43.4	 68.7	

(L.-C.	 Chen,	 Lopes,	 et	 al.,	

2020)	
42.6	 67.6	

	

For	illustrative	purposes,	a	specific	set	of	scenes	showcasing	the	detection	of	all	object	

classes	 was	 chosen.	 The	 algorithm	 successfully	 detected	 different	 traffic	 object	

classes	in	the	same	scene	when	trained	and	tested	on	the	cityscape	dataset,	as	shown	

in	 the	 images.	 Figure	 4.3	 shows	 a	 sample	 of	 training	 and	 testing	 images	 from	 the	

cityscape	dataset.	
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Figure	4.3	Cityscapes	ODA	where	the	images	are	obtained	from	testing	using	faster	RCNN,	RetinaNet	

and	cascade	RCNN.	
	

4.3.2 KITTI	Dataset	
	
The	KITTI	dataset	was	trained	and	tested	using	different	detection	algorithms	and	the	

results	 are	 then	 recorded	 and	 presented	 in	 Table	 4.6.	 The	 KITTI	 dataset	 overall	

achieved	very	high	mean	average	precision	(mAP)	values.	As	mentioned	earlier,	this	

dataset	was	 collected	 from	 a	 city	with	 high	 resolution	 and	 dry	weather.	 This	 fact	

affected	 the	 results	 when	 compared	 to	 the	 other	 datasets.	 The	 two-stage	 object	

detection	 using	 resNeXt	 backbone	 achieved	 the	 highest	 mAP	 value	 of	 88.94%,	

whereas	the	one-stage	RetinaNet	achieved	85.47	%	mAP	with	a	lower	computational	

cost.	

In	addition,	the	results	using	a	transformer	algorithm	appear	to	be	the	lowest,	as	the	

dataset	is	divided	by	two,	leaving	the	GPU	with	insufficient	memory.	
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Table	4.6	KITTI	dataset	training	results	

 

Figure	4.4	shows	a	selected	set	of	test	scenes	where	all	object	classes	were	detected	based	

on	Faster	RCNN,	 for	 illustrative	purposes.	The	algorithm	successfully	detected	different	

traffic	object	classes	in	the	same	scene	when	trained	and	tested	on	the	KITTI	dataset,	as	

shown	in	the	images.		

Training	time	AP50mAPAlgorithm	
5h38min.889.8894Cascade	RCNN

8h56min.797.7697Deformable	DETR*

4h7min.8807.8810Faster	RCNN

10h27min.822.8815FCOS

1h51min.855.8547RetinaNet

3h18min.882.8816ResNext
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Figure	4.4	KITTI	ODA	where	the	images	are	obtained	from	testing	using	faster	RCNN.	
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It	 is	also	worth	noting	that	the	mAP	obtained	from	testing	and	trained	on	the	data	

itself	 achieved	 a	 high	 detection	 percentage.	 A	 deeper	 view	 of	 Cascade	 RCNN	

performance	at	IoU	50	is	shown	below	(Table	4.7):	

Table	4.7	Ground	truths	(GTs),	Detection(Dets),	AP	and	Recall	values	for	the	classes	

Class	 GTs	 Dets	 Recall	 AP	

Car	 3319	 5393	 0.958	 0.941	

Person	 404	 1220	 0.851	 0.759	

Cyclist		 133	 424	 0.910	 0.822	

mAP	 0.841	

The	overall	AP50	obtained	from	the	classes	is	84.1%	and	the	mAP	is	84.078%.		

FCOS	is	another	example	of	a	much	recent	detection	algorithm	performance	on	KITTI.	

It	was	chosen	for	deeper	detection	performance	evaluation	as	it	is	one	of	the	newest	

detection	algorithms	and	there	has	been	little	evaluation	of	the	model,	following	Table	

4.8	is	a	detailed	evaluation	of	the	FCOS.	

Table	4.8	Ground	truths	(GTs),	Detection(Dets),	AP	and	Recall	values	for	the	classes	

Class	 GTs	 Dets	 Recall	 AP	

Car	 3319	 13070	 0.973	 0.942	

Person	 404	 5013	 0.876	 0.750	

Cyclist		 133	 3692	 0.940	 0.849	

mAP	 0.847	

The	overall	AP50	obtained	from	the	classes	is	84.7%	and	the	mAP	is	84.714%.		
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When	comparing	results	to	literature	following	Table	4.9	illustrate	results		

Table	4.9	KITTI	literature	testing	result	(mAP)	

Reference		 Detection		 mAP(%)	

(Al-Refai	&	Al-Refai,	2020)	 Darknet-53	CNN-

YOLOv3			

98.7	

(Brazil	&	Liu,	2020)	 RRC	 75.33	

MS-CNN	 73.70	

SDS-RCNN	 63.05	

GDFL	 68.62	

AR-Ped	 73.44	

(Feng	et	al.,	2020)	 SSD	 (W.	 Liu	 et	 al.,	

2016)	

61.29	

YOLOv3	(Redmon	et	al.,	

2016)	

80.52	

MobileNet-YOLOv3	 78.32	

(Wei	et	al.,	2020)	 Faster	 RCNN	 (Ren	 et	

al.,	2015b)	

79.11	

multiple	scale	CNN	

network	model	for 

89.64	

In	the	evaluation	of	the	KITTI	dataset,	the	performance	results	obtained	align	closely	

with	the	findings	reported	in	the	existing	literature.	My	analysis	and	experiments	on	

the	dataset	consistently	demonstrate	comparable	outcomes	to	those	documented	in	

related	studies.	This	alignment	not	only	underscores	the	robustness	and	reliability	of	

the	dataset	but	also	reinforces	the	validity	of	my	research	methods.	These	congruent	

results	 in	 the	 context	 of	 the	 KITTI	 dataset	 corroborate	 the	 consistency	 and	

repeatability	of	the	findings	and	contribute	to	the	broader	body	of	knowledge	in	the	

field.	

Now,	we	move	on	to	the	third	dataset,	EuroCity	Persons	(ECP),	the	most	complex	of	

the	selected	datasets.	
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4.3.3 EuroCity	Person	dataset	

The	ECP	dataset	has	been	trained	and	tested	using	different	detection	algorithms,	

the	results	are	then	recorded	and	displayed	in	Table	4.10.	

Table	4.10	ECP	performance	results	when	trained	on	2080Ti	GPU	

When	 trained	 on	 the	 2080Ti	 GPU,	 Faster	 RCNN	 achieved	 an	 average	 accuracy	 of	

86.6%	at	IoU=0.5	and	82.2%	when	trained	and	tested	using	the	Cascade	RCNN	model.	

FCOS	achieved	the	lowest	average	accuracy	of	69.4%	at	IoU=0.5	compared	to	the	two-

stage	object	detection	models.	However,	when	comparing	this	result	with	the	result	

obtained	by	(Tian	et	al.,	2019)	when	training	on	COCO	dataset,	they	achieved	an	AP	of	

54.9%.		

However,	owing	to	low	GPU	space	due	to	the	large	datasets	used	for	this	experiment,	

the	training	and	testing	of	this	data	was	carried	out	again	using	a	3090Ti	GPU	and	

MMdetection	2.28.2.	This	was	adopted	as	the	previous	version	was	not	compatible,	

the	results	were	then	recorded	in	the	following	table	(Table	4.11).	All	experiments	in	

this	subsection	were	performed	on	the	same	GPU	(3090	TI	GPU).		

Table	4.11	ECP	performance	results	when	trained	on	3090Ti	GPU	

	

Training	time	AplAp75AP50APMethod

5day	7h36min0.5650.5790.8220.529Cascade	RCNN

3day	5h7min	0.5980.6060.8660.550Faster	RCNN

3day	9h3min0.4060.30.6940.347FCOS

Training	time	AplAp75AP50APMethod

20h36min0.2730.1840.310.181Cascade	RCNN

16h	26min0.1420.0660.1740.0804Deformable	DETR

15h	47min0.1770.1020.230.115Faster	RCNN

18h	55min0.180.0850.2220.104FCOS

14h	45min0.1670.0860.2060.1012RetinaNet
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The	 differences	 in	 graphics	 cards	 (2080Ti,	 3090Ti)	 introduced	 variations	 in	

performance	 results	 due	 to	 variations	 in	 computational	 power,	 memory	 capacity,	

architecture,	parallel	processing	capabilities,	and	numerical	precision,	among	other	

factors.	

Furthermore,	when	looking	at	the	literature	to	compare	the	results	obtained	during	

training	and	testing	on	the	ECP	dataset,	it	is	found	that	the	ECP	evaluation	is	mostly	

based	on	the	log	average	miss-rate	(LAMR),	which	is	an	evaluation	metric	developed	

by	(Braun	et	al.,	2019).	To	evaluate	the	performance	of	the	dataset,	it	is	calculated	as	

follows:	

𝐿𝐴𝑀𝑅 = 𝑒𝑥𝑝£
1
9Dlog¥𝑚𝑟 ¦argmax

!II,(/)
𝑓𝑝𝑝𝑖(𝑐)§¨

!

©, 

4.1	

where,	𝑚𝑟	is	the	miss	rate	for	confidence	value	c	 such	that	only	detections	are	taken	

into	account	with	a	confidence	value	greater	or	equal	than	c, which	is	calculated	as	

shown	 in	equation	(4.2),	𝑓𝑝𝑝𝑖	 is	 the	 false	positives	per	 image,	 and	 its	calculation	 is	

shown	in	equation	(4.3). 

𝑚𝑟 =
𝑓𝑛(𝑐)

𝑡𝑝(𝑐) + 𝑓𝑛(𝑐), 

4.2	

𝑓𝑛(𝑐)		is	the	number	of	false	negatives,	𝑡𝑝(𝑐)	is	the	number	of	true	positive.	

𝑓𝑝𝑝𝑖(𝑐) =
𝑓𝑝(𝑐)
#𝑖𝑚𝑔, 

4.3	

𝑓𝑝(𝑐)	is	 the	 number	 of	 false	 positive,	 #𝑖𝑚𝑔	 is	 the	 total	 number	 of	 images.	 It	 is	

important	 to	 note	 that	 the	 lower	 the	 LAMR,	 the	 better	 is	 the	 performance	 of	 the	

detector.	For	LAMR	evaluation	you	can	refer	to	appendix	C.	

However,	for	the	purpose	of	this	thesis	evaluating	using	LAMR	is	not	necessary	and	

wont	achieve	thesis	comparison	purpose	and	therefore	mAP	evaluation	of	the	

dataset	was	then	captured	and	recorded	in	the	following	Table	4.12.	
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Table	4.12ECP	literature	testing	results	(mAP	)	

Reference	 Detection	method	 mAP(%)	

(Jiang	et	al.,	
2021)	

HRNet-W18	 88.7	
SPNet	w	cascade		 89.6	
ResNet50	w	FPN	 88.4	
ResNet101	w	FPN	 87.8	

HRNet-W40	 88.1	
	

The	ECP	dataset	has	been	extensively	studied	in	this	thesis,	where,	in	addition	to	

the	different	scoring	matrices,	a	confusion	metrics	has	been	created,	which	will	be	

used	as	a	pre-trained	model	for	the	collected	dataset	in	Chapter	5.	

Starting	with	the	single	stage	FCOS	and	RetinaNet	detection,	the	different	FCOS	and	

RetinaNet	scores	are	discussed	in	the	following	section.	

	

A) FCOS	Evaluation		

	

This	 dataset	 has	 12	 classes	 (pedestrian,	 bicycle-group,	 person-group-far-away,	

scooter-group,	motorbike,	bicycle,	rider,	motorbike-group,	rider&	vehicle-group-

far-away,	buggy-group,	wheelchair-group,	tricycle-group)	that	focus	on	evaluating	

the	 detection	 of	 the	 three	 main	 categories:	 cyclist,	 pedestrian,	 and	 cars.	 Table	

(4.13)	provides	an	objective	evaluation	of	the	FCOS	(Tian	et	al.,	2019).	Recall	is	also	

captured	and	presented	in	Table	4.13,	where	recall	values	estimate	the	ability	of	a	

classifier	to	label	all	positive	objects.	
Table	4.13	Average	percentage	and	average	recall	of	FCOS	

Average	Precision	

All	 All	@50	 All	@75	 Small	 Medium	 Large	

0.104	 0.222	 0.085	 0.037	 0.099	 0.180	

Average	Recall	

	All	 All	@50	 All	@75	 Small	 Medium	 Large	

0.198	 0.198	 0.198	 0.133	 0.192	 0.302	

		

Following	(Figure	4.5)	is	a	confusion	metrics;	it	is	used	as	an	evaluation	matric	where	

it	helps	in	understanding	the	classes	that	are	being	confused	by	model	as	other	class.	
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Figure	4.5	ECP	FCOS	confusion	matrix	

Moving	 to	 the	 subjective	 evaluation	 of	 the	 network.	 Figure	 4.6	 present	 detection	

results	where	the	red	boxes	show	the	detected	objects.	
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Figure	4.6	FCOS	detection	results	on	ECP	dataset	

Looking	at	the	objective	results	obtained,	it	can	be	said	that	the	FCOS	model	is	yet	to	

become	capable	for	real	time	application.		
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B) RetinaNet	Evaluation		

When	evaluating	the	subjective	aspect	of	RetinaNet	(Lin,	Goyal,	et	al.,	2017)	using	

the	12	classes,	the	results		showed	better	performance	than	FCOS	as	shown	below.		
Table	4.14	Average	percentage	and	average	recall	of	RetinaNet	

Average	Precision	

All	 All	@50	 All	@75	 Small	 Medium	 Large	

0.1012	 0.206	 0.086	 0.035	 0.105	 0.167	

Average	Recall	

	All	 All	@50	 All	@75	 Small	 Medium	 Large	

0.203	 0.203	 0.203	 0.118	 0.205	 0.284	

A	confusion	matrix	is	then	created	for	this	network	(Figure	4.7)	

	
Figure	4.7	ECP	RetinaNet	confusion	matrix	

Looking	at	the	objective	evaluation,	the	network	was	able	to	successfully	detect	the	

different	 objects	 from	 different	 classes,	 as	 shown	 in	 Figure	 4.8.	 The	 blue	 box	

indicates	 the	 detected	 objects	where	 the	 same	 images	 are	 used	 for	 compression	

purposes.	



 

 175 

	
Figure	4.8	RetinaNet	detection	results	on	ECP	

FCOS	performed	better	when	compared	to	RetinaNet,	although	most	objects	were	

detected,	however,	owing	to	occlusion,	a	large	number	of	bboxes	were	identified	in	

the	images	as	multiple	objects	and	backgrounds,	yet	the	network	was	able	to	identify	

and	 detect	 most	 objects	 in	 the	 image	 frame.	 Moving	 on	 to	 the	 two-step	 object	
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detection	for	ECP	evaluation,	the	subjective	and	objective	evaluation	of	Faster	RCNN	

is	analysed.	

	

C) Faster	RCNN	Evaluation	

	

When	training	and	testing	dataset	on	Faster	RCNN	the	following	results	are	obtained	

(Table	4.15):			
Table	4.15	Average	percentage	and	average	recall	of	Faster	RCNN	

Average	Precision	

All	 All	@50	 All	@75	 Small	 Medium	 Large	

0.115	 0.23	 0.102	 0.066	 0.115	 0.177	

Average	Recall	

	All	 All	@50	 All	@75	 Small	 Medium	 Large	

0.205	 0.205	 0.205	 0.153	 0.202	 0.278	

Plotting	a	confusion	matrix	for	detection	(Figure	4.9)	

	
 

Figure	4.9	Faster	RCNN	ECP	confusion	matrix 



 

 177 

The	results	showed	a	better	performance	than	the	single	level	detection	where	the	

network	 was	 able	 to	 correctly	 detect	 pedestrians	 (80%)	 and	 riders	 (53%)	 in	 an	

occluded	traffic.	

Figure	4.10	shows	a	sample	of	the	detection	results,	where	the	blue	boxes	show	the	

detected	objects	and	the	scores	and	classes	are	given.		
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Figure	4.10	Faster	RCNN	detection	results	on	ECP	

Moving	to	Cascade	RCNN	(Cai	&	Vasconcelos,	2017)	detection,	which,	as	mentioned	

earlier	(Chapter	2),	is	a	multi-stage	extension	of	the	two-stage	RCNN	object	detection	

framework.	It	aims	to	achieve	better	object	detection	results.		
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D) Cascade	RCNN	Evaluation	

	
The	 following	 table	 (Table	 4.16)	 illustrates	 the	 results	 obtained	 when	 using	 the	

cascade	network.	
Table	4.16	Average	percentage	and	average	recall	of	Cascade	RCNN	

Average	Precision	

All	 All	@50	 All	@75	 Small	 Medium	 Large	

0.181	 0.31	 0.184	 0.129	 0.171	 0.273	

Average	Recall	

	All	 All	@50	 All	@75	 Small	 Medium	 Large	

0.259	 0.259	 0.259	 0.223	 0.340	 0.453	

	

A	confusion	matrix	was	then	computed	(Figure	4.11),	which	shows	that	the	network	

correctly	detected	more	objects	than	the	previous	networks.	More	than	60%	of	the	

cyclists	were	correctly	identified	as	cyclists,	80%	of	the	pedestrians	were	correctly	

identified	and	classified,	and	42%	of	the	bicycles	were	correctly	classified.	
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Figure	4.11	Cascade	RCNN	ECP	confusion	matrix 

When	the	results	are	analysed	visually,	Figure	4.12	shows	an	example	of	detection	

results,	where	the	blue	box	is	the	bbox,	showing	the	classes	and	the	detection	score.		
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Figure	4.12	Cascade	RCNN	results	on	ECP	

Finally,	we	come	to	the	deformable	DETR,	one	of	the	latest	object	detection	methods	

that	aims	to	alleviate	the	slow	convergence	and	high	complexity	issues	witnessed	in	

DETR	as	mentioned	in	Chapter	2.		
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E) Deformable	DETR	Evaluation	

	
This	network	has	not	received	much	attention	as	it	is	a	new	algorithm.	In	this	thesis,	

we	examined	its	performance	on	the	three	datasets.	The	detection	result	on	ECP	is	

shown	in	the	following	table	(Table	4.17).	

	
Table	4.17	Average	percentage	and	average	recall	of	Deformable	DETR	

Average	Precision	

All	 All	@50	 All	@75	 Small	 Medium	 Large	

0.0804	 0.174	 0.066	 0.036	 0.075	 0.142	

Average	Recall	

	All	 All	@50	 All	@75	 Small	 Medium	 Large	

0.189	 0.189	 0.189	 0.124	 0.183	 0.268	

 
	

These	results	are	visually	presented	in	Figure	4.13	below.	The	detection	results	are	

low	compared	to	the	other	detection	models,	but	it	needs	further	modifications	to	be	

used	for	real-time	applications.	
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Figure	4.13	Deformable	DETR	results	on	ECP.	

Finally,	comparing	the	performance	of	the	five	models	on	the	ECP	dataset,	Cascade	

RCNN	had	the	best	performance	accuracy	of	all	the	models.	Figure	4.14	shows	a	visual	

comparison	of	object	recognition,	where	the	recognition	scores	are	given	next	to	the	
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class	name.	Taking	the	horse	rider	as	an	example,	FCOS	was	able	to	detect	the	object	

with	38%	accuracy	(Figure	4.14(a)),	RetinaNet	detected	the	object	with	84%	accuracy	

(Figure	4.14(b)),	Faster	RCNN	detected	the	same	object	with	99%	accuracy	(Figure	

4.14(c)),	deformable	DETR	managed	to	detect	the	object	with	a	score	of	42%	(Figure	

4.14(d)),	 and	 Cascade	 RCNN	 achieved	 a	 detection	 accuracy	 score	 of	 100%	 in	

identifying	the	object	as	shown	in	(Figure	4.14(e)),	but	the	network	was	also	able	to	

correctly	categorise	the	other	detected	object	with	an	average	of	42%.	

In	an	overall	evaluation	of	ECP,	the	performance	on	this	dataset	can	be	considered	

poor	due	to	the	low	performance	percentage	obtained.	It	is	important	to	point	out	the	

different	 states	 of	 the	 sensor,	 which	 has	 a	 direct	 effect	 on	 the	 performance,	 the	

different	classes	involved,	i.e.	when	focusing	on	the	detection	of	one	class	(pedestrian,	

for	example)	 the	model	achieved	an	average	performance	of	76%;	 this	 shows	 that	

reducing	the	number	of	classes	detected	will	result	in	better	performance,	however	

in	a	real-time	application	it	is	not	ideal	to	have	one	class	and	therefore	the	different	

classes	related	to	cyclists	and	pedestrians	are	considered.				
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Figure	4.14 Comparing	detection	result	obtained	on	ECP,	(a)	FCOS	detection	results,	(b)	RetinaNet	
detection	results,	(c)	Faster	RCNN	detection	result,	(d)	Deformable	DETR	detection	result,	(e)	Cascade	
RCNN	detection	result.	

 

Results	of	testing	on	different	datasets	differ,	which	could	be	due	to:	

• Different	image	resolution.		

• Overfitting	of	testing	images.			

• Flip	and	rotation	of	images.			

For	further	evaluation	of	models,	cross-validation	is	performed.	Cross-validation	is	a	

technique	used	in	machine	learning	to	evaluate	a	model	by	training	several	models	on	

subsets	of	the	available	input	data	and	evaluating	them	on	the	complementary	subset	

of	the	data.	It	is	used	to	detect	overfitting,	which	gives	a	better	indication	of	how	well	

a	model	performs	on	unseen	data.	This	is	useful	in	real-time	applications.	

	

a b

c d

e
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4.4 DISCUSSION	
 
The	two-stage	object	detection	generally	showed	a	better	detection	result	compared	

to	the	one-stage	detection.	From	the	above	experimental	results,	it	can	be	observed	

that	the	one-stage	detection	algorithm	RetinaNet	has	excellent	performance	in	terms	

of	speed	and	achieved	high	accuracy	compared	to	other	detection	algorithms	for	road	

object	detection.	Cascade	RCNN	achieved	the	highest	accuracy	in	all	datasets,	but	it	

requires	 a	 long	 computation	 time.	 The	 use	 of	 ResNext	 backbone	 improved	 the	

accuracy	 of	 detection	 and	 classification.	 Furthermore,	 using	 the	 proposed	 TRN	

detector	 showed	 a	 better	 result	 in	 the	 test,	 	 as	 shown	 in	Table	 4.3.	 The	one-stage	

RetinaNet	detector	achieved	lower	results	compared	to	the	other	one-stage	detection	

models,	however	it	has	a	strong	ability	to	multiscale	because	of	FPN	and	focal	loss;	

therefore,	it	achieves	higher	accuracy	results	for	APlarge	and	APmedium	as	shown	in	ECP	

and	 Cityscapes	 results.	 This	 model	 can	 be	 considered	 as	 a	 balanced	 model	 as	 it	

maintains	 the	 same	high	 level	 of	 precision	 and	 recall	 in	 all	 category	 levels	 for	 the	

targeted	road	objects.	The	results	shown	for	both	ECP	and	Cityscapes	are	lower	than	

the	 results	 obtained	 using	 the	 KITTI	 dataset,	 due	 to	 the	 conditions	 in	 which	 the	

dataset	was	recorded,	where	the	KITTI	dataset	is	less	demanding	than	the	other	two	

as	it	was	collected	in	a	city	with	clear	weather.	The	number	of	classes	that	both	ECP	

and	Cityscapes	cover	for	detection,	the	type	of	sensors	used,	and	the	location	of	the	

objects	(i.e.	the	more	distant	the	objects,	the	less	likely	they	are	to	be	detected).	We	

considered	 testing	 on	 three	 datasets	 to	 analyse	 the	 detection	 performance	 and	

compare	 the	 performance	 of	 the	 proposed	 detection	 model	 under	 different	

complexity	of	road	scenes.			

	

4.5 CONCLUSION	
 
This	chapter	compares	the	results	of	training	and	testing	different	datasets	using	five	

detection	 algorithms.	 The	 algorithms	 were	 trained	 on	 one	 dataset	 and	 tested	 on	

several	datasets	to	check	the	dataset-independent	performance	of	the	algorithms.	The	

Cascade	RCNN	algorithm	performed	best	across	the	board,	but	performance	varied	

significantly	 for	 each	 different	 dataset.	 In	 general,	 the	 algorithms	 performed	 best	

when	 tested	on	 the	KITTI	dataset.	This	 can	be	attributed	 to	 the	consistency	of	 the	
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conditions	under	which	the	data	were	collected.	In	general,	the	algorithms	performed	

reasonably	well	when	trained	on	the	ECP	dataset.	Training	times	were	long,	and	the	

dataset	was	 collected	 in	more	 variable	 situations.	 The	 algorithms	 performed	 best	

when	 trained	 on	 the	 KITTI	 dataset,	 which	 may	 be	 due	 to	 the	 better	 lighting	 and	

weather	conditions,	i.e.,	images	were	captured	in	dry	and	clear	weather.	An	important	

implication	of	this	study	is	that	better	performance	results	may	not	be	obtained	when	

tested	on	a	larger	training	dataset;	the	quality	of	the	training	images	proved	to	be	a	

key	 factor	 influencing	 the	 performance	 of	 the	 algorithms.	 Furthermore,	 using	 the	

original	 image	 resolution	proved	 to	be	better	 for	 algorithm	performance,	whereas	

changing	the	resolution	to	improve	training	time	or	computational	cost	proved	to	be	

worse.		

The	 performance	 of	 none	 of	 the	 algorithms	 was	 consistent	 across	 the	 datasets,	

indicating	 that	 none	 of	 the	 algorithms	 are	 ready	 for	 real-time	 application	 with	

guaranteed	accuracy.	Furthermore,	applications	in	complex	scenes	with	cloudy	and	

rainy	 weather	 conditions	 may	 not	 be	 consistent	 with	 the	 performance	 of	 the	

algorithms	 when	 tested	 on	 images	 taken	 in	 good	 visibility	 conditions.	 Further	

research	 is	 needed	 to	 improve	 the	 performance	 of	 the	 algorithms	 by	 minimising	

computational	time	and	improving	the	consistency	of	detection	accuracy	prior	to	real-

world	application.	

The	inference	time	required	that	was	obtained	from	training	different	models	gives	

an	insight	into	the	suitability	of	a	model	for	real-time	application.		

While	detectors	 learned	on	one	dataset	do	not	necessarily	 transfer	well	 to	others,	

their	ranking	is	stable	across	datasets,	suggesting	that	insights	can	be	learned	from	

well-performing	methods	regardless	of	the	benchmark.	

	

We	move	on	to	Chapter	5,	where	all	the	insights	gained	in	this	chapter	are	considered	

and	 applied.	 The	 chapter	 will	 focus	 on	 the	 development	 of	 a	 benchmark	 dataset	

meticulously	designed	to	evaluate	the	algorithms	under	various	weather,	lighting,	and	

driving	 conditions.	 We	 delve	 into	 the	 creation	 process	 and	 conduct	 a	 thorough	

evaluation,	setting	the	stage	for	a	nuanced	understanding	of	algorithmic	adaptability	

in	diverse	real-world	scenarios.	
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Chapter	5	
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5 Benchmarking	Framework	for	
Training	&	Evaluation	

	

This	chapter	focuses	on	the	construction	of	an	aggregated	benchmark	dataset	for	

urban	traffic	scenes	using	dashboard	camera	images.	The	development	of	driver	

assistance	systems	and	self-driving	vehicles	means	that	the	detection	of	road	users	

such	as	cyclists	and	pedestrians	should	be	accurate	and	efficient	to	ensure	road	

safety	 in	 a	 connected,	 automated	 environment.	 Research	 shows	 that	 the	

performance	of	attentive	pedestrian	detection	lags	by	an	order	of	magnitude,	and	

this	is	one	of	the	problems	encountered	by	some	detection	methods.	

This	chapter	starts	with	a	cross-validation	analysis	of	the	different	datasets	used	

for	the	detection	comparison	(KITTI,	Cityscapes	and	ECP).	Section	5.2	introduces	

the	benchmarking	evaluation	dataset,	and	Section	5.3	explains	the	details	of	 the	

unified	 dataset.	 This	 is	 followed	 by	 the	 experimental	 design	 (Section	 5.4)	 and	

finally	the	conclusion	(Section	5.5).	

 
5.1 TRAINING	AND	EVALUATION	ACROSS	DATASETS	

 
We	perform	a	cross-dataset	evaluation	to	test	how	well	the	algorithms	perform	on	

unseen	 data	 from	 another	 dataset.	 This	 helps	 with	 generalisation	 and	 real-time	

application.	Cross-validation	is	used	in	machine	learning	for:	

• Better	use	of	data:	Cross-validation	allows	better	use	of	data	by	using	 it	 for	

training	and	testing.	Splitting	the	data	into	multiple	folds	and	using	each	fold	

for	testing	gives	a	more	accurate	estimate	of	how	well	the	model	will	perform	

on	new,	unseen	data.	

• Reduced	 risk	 of	 overfitting:	 Cross-validation	 can	 help	 reduce	 the	 risk	 of	

overfitting,	which	occurs	when	a	model	 is	 too	complex	and	 fits	 the	 training	

data	too	well.	By	evaluating	the	model	on	multiple	test	sets,	a	better	estimate	

can	be	made	of	how	well	the	model	will	generalise	to	new	data.	

• Model	 selection:	 Cross-validation	 can	 help	 select	 the	 best	 model	 for	 a	

dataset.	By	comparing	the	performance	of	different	models	on	the	same	

data,	the	model	that	performs	best	and	is	most	likely	to	generalise	well	to	

new	data	can	be	selected.	
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• Robustness:	Cross-validation	helps	to	assess	how	robust	the	model	is.	By	

using	multiple	 test	 sets,	 a	 better	 estimate	 can	be	made	of	 how	well	 the	

model	will	perform	on	new	data	that	may	be	different	 from	the	training	

data.	

In	this	dissertation,	we	compared	the	performance	of	the	different	models	on	the	

datasets	 (Cityscapes,	 KITTI,	 ECP)	 on	 which	 this	 dissertation	 focuses.	 The	

algorithms	were	trained	on	a	subset	of	each	dataset	and	then	tested	on	the	test	

set	for	the	KITTI	dataset	(see	2.4.4.3)	and	the	validation	set	for	both	Cityscapes	

(see	2.4.4.2)	and	ECP	(see	2.4.4.4).		

Performing	 a	 cross-evaluation	 on	 three	 different	 datasets	 with	 different	

resolutions,	 annotation	 styles,	 class	 imbalance	 and	 data	 size	 is	 challenging.	

However,	the	main	challenge	of	training	on	one	dataset	and	testing	on	another	is	

that	the	model	may	not	perform	as	well	on	the	test	dataset	as	it	did	on	the	training	

dataset.	This	is	because	the	testing	dataset	may	contain	different	types	of	data	or	

different	distributions	than	the	training	dataset,	which	may	cause	the	model	to	

generalise	 poorly.	 In	 addition,	 if	 the	 test	 dataset	 is	 too	 small,	 it	 may	 not	 be	

representative	 of	 the	 larger	 population,	 which	 can	 also	 lead	 to	 poor	

generalisation.	Nevertheless,	experimentation	is	necessary	to	reach	a	conclusion.		

To	perform	cross-validation,	several	changes	are	required	for	each	dataset.	The	

following	matrix	illustrates	the	changes	made.	
Table	5.1	Matrix	of	changes	involved	in	unifying	datasets.	

	 

ECPKITTICityscapes	

• Annotation
• Classes
• Image size

• Annotation
• Image size 

• Annotation
• Classes
• Image size

Cascade	RCNN

• Annotation
• Classes
• Image size

• Annotation
• Image size

• Annotation
• Classes
• Image size

Faster	RCNN

• Annotation
• Classes
• Image size

• Annotation
• Image size

• Annotation
• Classes
• Image size

RetinaNet

• Annotation
• Classes
• Image size

• Annotation 
• Image size 

• Annotation
• Classes
• Image size

FCOS

• Annotation
• Classes
• Image size

• Annotation
• Image size 

• Annotation
• Classes
• Image size

Deformable	DETR
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Annotation	 is	 the	practice	of	adding	explanatory	notes	 to	 the	 images;	 the	different	

datasets	 use	 different	 annotation	 styles.	 For	 example,	 the	 cityscapes	 annotation	 is	

designed	for	object	detection	and	semantic	segmentation	of	urban	street	scenes.	The	

annotation	of	this	dataset	is	considered	as	the	most	detailed	annotation	among	the	

selected	 datasets.	 Therefore,	 it	 is	 necessary	 to	 modify	 the	 annotation	 of	 all	 the	

datasets	for	the	cross-validation	task.		

Classes	 is	 the	 category	of	 the	object	 to	be	 recognised.	Each	dataset	has	a	different	

number	of	classes,	so	changing	the	number	of	classes	is	one	of	the	steps	considered	in	

the	validation—three	main	classes	used	for	validation:	Cars,	Pedestrians	and	Cyclists.	

In	the	ECP	dataset,	the	different	categories	related	to	pedestrians	were	combined	into	

one	class;	 this	was	done	 for	 the	different	 classes	 in	 the	dataset	 to	eventually	 form	

three	classes,	similarly	for	the	Cityscapes	dataset.	

Image	size	can	affect	recognition,	as	smaller	images	may	not	contain	enough	detail	for	

accurate	recognition,	while	 larger	 images	may	require	more	processing	power	and	

time	to	analyse.	Images	were	resized	to	avoid	computational	time	issues,	keeping	the	

size	in	the	range	where	image	detail	remains	accurate	for	recognition.		

	

5.1.1 Cross-Validation	Results	
	
The	cross-validation	results	are	shown	in	Table	5.1,	where	mAP	(equation	2.33)	 is	

used	 to	 calculate	 the	performance.	The	 results	 show	 that	Cascade	RCNN	performs	

better	on	most	datasets,	but	takes	longer	to	compute	(see	to	Table	5.2).			

However,	 some	 methods	 failed	 to	 detect	 when	 tested	 on	 a	 different	 dataset	 (i.e.	

training	on	cityscapes	and	testing	on	KITTI,	the	results	shown	in	the	table	are	almost	

0.	 The	 reason	may	 be	 due	 to	 resolution	mismatch,	 different	weather	 and	 lighting	

conditions);	this	gives	an	insight	into	the	ability	of	the	model	to	generalise.	Cascade	

RCNN,	 Faster	 RCNN,	 FCOS,	 and	 RetinaNet	 were	 evaluated	 in	 this	 cross-dataset	

evaluation.		

 
Table	5.2	Cross	dataset	evaluation	on	Cityscapes,	KITTI	and	EuroCity	Person	(mAP).	A→B,	refer	to	
training	on	A	and	testing	on	B.	
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The	results	of	the	cross-evaluation	showed	that	the	models	are	not	yet	ready	for	real-

time	use,	as	they	performed	poorly	when	tested	on	unseen	data.	This	may	be	due	to:	

• The	model	may	be	unable	to	generalize	well	due	to	the	mismatch	of	data	size.	

• Overfit	of	data,	in	the	case	of	training	on	KITTI	and	testing	on	other	datasets.	

Nevertheless,	generally,	it	is	better	to	have	more	training	data.	

• A	class	mismatch	will	cause	the	model	to	not	generalise	the	test	data.	

To	overcome	this	problem,	some	techniques	can	be	used,	such	as	transfer	 learning	

(Torrey	 &	 Shavlik,	 2010)	 or	 data	 augmentation	 (Shorten	 &	 Khoshgoftaar,	 2019),	

which	will	help	to	improve	performance.	In	this	experiment,	although	the	model	was	

pre-trained	using	COCO,	the	model	results	were	significantly	low.	Furthermore,	if	the	

classes	 in	 the	 training	 and	 test	 data	 do	 not	match,	 the	model	may	 not	 be	 able	 to	

generalise	 to	 the	 test	 data.	 In	 this	 case,	 the	 classes	were	 adjusted,	 and	 the	model	

learned	to	classify	the	training	data	according	to	its	classes,	but	it	will	not	have	seen	

the	new	classes	in	the	test	data.	This	could	lead	to	poor	performance	on	the	test	data.	

Reducing	the	image	size	could	be	seen	as	a	reason	for	the	poor	scores,	where	some	

details	 of	 the	 images	 are	 lost,	 and	 the	model	 may	 not	 be	 able	 to	 identify	 objects	

accurately.	However,	this	step	was	taken	firstly	to	have	all	images	of	the	same	size	and	

secondly	to	speed	up	the	training	process	and	reduce	the	amount	of	memory	required	

to	store	the	images.	

	

Moreover,	 on	 the	 cross	 evaluation	 of	Deformable	DETR	 results	were	 considerably	

lower	and	exhibited	a	level	of	statistical	insignificance	when	compared	to	the	baseline	

algorithms	and	the	proposed	approach.	Therefore,	results	were	omitted	from	been	

presented	in	table	5.2.		

 
 

ECP	→	KITTIECP	→	CityscapesKITTI	→	ECPKITTI	→	CityscapesCityscapes	→	ECPCityscapes	→	KITTIMethod	

7.513.414.524.312.19.2RetinaNet

6.77.712.416.911.34.5FCOS

8.815.719.127.517.87.9Faster	RCNN

10.317.420.226.410.98.9Cascade	RCNN
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5.2 DEVELOPMENT	OF	A	UNIFIED	BENCHMARKING	
EVALUATION	DATASET	

	
Datasets	are	critical	entities	in	computer	vision.	In	computer	vision,	a	dataset	is	the	

source	of	information	that	a	machine	uses	to	train	itself	to	learn	and	predict	future	

outcomes	based	on	the	patterns	found	in	the	dataset.		

A	 Unified	 Benchmarking	 Evaluation	 Dataset	 (UBED)	 is	 designed	 to	 ensure	 that	

state-of-the-art	 traffic	 object	 detection	 algorithms	 are	 evaluated	 using	 a	

standardised	framework,	with	a	particular	focus	on	performance	variations	due	to	

natural	variations	in	real-world	scenes.	The	benchmark	dataset	aims	to	advance	

the	 state	 of	 the	 art	 in	 traffic	 object	 detection	 under	 the	 different	 weather	 and	

driving	 conditions	by	placing	 the	 issue	of	 object	 detection	 in	 the	 context	 of	 the	

broader	 issue	 of	 scene	 understanding.	 The	 UBED	 dataset	 contains	 images	 of	

complex	everyday	urban	traffic	scenes	containing	the	two	most	important	traffic	

object	classes	in	the	context	of	this	research,	namely	pedestrians	and	cyclists.	Put	

simply,	UBED	contains	photographs	that	would	be	easily	recognisable	by	a	4-year-

old	child,	with	a	total	of	8,000	images.	All	images	were	taken	on	urban	roads	and	

come	from	the	previously	presented	Cityscapes,	KITTI,	and	ECP	datasets.	The	four	

detection	algorithms	used	for	testing	are	FCOS	(Tian	et	al.,	2019),	RetinaNet	(Lin,	

Goyal,	 et	 al.,	 2017),	 Faster	 RCNN(Ren	 et	 al.,	 2015b),	 Cascade	 RCNN(Cai	 &	

Vasconcelos,	2017)	and		Deformable	DETR	(Carion	et	al.,	2020).	

The	 UBED	 dataset	 specifically	 focuses	 on	 images	 containing	 pedestrians	 and	

cyclists,	and	Figure	5.1	summarises	the	framework	of	its	formulation.	
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Figure	5.1	Framework	

Images	in	UBED	are	classified	on	the	basis	of	different	weather,	visibility,	and	driving	

conditions.	The	reason	for	focusing	on	these	three	variables	is	that	they	contribute	

massively	to	the	safety	of	road	users.	In	addition,	it	is	important	to	consider	driving	

conditions	 when	 building	 a	 dataset	 for	 driving-related	 applications,	 such	 as	

autonomous	driving	or	driver	assistance	systems.	Different	driving	conditions,	such	

as	 weather,	 traffic,	 and	 road	 conditions,	 can	 affect	 driving	 behaviour	 and	 the	

performance	of	these	systems.	For	example,	autonomous	vehicles	may	need	to	adjust	

their	 speed	 or	 following	 distance	 in	 response	 to	 changing	 traffic	 or	 weather	

conditions.	In	addition,	driver	assistance	systems,	such	as	lane	departure	warning	or	

adaptive	 cruise	 control,	may	need	 to	be	 calibrated	differently	 for	different	driving	

conditions.	By	including	a	variety	of	driving	conditions	in	the	data	set,	developers	can	

ensure	 that	 their	 systems	 are	 robust	 and	 effective	 in	 a	 wide	 range	 of	 real-world	

situations.		

Dataset Scenarios 

Benchmark dataset 

Weather conditions 

Rain  

Snow   

Cloud 

Clear sky

Variability of light 

Day 

Night  

Results		

RetinaNet

Faster 
RCNN

Cascade 
RCNN

FCOS 

Deformable 
DETR 

Driving conditions 

Congested  

Not congested

Signalized 

Not Signalized 

Detection algorithms
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A	number	of	 studies	have	been	conducted	 to	 investigate	 the	 impact	of	daylight	on	

collisions,	for	example	(James,	2022;	Sarma	&	Carey,	2017;	Uttley	&	Fotios,	2017).	For	

AV	deployment,	the	different	traffic	conditions	need	to	be	analysed.		

Traffic	scenarios	with	the	different	road	objects	in	the	scope	of	this	research/study	

will	 be	 evaluated	 using	 the	 different	 evaluation	metrics	 discussed	 in	 the	 previous	

chapters.	

 
 

5.2.1 	Collation	of	datasets	
 
Combining	multiple	datasets	involves	several	necessary	steps.	First,	ensuring	that	

the	 datasets	 are	 compatible	 means	 that	 they	 have	 the	 same	 data	 types	 and	

structure.	This	may	involve	converting	data	types	or	reformatting	data.	The	next	

step	is	to	identify	common	variables	or	fields	that	can	be	used	to	link	the	datasets.	

This	involves	normalising	the	data	to	ensure	consistency	between	the	datasets.	For	

this	work,	changes	were	made	accordingly,	as	mentioned	earlier	in	Table	5.1.	Each	

dataset	underwent	several	changes	before	being	combined.	It	is	worth	noting	that	

the	 data	 were	 structured	 based	 on	 the	 COCO	 format	 and	 the	 annotation	 also	

followed	the	COCO	format.	A	script	developed	by	Hasan	et	al.	(Hasan	et	al.,	2021)	

to	 convert	 annotation	 to	 COCO	 format	 was	 used	 to	 combine	 the	 different	

annotation	files	for	each	subset	(training,	testing	and	validation)	and	generate	a	

single	annotation	file.			

	

i) Dataset	Size:	

• Total	Number	of	Images:	21,274	

ii) Data	Split:		

The	dataset	is	divided	into	the	following	splits	for	training,	validation,	and	testing	
purposes:	

• Training:	60%	(12,744	images)	
• Validation:	30%	(6,382	images)	
• Testing:	10%	(2,148	images)	
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iii) Dataset	Composition:	

1. ECP	Dataset:	
o Number	of	Images:	15896	

2. Cityscapes	Dataset:	
o Number	of	Images:	4878	

3. Kitti	Dataset:	
o Number	of	Images:	300	

4. Traffic	field	Dataset:	
o Number	of	Images:	200	

	

5.2.2 Variation	in	Scenes	
	
The	main	factors	that	were	considered	for	variations	in	scenes:	

1. Signalisation:	a)	Signalised	or	b)	non-signalised	

2. Congestion:	a)	Congested	or	b)	uncongested	

3. Light/Visibility:	a)	Daylight	or	b)	Night	

4. Weather	Conditions:	a)	Dry,	b)	Rainy,	c)	Cloudy,	and	d)	Snow		

	
Various	combinations	of	these	factors	were	studied.	Some	key	areas	that	were	

considered	can	be	listed:	

• Signalized	Daylight	Snow	

• Signalized	Night	Rainy			

• No	signal	Daylight		

• No	signal	Daylight	Cloudy		

• Congested	Night	Rainy	

• Uncongested	Day	Rainy	

• Sideroad	Daylight	cloudy	signalized		

• Sideroad	Daylight	rain	signalized.	

The	performance	of	the	algorithms	under	these	variable	conditions	is	presented	later	

in	 Section	 5.4.	 Yet	 it	 is	 important	 to	 note	 that	 not	 all	 possible	 combinations	were	

exhaustively	 tested.	To	ensure	a	 focused	and	 informative	analysis,	we	deliberately	

selected	a	subset	of	 scenarios	 that	yielded	meaningful	and	discernible	results.	The	

chosen	 scenarios	 were	 carefully	 curated	 to	 present	 a	 representative	 spectrum	 of	

challenges	and	variations	in	real-world	traffic	conditions.	
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5.3 TRAINING,	TESTING	AND	VALIDATION	OF	UBED		
 
The	 training,	 testing	 and	 validation	 experiment	 of	 UBED	 follows	 a	 similar	

experimental	framework	as	presented	in	Chapter	5	(Figure	5.1).	The	data	follows	the	

same	path,	starting	with	the	data	split.	The	data	follows	a	70-10-20	split	where	5,600	

images	are	used	 for	 the	 training	 subset,	 800	 images	 for	 the	validation	 subset,	 and	

1,600	 images	 for	 the	 testing	 subset.	 Next,	 the	 data	 is	 pre-processed,	 followed	 by	

training	with	the	different	models	(Faster	RCNN,	Cascade	RCNN,	RetinaNet,	FCOS,	and	

Deformable	DETR).	After	 training,	model	performance	 is	evaluated	under	different	

conditions.	

The	following	subsection	will	delve	into	a	comprehensive	examination	of	the	training	

and	 testing	processes	employed	 for	 the	 five	object	detection	algorithms.	Table	5.3	

bellow	presents	the	algorithms	and	datasets	used	for	this	chapter	analysis.	

	
Table	5.3	Summary	of	dataset	and	algorithms	used	in	this	chapter.	

 
	

	

Remark	Algorithms	DatasetProcess	

• Each	algorithm	
was	pre	trained	
used	ECP

• Faster	RCNN
• Cascade	RCNN
• RetinaNet
• FCOS
• Deformable	DETR

ECPPre	training	

• Used	to	
initialize	and	
speed	the	
learning	
proses.	

• Each	algorithm	
was	finetuned	
using	
ImageNet

• Faster	RCNN
• Cascade	RCNN
• RetinaNet
• FCOS
• Deformable	DETR

ImageNet	
Transfer	learning	\
Finetune

• Trained	on	the	
entire	training	
set	and	tested	
on	a	random	
traffic	scenario	
(i.e. urban	
signalized	
road)

• Faster	RCNN
• Cascade	RCNN
• RetinaNet
• FCOS
• Deformable	DETR

UBED
Training	and	Testing	
Detection	Algorithms	
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5.3.1 Training	of	UBED	
 
Before	training	the	UBED,	the	data	had	to	be	pre-processed.	Data	pre-processing	

refers	 to	 the	 cleaning,	 transformation	 and	 preparation	 of	 data	 for	

analysis/modelling	 as	 mentioned	 in	 Chapter	 4(4.2.3).	 Typically,	 the	 ImageNet	

dataset	 is	used	for	fine	tuning	and	transfer	 learning;	however,	 for	this	task,	ECP	

was	used	for	transfer	learning	and	fine	tuning.			

The	 experimental	 training	 neural	 network	was	 implemented	 on	 images	with	 a	

resolution	of	1333*800	using	the	PyTorch	framework	in	Ubuntu	20.04,	a	3.6GHz	

Core	 i7	 10700K	 CPU,	 DDR4	 3200Mhz	 2X16-32GB	 quad-channel	 memory,	 and	

NVIDIA	GeForce	RTX	3090	Ti	dual-card	GPU.	The	hyperparameters	used	are	listed	

in	Table	5.1.		

When	evaluating	the	performance	under	each	condition,	the	results	obtained	for	

the	 average	 accuracy	 were	 lower	 than	 values	 obtained	 in	 previous	 chapter	

(chapter	4)	for	several	reasons,	such	as	insufficient	data	and	overfitting.	Therefore,	

the	algorithm	was	retrained	using	the	entire	UBED	training.	

	

	
5.3.2 Testing	and	Validation		

	
Precision	and	recall	at	different	thresholds	are	evaluated	to	validate	and	test	the	

different	 models	 on	 the	 dataset.	 Precision	 measures	 the	 percentage	 of	 true	

positives	among	all	positive	predictions	(equation	2.29)	and	recall	measures	the	

percentage	of	true	positives	among	all	actual	positive	samples	(equation	2.30).		

Precision	 was	 evaluated	 at	 AP50,	 AP75,	 APsmall,	 APmedium,	 and	 APlarge.	 Where	 the	

subscript	indicates	the	IoU	threshold	(see	2.5.5.3).	In	addition,	the	small	subscript	

represents	an	object	with	a	pixel	 area<322	 pixels.	Medium	subscript	 represents	

objects	with	an	area	of	322<area<962	pixels.	A	large	subscript	indicates	an	object	

with	 an	 area	 of	 962<area	 pixels.	 Note	 that	 the	 higher	 the	 AP,	 the	 better	 the	

performance.	

Recall	was	also	evaluated	at	AR100,	AR1000,	APsmall,	APmedium,	and	APlarge.	AR100,	for	

example,	stands	for	Average	Recall	at	100,	which	measures	the	average	percentage	

of	 objects	 correctly	 detected	 by	 the	model	when	 the	 number	 of	 detections	 per	

image	 is	 varied	 from	 1	 to	 100.	 This	 also	 applies	 to	 AR1000.	 However,	 ARsmall,	
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APmedium,	and	APlarge	evaluate	the	recall	when	the	number	of	detections	per	image	

varies	between	1	and	1000	under	the	previously	defined	pixel	area.	The	higher	the	

AR	 score,	 the	 better	 the	 performance	 in	 terms	 of	 detecting	more	 objects	 in	 an	

image.	

	

5.4 PERFORMANCE	EVALUATION		
 
This	section	discusses	an	evaluation	of	the	models	for	the	scenarios.	

 

	
5.4.1 Faster	RCNN	

	
When	evaluating	the	performance	under	Faster	RCNN	with	the	data	trained	on	the	

UDEB	training	set	and	tested	on	the	different	condition	subset,	results	are	recorded	

in	the	following	table	(Table	5.4).		
Table	5.4	Evaluation	of	UDEB	trained	and	tested	using	Faster	RCNN	

Average	Precision	

All	 All	@50	 All	@75	 Small	 Medium	 Large	

0.197	 0.348	 0.199	 0.122	 0.209	 0.256	

Average	Recall	

	All	 All	@50	 All	@75	 Small	 Medium	 Large	

0.309	 0.309	 0.309	 0.205	 0.319	 0.359	

	

The	performance	evaluation	on	the	different	condition	subset	results	are	shown	in	

the	following	table	(Table	5.5)		
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Table	5.5	Result	obtained	from	testing	UBED	on	Faster	RCNN	

 
 
The	complexity	of	the	model	was	also	evaluated.	The	results	are	recorded	as	follows:	

FLOPs:	206.72	GMAC	 Parameters:	41.18	M	

Input	shape:	(3,	1280,	800)	

 
 
 

5.4.2 Cascade	RCNN	
	

The	UDEB	cascade	RCNN	evaluation,	is	presented	in	Table	5.6.	
Table	5.6	Evaluation	of	UDEB	trained	using	Cascade	RCNN	

Average	Precision	

All	 All	@50	 All	@75	 Small	 Medium	 Large	

0.193	 0.325	 0.207	 0.107	 0.208	 0.245	

Average	Recall	

	All	 All	@50	 All	@75	 Small	 Medium	 Large	

0.281	 0.281	 0.281	 0.192	 0.283	 0.321	

	

Next	Table	5.7	present	is	the	evaluation	of	the	different	traffic	scene.	

ARlargeARMeduimARsmallARAPLargeAPMeduimAPsmallAP75AP50APScene	types

0.3220.2890.2080.2850.2090.1770.0920.1590.3010.162Sideroad	cloudy	signalised	

D
ay
	

0.3140.2610.1690.2590.2090.1570.0820.1380.2900.150Sideroad	non- signalised	

0.2780.2650.1950.2560.1820.1530.0950.1290.2820.144Urban	non- signalised

01220.3480.3590.3190.2050.3090.2560.20901220.148Urban	signalised	

0.3220.2890.2080.2850.2090.1770.0920.1590.3010.162
Urban	non- signalised	
rainy		

0.3490.3140.2070.3030.2490.2040.1170.1910.3390.191Urban	Snow	signalised		

0.2630.2330.1690.2300.1690.1310.0740.1050.2590.125Sideroad	non-signalised		

N
ig
ht
	

0.2460.2140.1500.2070.1520.1190.0540.0920.0540.232Urban	rain	signalised

0.3130.2760.1810.2680.1970.1440.0740.1280.2700.139Urban	signalised	



 

 201 

Table	5.7	Result	obtained	from	testing	UBED	on	Cascade	RCNN	

 
 
The	complexity	of	the	model	is	evaluated	as	follows:	

FLOPs:	234.5	GMAC	 Parameters:	68.96	M	

Input	shape:	(3,	1280,	800)	

 
 

5.4.3 RetinaNet		
 
The	training	evaluation	of	RetinaNet	on	UDEB	is	shown	in	Table	5.8.	

	
Table	5.8	Evaluation	of	UDEB	trained	using	RatinaNet	

Average	Precision	

All	 All	@50	 All	@75	 Small	 Medium	 Large	

0.116	 0.226	 0.109	 0.041	 0.129	 0.175	

Average	Recall	

	All	 All	@50	 All	@75	 Small	 Medium	 Large	

0.266	 0.266	 0.266	 0.131	 0.297	 0.319	

 
Next	is	the	evaluation	on	the	different	scenarios	Table	5.9.	

ARlargeARMeduimARsmallARAPLargeAPMeduimAPsmallAP75AP50APScene	types

0.3320.30.20.2850.2330.1910.0940.1750.3140.161Sideroad	cloud	signalised	

D
ay
	

0.3370.2790.1890.2780.2410.1780.0970.1730.3080.173Sideroad	non- signalised	

0.3280.3010.2130.2920.2520.1940.1010.1930.320.185Urban	non- signalised

0.2980.2460.1490.2420.2220.1690.0920.1620.2900.162Urban	signalised	

0.3420.3010.2030.2950.2430.1930.0980.1850.3160.181Urban	non- signalised	rain		

0.3420.3030.2030.290.2490.200.1160.2030.3320.193Urban	Snow	signalised		

0.3160.2410.1710.2450.2140.1530.0860.1460.280.15Sideroad	non-signalised		

N
ig
ht
	

0.2530.20.1410.2020.1820.1280.0590.1160.2410.125Urban	rain	signalised

0.3010.2700.1780.2650.2230.1750.0920.1690.2980.168Urban	signalised	
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Table	5.9	Result	obtained	from	testing	UBED	on	RetinaNet	

 
 
The	efficiency	of	the	model	is	then	calculated	and	recorded	as	follows:	
	

FLOPs:	195.23	GMAC	 Parameters:	39.83	M	

Input	shape:	(3,	1280,	800)	

	

	
5.4.4 FCOS	

 
The	evaluation	of	training	a	more	recent	one-stage	detection	FCOS	on	UDEB	can	be	

seen	in	Table	5.10.	
Table	5.10	Evaluation	of	UDEB	trained	and	tested	using	Faster	RCNN	

Average	Precision	

All	 All	@50	 All	@75	 Small	 Medium	 Large	

0.154	 0.301	 0.144	 0.05	 0.166	 0.257	

Average	Recall	

	All	 All	@50	 All	@75	 Small	 Medium	 Large	

0.274	 0.274	 0.274	 0.151	 0.287	 0.484	

 
 
Traffic	sense	evaluation	is	given	in	the	following	Table	5.11:	

ARlargeARMeduimARsmallARAPLargeAPMeduimAPsmallAP75AP50APScene types

0.2470.210.10.2020.1100.0890.0280.0530.1710.075Sideroad	cloud	signalised	

D
ay
	

0.2270.2070.0880.1810.0850.0620.0220.0370.1270.054Sideroad	non- signalised	

0.2920.2640.1220.2390.1350.1040.0390.0770.190.092Urban	non- signalised	

0.2730.2030.1030.20.10.0750.0220.0490.1470.066Urban	signalised	

0.2570.2160.0990.2020.1150.0840.0270.0570.1630.075Urban	non- signalised	rain		

0.3050.2850.1250.2540.1660.1230.0380.1010.2150.1Urban	Snow	signalised		

0.1550.1170.050.1120.0380.0350.0120.0150.0730.028Sideroad	non-signalised		

N
ig
ht
	 0.0720.090.0240.0680.0180.0190.0070.0050.0430.014Urban	rain	signalised

0.1430.1060.0660.1080.0360.0390.0160.0210.0740.032Urban	signalised	
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Table	5.11	Result	obtained	from	testing	UBED	on	FCOS	

 
 
Computing	the	FLOPs	of	the	network	resulted	in	the	following:		
	

FLOPs:	435.25	GMAC	 Parameters:	89.63	M	

Input	shape:	(3,	1280,	800)	

	

5.4.5 Deformable	DETR	
 
Deformable	DETR	 for	 this	experiment	uses	an	AdamW	optimiser,	because	AdamW	

uses	a	combination	of	adaptive	learning	rates	and	weight	decay	to	update	the	weights	

of	 the	model.	The	adaptive	 learning	rates	help	to	ensure	that	 the	model	converges	

more	 quickly,	 while	 the	 weight	 decay	 helps	 to	 prevent	 overfitting.	 The	 results	 of	

evaluating	 deformable	DETR	 performance	 in	 the	 different	 scenarios	 are	 shown	 in	

Table	5.12.	
Table	5.12	Evaluation	of	UDEB	trained	and	tested	using	Deformable	DETR	

Average	Precision	

All	 All	@50	 All	@75	 Small	 Medium	 Large	

0.041	 0.112	 0.019	 0.008	 0.046	 0.082	

Average	Recall	

	All	 All	@50	 All	@75	 Small	 Medium	 Large	

0.139	 0.139	 0.139	 0.046	 0.142	 0.213	

 
On	evaluating	the	different	conditions	results	obtained	as	follow	(Table	5.13):	

ARlargeARMeduimARsmallARAPLargeAPMeduimAPsmallAP75AP50APScene types

0.2820.2140.0840.1970.1480.1170.0260.0570.2480.102Sideroad	cloudy	signalised	

D
ay
	

0.3980.2330.0660.2030.1630.1030.0250.0520.2370.092Sideroad	non- signalised	

0.3920.2410.1310.2280.1760.1200.0390.0640.2640.11Urban	non- signalised	

0.2930.2020.0950.1950.1620.0960.0310.040.2430.091Urban	signalised	

0.2710.2040.0750.1820.1330.1120.0240.0470.2360.1Urban	non- signalised	rainy		

0.4710.2760.1350.2560.2120.1390.0440.1040.2790.13Urban	snow	signalised		

0.3670.1830.0730.1790.1490.0850.0140.0370.2130.082Sideroad	non-signalised		

N
ig
ht
	

0.220.1750.0610.1550.0990.0670.0130.0250.1590.058Urban	rain	signalised

0.2510.1860.0750.1750.1370.0930.0240.0280.2380.086Urban	signalised	
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Table	5.13	Result	obtained	from	testing	UBED	on	Deformable	DETR	

 
	
Looking	at	the	FLOPs	results	below,	it	can	be	seen	that	 it	achieved	the	best	results	

apart	 from	 RetinaNet.	 However,	 it	 requires	 further	 modifications	 to	 suit	 traffic	

detection.	

FLOPs:	195.23	GMAC	 Parameters:	39.83	M	

Input	shape:	(3,	1280,	800)	

	

	

5.5 DISCUSSION	&	CONCLUSION		
	
This	 chapter	presented	an	evaluation	of	different	weather	 conditions	using	 five	

different	deep	learning	algorithms	on	detection	models	for	autonomous	vehicles.	

The	objective	was	to	assess	the	performance	of	the	detection	models	under	various	

weather	 scenarios,	 providing	 insights	 into	 their	 suitability	 for	 real-world	

applications.	

Through	the	experimentation	on	the	benchmark	dataset,	it	was	observed	that	the	

detection	models	exhibited	varying	levels	of	performance	across	different	weather	

conditions.	 The	 results	 demonstrated	 that	 certain	 weather	 conditions,	 such	 as	

heavy	 rain	 or	 snow,	 posed	 significant	 challenges	 for	 the	 detection	 algorithms,	

leading	 to	 decreased	 accuracy	 and	 reliability.	On	 the	 other	 hand,	 clear	weather	

conditions	generally	yielded	better	detection	results.	

Among	 the	 five	 deep	 learning	 algorithms	 tested,	 it	 was	 found	 that	 certain	

algorithms	 performed	 better	 under	 specific	 weather	 conditions.	 For	 example,	

ARlargeARMeduimARsmallARAPLargeAPMeduimAPsmallAP75AP50APScene	types

0.190.1190.0380.1140.0620.0340.0090.0140.0910.03Sideroad	cloudy	
signalised	

D
ay
	

0.1350.0680.0110.0680.0340.0150.0010.0020.0540.015Sideroad	non- signalised	

0.1610.1150.0220.1020.0540.0300.0070.010.0860.027Urban	non- signalised

0.1200.0890.0180.0750.0480.020.0050.0080.0610.02Urban	signalised	

0.1850.1130.0350.1110.0590.0310.0050.0120.0860.028Urban	non- signalised	
rainy		

0.1980.120.050.1220.0720.0290.0050.0120.0930.031Urban	Snow	signalised		

0.1110.0550.0100.0550.0250.0090.0020.0010.0370.009Sideroad	non-signalised		

N
ig
ht
	 0.0880.0510.0120.0470.0190.0080.0040.0010.0270.007Urban	rainy	signalised

0.1710.0610.0090.0730.0380.0120.0010.0030.0460.013Urban	signalised	
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cascade	 RCNN	 demonstrated	 superior	 performance	 in	 detecting	 objects	 during	

sunny	weather,	while	 FCOS	 excelled	 in	 night	 driving	 conditions.	 These	 findings	

highlight	 the	 importance	 of	 selecting	 appropriate	 algorithms	 based	 on	 the	

prevailing	 weather	 conditions	 to	 optimize	 the	 detection	 capabilities	 of	

autonomous	vehicles.	

Additionally,	it	became	evident	that	the	limited	availability	of	annotated	data	for	

specific	 weather	 conditions	 posed	 a	 challenge	 in	 training	 and	 evaluating	 the	

detection	models.	The	lack	of	diverse	and	comprehensive	datasets	for	all	weather	

scenarios	 limited	 the	 generalizability	 of	 the	 results.	 Therefore,	 future	 research	

should	focus	on	expanding	and	diversifying	benchmark	datasets	to	encompass	a	

wide	range	of	weather	conditions	and	driving	scenarios.	

Moreover,	 the	evaluation	of	 the	detection	models	highlighted	 the	 importance	of	

considering	 both	 detection	 accuracy	 and	 computational	 efficiency	 in	 real-time	

applications.	 While	 some	 algorithms	 exhibited	 higher	 accuracy	 rates	 such	 as	

Cascade	 RCNN,	 they	 were	 computationally	 intensive	 and	 required	 significant	

processing	power	and	time.	Balancing	accuracy	and	efficiency	is	crucial	to	ensure	

that	the	detection	models	can	be	effectively	deployed	in	real-world	autonomous	

vehicle	systems.	

It	should	be	noted	that	 this	evaluation	 focused	solely	on	the	detection	aspect	of	

autonomous	vehicles	under	different	weather	conditions.	Future	research	should	

consider	 the	 integration	 of	 detection	with	 other	modules,	 such	 as	 tracking	 and	

decision-making,	 to	 assess	 the	 overall	 performance	 of	 autonomous	 vehicles	 in	

adverse	weather	situations.	

In	 conclusion,	 the	 evaluation	 of	 different	 weather	 conditions	 using	 five	 deep	

learning	 algorithms	 on	 detection	 models	 provides	 valuable	 insights	 into	 the	

strengths	and	limitations	of	these	algorithms	in	challenging	weather	scenarios.	The	

findings	emphasize	the	need	for	continued	research	and	development	to	improve	

the	 accuracy,	 and	 computational	 efficiency	of	detection	models	 for	 autonomous	

vehicles	operating	in	diverse	weather	conditions.	By	addressing	these	challenges,	

we	can	advance	the	capabilities	of	autonomous	vehicles	and	pave	the	way	for	safer	

and	more	reliable	autonomous	transportation	systems	in	the	future.	

The	 next	 chapter	 present	 the	 development	 of	 a	 unique	 detection,	 tracking,	 and	

estimation	algorithm.	This	innovative	approach	aims	to	address	specific	challenges	
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posed	 by	 real-time	 video	 scenarios.	 Based	 on	 Chapters	 4	 and	 5	 and	 the	 FLOPs	

evaluation,	 the	 single-stage	object	detection	RetinaNet	 is	modified	and	used	 for	

detection	in	addition	to	the	tracking	and	estimation	algorithms.			
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Chapter	6	
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6 Detection,	Estimation	&	Tracking	Road	
Objects	for	Assisting	Driving	

	
	

This	study	presented	in	this	chapter	focuses	on	extending	the	scope	of	image	analysis	

algorithms	 from	 object	 detection	 to	 object	 tracking	 using	 dash-cam	 imagery.	 A	

combined	 detection-tracking-estimation	 (DTE)	 algorithm	 of	 road	 objects	 is	

developed	and	validated	using	images	from	existing	datasets	and	real-world	images.		

It	 is	 organized	 as	 follows:	 Section	 6.1	 covers	 the	 methodology	 used	 and	 the	

framework	developed.	Section	6.2	highlight	the	data	used	for	this	paper.	Section	6.3	

presents	the	analysis	and	the	results	of	the	application.	Finally,	section	6.4	discusses	

the	applications	of	the	proposed	method,	and	draws	some	conclusions.		

	

6.1 PROPOSED	METHODOLOGY	OF	DTE	ALGORITHM	
 

This	study	focuses	on	developing	methodologies	for	detecting,	estimating,	and	tracking	

the	flow,	speed,	and	distance	of	pedestrians,	cyclists,	and	vehicles	from	an	autonomous	

vehicle	utilizing	only	visual	information.	The	study	uses	videos	captured	from	a	single	

dash-cam	of	a	human-driven	car	in	the	absence	of	access	to	an	autonomous	vehicle	or	

appropriate	 video	 footage	 acquired	 from	 an	 autonomous	 vehicle.	 The	 complete	

proposed	framework	for	detecting	moving	objects	from	a	moving	vehicle	 in	an	urban	

transport	network	is	described	in	this	section,	as	shown	in	Figure	6.1.The	framework	

consists	 of	 three	 main	 modules:	 detection,	 estimation,	 and	 tracking.	 The	 detection	

module	consists	of	a	RetinaNet	detector,	which	contains	the	ResNeXt	backbone	network	

(S.	 Xie	 et	 al.,	 2017),	 Feature	 Pyramid	 Network	 (FPN)(Welch	 &	 Bishop,	 1995),	 and	

class/bbox	subnets	(Lin	et	al.,	2016).	The	detection	network	 finally	outputs	an	 image	

with	a	boundary	box	around	the	detected	object,	 the	relevant	class,	and	a	confidence	

score.	The	confidence	score	shows	the	probability	of	the	object	being	detected	correctly	

by	the	algorithm	is	fed	to	the	next	modules.	Both	estimation	and	tracking	use	this	score	

to	process.	In	estimation,	a	triangle,	the	distance,	volume,	flow	rate	per	second	and	the	

pedestrian	speed	are	calculated,	and	the	model	will	give	an	accurate	distance	and	flow	

of	surrounding	objects.	The	output	of	the	two	models’	detection	and	estimation	will	be	

tracked,	 which	 is	 achieved	 by	 utilizing	 an	 improved	 Simple	 Online	 and	 Real-time	
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tracking	 algorithm.	 The	 algorithm	 used	 Kalman	 prediction	 (Welch	 &	 Bishop,	 1995),	

object	association,	buffer	module	for	miss	detection,	and	tracking	information	update.	

Figure	6.1	provide	a	schematic	of	 the	whole	process.	Table	6.1	presents	 the	different	

datasets	and	algorithms	used	for	this	chapter.	

	
Table	6.1	Datasets	and	algorithms	used	for	training	and	testing	in	this	Chapter.	

 
 

Remark	Algorithms	DatasetProcess	

• Used	to	initialize	and	speed	the	
learning	proses.	

• Each	algorithm	was	finetuned	using	
ImageNet

• Traffic	
RetinaNetImageNet	

Transfer	learning	\
Finetune

• COCO	is	used	to	pre	train	the	network• Traffic	
RetinaNetCOCOPre	training	

• For	trained	the	different	datasets	
were	used	as	there	is	no	one	dataset	
that	considers	all	different	functions	
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Figure	6.1Framework	of	detection,	tracking	and	estimation. 
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6.2 DESCRIPTION	OF	DETECTION,	ESTIMATION,	AND	TRACKING	
ALGORITHMS	

	
	

6.2.1 Object	Detection	Algorithm:	Traffic	RetinaNet	
	

This	study	introduces	'Traffic	RetinaNet,'	a	novel	algorithm	that	combines	elements	from	

established	object	detection	algorithms,	specifically	RetinaNet	and	the	ResNext	residual	

block.	 By	 integrating	 the	 RetinaNet	 algorithm	 with	 a	 ResNext	 backbone,	 this	 work	

present	a	unique	approach	to	object	detection	in	traffic	scenarios,	distinct	from	existing	

methods	in	the	literature.	Additionally,	transfer	 learning	was	employed	by	initializing	

the	network	with	a	pre-trained	model.	Transfer	learning	is	a	method	used	in	machine	

learning	where	a	model	developed	for	a	task	is	reused	as	a	starting	point	for	a	model	in	

another	task	(Yosinski,	Clune,	Bengio,	&	Lipson,	2014).	In	other	words,	a	model	is	trained	

on	a	large	dataset,	and	knowledge	is	transferred	to	a	smaller	dataset.	Thus,	we	can	apply	

the	 weight	 and	 architecture	 obtained	 to	 the	 problem	 statement.	 Finetuning	 is	 the	

process	of	precisely	adjusting	model	parameters	to	fit	specific	observations(Gunawan,	

Lau,	&	Lindawati,	2011).	ImageNet	dataset	(refer	to	2.6.4.7)	is	used	for	transferring	and	

finetuning.	

The	problem	statement	is	to	train	a	model	to	locate	and	classify	regions	into	five	different	

categories,	 as	 mentioned	 earlier.	 The	 pre-trained	 model	 shows	 a	 strong	 ability	 to	

generalize	images	outside	the	dataset	(ImageNet)	by	transfer	learning.	This	was	used	on	

the	different	datasets	such	as	COCO	(refer	to	2.5.4.1),	Cityscapes	(refer	to	2.5.4.2)	and	

KITTI	(refer	to	2.5.4.3)	datasets	in	order	for	modifications	to	take	place	thus	to	suit	our	

model.		

 

A) ResNext	

 
In	order	to	achieve	more	efficient	detection,	ResNeXt	(S.	Xie	et	al.,	2017)	is	utilized	as	

the	backbone	of	RetinaNet	as	shown	in	Figure	6.2.	
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Figure	6.2	Framework	of	RetinaNet	with	ResNeXt	backbone	(Traffic	RetinaNet).	

 
The	initialization	product	and	finetuning	output	obtained	from	the	previous	steps	are	

now	fed	into	ResNeXt.	In	image	classification,	ResNeXt	architecture	is	characterized	

as	a	simple,	complex	and	efficient	modularized	network.	The	network	is	made	of	a	set	

of	repeated	building	blocks	that	aggregates	through	several	transformations	with	the	
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same	topology.	ResNeXt	is	a	homogeneous,	multi-branch	architecture	with	only	a	few	

hyperparameters	to	set.	As	shown	in	Figure	2(a),	the	input	image	passes	through	a	set	

of	 lower-dimensional	 embeddings	 (by	 1×1	 convolutions),	 followed	 by	 a	 set	 of	

specialized	 filters	 (3×3,	 5×5,	 etc).	 Figure	 2(b)	 shows	 a	 block	 of	 ResNext	 with	 32	

cardinalities	with	similar	complexity	in	which	aggregation	of	residual	transformation	

is	performed	(S.	Xie	et	al.,	2017).	The	output	of	each	convolution	is	then	passed	to	the	

feature	 pyramid	 net	 (refer	 to	 Chapter	 5	 for	 more	 details	 on	 FPN).	 Figure	 2(a)	

illustrates	the	pathway,	and	Figure	2(c)	shows	the	lateral	connection	details.	After	this	

stage,	 outputs	 are	 passed	 to	 the	 last	 subnet.	 The	 object	 classification	 and	 box	

regression	 subnets	 are	 shown	 in	Figure	2(right),	 in	which	 the	object's	presence	 is	

predicted	 at	 each	 location,	 and	 each	 anchor	 offset	 is	 registered	 and	 matches	 the	

nearest	ground	truth.	Focal	losses	are	also	calculated	at	this	stage.		

The	Traffic	RetinaNet	was	deployed	on	Ubuntu16.04	with	pyTorch	1.2	environment.	

The	backbone	net	was	initialized	according	to	ResNeXt	(Hoang,	Nguyen,	Truong,	Lee,	

&	Park,	2019)	and	pre-trained	on	ImageNet	(Russakovsky,	Deng,	Su,	Krause,	Satheesh,	

Ma,	Huang,	Karpathy,	Khosla,	Bernstein,	Berg,	Fei-Fei,	et	al.,	2015).	The	rest	of	conv	

layers	except	class/bbox	subnet	are	initialized	with	bias,	b	=	0	and	a	Gaussian	weight	

with	standard	deviation,	σ	=	0.01.	For	class/bbox	subnet,	the	bias	is	initialized	as	b	=	

−log((1	−	τ)τ),	where	τ	=	0.01.	The	model	was	trained	with	synchronized	Stochastic	

gradient	 descent	 (SGD)	 over	 single	 GTX2080Ti	 GPUs	with	 a	 total	 of	 2	 images	 per	

minibatch.	The	initial	learning	rate	of	0.0025,	weight	decay	of	0.0001	and	momentum	

of	0.9	were	used.	The	dataset	was	split	as	follows	7000	images	for	training,	2000	for	

validation	and	1000	for	testing.	

The	 output	 obtained	 from	 the	 Traffic	 RetinaNet	 algorithm	 (boundary	 box	 that	

illustrates	the	location	of	the	object,	configuration	score	and	the	object	class)	is	used	

as	an	input	for	both	estimation	and	tracking.	

6.2.2 Object	Distance	Estimation	
	

Distance	estimation	has	received	extensive	attention	from	transportation	research,	

where	 many	 researches	 were	 carried	 out	 to	 estimate	 the	 distance	 between	 road	
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objects	and	vehicles	using	monocular	cameras,	 stereo	cameras,	 sensors	and	 lidars.	

(Diaz-Cabrera,	Cerri,	&	Medici,	2015)	carried	a	study	to	estimate	the	distance	between	

traffic	 lights	 and	 vehicles.	 They	 developed	 a	 driver	 assistance	 system	 that	 uses	

distance	estimation	and	tracking.	 

After	completing	detection	using	Traffic	RetinaNet,	an	object	filter	is	applied	to	filter	

pedestrians	 and	 cyclists	 from	 the	 other	 detected	 classes.	 A	 similar	 triangle-based	

distance	 estimation	 algorithm	 is	 used	 to	 estimate	 the	 distance	 of	 pedestrians	 and	

cyclists.	The	centre	point	of	the	boundary	box's	bottom	line	is	considered	the	input	

for	this	stage.	

.  

Figure	6.3	Distance	estimation	in	2D	image	plane.	

	
The	method	for	estimating	the	distance	of	objects	from	images	captured	using	a	dash-

cam	 is	described	here.	First,	 the	 camera	was	 located	 toward	 the	 car's	 rear	mirror,	

looking	forward	at	a	hight	H	above	the	road	surface,	and	an	angle	α,	the	camera	was	

located	at	an	angle	θc	in	Xc	Yc	Zc	coordinates	as	shown	in	Figure	6.3.	Supposing	the	

detected	object	on	the	road	sense,	located	on	an	unknown	position	(Xw,Y	w,Zw).	θv	is	

the	angle	of	the	projected	ray	(from	the	camera)	pointing	to	the	intersection	of	the	

planar	of	the	detected	object	with	the	road	surface	planar	as	shown	in	Figure	6.3	(the	

top	figure).	The	distance	D	is	the	actual	distance	between	the	vehicle	and	the	object	
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that	 is	 equal	 to	d2−d1	and	 can	be	 calculated	using	 the	 following	equation	 (Rezaei,	

Terauchi,	&	Klette,	2015;	Schaffalitzky,	Zisserman,	Hartley,	&	Torr,	2000):	

. 

6.1	

To	compute	D,	β	must	be	calculated	as	both	θc	and	α	are	known.(Nienaber,	Kroon,	&	

Booysen,	2015;	Rezaei	et	al.,	2015):	

	 				

6.2	

where	hi	is	the	hight	captured	image	plane	(in	pixel),	dp	is	the	distance	from	the	bottom	

side	of	the	detected	vehicle	to	the	bottom	of	the	image	plane	(in	pixel),	and	f	is	the	

focal	length	of	the	camera.	Where	(Rezaei	et	al.,	2015):	

	 			

6.3	

Substituting	all	the	parameters	back	to	evaluate	D,	the	following	equation	is	obtained	

(Rezaei	et	al.,	2015):	

	 			

6.4	

Figure	6.3	(the	bottom	figure)	illustrated	distance	measurement	technique	used.	

6.2.3 Object	Tracking	Algorithm:	Simple,	Online	and	Realtime	Tracking	
(SORT)	

 
Simple	Online	and	Realtime	Tracking	(SORT)	is	a	method	used	for	online	and	real-

time	 tracking	 of	 objects.	 It	 tracks	multiple	 objects	 simply	 and	 efficiently.	 SORT	

algorithm	 combines	 both	 the	 Kalman	 filter	 (Welch	 &	 Bishop,	 1995)	 and	 the	

Hungarian(Kuhn,	 1955)	method	 thus	 to	 handle	motion	 prediction	 and	 the	 data	
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association	components	(Bewley,	Ge,	Ott,	Ramos,	&	Upcroft,	2016).	In	this	study,	

the	 original	 SORT	 algorithm	 was	 enhanced	 by	 introducing	 a	 novel	 buffering	

mechanism	 that	 leverages	 the	Hungarian	 algorithm.	 This	 approach	 dynamically	

reassigns	 unmatched	 detections	 (unmatched	 det)	 as	 new	 tracks	 and	 retains	

unmatched	tracks	(unmatched	trks)	for	a	specified	number	of	iterations	(k).	This	

innovative	 enhancement,	 not	 previously	 explored	 in	 existing	 literature,	

significantly	augments	the	tracking	capabilities	of	the	SORT	algorithm,	offering	a	

novel	perspective	on	multi-object	tracking.	

In	the	presented	work	following	both	detection	and	estimation,	tracking	by	detection	

using	visuals	only	is	introduced.	The	state	of	each	detected	object	is	modelled	as:	

𝑥 = [𝑢, 𝑣, 𝑠, 𝑟, 𝑢̇, 𝑣̇, 𝑠̇]'  

6.5	

where	u	and	v	represents	 the	vertical	pixel	 location	of	 the	targeted	object,	and	the	

other	 two	variables	s	and	r	corresponds	 to	scale	 (area)	and	the	aspect	ratio	of	 the	

targeted	object	bounding	box	respectively	(Bewley	et	al.,	2016).		

Compare	 the	 detection	 results	 with	 prediction	 results	 and	 calculate	 the	 IoU	 to	

determine	whether	the	objects	were	matched.	Then	using	the	Hungarian	algorithm,	

associates	detections	with	tracking.	Finally,	update	the	tracker	and	prepare	for	the	

next	frame	(Ristani,	Solera,	Zou,	Cucchiara,	&	Tomasi,	2016).	Table	6.2	summarise	the	

tracking	processes	pointing	 to	 the	 three	classes	of	 the	associated	obtained	results:	

matched,	unmatched	detections,	and	unmatched	track-let	(track-let	 is	a	short	track	

that	corresponds	to	the	motion	of	an	object	in	a	short	period	of	time,	typically	a	few	

frames.).	

The	 overlapping	 of	 objects	 in	 traffic	 scenes	 can	 result	 in	 missing	 some	 of	 the	

overlapped	objects.	The	original	SORT	algorithm	failed	to	track	these	objects.	To	solve	

this	issue,	a	simple	yet	powerful	buffer	module	is	proposed.	The	buffer	is	introduced	

after	the	unmatched	track-lets,	as	shown	in	Figure	6.4.	The	buffer	mainly	captures	the	

unmatched	detections,	which	will	be	assigned	as	the	new	trackers,	and	the	unmatched	

tracks	are	kept	for	k	number	of	iterations	these	go	through	Hungary	algorithm.	This	

resulted	in	matched	and	unmatched	objects.	The	matched	frames	update	the	trackers	

that	will	be	fed	into	the	Kalman	box	predictor,	and	the	unmatched	objects	are	stored	
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for	k	=	3	iterations	in	our	case	before	being	discarded,	thus	checking	for	match	objects	

in	the	next	upcoming	frames.	

Table	6.2	Association	Status	

Status	 Details	
Matched	 Detection	in	frame	i	is	matched	to	the	track-let	in	frame	i	−	1.	
Unmatched	
dets	

Detection	in	frame	i	can	not	be	matched	with	the	track-let	in	frame	i	
−	1.	

Detection	 New	track-let	will	be	created.	
Unmatched	
trks	

The	track-let	in	frame	i	−	1	can	not	be	matched	with	existing	
Detection.	

Track-lets	 This	track-let	will	be	removed.	
 

 
Figure	6.4Framework	of	improved	SORT	

 
6.2.4 Count	and	Speed	estimation	

 
The	 number	 of	 objects	 in	 key	 classes	 and	 their	 approximate	 speed	 are	 estimated	

based	on	 the	average	difference	of	 location	 in	5	 consecutive	 frames.	The	 flow	was	

estimated	and	computed	using	the	detection	results	(boundary	box	and	class)	where	

we	considered	only	the	detected	objects	of	both	cyclist	and	pedestrians’	class.	Speed	

estimation	 carried	 out	 using	 tracking,	 where	 objects	 speed	 was	 estimated	 by	
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computing	the	average	difference	of	consecutive	frames,	as	shown	in	the	following	

equation	(Kumar	&	Kushwaha,	2016):	

𝑆 = 𝛿
1
𝑚𝑛DD𝑑𝑓

%R

	

6.6	

where	d	 is	the	difference	in	distance	between	consecutive	frames	in	meter,	 f	 is	 the	

frame	rate	in	frames/second,	n	is	the	number	of	tracking	object	(pedestrian	vehicle)	

per	frame,	m	 is	the	frame	pair,	and	δ	 is	a	parameter	introduced	to	convert	units	to	

(meters/second).	

6.3 DATA	
 
This	section	highlights	 the	different	datasets	used	 for	 training	and	testing	purpose	

and	the	implementation	requirements.		

6.3.1 Datasets	used	for	training		
 
Each	module	was	trained	separately	before	combining	the	algorithm.	This	was	done	

to	 evaluate	 how	well	 our	model	 performs	 on	 new,	 unseen	 data.	 By	 training	 on	 a	

dataset,	we	can	teach	the	model	to	recognize	patterns	and	make	accurate	predictions.	

By	testing	on	a	different	dataset,	we	can	evaluate	how	well	the	model	generalizes	to	

new,	unseen	data	and	assess	its	overall	performance.	

	

A) Detection		

 
For	 the	 detection,	 COCO	 dataset	 was	 used	 for	 training	 validation	 and	 testing.	 As	

mentioned	in	2.5.4.1,	COCO	contains	80	classes,	yet	to	be	used	for	traffic	scenes	with	

the	categories	in	the	scope	of	the	study.	The	class	IDs	that	correspond	to	the	objects	

(pedestrian,	 cyclist,	 cars,	 buses	 and	 tracks)	 to	 be	 detected	 is	 selected.	 The	 COCO	

dataset	documentation	gives	the	list	of	class	IDs	and	their	corresponding	class	names	
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(Lin	et	al.,	2014).	Once	the	class	IDs	are	selected,	the	dataset	will	be	filtered,	and	only	

the	images	and	annotations	corresponding	to	the	classes	of	interest	will	be	extracted.	

Additionally,	 it	 was	 trained	 on	 two	 traffic-related	 dataset	 Cityscapes	 dataset	 and	

KITTI	dataset	(refer	to	2.5.4.2	and	2.5.4.3	for	more	details	related	to	the	dataset).	

B) Estimation		
 
For	estimation,	the	field	dataset	(refer	to	2.5.4.5)	was	used	for	training	and	testing,	as	

the	 images	 captured	 for	 this	 dataset	 match	 the	 setting	 requirements	 for	 the	

estimation	 algorithm,	 and	 the	 dataset	 contains	 examples	 representative	 of	 the	

problem	 the	model	 is	 trying	 to	 solve.	 For	 example,	 the	model	 is	 built	 to	 estimate	

pedestrian	 and	 cyclist	 flow,	 and	 the	 dataset	 contains	 images	 of	 both	 categories.	

Therefore,	choosing	this	dataset	ensures	that	the	model	is	trained	on	examples	similar	

to	the	ones	it	will	encounter	in	the	real	world,	which	can	improve	its	performance.	

The	 parameters	 of	 the	 dash-cam	 were	 used	 to	 estimate	 distance	 using	 Matlab	

(equation	 6.4)	 and	 to	 compare	 the	 obtained	 values	 to	 the	 ground	 truth	 values.	

Additionally,	MOT16	was	also	used	for	evaluating	the	estimation	algorithm.	

C) Tracking		

 
For	tracking	unsupervised	learning	(refer	to	Figure	6.4)	method	is	introduced	where	

MOT16	dataset	was	used	for	our	purposes.	As	mentioned	in	2.5.4.6,	the	data	contains	

challenging	scenarios,	such	as	multiple	people	walking,	running,	and	crossing	paths	

in	a	crowded	environment.	The	dataset	was	chosen	because	it	is	representative	of	the	

types	of	scenarios	that	tracking	algorithms	are	likely	to	encounter	in	the	real	world,	

and	it	provides	a	standardized	benchmark	for	evaluating	tracking	performance.	

6.3.2 Dataset	used	for	testing		
 
The	field	dataset	is	the	dataset	used	for	testing	the	whole	DET	algorithm;	the	main	

reason	for	this	is	that	the	dataset	was	collected	and	annotated	for	this	work	which	

contains	challenging	videos	and	images	(refer	to	2.5.4.5).		
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Analysis	and	evaluation	of	all	algorithms	introduced	and	developed	are	evaluated	and	

discussed	in	the	next	section.	

6.4 EVALUATION	OF	DTE	

6.4.1 Evaluation	of	Traffic	RetinaNet	
 
The	 simple	 dense	 detector	 RetinaNet	 can	work	with	 different	 backbone	 encoders	

such	as	ResNet	(He	et	al.,	2016),		ResNeXt(Hoang	et	al.,	2019)	(Hoang	et	al.	(2019)),	

and	DenseNet	(Lin,	Goyal,	et	al.,	2017).	ReNeXt	was	used	as	the	backboned	for	Traffic	

RetinaNet	 algorithm.	 By	 applying	 this,	 we	 managed	 to	 increase	 the	 detection’s	

average	 precision	 compared	 to	 the	 original	 RetinaNet,	 which	 includes	 a	 ResNet	

backbone	(Alshkeili,	Ghosh,	&	Qiu,	2019).	Traffic	RetinaNet	as	mentioned	earlier	was	

trained	on	different	dataset	before	been	tested	on	the	field	dataset.	For	evaluating	the	

detection	performance,	AP	(equation	2.29)	an	AR	(equation	2.30)	are	used.	Tables	6.3	

and	6.5	show	the	results	obtained	by	applying	the	proposed	algorithm	on	COCO2017	

dataset,	Table	6.4	is	Cityscapes	dataset	results,	and	Table	6.5	is	KITTI	dataset	results.	

Table	6.3		Compare	traffic	RatinaNet	to	the	original	RetinaNet	(COCO	dataset)	

	 Traffic	RetinaNet	 RetinaNet	
Average	Precision	Average	Recall	 Average	Precision	Average	Recall	

All	 	 0.43	 0.263	 	 0.422	 0.264	
Small	 	 0.235	 0.374	 	 0.221	 0.341	
Medium	 	 0.442	 0.606	 	 0.449	 0.582	
Large	 	 0.614	 0.753	 	 0.612	 0.726	

	

Table	6.4	Compare	traffic	RatinaNet	to	the	original	RetinaNet	(Cityscapes	dataset)	

	 Traffic	RetinaNet	 RetinaNet	
Average	Precision	Average	Recall	 Average	Precision	Average	Recall	

All	 	 0.367	 0.456	 	 0.358	 0.455	
Small	 	 0.155	 0.213	 	 0.143	 0.210	
Medium	 	 0.358	 0.441	 	 0.353	 0.438	
Large	 	 0.559	 0.67	 	 0.549	 0.60	
	

For	this	application,	small	stands	for	objects	had	a	pixel	area	of	<	322	pixels.	Medium	

stands	for	objects	with	an	area	range	of	322	<	area	<	962	pixels.	Large	stands	for	objects	

with	an	area	of	962	<	area	pixels.	The	object	detection	results	showed	that	both	the	AP	
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and	AR	values	improved	for	Traffic	RetinaNet	except	in	medium	objects.	AP	and	AR	

were	 evaluated	 under	 IoU	 =	 0.5	 :	 0.05	 :	 0.95	with	 AP:	MaxDets	 =	 100	 (given	 100	

detection	 100	 image),	 AR:	 MaxDets	 =	 1	 (given	 1	 detection	 per	 image).	 IoU	 is	 the	

Intersection	over	Union	of	the	boundary	boxes.	

Table	6.5	Compare	traffic	RatinaNet	to	the	original	RetinaNet	(KITTI	dataset)	

	 Traffic	RetinaNet	 RetinaNet	
Average	Precision	 Average	Recall	 Average	Precision	Average	Recall	

Car	 	 0.962	 0.983	 	 0.902	 0.984	
Pedestrian	 	 0.820	 0.928	 	 0.630	 0.859	
Cyclist	 	 0.863	 0.962	 	 0.555	 0.827	
mAP	 0.882	 0.696	

	

As	 illustrated	 in	 Tables	 6.3	 and	 6.4,	 the	 Traffic	 RetinaNet,	which	 focuses	more	 on	

traffic-related	objects,	surpasses	the	original	RetinaNet	both	in	precision	and	recall.	

Especially	 for	 recall,	 Traffic	 RetinaNet	 achieved	 higher	 performance,	which	means	

Traffic	 RetinaNet	 can	 detect	more	 traffic	 objects,	 for	 instance,	 in	 Table	 6.5	where	

KITTI	dataset	is	used	for	training	and	testing	purposes,	because	it	is	a	traffic	based	

dataset,	 proved	 the	 efficiency	 and	 reliability	 of	 the	 proposed	 Traffic	 RetinaNet	

algorithm	for	road	object	detection	that	is	significant	for	self-driving	cars.	

Table	6.6	shows	the	precision	and	recall	for	each	category	of	objects	detected.	Traffic	

RetinaNet	achieves	good	results	on	pedestrians	and	buses,	reasonable	 for	cars	and	

motorcycles	 but	 limited	 for	 cyclists.	 The	main	 reason	 for	 this	 is	 the	 imbalance	 of	

training	data	in	the	COCO2017	dataset,	as	it	is	not	designed	for	this	specific	purpose	

of	object	detection	from	moving	vehicles.	However,	due	to	the	lack	of	an	appropriately	

labelled	dataset	for	evaluating	these	algorithms,	it	was	prudent	to	use	a	well-known	

stock	video	such	as	COCO2017.	
Table	6.6	Average	percentage	and	average	recall	of	the	different	categories	

Detected	
objects	

All	 Average	Precision	
Small	 Medium	 Large	

Pedestrian	 0.513	 0.335	 0.593	 0.689	
Cyclist	 0.263	 0.155	 0.322	 0.506	
Car	 0.393	 0.301	 0.549	 0.563	

Motorcycle	 0.384	 0.215	 0.34	 0.55	
Bus	 0.595	 0.17	 0.4	 0.763	

Detected	
objects	

	 Average	Recall	 	



 

 222 

	 All	 Small	 Medium	 Large	

Pedestrian	 0.185	 0.475	 0.685	 0.776	
Cyclist	 0.223	 0.268	 0.5	 0.0718	
Car	 0.172	 0.459	 0.687	 0.756	

Motorcycle	 0.251	 0.338	 0.509	 0.675	
Bus	 0.481	 0.331	 0.649	 0.843	

	
The	detection	model	was	also	tested	on	MOT16	dataset,	in	Figure	6.5,	a	chosen	set	of	

scenes	detecting	all	object	types	for	illustrative	purposes.	The	algorithm	successfully	

detected	different	 traffic	object	classes	 in	 the	same	scene,	as	shown	 in	 the	 images.	

Traffic	RetinaNet	successfully	classifies	the	different	objects	from	different	angles	and	

distances,	 which	 is	 crucial	 for	 analyzing	 dash-cam	 footage	 from	 a	moving	 vehicle	

where	the	angles	and	distance	are	uncontrollable.	The	objects	were	detected	both	in	

shadows	and	in	illuminated	areas	of	the	same	scene.	Additionally,	occlusion	effects	

were	minimized	 as	 a	 large	 number	 of	 bbox	were	 identified	 in	 images	 in	multiple	

objects.	
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Figure	6.5	Detection	of	multiple	classes	of	objects	in	MOT16	dataset.	

6.4.2 Evaluation	of	Tracking	
 
The	tracking	element	was	vital	in	estimating	traffic	parameters	from	the	video.	The	

number	 of	 pedestrians,	 vehicles,	 and	 their	 average	 speed	 relative	 to	 the	 moving	

vehicle	was	estimated	using	this	algorithm.		

In	traffic	scenes,	the	object’s	scale	is	changing,	so	scale-insensitivity	is	crucial	for	the	

tracker.	We	 chose	 SORT	 as	 it	 tracks	 objects	 only	 depending	 on	 the	 IoU	 region	 of	

objects,	 robust	 to	 object	 size.	 Table	 6.7	 shows	 the	 results	 of	 the	 improved	 SORT	

described	earlier.	A	variety	of	evaluation	matrices	is	widely	used	in	MOT	to	evaluate	

the	improved	algorithm.	The	specific	evaluation	indicators	are	shown	in	the	Table	6.8	

(Welch	&	Bishop,	1995).	
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Table	6.7	Comparing	results	of	the	original	SORT	to	the	improved.	

	 IDF1	 IDP	 IDR	 GT	 MT	 PT	 ML	 MOT
A	

MOTP	

SORT	 44.10
%	

58.20
%	

35.50
%	

50
0	

11
2	

22
4	

16
4	

32.9	 73.
7	

Improve
d	

47.10
%	

56.90
%	

40.20
%	

50
0	

118	 236	 146	 39.8	 72.
8	

	

Additionally,	statistical	estimation	of	the	videos	used	presented	in	the	following	Table	

6.9.	 Figure	 6.6	 shows	 the	 result	 of	 tracking	 algorithm,	 where	 the	 distance	 and	

robustness	 of	 tracking	 vary	 between	 a)	 and	 c);	 thus,	 it	 shows	 the	 accuracy	 of	 the	

model.		

Table	6.8	MOT	evaluation	matrix	

Metric	 Description	 Note	
IDF1	 the	ratio	of	correctly	identified	detections	over	

the	average	number	of	ground-truth	and	
computed	detections	

↑	

IDP	 identification	precision	 ↑	
IDR	 identification	recall	 ↑	
GT	 Total	Number	 -	
MT	 Number	of	objects	tracked	for	at	least	80	percent	

of	lifespan.	
↑	

PT	 Number	of	objects	tracked	between	20	and	80	
percent	of	lifespan.	

↑	

ML	 Number	of	objects	tracked	less	than	20	percent	of	
lifespan.	

↓	

MOTA	 Multiple	object	tracker	accuracy.	 ↑	
MOTP	 Multiple	object	tracker	precision.	 ↑	

	
Table	6.9	Statistical	Estimation	Results	of	Videos	

Scene	 (a)	 (b)	 (c)	
Length	(frames)	 750	 525	 837	

FPS	 25	 30	 14	
Av.	Number	 Pedsetrian	 14.7	 14	 8.7	

Vehicle	
	 Av.	Speed	 Pedsetrian	

9.8	 0	 0.7	
3.48	m/s	 1.7	m/s	 1.87	m/s	

Vehicle	 12.5	
km/h	

0	km/h	 3	km/h	
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Figure	6.6	Tracking	results	in	multiple	scenes	over	three	consecutive	frames.	

It	is	essential	to	estimate	any	traffic	object-detection	algorithms’	computational	costs	

to	establish	whether	real-time	detection	is	plausibility	FLOPs	(equation	2.36)	is	how	

fast	 the	 microprocessor	 operates;	 it	 has	 a	 performance	 unit	 of	 the	 multiplier–

accumulator	(Mac).	Table	6.10	shows	the	performance	parameters	and	FLOPs	of	the	

framework.		

Table	6.10	Computational	performance	of	the	framework	

FLOPs:286.83	
GigaMAC	

Parameters:	54.86	
Million	

	 Training	 Testing	

Detection	using	
Traffic	RetinaNet	

3	days	18	h	 9	Frames/Sec	

Tracking	 	 -	 263	Frames/Sec	

	

The	 detection	 is	 at	 the	 rate	 of	 9	 fps,	 which	 is	 slower	 than	 a	 video	 rate	 of	 30	 fps.	

However,	this	rate	can	be	considered	real-time	for	vehicles	and	pedestrians	on	urban	

signalised	roads	from	a	relative	movement	point	of	view,	due	to	several	reasons	such	

as:	

• Relative	movement	speed:	In	urban	traffic	scenarios,	the	movement	speed	of	

vehicles	and	pedestrians	is	relatively	slow	compared	to	the	frame	rate	of	9	fps.	
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This	 means	 that	 even	 with	 a	 slightly	 lower	 detection	 rate,	 the	 system	 can	

effectively	capture	and	process	the	relative	movement	of	objects,	allowing	it	to	

track	and	respond	to	potential	hazards	in	a	timely	manner.	The	average	speed	

of	a	3	m	vehicle	in	urban	area	is	30-50	km/h,	pedestrian	travels	at	an	average	

speed	of	4	km/h	and	cyclist	travels	at	an	average	speed	of	15km/h.	Therefore	

the	movement	of	 at	30	 fps	 is:	 for	 vehicle	0.5m/s,	pedestrians	0.04m/s,	 and	

cyclist	 0.14m/s.	 Where	 the	 movement	 at	 9	 fps	 is:	 for	 vehicles	 1.5m/s,	

pedestrians	 0.1m/s	 and	 cyclist	 0.5m/s.	 From	 a	 pedestrian	 and	 cyclist	

perspective	the	movement	is	negligible.		

• Safety	 and	 decision	 time:	 9	 fps	 detection	 rate	 provides	 sufficient	 time	 for	

decision-making	and	taking	corrective	actions	to	ensure	safety	on	signalized	

urban	roads.	Real-time	decisions	can	be	made	to	avoid	accidents	or	conflicts	

for	pedestrians	and	cyclist.	

The	 tracking	 rate	 is	 much	 higher	 than	 the	 video	 rate	 and	 is	 compatible	 with	 the	

advanced	alarm	of	collision	avoidance	requirements	for	an	autonomous	vehicle.	

6.4.3 Distance,	Speed	and	Flow	estimation	
 
Figure	6.7	present	the	result	obtained	when	evaluating	the	speed	distance	and	flow	

estimation	on	MOT16	dataset	for	illustrative	purposes.	Where	we	considered	three	

different	frames,	the	top	left	image	(Figure	6.7	(a))	shows	the	estimated	number	of	

pedestrians	(Qp)	presented	in	that	frame	and	the	estimated	number	of	vehicles	(Qv),	

whereas	the	top	right	image	(Figure	6.7	(a))	present	the	average	flow	of	pedestrian	

(Vp)	 and	 vehicles	 (Vv).	 The	 two	 other	 frames,	 (b)and	 (c),	 present	 the	 same	

information.	However,	it	can	be	noticed	that	in	Figure	6.7(b),	no	vehicle	is	presented,	

and	the	algorithm	was	successful	in	detecting	and	set	the	estimation	of	the	number	of	

the	vehicle	presented	and	flow	to	0,	which	mean	no	vehicle	was	found.			
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Figure	6.7	Flow	and	Speed	estimation.	

Furthermore,	Figure	6.8	shows	the	flow	of	pedestrians	and	vehicles	per	frame.	The	

curves’	tendency	illustrates	the	object	speed	note	that	there	is	a	gap	around	frame	

480,	as	shown	by	the	blue	curves;	no	vehicles	exist	in	that	period.	Additionally,	the	

two	 peeks	 shown	 in	 the	 figure	 illustrates	 the	 highest	 recorded	 number	 of	 either	

vehicles	 or	 pedestrian	 during	 the	 recorded	 period.	 The	 first	 frame	 on	 the	 right	

illustrates	the	traffic	density	where	a	peek	of	pedestrian	is	detected	at	frame	97	with	

more	than	35	pedestrians.	In	frame	596	the	blue	curve	illustrates	a	maximum	number	

of	vehicles	where	it	recorded	24	automobiles	using	the	road	at	that	specific	frame,	the	

fourth	figure	is	the	visual	representation.		

(a)

(b)

(c)

!!: ~ 18
!": ~ 8

!!: ~ 10
!": ~ 0

!!: ~ 7
!": ~ 2

)!: ~ 5.76 -.#$
)": ~ 16.31 0-ℎ#$

)!: ~ 1.14 -.#$

)!: ~ 2.22 -.#$
)": ~ 17.57 0-ℎ#$
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Figure	6.8	Number	and	Speed	of	Pedestrian	and	Vehicle	in	Scene	(a).	

	

6.4.4 Evaluating	DET	on	the	field	data	
	
Starting	with	the	distance	estimation,	where	an	error	histogram	illustrated	in	the	

following	Figure	6.9	where	the	distance	to	vehicle	errors,	defined	by	comparing	

with	ground	truth	represented	by	the	red	line.	Objects	are	at	a	distance	of	2	to	25m	

to	the	dash	camera.	We	considered	a	confidence	interval	of	±20cm	for	ground	truth	

measurement.	 The	 error	 level	 lies	 between	 ±20%,	 due	 to	 lack	 of	 availability	 of	

reported	uncertainty	error	values	in	literature	we	were	unable	to	compare	it	with	
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the	state	of	art.	Considering	the	movement	of	pedestrians	and	cyclist	which	is	less	

than	1m	between	frames	this	error	uncertainty	can	be	considered	as	acceptable.		

 

 
Figure	6.9	Percentage	error	of	distance	estimation.	

Moving	to	the	result	obtained	from	combining	the	different	algorithms	to	finally	

produce	the	DTE,	where	Figure	6.12	presents	an	evaluation	of	the	enter	algorithm	

applied	to	our	data.	(a)	illustrates	the	detection	and	distance	estimation	results,	(b)	

shows	both	vehicle	and	pedestrian	estimated	flow.	
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Figure	6.10	Detection,	Tracking	&	Estimation	result.	

 
 
 
 

(a) 

(b) 
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6.5 DISCUSSION	&	CONCLUSION		
	
In	 this	 chapter,	 traffic	 detection,	 distance/parameter	 estimation,	 and	 tracking	

framework	are	presented	utilizing	vision-based	analysis	for	autonomous	driving.	The	

framework	 considered	 a	 new	object	 detection	 algorithm	named	Traffic	 RetinaNet,	

which	 simultaneously	 focused	 on	 five	 different	 moving	 object	 classes,	 including	

pedestrians,	cyclists,	cars,	buses,	and	motorcycles.	The	detection	precision	of	Traffic-

RetinaNet	was	 higher	 compared	 to	 the	 traditional	 RetinaNet	when	 applied	 to	 the	

MOT16	 dataset.	 The	 second	 part	 of	 the	 framework	 was	 pedestrians'	 distance	

estimating,	 in	 which	 the	 estimation	 error	 was	 less	 than	 20%.	 Tracking	 was	 also	

successful,	in	which	results	obtained	showed	a	track	improvement	compared	to	the	

original	SROT	method.	The	final	part	of	the	framework	was	to	combine	the	success	

estimate	of	the	distance	and	parameters	tracked	by	the	detected	objects	to	estimate	

traffic	 parameters	 such	 as	 volume	 and	 speed.	 The	 framework's	 performance	

succeeded	in	different	light	conditions,	changes	of	scenes	due	to	the	moving	frame	of	

reference,	angles	and	relative	distances,	and	crowded	environments	(occlusion).	The	

framework	 proved	 that	 combining	 Traffic	 RetinaNet	 and	 the	 improved	 SORT	will	

provide	an	advanced	information	provision	for	self-driving	vehicles	at	a	reduced	cost	

due	to	using	a	single-camera	source.	
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Chapter	7	
	
	
		
	 	



 

 233 

7 	Conclusion		
 
The	main	research	objective	of	this	thesis	was	to	increase	the	safety	of	pedestrians	

and	 cyclists	 using	 object	 detection	 algorithm.	 This	 has	 been	 achieved	 by	 better	

understanding	peoples	concerns	regarding	AV,	analysing	detection	performance	of	

the	different	algorithms	across	datasets,	developing	benchmark	dataset	that	focuses	

on	 detecting	 objects	 under	 different	 weather,	 light	 and	 driving	 conditions,	 and	

developing	a	detection	tracking	estimation	algorithm	that	aims	to	enhance	real-time	

object	detection	estimation	and	tracking.				

This	chapter	provides	a	summary	of	the	primary	contributions	made	in	this	thesis.	It	

critically	evaluates	 the	conducted	research,	and	 it	 suggests	potential	directions	 for	

future	research.	

	

7.1 RESEARCH	CONTRIBUTIONS		

 
The	main	contributions	of	this	thesis	can	be	summarized	into	the	following:	

exploring	 the	 impact	 of	 AV	 and	 their	 abilities	 from	 a	 computer-vision-based	

perspective.	The	abilities	of	the	AVs	to	recognize	road	objects,	such	as	pedestrians,	

cyclists,	vehicles	etc.,	this	was	explored	using	a	computer-vision-based	approach	to	

sensing.	 The	 impacts	 of	 the	 presence	 of	 these	 vehicles	 in	 the	 traffic	 flow	 were	

explored.	As	outlined	in	the	introduction,	autonomous	vehicles	were	integrated	into	

the	 transportation	 fleet	 for	 their	 safety	 features,	 as	 they	 contribute	 to	 accident	

reduction	by	minimizing	human	errors.	In	order	to	implement	the	use	of	AVs	across	

the	transportation	fleet,	user	persecution	was	analysed	using	before	and	after	TAM.	

Following	the	TAM	analysis,	technical	evaluation	and	analysis	of	the	state-of-the-art	

algorithm	 was	 carried	 out,	 and	 cross-validation	 was	 conducted	 to	 examine	 those	

models.	A	condition-based	dataset	was	then	developed	and	validated	to	investigate	

the	impact	of	different	weather,	visibility	and	traffic	conditions.	Finally,	a	combined	

detection,	tracking	and	estimation	algorithm	was	proposed	for	real-time	application.	

	

The	 experimental	 chapters	 started	 by	 examining	 the	 acceptance	 of	 Autonomous	

Vehicles	through	the	implementation	of	a	TAM,	aligning	with	the	primary	objective	

outlined	in	the	thesis.	Chapter	3	conducted	a	unique	TAM	(Technology	Acceptance	



 

 234 

Model)	study	to	analyze	participant	acceptance	of	autonomous	vehicles	both	before	

and	after	interacting	with	the	technology.	The	online	survey	received	more	than	300	

responses.	While	numerous	studies	explore	AV	adaptation,	the	specific	examination	

of	attitudes	toward	technology	use	before	and	after	interaction	remains	unexplored	

in	the	literature.	This	study	significantly	contributes	to	enhancing	our	understanding	

of	 participant	 perspectives	 on	 using	 AVs.	 The	 research	 evaluated	 the	 relationship	

between	 “Perceived	 Ease	 of	 Use”	 and	 “Perceived	 Usefulness”	 before	 and	 after	

interacting	with	AVs,	 revealing	 a	 positive	 improvement	 in	 participant	 perceptions	

post-interaction.	 Moreover,	 participants	 expressed	 increased	 confidence	 and	 a	

heightened	sense	of	safety	while	commuting	with	AVs.	However,	concerns	about	the	

safety	of	road	users	persist.	In	relation	to	our	research	objective,	this	survey	provides	

valuable	insights	for	researchers	and	developers,	offering	a	deeper	understanding	of	

user	concerns	and	apprehensions	in	the	adoption	and	use	of	AVs.	

Based	on	Chapter	3	results,	the	subsequent	development	of	Chapter	4	is	intricately	

tied	to	the	second	thesis	objective	outlined	in	Chapter	1	(section	1.3).	This	chapter	

contributes	 novel	 insights	 to	 the	 existing	 research	 field	 by	 evaluating	 different	

algorithms	 across	multiple	 datasets.	 The	 comparative	 analysis	 of	 performance	not	

only	sheds	light	on	the	algorithms'	generalization	capabilities	but	also	assesses	their	

readiness	 for	 real-time	 applications,	 adding	 depth	 to	 the	 understanding	 of	 their	

practical	applicability.	The	five	different	object	detection	namely	—RetinaNet,	FCOS,	

Faster	RCNN,	cascade	RCNN	and	deformable	DETR—were	chosen	 for	 image-based	

object	 detection	 based	 on	 their	 uniqueness	 and	 performance.	 A	 comprehensive	

evaluation	of	the	models	used	on	the	different	datasets	(Cityperson,	KITTI	and	ECP)	

was	 presented.	 Each	 dataset	 has	 a	 unique	 structure	 and	 complexity	 level,	 as	

mentioned	earlier	(Chapter	2	and	Chapter	4).	Algorithms	performed	the	best	on	KITTI	

dataset	achieving	the	highest	accuracy	across	the	five	algorithms.	This	is	due	to	the	

fact	that	KITTI	dataset	was	captured	in	one	season,	with	balanced	class	distribution	

and	high-quality	annotation.	However,	during	cross-validation,	while	KITTI	achieved	

a	 higher	 average	 precision	 value,	 it	 failed	 to	 attain	 high	 accuracy	when	 tested	 on	

unseen	datasets.	Issues	such	as	class	mismatch,	overfitting,	and	a	lack	of	robustness	

contributed	to	the	inability	to	achieve	high	detection	values.	

Training	 and	 testing	 machine	 learning	 models	 on	 large	 datasets	 is	 advisable	 to	

prevent	overfitting	and	enhance	accuracy.	Overfitting,	stemming	from	a	model	being	
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overly	complex	and	closely	tailored	to	training	data,	can	lead	to	poor	performance	on	

new	 data.	 Larger	 datasets	 facilitate	 capturing	 underlying	 patterns,	 improving	

prediction	 accuracy,	 and	 aiding	 in	 the	 identification	 of	 rare	 or	 crucial	 cases.	

Nevertheless,	in	some	situations,	for	instance,	in	the	case	of	this	thesis,	testing	on	a	

smaller	dataset	resulted	in	better	accuracy.	Additionally,	there	are	situations	where	

training	and	testing	on	small	datasets	may	be	necessary	or	desirable.	For	example,	if	

the	 available	 data	 is	 limited	 or	 working	with	 a	 specialized	 domain	where	 data	 is	

scarce,	then	working	with	a	small	dataset	is	needed.	In	these	cases,	it's	important	to	

use	techniques	like	cross-validation	to	make	the	most	of	the	data	and	to	evaluate	the	

model's	 performance	 carefully.	 This	 conclusion	 is	 also	 implied	 by	 the	 collated	

benchmark	dataset	in	Chapter	5.	

	

Chapter	 5	 is	 dedicated	 to	 the	 development	 of	 a	 benchmark	 dataset,	 specifically	

designed	 to	 account	 for	 various	weather,	 lighting,	 and	driving	 conditions,	 aligning	

with	the	third	research	objective.	The	uniqueness	of	the	benchmark	dataset	used	for	

testing	and	training	in	Chapter	5	is	that	it	combines	four	different	datasets.	Each	was	

captured	and	annotated	differently.	For	this,	it	required	many	modifications	to	create	

one	unified	dataset	that	focuses	on	the	different	weather	conditions	that	affect	driving	

behaviours.	The	experiment	concluded	that	one-stage	detection	algorithm	requires	

less	computational	 time	and	 lower	complexity.	Therefore,	 it	can	be	combined	with	

different	algorithms	to	achieve	higher	system	accuracy	and	serve	the	purpose	of	real-

time	application.		

		

In	Chapter	6,	the	fourth	thesis	objective	is	addressed,	focusing	on	the	utilization	of	a	

unified	 end-to-end	 algorithm	 for	 detection,	 tracking,	 and	 estimation.	 This	 thesis	

introduces	 a	 novel	 algorithm	 designed	 for	 real-time	 implementation.	 The	 chapter	

details	the	creation	of	a	combined	detection	and	tracking	estimation	algorithm,	using	

ResNext	as	the	backbone	of	RetinaNet.	This	modification	to	the	detection	algorithm	

yielded	heightened	detection	accuracy.	The	developed	algorithm,	referred	to	as	TRN,	

underwent	 testing	 across	 various	 models	 and	 datasets,	 demonstrating	 promising	

usability.	 While	 the	 model	 showed	 high	 accuracy	 on	 multiple	 datasets,	 further	

modification	is	required	for	enhancing	tracking	precision	for	even	better	results.	The	

proposed	 Improved	 SORT	 algorithm	 significantly	 elevated	 tracking	 performance,	
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though	 further	 refinement	 is	 needed	 for	 improved	accuracy.	Overall,	 development	

and	 testing	 of	 similar	 algorithms	 will	 be	 essential	 for	 effective	 real	 time	

implementation.	Combining	the	three	algorithms’	results	showed	that	the	proposed	

algorithm	successfully	provided	an	advanced	information	provision	for	self-driving	

vehicles	at	a	reduced	cost	due	to	using	a	single-camera	source.	

	
7.2 RESEARCH	LIMITATIONS	

 
During	 the	 last	 two-year	Covid-19	went	viral	and	spread	very	 fast;	countries	were	

locked	for	more	than	nine	months,	which	affected	the	research	process.	The	survey	

was	initially	planned	to	be	carried	out	in	workshops	yet	to	gather	an	interactive	view	

and	to	understand	people's	acceptance	of	AV	better;	however,	due	to	the	lockdown,	it	

was	 completed	 online.	 In	 addition,	 the	 GPU	 capacity,	 where	 some	 tests	 were	

reformulated	to	match	the	available	capacity.	The	limited	number	of	data	collected	

for	the	different	categories	affected	the	performance.	Moreover,	the	limitations	when	

training	on	several	deep	learning	models	can	be	summarized	as	follow:	

• Computational	 resources:	 As	 mentioned	 earlier,	 training	 deep	 learning	

models	can	be	computationally	expensive,	especially	if	large	datasets	are	

used.	 This	 can	 limit	 the	 number	 of	models	 that	 can	 be	 trained	 and	 the	

number	of	hyperparameters	that	can	be	tuned.	

• Time	constraints:	Training	the	different	deep	learning	models	can	also	be	

time-consuming,	especially	if	large	datasets	are	used;	for	instance,	training	

ECP	on	the	different	models	requires	two	weeks.	This	can	limit	the	number	

of	models	that	can	be	trained	and	the	amount	of	time	that	can	be	spent	

tuning	hyperparameters.	

• Overfitting:	When	training	deep	learning	models,	avoiding	overfitting	the	

training	data	is	important.	This	can	be	challenging,	especially	if	the	models	

are	complex	or	the	training	data	is	not	diverse	enough.	

• Data	quality:	The	quality	of	the	data	used	to	train	deep	learning	models	

can	 also	 be	 a	 limitation.	 The	 robustness	 of	 a	 dataset	 can	 affect	 the	

efficiency	of	model	learning.	
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• 	Bias:	Deep	learning	models	can	also	be	biased,	which	can	result	in	unfair	

or	inaccurate	predictions.	This	can	be	a	limitation,	especially	if	the	models	

are	used	in	sensitive	applications.	

 
 

 

7.3 FUTURE	RESEARCH	DIRECTION		

 
This	thesis	investigates	individuals’	adoption	of	AV,	the	different	detection	algorithm	

in	 the	 autonomous	 vehicle	 context	 and	 a	 combined	 detection	 tracking	 estimation	

method	that	enable	AV	to	move	safely	and	freely	in	the	surrounding.	This	thesis	also	

developed	 a	 benchmark	 dataset	 that	 investigates	 the	 different	 driving	 weather	

conditions.	For	future	research,	the	benchmark	dataset	needs	some	modification	for	

the	dataset	to	be	ready	for	urban	traffic	detection	problems.	

With	respect	to	the	findings	in	Chapter	4,	future	research	should	prioritize	increasing	

the	participation	 survey	 to	 evaluate	perceptions	 comprehensively.	A	more	diverse	

and	 extensive	 participant	 base	 will	 provide	 nuanced	 insights	 into	 various	

perspectives	on	AV	adoption,	ensuring	a	holistic	understanding	of	user	attitudes	and	

concerns.		

	

Additionally,	there	is	a	need	to	expand	the	algorithm	testing	framework	to	include	3D	

bounding	 boxes.	While	 traditional	 detection	 algorithms	 predominantly	 operate	 in	

two-dimensional	space,	the	adoption	of	3D	bounding	boxes	introduces	an	added	layer	

of	 sophistication	 that	 aligns	 more	 closely	 with	 real-world	 scenarios.	 This	

enhancement	holds	particular	significance	in	the	context	of	urban	traffic,	where	the	

dynamic	 and	 multi-dimensional	 nature	 of	 the	 environment	 necessitates	 a	 more	

nuanced	perception	system	for	autonomous	vehicles	(AVs).	The	incorporation	of	3D	

bounding	boxes	 in	detection	algorithms	enables	a	more	accurate	representation	of	

objects	in	the	AV's	surroundings.	This	is	especially	crucial	in	urban	settings,	where	

vehicles,	pedestrians,	and	other	obstacles	can	occupy	multiple	planes	simultaneously.	

By	extending	the	algorithmic	evaluation	to	include	3D	bounding	boxes,	researchers	

can	 better	 simulate	 and	 address	 the	 intricacies	 of	 real-world	 traffic	 scenarios,	

ensuring	 that	 detection	 algorithms	 are	 equipped	 to	 navigate	 complex	 spatial	

relationships	and	provide	more	reliable	information	to	AV	systems.	



 

 238 

Moreover,	the	proposed	combined	detection-tracking-estimation	(DTE)	method	can	

be	 further	 tested	 in	 real-time	 scenarios.	 Real-world	 testing	 will	 validate	 the	

effectiveness	and	reliability	of	the	DTE	algorithm	in	dynamic	and	unpredictable	traffic	

conditions,	contributing	to	its	practical	implementation	in	AV	systems.	

	

For	the	benchmark	dataset	to	be	a	global	asset,	that	is	by	expanded	and	made	openly	

accessible.	 This	 inclusivity	 fosters	 collaboration	 and	 allows	 experts	 from	different	

regions	 to	 contribute	 their	 insights	 and	 expertise,	 enriching	 the	 dataset	 with	 a	

multitude	 of	 perspectives.	 Open	 access	 also	 promotes	 transparency	 in	 research	

methodologies	and	data	collection	processes,	fostering	a	collective	understanding	and	

trust	within	the	research	community.	

	

Enabling	worldwide	 training	 and	 testing	on	 regional	 data	 is	 a	pivotal	 step	 toward	

creating	adaptable	and	effective	autonomous	vehicle	(AV)	models	tailored	to	specific	

geographic	nuances.	AVs	operating	in	diverse	regions	encounter	unique	challenges,	

such	as	varying	traffic	patterns,	road	infrastructure,	and	cultural	factors.	By	allowing	

researchers	and	developers	worldwide	to	train	and	test	their	models	on	regional	data	

from	the	benchmark	dataset,	the	resulting	AV	algorithms	can	be	fine-tuned	to	better	

navigate	the	intricacies	of	specific	locations.	

	

The	 future	 research	 trajectory	 focuses	 on	 refining	 and	 expanding	 the	 benchmark	

dataset,	incorporating	more	participants	for	a	comprehensive	perception	evaluation,	

testing	algorithms	for	3D	bounding	boxes,	and	conducting	real-time	assessments	of	

the	proposed	combined	DTE	method.	These	endeavours	will	collectively	contribute	

to	 advancing	 the	 understanding	 and	 implementation	 of	 autonomous	 vehicles	 in	

diverse	and	dynamic	traffic	environments.	
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Appendix	A		
This	Appendix	records	the	survey	noted	in	Chapter	3.		

Section	A—Demographic	Information	
Please	answer	the	following	questions.	Tick	√	the	appropriate	boxes	for	your	answer.	
	
1. Gender		

Male		 	 Female		 	Prefer	not	to	say		
	

2. Age		
	
	Below	20	years	 20–35	years	 	35–60	years	 			Above	60	years	

	
3. Education		

Ph.D.	 	 	Master’s	 		Bachelor’s	 				Diploma		 					Others		
	

4. Employment	Sector	

	Automotive	industry		 Technology	sector	 	 Regulatory	
Agencies	
	

5. Years	of	Experience	

<10	years	 1	0–15	years		 	 	20–35	years	 	 	>35	years	
	 	

	
Section	B—Evaluation	of	Autonomous	Vehicles	
Please	answer	the	following	questions.	
	
Safety	
	

i. What	would	be	 the	greatest	advantage(s)	be	 in	 terms	of	safety	 to	 the	
users	of	autonomous	vehicles	(AVs)?	(a)	fewer	accidents	(b)	reduction	
in	risky	driving	behaviours	of	human	drivers	(c)	controlled	decisions	in	
term	of	accelerating,	decelerating,	and	changing	lanes	

ii. How	do	autonomous	vehicles	(AVs)	minimize	car	crashes	on	the	road?		
(a)	by	minimizing	the	involvement	of	human	operations	(b)	through	
technology	such	as	side	view	assist,	adaptive	headlights,	forward	
collision,	and	lane	departure	warning	system		

iii. What	 makes	 the	 number	 of	 accidents	 in	 autonomous	 vehicles	 fewer	
when	compared	to	traditional	vehicles?	(a)	controlled	accelerating	and	
decelerating	(b)	better	fleet	management	by	lowering	peak	speeds	(c)	
higher	effective	speed	(d)	reduction	in	travel	time	(e)	lighter	design	

iv. How	 do	 autonomous	 vehicles	 avoid	 accidents	 involving	 other	 road	
users?		
(a) manageable	parking	arrangements	(b)	effective	hazardous	

behaviour	detection	and	prediction	mechanism	(c)	false	alarm	
mechanism	

v 
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Environment	
	

i. How	does	the	environment	benefit	 from	the	use	of	autonomous	
vehicles?	 (a)	 Improvement	 in	 fuel	 consumption	 reduces	 carbon	
emissions	 in	 the	 environment	 (b)	 As	 some	 AVs	 are	 electrically	
powered,	as	such	there	are	no	carbon	emissions		

ii. How	 do	 autonomous	 vehicles	 contribute	 to	 the	 environmental	
sustainability	drive	 to	 reduce	 the	 impact	of	 climate	change?	 (a)	
reduction	 in	traffic	congestion,	which	reduces	carbon	emissions	
in	 the	 environment	 (b)	 automated	 acceleration	 and	 braking	 by	
AVs	(known	as	eco-driving),	which	reduces	fuel	consumption	

iii. Since	AVs	mean	more	vehicles	will	be	used,	leading	to	increased	
pollution,	what	makes	it	different	from	the	traditional	vehicle	in	
pollution	 control?	 (a)	 it	 makes	 travelling	 from	 one	 point	 to	
another	easier,	 thereby	 reducing	 the	vehicle	miles	 travelled	 (b)	
On-demand	 mobility	 and	 carsharing	 made	 possible	 by	
autonomous	technology	significantly	reduces	GHG	(c)	Platooning	
(a	method	for	driving	a	group	of	vehicles	together.)	

iv. What	measure	is	put	in	place	for	the	user	of	autonomous	vehicles	
to	 account	 for	 greenhouse	 gas	 emission	 of	 the	 vehicle?	 (a)	
government	legislation	(b)	emission	costs	
	

Conjunction		
	

i. What	features	in	autonomous	vehicle	reduce	human	effort	in	their	
operations?	 (a)	 sensors	 (b)	 lane	 departure	 warning	 (c)	 night	
vision	(d)	adaptive	cruise	control	

ii. How	do	autonomous	vehicles	contribute	to	the	productivity	of	the	
user?	(a)	since	it	reduces	traffic	congestion,	less	time	is	spent	in	
traffic	(b)	it	drives	itself,	and	so	the	user	can	use	that	driving	time	
to	engage	 in	some	other	productive	activities	without	having	to	
worry	about	the	driving	effort	

iii. What	 features	make	autonomous	vehicle	more	convenient	 than	
traditional	vehicles?	(a)	it	reduces	travelling	time	(b)	there	is	an	
opportunity	 to	 rideshare	 and	 carshare	 (c)	 all-time	 carpooling	
availability	

iv. How	is	freedom	achieved	by	the	autonomous	vehicles?	(a)	AVs	are	
designed	to	be	more	spacious,	affording	the	user	the	freedom	to	
do	other	things	(b)	being	a	self-driving	vehicle,	users	can	care	less	
about	driving	efforts,	and	use	the	time	to	attend	to	other	beneficial	
things.	

	
	

	
Anxiety	
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i. Since	machines	cannot	be	100%	efficient,	what	features	can	make	the	

users	of	autonomous	vehicles	have	full	confidence	in	the	efficiency	of	
such	 vehicles?	 (a)	 cruise	 control	 (b)	 controlled	 decisions	 in	 term	 of	
accelerating,	decelerating,	and	changing	 lanes	(c)	effective	hazardous	
behaviour	detection	and	prediction	mechanism.	

ii. How	do	autonomous	vehicles	ensure	that	its	users	do	not	activate	the	
panic	 mode	 during	 emergencies?	 (a)	 false	 alarm	 mechanism	 (b)	
manageable	 parking	 arrangement	 (c)	 effective	 hazardous	 behaviour	
detection	and	prediction	mechanism.	

iii. What	technologies	are	put	in	place	in	autonomous	vehicles	to	reinforce	
users’	 trust	 while	 using	 the	 vehicle?	 Answers	 the	 same	 as	 in	 the	
previous	(ii)	

iv. What	features	in	the	autonomous	vehicle	make	interactions	possible	to	
reduce	 user	 anxiety?	 (a)	 action	 controller	 (b)	 actuator	 (c)	
interconnections	between	systems.	

	
Section	C—Analysis	of	Variables	
Please	tick	the	appropriate	boxes	with	respect	to	the	following	variables.	
	
Safety	
S
/	
N	

Question		 Strongl
y	Agree	

Agre
e	

Neutr
al	

Disagre
e	

Strongl
y	
Disagre
e	

1.	 Self-
driving	
vehicles	
generate	
fewer	
accidents	

	 	 	 	 	

2.	 Self-
driving	
vehicles	
decrease	
traffic	
congestio
n	

	 	 	 	 	

3.		 Unlike	
ordinary	
vehicles,	
which	are	
often	
operated	
by	drunk	
or	
distracted	
drivers,	
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self-
driving	
vehicles	
can	be	
expected	
to	reduce	
risky	
driving	
behaviour
s	

4.		 Self-
driving	
vehicles	
outperfor
m	
humans	
in	
detecting	
dangerou
s	
situations	

	 	 	 	 	

	
Environment	
S
/	
N	

Question		 Strong
ly	
Agree	

Agr
ee	

Neutr
al	

Disagr
ee	

Strong
ly	
Disagr
ee	

1
.	

Self-driving	
vehicles	
reduce	
energy	
consumption	

	 	 	 	 	

2
.	

Self-driving	
vehicles	are	
environment
ally	friendly	

	 	 	 	 	

3
.	

Self-driving	
vehicles	
cause	
increases	in	
car	use	and	
emissions	

	 	 	 	 	

4
.		

Self-driving	
vehicles	will	
increase	the	
number	of	
miles	people	
travel,	
thereby	
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increasing	
pollution	

5
.		

Self-driving	
vehicles	will	
free	up	public	
spaces	and	
promote	
clean	air		

	 	 	 	 	

	
Conjunction	
S/
N	

Question		 Strong
ly	
Agree	

Agre
e	

Neutr
al	

Disagr
ee	

Strongl
y	
Disagr
ee	

1.	 Self-driving	
vehicles	
offer	more	
convenienc
e	and	
productivit
y 

	 	 	 	 	

2.	 Self-driving	
vehicles	
offer	more	
personal	
freedom	
and	
independen
ce	

	 	 	 	 	

3.	 Mobility	is	
more	
affordable	
with	self-
driving	
vehicles	
through	
ridesharing	

	 	 	 	 	

4.		 Self-driving	
vehicles	
will	reduce	
driving	
efforts	

	 	 	 	 	

	
Anxiety	Before	Using	AV	
S/
N	

Question		 Strong
ly	
Agree	

Agre
e	

Neutr
al	

Disagr
ee	

Strongl
y	
Disagr
ee	



 

 267 

1.	 Before	
using	an	
AV,	I	
doubted	if	
I	would	be	
able	to	
control	the	
vehicle	if	
an	
ethically	
complicate
d	situation	
arises 

	 	 	 	 	

2.	 Before	
using	an	
AV,	I	was	
afraid	an	
emergency	
will	arise	if	
the	vehicle	
malfunctio
ns	

	 	 	 	 	

3.	 Before	
using	AVs,	
I	was	
worried	if	
all	my	
journeys	
with	AVs	
would	be	
successful	

	 	 	 	 	

4	 Before	
using	AVs,	
I	was	
worried	
that	
interacting	
with	such	
a	vehicle	
would	
require	
much	
mental	
effort	

	 	 	 	 	

	
Anxiety	After	Using	AV	
S/
N	

Question		 Strong
ly	
Agree	

Agr
ee	

Neutr
al	

Disagr
ee	

Strong
ly	
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Disagr
ee	

1.	 After	using	
an	AV,	my	
trust	level	in	
AVs	has	
increased 

	 	 	 	 	

2.	 After	using	
an	AV,	I	
became	
confident	
that	an	
emergency	
would	
hardly	arise	
caused	by	
the	vehicle	
malfunction
ing	

	 	 	 	 	

3.	 After	using	
an	AV,	I	
became	
confident	
that	all	my	
journeys	
with	AVs	
would	be	
successful	

	 	 	 	 	

4.	 Interacting	
with	the	AV	
did	not	
require	a	lot	
of	mental	
effort	

	 	 	 	 	

	
Anxiety	of	AV	
S/
N	

Question		 Strongl
y	Agree	

Agre
e	

Neutr
al	

Disagre
e	

Strongl
y	
Disagre
e	

1.	 Interacti
ng	with	
the	
vehicle	
does	not	
require	a	
lot	of	
mental	
effort 
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2.	 I	would	
trust	
such	a	
vehicle	

	 	 	 	 	

3.	 I	am	
afraid	I	
would	
not	be	
able	to	
react	in	
case	an	
emergen
cy	occurs	
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Appendix	B	
	
This	Appendix	includes	all	statistical	figures	of	all	the	different	hypotheses	
evaluated	in	Chapter	3	
	
Table	0.1 Descriptive	Statistics. 

Descriptive Statistics 

               N 

Minimu

m 

Maximu

m Sum Mean 

Std. 

Deviation 

V1:	Generate	fewer	accidents 347 1 5 855 2.46 1.369 

V2:	Decrease	traffic	

congestion 

349 1 5 844 2.42 1.349 

V3:	Reduce	risky	driving	

behaviours	for	distracted	

drivers 

347 1 5 899 2.59 1.398 

V4:	Outperform	humans	in	

detecting	dangerous	

situations 

348 1 5 1001 2.88 1.370 

V5:	Reduce	energy	

consumption 

349 1 5 898 2.57 1.364 

V6:	Vehicles	are	

environmentally	friendly 

349 1 5 870 2.49 1.286 

V7:	Increase	in	car	use	and	

emissions 

349 1 5 932 2.67 1.334 

V8:	Increase	the	number	of	

miles	people	travel,	hence	

increasing	pollution 

350 1 5 765 2.19 1.167 

V9:	Free	up	public	spaces	and	

promote	clean	air	 

349 1 5 820 2.35 1.370 

V10:	Offer	more	convenience	

and	productivity. 

349 1 5 926 2.65 1.340 

V11:	Offer	more	personal	

freedom	and	independence 

349 1 5 898 2.57 1.368 

V12:	Mobility	is	more	

affordable	through	

ridesharing 

350 1 5 881 2.52 1.297 

V13:	Reduce	the	efforts	of	

driving 

349 1 5 985 2.82 1.525 
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V14:	Before	using	AV,	I	

doubted	if	I	may	not	be	able	to	

control	the	vehicle	if	an	

ethically	complicated	

situation	arises 

349 1 5 895 2.56 .997 

V15:	Before	using	AV,	I	was	

afraid	a	case	of	emergency	

will	arise	due	to	

malfunctioning	of	the	vehicle 

349 1 5 921 2.64 1.386 

V16:	Before	using	AV,	I	was	

worried	if	all	my	journeys	

with	AVs	will	be	successful 

349 1 5 899 2.58 1.395 

V17:	Before	using	AV,	I	was	

worried	that	interacting	with	

the	vehicle	would	require	

much	mental	effort 

350 1 5 792 2.26 1.153 

V18:	After	using	AV,	my	trust	

level	for	AV	increased 

342 1 5 934 2.73 1.276 

V19:	After	using	AV,	I	became	

confident	that	a	case	of	

emergency	will	hardly	arise	

due	to	malfunctioning	of	the	

vehicle. 

349 1 5 852 2.44 1.300 

V20:After	using	AV,	I	became	

confident	that	all	my	journeys	

with	AVs	will	be	successful. 

349 1 5 994 2.85 1.361 

V21:	Interacting	with	the	AV	

did	not	require	a	lot	of	mental	

effort. 

349 1 5 911 2.61 1.190 

V22:	Interacting	with	the	

vehicle	does	not	require	a	lot	

of	my	mental	effort 

350 1 5 878 2.51 1.194 

V23:	I	would	trust	the	vehicle. 349 1 5 888 2.54 1.298 

V24:	I	am	afraid	that	I	won’t	

be	able	to	react	in	case	an	

emergency	occurs. 

349 1 5 852 2.44 1.275 

Valid	N	(listwise)	 337      
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This	Appendix	illustrates	changes	done	for	evaluation,	the	evaluation	of	ECP	using	

LAMR,	different	challenges	encountered	when	computing	the	different	algorithms	

in	chapter	4.	

For	Cascade	RCNN,	we	are	training	using	object	detection	via	bounding	boxes,	and	not	

segmentation.	Therefore,	modifying	 the	bbox	head	 is	necessary.	Using	KITTI	as	an	

example,	here	are	the	modifications: 
model	=	dict(	
				bbox_head=[	
	 dict(	
												num_classes=3,	#change	num_class	to	3	to	match	detection	classes		
	 				type='Shared2FCBBoxHead',	
																in_channels=256,	
																fc_out_channels=1024,	
																roi_feat_size=7,	
																num_classes=3,	#change	num_class	to	3	to	match	detection	classes	
																bbox_coder=dict(	
																				type='DeltaXYWHBBoxCoder',	
																				target_means=[0.,	0.,	0.,	0.],	
																				target_stds=[0.1,	0.1,	0.2,	0.2]),	
																reg_class_agnostic=True,	
																loss_cls=dict(	
																				type='CrossEntropyLoss',	
																				use_sigmoid=False,	
																				loss_weight=1.0),	
																loss_bbox=dict(type='SmoothL1Loss',	beta=1.0,	
																															loss_weight=1.0)),	
												dict(	
																type='Shared2FCBBoxHead',	
																in_channels=256,	
																fc_out_channels=1024,	
																roi_feat_size=7,	
																num_classes=3,	#change	num_class	to	3	to	match	detection	classes	
																bbox_coder=dict(	
																				type='DeltaXYWHBBoxCoder',	
																				target_means=[0.,	0.,	0.,	0.],	
																				target_stds=[0.05,	0.05,	0.1,	0.1]),	
																reg_class_agnostic=True,	
																loss_cls=dict(	
																				type='CrossEntropyLoss',	
																				use_sigmoid=False,	
																				loss_weight=1.0),	
																loss_bbox=dict(type='SmoothL1Loss',	beta=1.0,	
																															loss_weight=1.0)),	
												dict(	
																type='Shared2FCBBoxHead',	
																in_channels=256,	
																fc_out_channels=1024,	
																roi_feat_size=7,	
																num_classes=3,#change	num_class	to	3	to	match	detection	classes	
																bbox_coder=dict(	
																				type='DeltaXYWHBBoxCoder',	
																				target_means=[0.,	0.,	0.,	0.],	
																				target_stds=[0.033,	0.033,	0.067,	0.067]),	
																reg_class_agnostic=True,	
																loss_cls=dict(	
																				type='CrossEntropyLoss',	
																				use_sigmoid=False,	
																				loss_weight=1.0),	
																loss_bbox=dict(type='SmoothL1Loss',	beta=1.0,	loss_weight=1.0))	
								])	



 

 
 

273 

	
For	RetinaNet	to	be	trained	modifications	to	bbox_head	is	to	be	done.	As	an	example,	

for	the	KITTI	dataset,	the	configuration	file	has	been	modified	as	follows:	
#!/usr/bin/env	python3	
#	-*-	coding:	utf-8	-*-	
"""	
Created	on	Wed	Jul	28	15:15:19	2021	
	
@author:	afnan	
"""	
	
_base_	=	[	
				'../_base_/models/retinanet_r50_fpn.py',					'../_base_/datasets/kitti_detection.py',	
				'../_base_/schedules/schedule_1x.py',	'../_base_/default_runtime.py'	
]	
model	=	dict(	
				pretrained=None,	
				bbox_head=dict(	
												num_classes=3,	#	change	num_class	to	3	to	match	detection	classes	
												))	
#	optimizer	
optimizer	=	dict(type='SGD',	lr=0.0025,	momentum=0.9,	weight_decay=0.0001)	
#	We	can	use	the	pre-trained	retinanet	model	to	obtain	higher	performance	
load_from	=	'checkpoints/retinanet_r101_fpn_1x_coco_20200130-7a93545f.pth'	

	
To	use	FCOS	it	on	a	customised	dataset,	the	number	of	classes	(num_classes)	must	be	

changed.	 Using	 KITTI	 as	 an	 example,	 here	 are	 the	 modifications	 that	 need	 to	 be	

considered:	
model	=	dict(	
					bbox_head=dict(	
								type='FCOSHead',	
								num_classes=3,	#change	num_class	to	3	to	match	detection	classes	
								in_channels=256,	
								stacked_convs=4,	
								feat_channels=256,	
								strides=[8,	16,	32,	64,	128],	
	
For	Deformable	DETR	it	is	important	to	modify	the	num_classes	in	bbox_head	to	suit	

the	customised	dataset.	Again	using	KITTI	as	an	example:	
	model	=	dict(	
					bbox_head=dict(	
								type='DeformableDETRHead',	
								num_query=300,	
								num_classes=3,	#change	num_class	to	3	to	match	detection	classes	
				
	

The	ECP	team	evaluated	the	performance	of	their	dataset	using	modules	such	as	

SSD,	YOLO,	Faster	RCNN	and	R-FCN.	Based	on	their	evaluation	matrix,	the	dataset	

achieved	the	following	results	(Table	0.1),	results	are	reported	for	completion	

purposes.	
Table	0.1	ECP	literature	testing	evaluation	(LAMR)	
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Reference	 Detection	
method	

LAMR	
Reasonable	 Small	 Occluded	 All	

(Jiang,	Xu,	
Zhang,	Liang,	
&	Li,	2021)	

HRNet-W18	 0.067	 0.132	 0.248	 0.187	
SPNet	w	
cascade		

0.054	 0.11	 0.252	 0.139	

ResNet50	w	
FPN	

0.088	 0.193	 0.337	 0.228	

ResNet101	w	
FPN	

0.089	 0.194	 0.340	 0.226	

HRNet-W40	 0.067	 0.132	 0.272	 0.181	
	

Challenges		
	

A) Challenges		
	
Many	challenges	and	errors	occur	during	training	and	testing,	even	when	the	correct	

steps	are	followed;	these	errors	may	be	due	to	errors	related	to	data	location,	mmcv	

version,	naming	errors,	missing	package,	file	not	found,	and	so	on.		

	
1. ModuleNotFoundError:	No	module	named	‘mmdet’	

2. TypeErroe:	‘numpy.float64’	object	cannot	br	interpreted	as	integral	

3. ‘list’	object	has	no	attribute	‘astype’	

4. Model	‘pycococreatortools’	has	no	attribute	‘create_image_info’	

5. ModuleNotFoundError:	No	model	named	‘pycococreatortools’	

6. AttributeError:	model	‘pycococreatortools.pycococreatortools’	has	no	attribute	

’create_annotation_info’	

7. AttributeError:	‘ConfigDict’	object	ha	no	attribute	‘log_level’	

8. TypeError:	bbox_head={'num_classes':	1}	in	child	config	cannot	inherit	from	base	because	

bbox_head	is	a	dict	in	the	child	config	but	is	of	type	<class	'list'>	in	base	configuration	

9. \'pretrained\':	None,	\'bbox_head\':	{\'num_classes\':	18}}\n{\'train_cfg\':	None,	

\'test_cfg\':	None	

10. return	_VF.meshgrid(tensors,	**kwargs)		#	type:	ignore[attr-defined]	Killed	

11. AssertionError:	CascadeRCNN:	ResNeXt:	init_cfg	and	pretrained	cannot	be	specified	at	the	

same	time	

12. ImportError:	No	module	named	'skimage'	when	pip	install	scikit-image	

13. ValueError:	need	at	least	one	array	to	concatenate	

14. TypeError:	FCOS:	FPN:	__init__()	got	an	unexpected	keyword	argument	

'extra_convs_on_inputs	

15. TypeError:	CocoDataset:	__init__()	got	an	unexpected	keyword	argument	'times'	

16. KeyError:	'xxxDataset	is	not	in	the	dataset	registry'	when	test	



 

 
 

275 

17. AssertionError:	MMCV==1.3.0	is	used	but	incompatible.	Please	install	mmcv>=1.2.6,	

<=1.3.	

18. ModuleNotFoundError:	No	module	named	'seaborn'	

19. KeyError:	'KittiDataset	is	not	in	the	dataset	registry'		

20. FileNotFoundError:	CocoDataset:	[Errno	2]	No	such	file	or	

directory:'/home/afnan/Desktop/mmdetection/data/Fussed/Fussedday_val.json'	

21. AssertionError:	The	`num_classes`	(18)	in	RetinaHead	of	MMDataParallel	does	not	

matches	the	length	of	`CLASSES`	80)	in	CocoDataset	

22. TypeError:	CocoDataset:	__init__()	got	an	unexpected	keyword	argument	'times'	

23. FileNotFoundError:	[Errno	2]	No	such	file	or	directory:	

'/tmp/tmp2kazkgh4/tmpw6c614ao.py'	

24. TypeError:	CocoDataset:	MultiScaleFlipAug:	__init__()	missing	1	required	positional	

argument:	'transforms'	

25. OSError:	[Errno	28]	No	space	left	on	device			

 
B) Overcoming	challenges	

	
Each	error	has	been	resolved	individually.	For	example,	the	‘ModuleNotFoundError’.	

In	 fact,	 all	 models	 and	 libraries	 were	 initially	 downloaded,	 but	 after	 a	 problem	

occurred,	 reinstalling	 the	 library	was	 the	 action	 that	was	 taken.	 In	 addition,	 some	

problems	were	caused	by	the	MMdetection	version,	where	the	detection	models	had	

many	bugs;	therefore,	installing	the	latest	version	was	the	easiest	solution,	but	this	

was	not	the	case.	Modifying	the	different	building	blocks	was	the	solution,	followed	

by	 not	 installing	 the	 latest	 version	 because	 it	would	 cause	 a	mismatch	 in	 training	

performance.	
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Appendix	D	
	

This	Appendix	 shows	 the	 different	 steps	 and	 files	 to	 be	modified	 to	 implement	

MMdetection	for	the	different	dataset	used	for	evaluation	in	both	chapter	4	and	5.	

	
Files	to	modify		
 

Add	colleted.py	to	mmdet	/datasets	

	
The	created	custom	dataset	needs	to	be	located	in	mmdet	file	and	initialized	as	

follow:	
import	os.path	as	osp	
import	mmcv	
import	numpy	as	np	
	
from	mmdet.datasets.builder	import	DATASETS	
from	mmdet.datasets.custom	import	CustomDataset	
	
@DATASETS.register_module()	
class	EuropCityDataset(CustomDataset):	
	
				CLASSES	=	('pedestrian',	'bicycle-group',	'person-group-far-away',	'scooter-group',	'co-rider',	
'scooter',	\	
																				'motorbike',	'bicycle',	'rider',	'motorbike-group',	'rider+vehicle-group-far-away',	None,	\	
																				'buggy-group',	'wheelchair-group',	'tricycle-group',	'buggy',	'wheelchair',	'tricycle')	
	
				def	load_annotations(self,	ann_file):	
								cat2label	=	{k:	i	for	i,	k	in	enumerate(self.CLASSES)}	
								#	load	image	list	from	file	
								image_list	=	mmcv.list_from_file(self.ann_file)	
									
								data_infos	=	[]	
								#	convert	annotations	to	middle	format	
								for	image_id	in	image_list:	
												filename	=	f'{self.img_prefix}/{image_id}.png'	
												image	=	mmcv.imread(filename)	
												height,	width	=	image.shape[:2]	
		
												data_info	=	dict(filename=f'{image_id}.png',	width=width,	height=height)	
		
												#	load	annotations	
												label_prefix	=	self.img_prefix.replace('image',	'label')	
												lines	=	mmcv.list_from_file(osp.join(label_prefix,	f'{image_id}.json'))	
		
												content	=	[line.strip().split('	')	for	line	in	lines]	
												bbox_names	=	[x[0]	for	x	in	content]	
												bboxes	=	[[float(info)	for	info	in	x[4:8]]	for	x	in	content]	
		
												gt_bboxes	=	[]	
												gt_labels	=	[]	
												gt_bboxes_ignore	=	[]	
												gt_labels_ignore	=	[]	
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												#	filter	'DontCare'	
												for	bbox_name,	bbox	in	zip(bbox_names,	bboxes):	
																if	bbox_name	in	cat2label:	
																				gt_labels.append(cat2label[bbox_name])	
																				gt_bboxes.append(bbox)	
																else:	
																				gt_labels_ignore.append(-1)	
																				gt_bboxes_ignore.append(bbox)	
		
												data_anno	=	dict(	
																bboxes=np.array(gt_bboxes,	dtype=np.float32).reshape(-1,	4),	
																labels=np.array(gt_labels,	dtype=np.long),	
																bboxes_ignore=np.array(gt_bboxes_ignore,	
																																							dtype=np.float32).reshape(-1,	4),	
																labels_ignore=np.array(gt_labels_ignore,	dtype=np.long))	
		
												data_info.update(ann=data_anno)	
												data_infos.append(data_info)	
												#print(gt_bboxes)	
												#print(gt_labels)	
								return	data_infos	
	

Modify	mmdet/datasets/__init__.py	

	
The	__init__.py	should	be	modified	by	adding	the	dataset	as	follow:	
from	.builder	import	DATASETS,	PIPELINES,	build_dataloader,	
build_dataset	
from	.cityscapes	import	CityscapesDataset	
from	.coco	import	CocoDataset	
from	.custom	import	CustomDataset	
from	.dataset_wrappers	import	(ClassBalancedDataset,	ConcatDataset,	
																															RepeatDataset)	
from	.deepfashion	import	DeepFashionDataset	
from	.lvis	import	LVISDataset,	LVISV1Dataset,	LVISV05Dataset	
from	.samplers	import	DistributedGroupSampler,	DistributedSampler,	GroupSampler	
from	.utils	import	(NumClassCheckHook,	get_loading_pipeline,	
																				replace_ImageToTensor)	
from	.voc	import	VOCDataset	
from	.wider_face	import	WIDERFaceDataset	
from	.xml_style	import	XMLDataset	
from	.kitti	import	KittiDataset				#afnan	
from	.collated	import	CollatedDataset				#afnan	
	
__all__	=	[					#	afnan	added	dataset	
				'KittiDataset','CollatedDataset','CustomDataset',	'XMLDataset',	'CocoDataset',	
'DeepFashionDataset',	
				'VOCDataset',	'CityscapesDataset',	'LVISDataset',	'LVISV05Dataset',	
				'LVISV1Dataset',	'GroupSampler',	'DistributedGroupSampler',	
				'DistributedSampler',	'build_dataloader',	'ConcatDataset',	'RepeatDataset',	
				'ClassBalancedDataset',	'WIDERFaceDataset',	'DATASETS',	'PIPELINES',	
				'build_dataset',	'replace_ImageToTensor',	'get_loading_pipeline',	
				'NumClassCheckHook'	
]		
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Add	collated_detection.py	to	configs/_base_/datasets	

	
Next	is	the	crating	the	detection	setting	file	which	gives	all	the	parameters	such	as	

mean,	image	scale	and	flip	ratio.	It	also	sits	the	location	of	the	dataset	images.	

Following	the	content	of	the	file:	
#!/usr/bin/env	python3	

#	-*-	coding:	utf-8	-*-	

"""	

Created	on	Thu	Jun	30	13:49:09	2022	

	

@author:	afnan	

"""	

	

#!/usr/bin/env	python3	

#	-*-	coding:	utf-8	-*-	

"""	

Created	on	Tue	Oct	12	17:13:34	2021	

	

@author:	afnan	

"""	

	

#	dataset	settings	

dataset_type	='CocoDataset'	

CLASSES	=	('pedestrian',	'bicycle-group',	'person-group-far-away',	'scooter-group',	'co-rider',	

'scooter',	\	

																				'motorbike',	'bicycle',	'rider',	'motorbike-group',	'rider+vehicle-group-far-away',	None,	\	

																				'buggy-group',	'wheelchair-group',	'tricycle-group',	'buggy',	'wheelchair',	'tricycle')	

data_root	=	'data/Collated/'	

img_norm_cfg	=	dict(	

				mean=[123.675,	116.28,	103.53],	std=[58.395,	57.12,	57.375],	to_rgb=True)	

train_pipeline	=	[	

				dict(type='LoadImageFromFile'),	

				dict(type='LoadAnnotations',	with_bbox=True),	

				dict(type='Resize',	img_scale=(1920,	1024),	keep_ratio=True),	

				dict(type='RandomFlip',	flip_ratio=0.5),	

				dict(type='Normalize',	**img_norm_cfg),	

				dict(type='Pad',	size_divisor=32),	

				dict(type='DefaultFormatBundle'),	

				dict(type='Collect',	keys=['img',	'gt_bboxes',	'gt_labels']),	
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]	

test_pipeline	=	[	

				dict(type='LoadImageFromFile'),	

				dict(	

								type='MultiScaleFlipAug',	

								img_scale=(1920,	1024),	

								flip=False,	

								transforms=[	

												dict(type='Resize',	keep_ratio=True),	

												dict(type='RandomFlip'),	

												dict(type='Normalize',	**img_norm_cfg),	

												dict(type='Pad',	size_divisor=32),	

												dict(type='ImageToTensor',	keys=['img']),	

												dict(type='Collect',	keys=['img']),	

								])	

]	

data	=	dict(	

				samples_per_gpu=2,	

				workers_per_gpu=2,	

				train=dict(	

								type='RepeatDataset',	

								times=8,	

								dataset=dict(	

												type=dataset_type,	

												ann_file=data_root	+	'Fussedday_train_all.json',	

												img_prefix=data_root	,	

												pipeline=train_pipeline)),	

				val=dict(	

								type=dataset_type,	

								ann_file=data_root	+	'Fussedday_val_all.json',	

								img_prefix=data_root	,	

								pipeline=test_pipeline),	

				test=dict(	

								type=dataset_type,	

								ann_file=data_root	+	'Fussedday_val_all.json',	

								img_prefix=data_root	,	

								pipeline=test_pipeline))	

evaluation	=	dict(interval=1,	metric='bbox')	
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Modify	the	class_names.py	file	

	
Having	the	dataset	detection	file	in	place	it	is	necessary	to	ensure	that	the	classes	

are	edited	and	added	in	the	class	name	file:	
#	Copyright	(c)	OpenMMlab	All	rights	reserved.	
	
Import	mmcv	
	
def	kitti_classes():				#afnan		
				return	[	
								'car',	'person',	'cyclist'	
				]	
def	europcity_classes():	#afnan	
				return	[	
				'pedestrian',	'bicycle-group',	'person-group-far-away',	'scooter-group',	'co-rider',	'scooter',	\	
																				'motorbike',	'bicycle',	'rider',	'motorbike-group',	'rider+vehicle-group-far-away',	None,	\	
																				'buggy-group',	'wheelchair-group',	'tricycle-group',	'buggy',	'wheelchair',	'tricycle'	
		]	
def	collated_classes():	#afnan	
				return	[	
				'pedestrian',	'bicycle-group',	'person-group-far-away',	'scooter-group',	'co-rider',	'scooter',	\	
																				'motorbike',	'bicycle',	'rider',	'motorbike-group',	'rider+vehicle-group-far-away',	None,	\	
																				'buggy-group',	'wheelchair-group',	'tricycle-group',	'buggy',	'wheelchair',	'tricycle'	
						]	
	
dataset_aliases	=	{	
				'voc':	['voc',	'pascal_voc',	'voc07',	'voc12'],	
				'imagenet_det':	['det',	'imagenet_det',	'ilsvrc_det'],	
				'imagenet_vid':	['vid',	'imagenet_vid',	'ilsvrc_vid'],	
				'coco':	['coco',	'mscoco',	'ms_coco'],	
				'kitti':	['kitti'],	#afnan	
				'fussed':	['fussed'],	#afnan	
				'collated':	['collated'],	#afnan	
				'europcity':	['eurocity'],	#afnan	
				'wider_face':	['WIDERFaceDataset',	'wider_face',	'WIDERFace'],	
				'cityscapes':	['cityscapes'],	
				'oid_challenge':	['oid_challenge',	'openimages_challenge'],	
				'oid_v6':	['oid_v6',	'openimages_v6']	
}	
	
def	get_classes(dataset):	
				"""Get	class	names	of	a	dataset."""	
				alias2name	=	{}	
				for	name,	aliases	in	dataset_aliases.items():	
								for	alias	in	aliases:	
												alias2name[alias]	=	name	
	
				if	mmcv.is_str(dataset):	
								if	dataset	in	alias2name:	
												labels	=	eval(alias2name[dataset]	+	'_classes()')	
								else:	
												raise	ValueError(f'Unrecognized	dataset:	{dataset}')	
				else:	
								raise	TypeError(f'dataset	must	a	str,	but	got	{type(dataset)}')	
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				return	labels	
	
	
Modify	the	mmdet\core\evaluation\__init__.py	file	

	
The	last	modification	is	related	to	the	evaluation	in	which	dataset	must	be	

introduced	in	order	to	recognise	data	when	called	for	training	and	testing	the	

modified	file	is	located	in	core	folder	under	evaluation	folder.	Modification	should	

be	as	follows:	
from	.builder	import	DATASETS,	PIPELINES,	build_dataloader,	build_dataset	
from	.cityscapes	import	CityscapesDataset	
from	.coco	import	CocoDataset	
from	.custom	import	CustomDataset	
from	.dataset_wrappers	import	(ClassBalancedDataset,	ConcatDataset,	
																															RepeatDataset)	
from	.deepfashion	import	DeepFashionDataset	
from	.lvis	import	LVISDataset,	LVISV1Dataset,	LVISV05Dataset	
from	.samplers	import	DistributedGroupSampler,	DistributedSampler,	GroupSampler	
from	.utils	import	(NumClassCheckHook,	get_loading_pipeline,	
																				replace_ImageToTensor)	
from	.voc	import	VOCDataset	
from	.wider_face	import	WIDERFaceDataset	
from	.xml_style	import	XMLDataset	
from	.kitti	import	KittiDataset				#afnan	
from	.collated	import	CollatedDataset				#afnan	
	
	
__all__	=	[					#	afnan	added	dataset	
				'KittiDataset','CollatedDataset','CustomDataset',	'XMLDataset',	'CocoDataset',	
'DeepFashionDataset',	
				'VOCDataset',	'CityscapesDataset',	'LVISDataset',	'LVISV05Dataset',	
				'LVISV1Dataset',	'GroupSampler',	'DistributedGroupSampler',	
				'DistributedSampler',	'build_dataloader',	'ConcatDataset',	'RepeatDataset',	
				'ClassBalancedDataset',	'WIDERFaceDataset',	'DATASETS',	'PIPELINES',	
				'build_dataset',	'replace_ImageToTensor',	'get_loading_pipeline',	
				'NumClassCheckHook'	
	


