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Abstract 

Amyotrophic lateral sclerosis (ALS) is a fatal progressive neurodegenerative disease that 

causes degeneration of both upper and lower motor neurons primarily affecting the motor 

system, but individual people with ALS show heterogenous presentations of motor and 

non-motor symptoms and disease progression rate. Therefore, diagnosis of ALS, which is 

based on the clinical examination and exclusion of mimic conditions like spinal muscular 

atrophy (SMA), Kennedy’s disease, Myasthenia gravis, multiple sclerosis (MS), is 

extremely challenging. Additionally, ALS progression is measured using clinical scales 

that are subject to variance (i.e., cannot effectively capture heterogeneity) and are a proxy 

for underlying disease pathobiology. Therefore, there is an urgent need for reliable and 

quantitative biomarkers that can be used for early diagnosis, tracking disease progression, 

and importantly, deep phenotyping and stratification for clinical trials. 

Neurophysiological studies in ALS have illustrated the potential of network connectivity 

measures to enable early detection of brain networks impairments before manifestation of 

clinical symptoms and before structural alterations become visible in structural imaging. 

ALS is a multi-network dysfunction causing deficits in motor and extra-motor brain 

networks. Understanding the changes in motor networks is key to unveiling disease 

pathology in ALS. Impairment of sensorimotor and extra-motor networks in ALS has been 

identified from resting-state paradigm. However, motor paradigms, that involve the pre-

motor stage, motor planning, and motor execution and can directly access sensorimotor 

pathways, might be needed to unravel motor networks pathology in ALS for biomarker 

design. 

In this project, high-density electroencephalogram (EEG) and bipolar surface 

electromyogram (EMG) were recorded from people with ALS and healthy controls when 
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they were performing an isometric motor task: pincer grip between thumb and index finger 

of the right hand at 10% of their maximal voluntary contraction. The neuroelectric signal 

analysis was done at both sensor and source levels to interrogate ALS-related motor 

network pathology. The spectral power and banded spectral coherence were obtained from 

EEG signals at sensor level to investigate the effect of neurodegeneration in functional 

motor networks during different stages of the task such as rest, pre-motor stage and motor 

execution. Similarly, banded corticomuscular coherence (CMC) at source level, which 

measures the synchrony between EEG and EMG signals, was used to investigate the 

dysfunctional involvement of corticospinal tracts in the cortico-peripheral networks in 

ALS. Furthermore, at source level, generalised partial directed coherence (gPDC) was used 

to investigate the effect of neurodegeneration on effective (directional or causal) cortical 

networks in ALS during pre-motor (motor planning) and motor execution. 

This work has established that ‘banded spectral coherence,’ based on non-parametric 

methods such as 1-sample signed rank statistics and 2-D spatial median, was a simpler and 

improved alternative to classical ‘magnitude squared coherence’ to investigate functional 

network disruption in motor neuron disease. This study revealed more widespread point-

to-point network connectivity (using banded spectral coherence), reflecting hyperactivation 

of cortical regions in ALS during rest and motor task. Such cortical hyperactivation is 

potentially due to a loss of inhibitory interneurons. Similarly, this study revealed increased 

beta event related spectral perturbations over non-dominant-motor and parietal regions. 

Furthermore, it demonstrated abnormal motor-parietal functional network at beta-band 

during motor execution, which was also negatively correlated with clinical motoric 

impairments. These findings indicate compensatory mechanism in ALS. More importantly, 

this study revealed that pre-motor networks that were impaired in ALS were distinct and 

not an extension of impairment in the primary motor cortex (M1). Furthermore, this study 
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found reduction of CMC in alpha, beta, and gamma frequency bands in brain regions within 

primary sensorimotor cortices (M1/S1), the supplementary motor area (SMA) and the 

superior parietal lobule implying broader network impairment in ALS beyond the 

sensorimotor networks, potentially reflecting dysfunction of other aspects of motor control 

such as motor planning, task attention, and visuomotor processes. Finally, the study 

identified several disruptions in directional networks within motor systems in ALS with 

higher order motor regions such as SMA. Specifically, the SMA-driven sensorimotor 

network was notably weaker in ALS, suggesting impaired motor planning. Also, the SMA 

potentially compensated for M1 degeneration during motor execution, as evidenced by 

stronger connections from ipsilateral SMA to contralateral M1 which could be attributed 

to interhemispheric disinhibition and heightened motor demands in ALS. 

The cortico-cortical and cortico-muscular network impairments underpinned by this study 

have the potential to be used for clinical diagnostic, prognostic and phenotyping 

applications or as primary/secondary outcome measure to track network changes in the 

setting of disease modifying clinical trials. 

 

Keywords: Amyotrophic Lateral Sclerosis, Network Connectivity, Corticomuscular 

Coherence, Generalised Partial Directed Coherence, Biomarkers.    
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1. Introduction 

1.1 Amyotrophic Lateral Sclerosis 

Neurodegenerative diseases exert billions of euros of costs on the economy and 

dramatically affect the quality of life of patients and caregivers. The neurodegeneration 

causes failure in the brain’s neural networks which is poorly understood, can differ across 

individuals, and is difficult to quantify in clinics. Alzheimer’s disease, Parkinson’s disease, 

Huntington’s disease, and Motor Neuron Disease (MND) are such diseases. MND is an 

umbrella term that covers a wide range of rare neurodegenerative diseases that destroy 

motor neurons, the nerve cells responsible for control of voluntary movement of the body. 

MND includes diseases such as amyotrophic lateral sclerosis (ALS), primary lateral 

sclerosis (PLS), progressive muscular atrophy (PMA), spinal muscular atrophy (SMA), 

post-polio syndrome (PPS), and Kennedy’s disease. ALS is a progressive 

neurodegenerative disease which primarily affects the motor neurons of the brain (upper 

motor neurons, UMN) and spinal cord (lower motor neurons, LMN). In early stages of the 

disease, the motor neurons (upper and lower), which carry neural signals from the brain to 

muscles via the spinal cord and vice-versa, start to degenerate. This causes muscles to 

weaken, fasciculate (twitch of a muscle), and waste (also called atrophy). The motor neuron 

degeneration progresses over time and the patient gradually loses control over the voluntary 

movement of muscles. Consequently, the patient suffers deterioration of strength and 

ability to do simple day-to-day tasks. Over time, the motor neurodegeneration causes severe 

dysphagia (difficulty in swallowing) and dyspnoea (shortness of breath) so that the patient 

is unable to breathe and generally dies from respiratory failure. This happens typically 3-5 

years after symptom onset, except in some cases (about 10%), where the patient survives 

more than 10 years and has a slower disease progression rate.  
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1.1.1 ALS Epidemiology 

ALS is the most common type of MND worldwide and can affect people between the ages 

of 40 years and 90 years. The incidence of ALS increases with age and is reported to be 

highest between 60 years and 79 years (Marin et al., 2018). There are no clear indicators 

that the incidence of ALS has changed in the past couple of decades. Some studies have 

reported that the incidence of ALS is stable over the past three decades (Ryan et al., 2019), 

whereas others have reported a possible increase in the incidence rate (Xu et al., 2020). The 

perceived increase in incidence could be the result of improved diagnosis, and improved 

quality of ALS registries around the world (Feldman et al., 2022). Similarly, the prevalence 

of ALS is also expected to increase because of an ageing population, improved disease 

management, improved and personalised healthcare, and personalised treatment plans to 

some extent, which increase the life expectancy by at a least few months. However, ALS 

is still a rare disease with an overall crude global prevalence rate of 4.42 per 100,000 

population (Xu et al., 2020). The overall crude global incidence of ALS is 1.75 per 100,000 

person-years and 1.68 per 100,000 person-years after standardisation (Marin et al., 2017). 

The incidence of ALS is heterogenous worldwide with a standardised incidence rate of 1.89 

per 100,000 person-years in Northen Europe, 0.83 in East Asia and 0.73 in South Asia 

(Marin et al., 2017). Oceania has the highest incidence of 2.25 per 100,000 person-years 

(Marin et al., 2017). This variation of ALS incidence between the subcontinents could be 

related to genetic factors, especially populations’ ancestries (Marin et al., 2017). On the 

other hand, homogeneous incidence rates have been reported in populations from Europe, 

North America, and New Zealand with a pooled ALS standardised incidence of 1.81 per 

100,000 person-years (Marin et al., 2017).   
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Sex is another factor that affects the incidence of ALS, with male population being at higher 

risk than female. A noticeable male-to-female sex ratio has been consistently reported by 

population studies in ALS, with an overall pooled male-to-female ratio of 1.28 (Fontana et 

al., 2021). In Irish population, the mean male-specific annual incidence rate is 1.8 per 

100,000 persons and mean female-specific annual incidence rate is 1.3 per 100,000 persons 

(Ryan et al., 2019). The predominance of male cases could be linked to difference of 

response between male vs female to ALS risk factors (McCombe and Henderson, 2010). 

Higher incidence of male cases could also be linked to some other factors such as an 

occupational bias towards exposure to risk factors. For example, some studies have put 

forward that, for some unknown reasons, military veterans are at higher risk (about 1.5 to 

2 times) of developing ALS (McKay et al., 2021) and it is a well-known fact that the 

majority of military personnel is male. 

Genetics also play an important role in the incidence of ALS. Studies have shown that the 

heritability of ALS is higher in mother-daughter pairings (Ryan et al., 2019). The C9orf72 

gene, which is the most common gene associated with ALS, lowers the age of onset in the 

male versus female population (Murphy et al., 2017). Similarly, the low incidence of ALS 

in Asia compared to Europe and North America may be related to the low frequency of 

C9orf72 gene mutation in Asian cohorts (Shahrizaila et al., 2016, Zou et al., 2017). The 

C9orf72 repeat expansion accounts for more than 34% of familial ALS and about 5-20% 

of sporadic ALS in the Caucasian population (Williams et al., 2013, Zou et al., 2017). In 

contrast, the C9orf72 gene mutation accounts for less than 2% of the familial or sporadic 

ALS in Asia (Ogaki et al., 2012, Shahrizaila et al., 2016, Zou et al., 2017). Thus, occurrence 

of ALS is influenced by interrelationships between genetic factors, age, and sex, and this 

has significant implications for both preclinical and clinical research, as well as clinical 

trials. 
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1.1.2 Genetic Aspects of ALS 

ALS is classified as either familial or sporadic based on the family history or the cause of 

the disease. If the disease occurs at random without any family history or any clearly linked 

risk factors than it is Sporadic ALS. Sporadic ALS is the most common form of ALS and 

affects from 85% of people with the disease. For the remaining 10 to 15% of people with 

ALS, the cause is genetic (Familial ALS) i.e., they inherit the disease from family members 

with ALS or associated syndromes such as frontotemporal dementia or other 

neuropsychiatric conditions (Goutman et al., 2022). Although sporadic ALS occurs without 

the evidence that the disease was inherited, it shares several risk genes with familial ALS.  

With increasing genetic studies in ALS, more and more gene mutations are being associated 

with ALS. More than 40 ALS genes have been identified so far (Goutman et al., 2022) and 

four genes, namely C9orf72 (chromosome 9 open reading frame 72), SOD1 (superoxide 

dismutase 1), TARDBP (transactive response DNA binding protein 43), and FUS (fused in 

sarcoma) account for about 48% of familial and 5% of sporadic ALS (Zou et al., 2017). 

However, the distributions of these major ALS-related genes are not homogeneous amongst 

the ALS population and there is a distinct genetic architecture between European and Asian 

ALS populations (Zou et al., 2017). These four major ALS-related genes (C9orf72, SOD1, 

TARDBP, and FUS) account for 55% of familial and 7% of sporadic ALS within the 

population of European origin, and for about 40% of familial and 3% of sporadic ALS 

within the population of Asian origin (Zou et al., 2017). In the European population, the 

most common gene mutation in ALS is C9orf72 repeat expansion (~34% familial and ~5% 

sporadic), followed by SOD1 (~15% familial and ~1% sporadic). On the other hand, in 

Asian populations, the most common gene mutation in ALS is SOD1 (~30% familial and 

~2% sporadic), followed by FUS (~6% familial and ~1% sporadic). The Irish ALS 
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population shows similar familial genetic traits as the European population with C9orf72 

repeat expansion accounting for about 33% of known familial cases of ALS (Ryan et al., 

2018).  

1.1.3 Clinical Presentation of ALS 

1.1.3.1 Phenotypic Heterogeneity of ALS 

Motor Phenotypes 

ALS exhibits phenotypic heterogeneity due to dysfunction of either upper motor neurons 

(UMN) that originate from the cerebral cortex and travel down to the brain stem or spinal 

cord, or lower motor neurons (LMN) that begin from the spinal cord and innervate muscles, 

or both (Figure 1.1 A). UMN dysfunction is characterised by increased and pathological 

reflexes, pathological spread of reflexes, preserved reflexes in weak limb, and spasticity. 

LMN dysfunction is characterised by muscle weakness, atrophy, and fasciculations. These 

motor neuron dysfunctions lead to progressive weakening of voluntary skeletal muscles 

involved in the movement of limbs, swallowing, speaking, and respiratory function, with 

various phenotypic clinical presentations (Figure 1.1 B). Spinal onset and bulbar onset are 

two most common phenotypic presentations of ALS, each constituting more than 30% of 

the cases (Chiò et al., 2011) . Spinal onset ALS is characterised by muscle weakness 

starting either in the upper limbs, or lower limbs, or both. It presents both UMN and LMN 

signs. The bulbar onset phenotype, which presents both UMN and LMN signs, is 

characterised by weakness starting in the bulbar muscles that control speaking and 

swallowing. Other less frequent phenotypic presentations of ALS are pyramidal, flail limbs 

(flail arm and flail leg), primary lateral sclerosis (PLS), progressive muscular atrophy 

(PMA), respiratory onset, or hemiplegia. Flail arm ALS is characterised by LMN 

involvement with progressive, predominantly proximal weakness and wasting of the upper 
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limbs, whereas flail leg ALS is characterised by LMN involvement with progressive distal 

onset weakness and wasting of the lower limbs. Flail limb ALS is a relatively milder 

variants of ALS as it showed better survival than spinal or bulbar onset ALS (Wijesekera 

et al., 2009). PLS is characterised by pure UMN dysfunction with no sign of LMN 

involvement, causing weakness in limb muscles, speaking, and swallowing. Similarly, 

PMA is characterised by LMN dysfunction with no sign of UMN involvement at onset 

causing progressive weakness and muscle atrophy. However, as much as 70% of patients 

with PMA will eventually show the signs of UMN degeneration (Latif, 2018). There is no 

clear distinction, whether to consider PLS and PMA as separate clinical entities or a 

phenotypic presentation of ALS. However, they have been often studied as part of the 

clinical spectrum of ALS (Fontana et al., 2021, Mehta et al., 2022). Pyramidal variants, 

also referred to as predominantly upper motor neuron ALS, concern patients with ALS 

having a clinical manifestation dominated by pyramidal signs such as hyperreflexia, 

spasticity, and Babinski signs at onset and not all patients with ALS show such signs. In a 

cohort of 130 patients with ALS studied by Álvarez et al. (2018), only about 11% had a 

complete pyramidal syndrome. Respiratory onset ALS is characterised by the prevalence 

of respiratory impairments such as orthopnoea (shortness of breath when lying down) or 

dyspnoea (shortness of breath) at onset. Such patients present with mild involvement of 

spinal or bulbar signs in the first 6 months after onset and mild UMN involvement (Chiò 

et al., 2020). Hemiplegic ALS, also known as Mill’s syndrome, is an extremely rare variant 

of ALS with asymmetric corticospinal degeneration. Case studies of hemiplegic ALS have 

shown UMN involvement (Chugh et al., 2013, Algahtani et al., 2021).  

Cognitive Phenotypes 

Phenotypic heterogeneity in ALS is not only due to motor symptoms but also due to 

cognitive and behavioural symptoms. Not all individuals with ALS develop cognitive and 
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behavioural symptoms but about 35-45% of individuals with ALS may experience some 

degree of cognitive or behavioural involvement  with symptoms overlapping with 

Frontotemporal Dementia (FTD) and about 14% meet the diagnostic criteria of FTD 

(Pender et al., 2020). Therefore, ALS is introduced as part of the ALS-FTD spectrum 

(Figure 1.1 C). Cognitive impairment in ALS is commonly characterised by manifestation 

of executive and language dysfunction whereas behavioural impairment is characterised by 

apathy, loss of sympathy and empathy, disinhibition, stereotyped or compulsive behaviours 

and dietary changes (Pender et al., 2020, Strong et al., 2017). Based on the presentation of 

cognitive and/or behavioural involvement, five phenotypes of ALS have been reported 

namely, pure ALS (only motor symptoms, no cognitive or behavioural involvement), ALS 

with cognitive impairment (ALSci), ALS with behavioural impairment (ALSbi), ALS with 

cognitive and behavioural impairment (ALScbi), and ALS with concurrent dementia that 

meets diagnostic criteria for FTD (ALS-FTD). 

1.1.3.2 ALS as Multi-system Disorder 

Although ALS has traditionally been viewed as a disease that specifically affects the motor 

system, recent imaging and pathological research has shown that it is a multisystem 

neurodegenerative disorder (Strong, 2017, Geser et al., 2008). In addition to motor deficits, 

which is a primary ALS pathophysiology, cognitive deficits are consistently reported by 

several clinical-based and large population-based studies (Chiò et al., 2019). 
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Figure 1.1 Amyotrophic lateral sclerosis (ALS) phenotypical heterogeneity and spectrum with 

frontotemporal dementia (FTD). Figure taken from Feldman et al. (2022). (A) Schematics showing UMN 

(blue) and LMN (yellow) which relay signals from the motor cortex to muscles. LMNs from the brain stem 

innervate bulbar muscles, LMNs from the cervical region of spinal cord innervate muscles on upper limbs 

and respiratory muscles, LMNs from thoracic region of the spinal cord innervate abdominal muscles, and 

LMNs from the lumbar region of the spinal cord innervate lower limbs. (B) Schematics showing phenotypical 

presentations of people with ALS based on the signs and anatomical locations of UMN (blue), LMN (yellow), 

and combined UMN and LMN (green) dysfunctions. The percentages in the figure show the proportion of 

ALS phenotypes from the total representative ALS population reported by Chiò et al. (2011). (C) Schematics 

showing the ALS-FTD spectrum. ALS is one end of the spectrum and presents with pure motor signs from 

UMN and LMN degeneration. FTD is on the other end of the spectrum and presents with cognitive and 
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behavioural impairments from frontotemporal degeneration. Abbreviations: ALS, amyotrophic lateral 

sclerosis; ALSci, amyotrophic lateral sclerosis cognitive impairment; ALSbi, amyotrophic lateral sclerosis 

behavioural impairment; ALScbi, amyotrophic lateral sclerosis cognitive and behavioural impairment; 

FTD, frontotemporal dementia; LMN, lower motor neuron; UMN, upper motor neuron; PLS, primary 

lateral sclerosis; PMA, progressive muscular atrophy; MND, motor neuron disease. 

It has been reported that about 50% of patients diagnosed as possible, probable, or definite 

ALS have detectable cognitive or behavioural changes, and about one-third of these 

patients exhibits the neurological signatures of frontotemporal degeneration (FTD) 

(Grossman, 2019). The neurodegeneration in ALS begins in the pyramidal motor system 

which includes motor cortex, brainstem motor nuclei of cranial nerves, and motor neurons 

of spinal cord (Brettschneider et al., 2013). Over time, the neurodegeneration spreads to 

neighbouring cortical regions by diffusion or to distant cerebral cites mediated by axonal 

projections. The pathology initially spreads to brain regions such as premotor, sensory, and 

prefrontal cortices, and eventually to portions of the parietal and temporal lobes, corpus 

callosum, and deep grey structures (Fatima et al., 2015, Chiò et al., 2014). This spreading 

pathology causes several non-motor impairments in ALS such as in executive control 

(difficulty with planning, organizing and inhibitory control), changes in behaviour and 

personality (apathy, loss of empathy and disinhibition) and language disorders (non-fluent, 

agrammatic speech and comprehension)(Grossman, 2019). In addition to cognitive and 

behavioural impairment, recent studies have provided evidence of episodic memory 

impairments in ALS subjected to the thinning of medial temporal lobe grey matter (Machts 

et al., 2014, Machts et al., 2020). A clear understanding of multisystem nature of ALS will 

be vital for improved diagnosis, prognosis, and disease management.  
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1.1.4 Propagation of ALS pathology 

ALS is increasingly recognized as a network disorder. Disruption of network connectivity, 

which involve multiple interconnected regions of the nervous system, could lead to the 

propagation of pathology throughout the nervous system. Two hypotheses have been 

debated to explain the pathogenesis of ALS namely ‘dying forward’ and ‘dying backward.’ 

The dying forward hypothesis suggests that ALS begins in the pyramidal neurons of motor 

and premotor cortices of the brain and then progresses to affect the lower motor neurons in 

the spinal cord and brainstem (Eisen, 2021). This hypothesis proposes that glutamate 

excitotoxicity at the motor cortex is an important factor resulting in deficit of anterior horn cell 

metabolism (Kiernan et al., 2011). The TMS studies reporting cortical hyperexcitability as an 

early feature in sporadic ALS patients (Vucic and Kiernan, 2006) and precedes the clinical 

onset of familial ALS (Vucic et al., 2008) support the dying forward hypothesis. 

The dying backward hypothesis, on the other hand, proposes that ALS begins in the 

peripheral nervous system such as muscle cells or at the neuromuscular junction, affecting 

the lower motor neurons first, and then progresses centrally to involve the upper motor 

neurons in the brain (Kiernan et al., 2011). This hypothesis is supported by the studies 

reporting that synaptic denervation precedes motor neuron degeneration and is facilitated 

by the accumulation of mutant SOD1 protein in Schwann cells (Clark et al., 2016).  

1.1.5 Diagnostic Criteria for ALS 

ALS is a heterogeneous disease, involving motor, cognitive, or behavioural impairments, 

with the presentation of various clinical phenotypes which makes it difficult to diagnose. 

Researchers and clinicians have been working for decades to come up with a gold standard 

criterion that can be used for the diagnosis of ALS but with limited success. The definitive 

diagnosis of ALS is difficult as there are several syndromes that mimic the symptoms of 
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ALS, particularly in the early stages of the disease (Hardiman et al., 2011). To date, the 

diagnosis of ALS is based on the clinical signs and symptoms in addition to investigations 

to eliminate mimicking syndromes. The first widely recognised diagnostic criteria for ALS 

were published in 1994 and are known as the El Escorial criteria (Brooks, 1994). They 

were revised in 2000 as the El Escorial revisited criteria in order to increase their sensitivity 

(Brooks et al., 2000). The revised criteria allowed the patients to be categorised on the 

spectrum of probability from ‘Possible’ to ‘Definite’ ALS on clinical criteria alone based 

on the involvement of UMN or LMN or both, the number and specific bodily regions 

affected, and the presence or absence of supportive neurophysiological findings. A 

summary of the El Escorial revisited criteria is shown in Table 1.1. 

Table 1.1 Summary of the El Escorial revisited criteria for diagnosis of ALS from 

Brooks et al. (2000) 

The diagnosis of ALS requires: 

(A) the presence of: 

(A: 1) evidence of LMN degeneration by clinical, electrophysiological, or 

neurological examination, 

(A: 2) evidence of UMN degeneration by clinical examination, and 

(A: 3) progressive spread of symptoms or signs within a region or to other 

regions, as determined by history or examination, 

together with: 

(B) the absence of: 

(B: 1) electrophysiological or pathological evidence of other disease 

processes that might explain the signs of LMN and/or UMN degeneration, 

and 

(B: 2) neuroimaging evidence of other disease processes that might explain 

the observed clinical and electrophysiological signs. 

Categories of clinical diagnostic certainty on clinical criteria alone 

Definite ALS  Presence of UMN, as well as LMN signs, in the bulbar region 

and at least two spinal regions or 
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Presence of UMN and LMN signs in three spinal regions  

Probable ALS  Presence of UMN and LMN signs in at least two regions with 

some UMN signs necessarily rostral to (above) the LMN signs.  

Probable ALS – 

Laboratory 

supported  

Presence of UMN and LMN signs in only one region, or  

Presence of UMN signs alone in one region, and LMN signs 

defined by EMG criteria are present in at least two regions  

Possible ALS  Presence of UMN and LMN signs in only one region or  

Presence of UMN signs in two or more regions or  

Presence of LMN signs rostral to UMN signs and the diagnosis 

of Probable ALS – Laboratory supported cannot be proven  

 To improve the diagnostic sensitivity of the El Escorial criteria, the revised El Escorial 

criteria introduced the category “Suspected ALS” that allowed the use of 

Electromyography (EMG) results to support the clinical findings for the diagnosis (Brooks 

et al., 2000) and removed the category “Laboratory-supported probable ALS”. The four 

ALS categories of El Escorial revisited criteria (see Table 1.1) identified patients with ALS 

with high specificity, but concern was raised on their sensitivity because of the way EMG 

contributes to the diagnosis (De Carvalho et al., 1999). An Irish population-based study by 

Traynor et al. (2000) indicated that the El Escorial and their revision were highly restrictive 

and about 10% of deceased patients died without reaching trial eligibility. To solve this 

issue, the Awaji criteria (de Carvalho et al., 2008) were introduced which modified the El 

Escorial revisited criteria by further integrating electrophysiological criteria with clinical 

findings. The Awaji criteria considered the EMG changes showing LMN dysfunction and 

presence of fasciculations as LMN signs, removed “Laboratory-supported probable ALS”, 

and retained definite, probable, and possible ALS categories.  

Although, the Awaji criteria has demonstrated an improved diagnostic certainty of ALS 

over the El Escorial revisited criteria (Gawel et al., 2014), both criteria are complex with 
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high inter-rater variability and require training to use (Johnsen et al., 2019). Therefore, to 

simplify, improve inter-rater reliability, and potentially replace the El Escorial revisited and 

Awaji criteria,  new diagnostic criterion for ALS called Gold Coast criteria (Shefner et al., 

2020) have been proposed in 2019. The Gold Coast criteria for diagnosis of ALS are shown 

in Table 1.2. Multicentre population studies as well as regional population studies have 

shown that the Gold Coast criteria offer greater diagnostic sensitivity compared to the El 

Escorial revisited and Awaji criteria by considering the ‘definite’ or ‘probable’ diagnostic 

categories as a positive finding and recommend using the criteria in clinical practice and 

therapeutic trials (Hannaford et al., 2021, Pugdahl et al., 2021, Shen et al., 2021). 

Table 1.2 Gold Coast criteria for diagnosis of ALS from Shefner et al. (2020) 

1. Progressive motor impairment documented by history or repeated clinical 

assessment, preceded by normal motor function, and 

2. Presence of upper1 and lower2 motor neuron dysfunction in at least 1 body region3, 

(with upper and lower motor neuron dysfunction noted in the same body region if 

only one body region is involved) or lower motor neuron dysfunction in at least 2 

body regions, and 

3. Investigations4 excluding other disease processes 

Footnotes: 

1Upper motor neuron dysfunction implies at least one of the following: 

1. Increased deep tendon reflexes, including the presence of a reflex in a 

clinically weak and wasted muscle, or spread to adjacent muscles. 

2. Presence of pathological reflexes, including Hoffman sign, Babinski sign, 

crossed adductor reflex, or snout reflex 

3. Increase in velocity-dependent tone (spasticity) 

4. Slowed, poorly coordinated voluntary movement, not attributable to weakness 

of lower motor neuron origin or Parkinsonian features 

2Lower motor neuron dysfunctions in a given muscle requires either: 

1. Clinical examination evidence of muscle weakness and muscle wasting, or 
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2. EMG abnormalities that must include both: 

Evidence of chronic neurogenic change, defined by large motor unit potentials 

of increased duration and/or increased amplitude, with polyphasia and motor 

unit instability regarded as supportive but not obligatory evidence, and 

Evidence of ongoing denervation, including fibrillation potentials or positive 

sharp waves, or fasciculation potentials 

3Body regions are defined as bulbar, cervical, thoracic, and lumbosacral. To be 

classified as an involved region with respect to lower motor neuron involvement, 

there must be abnormalities in two limb muscles innervated by different roots and 

nerves, or one bulbar muscle, or one thoracic muscle either by clinical examination or 

by EMG. 

4The appropriate investigations depend on the clinical presentation, and may include 

nerve conduction studies and needle EMG, MRI or other imaging, fluid studies of 

blood or CSF, or other modalities as clinically necessary. 

 

1.1.6 Diagnostic Delay and its Impact in ALS 

The diagnosis of ALS is based primarily on clinical examination using the El Escorial, El 

Escorial revisited or Awaji criteria, and is often slow taking about 10 to 16 months from 

symptoms onset (Richards et al., 2020). The newly proposed Gold Coast criteria, which are 

simplified and have higher sensitivity compared to the former criteria, have the potential to 

reduce the diagnostic delay (Falcão de Campos et al., 2023) if used in clinical practice. The 

revised El Escorial criteria are still the mainstay of ALS diagnosis, but the field is slowly 

moving towards the Gold Coast criteria (Feldman et al., 2022). Several factors contribute 

to the delay in diagnosis of ALS such as delays from referrals to specialists, delays from 

misdiagnosis, delays related to site of disease onset, age of onset-related delays, and delays 

related to the presence of comorbidities (Richards et al., 2020). Studies have demonstrated 

that ALS with spinal onset and younger age onset have longer diagnostic delays (Richards 

et al., 2020, Galvin et al., 2017, Falcão de Campos et al., 2023, Nzwalo et al., 2014). The 
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time from first symptom onset noted by the patient to their first visit to a physician or 

general practitioner is about 3-6 months and about 60% of patients are referred to a 

neurologist after their first or subsequent visit to a physician (Richards et al., 2020).  

 

Figure 1.2 Pathway to ALS diagnosis from first symptom onset to final diagnosis. Figure taken from 

Richards et al. (2020). 

There is no treatment to halt or reverse the progressive neurodegeneration in ALS till date. 

Early diagnosis of the disease could help individuals to receive personalized supportive 

care from multidisciplinary teams of health care professionals, which could help to prolong 

their life as well as improve their and their caregiver’s quality of life. The delay in diagnosis 

also adds financial burden to the patient and/or state because of the significant waste of 

financial resources arising from misdiagnosis and delayed diagnosis (Galvin et al., 2017). 

More importantly, the emotional and psychological burden of misdiagnosis and delayed 

diagnosis is significant for patients and their family. The delayed diagnosis prevents 

patients and their family to adequately prepare for their future in terms of end-of-life care, 

finances, social relationships, and psychological well-being.    

1.1.7 Prognosis of ALS 

The Amyotrophic Lateral Sclerosis Functional Rating Scale Revised (ALSFRS-R) is the 

most widely used tool to measure functional decline and to monitor disease progression in 

ALS by clinicians and researchers. The ALSFRS-R is a 48 points validated questionnaire-
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based clinical scale that ranges from score 0 (severe functional impairment) to 48 (no 

functional impairment) (Cedarbaum et al., 1999). The 48-point total score can be divided 

into 4 sub-scales namely bulbar (0-12), fine motor (0-16), gross motor (0-8), and respiratory 

(0-12). Due to the lack of suitable alternatives, the ALSFRS-R remains the gold standard 

of primary or secondary efficacy of clinical trial outcome (van Eijk et al., 2021) despite 

having issues with multidimensionality (Franchignoni et al., 2013) i.e., the ALSFRS-R is 

a composite scale that combines assessments of various functional domains, including 

bulbar function, limb strength, fine motor skills, and respiratory function. Each domain 

may progress at a different rate and be affected to a different extent in individual patients. 

Another limitation with the ALSFRS-R is that some sub-scores improve with symptoms 

management or with change in behaviour even though the disease is progressing (Fournier 

et al., 2020).  

To overcome the limitations of the ALSFRS-R, Fournier et al. (2020) proposed a new 

clinical outcome measure to use in patients with ALS called the Rasch-Built Overall 

Amyotrophic Lateral Sclerosis Disability Scale (ROADS). The ROADS consists of 28 

patient-reported questions about their ability to perform daily activities that can be 

weighted as 0 (able to perform without difficulty), 1 (able to perform, but with difficulty), 

and 2 (unable to perform). The ROADS is a linearly weighted scale with high test-retest 

reliability that captures overall disability of ALS patients (Fournier et al., 2020). The ability 

of the ROADS questionnaire to capture overall disability of ALS was successfully 

validated against the ALSFRS-R in a Chinese ALS population by modifying the 

questionnaire (Chinese version of ROADS) through standardised forward-backward 

translation and cultural adaptation (Sun et al., 2021). A longitudinal study comparing the 

ROADS and ALSFRS-R concluded that the performance of both measures was similar, 

however, the ROADS offered psychometric advantages, such as Rasch-modelling and 
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unidimensionality (Johnson et al., 2022).  Similarly, a recent study evaluating the ROADS 

and ALSFRS-R has shown that the ROADS detected clinically meaningful decline in about 

60% of ALS versus about 46% detected by the ALSFRS-R on same ALS cohort (Fournier 

et al., 2023). Therefore, the ROADS offers advantages over the ALSFRS-R and could be a 

valuable tool for prognosis of ALS and in clinical trials, but more clinical validation from 

multiple ALS centres is needed before it can be adopted globally. 

A staging system, which identifies an individual’s position in the disease course, is another 

way of measuring progression in ALS. Staging systems can be useful in clinical trials to 

measure the efficacy of an intervention to halt or delay advancement from less-severe to 

more-severe disease stages. Staging systems such as King’s staging (Roche et al., 2012) 

and Amyotrophic Lateral Sclerosis Milano-Torino staging (ALS-MiToS) (Chiò et al., 

2015) have been proposed for ALS but neither of them has a widespread use in clinical 

practice and trials. King’s staging defines four disease stages where each stage reflects the 

severity of the disease and its association with survival (Figure 1.3 A). King’s staging 

differs from El Escorial categorisation because it doesn’t need information about  
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Figure 1.3 ALS prognosis. Figure taken from Feldman et al. (2022).  (A) King’s staging showing time to 

reach each stage and survival at each stage. (B) ALS-MiToS staging showing number of functions loss at 

each stage and probability of death at each stage. 

UMN or LMN involvement and it is easy to use because it corresponds to symptoms 

reported by patients and information relevant to the neurologist (Roche et al., 2012). ALS-

MiToS staging defines six disease stages (Stage 0 to Stage 5) based on the number of 

functional domains lost and each stage is associated with probability of death (Figure 1.3 

B). The functional domains of ALS-MiToS are four independent functions namely 

walking/self-care, swallowing, communicating, and breathing, that are included in the 

ALSRFS/ALSFRS-R scales. King’s staging and ALS-MiToS are complimentary to each 
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other, with King’s staging showing higher resolution in early to mid-disease course, and 

MiToS showing higher resolution for late disease course (Luna et al., 2021, Fang et al., 

2017).      

1.2 Biomarkers in ALS 

 1.2.1 Definition of a Biomarker 

Biomarkers are measurable indicators of normal biological processes, pathogenic 

processes, or responses to an intervention (Group, 2001). Biomarkers play a crucial role in 

diagnosing, monitoring progression, predicting outcomes, and evaluating the effectiveness 

of treatments in ALS. One avenue of finding biomarker candidates for ALS is to study the 

neurophysiological processes in the disease such as motor neuron degeneration (Holasek 

et al., 2005), excitotoxicity (Foran and Trotti, 2009), protein misfolding and aggregation 

(Parakh and Atkin, 2016), mitochondrial dysfunctions (Zhao et al., 2022), axonal transport 

deficits (De Vos and Hafezparast, 2017), glial cell dysfunction (Philips and Rothstein, 

2014) and neuroinflammation (Liu and Wang, 2017) amongst many others. By comparing 

the measures of these neurophysiological processes with the healthy controls or other 

diseased controls such as post-polio syndrome or multiple sclerosis, it is possible to identify 

biomarkers that can identify neuropathophysiologies that are specific to ALS. Moreover, if 

these neurophysiological process measures correlate with clinical impairments in ALS or 

change over time, it becomes possible to identify biomarkers sensitive to the progression 

of the disease or treatment effects. Table 1.3 shows the types of biomarkers in ALS, their 

definition, and the current gold standards. 
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Table 1.3 Types of biomarkers in ALS, their definition, and current benchmarks. 

Biomarker Type Definition Current Gold Standards 

Diagnostic Guide the clinical diagnostic 

process of ALS at an early stage 

when signs are localized and subtle 

allowing for timely treatment and 

trial enrolment 

Neurological examinations, 

Revised El Escorial/Awaji 

criteria, Electromyography 

Prognostic Identify patterns of progression and 

stratify ALS patients for better trial 

design by broadly distinguishing 

between ALS sub-groups 

Neurological evaluation, 

Revised ALSFRS scores 

Pharmacodynamic Ensure that an experimental drug is 

having the desired effect on the pre-

clinically identified therapeutic 

pathway and curtail ineffective 

therapeutic interventions at an early 

stage 

Revised ALSFRS scores 

1.2.2 Properties of an Ideal Biomarker Candidate for ALS 

An ideal biomarker candidate for ALS should have the following properties (Lesko and 

Atkinson, 2001). 

a. Clinical Relevance: Ability to reflect measures of, or change in, 

pathophysiological process by showing association with the clinically relevant 

measures such as disease duration, or clinically measured scores (ALSFRS-R, 

UMN/LMN scores).    

b. Specificity and sensitivity: Ability to identify ALS specific impairments and 

discriminate it from healthy people or mimicking conditions. Detect smaller 

changes in disease processes to effectively track disease progression or response to 

therapeutic interventions. 
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c. Reliability: Ability to reflect measure of, or change in, a pathophysiological 

process with acceptable accuracy, precision, robustness, and reproducibility. 

d. Practicality: Should be non-invasive or minimally invasive to avoid inconvenience 

and discomfort to healthy controls or ALS patients.  

e. Simplicity: Should be cost effective, suitable for routine utilisation without 

extensive time requirement, and have wider acceptance. 

1.2.3 Neurophysiological Biomarkers of ALS 

The diagnostic utility of neurophysiological biomarkers for diagnosis of ALS has been 

underlined in both the El Escorial revisited criteria (Brooks et al., 2000) and the Gold Coast 

criteria (Shefner et al., 2020). Quantitative neurophysiological approaches such as motor 

unit number estimate/index (MUNE/MUNIX) (Bromberg and Brownell, 2008, Gooch et 

al., 2014, McComas et al., 1971, Nandedkar et al., 2004), electromyography (EMG) (Joyce 

and Carter, 2013, de Carvalho et al., 2008), neurophysiological index (NI) (Swash and de 

Carvalho, 2004), transcranial magnetic stimulation (TMS) (Huynh et al., 2019, Vucic and 

Kiernan, 2017), and spectral electroencephalogram (EEG) have potential as biomarkers of 

LMN/UMN degeneration. About 40% of clinical interventional trials in ALS using the 

aforementioned neurophysiological measures as primary or secondary endpoint reported a 

positive outcome with respect to at least one neurophysiological measure (Ahmed et al., 

2022).  

MUNE/MUNIX, NI, and EMG biomarkers are widely used to identify LMN dysfunction 

in individuals after they are clinically suspected of ALS and also for excluding mimicking 

neurological disorders. However, these biomarkers alone cannot diagnose ALS without 

clinical support (Wijesekera and Leigh, 2009). MUNE/MUNIX has shown potential to 

quantify motor neuronal loss in ALS and track disease progression with high sensitivity 
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and reproducibility (Fukada et al., 2016, Jacobsen et al., 2019). Similarly, NI has been 

validated as a clinical meaningful measure for ALS prognosis with high sensitivity, 

favourable reproducibility, and low intraindividual variability (Swash and de Carvalho, 

2004, Cheah et al., 2011).         

Cortical hyperexcitability, which is a pathogenic and distinguishing feature of UMN 

degeneration in ALS, can be detected by using threshold-tracking paired pulse TMS in 

terms of reduced short-interval intracortical inhibition (SICI) and increased motor evoked 

potentials (MEP) (Vucic et al., 2011, Menon et al., 2020) or by using resting-state spectral 

EEG in terms of increased functional connectivity between the frontal-parietal cortical 

regions and bilateral motor regions (Iyer et al., 2015, Nasseroleslami et al., 2017, Dukic et 

al., 2019). EEG-based biomarkers of network degeneration can identify novel patient 

populations (Al-Chalabi et al., 2016), with indications of what brain networks should be 

targeted for therapeutic treatment. There is increasing evidence that TMS based biomarkers 

have potential to identify UMN dysfunction in ALS, even before UMN clinical symptoms 

arise, and to distinguish ALS from mimic disorders (Huynh et al., 2019, Vucic and Kiernan, 

2017). However, TMS biomarkers are still in the research phase and need validation from 

more studies before they can be used as biomarkers of UMN dysfunction in ALS in clinical 

settings. 

1.3 Thesis Outline  

This thesis is organised as a 9-chapter document. This 1st chapter introduced about ALS 

and its various aspects such as epidemiology, genetics, phenotypes, multi-systemic nature, 

diagnosis, prognosis, and existing neurophysiological biomarkers. The 2nd chapter “Aims 

and Objectives” lists the aims and objectives of the research. The 3rd chapter “Literature 

Review” details the existing literatures about brain networks in ALS and the 
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neurophysiological underpinnings of the materials and methods used in this study. The 4th 

chapter is “Materials and Methods” which explains the equipment, experimental 

paradigms, and mathematical/statistical methods and tools used in the study and the 

rationale behind it. The 5th, 6th, 7th, and 8th chapters contain the results from the four 

different studies highlighting a different aspect of the research methodologically including 

introduction, methods, results, discussion, conclusion, and limitations. The 9th chapter is 

the overall discussions and conclusion of the research. Chapter 9 is followed by the list of 

the references used in this thesis which is followed by the additional materials used in the 

study as appendices. 

  



   

 

 24 

2. Aims and Objectives 

2.1 Aims 

The primary aim of my PhD research was to utilize high-density EEG and surface EMG, 

known for their non-invasive electrophysiological properties in characterizing and 

measuring ALS pathology, to address the urgent need for more economical, accurate, and 

objective ALS biomarkers. EEG Functional/Effective connectivity and Corticomuscular 

coherence (CMC) served as the key measures, with the primary hypothesis being that these 

network connectivity measures could provide insights into specific alterations in the brain’s 

motor networks, both within and beyond the primary sensorimotor cortex in ALS. By using 

these methods, I aimed to enhance our understanding of both motor and non-motor network 

pathology in ALS and explore their potential application in the development of prognostic 

and diagnostic ALS biomarkers. More specifically, I aimed to determine the following— 

1. To characterize and measure the dysfunction in cortical networks in ALS during 

planning and execution of voluntary tasks. 

2. To detect reduced or enhanced cortex-muscle synchrony in ALS using CMC. 

3. To define reliable neurophysiological biomarkers of the integrity of cortical and 

spinal networks in ALS and to validate them against clinical scores, specifically 

ALSFRS-R.   

2.2 Objectives 

The objective of this research was to provide quantitative data that could support the 

identification of network-specific diagnostic and prognostic biomarkers in clinical settings. 

To achieve this, I conducted neuro-electrophysiological recordings, specifically high-

density EEG, and surface EMG, along with neural signal analysis to examine the spectral 

characteristics and synchrony of the neuro-electric signals. The poorly understood 
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mechanism of network-based propagation in ALS has encouraged me to set the following 

objectives for this research— 

2.2.1 Develop and validate a new method for the calculation of functional connectivity 

(coherence) between neuro-electric signals. 

The rationale for developing a new method for the calculation of functional connectivity 

(coherence) is to harness the robustness of the non-parametric (median based)  functional 

connectivity measure against artefacts (Dukic et al., 2017) and represent the collective 

connectivity strength with a single value over the range of frequencies within each distinct 

neurophysiological frequency band. More importantly, the new method utilises non-

parametric rank statistics for coherence (Nasseroleslami et al., 2019) which presents 

connectivity strengths as p-values so there is no need for  separate significance testing 

(close form solution or non-parametric bootstrapping) as required by other existing 

connectivity measures. Additionally, the new method is robust against the bias introduced 

by the number of epochs (L) used to estimate functional connectivity (Nasseroleslami et 

al., 2019).  

We hypothesised that the new method of estimating functional connectivity provides 

stronger detection of network connectivity with a singular value for a frequency band, 

reducing the effect of volume conduction and be useful to identify abnormal network 

connections in patient groups. 

2.2.2 Compare pre-motor stage and motor execution functional connectivity between 

an ALS cohort and age-matched healthy controls. 

Functional connectivity of brain networks have the potential to detect and quantify disease 

specific adaptive and compensatory patterns of network activity. Prior to this study, the 

functional connectivity differences between ALS and age-matched controls during rest has 
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been investigated by our group reporting abnormal sensorimotor networks in ALS (Dukic 

et al., 2019). However, motor paradigms, such as pre-motor (motor planning) and motor 

execution that can directly access sensorimotor pathways, might be needed to unravel the 

dynamics of motor network pathology in ALS for better biomarker design.  Therefore, 

understanding the impairment in functional motor networks is important to understand 

disease pathology because the motor region is predominantly affected by the 

neurodegeneration in ALS. 

The involvement of cortical regions such as premotor cortex (PM) and supplementary 

motor area (SMA), which are largely associated with pre-movement or pre-motor activity 

(Churchland et al., 2006, Li et al., 2015, Shibasaki and Hallett, 2006, Glover et al., 2012), 

during motor execution indicates an alternative strategy for optimizing motor performance 

in ALS (Konrad et al., 2002). However, the alternative strategy or compensatory 

mechanism during pre-motor stage in ALS, which is impaired as reported by event related 

potential (ERP) studies (Thorns et al., 2010, Westphal et al., 1998), is unclear. So, we 

hypothesized that understanding the EEG network topology in ALS during pre-motor stage 

and motor execution could offer new insights for understanding motor network dysfunction 

that can be useful for biomarker development.  

2.2.3 Compare effective connectivity and graph-based causal network parameters 

during motor planning and motor execution between an ALS cohort and age-matched 

healthy controls. 

Effective connectivity refers to the directional influence and information flow between 

different brain regions, while graph-based causal network parameters such as inflow and 

outflow provide insights into the causal interactions within the brain networks. The 

rationale for comparing effective connectivity and graph-based causal network parameters 
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during motor planning and motor execution between an ALS cohort and age-matched 

healthy controls is to elucidate the dynamics of information processing and integration in 

sensorimotor neural circuits which may help shed light on the underlying 

pathophysiological mechanisms of ALS.   

We hypothesize that individuals with ALS will exhibit altered effective connectivity and 

graph-based causal network parameters during both motor planning and motor execution 

compared to age-matched healthy controls. Specifically, we expect to observe disruptions 

in the directional information flow and graph-based measures within the motor networks 

of ALS cohort, indicating impaired neural communication and coordination during motor 

tasks. These alterations in effective connectivity and graph-based network parameters are 

likely to contribute to the motor deficits observed in ALS and may serve as potential 

neurophysiological biomarkers for the disease. 

2.2.4 Compare the connections that links brain to muscles using Corticomuscular 

coherence (CMC) between an ALS cohort and age-matched healthy controls. 

Studies have shown that beta CMC can provide valuable insights into the pathophysiology 

of ALS, as well as potential biomarkers for diagnosis and disease progression (Issa et al., 

2017, Proudfoot et al., 2018b). Despite its potential as a biomarker for neurodegenerative 

diseases, CMC analysis is still premature, and there is much that remains to be understood 

about its correlation with ALS pathophysiology. Our recent sensor-level CMC studies on 

patient with lower motor neuron dysfunction such as post-polio syndrome (Coffey et al., 

2021) and patients with upper motor neuron dysfunction, such as PLS (Bista et al., 2023), 

exhibit abnormal patterns of brain activity in frontal, parietal and  non-dominant primary 

motor cortex (M1) including and beyond  the beta band during voluntary movement. ALS 

being the disease where both upper and lower motor neurons are affected, we, therefore, 
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hypothesized that, impaired CMC could be detected beyond the beta frequency band and 

dominant M1 in ALS and CMC could be a tool to reveal multiple aspects of motor network 

dysfunction (such as motor planning, sensorimotor integration, and visuomotor integration) 

in ALS. 
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3. Literature Review 

3.1 Structural Connectivity 

Structural connectivity pertains to the way the brain is anatomically organized through fibre 

tracts. Recent developments in magnetic resonance imaging (MRI) and image processing 

have introduced several non-invasive methods for quantifying structural connectivity. 

These techniques utilize short-range local measures and long-range tract tracing 

procedures, known as diffusion tractography (Babaeeghazvini et al., 2021). Understanding 

the underlying structural connectivity alterations in ALS can help unravel the disease’s 

pathophysiology and identifying potential therapeutic targets. Structural connectivity helps 

to uncover the specific white matter tracts and brain regions affected by neurodegeneration, 

elucidating how the disease spreads and progresses over time. This section aims to provide 

an overview of the current knowledge regarding structural connectivity changes in ALS, 

highlighting the techniques used to assess these alterations, their clinical implications, and 

their limitations. 

3.1.1 Quantitative Techniques for Assessing Structural Connectivity 

The assessment of structural changes of brain networks in ALS using conventional clinical 

magnetic resonance imaging (MRI) is challenging (Zhang et al., 2003, Renga, 2022). 

Therefore, research studies rely on quantitative techniques such as diffusion tensor imaging 

(DTI) (Baek et al., 2020, Behler et al., 2023), cortical thickness mapping (Agosta et al., 

2012, Ferrea et al., 2021, Dieckmann et al., 2022), or MRI spectroscopy (Kalra, 2019, 

Caldwell and Rothman, 2021) which can provide clinically relevant quantitative measures 

of structural network impairment in ALS. The most commonly used quantitative 

neuroimaging techniques and measures to access structural connectivity in ALS are 

explained in this section. 
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2.1.1.1 Diffusion Tensor Imaging (DTI) 

DTI is the most popular technique for structural connectivity analysis in ALS. DTI is 

primarily used to assess microstructural brain changes by examining water molecule 

motility within tissue and relies on determining the orientation and diffusion characteristics 

of white matter (Acosta-Cabronero et al., 2010). Recent improvements in DTI resolution 

allow for the identification of pathology-specific details, such as changes in axons and 

myelin in brain white matter (Zeineh et al., 2012). Various DTI parameters derived from 

raw DTI data, such as fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity 

(RD) and mean diffusivity (MD), capture different pathological changes in ALS (Baek et 

al., 2020). Among them, FA is the most used DTI parameter, offering insights into the 

number and size of axon fibres and the density of crossing fibres (Roberts et al., 2013). In 

ALS, DTI studies have shown reductions in FA in both motor and extra-motor regions 

(Müller et al., 2016, Andica et al., 2020), with FA proving to be a sensitive and specific 

metric (biomarker) for diagnosis (Baek et al., 2020, Tahedl et al., 2021) and disease 

progression (Kassubek et al., 2018, Menke et al., 2018).  

Despite its widespread application in various clinical conditions (Tae et al., 2018, Baek et 

al., 2020, Oishi et al., 2011), the semiquantitative nature of DTI data analysis poses a 

significant limitation (Oishi et al., 2011, Tae et al., 2018) because DTI parameters are 

influenced by scanner acquisition parameters such as voxel size, signal-to-noise ratio, 

gradient strength and echo time. Additionally, DTI is sensitive to noise and artifacts, which 

can affect the accuracy of diffusion measurements and subsequent tractography especially 

when studying small or subtle changes in white matter integrity (Jones and Cercignani, 

2010). 
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3.1.1.2 Cortical Thickness Mapping 

Cortical thickness mapping is a neuroimaging technique that utilizes structural MRI scans 

to measure the thickness of the cerebral cortex, enabling detection of changes in cortical 

thickness and identification of potential diagnostic markers in neurodegenerative and 

psychiatric disorders (Fischl and Dale, 2000). Cortical thickness studies have reported 

cortical thinning of motor and extra-motor cortices in ALS compared to healthy controls 

(Chen et al., 2018, Verstraete et al., 2012). The thinning of primary motor cortex or 

precentral gyrus was dominant in ALS with clinical UMN involvement (Walhout et al., 

2015) and correlated to the speed of disease progression i.e., patient with faster disease 

progression experienced a more severe M1 thinning (Agosta et al., 2012). A distinct 

trajectory of cortical thinning at right fronto-temporal insular cortex was reported by 

Consonni et al. (2020) in relation to King’s clinical disease stages suggesting a distinct 

pattern of spread of neurodegeneration in ALS. Similarly, a multimodal longitudinal study 

of structural brain involvement in ALS, with cortical thickness and other measures, 

reported distinct patterns of cerebral degeneration based on phenotype 

and C9orf72 genotype (van der Burgh et al., 2020). The cortical thickness of precentral 

gyrus and temporal lobe, which showed significant cortical thinning, has been used to 

distinguish ALS from healthy controls and UMN/LMN ALS phenotypes resulting in an 

accuracy of 94% and 75%, respectively (Ferrea et al., 2021). Cortical thickness has also 

been used as a feature and was shown to have higher contribution within  multimodal 

machine learning models to improve diagnostic accuracy of ALS compared to disease 

controls (non-ALS neurodegenerative diagnosis) and healthy controls (Bede et al., 2022, 

Wirth et al., 2018, Pisharady et al., 2023).  
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3.1.1.3 Magnetic Resonance Spectroscopy (MRS) 

Magnetic Resonance Spectroscopy (MRS) is a non-invasive neuroimaging technique used 

to analyse the neurochemical composition of brain tissues (Radda et al., 1989). It offers 

insights into neurotransmitters such as glutamate/GABA and metabolites such as N-

acetylaspartate (NAA), providing valuable information on neurochemical changes 

associated with the ALS (Caldwell and Rothman, 2021). Glutamate excitotoxicity is 

increasingly believed to be a key mechanism implicated in the pathogenesis of ALS (Van 

Den Bosch et al., 2006, King et al., 2016), however, some believe that the elevated level of 

extracellular glutamate is beneficial to ALS (Schiel, 2021). MRS studies in ALS have 

revealed decreased NAA, reflecting neuronal loss or dysfunction in motor cortex (Foerster 

et al., 2013, Atassi et al., 2017) and corticospinal tracts (Stagg et al., 2013), as well as a 

reduced level of inhibitory neurotransmitter GABA in motor cortex (Foerster et al., 2013, 

Foerster et al., 2012a). The levels of change in excitatory neurotransmitters such as 

glutamate (Glu) in the motor cortex of ALS patients have been reported rather 

inconsistently by MRS studies. For example, Atassi et al. (2017) reported decreased levels 

of Glu in the precentral gyrus of people with ALS compared to healthy controls. On the 

other hand, Han and Ma (2010) reported increased levels of Glu and Foerster et al. (2013) 

reported normal levels of Glu in the motor cortex of ALS compared to healthy controls. 

Although, there is some inconsistencies about the level of Glu in ALS, majority of the MRS 

studies has reported increased neuronal Glu level (Caldwell and Rothman, 2021) 

supporting the hypothesis of Glu excitotoxicity in ALS. These neurochemical changes 

identified by MRS hold promise as biomarkers for early diagnosis, monitoring disease 

progression, and assessing treatment effects in ALS (Kalra, 2019). While MRS has 

limitations of low temporal and spatial resolution (Serkova and Brown, 2012), it remains a 
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valuable tool for understanding the neurobiology of ALS and has potential as a research 

and diagnostic tool (Caldwell and Rothman, 2021). 

3.1.2 White Matter Alterations in ALS 

White matter abnormality has been widely documented in ALS. Studies using DTI have 

consistently reported reduced fractional anisotropy (FA) and increased mean diffusivity 

(MD) compared to healthy controls indicating disrupted white matter integrity in various 

regions, including the corticospinal tract, corpus callosum, frontal regions, brainstem and 

hippocampal regions (Baek et al., 2020, Müller et al., 2016, Li et al., 2012). The 

corticospinal tract, which is crucial for motor function, demonstrates pronounced white 

matter alterations, likely contributing to the motor impairments observed in ALS (Müller 

et al., 2016, Sarica et al., 2014, Metwalli et al., 2010). A multi-centre longitudinal study 

has reported decline in white matter integrity in corticospinal tract over time in ALS 

patients compared to healthy controls (Kalra et al., 2020). Additionally, alterations in the 

corpus callosum, a major white matter pathway connecting the two cerebral hemispheres, 

have been reported in ALS patients compared to healthy controls and may be linked to the 

spread of pathological changes between brain regions (Sage et al., 2009, Bede et al., 

2013b). Moreover, white matter alterations have also been observed in frontotemporal 

pathways (Agosta et al., 2017, Bede et al., 2013b) in ALS with C9orf72 genotype compared 

to C9orf72-negative reflecting the overlap between ALS and frontotemporal dementia 

(FTD). Furthermore, the correlation between white matter changes and clinical measures 

of disease severity and progression reinforces the clinical relevance of these neuroimaging 

findings (Kalra et al., 2020). White matter alterations have been linked to motor functions 

(Thivard et al., 2007, Sage et al., 2009, Agosta et al., 2010a), cognitive and behavioural 

measures (Agosta et al., 2016) and survival rates (Schuster et al., 2017, Agosta et al., 2010a) 
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in ALS patients, suggesting their potential as biomarkers for the diagnostic pathway and 

the prognostic stratification of patients (Agosta et al., 2016).  

3.1.3 Network-Level Connectivity Alterations 

ALS affects multiple brain regions including motor and extra-motor regions structurally 

(Baek et al., 2020), therefore, studying structural connectivity alterations in ALS can 

provide insights into the disease’s overall effects. This section focuses on network-based 

approaches, such as graph theory analysis, to understand the alterations in structural 

connectivity networks in ALS. Connectomics, a field based on graph theory, provides a 

valuable tool for analysing the organization of cerebral networks and understanding the 

relationships between brain regions (Sporns et al., 2005). Graph analysis and connectomics 

involve representing brain regions as nodes connected by edges representing structural 

connections, with cortical and subcortical brain regions represented as nodes and white 

matter tracts between them represented as the edges. The human connectome exhibits non-

random features, including highly connected regions known as hubs (Achard et al., 2006). 

These hubs play a crucial role in integrative processing and adaptive behaviours and are 

vulnerable to neurodegeneration (van den Heuvel et al., 2013, Proudfoot et al., 2019). 

While many brain disorders, such as brain injury (Warren et al., 2014), Parkinson’s disease 

(Baggio et al., 2014), FTD (Agosta et al., 2013), Alzheimer’s disease (Dai et al., 2014) or 

schizophrenia (Shi et al., 2012, Rubinov and Bullmore, 2013) exhibit a hub-centred pattern, 

this finding is not evident in ALS connectivity studies (Fortanier et al., 2019, Crossley et 

al., 2014). In terms of global network parameters such as global efficiency and clustering 

coefficients, the white matter structural network studies have reported inconsistent 

findings. For example, Dimond et al. (2017) reported preserved global efficiency, while 

Buchanan et al. (2015) reported no significant difference in clustering coefficient and 
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global efficiency in ALS compared to healthy controls. On the other hand, Fortanier et al. 

(2019) reported significant decreased global efficiency and Li et al. (2021) reported 

significant decreased clustering coefficient in ALS compared to healthy controls. In terms 

of brain regions (nodes) in the structural network, studies have reported impairment in both 

motor (Verstraete et al., 2011, Verstraete et al., 2014, Li et al., 2021) and extra-motor 

regions (Buchanan et al., 2015, Dimond et al., 2017, Li et al., 2021). Until now, there have 

been limited longitudinal studies focusing on how ALS affects the structural brain network 

over time. Previously, a study by Verstraete et al. (2014) revealed an increasing loss of 

network structures after six months, with a key involvement of the primary motor regions. 

The loss of structural connectivity extended to frontal and parietal regions, indicating that 

the disease may spread through motor neuron networks, starting in specific regions of the 

brain or spinal cord and gradually affecting neighbouring neurons (Bede et al., 2013a, 

Brettschneider et al., 2013). Recently, a longitudinal study has reported loss of white matter 

integrity over time in regions connected to the motor cortex  in a subgroup of ALS with 

short disease duration (<10 months)(Burgh et al., 2020) .   

3.1.4 Clinical Implications 

The study of structural connectivity changes in ALS has significantly advanced our 

understanding of the pathophysiology and underlying mechanisms of progressive 

neurodegeneration in ALS and has indicated  potential biomarkers for diagnosis, disease 

stratification, and monitoring disease progression (Baek et al., 2020, Kalra, 2019, Agosta 

et al., 2016). However, the main challenge lies in integrating these biomarkers into clinical 

trials as study endpoints and clinical practice. So far, results have been promising but highly 

variable due to small sample sizes, suboptimal patient characterization, and lack of 

standardization in schemes and analysis procedures (Menke et al., 2017). Although, the FA 
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changes in corticospinal tract have consistently been reported by the DTI studies, their 

ability to differentiate patients from healthy controls is not promising (pooled sensitivity 

65%) as reported by a meta-analysis of 30 studies (Foerster et al., 2012b). However, a 

diagnostic accuracy as high as 80% has been reported by studies using ALS vs healthy 

controls machine learning models and white matter diffusivity measures (Sarica et al., 

2017, Bede et al., 2022). Additionally, a few multi-centre studies have shown that using a 

harmonized imaging protocol across multiple sites and pooling data together could be the 

way going forward for having a clinically useful biomarker for therapeutic outcome (Müller 

et al., 2016, Kalra et al., 2020). Therefore, using machine learning models on multimodal 

imaging data from multiple sites could pave the way for finding novel biomarkers for 

diagnosis, disease stratification, and monitoring disease progression.  

3.2 Functional Connectivity 

The study of functional brain connectivity is crucial in ALS, despite promising results from 

studies of structural connectivity. ALS is a complex neurodegenerative disease with both 

structural and functional brain impairments (Basaia et al., 2020). While structural 

connectivity studies provide insights into the anatomical connections between brain 

regions, functional connectivity highlights the interactions and communication between 

these regions during different tasks and states (Lang et al., 2012). Functional connectivity 

measures, such as resting-state functional magnetic resonance imaging (fMRI) or resting-

state electroencephalogram (EEG), have shown promise in identifying specific patterns of 

brain activity that correlate with ALS progression and clinical features (Dukic et al., 2019, 

Bharti et al., 2022). These functional network biomarkers have the potential to serve as 

valuable indicators of disease at the early symptomatic phase (Govaarts et al., 2022), of 

disease severity (Sorrentino et al., 2018), disease progression (Castelnovo et al., 2020), 
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phenotyping (Dukic et al., 2021), and response to treatment (Wei et al., 2022a). Early 

detection of functional disruptions may enable early diagnosis and intervention, leading to 

improved patient outcomes, and monitoring functional changes over time can provide 

insights into disease progression and treatment efficacy. The following section describes 

the tools and techniques for accessing functional connectivity of the brain in health or in 

disease. 

3.2.1 Techniques for Assessing Functional Connectivity 

3.2.1.1 Functional Magnetic Resonance Imaging (fMRI) 

Functional Magnetic Resonance Imaging (fMRI) is a non-invasive neuroimaging technique 

that relies on the blood oxygen level-dependent (BOLD) signal, which reflects changes in 

blood flow and oxygenation related to neural activity (Ogawa et al., 1990). By measuring 

changes in BOLD signal, fMRI can identify brain regions that are functionally connected 

and communicate with each other during specific tasks or at rest (Biswal et al., 1995, Fox 

and Raichle, 2007). Resting-state fMRI (rs-fMRI) captures the brain’s spontaneous BOLD 

signal fluctuations while participants are at rest, revealing functionally connected brain 

regions without the need for specific tasks (Fox and Raichle, 2007). Task-based fMRI 

involves measuring BOLD signal changes during specific cognitive, motor, or sensory 

tasks to identify task-specific functional networks (Biswal et al., 1995). Seed-based 

correlation is a commonly used method in fMRI to analyse functional connectivity, where 

a seed region’s BOLD signal is correlated with other brain regions to identify connected 

networks (Glover, 2011). Independent Component Analysis (ICA) (Wei et al., 2022b) and 

graph theory analysis (Medaglia, 2017) are also employed to study functional connectivity, 

providing insights into the spatial patterns of coherent BOLD activity. fMRI has 

significantly advanced our understanding of functional connectivity in various neurological 
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disorders, including ALS, facilitating investigations into disease-related alterations in 

functional brain networks and their implications for cognitive and motor functions (Du et 

al., 2018, Filippi et al., 2019). 

3.2.1.2 Magnetoencephalogram (MEG) 

Magnetoencephalography (MEG) is a non-invasive neuroimaging technique that measures 

the magnetic fields generated by electrical activity of neurons using highly sensitive sensors 

called magnetometers placed outside the skull (Cohen, 1972). The magnetic fields 

generated by electric currents in the brain is extremely small, in the range of femto-tesla to 

pico-tesla, which requires highly sensitive magnetic field meters such as superconducting 

quantum interference devices (SQUIDS) (Hämäläinen et al., 1993). Therefore, MEG is 

recorded in a magnetically shielded room to attenuate the external magnetic noise. The 

sensor level MEG signals are converted into source level signals using source localisation 

techniques which overcome the effect of field spread (Schoffelen and Gross, 2009). The 

functional connectivity between different brain regions using MEG is commonly assessed 

through coherence analysis, which measures the neuronal amplitude or phase synchrony 

between the brain regions (Gross et al., 2001). Other methods such the imaginary part of 

coherence (iCOH) (Brookes et al., 2011), the phase lag index (PLI) (Stam et al., 2007), and 

the weighted phase lag index (wPLI) (Vinck et al., 2011) are also used to evaluate 

functional brain networks using MEG. MEG has been used to investigate functional 

connectivity in healthy individuals and various neurodegenerative disorders such as 

Alzheimer’s disease (Schoonhoven et al., 2022, Stam et al., 2008) or motor neurone disease 

(Proudfoot et al., 2018a, Sorrentino et al., 2018), offering insights into pathological brain 

networks. 
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3.2.1.3 Electroencephalogram (EEG) 

Electroencephalography (EEG) is a low-cost non-invasive technique which is pivotal for 

unravelling real-time functional brain connectivity, with recent advancements in high 

density montage (up to 256 channels) and source reconstruction techniques enhancing its 

spatial resolution (Burle et al., 2015). EEG captures neuronal electrical activity at the scalp, 

providing insights into the functional interactions among brain regions during rest (Dukic 

et al., 2019), cognitive (McMackin et al., 2021), or motor tasks (Coffey et al., 2021). Source 

reconstruction techniques (Kaur et al., 2022) enable the estimation of the neural sources 

underlying the observed scalp EEG signals, significantly minimizing the effect of volume 

conduction, increasing spatial resolution, and revealing the specific brain regions engaged 

in functional networks. Functional connectivity analysis using EEG involves assessing 

temporal correlations or synchronization patterns between EEG or between EEG and 

muscle signals (EMG) at sensor or source level. Methods like coherence, phase 

synchronization, and mutual information can quantify connection strength, offering 

insights into EEG functional connectivity (Cao et al., 2022). In the study of 

neurodegenerative conditions like ALS, EEG-based functional connectivity analysis can 

reveal disease effects on brain network integrity (Dukic et al., 2019), assisting early 

diagnosis (Iyer et al., 2015), tracking disease progression (Nasseroleslami et al., 2017), and 

phenotyping based on neurophysiological signatures (Dukic et al., 2021). 

3.2.1.4 Surface Electromyogram (sEMG) 

Surface electromyography (sEMG) serves as a valuable non-invasive technique for 

investigating functional connectivity, especially in the context of voluntary motor tasks in 

the realm of motor control. sEMG records electrical activity during muscle contractions, 

offering insights into coordinated muscle actions and the neural pathways underlying motor 
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tasks. sEMG is recorded with surface electrodes strategically positioned on skin regions 

directly above the targeted muscle tissue being assessed. Through simultaneous recording 

of sEMG signals from multiple muscles and EEG/MEG signals from the brain during 

voluntary movements, techniques like coherence analysis can reveal functional 

connectivity between the muscle groups (Weersink et al., 2021) or between brain and 

muscles (Roeder et al., 2020). In the study of neurodegenerative disorders such as 

ALS/PLS, sEMG-based functional connectivity analysis such as intermuscular coherence 

(IMC) has provided insights into how UMN involvement impacts muscle synchronization 

(Issa et al., 2017, Fisher et al., 2012). Additionally, sEMG-EEG/MEG functional 

connectivity analysis such as Corticomuscular coherence (CMC) has provided insights into 

the involvement of extra-motor regions and dysfunctional corticospinal tract in ALS 

(Proudfoot et al., 2018b) and PLS (Bista et al., 2023). Despite being susceptible to noise 

such as cross talk, electrical and mechanical artefacts (Türker, 1993), sEMG-based 

analysis, when combined with other modalities such as EEG or MEG, can contribute to a 

comprehensive understanding of neural mechanisms of motor control in healthy people or 

in people with movement disorders (Liu et al., 2019). 

3.2.1.5 Positron Emission Tomography (PET) 

Positron Emission Tomography (PET) is a non-invasive neuroimaging technique that 

primarily focuses on measuring cerebral blood flow, glucose metabolism, and 

neurotransmitter receptor binding, providing insights into brain functions (Berger, 2003). 

While PET is commonly used for assessing regional brain activity based on local change 

in blood flow (Raichle, 1998), recent studies have explored its potential to offer insights 

into functional connectivity among different brain regions (Watabe and Hatazawa, 2019). 

PET studies employing resting-state paradigms have identified correlated regional brain 



   

 

 41 

activities referred to as default mode network (DMN) (Raichle et al., 2001), which is 

equivalent to resting-state functional networks observed in techniques like fMRI (Greicius 

et al., 2003), indicating synchronized intrinsic activity during rest (Raichle and Mintun, 

2006). Additionally, PET has been used to study glucose metabolic connectivity, 

examining how metabolic activity in one region correlates with others, revealing potential 

functional connections between those regions (Passow et al., 2015). Furthermore, PET has 

been used to study specific neurotransmitter systems such as Glutamate (DeLorenzo et al., 

2015) or GABA (Stokes et al., 2014) indirectly providing information about connectivity 

among regions involved in those pathways. In case of neurodegenerative diseases such as 

ALS, PET studies have reported glucose hypometabolism in sensorimotor cortices 

(Hatazawa et al., 1988), bilateral frontal lobes (Jeong et al., 2005), and thalamus (Cistaro 

et al., 2014) and hypermetabolism in brainstem (Liao et al., 2020), and cerebellum (Liao et 

al., 2020) compared to healthy controls suggesting its potential for clinical utility as 

diagnostic biomarker (Agosta et al., 2018). For a detailed review of PET in ALS, see the 

review by Chew and Atassi (2019). However, it is important to consider the limitations of 

PET, including lower temporal resolution compared to techniques like fMRI, and 

constraints related to radioactive tracers and radiation exposure (Sander and Hesse, 2017).  

3.2.1.6 Functional Near-Infrared Spectroscopy (fNIRS) 

Functional near-infrared spectroscopy (fNIRS) is a non-invasive neuroimaging technique 

that measures changes in the concentration of oxygenated, deoxygenated, and total 

haemoglobin using pairs of light sources and detectors on the scalp, reflecting functional 

interaction between different brain regions during rest or task (Villringer et al., 1994). 

Resting-state fNIRS studies have been used to study functional brain reorganisation during 

recovery from stroke (Arun et al., 2020), to evaluate the degree of damage to executive 



   

 

 42 

function in people with neurocognitive disorder after traumatic brain injury (Chang et al., 

2022), to understand typical and atypical development of functional brain networks and 

topological organization from neonates to children (Hu et al., 2020), or access the 

involvement of non-motor areas in ALS (Borgheai et al., 2019). Similarly, fNIRS has been 

used in task paradigms to study neural correlates of motor control in healthy people 

(Koenraadt et al., 2014) and people recovering from hemiplegic stroke (Fujimoto et al., 

2014), or cognitive decline in people with ALS compared to healthy controls (Kuruvilla et 

al., 2013). While fNIRS has the advantage of being portable, less susceptible to motion 

artifacts than MEG or fMRI, and well-suited for various populations, it also has limitations 

such as its shallow penetration depth and sensitivity to superficial cortical regions (Pinti et 

al., 2020). Nevertheless, fNIRS remains a valuable technique for studying functional brain 

connectivity, providing a non-invasive and accessible window into the complex 

interactions between different brain areas in health and in disease (Ferrari and Quaresima, 

2012). 

3.2.2 Comparison of techniques used for assessing functional connectivity 

The properties of techniques used for assessment of functional brain networks are 

summarised in Table 2.1. Each of these techniques has its strengths and limitations and the 

choice of technique depends on the available resources and the balance between spatial and 

temporal resolution needed to address the specific scientific question related to functional 

connectivity. Having said that, EEG’s high temporal resolution, the availability of robust 

source localisation methods to improve spatial resolution, its ability to measure neural 

activity directly in real time, its non-invasiveness, affordability, and suitability for various 

research settings during rest or tasks make it a valuable and frequently used technique for 

studying functional connectivity in neurodegenerative disease such as ALS. 
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Table 3.1 Comparison of imaging techniques used for assessing functional 

connectivity. Summarized from Sadaghiani et al. (2022). 

Imaging 

Modality 

Cost Spatial Resolution Temporal 

Resolution 

SNR Operational 

Complexity 

fMRI High Good (1-2 mm) Moderate (2-3 s) High Complex 

MEG High Moderate (2-3 cm) Excellent (ms) High Complex 

EEG Low Moderate (2-3 cm) Excellent (ms) Low to Moderate Low 

sEMG Low Excellent (mm) Excellent (ms) High Low 

PET High Moderate (4-6 mm) Poor (20-40 s) Moderate to High Complex 

fNIRS Low Moderate (cm) Good (ms) Moderate Low 

Abbreviations: MEG, magnetoencephalography; fMRI, functional magnetic resonance 

imaging; EEG, electroencephalography; sEMG, surface electromyography; PET, positron 

emission tomography; fNIRS, functional near-infrared spectroscopy; SNR, signal-to-noise 

ratio 

3.2.3 Methods for Accessing Functional Connectivity 

3.2.3.1 Correlation Analysis 

This is a simple statistical method of estimating functional connectivity between brain 

regions most common with fMRI data. Pairwise correlations are computed between the 

time series of different brain regions, or a ‘seed’ region is chosen as a point of interest, and 

the correlation between the time series of this seed region and the time series of other brain 

regions is calculated. A significant correlation between two time series indicates that those 

brain regions are functionally connected. The most common measure used is Pearson 

correlation coefficient, which measures the linear relationship between two time series. 

Other correlation measures like Spearman’s rank correlation or Kendall’s tau are also used, 

especially when the data are non-normally distributed. Studies have shown that the 

functional connectivity estimated by non-parametric methods such as Spearman’s rank 
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correlation or Kendall’s tau are superior to Pearson correlation for differentiating disease 

from health (Ahmadi et al., 2023). For EEG/MEG data, functional coupling is also 

estimated by correlating amplitude envelop between two narrow-band time series referred 

to as amplitude envelop correlation (AEC) (Bruns et al., 2000). 

3.2.3.2 Magnitude Squared Coherence 

Magnitude squared coherence (MSC) is one of the most popular methods of estimating 

functional connectivity using EEG/MEG. It measures squared correlation coefficient in 

frequency domain that estimates relative amplitude and phase consistency between two 

signals (Bendat and Piersol, 2011). In practice, EEG/MEG coherence depends mostly on 

the consistency of phase differences between the channels (Nunez, 1995). High magnitude 

squared coherence between two EEG/MEG channels indicate that brain regions associated 

with those channels are functionally connected with each other. Although coherence is 

widely used method to assess functional connectivity in the brain using EEG/MEG, a 

significant limitation the method possess is the interference caused by volume conduction 

through the tissues that separate the brain sources and electrodes. This causes superfluous 

coherence between the nearby electrodes and overestimation of functional connectivity. 

However, this limitation can be partly overcome by using surface Laplacian filtering of the 

EEG/MEG channels (Bradshaw and Wikswo, 2001). The surface Laplacian technique 

isolates the source activity under each electrode that is distinct from the surrounding tissue 

under adjacent electrodes. Therefore, the coherence measured between electrodes that 

underwent surface Laplacian filtering can be directly related to coherence between the 

underlying sources, facilitating the interpretation of functional connectivity in the brain. 

However, surface Laplacian may remove genuine source coherence associated with widely 
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distributed source regions and very low spatial frequencies, leading to potential loss of 

important neural information (Nunez and Srinivasan, 2006). 

3.2.3.3 Imaginary Coherence 

Imaginary coherence (iCOH) is another popular method for the estimation of functional 

connectivity between neural signals recorded by EEG/MEG. Its popularity is based on the 

fact that it is robust to the effect of volume conduction and measures true phase synchrony 

between the neural signals disregarding the amplitude information (Nolte et al., 2004). 

Unlike magnitude squared coherence, which considers both phase and amplitude, 

imaginary coherence exclusively captures phase relationships, making it particularly 

suitable for studying the temporal coordination of neural oscillations. By focusing on the 

phase component of the signals, imaginary coherence can attenuate spurious coherence 

caused by volume conduction because volume conduction tends to preserve the amplitude 

of neural signals but not their phase relationships (Shahbazi et al., 2010).  

3.2.3.4 Phase Lag Index 

Phase lag index (PLI) is a measure that evaluates the asymmetry of distribution of 

instantaneous phase differences between two signals, thereby reflecting the strength of 

functional interconnection between the underlying brain regions (Stam et al., 2007). Just 

like imaginary coherence, PLI is motivated by the fact that non-zero phase differences 

cannot be caused by volume conduction. Several studies have demonstrated the 

effectiveness of PLI in mitigating the effects of volume conduction and have shown that it 

provides more accurate estimates of functional connectivity compared to imaginary 

coherence, particularly in the presence of volume conduction artifacts (Ruiz-Gómez et al., 

2019, Stam et al., 2007).  Vinck et al. (2011) has proposed some adjustments to the PLI, 

yielding the weighted PLI (wPLI) make the metric more robust against volume conduction, 
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and noise. wPLI modifies the PLI by weighting the contribution of observed phase leads 

and lags by the magnitude of the imaginary component of the cross-spectrum, making it 

sensitive to additional, uncorrelated noise sources and increasing its capacity to detect true 

changes in phase-synchronization. 

3.2.3.5 Independent Component Analysis 

Independent component analysis (ICA) is a powerful data-driven method for estimating 

functional connectivity (often using fMRI data). The fundamental concept of ICA involves 

decomposition of a time series into a set of distinct and interrelated time sequences to 

identify groups of voxels or areas that exhibit simultaneous fluctuations over time or 

activation across experiments (rest or task). Consequently, each component represents a 

network of regions demonstrating functional connectivity with one another (Eickhoff and 

Müller, 2015). 

3.2.3.6 Mutual Information 

The methods such as correlations, MSC, iCOH and PLI for measuring functional 

connectivity estimate a linear relationship between the neuronal sources. However, the 

communication between the neuronal sources is not always linear. To quantify nonlinear 

coupling between the brain source, information theory-based methods such as mutual 

information (MI) can be used (Ostwald and Bagshaw, 2011). This approach helps uncover 

both linear and nonlinear patterns of neural communication and can reveal underlying 

functional networks within the brain, contributing to better understanding of brain function 

and connectivity in health and in disease (Ince et al., 2017). 

3.2.4 Resting-state Functional Networks Impairments in ALS 

Resting state functional connectivity (FC) has been used to identify abnormal brain 

networks in ALS compared to healthy controls (Nasseroleslami et al., 2017, Dukic et al., 
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2019) and to monitor disease progression (Menke et al., 2018, Iyer et al., 2015). Reduced 

FC has been reported by fMRI (Trojsi et al., 2023, Avyarthana et al., 2023, Barry et al., 

2021, Zhou et al., 2014) and EEG (Dukic et al., 2019) studies within resting state 

sensorimotor networks (networks that include somatosensory regions and motor regions, 

specifically M1 and S1) in ALS, when compared to healthy individuals. This reduced FC 

of sensorimotor networks was correlated to high disease severity as indicated by lower 

ALSFRS-R scores (Zhou et al., 2014, Dukic et al., 2019). On the other hand, a higher 

resting state FC was observed within motor and non-motor areas (brain regions that are not 

primarily involved in the control and execution of voluntary movements, such as prefrontal 

cortex, temporal cortex, parietal cortex etc.) in ALS compared to healthy controls by fMRI 

(Deligani et al., 2020, Basaia et al., 2020, Zhou et al., 2014), EEG (Nasseroleslami et al., 

2017, Iyer et al., 2015) and MEG studies (Proudfoot et al., 2018a, Govaarts et al., 2022) 

and this increased cortical FC was subjected to altered intracortical inhibition resulting in 

cortical hyperexcitability in ALS compared to healthy controls (Proudfoot et al., 2018a, 

Iyer et al., 2015, Govaarts et al., 2022). Additionally, longitudinal studies using fMRI have 

shown decreased FC in the resting state sensorimotor network and increased FC in the left 

fronto-parietal network over time (Menke et al., 2018, Castelnovo et al., 2020). A fronto-

parietal network FC increase over time in ALS in the gamma band was also reported by an 

EEG study (Nasseroleslami et al., 2017). In terms of network topology from graph analysis 

of FC measures of M/EEG, the nodal strength was reduced in ALS compared to healthy 

controls in alpha (Romano et al., 2022) and beta (Fraschini et al., 2016) frequency bands. 

Moreover, resting state EEG FC networks have been used in phenotyping ALS in four sub-

groups based on distinct neurophysiological profiles such as impairment of sensorimotor, 

frontotemporal and frontoparietal networks (Dukic et al., 2021). 
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These findings collectively highlight altered FC patterns in ALS compared to healthy 

controls in terms of brain regions involved, temporal characteristics, connectivity strength 

and network topology, as observed through various FC methods and neuroimaging 

techniques (See Table 3.2). These studies were identified by searching over the databases 

(PubMed, Google Scholar, and Scopus) using the combinations of keywords such as 

‘resting state’, ‘functional connectivity’, ‘ALS’, ‘EEG’, ‘MEG’, ‘fMRI’ and ‘fNIRS’ and 

filtered by date to exclude publications that were published before 2014.  

 

 

Table 3.2 Resting state functional network impairments in ALS. FC— Functional 

connectivity, HC— Healthy controls, fMRI— functional magnetic resonance imaging, 

EEG— Electroencephalography, MEG— Magnetoencephalography, fNIRS— functional 

near-infrared spectroscopy.  

Reference; Modality; 

Participants; FC Method 

Findings 

Zhou et al., 2014; fMRI; 

12 HC, 12 ALS; 

Coherence   

ALS showed reduced FC in the right sensorimotor 

network (postcentral/precentral/superior frontal gyrus) 

compared to HC, which was correlated with high disease 

severity (as indicated by lower ALSFRS-R scores). On 

the other hand, ALS showed higher FC in the left sensory 

network (postcentral gyrus and inferior parietal cortex) 

compared to HC, which was related to longer disease 

duration. 

Iyer et al., 2015; EEG 

(Source level); 17 HC, 18 

ALS; Cross spectral 

density 

FC was higher in ALS compared to HC in the parietal 

region in the theta and alpha bands. 

Fraschini et al., 2016; 

EEG (Sensor level); 16 

Network topology parameters such as leaf fraction were 

significantly lower in ALS compared to HC in the beta 



   

 

 49 

HC, 21 ALS; Phase lag 

index and graph analysis 

band. ALS network topology tended to deviate from 

more centralized (star-like topology) to more 

decentralized (line-like topology).  

Nasseroleslami et al., 

2017; EEG (Sensor level); 

34 HC, 100 ALS; Median 

Coherence 

Widespread increases in average connectivity in ALS 

compared to HC with most notable increase detected 

over bilateral motor regions in the theta band and parietal 

and frontal regions in the gamma band.  

Menek et al., 2018; fMRI;  

13 ALS; ICA and 

Regression analysis 

Progressive decreases in resting state FC between the 

sensorimotor and frontal pole, between a network 

comprising thalamic and an area in the visual cortex over 

time and in relation to ALSFRS-R decline. Progressive 

increases in resting state FC between the left primary 

motor cortex and the left fronto-parietal networks over 

time and in relation to ALSFRS-R decline. 

Proudfoot et al., 2018; 

MEG (Source level); 24 

HC, 24 ALS; Correlations 

FC was higher throughout the cortical networks in ALS 

compared to HC, particularly in posterior cingulate 

cortex. 

Dukic et al., 2019; EEG 

(Source level); 47 HC, 74 

ALS; Imaginary 

Coherence 

Reduced FC in the sensorimotor region in the beta band 

and in frontal and temporal regions in the delta band in 

ALS compared to HC. 

Basaia et al., 2020; fMRI; 

79 HC, 173 ALS; 

Pearson’s Correlation and 

graph analysis 

Increased local FC (pair-wise functional connectivity 

between the nodes within a same region) was observed 

in ALS in the precentral, middle, and superior frontal 

areas compared to HC. 

Castelnovo et al., 2020; 

fMRI; 39 HC, 25 ALS; 

Regression analysis 

After 6 months from baseline fMRI scan, ALS showed 

reduced FC of the right middle frontal gyrus (MFG) with 

frontoparietal regions compared to HC. After 6 months 

from baseline, ALS showed an increased FC of left 

anterior cingulate, left MFG and left superior frontal 

gyrus within the frontostriatal network, and left MFG, 
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left supramarginal gyrus and right angular gyrus within 

the left fronto-parietal network. 

Deligani et al., 2020; 

EEG/fNIRS; 9 HC, 10 

ALS; Coherence for EEG 

FC, Pearson’s correlation 

for fNIRS FC 

Increased fronto-parietal EEG connectivity in the alpha 

and beta bands and increased interhemispheric and right 

intra-hemispheric fNIRS connectivity in the frontal and 

prefrontal regions observed in ALS compared to HC.  

Dukic et al., 2021; EEG 

(Source level); 77 HC, 95 

ALS; Amplitude envelope 

correlation and imaginary 

coherence 

ALS were sub-grouped into four phenotypes with 

distinct neurophysiological profiles characterized by 

disruption in the somatomotor (increased alpha band 

FC), frontotemporal (increase beta-band power and 

decreased gamma-band FC) and frontoparietal 

(increased gamma-band FC) networks, which correlated 

with distinct clinical profiles and different disease 

trajectories. 

Barry et al., 2021; fMRI; 

9 HC, 12 ALS; 

Correlation 

Reduced FC between bilateral cerebellar lobule VI and 

sensorimotor cortex in ALS compared to HC. 

Romano et al., 2022; 

MEG (Source level); 39 

HC, 39 ALS; Phase 

linearity measurement 

Nodal strength in the alpha band was reduced in ALS 

compared to HC in the right inferior parietal lobule, 

right cuneus, right parahippocampal gyrus, and 

left amygdala in the alpha band. 

Govaarts et al., 2022; 

MEG (Source level); 18 

HC, 34 ALS; Amplitude 

envelope correlation 

FC was higher in frontal, temporal, limbic and sub-

cortical regions in delta and gamma frequency bands in 

ALS compared to HC. 

Avyarthana et al., 2023; 

fMRI; 52 HC, 52 ALS; 

Correlation 

ALS showed reduced functional connectivity between 

primary motor cortex and primary sensory, premotor, 

supplementary motor, frontal, temporal, and putamen 

regions compared to HC. 
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Trojsi et al., 2023; fMRI; 

26 HC, 26 ALS; 

Independent component 

analysis (ICA) 

Sensorimotor networks: ALS patients showed reduced 

FC in left medial frontal gyrus (MFG), and in the left 

postcentral gyrus compared to HC. 

Default mode networks: ALS patients showed reduced 

FC in right MFG and left precuneus and higher FC in the 

left middle temporal gyrus compared to HC. 

Frontoparietal networks: 

ALS showed reduced FC in right and left MFG and in 

the left inferior frontal gyrus compared to HC. 

Salience networks: 

ALS patients showed reduced FC in the right and left 

anterior insular cortices and in the anterior cingulate 

cortex compared to HC. 

 

3.2.5 Motor Task Cortical Activity and Functional Networks Impairments in ALS 

Impairment of sensorimotor and non-motor networks in ALS has been identified from 

resting state paradigms as discussed in previous subsection. However, motor paradigms, 

such as motor preparation, planning and execution that can directly access sensorimotor 

pathways, can unravel the dynamics of motor networks pathology in ALS for biomarker 

design.  

3.2.5.1 Motor preparation and planning 

Event related potentials 

Before initiating voluntary movements, the brain prepares and plans the movements and 

represents them, with the premotor area (PM) (Cisek et al., 2003, Churchland et al., 2006) 

and the supplementary motor area (SMA) (Ball et al., 1999, Cunnington et al., 2005)  

playing a crucial role in preparation and planning preceding motor execution activity in 

M1. The pre-movement cortical activity has been reported in terms of event related 
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potentials (ERP) such as the Bereitschaftspotential (BP) or readiness potential (Deecke, 

1987) and contingent negative variation (CNV) (Walter et al., 1964). Investigation of the 

BP reveals preparatory and planning activity up to 2 seconds before voluntary action 

(Deecke, 1996), associated with movement-specific preparation/planning like direction 

(Cui and Deecke, 1999), body part (Kitamura et al., 1993), force (Becker and Kristeva, 

1980), and cognitive control (Baker et al., 2011) but its precise function is still unclear. 

Similarly, another ERP that precedes voluntary movement is the CNV, which occurs in 

response to a warning stimulus (get ready cue) that precedes the imperative stimulus (go 

cue) that requires a motor action (Walter et al., 1964). The CNV is the result of anticipation 

of an upcoming stimulus and sustained attention needed to generate a correct motor 

response, which shows a wide distribution over prefrontal, M1, S1, SMA, temporal and 

occipital regions (Hamano et al., 1997, Ikeda et al., 1996).  

ALS being a motor neurone disease that primarily affects sensorimotor regions, it is 

expected that the pre-movement ERPs such as BP or CNV are impaired, but very few 

studies have investigated the pre-movement ERPs in ALS. A study by Westphal et al. 

(1998) reported reduced amplitude of BP along central midline electrodes in ALS with 

pronounced spasticity (hyperreflexia) compared to healthy controls indicating impaired 

pre-movement cortical activity in ALS. This finding was reinforced by Thorns et al. (2010) 

who reported reduced amplitude of the lateralised readiness potential over the premotor 

cortex highlighting impaired movement preparation in ALS compared to healthy controls. 

The reduction of BP amplitude has also been reported in other neurological disorders, as 

indication of impaired movement preparation, such as multiple sclerosis (MS) (Bardel et 

al., 2022). The CNV has been used to study cognitive and attentional impairment in ALS 

(Mannarelli et al., 2014, Hanagasi et al., 2002) with inconsistent findings. A higher mean 

CNV amplitude in ALS compared to healthy controls was reported by Hanagasi et al. 
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(2002) and related to cortical hyperexcitability in ALS. On the other hand, Mannarelli et 

al. (2014) reported a significant reduction in CNV amplitude in bulbar onset ALS compared 

to healthy controls indicating dysfunctional attention in that cohort. In other movement 

disorders such as Parkinson’s disease, significant reduction in late CNV amplitude has also 

been reported (Tzvetanov et al., 2022). 

Event related desynchronisation 

Sensorimotor mu or beta power decreases pre-movement or during movement compared 

to baseline (rest), referred to as event related desynchronisation (ERD), indicating cortical 

activation during motor preparation, planning, and execution (Pfurtscheller and Berghold, 

1989). Following the motor execution, sensorimotor mu or beta power increases or 

rebounds to baseline (rest), referred to as event related synchronisation (ERS), indicating 

cortical idling post-execution (Neuper et al., 2006). Therefore, ERD/ERS captures the 

cortical signature of different phases of voluntary movement (Nasseroleslami et al., 2014). 

The pathophysiological cortical oscillatory mechanisms during motor preparation and 

planning to neurodegeneration in ALS have been studied previously by using ERD (Riva 

et al., 2012, Proudfoot et al., 2017, Bizovicar et al., 2014). However, the results reported 

by these studies are inconsistent. Riva et al. (2012) reported unaltered mu or beta ERD in 

ALS compared to healthy controls during motor preparation. Similarly, an EEG study 

during self-paced finger movement reported reduced beta ERD during movement 

preparation (Bizovicar et al., 2014). On the  contrary, a magnetoencephalography (MEG) 

study by Proudfoot et al. (2017) reported intensified beta ERD during preparation in ALS 

during a cued finger movement task.  

Although, the study ERD in ALS provides abnormal engagement of sensorimotor cortices 

and non-motor areas during motor preparation and planning, the results are inconsistent 
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between studies. Furthermore, ERD do not provide a direct measure of influence of non-

motor cortices or sub-cortical regions on the sensorimotor cortices (functional 

connectivity) which could be key to understanding neuropathophysiological mechanisms 

in ALS. 

Corticocortical connectivity 

Functional assessments of brain networks have the potential to detect and quantify disease 

specific network impairments or adaptive and compensatory patterns of network activity 

pre-movement during motor preparation and planning. Studies have shown the 

involvement of M1, S1, PM, SMA and parietal regions during movement preparation and 

planning (Churchland et al., 2006, Li et al., 2015, Shibasaki and Hallett, 2006, Ariani et al., 

2022, Nasseroleslami et al., 2014, Glover et al., 2012). By managing functional 

communication among these cortical areas, the brain forms comprehensive motor plans and 

generates precise motor commands based on sensory and visual feedback (Wong et al., 

2015, Requin et al., 1990). Previous studies have suggested a crucial role of parietalM1 

(Koch et al., 2010, Mackenzie et al., 2016) and PM-M1 (Vesia et al., 2018, Koch et al., 

2010) pathways for movement preparation. Corticocortical functional connectivity in ALS 

during motor preparation and planning has been seldom studied despite evidence of 

impaired preparation and planning from ERPs and ERDs studies (Thorns et al., 2010, 

Bizovicar et al., 2014).  

3.2.5.2 Motor execution 

Event related desynchronisation 

Similar to pre-movement (motor preparation and planning), motor execution is 

characterised by mu/beta ERD of primary sensorimotor (M1/S1) cortices (Pfurtscheller and 

Lopes da Silva, 1999), and parietal regions (Nasseroleslami et al., 2014). In addition to the 
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cortical regions, deeper brain regions such as thalamus (Alegre et al., 2005) and basal 

ganglia (Klostermann et al., 2007) also show mu/beta ERD during movement execution in 

healthy individuals. The pathophysiological cortical oscillatory mechanisms during motor 

execution due to neurodegeneration in ALS have been widely studied by using ERD, but 

just like for motor preparation or planning, inconsistent results are reported (Riva et al., 

2012, Proudfoot et al., 2017, Bizovicar et al., 2014). Riva et al. (2012) found no changes in 

mu or beta ERD in ALS compared to healthy controls during motor task execution. 

Bizovicar et al. (2014) reported reduced beta ERD in ALS compared to healthy controls 

using EEG. On the contrary, a MEG study by Proudfoot et al. (2017) reported intensified 

beta ERD in ALS compared to healthy controls during execution of a cued finger 

movement task. The inconsistency in the ERD/ERS results in ALS reported by these studies 

could be due to the heterogenous phenotypical presentations of ALS populations, 

differences in the selections of the range of beta band, and the tasks’ demand (Peter et al., 

2022). 

Corticocortical connectivity 

Corticocortical connectivity is fundamental to motor control, reflecting the coordination of 

neural signals between different regions of the primary motor (M1), primary sensory (S1), 

premotor (PM), and supplementary motor area (SMA) (Grefkes et al., 2008, Ohara et al., 

2001). Other brain regions such as dorsolateral prefrontal cortex (DLPF), cingulate cortex, 

and superior parietal lobule also play an important role involuntary motor control 

(Alahmadi et al., 2015, Nasseroleslami et al., 2014). 

Very few studies have interrogated the corticocortical functional connectivity in ALS 

during a motor task. A MEG study by Proudfoot et al. (2018b) has reported significant 

reduction in beta coupling between interhemispheric M1 during bilateral grip force 
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production. However, numerous studies have compared activation patterns of cortical and 

sub-cortical regions between healthy controls and ALS patients using fMRI during 

performance of voluntary motor tasks. The activation of contralateral motor regions 

(Stanton et al., 2007, Kollewe et al., 2011), ipsilateral sensorimotor regions and SMA 

(Konrad et al., 2002, Kollewe et al., 2011), bilateral premotor and cerebellum (Schoenfeld 

et al., 2005) and bilateral S1 and parietal regions (Poujois et al., 2013) was higher in ALS 

compared to controls during execution of a motor task. On the other hand, reduced 

activation of primary sensorimotor and premotor areas in ALS has also been previously 

reported using fMRI (Cosottini et al., 2012). The involvement of cortical regions such as 

premotor and SMA, which are largely associated with movement planning and initiation 

(Churchland et al., 2006, Li et al., 2015, Shibasaki and Hallett, 2006, Glover et al., 2012), 

during motor execution underlines the alternative strategy for optimizing motor 

performance in ALS (Konrad et al., 2002).  

Corticomuscular connectivity 

During voluntary contractions, oscillatory signals originating from the sensorimotor 

cortices are coherent with contralateral muscle signals. This cortex-muscle synchrony can 

be measured using Corticomuscular coherence (CMC) (Conway et al., 1995). CMC is 

typically observed as synchrony (in the beta and gamma-bands) between EEG/MEG 

electrodes over M1 and EMG activity (Halliday et al., 1998). It is indicative of the efferent 

drive to the spinal motoneurons, while also being subject to the modulating influence of 

peripheral afference (Witham et al., 2011). The frequency of synchrony between cortex and 

muscles is modulated by various factors including the type of task and level of contraction 

force (Kilner et al., 2000, Liu et al., 2019). For low force isometric contractions, the CMC 

is observed in the beta band (13-30 Hz) whereas in more forceful and dynamic contractions, 
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the CMC shifts to the gamma band (31-97Hz) (Omlor et al., 2007, Gwin and Ferris, 2012, 

Andrykiewicz et al., 2007).  

Recent studies have shown that CMC can provide valuable insights into the 

pathophysiology of ALS, as well as potential biomarkers for diagnosis and disease 

progression. A study using MEG has previously reported that the beta-band CMC over the 

motor cortex is reduced in ALS compared to healthy controls (Proudfoot et al., 2018b). 

This reduction is thought to be due to the progressive loss of motor neurons, which results 

in a decrease in the number of signals that can be transmitted between the brain and muscles 

leading to a decline in motor function. Even in ALS with preserved motor functionality 

(ALSFRS-R scores ≥40), no significant CMC (compared to statistical threshold) was 

reported for either hand during tonic wrist-extension at 30-50% of maximum voluntary 

contraction (Yazawa et al., 2017), indicating the potential of CMC for early diagnosis of 

ALS. The reduction of beta CMC was also observed in other neurodegenerative diseases 

with a movement deficit such as Parkinson’s disease (Yokoyama et al., 2020, Zokaei et al., 

2021) and neurological disorders that cause motor impairment such as chronic stroke 

(Meng et al., 2009).  

3.2.6 Clinical Implications 

Functional connectivity has the capacity to enable early detection of brain networks 

impairments before clinical symptoms emerge and before structural alterations are visible 

on structural imaging such as MRI (Marzetti et al., 2019, Sadaghiani et al., 2022). Studying 

functional connectivity in ALS during various experimental paradigm such as rest, pre-

movement (motor preparation and planning) and motor execution, encompassing event-

related potentials (ERPs), event-related desynchronization (ERD), corticocortical 

connectivity, and corticomuscular connectivity, may have clinical implications. Analysing 
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resting-state functional connectivity have shown potential for the early detection of neural 

network changes, as markers of neurodegeneration, and phenotyping (Dukic et al., 2019, 

Dukic et al., 2021). Exploration of motor preparation and planning phases through ERPs 

and ERD offers insights into the neural processes underlying motor anticipation and 

planning deficits in ALS (Thorns et al., 2010, Bizovicar et al., 2014). Concurrently, changes 

in ERD, corticocortical connectivity, and corticomuscular connectivity during motor 

execution may unveil disruptions in cortical and corticospinal neural networks responsible 

for motor control, and could be indicators of disease progression and therapeutic responses 

(Proudfoot et al., 2019, Proudfoot et al., 2017, Proudfoot et al., 2018b). Similarly, reduced 

corticomuscular coherence post-stroke and increased coherence during motor recovery 

(Krauth et al., 2019) indicate its potential as an objective primary outcome for drug trials, 

surpassing subjective measures like ALSFRS-R scores. Moreover, combining insights 

from both structural and functional connectivity studies links brain anatomy changes with 

functional impairments, potentially enhance the understanding of ALS pathophysiology 

and potential therapeutic targets (Verstraete et al., 2010, Douaud et al., 2011). This 

comprehensive approach may reveal the neural mechanisms underlying ALS progression 

and the interplay between structural alterations and brain function (Schmidt et al., 2014, 

Nasseroleslami et al., 2018). This knowledge could potentially aid in early diagnosis, 

treatment efficacy assessment, and the formulation of personalized interventions for ALS. 

3.3 Effective Connectivity  

3.3.1 Methods for Assessing Effective Connectivity 

Functional connectivity gives the correlation between neural activities in the interacting 

brain regions, but the direction of information flow is not defined (Friston, 2011). So, 

cortical networks derived from functional connectivity lack the causal information, such as 
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inflow or outflow, which could be crucial for explaining a neurophysiological process in 

health and in disease. Effective connectivity resolves the issue by providing a causal 

relationship between the brain regions of interest  (Friston, 2011). The effective brain 

networks can be estimated from the EEG/MEG/fMRI/PET/fNIRS time series by a using 

model-based method, where the causal pathways are specified and anatomical and 

functional knowledge are provided, such as Dynamic causal modelling (DCM) or a model-

free data driven method, where the signals are used directly for estimation, such as Granger 

causality, directed transfer function (DTF), partial directed coherence (PDC), or transfer 

entropy (TE).   

Granger causality is a statistical method used for inferring causal relationships between 

time series data, used to estimate the effective connectivity in brain networks (Geweke, 

1982). It assesses whether the past values of one time series can predict the future values 

of another time series using a multivariate auto-regressive model (MVAR), indicating a 

causal influence. This approach has been employed in neuroimaging studies to infer 

directional interactions between brain regions (Seth et al., 2015). Another MVAR method 

for estimation of effective connectivity is partial directed coherence (PDC) (Baccalá and 

Sameshima, 2001), which is a frequency domain version of Granger causality. PDC is a 

widely used method which has proven to be more reliable and faster than DTF to quantify 

causal interactions between multi-channel EEG signals (Huang et al., 2016). The 

asymptotic distribution of the PDC is not well known, therefore, bootstrap-based 

approaches are commonly used to test for significant connectivity. Variance stabilisation 

is recommended when it comes to bootstrap-based PDC connectivity approaches (Baccala 

et al., 2007), that can be done by using normalised PDC or generalised PDC 

(gPDC)(Baccalá and Sameshima, 2021). Other Granger causality-based frequency domain 

methods such as the direct transfer function (DTF) (Kaminski and Blinowska, 1991) can 
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be used to find the causal interaction between the brain regions, however, DTF is prone to 

be affected by alternative interactions or unpredictable factors (Baccalá and Sameshima, 

2001). 

Effective connectivity can also be estimated using information theory such as transfer 

entropy (TE) that measures the directed exchange of information between brain regions, 

and unlike mutual information, ignores static correlations due to  common inputs 

(Schreiber, 2000). TE has been used previously on fMRI time series data to establish the 

directed information structure between brain regions during rest (Wu et al., 2021) or during 

a visuo-motor tracking task (Lizier et al., 2011) in healthy controls. However, despite its 

evident strengths, such as ability to estimate non-linear directed interactions, the accuracy 

of TE estimation can be affected by several elements within the estimation procedure 

including the embedding dimension, delays in state space reconstruction, the size of the 

data sample, and the specific approach employed to estimate high-dimensional conditional 

probabilities (Zhou et al., 2022, Hlaváčková-Schindler et al., 2007, Vicente et al., 2011). 

Dynamic Causal Modelling (DCM) is another popular non-linear method for estimating 

causal interactions between the brain sources, but it requires a prior specification of 

connectivity linkages (Sato et al., 2009).   

3.3.2 Effective Connectivity Impairments in ALS 

3.3.2.1 Resting-state effective network impairments in ALS 

Studies using functional connectivity measures have reported altered sensorimotor and 

extra-motor networks in ALS compared to healthy individuals during rest (Agosta et al., 

2011, Zhou et al., 2014, Douaud et al., 2011, Menke et al., 2018, Dukic et al., 2019). 

Although resting state effective connectivity measures have the potential to reveal more on 

ALS network neuropathophysiology compared to functional connectivity, the use of the 
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measure to estimate brain network abnormalities in ALS have been rather limited. Iyer et 

al. (2015) studied the effective network topology in ALS using partial directed coherence 

measures on resting state EEG and reported that degree values of the network nodes (no. 

of connections converging into a node) were higher in ALS compared to healthy controls 

in central and frontal regions in the theta band suggesting pathological alteration of neural 

networks. A resting state fMRI based effective connectivity  study on ALS and healthy 

controls showed altered causal interaction between sensorimotor cortices, specifically loss 

of bidirectional communication between M1 and SMA and unidirectional communication 

from SMA to S1, reflecting damage in motor neurons (Fang et al., 2016). Since the study 

focused on three cortical regions only (M1, S1 and SMA), the causal interaction of cortices 

beyond sensorimotor regions was not known. 

3.3.2.2 Motor task effective network impairments in ALS  

The study of effective connectivity networks in healthy individuals during motor execution 

has underpinned significant bidirectional interaction between primary motor (M1), primary 

sensory (S1), and higher order motor regions such as premotor (PM) and supplementary 

motor area (SMA) (Grefkes et al., 2008, Kim et al., 2018, Brovelli et al., 2004, Gao et al., 

2011, Anwar et al., 2016). Similarly, during the execution of a visuomotor task, inputs 

to/from dorsolateral prefrontal (DLPF) and posterior parietal cortex (PPC) into the 

sensorimotor regions were found (Kim et al., 2018, Rowe et al., 2004, Gao et al., 2011, 

Anwar et al., 2016). However, the impairment of effective connectivity networks in ALS 

during motor tasks such as motor preparation, planning and execution has been rarely 

studied. Recently, using fMRI, Abidi et al. (2020) reported that the effective connectivity 

of SMA to striatum was decreased, whereas, connectivity from striatum to superior parietal 
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lobule was increased in upper motor neuron predominant ALS during the preparation of 

self-initiated movement.  

3.3.3 Clinical Implications 

Although, the effect of neurodegeneration in effective connectivity brain networks has 

rarely been studied in ALS, it has potential to untangle complex network 

neuropathophysiology. It is believed that ALS pathology is propagated via networks, the 

study of effective networks could therefore shed more light on the dying forward or dying 

backward hypothesis in ALS. 

3.4 Discussion 

Functional and effective connectivity network analysis during motor tasks in ALS has 

potential for unravelling the neuropathophysiology of the disease and designing biomarkers 

for diagnosis and tracking disease progression. While structural connectivity studies offer 

insights into the static physical interconnections between brain regions, the functional and 

effective connectivity network analyses quantify dynamic interactions and information 

flow within neural circuits which has potential for early detection of brain networks 

impairments before clinical symptoms emerge and before structural alterations are visible 

in structural imaging such as MRI (Marzetti et al., 2019, Sadaghiani et al., 2022). 

Functional and effective connectivity network measures identified from resting-state or 

task-based paradigms have shown promise in identifying specific patterns of brain activity 

that correlate with ALS progression and clinical features (Dukic et al., 2019, Bharti et al., 

2022). These network biomarkers have the potential to serve as valuable indicators of 

disease at the early symptomatic phase (Govaarts et al., 2022), of disease severity 

(Sorrentino et al., 2018), disease progression (Castelnovo et al., 2020), phenotyping (Dukic 

et al., 2021), and response to treatment (Wei et al., 2022a).  
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In conclusion, functional and effective connectivity network analysis during motor tasks in 

ALS offers profound insights into the disease’s neuropathophysiology. By deciphering 

alterations in network connectivity, synchronization, and causal interactions, we not only 

advance our understanding of ALS as a complex multi-system neurodegenerative disorder 

but also lay the foundation for objective biomarkers, predictive tools, and personalised 

interventions. 
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4.  Materials and Methods 

This chapter describes the general methodology used for the research study. Section 4.1 

explains the participant recruitment along with inclusion/exclusion criteria. Section 4.2 

explains the ethical approval of the study and consent procedures. Section 4.3 describes the 

details of experiments performed including the materials/equipment used for the 

experiments and the clinical data collected. The section 4.4 details the sensor level and 

source level data analysis pipelines and network connectivity methods. In section 4.5, the 

statistical analysis and tools used in this study are explained.  

4.1 Participants Recruitment, Inclusion and Exclusion Criteria 

The ALS cohort was recruited from the National ALS Specialty Clinic at Beaumont 

Hospital whereas the healthy controls were recruited from a database of volunteers 

maintained at the Academic Unit of Neurology, Trinity College Dublin and through the 

National Volunteering Database (i-VOL).  

Any healthy individual (health based on the questionnaires that assess present medical 

conditions and past medical history) aged above 18 could be included in the study as 

control. Any individual aged above 18, with a diagnosis of ALS or its subtypes could be 

included in the study as patient. However, people with psychiatric disease, or a medical 

condition that affects the nervous system (e.g., diabetes) were excluded from the study. 

Similarly, people who previously had allergic reactions in a similar recording environment 

(e.g., with an allergy to electrode gels) and pregnant women were also excluded from the 

study. 

4.2 Ethical Approval and Informed Consent 

Ethical approval was obtained from the Tallaght Hospital/St. James’s Hospital Joint 

Research Ethics Committee for St. James’s Hospital, Dublin, Ireland [REC: 2019-07 
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Chairman’s Action (22)] (See appendix). All participants provided written informed 

consent before the recording of EEG/EMG and force data (See appendices for consent 

forms). All experiments were conducted in accordance with the standards set by the 

Declaration of Helsinki, 2013. 

4.3 Experimental Paradigm and Data Collection 

4.3.1 Experimental Setup 

The participants were comfortably seated on a chair in front of a screen (23” computer 

monitor), on which visual cues for the experiments were presented, inside a shielded room 

(Faraday cage) at HRB-Wellcome Clinical Research Facility (CRF), St. James’s Hospital. 

The screen was positioned at eye level, approximately 1 metre from the participants. A 

semi-deflated aircushion was used to support their elbow, with the upper arm elevated at 

approximately 40 degrees from the shoulder and the elbow was flexed at 90 degrees.  

4.3.1.1 Electroencephalography (EEG) 

 The EEG signal was recorded with 128 active electrodes (Biosemi ActiveTwo system, 

Biosemi B.V., Amsterdam, The Netherlands) with a sampling frequency of 2048 Hz. An 

EEG headcap was chosen and positioned based on the size of the participant’s head (i.e., 

maximum head circumference, distance between Inion and Nasion, and distance between 

ear lobes) using measuring tape such that the electrode Cz was centred above the scalp. The 

electrode holders of the headcap were then gelled with electrolyte gel (SignaGel, Parker 

Laboratories, Inc.) and the active electrodes were connected to the headcap. Eight external 

channels were connected using flat active sintered Ag-AgCl electrodes (BioSemi B.V., 

Amsterdam, The Netherlands) with the help of alcohol swabs, disposable adhesive disks, 

electrode gel and medical tape. The positions of external electrodes were— (i) above and 

below the left eye, (ii) to the left of the left eye and to the right of the right eye, (iii) left and 
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right mastoid, and (iv) left and right earlobe. All electrode signals (128 EEG + 8 external) 

were visually inspected to maintain electrode offset below ± 25μV. 

4.3.1.2 Surface Electromyography (EMG) 

Surface EMG recordings were conducted simultaneously with EEG using the same 

BioSemi ActiveTwo system with flat active sintered Ag-AgCl electrodes (BioSemi B.V., 

Amsterdam, The Netherlands), which provided a circular recording area (d=3mm) in a 

17×10mm support surface area. Surface EMG was recorded with a sampling frequency of 

2048 Hz from eight muscles in the right upper arm: FDI (first dorsal interosseous); EDC2 

(Extensor Digitorum Communis); FDS2 (Flexor Digitorum Superficialis); APL (Abductor 

Pollicis Longus) and EPB (Extensor Pollicis Brevis); FPB (Flexor Pollicis Brevis); APB 

(Abductor Pollicis Brevis); ADM (Abductor Digiti Minimi); FDMB (Flexor Digiti Minimi 

Brevis). The electrode locations were chosen based on surface anatomy guidelines and 

activation manoeuvres (Lee and DeLisa 2004; Pease et al. 2007; Cram and Criswell 2011; 

Barbero et al. 2012). Bipolar channels were used according to the provided 

recommendation by SENIAM (Hermens et al. 2000; Merletti and Hermens 2000). For skin 

preparation, the electrode areas were cleansed with alcohol swabs. The electrodes cables 

were fixed with a light flexible elastic mesh to minimise movement artefacts. The presence 

of reliable EMG signal (signal amplitude and frequency increased during muscle 

contraction) was verified by visual inspection of the recordings and the electrodes were re-

attached as needed to assure reliable signals. 

4.3.1.3 Force 

The grip force was recorded using two flat resistive force sensors (FlexiForce A201 Sensor, 

Tekscan, Inc., Boston, MA, USA) with their circular sensing area (d=9.7mm) attached to 

the two bases of a hexagonal wooden prism (edge=30mm, thickness=25mm) as in Figure 
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4.1. The resistance was converted to analogue voltage using a small circuit board (Tekscan, 

Inc., Boston, MA, USA) and was recorded and digitised using a Data Acquisition Card 

(PCIe-6321, National Instruments, Austin, TX, USA). Simulink Desktop Real-Time 

(Mathworks, Inc.) was used to record the grip force from the data acquisition device at 

2000 Hz in real time, send to a local User Datagram Protocol (UDP) port and subsequently 

visualised. 

4.3.2 Experiments 

Resting state (eyes open) and voluntary motor task (isometric pincer grip between thumb 

and index/little finger) simultaneous EEG/EMG data were recorded from an ALS cohort 

and age-matched healthy controls. In addition to EEG/EMG data, during the voluntary 

motor task, force data were also recorded. The experiments were designed by Assistant 

Professor Bahman Nasseroleslami, Trinity College Dublin, who is also the supervisor of 

this study. The participants were instructed to minimize their eye movements and stay 

relaxed during the experiments. 

4.3.2.1 Resting States  

During this experiment, resting-state EEG data were recorded with eyes open. The 

participants were requested to fixate their eyes on a cross on the presentation screen with 

mind wandering. In this experiment, three blocks of EEG data were recorded, each block 

2 minutes long, with short breaks (~30 sec) between blocks. This recording allowed 

comparisons of the findings in subsequent experiments to the recently found ALS-related 

brain network changes in resting-state EEG (Dukic et al., 2019).  

4.3.2.2 Voluntary Motor Tasks 

Experiment 1: Participants were asked to perform an isometric pinch grip of the force 

sensor between thumb and index finger of the right upper limb, irrespective of the right or 
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the left-hand dominance, producing maximum force (Figure 4.1). The participants applied 

maximum force for 5 seconds when an arrow appeared at the top of the screen and relaxed 

when the arrow shifted to the bottom of the screen. Participants were provided with real-

time feedback of the force applied, given by the height of a filled rectangular green bar 

visible on screen (shown in Figure 4.2). Five trials were recorded with 30 s rest between 

the trials. The average peak of the five trials, which were within 10% of each other, was 

used as the maximal voluntary contraction (MVC). This experiment was used to quantify 

the participants’ strength to be used for other experiment.  

  

Figure 4.1 Experimental grip tasks using thumb-index (left) and thumb-little (right) fingers. The force is 

applied on two flat force sensors on the wooden prism. 

Experiment 2: Participants were asked to perform 30 trials of isometric pinch grips of the 

force sensor between thumb and index finger of right upper limb at 10% MVC (target 

force), according to visual cues. Five seconds after the start of a trial, an empty rectangular 

box was displayed onscreen as go cue where the height of the box represented target force. 

Participants were provided with real-time feedback of the force applied by filling the box 

with a green bar. The participants then pinched the force sensors to increase the height of 

the green bar to reach the height of the rectangular box and then hold to keep a constant 

force. After 5 seconds, the box disappeared as a cue for participants to relax. Participants 

were told to use their preferred pace for increasing and decreasing the grip 
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A 

 

  

B 

 

Figure 4.2 Experimental setup and EEG/EMG/Force data format for Experiment 2. (A) A Biosemi system-

based simultaneous EEG, EMG and force recording experimental setup, (B) EEG/EMG/Force data format 

for experiment 2 showing 30 trials, each trial consists of 3 phases. The 5 seconds before the start of the visual 

cue are the motor planning phase, the 5 seconds during the visual cue are the motor execution phase, and 

the 5 seconds after the end of the cue are the between trial rest phases. 

force but to avoid abrupt changes. Each trial lasted for 15 seconds as shown in Figure 4.2 

B. The exerted force level by the participants was deemed correct, if the error was less than 

10% of the range. This experiment aimed to capture brain networks, brain-muscle 
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coordination, and muscle-muscle coordination during low-force levels, as well as during 

slow force onset and offset. 

Experiments 3-4 were similar to experiments 1-2, except that the requested isometric 

pinch grip force was the opposition between the thumb and little finger of the right upper 

limb (See Figure 4.1). 

4.3.3 Clinical Measures 

The students/staff of the Academic Unit of Neurology, Trinity College Dublin and the 

National ALS Clinic, Beaumont Hospital collected functional, behavioural, and cognitive 

scores that were obtained separately from this research project. The clinical measures were 

recorded at least once for most of the ALS participants who took part in this study. The 

scores were obtained by a neurologist or a trained member of the research team from the 

Academic Unit of Neurology, during the patients’ visits to the Irish National ALS Clinic at 

Beaumont Hospital. The clinical scores recorded closest in time (ideally within a week 

before or after) to the EEG/EMG recording were chosen for the correlation analysis. 

4.3.3.1 ALS Functional Rating Scale Revised (ALSFRS-R) 

The ALS functional rating scale revised (ALSFRS-R) is 48 points validated questionnaire-

based clinical scale that measures the severity of various functional impairments associated 

with ALS. It consists of 12 items, a revision from the 10-item original ALSFR scale, related 

to different aspects of daily functioning, including speech, swallowing, handwriting, 

cutting food, dressing, walking, and breathing. Each item is rated on a scale from 0 to 4, 

with higher scores indicating better functioning. The total ALSFRS-R score ranges from 0 

to 48, with 48 representing normal functioning. The 48-point total score can be divided into 

4 sub-scales namely bulbar (0-12), fine motor (0-16), gross motor (0-8), and respiratory (0-
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12) (Cedarbaum et al., 1999). Each sub-scale can be used to assess a specific functional 

impairment due to neurodegeneration.  

4.3.3.2 Edinburgh Cognitive and Behavioural Assessment Scale (ECAS) 

The Edinburgh Cognitive and Behavioural Assessment Scale (ECAS) is a 

neuropsychological assessment tool designed to evaluate cognitive and behavioural 

functions in individuals with neurodegenerative disorders, including ALS. ECAS is a 136 

points clinical scale which assesses a range of cognitive domains affected by ALS including 

executive functions (0-48), memory (0-24), language (0-28), visuospatial skills (0-12), and 

verbal fluency (0-24). A higher score means better cognitive performance. The scores can 

be divided into two domains namely ALS specific (0-100) and ALS non-specific (0-36). 

The ALS specific domain combines the scores of language, verbal fluency, and executive 

functions, whereas the ALS non-specific domain combines the scores of memory and 

visuospatial scales. In addition to cognitive assessment, the ECAS also includes a section 

to assess behavioural changes, such as apathy and disinhibition. 

4.3.4 EEG/EMG Data Sets 

Each EEG/EMG data recording session lasted for about 3 hours with two or three 

experimenters involved, which included time for written consenting (approximately 15 

minutes), EEG/EMG set up (approximately 45 minutes), running experiments 

(approximately 90 minutes) and cleaning up the equipment (approximately 30 minutes). 

So, it was difficult to collect EEG/EMG data solely by one individual because it would take 

double the amount of time. Furthermore, the gel used for EEG/EMG recording would dry 

out and the data would be very noisy. In addition, ALS participant wouldn’t be able to sit 

on a chair for a long time to perform the experiments. Therefore, at least two experimenters 

(most of the time three experimenters) were present during the EEG/EMG data recording 
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to avoid longer sessions. Table 4.1 shows the total EEG/EMG data collected, from different 

patient populations and my contribution (involvement in number of 3-hour recording 

session), before the submission of this thesis (September 2023). 

Table 4.1 Number of EEG/EMG recording sessions (data collected) per group and my 

contribution in those sessions. 

Groups Total  My Contribution 

Healthy Controls 30 18 

ALS 40 27 

PLS 16 5 

PPS 25 10 

SMA 11 11 

Grand Total 122 71 

Abbreviations: ALS Amyotrophic Lateral Sclerosis, PLS Primary Lateral Sclerosis, PPS 

Post-polio Syndrome, SMA Spinal Muscular Atrophy 

 

4.4 Data Analysis 

The data processing pipelines are different based on the type of analysis, so they have been 

discussed separately accordingly. 

4.4.1 Sensor Level Study 

In this study, the data collected during rest and Experiment 2 (self-paced isometric pinch 

grip motor task) were studied. The motor task was studied during planning and execution 

phases. A separate visual cue was not provided for motor planning to resemble a real-life 

motor planning scenario. Therefore, 5 seconds period before the execution cue was taken 

as the motor planning phase (See Figure 4.2 B). 

4.4.1.1 Data Pre-processing 

The pre-processing of resting-state EEG and motor task simultaneous EEG/EMG data was 
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carried out in MATLAB R2021a using the Fieldtrip toolbox (fieldtrip.org). The various 

steps performed during pre-processing of the data in sensor space are explained below— 

Data Extraction 

The segment of raw EEG/EMG data extracted for the analysis depended upon the type of 

connectivity analysis performed such as EEG-EEG or EEG-EMG (Corticomuscular) 

coherence.   

1. EEG-EEG Coherence: For resting state, 30 seconds of data from the first block, 

which was 120 seconds long, were extracted for analysis. Similarly, for the pre-

motor stage, 1 second of data between the 3rd and the 4th second, and for motor 

execution 1 second of data between the 8th and the 9th second of each trial were 

extracted. Therefore, the total length of data extracted for analysis for each 

participant was 30 seconds (1 s x 30 trials) for each task condition (rest, pre-motor, 

and execution). For motor tasks, data epochs where the coefficient of variation of 

the force produced during sustained contraction was above 0.2, or where the mean 

force was less than 8% or more than 20% MVC, were excluded from analysis. 

2. EEG-EMG Coherence: Corticomuscular coherence or EEG-EMG coherence is 

manifested during performance of a voluntary task (Halliday et al., 1998) and 

quantifies the cortex-muscle synchrony for motor control. Therefore, for the EEG-

EMG coherence study, the section of trials where the participant exerted force 

(motor execution) were extracted. Specifically, a 4 second segment between 6 to 10 

seconds of a 15 second trial (1 second after presentation of visual cue until 

presentation of the relax cue) was extracted for the analysis. Therefore, a total of 

120 seconds (4 x 30 trials) were extracted for each participant. Data epochs where 

the coefficient of variation of the force produced was above 0.2, or where the mean 
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force was less than 8% or more than 20% MVC, were excluded from analysis. 

Channel Selection 

Bad channels were detected by visual inspection of the 128-channels of EEG data. Bad 

channels were removed and reconstructed by using weighted average interpolation of the 

neighbouring channels (Perrin et al., 1989). Based on the type of analysis and their 

neurophysiological underpinnings, different sets of EEG channels were selected.  

Eight EEG channels A5, B22, B31, C25, D4, D12, D19, and D28 (International 10-10 

System equivalent P1, C4, FC4, F1, F3, FC3, C3, and CP3) were chosen a prior for the 

EEG-EEG coherence analysis (marked by blue circles in Figure 4.3 A). D19/B22 cover the 

left/right primary motor cortex (M1) whereas left/right premotor cortex (PM) is covered by 

the electrodes D12/B31. The left primary sensory cortex (S1) is covered by D28 and left 

superior parietal lobule (SPL) is covered by A5. Similarly, the electrodes D4 and C25 cover 

left dorsolateral prefrontal cortex (DLPFC) and left dorsomedial prefrontal cortex 

(DMPFC) respectively. The electrodes pertaining to the aforementioned cortical regions 

were chosen because they are known to be activated during planning (Churchland et al., 

2006, Riehle, 2005, Pfurtscheller and Berghold, 1989, Glover et al., 2012, Ariani et al., 

2015, Papitto et al., 2020) and execution (Hanakawa et al., 2008, Papitto et al., 2020, 

Lacourse et al., 2005, Alahmadi et al., 2015, Cisek et al., 2003) of motor tasks in healthy 

individuals.  

Five EEG channels A1, A19, B22, C21 and D19 (International 10-20 System equivalent 

Cz, Pz, C4, Fz and C3 respectively) and 3 EMG signals (first dorsal interosseous [FDI], 

flexor pollicis brevis [FPB], and abductor pollicis brevis [APB]) were chosen a priori for  
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A 

 

  

B 

 

Figure 4.3 Channels selected for analysis and their surface Laplacian electrodes. (A) EEG channels (blue) 

and their surface Laplacian electrodes (green) for sensor level EEG-EEG coherence analysis. (B) EEG 

channels (blue) and their surface Laplacian electrodes (green) for sensor level EEG-EMG or 

Corticomuscular coherence analysis.  

the EEG-EMG analysis (EEG channels marked by blue circles in Figure 4.3 B). The EEG 

electrodes were chosen due to their representative coverage of the cortical motor network. 
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The C3, Cz, and C4 cover the contralateral hand area, central, and ipsilateral hand 

sensorimotor regions for the chosen tasks. Fz pertains to the frontal areas that reflect the 

activity from supplementary motor regions (and, to some extent, premotor areas). Finally, 

Pz reflects the activity from parietal areas that play important roles in visuomotor tasks 

(Nasseroleslami et al., 2014). Importantly, these regions have minimal spatial overlaps and 

allow the activity of more distinct regions to be assessed. The target muscles were selected 

based on their biomechanical involvement in the pincer grip task (Danna-Dos Santos et al. 

2010). 

Referencing and Filtering 

The selected channels were (re)referenced using a surface Laplacian spatial filter. 

Laplacian filtering was used because it helps to minimize the effect of volume conduction 

in EEG data (Bradshaw and Wikswo, 2001). For 8 electrode EEG-EEG coherence analysis, 

the surface Laplacian filter was designed with 3 neighbouring channels within the radius 

of ~20 mm separated approximately by 120 degrees, such that no Laplacian channel is a 

common neighbour for any of the 8 selected channels. The Laplacian electrodes chosen 

(marked as green circle in Figure 4.3 A) were A3, A17, D17 for A5; B16, B20, B29 for 

B22; B24, C2, C5 for B31; C23, C27, D13 for C25; C31, D6, C24 for D4; D2, D5, D21 for 

D12; D10, D14, D26 for D19; and D16, D20, D29 for D28. Similarly, for 5 electrode EEG-

EMG coherence analysis four channels were chosen as Laplacian electrodes based on the 

Large Surface Laplacian configuration defined by McFarland et al. (1997). Specifically, 

the Laplacian electrodes chosen were A19, B22, C21, D19 for A1 (Cz); A1, A23, B22, D19 

for A19 (Pz); A1, A19, C21, D23 for D19 (C3); A1, A19, C21, B26 for B23 (C4); and A1, 

B22, D19, C17 for C21 (Fz).  
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The Laplacian filtering was followed by dual-pass band pass filtering between 1-100 Hz 

using a 4th order Butterworth filter to remove very-low frequency noise (<1Hz) and high 

frequency noise (>100Hz) from the EEG data. Similarly, a dual-pass band pass filtering 

between 10-100 Hz using a 4th order Butterworth filter was used for EMG data.  A dual-

pass band stop Butterworth filter of a 4th order with cut-off frequencies 49-51 Hz was used 

to remove powerline noise from the EEG/EMG data. EMG was not rectified because our 

preliminary analysis showed that when EEG was filtered between 1-100 Hz, rectification 

of EMG did not affect the significance of EEG-EMG coherence at beta (14-30 Hz) band. 

Automatic Artefact Detection and Rejection 

Fieldtrip implemented threshold-based automatic artefact detection and rejection was used 

to detect and remove eyeblink artefacts, muscle artefacts, and jump artefacts. The same 

pipeline was used to detect and reject artefacts for all sensor level analysis (EEG-EEG or 

EEG-EMG coherence analysis). A copy of the data was filtered according to the nature of 

the artefact, for example a bandpass filter of 1-15 Hz was used to detect eyeblinks. For each 

channel, the filtered data were converted into z-scores using mean and standard deviation 

calculated over all trials. The z-scores were averaged over the channels to get a single time 

series with accumulated artefacts. The artefactual trials were detected using threshold z-

values i.e., if the average z-score was greater than the threshold z-value for any timepoint 

in a trial, the trial was considered artefactual and removed from the original data. The 

threshold z-values were selected using visual inspection. Each trial was browsed using a 

low threshold z-value i.e., 4 for eyeblinks, 8 for muscles, and 12 for jump artefacts. The 

threshold z-value was adjusted (increased or decreased in steps of 1) looking into the 

segment of original data marked as artefactual data. The adjustment of the threshold z-

value was continued until all artefactual data were marked and non-artefactual data were 
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unmarked. The threshold value was set such that no more than 20% of trials were rejected 

as artefactual trials. 

4.4.2 Source Level Study 

Similar to the sensor level study, this study focused on the data collected from Experiment 

2 (self-paced isometric pinch grip motor task). The motor task was studied during pre-

movement (referred to as motor planning) and execution phases. 

4.4.2.1 Data Pre-processing 

Data Extraction 

Data extraction for source level studies was similar to the data extraction for sensor level 

studies explained in sub-section 4.4.1.1 except that for pre-movement (motor planning), 1 

second data segments between the 4th and 5th second of the trials were taken. 

Referencing and Filtering 

The EEG data were common average referenced followed by 1-100 Hz dual-pass band pass 

filtering using a 4th order Butterworth filter. Similarly, dual-pass band pass filtering 

between 10-100 Hz using a 4th order Butterworth filter was used for EMG data.  A 4th order 

dual-pass Butterworth band stop filter with a stop band of 49-51 Hz was used to remove 

power line noise from EEG/EMG data. EMG was not rectified as stated in the previous 

section. 

Automatic Artefacts Detection and Rejection 

Artefacts such as electrooculogram (EOG), electromyogram (EMG), electrocardiogram 

(ECG), and jump artifacts were removed automatically using the Fieldtrip toolbox just like 

in sensor level studies using paradigm explained in automatic artefacts detection and 

rejection sub-topic in sub-section 4.4.1.1. 
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4.4.2.2 Source Reconstruction 

A template structural MRI (https://identifiers.org/neurovault.image:29404) was used to 

compute the forward model (lead-field matrix). The source reconstruction was done using 

linearly constrained minimum variance (LCMV) beamformer (Van Veen et al., 1997) using 

the Fieldtrip toolbox. Twelve anatomical brain regions were chosen bilaterally, 6 on each 

side of the brain, using the automated anatomical labelling (AAL) atlas (Tzourio-Mazoyer 

et al., 2002). The chosen anatomical brain regions (regions of interest, ROI) were the 

Primary Motor Cortex (M1), Primary Sensory Cortex (S1), Supplementary Motor Area 

(SMA), Medial Prefrontal Cortex (PFC), Superior Parietal Lobule (SPL) and Anterior 

Cingulate Cortex (ACC) of both hemispheres.  To derive a single time-series for each ROI 

all time-series within a ROI were weighted using a Gaussian weighting function with the 

half width at half maximum set to approximately 17 mm (Dukic et al., 2019, Brookes et 

al., 2016, Tewarie et al., 2016). This implies that signals located 17 mm away from the 

centre of the region of interest (ROI) will be weakened by a factor of 0.5. However, it 

should be noted that the orientation of each estimated dipole may not align with the 

orientations of other dipoles within the ROI. This can lead to interference and incorrect 

estimation of the effective activity of the ROI if a simple averaging of neighbouring 

dipoles’ time-series is performed. To address this, after Gaussian weighting, we first 

determined the dominant direction of each ROI by conducting singular value 

decomposition on the dipole orientations within the ROI. Any dipoles with orientations 

opposite (>90 degrees) to the estimated maximal activity vector of the ROI were inverted. 

Following these procedures, we obtained 12 broadband time-series, each representing an 

individual ROI. This process was performed for each subject independently. 
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Figure 4.4 Cortical regions of interest (ROIs) and the central dipole current sources used for source 

reconstruction. SPL: Superior parietal lobule, S1: Primary sensory cortex, M1: Primary motor cortex, 

SMA: Supplementary motor area, PFC: Medial prefrontal cortex, ACC: Anterior cingulate cortex, L: Left, 

R: Right. 

4.4.3 Time-Frequency Analysis 

The pre-processed time series EEG data, 𝑥𝑡(𝑛, 𝑐);  𝑛: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑖𝑎𝑙𝑠,  

𝑐: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠, of motor experiments (planning and execution), was first 

averaged over trials (Equation 4.1) to get event-related potentials 𝑒𝑟𝑝𝑡(𝑐). The 𝑒𝑟𝑝𝑡 was 

then subtracted from every trial of 𝑥𝑡 to get non-phase locked time series data 𝑛𝑝𝑙𝑡(𝑛, 𝑐) 

(Equation 4.2).  

𝑒𝑟𝑝𝑡(𝑐) =
1

𝑛
∑ 𝑥𝑡(𝑘, 𝑐)𝑛

𝑘=1    (4.1) 

𝑛𝑝𝑙𝑡(𝑛, 𝑐) = 𝑥𝑡(𝑛, 𝑐) − 𝑒𝑟𝑝𝑡(𝑐)  (4.2) 

𝑛𝑝𝑙𝑡 was decomposed into time-frequency components using wavelet transform with the 

Fieldtrip toolbox. A Morlet wavelet with 5 cycles, a frequency resolution of 1 Hz, and a 

time resolution of 0.025 seconds was used. The output time-frequency power obtained from 

wavelet decomposition of 𝑛𝑝𝑙𝑡 was normalised to an inter-trial rest period of 5 seconds of 
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motor task experiment (i.e., -3 to 2 second baseline window). The normalised time-

frequency power was averaged over time components to obtain event related spectral 

perturbations (ERSP). Finally, the ERSP was averaged over participants of each group 

separately to get the group average ERSP. 

4.4.4 Connectivity Analysis 

4.4.4.1 Functional Connectivity (Banded Spectral Coherence) 

The pre-processed EEG data were converted into the frequency domain using the Fourier 

Transform (Hanning taper, 1 Hz spectral smoothing, 2-100 Hz bandwidth, and 1 Hz 

frequency resolution).  

Auto spectra (𝑆𝑖𝑖(𝑓), 𝑖 =  1, 2, … , 𝑐;  (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠);  𝑓 =  2, 3, … 100 𝐻𝑧) and 

cross spectra (𝑆𝑖𝑗(𝑓), 𝑗 =  1, 2, … , 𝑐;  𝑖 < 𝑗) were calculated using the Fieldtrip toolbox for 

each trial. The 2-100 Hz spectral bandwidth was divided into 8 frequency bands as shown 

in Table 4.2, excluding the 48-52Hz range to avoid mains power interference. The 

frequency bands were defined based on the typical physiological EEG frequency bands 

(Sanei and Chambers, 2007) as well as their relevance both in sensorimotor control 

(Nasseroleslami et al., 2014) and quantifying network dysfunction in motor neuron diseases 

(Dukic et al., 2019, Dukic et al., 2021). 

The band auto spectra [𝑆𝑖𝑖
∗ (𝑓𝑏), 𝑓𝑏 =  𝛿, 𝜃, 𝛼𝑙 , 𝛼ℎ, 𝛽𝑙, 𝛽ℎ,  𝛾𝑙 , 𝛾ℎ] and band cross 

spectra [𝑆𝑖𝑗
∗ (𝑓𝑏)] were calculated for each trial by taking the spatial median, which 

minimizes the sum of Euclidean distances, of the signal spectra over the specific band 

frequencies (Equation 4.3). For example, the banded spectrum for the δ band is the spatial 

median of the signal spectrum at 2, 3 and 4 Hz; the banded spectrum for θ band is the spatial 

median of the signal spectrum at 5, 6 and 7 Hz, and so on. The spatial median is a variation 

of the median operator for complex-valued spectra, which is more robust to outliers when 
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compared to the algebraic averaging (Niinimaa and Oja, 2014, Nasseroleslami et al., 2019, 

Dukic et al., 2017). 

𝑆∗(𝑓𝑏) =  𝑎𝑟𝑔 𝑚𝑖𝑛
𝞗

(∑ ‖𝑆(𝑓) − 𝞗‖𝑓=𝑓𝑏 )  (4.3) 

Table 4.2 Division of EEG spectral bandwidth into frequency bands. 

Frequency band Notation Frequency range (Hz) 

Delta δ 2-4 

Theta θ 5-7 

Low-alpha αl 8-10 

High-alpha αh 11-13 

Low-beta βl 14-20 

High-beta βh 21-30 

Low-gamma γl 31-47 

High-gamma γh 53-97 

  

The optimisation of equation 4.3 was done by Weiszfeld's algorithm (Weiszfeld, 1937). 

The banded cross spectrum was then normalised by using banded auto spectra for a given 

frequency band to obtain a banded spectral coherency (𝐶𝑖𝑗
∗ ) estimate for each trial 

(Equation 4.4) (Nasseroleslami et al., 2019). 

𝐶𝑖𝑗
∗ (𝑓𝑏) =  

𝑆𝑖𝑗
∗ (𝑓𝑏)

√𝑆𝑖𝑖
∗ (𝑓𝑏)×𝑆𝑗𝑗

∗ (𝑓𝑏)
  (4.4) 

4.4.4.2 Effective Connectivity (Generalised Partial Directed Coherence) 

Generalized partial directed coherence (𝑔𝑃𝐷𝐶) was used to evaluate the causal influences 

or effective connectivity between the cortical regions of interest (ROIs). 𝑔𝑃𝐷𝐶 is a 

normalized form of Partial directed coherence (PDC). PDC is a frequency domain 

multivariate method based on Granger causality introduced by Baccalá and Sameshima 

(2001). “Partial directed coherence describes the direction of information flow between 
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multivariate time series data based on the decomposition of multivariate partial coherences 

computed from multivariate autoregressive models” (Baccalá and Sameshima, 2001). 

A multivariate autoregressive model of EEG time series data 𝑋(𝑡)  =  [𝑥1(𝑡), … , 𝑥𝑁(𝑡)] 

with 𝑁 channels and of order 𝑝 can be defined by,  

[
𝑥1(𝑡)

⋮
𝑥𝑁(𝑡)

] = ∑ 𝐴(𝑟) [
𝑥1(𝑡 − 𝑟)

⋮
𝑥𝑁(𝑡 − 𝑟)

] + [
𝑤1(𝑡)

⋮
𝑤𝑁(𝑡)

]𝑝
𝑟=1   (4.5) 

where,  𝐴(𝑟) = [
𝑎11(𝑟) ⋯ 𝑎1𝑁(𝑟)

⋮ ⋱ ⋮
𝑎𝑁1(𝑟) ⋯ 𝑎𝑁𝑁(𝑟)

] is the autoregressive parameter. 

The coefficients 𝑎𝑖𝑗(𝑟) represent the linear interaction effects of 𝑥𝑗(𝑡 − 𝑟) onto 𝑥𝑖(𝑡). 

𝑤𝑖(𝑡), 𝑖 = 1,2, … , 𝑁 are the estimated errors. After adequate estimation of 𝐴(𝑟), it can be 

converted into the frequency domain 𝐴(𝑓) as follows: 

𝐴(𝑓) = ∑ 𝐴(𝑟)𝑝
𝑟=1 𝑒−𝑖2𝜋𝑓𝑟  (4.6) 

The transfer function for 𝑁 channel EEG signals can be defined as �̅�(𝑓) = 𝐼 −  𝐴(𝑓) =

[�̅�1(𝑓)�̅�2(𝑓) ⋯ �̅�𝑁(𝑓)]. The column vector �̅�𝑖(𝑓) (𝑖 = 1, 2, … 𝑁) is the 𝑖th column of the 

matrix �̅�(𝑓). The 𝑖, 𝑗th element of �̅�(𝑓) is denoted by �̅�𝑖𝑗(𝑓) and given by, 

�̅�𝑖𝑗(𝑓) = {
1 − ∑ 𝑎𝑖𝑗(𝑟)𝑝

𝑟=1 𝑒−𝑖2𝜋𝑓𝑟, 𝑖𝑓 𝑖 = 𝑗

− ∑ 𝑎𝑖𝑗(𝑟)𝑝
𝑟=1 𝑒−𝑖2𝜋𝑓𝑟, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (4.7) 

The PDC from channel 𝑗 to 𝑖  defined by Baccalá and Sameshima (2001) as follows: 

𝑃𝐷𝐶𝑖𝑗 =
�̅�𝑖𝑗(𝑓)

√∑ |�̅�𝑘𝑗(𝑓)|2𝑁
𝑘=1

  (4.8) 

Finally, the PDC was normalized by its variance (𝜎𝑖
2) to get the generalized PDC (Baccala 

et al., 2007). 

𝑔𝑃𝐷𝐶𝑖𝑗 =
�̅�𝑖𝑗(𝑓)/𝜎𝑖

√∑
1

𝜎𝑘
2

𝑁
𝑘=1 |�̅�𝑘𝑗(𝑓)|2

  (4.9) 
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In this study, 𝑔𝑃𝐷𝐶 for a bandwidth of 1-100 Hz was calculated using the Fieldtrip toolbox. 

The 1-100 Hz bandwidth was divided into 8 frequency bands as mentioned in Table 4.2, 

excluding the 48-52Hz range to avoid mains power interference. One 𝑔𝑃𝐷𝐶 value was 

obtained for each frequency band by taking the spatial median of the 𝑔𝑃𝐷𝐶 values at the 

frequencies covering the band, according to equation 4.3. 

4.4.5 Graph Analysis 

4.4.5.1 Global Clustering Coefficient (GCC) 

The clustering coefficient of an undirected network captures the small-worldness of that 

network. Small-worldness of a network is characterised by the maximum connectedness 

and the short average path length between the nodes. Cortical networks are small-world 

networks (Masuda et al., 2018). We used the global clustering coefficient (GCC) to 

calculate small-worldness (or density) of functional networks using the Watts and Strogatz 

method (Watts and Strogatz, 1998). Based on the significant banded spectral coherence 

(See sub-section 4.5.1 for the details), an EEG functional network was constructed using 

electrodes as vertices (nodes) and significant EEG-EEG banded coherence as edges. In a 

functionally connected EEG network, suppose that a node 𝑣 has 𝑘𝑣 neighbouring nodes; 

then the maximum number of connections or edges (𝐸𝑚) that exist between the node 𝑣 and 

its neighbour is given by: 

𝐸𝑚 =
𝑘𝑣(𝑘𝑣 − 1)

2
   (4.10) 

This occurs when every neighbour of node 𝑣 is connected to every other neighbour of 𝑣. 

Let 𝐸𝑣 denote the number of these allowable edges that actually exist i.e., the number of 

significant EEG-EEG banded coherence between node 𝑣 and its neighbours. Then, the local 

clustering coefficient 𝐶𝑣 of node 𝑣 is given by:  

𝐶𝑣 =
𝐸𝑣

𝐸𝑚
  (4.11) 
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Finally, the GCC for the functionally connected EEG network is the average of local 

clustering coefficients 𝐶𝑣 over all 𝑣 nodes: 

𝐺𝐶𝐶 =  
1

𝑣
∑ 𝐶𝑣

𝑣
𝑖=1   (4.12) 

The value of GCC ranges from 0 (no connection) to 1 (fully connected network). 

4.4.5.2 Causal Flow 

The adjacency matrix for effective connectivity was created by comparing the significance 

(𝑝 values) of generalised partial directed coherence (𝑔𝑃𝐷𝐶), which was obtained by 

bootstrapping (described in sub-section 4.5.2), with a significance level of 0.01. For a 

𝑔𝑃𝐷𝐶 value, if 𝑝 <  0.01, the effective connectivity was considered significant and 

represented by 1 in the adjacency matrix. The adjacency matrix was visualized by using 

directed graphs, which represented a network of causally influencing brain regions. In the 

directed graph representation of causal networks or effective connectivity, nodes 

represented ROIs and arrows represented the causal interaction between the ROIs. 

Furthermore, for each node/ROI in the network, causal inflow and outflow were calculated. 

Causal inflow (𝐼𝑛𝐹) of a node is the number of incoming links/arcs to the node from the 

rest of the nodes in the network. Similarly, causal outflow (𝑂𝑢𝑡𝐹) is the number of 

outgoing links/arcs from the node to the rest of the nodes in the network. Therefore, the 

causal flow (𝐶𝐹) of a node is given by the difference between the causal outflow and causal 

inflow. 

𝐶𝐹 =  𝑂𝑢𝑡𝐹 − 𝐼𝑛𝐹  (4.13) 

In effective/causal networks, if 𝑂𝑢𝑡𝐹 ≫ 𝐼𝑛𝐹 for a node, then the node acts as a source 

whereas, if 𝐼𝑛𝐹 ≫ 𝑂𝑢𝑡𝐹, the node acts as a sink. 
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4.5 Statistical Analysis 

4.5.1 Banded Spectral Coherence Statistics 

Coherence was presented based on equivalent z-scores and p-values at both individual and 

group-level. This approach prevents bias by eliminating the dependence on the number of 

trials for the coherence analysis.  

4.5.1.1 Participant (Individual) Level 

Participant-level statistics were calculated using one-sample non-parametric rank statistics 

for spectral coherence (Nasseroleslami et al., 2019). This method provides individual p-

values for spectral coherence in each frequency band for both patient and control groups. 

Stouffer's method (Stouffer et al., 1949, Westfall, 2014) was used to combine individual p-

values to derive group average p-values (𝑝𝑎𝑣𝑔).  

Let, individual p-values be 𝑝𝑘, 𝑘 =  1, 2, … , 𝑛, where 𝑛 is the number of p-values to be 

combined and the 𝑝𝑎𝑣𝑔 be the combined/average p-value. 

The z-scores of the p-values are given by: 

𝑍𝑘 = 𝛷−1(1 − 𝑝𝑘)  (4.14) 

where, Φ is the standard normal cumulative distribution function. 

The average z-score, 𝑍𝑎𝑣𝑔, and the average p-value, 𝑝𝑎𝑣𝑔, are given by: 

𝑍𝑎𝑣𝑔 =
∑ 𝑍𝑘

𝑛
𝑘=1

√𝑛
  (4.15) 

𝑝𝑎𝑣𝑔 = 1 − 𝛷(𝑍𝑎𝑣𝑔)  (4.16) 

This procedure is similar, but not procedurally equivalent, to pooled coherence analysis 

(Amjad et al., 1997). Both methods can be used to combine information from several 

participants (or trials). The p-values were corrected for multiple comparisons using the 
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false discovery rate (FDR) at q = 0.05 (Benjamini and Hochberg, 1995) (See sub-section 

4.5.4 for details of correction for multiple comparison procedures). The negative logarithm 

of the average p-value was used to visualise group average banded coherence (𝐶𝑎𝑣𝑔). 

𝐶𝑎𝑣𝑔 = −𝑙𝑜𝑔10(𝑝𝑎𝑣𝑔) (4.17) 

A coherence value greater than 1.30 (i.e., 𝑝𝑎𝑣𝑔< 0.05) indicated a significant functional 

connectivity between two regions. 

4.5.1.2 Group Level 

The banded coherence of the patient group was compared with the control group using 2 

sample non-parametric rank statistics (Nasseroleslami et al., 2019, Oja and Randles, 2004, 

Nordhausen and Oja, 2011) with the resulting p-value (𝑝𝑑𝑖𝑓𝑓) corrected for multiple 

comparisons using adaptive FDR at q = 0.05 (Benjamini and Hochberg, 2000) (See sub-

section 4.5.4 for details of correction for multiple comparison procedures).  

4.5.2 Effective Connectivity (Generalised PDC) Statistics 

4.5.2.1 Participant (Individual) Level 

The asymptotic distribution of the generalised partial directed coherence (𝑔𝑃𝐷𝐶) is not 

well known therefore non-parametric bootstrap-based approaches are commonly used to 

test for significant connectivity. Gaussian white noise was used for non-parametric 

bootstrapping (Efron and Tibshirani, 1993) with 2000 repetitions to estimate the null 

distribution for banded 𝑔𝑃𝐷𝐶 values. The Empirical Bayesian Inference (EBI) method 

(Nasseroleslami, 2019) was used to calculate p-values for 𝑔𝑃𝐷𝐶 values. The p-values were 

corrected for multiple comparison using false discovery rate (FDR) at q=0.05 (Benjamini 

and Hochberg, 1995) (See sub-section 4.5.4 for details of correction for multiple 

comparison procedures). 
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4.5.2.2 Group Level 

For group analysis, the spatial median of the individual 𝑔𝑃𝐷𝐶 was taken as group effect 

whereas the individual p-values were combined or averaged using Stouffer’s method 

(Stouffer et al., 1949) (See sub-section 4.5.1.1 for details of Stouffer’s method) to get group 

level significance of 𝑔𝑃𝐷𝐶. The group level difference (patients vs controls) between the 

effective connectivity measure (𝑔𝑃𝐷𝐶) was calculated by using non-parametric Wilcoxon 

rank sum test (Gibbons and Chakraborti, 2003). The p-values obtained from group 

comparisons were subjected to correction for multiple comparison using adaptive FDR at 

q=0.05 (See sub-section 4.5.4 for details of correction for multiple comparison procedures). 

4.5.3 Effect Size 

The effect size provides a standardized measure of the magnitude or strength of an observed 

effect or relationship and helps to better understand the practical significance of the 

findings. In this study, the effect size of the abnormal network measures (significantly 

different measure in patients compared to controls) was reported to indicate its usefulness 

as a network biomarker. Effect sizes are often categorized as small (𝑑 = 0.2), medium 

(𝑑 =  0.5), or large (𝑑 = 0.8) based on benchmarks proposed by Cohen (1988). However, 

it is important to note that these benchmarks are somewhat arbitrary and should not be 

interpreted in a rigid manner (Thompson, 2007, Correll et al., 2020). The following 

measures of effect size have been reported in this study. 

4.5.3.1 Cohen’s d 

Suppose 𝑛1 and 𝑛2 are the number of participants in two groups (control and patient) and  

𝑋1
̅̅ ̅ and 𝑋2

̅̅ ̅ are the mean of a network measure (for example, coherence) for the two groups, 

respectively. If 𝑆𝐷1 and 𝑆𝐷2 are the standard deviations of the network measure, then the 

pooled standard deviation of the measure is given by: 
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𝑆𝐷𝑝𝑜𝑜𝑙𝑒𝑑 =  √
(𝑛1−1)𝑆𝐷1

2+(𝑛2−1)𝑆𝐷2
2

𝑛1+𝑛1−2
   (4.18) 

Cohen’s d for the measure is then given by: 

𝑑 =  
𝑋1̅̅̅̅ −𝑋2̅̅̅̅

𝑆𝐷𝑝𝑜𝑜𝑙𝑒𝑑
  (4.19) 

 

4.5.3.2 Hedge’s g 

Cohen’s d as explained above is based on the difference between the sample means and 

gives a biased estimate of the population effect size especially for small sample sizes 

(𝑛 < 20) (Hedges and Olkin, 1985). For this reason, Cohen’s d is sometimes referred to 

as the uncorrected effect size (Lakens, 2013). The corrected effect size which is unbiased 

for smaller samples is given by Hedge’s g (Hedges and Olkin, 1985). 

𝑔 = 𝑑 × (1 −
3

4(𝑛1+𝑛2)−9
)  (4.20) 

Here 𝑑 is Cohen’s d (equation 4.19). Although Cohen’s d and Hedge’s g are similar for 

large sample sizes (𝑛 > 20), Hedge’s g is more useful if the sample size is small (𝑛 < 20) 

(Kline, 2004). 

4.5.4 Correction for Multiple Comparisons 

Typically, during single hypothesis testing, to reject the null hypothesis and consider the 

observed difference or change as statistically significant, researchers aim for a significance 

level of α=0.05. However, when multiple hypothesis tests are conducted within an 

experiment (for example, the hypotheses that EEG-EMG coherence between an ALS 

cohort and healthy controls differs in multiple frequency bands), the likelihood of false 

positive findings (type I error) or incorrectly rejecting the null-hypothesis increases. 

Correcting for multiple comparisons is then required to reduce the likelihood of obtaining 

false positive results when testing multiple hypotheses. 
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One straightforward and commonly used method for multiple comparison correction is the 

Bonferroni method, where the significance level is divided by the number of comparisons 

made. This method is suitable for small numbers of comparisons, but it becomes more 

conservative, leading to limited statistical power and a higher chance of false negative 

findings (type II error) when the number of comparisons increases (Valerie et al., 1999). 

To counteract the multiplicity problem with higher statistical power, an alternative method 

is to control the false discovery rate (FDR). The FDR represents the proportion of errors 

committed by falsely rejecting null hypotheses, providing a more flexible approach 

compared to familywise error rate control such as the Bonferroni method (Benjamini and 

Hochberg, 1995). 

4.5.4.1 False Discovery Rate (FDR) Correction 

We have used the Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995) which 

is the most commonly used method for controlling the false discovery rate (FDR). The 

steps involved in applying the FDR correction with Benjamini-Hochberg method are as 

follows: 

Step 1: Perform the individual statistical tests for each hypothesis of interest (say 

𝐻1, 𝐻2, … 𝐻𝑛 where 𝑛 is the number of hypotheses tested). 

Step 2: Obtain the p-values associated with each test (say 𝑝1, 𝑝2, … 𝑝𝑛 be p-values 

associated with hypothesis 𝐻1, 𝐻2, … 𝐻𝑛, respectively). 

Step 3: Sort the p-values in ascending order, from smallest to largest (say 𝑝1 ≤  𝑝2 ≤ ⋯ ≤

𝑝𝑛). 

Step 4: Estimate the critical threshold or alpha level for controlling the FDR by determining 

the desired FDR level, typically denoted as 𝑞. For example, if we want to control 

the FDR at 0.05, then 𝑞 =  0.05. 
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Step 5: Calculate the critical value, 𝑘, which is the largest index where 𝑝𝑘 ≤
𝑘𝑞

𝑛
. 

Step 6: Reject the null hypothesis for p-values less than or equal to 𝑝𝑘 i.e., reject all 𝐻𝑥 

where 𝑥 = 1,2, … , 𝑘.  

4.5.4.2 Adaptive False Discovery Rate (adaptive FDR) Correction 

During multiple independent significance testing of group differences, an FRD correction 

could be less powerful or more conservative and may not reject the hypotheses that are in 

fact false (Benjamini and Hochberg, 2000). To overcome this limitation, an adaptive FDR 

correction method has been proposed by Benjamini and Hochberg (2000). We have used 

adaptive FRD correction after comparing the groups (for example, ALS cohort vs healthy 

controls) and to correct p-values for the correlation analysis. The steps involved in adaptive 

FDR correction method are as follows:   

Step 1: Perform Step 1 to Step 5 of the FDR correction procedure from sub-section 4.5.4.1 

above. If 𝑘 doesn’t exist, then do not reject any hypothesis, and stop, otherwise 

proceed to the next step. 

Step 2: Calculate the slope 𝑆𝑖 = (1 − 𝑝𝑖)/(𝑚 = 1 − 𝑖), where 𝑖 =  1,2, … , 𝑛. 

Step 3: Starting with 𝑖 = 2, proceed if 𝑆𝑖 ≥  𝑆𝑖−1. When for the first time 𝑆𝑗 <  𝑆𝑗−1 stop 

and set 𝑛0̂ = min ([
1

𝑆𝑗
+ 1] , 𝑚). 

Step 4: Starting with the largest p-value 𝑝𝑛, compare each 𝑝𝑖 to 𝑖𝑞/𝑛0̂  (where q is FDR 

level) until reaching the first p-value that satisfies 𝑝𝑘 ≤ 𝑘𝑞/𝑛0̂.  

Step 5: Reject all 𝑘 null-hypotheses having p-values smaller than 𝑝𝑘. 

4.5.5 Correlation Analysis 

The association of the ALS network measures, such as functional/effective connectivity 

and causal inflow/outflow, with clinical measures such as ALSFRS-R scores was tested 
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using non-parametric Spearman’s rank correlation coefficients. Spearman’s rank 

correlation uses the rank of the data as opposed to the data itself for the estimation of the 

correlation which makes it robust against outliers. If 𝑑𝑖 is the difference of the rank between 

the 𝑖𝑡ℎ observations of two variables 𝑥 and 𝑦 within total 𝑛 observations, then the 

Spearman’s correlation coefficient 𝜌𝑥𝑦 between variables 𝑥 and 𝑦 is given by: 

𝜌𝑥𝑦 = 1 −
6 ∑ 𝑑𝑖

2𝑛
𝑖=1

𝑛(𝑛−1)
  (4.21) 

The p-values of Spearman’s rank correlation can be obtained by using test statistics such 

as z-statistics with the help of Fisher’s transformation.  

In this study, the p-values obtained from multiple correlation tests were adjusted for 

multiple comparisons using adaptive FDR at q = 0.05 (See sub-section 4.5.4 for details of 

correction for multiple comparison procedures).  A line was fitted to the data in scatter 

plots, to visualise the relationship, using Robust linear least-square fitting method (Holland 

and Welsch, 1977). 
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5. Results: Banded Spectral Coherence as a Tool  

Published Work List 

The work described in this chapter has been published in the peer-reviews journal Cerebral 

Cortex as: 

Bista S, Coffey A, Fasano A, et al., Cortico-muscular coherence in primary lateral sclerosis 

reveals abnormal cortical engagement during motor function beyond primary motor 

areas, Cerebral Cortex, Volume 33, Issue 13, 1 July 2023, Pages 8712–

8723, https://doi.org/10.1093/cercor/bhad152 

This chapter describes the new method we have developed to assess the functional 

connectivity (coherence) of neuro-electric signals in relation to sensor level CMC in 

healthy controls and PLS. It contains all figures and tables as well as the results and 

discussion section text from this publication. In addition, the figures and text from the 

supplementary materials of this publication have been included in this chapter. Introduction 

and methods section text from this publication have been abbreviated in this chapter to 

avoid repetition of the contents of chapters 1-4. 

5.1 Introduction 

Functional connectivity (FC) is a measure of functional coupling or synchrony between 

neuronal sources. The modalities and methods used for functional connectivity analysis 

within brain (EEG-EEG) or between brain and muscles (EEG-EMG) have already been 

reviewed in literature review chapter with each modality/method having their own 

advantages and disadvantages. The rationale for developing a new method for the 

calculation of functional connectivity (coherence) is to harness the robustness of the non-

parametric (median based)  functional connectivity measure against artefacts (Dukic et al., 

2017) and to represent the collective connectivity strength with a single value over the 
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range of frequencies within each distinct neurophysiological frequency band. More 

importantly, the new method utilises non-parametric rank statistics for coherence 

(Nasseroleslami et al., 2019) which presents connectivity strengths as p-values so there is 

no need for separate significance testing (close form solution or non-parametric 

bootstrapping) as required by other existing connectivity measures. Additionally, the new 

method is robust against the bias introduced by the number of epochs (L) used to estimate 

the functional connectivity (Nasseroleslami et al., 2019) which is not in the case of existing 

coherence based methods.  

We hypothesised that the new method of estimating functional connectivity provides robust 

detection of network connectivity with a singular value for a frequency band and will be 

useful to identify the abnormal network connections in patient groups. 

5.2 Methods 

5.2.1 Ethics 

The study was approved by the Tallaght University Hospital / St. James's Hospital Joint 

Research Ethics Committee - Dublin [REC Reference: 2019-05 List 17 (01)] and performed 

in accordance with the Declaration of Helsinki (2013). All participants provided informed 

written consent to the procedures before undergoing assessment. 

5.2.2 PLS Cohort  

The PLS cohort was prospectively recruited in this cross-sectional study between June 

2017-August 2019 through the national ALS clinic at Beaumont Hospital. All participants 

with PLS fulfilled the clinical criteria for PLS (Turner et al., 2020). Healthy controls, age-

matched to the PLS cohort, were recruited from a database of healthy controls interested in 

taking part in the ongoing research studies in the Academic Unit of Neurology, Trinity 

College Dublin, the University of Dublin.  
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Subjects with a history of major head trauma or other neurological conditions that could 

affect cognition, alcohol dependence syndrome, current use of neuroleptic medications or 

high-dose psychoactive medication were excluded. Those with diabetes mellitus, a history 

of cerebrovascular disease, and those with neuropathy from other causes were also 

excluded. The entire PLS cohort underwent nerve conduction studies and 

electromyography to exclude other concurrent peripheral nerve disorders that could 

interfere with CMC analyses. 

5.2.3 Clinical assessment 

On the day of EEG recording the PLS cohort underwent an extensive clinical assessment. 

Disease duration from symptom onset and site of disease onset were recorded. Muscle 

strength was assessed using the Medical Research Council (MRC) score (Compston, 2010) 

in 9 bilateral (i.e., 18) upper limb muscles, including deltoid, triceps, biceps, wrist flexors 

and extensors, fingers flexors and extensors, and abductors of the index fingers and thumbs. 

The degree of clinical upper motor neuron (UMN) involvement in the upper limbs was 

graded by an UMN score (de Carvalho et al., 2003). An adapted UMN score based on Kent-

Braun et al (Kent-Braun et al., 1998) was calculated using reflex and UMN signs 

assessment. Reflexes were assessed at three sites in the upper limbs (biceps, triceps and 

brachioradialis). The UMN-score ranges from 0 (normal) to 16 (reflecting hyperreflexia 

[0-6], hypertonia [0-4], clonus [0-2], Babinski [0-2] and Hoffmann sign [0-2]). The 

Edinburgh Cognitive ALS Screen (ECAS), which evaluates cognitive performance across 

language, verbal fluency, executive, memory and visuospatial domains (Abrahams et al., 

2014), was performed on 14 of the 16 PLS participants (two declined). The Edinburgh 

handedness inventory (EHI) (Oldfield, 1971) with 10 questions was performed to assess 

the handedness of the PLS cohort as well as healthy controls.  
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HD-EEG and bipolar surface EMG were subsequently recorded in all participants for 

calculation of CMC during motor tasks. 

5.2.4 Experimental Paradigm 

Assessment was conducted in the same manner for the PLS and control groups, described 

as Experiment 2 in sub-section 4.3.2.2 in chapter 4 Materials and Methods. The reason 

behind choosing for experiment 2 for the analysis is explained in sub-section 5.3.3 below. 

Participants held a force transducer between the thumb and the index finger of their right 

hand, irrespective of the right- or left-hand dominance, to measure pincer grip force. The 

maximal voluntary contraction (MVC) was determined as the average peak force achieved 

during three short (5 s) maximal contractions, where the peak force in these attempts lay 

within 10% of each other.  Participants were asked to produce a force at 10% MVC for 5 s 

while holding the force transducer in pincer grip, guided by visual force feedback on screen 

(pincer grip task). Participants attempted a total of 30 trials for each task.   

5.2.5 Recording of (Neuro-)electrophysiological Signals 

All participants were seated comfortably, EEG data were recorded in a special-purpose 

laboratory, using a 128-channel scalp electrode cap. Data were filtered over the range of 

0–400 Hz and digitized at 2048 Hz using the BioSemi® ActiveTwo system (BioSemi B.V, 

Amsterdam, Netherlands). Each participant was fitted with an appropriately sized EEG cap.  

Surface EMG data were recorded simultaneously with EEG using a bipolar electrode 

configuration from eight muscles in the right upper arm, with the electrode pairs placed in 

accordance with the SENIAM guidelines (Hermens et al., 2000). The online hardware gain 

and filter settings for the EMG signals during recordings were the same as for the EEG 

channels. Recording was followed by further offline pre-processing. Five EEG channels 

(Cz, Pz, C4, Fz, C3) and three EMG signals (first dorsal interosseous, FDI; Flexor Pollicis 
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Brevis, FPB and Abductor Pollicis Brevis, APB) were chosen apriori for the cortico-

muscular coherence analysis (CMC). The EEG electrodes were chosen due to their 

representative coverage of the cortical motor network. The C3, Cz, and C4 cover the 

contralateral, central, and ipsilateral hand sensorimotor regions for the chosen tasks. Fz 

pertains to the frontal areas that reflect the activity from supplementary motor regions (and 

to some extent premotor areas). Finally, Pz reflects the activity from parietal areas that play 

important roles in visuomotor tasks and spatiotemporal integration (Nasseroleslami et al., 

2014). Importantly, these regions have minimal spatial overlap and allow the activity of 

more distinct regions to be assessed. The target muscles were selected based on their 

biomechanical involvement in the pincer grip task (Danna-Dos Santos et al., 2010).  

5.2.6 Signal Pre-processing and Spectral Analysis 

EEG/EMG data analysis (Figure 5.1) was performed as described in detail in sub-section 

4.4.1 of section 4.4 Sensor Level Analysis in this thesis and in a previous study (Coffey et 

al., 2021). Briefly, automated artefact rejection routines (Fieldtrip Toolbox) (Oostenveld et 

al., 2011) were used to discard data contaminated by noise. After visual inspection of the 

128-channel recordings, EEG channels with higher levels of noise were removed and 

reconstructed using weighted average interpolation of neighbouring channels (Perrin et al., 

1989). An average of 22±6 trials (i.e., 88±24 seconds) for the five target EEG channels 

were retained for the Corticomuscular coherence calculation across all participants. A time 

window/epoch duration of 4 s (starting 1s after the visual cue) was chosen for analysis. 

Data epochs where the coefficient of variation of the force produced was above 0.2, or 

where the mean force was less than 8% or more than 20% MVC, were excluded from 

further analysis. An average of 3 ± 6 trials (i.e., 12 ± 24 seconds) were removed across all 

participants for these reasons. The raw EEG data were (re-)referenced using a surface 
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Laplacian spatial filter (Bradshaw and Wikswo, 2001, McFarland et al., 1997), which 

served to provide signals that are more spatially specific to each EEG electrode (See topic 

Referencing and Filtering of sub-section 4.4.1.1 and Figure 4.3 in chapter 4 Materials and 

Methods for the details). The EMG data (signal amplitude) were normalized with respect 

to root mean square EMG amplitude at 100 % MVC. EEG and EMG data were filtered 

between 1-100Hz and 10-100 Hz respectively using a dual-pass 4th order Butterworth 

bandpass filter. The auto-spectrum of each EEG/EMG signal, and the cross-spectrum 

between all combinations of EEG-EMG signals (frequency resolution 1Hz, bandwidth 2-

100Hz) were calculated using the Fieldtrip toolbox (Hanning taper and frequency 

smoothing at 1Hz, non-overlapping windows of 1s). EMG signals were not rectified. 

5.2.7 Estimation of Coherence Spectrum and Banded Coherence 

Coherence is presented based on equivalent z-scores and p-values at both subject and 

group-level. This approach prevents bias by eliminating the dependence on the number of 

trials for the coherence analysis. See sub-sections 4.4.4.1 and 4.5.1 in chapter 4 Materials 

and Methods for the detailed formulation and statistics of banded spectral coherence.  

CMC was examined in 8 different frequency bands (Table 4.2) and a single coherence 

estimate was obtained for each band. CMC was estimated based on the spatial median using 

the following procedure. Coherence was estimated using the median value of the auto- and 

cross-spectra represented by their real and imaginary components in two-dimensional 

space calculated across epochs (Niinimaa and Oja, 2014, Weiszfeld, 1937) and Figure 2 in 

Nasseroleslami et al. (2019).  This contrasts with classical coherence estimates which are 

based on the expected value or arithmetic mean of the spectra.   The auto- and cross-spectra 

for each 1 s epoch were calculated for each participant.  The spatial median coherence was 

then estimated from the spatial median of the auto- and cross-spectra with a resolution of 
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2 Hz, Figure 5.1 F, and across each of the 8 defined frequency bands to obtain the ‘banded 

coherence’, Figure 5.1 H. The banded spectral cortico-muscular coherence was normalized 

by dividing the band cross-spectrum by the respective band auto-spectra. The strength of 

coherence was subsequently presented using the equivalent p-value as -log(p), which we 

denote as “pCoh”.  

To represent the banded CMC as a probability, each coherence value was compared against 

zero using a non-parametric one-sample test for significant coherence [spatial (signed) 

ranks (Hannu Oja & Randles, 2004; Hannu Oja, 2010; Nordhausen & Oja, 2011)]. This 

procedure yielded individual p-values for each frequency band, for each individual (both 

PLS and control groups). Stouffer’s method  was used to combine individual p-values to 

derive average p-values within each group, i.e. in the healthy group, and in the PLS group 

(Stouffer et al., 1949, Westfall, 2014). This procedure is similar, but not procedurally 

equivalent, to the pooled coherence analysis (Amjad et al., 1997). Both methods can be 

used to combine information from several participants (or trials). The negative logarithm 

of the p-values, i.e. -log10(p), was used as a measure of CMC strength to visualize cortico-

muscular coherence. The band-specific coherence values, expressed in -log10(p), were 

used to represent the collective coherence over the range of frequencies within each distinct 

frequency band (Figure 5.1 H). 
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Figure 5.1 Example showing the estimation of banded cortico-muscular coherence (CMC), using data 

from a healthy control participant.pre-processed EEG signal recorded from C3 electrode, (B) pre-processed 
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EMG signal recorded from abductor pollicis brevis (APB) muscle during the same time interval, (C) Power 

spectrum of EEG signal, (D) Power spectrum of EMG signal in the frequency range of interest, (E) CMC 

estimated using the magnitude squared coherence with spectral smoothing (“classical coherence”), (F) CMC 

calculated using the spatial median to estimate the auto- and cross-spectra of the EEG and EMG data 

(“pCoh”). Here the spatial median was used to group the coherence spectra over bands with a 2Hz interval 

to facilitate the comparison of pCoh with classical coherence, (G) conversion of classical magnitude squared 

coherence into banded CMC values. Here the spatial median method is used to group the classical coherence 

spectra so that there is one coherence value for each of the pre-defined bands, (H) pCoh CMC calculated 

using the spatial median method to group coherence spectra over pre-defined bands. Note that F and H use 

the same coherence methodology, with the only difference being the bandwidth of the frequency bands used 

for grouping the coherence spectra. Frequency bands: delta (δ), theta (θ), low alpha (αl), high alpha (αh), 

low beta (βl), high beta (βh), low gamma (γl), high gamma (γh). This figure has been published in Bista et al. 

(2023) as Figure 2, see appendix 5.1. 

For comparison, the magnitude squared coherence, referred to here as “classical 

coherence”, was also estimated in the frequency range 2-100 Hz in addition to the banded 

coherence.  Spectral smoothing of auto- and cross-spectrum was done using a Hanning 

filter. The significance threshold (upper 95% confidence limit) was calculated as 1 −

 0.05
1

(𝐿−1)∗0.375 , where L is the number of segments  used to calculate coherence and the 

factor 0.375 is a correction for spectral smoothing using a Hanning filter (Halliday and 

Rosenberg, 1999). 

5.3 Results 

5.3.1 Clinical Profile 

16 participants with PLS (7 females and 9 males, age: 62.7 ± 8.7 [mean ± SD]) were 

prospectively recruited from the national ALS Clinic based in Beaumont hospital, Dublin. 

All participants with PLS were diagnosed with definite PLS fulfilling the consensus criteria 

(Turner et al., 2020) defined as the absence of LMN degeneration 4 or more years from 
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symptom onset. 18 healthy controls (7 female) were recruited (age: 62.5 ± 8.97 [mean ± 

SD]). Table 5.1 shows the detailed profile of the recruited participants.  

Table 5.1 Clinical and demographic data of the analysed PLS and control groups. This 

table has been published as Table 1 in Bista et al. (2023), see appendix 5.1. 

 PLS Controls 

Biological Sex (Female/Male) 7/9 7/11 

Average age at recording (years) 62.7±8.7 62.5±8.9 

EHI (Right/Left) 14/2 16/2 

Disease duration (years) 7.6± 6.01 - 

UMN score (max 16) 12.8 ± 2.3  

Spasticity score (upper limb) (max 4) 3.5±1.09  

MRC (upper limb) (max 100) 71.6±4.08  

ECAS Total abnormal score n (%)   4 (28%)  

Language 1 (7%)  

Verbal Fluency 2 (14%)  

Memory 2 (14%)  

Visuospatial 1 (7%)  

EHI (Edinburgh Handedness Inventory) 

UMN (Upper Motor Neuron Score) 

MRC (Medical Research Council Scale for Muscle Strength) 

 

ECAS results were scored as normal or impaired based on education and age (Pinto-Grau 

et al., 2017). Four participants with PLS (28%) showed evidence of cognitive impairment 

based on the total ECAS score. The details are listed in Table 5.1. Abnormal performance 

in visuospatial domains (7%) were uncommon based on our screening assessment with 

ECAS. 
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5.3.2 Comparison of banded and classical CMC 

5.3.2.1 Group average banded and classical Corticomuscular coherence (CMC) for all 

EEG and EMG channels 

The group average of Classical CMC spectra (Figure 5.3) is similar to the group average 

of banded CMC spectra (Stouffer’s averaging of p values-based CMC) (Figure 5.2) for 

both PLS cohort and healthy controls. 

  

 

Figure 5.2 Group average banded cortico-muscular coherence (CMC) across 5 selected EEG and 3 

selected EMG channels in the PLS cohort vs. healthy controls. The EEG channels (C3, Cz, C4, Pz, and Fz) 

are surface Laplacian-referenced and the EMG channels are bipolar surface EMG channels. The CMC were 

corrected for multiple comparison using adaptive FDR at q = 0.05. The coherence spectra were grouped 

over pre-defined bands using the spatial median (“pCoh”). The CMC values that were significantly different 

between PLS and control groups are outlined in Figure 5.8 in this chapter. 
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Figure 5.3 Group average classical magnitude-squared CMC across 5 selected EEG and 3 selected EMG 

channels in the PLS cohort vs. healthy controls. The EEG channels (C3, Cz, C4, Pz, and Fz) are surface 

Laplacian-referenced and the EMG channels are bipolar surface EMG channels. 

5.3.2.2 Comparing CMC in the PLS participants using different spectral averaging and 

banded coherence methods 

Both methods (classical and banded) have detected significant CMC in the low-beta (14-

20 Hz) and high-gamma (53-97Hz) bands in a PLS participant and the coherence spectra 

are also similar (Figure 5.4). The banded CMC, however, gave a single value for each 

frequency band.  
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Figure 5.4 Banded and classical magnitude-squared CMC between Fz and 3 EMG channels in a PLS 

participant. 

 

5.3.2.3 Spatial Topology of beta CMC for Controls  

The spatial topology of banded beta “pCoh” CMC between EMG and the five EEG 

channels showed maximum CMC within the sensorimotor cortices (C3, Cz) and 

visuomotor processing areas (Pz) in controls (Figure 5.5 top panel). Similar results were 

observed with classical magnitude-squared CMC (Figure 5.5 bottom panel), however the 

banded pCoh resulted in more localised CMC patterns.   
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Figure 5.5 The spatial topology of group average beta CMC between 5 EEG (C3, C4, Cz, Fz, Pz) and 3 

EMG (APB, FDI, FPB) channels using banded “pCoh” CMC method (top panel) and classical magnitude-

squared CMC method in the same band (bottom panel) in healthy controls. 

 

5.3.3 Verification of the task-effect  

In our pilot experiments in the control group, the pincer grip task (Experiment 2) generated 

low levels of beta-band CMC when compared with the precision grip task (Coffey et al., 

2021), suggesting that the pincer grip  task may be more suitable for studying abnormally 

increased CMC patterns in patients. The results of the pilot experiments are shown in 

Figure 5.6, depicting both classical and banded group average CMC in controls for the 10% 

MVC pincer grip task and the precision grip task. During the precision grip task, the 

controls showed clear and significant beta CMC peaks at group level.  
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Figure 5.6 Classical and banded group average Corticomuscular coherence (CMC) for healthy controls 

between C3 (contralateral primary motor cortex) and Abductor Pollicis Brevis (APB) muscle during pincer 

grip at 10% maximum voluntary contraction (top panel) and precision grip (bottom panel) using thumb 

and index finger of the right hand. The comparison confirms that the pincer grip task generates lower typical 

beta CMC compared to the precision grip task. The pincer grip task was chosen as it was hypothesised that 

a lower level of beta CMC would facilitate the detection of abnormally increased CMC in the PLS group. 

The 10% MVC pincer grip task exhibited a lower group average CMC peak in the beta-

band when compared with CMC during precision grip, Figure 5.6. However, significant 

beta-band coherence peak was still detected during the pincer grip task in 14 out of 18 

control participants using classical coherence (Figure 5.7). The lower CMC observed in the 

pincer grip task is expected as the force is exerted against a rigid load cell with no digit 
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displacement and no object flexibility. Previous studies have shown that beta-band CMC 

is lower for isometric pinch grip contractions against a rigid force transducer when 

compared with those performed with a compliant, or spring-like load (Kilner et al., 2000). 

 

 

Figure 5.7 Individual classical magnitude squared CMC between C3 (contralateral primary motor cortex) 

and Flexor Pollicis Brevis (FDI) muscle for pincer grip (10% MVC) task. The significance threshold or 

estimate of the upper 95% confidence limit for classical CMC is calculated as 1 −  0.05
1

(𝐿−1)∗0.375 , where L 

is the number of trials used to calculate coherence. 
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5.3.4 Abnormally high cortico-muscular coherence in PLS  

 

Figure 5.8 Participants with PLS show abnormal Cortico-Muscular (EEG-EMG) Coherence in primary 

motor areas, and beyond typical beta band during pincer grip task. The first column displays pCoh grouped 

over shorter 2 Hz frequency bands and the second column shows the banded coherence (“pCoh”) grouped 

over pre-defined frequency bands. The pCoh spectra show the strength of synchrony of the EEG electrodes 

over the contralateral primary motor area C3 (A & B) and ipsilateral primary motor area C4 (C) with EMG 

(First Dorsal Interosseous, FDI; and Flexor Pollicis Brevis, FPB, muscles) in different frequency bands. This 

figure has been published in Bista et al. (2023) as Figure 3, see appendix 5.1. 
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Figure 5.9 Box plot of banded CMC (expressed as z-scores) for the EEG-EMG channel and frequency 

band combinations that were found to show significant CMC in PLS after FDR correction.  The plots show 

the CMC for control and PLS participants overlayed with individual values. The groups were compared using 

the Kolmogorov-Smirnov test. Significant group differences are marked with an asterisk (*p < .05, corrected 

at FDR q = 0.05). This figure has been published in Bista et al. (2023) as Figure 4, see appendix 5.1. 

The results show that there were statistically significant differences in the frequency, 

location (EEG-EMG pair), and magnitude of the CMC between healthy controls and the 

PLS group, Figure 5.8 (q < 0.05, with FDR multiple comparison correction). The coherence 

spectra for all EEG channels and muscles investigated are presented in Figure 5.2 and 

significant differences between PLS and control groups are summarized in Figure 5.8 and 

Table 5.2. 
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Table 5.2 Table showing group average banded Corticomuscular coherence (CMC) 

values expressed as p values.  The CMC measures pertain to selected EEG-EMG channel 

and frequency band combinations that were significant in the PLS group after FDR 

correction at q = 0.05. The CMC values are shown for controls and PLS along with group 

difference p values and effect size. This table has been published as Table 2 in Bista et al. 

(2023), see appendix 5.1.  

 

EEG/EMG  

 

Frequency  

CON 

Avg pCoh 

(p) 

PLS 

Avg pCoh 

(p) 

Kolmogorov-

Smirnov test 

(p) 

Effect Size 

Cohen’s d 

C3-FDI  High Beta  0.135 0.011 0.465 0.381 

C3-FDI  Low Gamma  0.093 0.003 0.006 0.987 

C3-FPB  High Alpha  0.040 0.033 0.047 0.374 

C3-FPB  High Gamma  0.0412 0.009 0.052 0.524 

C4-FDI  Low Beta  0.788 0.009 0.015 0.786 

 

Healthy controls did not show strong beta-band CMC peaks over the contralateral motor 

area when grouped across all participants (C3), likely due to the task selection (pincer grip 

vs precision grip), Figure 5.6 and Figure 5.8 A-B. However, when examined on an 

individual basis significant beta-band CMC was detected in 14/18 controls, Figure 5.7. 

Biological sex had no effect on CMC detected in the PLS cohort (p > 0.05, tested using 

Mann-Whitney U test). 

5.3.5 CMC pattern over the contralateral primary motor area 

C3-FDI and C3-FPB CMC were significantly higher in the gamma- and alpha-band, 

respectively, in the PLS group when compared with controls. The coherence was not 

statistically significant for the control group at the C3 channel location over contralateral 

motor area (between C3 and for both the FDI and FPB muscles, respectively, Figure 5.8 
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A-B). It is notable that statistically significant gamma- and alpha- band cortico-muscular 

coherence was observed in the PLS cohort (Figure 5.8 A-B) as this is not typically observed 

in healthy subjects during low force muscle contractions.  

5.3.6 CMC pattern over the ipsilateral primary motor area  

Significant beta-band CMC (βl) was observed between C4 and the FDI over the ipsilateral 

motor area in the PLS cohort, and not observed in controls (Figure 5.8 C).  

5.3.7 Correlates with UMN dysfunction score show location-specific positivity and 

negativity 

We then conducted a separate analysis to test for significant correlations between CMC 

and UMN score (calculated for all pre-defined frequency bands and EEG and EMG 

channels). Several of the CMC measures were significantly correlated with the UMN 

dysfunction score after FDR correction, Table 5.3, and Figure 5.10. In Table 5.3 and Figure 

5.10, a negative correlation between a CMC measure and UMN score indicates that higher 

UMN-impairment (more severe clinical symptoms) are associated with reduced EEG-EMG 

synchrony (CMC) in the PLS cohort.   

A positive correlation indicates that PLS participants with more severe UMN symptoms 

exhibited stronger CMC in these muscles/brain regions.  Both alpha- and gamma-band 

CMC between the APB muscle and the contralateral motor cortex (C3) were lower in PLS 

participants with more severe UMN impairments (significant negative correlation with 

UMN score). Theta-band CMC coherence between the FDI and the frontal brain region 

(Fz) was also significantly lower in PLS participants with greater UMN dysfunction. 

Gamma-band CMC between the APB and the ipsilateral motor area (C4) varied with the 

degree of upper motor neuron dysfunction. PLS participants with greater UMN 
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impairments exhibited lower CMC in the high gamma-band (γh) but higher CMC in the 

low gamma-band (γl). Finally, PLS participants with greater UMN impairments exhibited 

greater beta-band CMC between the APB and the parietal brain region (beta-band CMC in 

the parietal region is not typically observed in healthy controls). 

 

 

Figure 5.10 Measures of Cortico-Muscular (EEG-EMG) Coherence in PLS show significant strong 

positive and negative correlations with the clinically defined Upper Motor Neuron (UMN) dysfunction 

score. The p-values have been corrected for false discovery rate (FDR) at q = 0.05. Notice that the 

correlations are partial correlations with the effect of age removed from the inference. This figure has been 

published as Figure 5 in Bista et al. (2023), see appendix 5.1. 
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Figure 5.11 Significant correlations of cortico-muscular coherence with clinically defined Upper Motor 

Neuron (UMN) dysfunction score show location-specific positivity and negativity. This figure has been 

published as Figure 6 in Bista et al. (2023), see appendix 5.1. 

 

Table 5.3 Summary of Cortico-Muscular Coherence (CMC) Measures of Interest. 

This table has been published as Table 3 Bista et al. (2023), see appendix 5.1.  

CMC 

Measure 

EEG/EMG 

Location 

Frequency Band Significant 

Coherence 

observed 

in PLS 

Significant 

difference 

between 

PLS and 

Controls 

Significant +/- 

Correlation 

with UMN 

Score 

1 C3-FDI High Beta ✓   

2 C3-FDI Low Gamma ✓ ✓  

3 C3-FPB High Alpha ✓ ✓  

4 C3-FPB High Gamma ✓   

5 C4-FDI Low Beta ✓ ✓  

6 Fz-FDI Delta   - 

7 C3-APB Low Alpha   - 

8 C3-APB High Gamma   - 

9 C4-APB High Gamma   - 

10 C4-APB Low Gamma   + 

11 Pz-APB Low Beta   + 
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5.4 Discussion 

To date, studies investigating CMC in motor neuron diseases have focused on estimating 

beta-band CMC between muscles of the hand/arm and M1, as a direct reflection of 

UMN/LMN pathology (Proudfoot et al., 2018b). However, our recent EEG studies in ALS 

(Dukic et al., 2019, McMackin et al., 2020) and Post-Polio Syndrome (Coffey et al., 2021) 

suggest that abnormalities in cortical network activity extend beyond M1 in these 

conditions, a finding that is also supported by neuroimaging studies (Finegan et al., 2019). 

We have used CMC to demonstrate how brain activity in participants with PLS differs from 

that of healthy controls during the performance of a pinch grip motor task. Here we 

characterised the engagement of different brain regions by the oscillatory functional 

coupling between signals recorded from brain and muscle, Figure 5.8, and Table 5.2. In 

PLS, higher CMC at contralateral M1 was observed in the gamma- and alpha-band when 

compared with controls. Significant beta-band CMC was also detected in ipsilateral M1, 

which is not typically observed in healthy participants. In each case, the CMC measures 

were higher in PLS than in controls, suggesting that these observed differences are unlikely 

to be attributable to muscle wasting or dysfunction (which would typically decrease CMC). 

We also identified several other CMC measures that were correlated with clinical measures 

of UMN dysfunction, which were also identified outside of the contralateral primary motor 

area.  

5.4.1 PLS-specific differences in CMC 

Higher alpha and gamma-band CMC between contralateral M1 and FDI/FPB was observed 

in PLS when compared to controls, Figure 5.8 C and B, respectively, with a large difference 

in gamma-band reported (Cohen’s d = 0.987). Altered functional connectivity throughout 

the sensorimotor cortex has been similarly demonstrated in ALS in resting-state EEG 
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studies (Nasseroleslami et al., 2017). In the present study, gamma-band CMC was detected 

in participants with PLS during low force muscle contractions. This is unusual as gamma 

band CMC is typically only observed in healthy controls during more forceful or dynamic 

muscle contractions (Omlor et al., 2007, Gwin and Ferris, 2012). Previous literature has 

shown that gamma- and beta -band CMC are present under different conditions and are 

often inversely related (i.e., when gamma-band CMC increases, beta-band CMC 

decreases). For example, gamma-band coherence appears during strong contractions, with 

a corresponding reduction in beta-band CMC and is thought to reflect a stronger excitation 

of the motor cortex or greater attention to the task (Brown et al., 1998). 

The observed broad increase in CMC in PLS may reflect a combination of pathogenic, 

adaptive, and/or compensatory increases in the synchronization of neuronal groups in 

response to upper motor neuron degeneration and dysfunction in the inhibitory inter-

neuronal circuitry in PLS (Agarwal et al., 2018). Neuronal loss in M1 in PLS, and the 

cortical and subcortical changes beyond M1 are likely to disrupt information flow in both 

local neural circuits and larger scale networks. This may require a rebalancing of inter-

regional interactions and a reorganisation of the sensorimotor networks that are engaged in 

processing and transferring information during movement. This in turn would manifest as 

changes to the synchronization patterns across the sensorimotor network and alterations in 

the coupling between cortical/subcortical and spinal regions. 

Another key finding was the detection of beta-band CMC in the ipsilateral motor cortex in 

PLS, with a strong difference reported between PLS and controls (Cohen’s d = 0.786). 

Ipsilateral premotor activity has been previously observed in ALS (specifically in ALS 

participants that exhibited a greater number of UMN signs relative to LMN symptoms) in 

an EEG-based investigation of movement-related cortical potentials (Inuggi et al., 2011). 

It is possible that the increased activation of the ipsilateral sensorimotor cortices is 
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functionally relevant and aids in the performance of the motor task. Ipsilateral cortical 

activation is increased in other populations in which elements of the cortical network have 

been damaged, e.g., in stroke, multiple sclerosis and spinal cord injury (Prak et al., 2021, 

Lenzi et al., 2007, Ward et al., 2003). Previous studies suggest that ipsilateral M1 aids the 

contralateral motor cortex in the planning and organization of hand movements (Chen et 

al., 1997), but it remains unclear whether ipsilateral M1 plays a significant role in mediating 

the motor command to motoneurons of the hand (Soteropoulos et al., 2011). There is 

limited evidence to support a monosynaptic pathway to convey direct ipsilateral actions to 

hand muscles, but it is possible that ipsilateral projections are conveyed through other 

indirect/polysynaptic pathways (Calvert and Carson, 2022). Though data presented in this 

study cannot elucidate the precise neural circuits and pathways through which ipsilateral 

M1 signals influence muscle activity, the results demonstrate for the first time that the 

contributing brain regions in sensorimotor control are altered in PLS during a motor task. 

This manifests as a reshaping of synchronous oscillations between cortex and muscle. 

5.4.2 Associations between CMC and Clinical Scores 

PLS participants with greater clinical impairment exhibited larger CMC in brain regions 

which are not directly associated with motor execution (positive correlations in Figure 6 

between APB and the ipsilateral motor cortex, C4, and the parietal region, Pz). This finding 

suggests that PLS affects a wider brain network extending beyond M1, as indicated in 

previous neuroimaging studies (Finegan et al., 2019). Less impaired PLS participants 

exhibited higher alpha and gamma band coherence in contralateral M1.  The significant 

correlations between CMC and UMN score were primarily observed in the APB muscle 

(5/6 correlations), though the reason for this is unclear. Previous studies have found no 

evidence that PLS conforms to the “split-hand plus” feature of ALS, whereby greater 
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weakness and atrophy is observed in APB relative to other muscles innervated by the 

median nerve (Menon et al, 2012). 

PLS participants with greater motor impairments exhibited higher beta-band CMC in the 

parietal area (Pz) (Figure 5.11). Studies in non-human primates have shown that activity in 

posterior parietal sites is modulated by beta-band oscillations from the somatosensory 

cortex, and that they in turn exert an influence on the motor cortex (Brovelli et al., 2004). 

Though the majority of corticospinal neurons originate from M1, neuroanatomical and 

electrophysiological studies in primates have also found evidence of corticospinal 

projections from the supplementary motor area, somatosensory and parietal cortices 

(Murray and Coulter, 1981, Maier et al., 2002, Galea and Darian-Smith, 1994). CMC at 

EEG electrodes over non-M1 cortical areas could thus occur due to an increase in the 

relative contribution of alternative descending pathways to muscle activation, other than 

direct M1 projections. These synchronies could also reflect a restructuring of cortico-

cortical communication between non-M1 regions and areas such as M1 that have direct 

projections to the spinal motor pools. For example, the enhanced beta-band coupling 

between the parietal brain region and muscular activity could reflect an increase in the 

functional connectivity of these brain networks (Meoded et al., 2015). It is also possible 

that the chronic loss of corticospinal input to the spinal motoneurons, which is combined 

with extreme muscle weakness and slowing of movement in PLS, could produce a change 

in afferent activity. This would in turn influence CMC. Though beta-band CMC is 

primarily driven by efferent supraspinal structures, there is now evidence to suggest that it 

can be modulated by sensory receptors that provide afferent feedback to the central nervous 

system (Witham et al., 2011).  

Although the observed CMC differences in PLS could arise from both the direct and 

indirect effects of UMN degeneration, the increased CMC in more impaired PLS 
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participants for specific brain regions could potentially suggest that these changes are 

compensatory/adaptive in nature. Taken together, these results could suggest that the 

pattern of brain network re-organization in PLS follows a similar trajectory to recovery in 

stroke, where more impaired PLS participants rely on contributions from the ipsilateral 

hemisphere but those that are minimally affected can recover function by restructuring the 

functional connectivity in the contralateral hemisphere (Brancaccio et al., 2022). Future 

studies are needed to elucidate the pathways through which these wider brain regions could 

influence muscle activity and determine the exact nature of the observed changes in CMC 

(pathogenic, adaptive, or compensatory). These network level changes could be further 

characterised in future longitudinal studies of PLS by examining changes in the CMC 

measures alongside changes in clinical scores of upper motor neuron impairment. 

5.4.3 Banded CMC as a tool for accessing network dysfunction 

The differences between more and less impaired PLS participants further suggest that 

banded CMC has the potential for development as a tool to monitor disease progression or 

importantly as a measure to assess target engagement in clinical trials (Jeromin and Bowser, 

2017). These measures are particularly needed for PLS, as longitudinal progression is 

difficult to quantify in such a slowly progressing disease. The PLS-specific differences in 

CMC and the differences between more and less impaired PLS participants reported in this 

study provide the basis for further development of these markers of motor network 

dysfunction.  

5.5 Conclusion 

This study demonstrates the presence of abnormal cortico-muscular coherence in PLS for 

the first time using the banded coherence method, which we suggest could reflect a 

restructuring of the cortical network connectivity in response to UMN degeneration. This 
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observation suggests that PLS affects a sensorimotor brain network extending beyond the 

primary motor cortex. Correlations showed that higher CMC in specific brain regions was 

also observed in more impaired PLS participants compared with those with less severe 

impairments. This may suggest these differences are compensatory/adaptive in nature, 

though these differences could arise from both the direct and indirect effects of UMN 

degeneration. The correlations with clinical UMN scores demonstrate the potential for 

CMC measurements to be used as a tool to identify dysfunction in specific cortical 

networks during motor tasks, and prompt further development of quantitative 

neurophysiology-based biomarker candidates in PLS. 

5.6 Limitations 

The banded coherence method could underestimate the unique coherence value in group 

average coherence spectra for a broadband frequency band such as the high-gamma band 

if majority of coherence values are close to zero. For example, in Figure 5.8 A, even though 

there are four significant peaks in the 2Hz banded group average coherence spectra for 

controls in the high gamma-band, it is not significant after banding for whole bandwidth 

because majority of 2Hz banded coherence values within the high-gamma band are close 

to zero. One possible solution for this problem is to break down the broadband frequency 

into smaller bandwidths. For example, breaking down the high gamma band (52-97Hz) into 

high-gamma 1 (52-75Hz) and high-gamma 2 (76-97Hz).  
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6. Results: Sensor Level Study of EEG Functional Connectivity 

Under Review Work List 

The work described in this chapter has been submitted in the peer-reviews journal the 

Journal of Neural Engineering as: 

Bista S, Coffey A, Fasano A, et al., Abnormal EEG spectral power and coherence measures 

during pre-motor stage in Amyotrophic Lateral Sclerosis: Implications for developing 

biomarker candidates, Journal of Neural Engineering, 2024 (Under review). 

 

6.1 Introduction 

ALS is a multi-network dysfunction (Dukic et al., 2021) causing deficits in motor (Cividini 

et al., 2021, Dukic et al., 2019, Dukic et al., 2021) and cognitive (McMackin et al., 2021, 

Cividini et al., 2021, Dimond et al., 2017) brain networks. However, understanding the 

changes in motor networks is important to understand disease pathology because the motor 

region is predominantly affected by the neurodegeneration. Impairment of sensorimotor 

and non-motor networks in ALS has been identified from resting state paradigms using 

EEG (Dukic et al., 2019, Iyer et al., 2015) or fMRI (Agosta et al., 2011, Douaud et al., 

2011, Menke et al., 2018, Zhou et al., 2014). However, motor paradigms, involving pre-

motor stage or motor execution that can directly access sensorimotor pathways, might be 

needed to unravel the dynamics of motor network pathology in ALS for biomarker design.  

Previous electrophysiological studies have reported the manifestation of distinct EEG 

signatures of cortical sensorimotor activity, such as the Bereitschaftspotential (BP), as early 

as nearly 2 seconds before a voluntary movement (Pfurtscheller and Berghold, 1989, 

Deecke, 1996, Shibasaki and Hallett, 2006, Walter et al., 1964, Kornhuber and Deecke, 

1965). Depending on the experimental design and the time window investigated, the pre-
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movement or pre-motor activity is often associated with preparation (Requin et al., 1990), 

planning (Nasseroleslami et al., 2014), anticipation (Mauritz and Wise, 1986) or attention 

(Mannarelli et al., 2014) to upcoming motor execution. During the pre-motor stage and 

motor execution, there is a decrease in sensorimotor mu or beta power compared to the 

baseline (rest), known as event-related desynchronization (ERD), signifying cortical 

activation. Conversely, following execution, there is an increase or rebound in this power, 

indicating cortical idling or deactivation  (Neuper et al., 2006, Pfurtscheller and Lopes da 

Silva, 1999). Several studies have reported that mu or beta ERDs are altered during pre-

motor stage and during motor execution in ALS, however, previous findings have been 

inconsistent (Riva et al., 2012, Proudfoot et al., 2017, Bizovicar et al., 2014). This is 

especially important, as this pre-motor activity is associated with the engagement and 

function of non-primary motor regions such as parietal areas, dorsolateral prefrontal cortex, 

and pre-motor cortex, that network directly with primary motor areas (M1), and are 

therefore, most likely to be affected – possibly in a heterogenous manner – in motor system 

degeneration.  

Changes in neural activity and network function can also be investigated using measures 

that quantify alterations in the spectral content and characteristics of neural activity, such 

as coherence and Event-Related Spectral Perturbations (ERSPs). While ERDs provide 

information on the timing and relative neural activity in different brain regions at narrow 

bands (mu or beta), ERSPs can provide information on the broad band spectral content of 

this neural activity and how the power of different frequency components (e.g., alpha, beta, 

gamma) changes over time. In addition, coherence can provide a direct measure of (phase) 

coupling of non-primary motor cortices with sensorimotor cortices (functional 

connectivity) which could be key to understanding neuropathophysiological mechanisms 

in ALS at a network level. We hypothesize that in ALS, the pre-motor activity, as reflected 
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in ERSPs and the coherence between neural activity in different brain regions, shows 

abnormal characteristics compared to healthy controls that are distinct from neural activity 

in motor execution. The rationale is based on the direct effects of motor system 

degeneration that might affect the connections between primary motor cortex and 

secondary motor and pre-motor areas, as well as secondary effects such as adaptations, 

plasticity, or compensatory processes. To examine this, we will compare ERSPs and 

coherence, between ALS and control groups. More specifically, we will investigate 

whether particular phases of movement (resting state, pre-movement, motor execution) 

show larger differences in EEG network connectivity between ALS and controls; and 

whether the altered EEG networks in ALS show associations with clinical measures of 

impairment such as ALSFRS-R scores. Lastly, we will test whether these measures are 

reproducible and show strong effect sizes, which is a prerequisite for developing 

prospective network-based biomarker candidates in ALS for diagnosis, prognosis, and 

phenotyping. 

6.2 Methods 

6.2.1 Ethical Approval 

Ethical approval was obtained from Tallaght Hospital/St. James's Hospital Joint Research 

Ethics Committee for St. James's Hospital, Dublin, Ireland [REC: 2019-07 Chairman's 

Action (22)], and experiments were conducted under the standards set by the Declaration 

of Helsinki (2013). All participants provided written informed consent before participating 

in the experiments. 
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6.2.2 Participants 

6.2.2.1 Inclusion Criteria 

Healthy individuals aged between 18 and 65 and all ALS patients fulfilling the revised EL 

Escorial diagnostic criteria for possible, probable, or definite ALS were included. 

6.2.2.2 Exclusion Criteria 

Patients diagnosed with primary lateral sclerosis, progressive muscular atrophy, multiple 

sclerosis, epilepsy, stroke, brain tumours, prior transient ischemic attacks, structural brain 

disease, psychiatric diseases, medical conditions that affect the nervous system (e.g., 

diabetes), other neurodegenerative conditions and other terminal conditions, such as human 

immunodeficiency virus, were excluded. Similarly, people who have previously had 

(allergic) reactions in similar recording environments (e.g., to recording gels) and pregnant 

women were also excluded. 

6.2.2.3 Clinical and Demographic Profile 

Resting state and motor task EEG data were recorded from 22 ALS patients [age: 

65.56±9.92 (mean ± std)] and 16 healthy controls [age: 62.67±9.42 (mean ± std)]. The 

patients and controls were age matched (Mann-Whitney U test, p=0.30). The clinical and 

demographics data of analysed patients and healthy controls are shown in Table 6.1. 

6.2.3 Experiment 

6.2.3.1 Experimental paradigm 

Participants were comfortably seated on a chair in front of a screen, on which visual cues 

for the experiment were presented, inside a shielded room (Faraday cage). The screen was 

positioned at eye level, approximately 1 metre from the participants. Participants were 

given practice trials to produce and maintain the target force displayed onscreen using their 

right hand’s thumb and index finger (irrespective of their handedness) before starting the 
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main experiment. The experiment started with a resting-state (eyes open and fixated on a 

cross on the presentation screen with mind-wandering) recording for 3 blocks of 2 minutes. 

A motor task followed the resting state recording. Participants were asked to produce a 

maximum force and hold (for 5 seconds) by pinching the force sensor according to visual 

cues. Participants were provided with the real-time feedback of the force applied, given by 

the height of a filled rectangular green bar visible onscreen. Five trials were recorded with 

30s rest between the trials, and the average force of the five trials was calculated online and 

used as the maximal voluntary contraction (MVC). The participants then performed 30 

trials of isometric pinch grips at 10% MVC following the target force displayed onscreen. 

Five seconds after the start of a trial, an empty rectangular box was displayed onscreen as 

a go cue. The participants pinched the force sensors to increase the height of the green bar 

to reach the height of the target box and then hold to keep a constant force. After 5 seconds, 

the box disappeared as a cue for participants to relax. A separate cue for the pre-motor stage 

was not provided. Each trial lasted for 15s (5s pre-motor, 5s execution, and 5s rest), as 

shown in Figure 6.1 B. 

6.2.3.2 EEG and force acquisition 

EEG was recorded with a 128-channel active electrode system (Biosemi ActiveTwo 

system, Biosemi B.V., Amsterdam, The Netherlands). Eight external electrodes were 

placed on the scalp and face, and the electrode offset was maintained below ±25µV. The 

force applied during the pinch grip experiment was measured using two flat resistive force 

sensors (FlexiForce A201 Sensor, Tekscan, Inc., Boston, MA, USA). The sensor’s circular 

sensing areas (d=9.7mm) were attached to a wooden hexagon prism (edge=30mm, 

thickness=25mm). An example of force profiles recorded from 30 trials for a healthy 

participant is shown in Figure 6.1 C.  
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Table 6.1 The clinical and demographics data of analysed patients and healthy 

controls. 

Group N Male Female Age (years)a Disease 

duration 

(years)a 

Diagnostic 

delay 

(months)a 

ALSFRS-Ra 

Controls 16 10 6 62.67±9.41    

ALS        

ALL 22 16 6 65.56±9.92 2.37±2.02 20.19±25.02 39.59±5.61 

Spinal 19 13 6 65.71±10.51 2.55±2.12 22.24±26.42 40.36±4.69 

Bulbar 3 3 0 64.61±6.06 1.20±0.29 7.25±2.00 34.66±9.50 

C9ORF72- 21 15 6 65.74±10.13 2.39±2.07 20.40±25.65 39.71±5.71 

C9ORF72+ 1 1 0 61.77±0.00 1.97±0.00 15.91±0.00 37.00±0.00 

Note: Disease duration is the time interval between the estimated symptom onset and the 

EEG recording. Diagnostic delay is the time interval between the estimated symptom onset 

and date of diagnosis. 

Abbreviations: ALSFRS-R, amyotrophic lateral sclerosis functional rating scale revised; 

C9ORF72±, presence/absence of the repeat expansion in the Chromosome 9 open reading 

frame 72; EEG, electroencephalography. 

a Number shown mean± standard deviation. 

 

6.2.3.3 Disease severity 

The revised ALS functional rating scale (ALSFRS-R) scores (Cedarbaum et al., 1999) were 

obtained from all ALS participants to examine the correlation of EEG connectivity 

measures with disease severity.  
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Figure 6.1 EEG channel selection, data format of experiment 2, and force data. (a) EEG data format 

showing 30 trials, each trial consisting of 3 phases. Trial 3, for example, is expanded to show the sequence 

of visual cues and timings of different phases of the task. From left to right: 1. White screen for 5 seconds 

preceding cue onset where participants take no action: motor planning phase. 2. GO cue, as a red rectangle 

appears on screen whose height is the target to be matched. 3. Section of 5 seconds during the visual cue: 

motor execution phase (between trigger 2 and trigger 3), and 5 seconds after the end of the cue: between 

trial rest phase (between trigger 3 and trigger 1), (b) 2D layout of electrode positions for 128 channel Biosemi 

system. The blue electrodes are the eight electrodes chosen for analysis, (c) Illustration of the recorded force 

for all 30 trials and their average for a healthy participant. Target force is 10% of maximum voluntary 

contraction (MVC). One second time windows were selected for analysis, a blue block (3-4 sec) for pre-motor 

stage and a red block (8-9 sec) for motor execution. 
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6.3 Data analysis 

6.3.1 Data Pre-processing 

The pre-processing of EEG data was carried out in MATLAB using the Fieldtrip toolbox 

(fieldtrip.org). The details of the data pre-processing pipeline used in this study are 

explained in sub-section “4.4.1 Sensor Level Study” of Chapter 4 Materials and Method of 

this thesis.  

Briefly, data analysis involved the extraction of specific segments of EEG data for different 

conditions. For the resting state, 30 seconds of data from the first block was used. In motor 

task experiments, “bad trials’’ where participants did not achieve the target force within the 

acceptable range were excluded from analysis. For pre-motor stage, 1-second data between 

the 3rd and 4th second of good trials were extracted, while for motor execution, 1-second 

data between the 8th and 9th second of good trials were extracted (see Figure 6.1 c). The bad 

channels detected by visual inspection were removed and reconstructed using weighted 

average interpolation of the neighbouring channels (Perrin et al., 1989). 

Eight EEG channels A5, B22, B31, C25, D4, D12, D19, and D28 (International 10-10 

System equivalent P1, C4, FC4, F1, F3, FC3, C3, and CP3) were chosen a priori for the 

analysis (Figure 6.1 b). D19/B22 cover left/right primary motor cortex (M1) whereas 

left/right premotor cortex (PM) is covered by the electrodes D12/B31. The left primary 

sensory cortex (S1) is covered by D28, and the left superior parietal lobule (SPL) is covered 

by A5. Similarly, the electrode D4 and C25 covers left dorsolateral prefrontal cortex 

(DLPFC) and left dorsomedial prefrontal cortex (DMPFC), respectively. The electrodes 

pertaining to the aforementioned cortical regions were chosen because they are known to 

be activated during pre-motor activity (Churchland et al., 2006, Riehle, 2005, Pfurtscheller 

and Berghold, 1989, Glover et al., 2012, Ariani et al., 2015, Papitto et al., 2020) and 

execution (Hanakawa et al., 2008, Papitto et al., 2020, Lacourse et al., 2005, Alahmadi et 
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al., 2015, Cisek et al., 2003) of motor tasks in healthy individuals. Additionally, cortical 

regions such as M1, S1, PM and DLPFC work together to integrate higher-order cognitive 

processes with sensorimotor functions, facilitating complex movement coordination and 

task execution based on cognitive demands and goals (Miller and Cohen, 2001). DLPFC is 

usually associated with the executive control network (Heinonen et al., 2016, Beaty et al., 

2015, Shen et al., 2020) or central-executive network (Bressler and Menon, 2010, Bi et al., 

2017) whereas M1, S1 and PM are critical parts of sensorimotor networks (Penfield and 

Boldrey, 1937, Luo et al., 2020). Therefore, the functional interconnection between these 

brain regions is referred to as the executive sensorimotor network (ESMN). The ESMN 

enable flexible motor adaptation and cognitive control during various tasks. 

The selected channels were (re)referenced using a surface Laplacian spatial filter (see topic 

“Referencing and Filtering” of sub-section 4.4.1.1 of section 4.4.1 of this thesis for the 

details of Laplacian filter used) because it helps to minimise the effect of volume 

conduction in EEG data (Bradshaw and Wikswo, 2001). The Laplacian filtering was 

followed by dual-pass bandpass filtering between 2-100 Hz and dual-pass bandstop 

filtering between 49-51 Hz using 4th order Butterworth filters designed using Fieldtrip 

toolbox. Fieldtrip implemented threshold-based automatic artefact detection, and rejection 

were used to detect and remove eyeblinks, muscle artefacts, and jump artefacts (see topic 

“Automatic Artefacts Detection and Rejection” of sub-section 4.4.1.1 of section 4.4.1 of 

this thesis for the details). The threshold value was fixed such that no more than 20% of 

trials were rejected as artefactual trials. 

6.3.2 Banded Spectral Coherence 

The detailed formulation of banded spectral coherence is explained in sub-section 4.4.4.1. 

Here, a summary of the method is included to avoid repetition. Briefly, the pre-processed 
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EEG data were converted into the frequency domain using Fourier Transform (Hanning 

taper, 1 Hz spectral smoothing, 2-100 Hz bandwidth, and 1 Hz frequency resolution). Auto 

spectra and cross spectra were calculated using the Fieldtrip toolbox for each trial. The 2-

100 Hz spectral bandwidth was divided into 8 frequency bands namely delta δ, θ, αl, αh, βl, 

βh, γl and γh excluding the 48-52Hz range to avoid mains power interference. The banded 

auto- and cross- spectra were calculated for each trial at each frequency band by taking the 

spatial median of the signal spectra at the specific band frequencies. The banded cross-

spectrum was normalised by auto-spectra to obtain a banded spectral coherence estimate 

for each trial (Nasseroleslami et al., 2019).  

6.3.3 Banded Spectral Coherence Statistics 

The details of banded spectral coherence statistics are explained in sub-section 4.5.1. 

Briefly, participant-level statistics (individual p-values) were calculated using one-sample 

non-parametric rank statistics for spectral coherence (Nasseroleslami et al., 2019). 

Stouffer's method (Stouffer et al., 1949, Westfall, 2014) was used to combine individual p-

values to derive average group p-values. The negative logarithm of the average p-value was 

used to visualise group average EEG coherence (see equation 4.17). An EEG coherence 

(C) greater than 1.30 (i.e., 𝑝𝑎𝑣𝑔 < 0.05) indicated a significant functional connectivity 

between two underlying cortical regions (connected by orange lines in result figures). EEG 

coherence of the patient group was compared with the control group using 2 sample non-

parametric rank statistics (Nasseroleslami et al., 2019, Oja and Randles, 2004, Nordhausen 

and Oja, 2011) with p-value (𝑝𝑑𝑖𝑓𝑓) corrected for multiple comparisons using adaptive FDR 

(Benjamini and Hochberg, 2000). Significant differences in EEG coherence values 

between the patient and control groups (i.e., CALS > CCONTROLS or CALS < CCONTROLS and 
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𝑝𝑑𝑖𝑓𝑓  <  0.05), referred to as abnormal EEG connectivity for ALS, are indicated by a bold 

purple line connecting the underlying cortical regions, Figures 6.3-6.5. 

6.3.4 Event Related Spectral Perturbation (ERSP) 

See time-frequency analysis (sub-section 4.4.3) for the details of this method. Briefly, the 

pre-processed time series data of motor experiments (pre-motor and execution), was first 

averaged over trials to get the event-related potential (ERP). The ERP was then subtracted 

from every trial of pre-processed data to get non-phase locked (NPL) time series data. The 

NPL data were decomposed into time-frequency components using wavelet transform 

(morlet wavelet with 5 cycles, a frequency resolution of 1 Hz, and a time resolution of 0.05 

seconds) using the Fieldtrip toolbox. The output time-frequency power was normalised to 

an inter-trial rest period of 5 seconds of motor task experiment (i.e., -3 to 2 second baseline 

window). The normalised time-frequency power was averaged over time components to 

obtain event related spectral perturbations (ERSP). Finally, the ERSP was averaged over 

participants of each group separately to get the group average ERSP for ALS and healthy 

controls. 

6.3.5 Event Related Spectral Perturbation Statistics 

Significant differences (p-values) of ERSP between ALS and healthy controls were 

calculated using Mann-Whitney U test. Adaptive FDR at q=0.05 was used to correct for 

multiple comparisons (Benjamini et al., 2006). A 95% confidence interval was also 

calculated for group average ERSP. 

6.3.6 Global Clustering Coefficient 

The global clustering coefficient (GCC), which measures the connectedness or network 

density of the EEG functional network, was calculated for eight  frequency band, for both 

ALS patients and healthy controls, using the Watts and Strogatz method (Watts and 
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Strogatz, 1998). See sub-section 4.4.5.1 of chapter 4 of this thesis for the details of 

calculation of GCC. 

6.3.7 Classification and Clinical Correlation 

A simple machine learning (pattern classification) method was used to assess the level of 

discrimination provided by the EEG measures from different stages of the task, and to test 

if any stage provided better discrimination and/or additional information compared to the 

other stages. A nested 5-fold cross-validated linear support vector machine (LSVM) 

classification model, designed using MATLAB’s Machine Learning Toolbox, was trained, 

and validated to discriminate patients and healthy controls. The nested cross-validation 

method was used to avoid feature selection bias and overfitting due to the smaller sample 

size (Vabalas et al., 2019) by selecting features at threshold value of 𝑞 = 0.05 within the 

cross-validation loop. To determine the level of discrimination provided by each feature 

(EEG measure) on the predicted outcome of the LSVM model, we used the Shapley value-

based explanation (Lundberg and Lee, 2017). The feature with higher absolute Shapley 

value is viewed as the most discriminant feature within the classification model 

(Rodríguez-Pérez and Bajorath, 2020, Ding et al., 2022).  We averaged the absolute 

Shapley value over each fold in the 5-fold cross validation and reported the mean value to 

avoid biased interpretation based on a single model (Ding et al., 2022).     

The association of the ALS abnormal EEG connectivity with their corresponding ALSFRS-

R scores was tested using Pearson’s correlation coefficients. The p values of correlation 

coefficients were adjusted for multiple comparisons using adaptive false discovery rate at 

q = 0.05.  A line was fitted to the scatter plot of the data, to visualise the relationship, using 

the linear least-square fitting method. The degree-of-freedom-adjusted coefficient of 

determination (Adj R2) was calculated for the fitted line to assess the goodness of the fit. 
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6.3.8 Effect Size and Statistical Power 

Hedge’s g was used to calculate the effect size of the EEG connectivity comparison 

between healthy controls and ALS patients (See sub-section 4.5.3). Similarly, the area 

under the curve of the receiver operating characteristic (AUROC), a non-parametric test 

statistic, was obtained using De Long's method (Zhou et al., 2009) for each connectivity 

comparison. Empirical Bayesian Inference, implemented using AUROC (Nasseroleslami, 

2019), was used to find the statistical power to assess the reproducibility of the group 

comparison results. 

6.4 Results 

6.4.1 Spectral power revealed task dependent increase in task-related areas  

The EEG channels above contralateral prefrontal and parietal regions (DLPFC and SPL) 

showed significant increases in spectral power in the θ band (Figure 6.2 A-B) during the 

pre-motor stage in ALS patients. Similarly, during motor execution, β power was increased 

in ALS patients compared to healthy controls (i.e., decreased event related 

desynchronisation) in all pre-selected Laplacian EEG channels (see appendix 6.7), but the 

difference was statistically significant only in EEG channels over contralateral superior 

parietal (SPL) and ipsilateral primary motor (M1) regions (Figure 6.2 C-D). 
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Figure 6.2 Motor task (pre-motor and execution) event related spectral perturbation (ERSP) for channels 

that exhibited significant differences between the participant groups (p<0.05, corrected for multiple 

comparisons using adaptive FDR at q = 0.05). (A, B) Pre-motor ERSP in (A) contralateral superior parietal 

lobule (SPL) showing significant group difference in the theta (θ, 5-7 Hz) frequency band, and (B) 

contralateral dorsolateral prefrontal cortex (DLPFC) showing significant group difference in the theta (θ, 

5-7 Hz) frequency band. (C, D) Motor execution ERSP in (C) contralateral SPL showing significant group 

difference in the beta (β, 14-30 Hz) frequency band, and (D) ipsilateral primary motor cortex (M1) showing 

significant group difference in the beta (β, 14-30 Hz) frequency band. CON: Healthy controls, ALS: people 

with ALS. The vertical doted lines divide the plots into very-low (delta, 2-4 Hz), low (theta and alpha, 5-13 

Hz), high (beta, 14-30) and very-high (gamma, >30) frequency bands. 
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6.4.2 EEG connectivity reflects task dependent abnormal motor networks in ALS 

6.4.2.1 Sensorimotor network abnormal during resting state 

The resting state functional networks for ALS patients and healthy controls for all 

frequency bands are shown in appendix 6.2. The EEG connectivity between left M1 and 

left S1 was significantly increased in ALS compared to healthy controls in the θ band 

(Figure 6.3). 

 

Figure 6.3 Resting state (RS) functional connectivity (FC) network for HC (Left) and ALS patients 

(Centre) based on the group average corticocortical coherence in the theta (θ) frequency band. (Right) 

Distribution of individual M1-S1 corticocortical coherence (Coh) for HC/ALS in the θ frequency band, along 

with the group difference p-value. 



   

 

 136 

 

Figure 6.4 Pre-motor stage (PMS) functional connectivity (FC) networks based on the group average 

corticocortical coherence. (First column) PMS FC network for healthy controls (HC) in the αl, αh, and βh 

frequency bands. (Second column) PMS FC network for ALS patients in the αl, αh, and βh frequency bands. 

(Third column) Distribution of individual PM-S1, DLPF-DMPF, and M1-DLPF corticocortical coherence 

(Coh) for HC/ALS in the αl, αh, and βh frequency bands, respectively, along with group difference p-values. 
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Figure 6.5 Motor execution (ME) functional connectivity (FC) networks based on the group average 

corticocortical coherence. (First column) ME FC network for healthy controls (HC) in the βh, and γl 

frequency bands. (Second column) ME FC network for ALS patients in the βh and γl frequency bands. (Third 

column) Distribution of individual M1-SPL and DLPFC-DMPFC corticocortical coherence (Coh) for 

HC/ALS in the βh, and γl frequency bands along with group difference p-values. 

6.4.2.2 Pre(motor) network connectivity abnormal during pre-motor stage 

The pre-motor stage functional networks for ALS and healthy controls for all frequency 

bands are shown in appendix 6.3. The networks involving contralateral primary motor (M1) 

and premotor (PM) regions were abnormal in ALS during the pre-motor stage. The 

connectivity between left PM and left S1 in the αl band was significantly stronger in ALS 

compared to healthy controls (Figure 6.4 top row). Similarly, the left M1-DLPFC 

connectivity was significantly weaker in the βh band (Figure 6.4 middle row). In addition, 

a frontal network abnormality, i.e., significantly higher DLPFC-DMPFC synchrony in the 
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αh band, was observed during the pre-motor stage in ALS patients compared to healthy 

controls (Figure 6.4 bottom row).  

6.4.2.3 Frontoparietal network connectivity abnormal during motor execution 

The motor execution functional networks for ALS and healthy controls for all frequency 

bands are shown in appendix 6.4. ALS patients showed significantly stronger connectivity 

between the left primary motor (M1) and left parietal (SPL) regions in the βh frequency 

band compared to healthy controls (Figure 6.5 top row). Frontal network abnormality, 

involving DLPFC-DMPFC connectivity in the βh and γl bands, was observed during motor 

execution (Figure 6.5).  

6.4.3 The levels of average closed-path functional connectivity in the executive-

sensorimotor network are higher in ALS 

In this study, we have reported the EEG-based functional interconnections over primary 

motor (M1), premotor (PM), primary sensory (S1), and dorsolateral prefrontal (DLPF) 

cortices as main regions within the executive-sensorimotor network (ESMN) because these 

cortical regions are key contributors to pre-motor activity and motor execution, and control 

of voluntary movements. The characteristics of the functional point-to point connections 

within the selected regions of the ESMN in healthy controls and ALS patients are 

summarized in Table 6.2. In terms of the number of functional connections between the 

main nodes of the ESMN, ALS showed a higher number of average point-to-point 

connections over the frequency spectrum during all three experiments (resting state, pre-

motor stage and motor execution) but the difference was not statistically significant.  

To further characterise whether these general higher levels of connectivity, pertain to global 

or scattered increases, or form closed paths and connections, the global clustering 

coefficient (GCC) values are reported.  GCC was increased in ALS in all three experimental 
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conditions (rest, pre-motor stage, and motor execution), Table 6.3. The most notable 

increase occurred during resting state and motor execution.  

Table 6.2 Comparative summary of executive sensorimotor networks (ESMC) in 

healthy controls (HC) and ALS during resting state, pre-motor stage and motor 

execution. 

Experiment ESMN in healthy controls ESMN in ALS Remarks 

Resting 

State 

observed in α, β, and γ frequency 

bands, sparse at the θ band, and 

disappeared in the δ band  

observed in all frequency 

bands except δ, where it was 

sparse 

See figure 

appendix 6.1 

Pre-motor 

Stage 

observed in β and γ bands, sparse in 

other frequency bands 

observed in all frequency 

bands except δ and θ, where it 

was sparse 

See figure 

appendix 6.2 

Motor 

Execution 

observed in the γ band, sparse in 

other frequency bands 

observed in all frequency 

bands except δ, where it was 

sparse 

See figure 

appendix 6.3 

Abbreviations: ESMN, executive-sensorimotor network, δ, delta (2-4 Hz); θ, theta (5-7 

Hz); α, alpha (8-13Hz); β, beta (14-30 Hz); γ, gamma (31-97 Hz) 

Table 6.3 Global clustering coefficient (GCC) for healthy controls (HC) and ALS 

during resting state, pre-motor stage, and motor execution.  

Exp Group GCC in different frequency bands Mean 

GCC 

Group 

Diff. (p) δ θ αl αh βl βh γl γh 

Resting 

State 

HC 0 0.14 0.18 0.18 0.29 0.21 0.25 0.32 0.20 0.023* 

ALS 0.11 0.21 0.29 0.29 0.32 0.36 0.32 0.43 0.29 

Pre-motor 

Stage 

HC 0.11 0.11 0.18 0.11 0.25 0.25 0.29 0.36 0.21 0.062 

ALS 0.11 0.14 0.21 0.21 0.25 0.25 0.32 0.43 0.24 

Motor 

Execution 

HC 0.04 0.11 0.14 0.11 0.14 0.14 0.29 0.46 0.18 0.046* 

ALS 0.11 0.18 0.21 0.21 0.21 0.25 0.29 0.43 0.24 

Abbreviations: δ, delta (2-4 Hz); θ, theta (5-7 Hz); αl, low alpha (8-10 Hz); αh, high alpha 

(8-10 Hz); βl, low beta (14-20 Hz); βh, high beta (21-30 Hz); γl, low gamma (31-47 Hz); γh, 

high gamma (53-97 Hz). 

* p value < 0.05 after correction for multiple comparison using adaptive false discovery 

rate at q = 0.05.   
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6.4.4 EEG measure of altered connectivity discriminate ALS patients from healthy 

controls and reflect uniquely impaired functional networks during pre-motor stage 

6.4.4.1 Pre-motor stage abnormal EEG connectivity contributes most to discriminate ALS 

patients from controls 

The abnormal EEG connectivity measures (Table 6.4) were used as features to discriminate 

patients and healthy controls using a nested k-fold cross-validated LSVM. The 

classification accuracy of the LSVM was 79.21% with sensitivity of 83.33% and specificity 

of 71.67%. Amongst the 7 features used for the classification, the features during the pre-

motor stage showed a higher contribution to discrimination (as quantified by Shapley 

values) than the rest and motor execution stages (Figure 6.6). Specifically, the functional 

connectivity between M1 and DLPFC on the contralateral side in the high-beta band during 

the pre-motor stage, which was significantly lower in ALS patients compared to healthy 

controls, showed the highest Shapley value. The resting state functional connectivity 

between contralateral primary sensorimotor cortices (M1-S1) in the theta band, which was 

significantly higher in ALS compared to controls, showed the lowest Shapley value 

amongst the seven connectivity features used. The Shapley values of motor execution 

features were higher than those during resting state but lower than in the pre-motor stage. 

6.4.4.2 Correlation of abnormal EEG connectivity with clinical scores reflects functional 

impairment in ALS 

The correlation between abnormal EEG connectivity in ALS and their ALSFRS-R scores 

showed that six abnormal EEG connectivity (out of seven) were negatively correlated with 

the ALSFRS-R scores (see appendix 6.5). However, only two abnormal EEG connectivity 

were statistically significant (p<0.05) after correction for FDR at q = 0.05 (Figure 6.7). A 

negative correlation (r=-0.378, p=0.042) was obtained between ALSFRS-R scores and 
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contralateral M1-S1 connectivity in the θ band during rest. Similarly, contralateral M1-SPL 

connectivity in the βh band during motor execution showed a significant negative 

correlation with the ALSFRS-R scores (r=-0.505, p=0.025). The motor planning abnormal 

EEG connectivity did not show any significant correlations with the ALSFRS-R scores.  

 

Table 6.4 Group average EEG coherence values for healthy controls (HC) and ALS 

patients in different frequency bands where significant group-level differences were 

observed.  

Exp Freq 

Bands 

EEG 

Connectivity 

Location Avg. Coh 

-log10(pavg) 

Group 

Diff. 

(p) 

Effect Sizea Power 

α=0.05 

HC ALS 

Resting 

State 

θ M1-S1 CONT 0.15 6.14 0.046* 0.75  

[0.09, 1.43] 

0.659 

 

Motor 

Planning 

αl PM-S1 CONT 0.03 2.14 0.039* 0.67  

[0.02, 1.35] 

0.669 

αh DLPFC-

DMPFC 

CONT 0.02 2.32 0.026* 0.70  

[0.05, 1.38] 

0.734 

βh M1-DMPFC CONT 6.66 0.77 0.042* -0.79 

 [-1.48, -0.14] 

0.634 

 

Motor 

Execution 

βh DLPFC-

DMPFC 

CONT 1.92 12.00 0.033* 0.69  

[0.04, 1.37] 

0.702 

βh M1-SPL CONT 0.01 1.41 0.031* 0.84  

[0.18, 1.53] 

0.682 

γl DLPFC-

DMPFC 

CONT 6.70 12.00 0.033* 0.89  

[0.23, 1.59] 

0.709 

Abbreviations: θ, theta (5-7 Hz); αl, low alpha (8-10 Hz); αh, high alpha (8-10 Hz); βh, high beta 

(21-30 Hz); γl, low gamma (31-47 Hz); M1, primary motor cortex, S1, primary sensory cortex; PM, 

premotor cortex; DLPFC, dorsolateral prefrontal cortex; DMPFC, dorsomedial prefrontal cortex; 

SPL, superior parietal lobule; CONT, contralateral. 

* p value < 0.05 after correction for multiple comparison using adaptive false discovery rate at q = 

0.05.  

aNumber in [] shows 95% confidence interval. 
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Figure 6.6 Absolute Shapley values for the EEG connectivity measures show the uniquely stronger 

contribution of the pre-motor stage to discrimination based on the predicted outcome of the nested 5-fold 

cross-validated linear support vector machines (LSVM) model. 

 

Figure 6.7 Correlation between Amyotrophic lateral sclerosis functional rating scale revised (ALSFRS-R) 

scores and pairwise corticocortical coherence Coh [-log10(p)]. (a) Resting-state functional connectivity 

between left primary motor cortex (M1) and left primary sensory cortex (S1) in the theta band (θ) showed 

significant negative correlation with the ALSFRS-R scores. (b) Motor execution functional connectivity 

between left primary motor cortex (M1) and left superior parietal lobule (SPL) in the high-beta band (βh) 

showed significant negative correlation with the ALSFRS-R scores. r is Pearson’s linear correlation 

coefficient; p is the level of significance adjusted for multiple comparisons using false discovery rate at q = 

0.05. Adj R2 is the degree of freedom adjusted coefficient of determination for the fitted line using the linear 

least-squares fitting method.  

Higher functional impairments Higher functional impairments 
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6.4.5 EEG measure of connectivity change are meaningful and reliable  

The abnormal EEG connectivity observed in ALS in all three experimental conditions 

reflects meaningful and strong disease-related abnormalities (statistical effect size>0.7 for 

6 out of 7 comparisons) and shows acceptable levels of reliability (post-hoc statistical 

power>0.6), Table 6.4.  

6.5 Discussion 

6.5.1 Pre-motor networks are impaired in ALS with significant prefrontal and 

parietal involvement 

Neural activity in premotor cortex, primary motor cortex, and supplementary motor area is 

known to drive several processes, including the successful planning of a motor action 

during the pre-motor stage, based on invasive studies in non-human primates  (Churchland 

et al., 2006, Li et al., 2015, Shibasaki and Hallett, 2006, Cisek and Kalaska, 2005) and non-

invasive EEG study in humans (Nasseroleslami et al., 2014), which leads to faster reaction 

times (Haith et al., 2016) and more accurate response selection (Wong and Haith, 2017, 

Ariani and Diedrichsen, 2019). The neural correlates of motor preparation or planning 

during the pre-movement stage in humans can be studied by the Bereitschaftspotential (BP) 

or readiness potential (Shibasaki and Hallett, 2006) and the contingent negative variation 

(CNV) (Walter et al., 1964), as well as the corresponding event related spectral 

perturbations (ERSPs) that are typically referred to as event-related (de)synchronisation 

(ERD/ERS) (Pfurtscheller and Berghold, 1989).  

Previous studies have reported reduced amplitude of the readiness potential in ALS during 

preparation of a motor response during pre-movement phase (Thorns et al., 2010, Westphal 

et al., 1998). However, in terms of β ERD, the results are inconsistent (Bizovicar et al., 

2014, Proudfoot et al., 2017, Riva et al., 2012). Our results support the study by Riva et al. 



   

 

 144 

(2012) who reported no significant difference in μ/β ERD in ALS pre-movement in 

sensorimotor regions. In addition, we looked outside of typical μ/β frequency bands, which 

is equally important when looking into abnormal activity underpinned by disease 

pathophysiology and found significant power increases in ALS compared to healthy 

controls in the prefrontal and the parietal region in the θ band. This suggests that, 

physiologically, ALS patients tend to put more effort prior to motor activity to prepare or 

plan a motor task by recruiting neuronal pools over wider cortical areas to overcome the 

burden of motor neuron degeneration in sensorimotor cortices. 

We reported stronger functional connectivity between PM-S1 and DLPFC-DMPFC and 

weaker functional connectivity between M1-DLPFC the pre-motor stage in ALS compared 

to healthy controls indicating abnormal involvement of M1, pre-motor, and prefrontal 

regions in ALS. The functional coupling between these regions is associated with planning 

of a motor task prior to movement execution (Vesia et al., 2018, Koch et al., 2010). 

Therefore, the abnormal pre-motor stage spectral power and coherence observed here could 

be the consequence of abnormal motor planning in ALS. Motor planning is a complex pre-

motor neurophysiological process consisting of three sub-processes: abstract kinematics, 

action selection, and movement-specific transformation of motor goals into the desired 

movement (Wong et al., 2015). The motor goal is formed by sensory inputs followed by 

the attention phase to choose an object or action of interest (Wong et al., 2015). In this 

motor task, the motor goal is predefined, consisting of the pincher grip action of a single 

object. Thus, the phase for motor goal preparation is brief and may consist of alignment of 

sensory information from the environment only (i.e., sensory information pertaining to the 

contacts between fingers and the wooden block). Similarly, the abstract or ambiguous 

kinematics sub-phase is absent during the planning phase of this task because participants 

know what movement is required (Cisek et al., 2003, Cisek and Kalaska, 2005). Thus, only 



   

 

 145 

part of the three sub-phases, namely the alignment of sensory information, action selection, 

and movement specification, might modulate the motor planning networks during pre-

movement in our motor task.  

The contralateral PM-S1 connectivity was significantly higher in ALS during the pre-motor 

stage in the αl frequency band. This could be due to the abnormal involvement of premotor 

and primary sensory regions in sensorimotor integration during an environment-sensing 

sub-phase of motor goal formation (Nakayashiki et al., 2021, Koch et al., 2010) in ALS.  

Similarly, the higher EEG connectivity within the frontal region (DLPFC-DMPFC) in the 

αh band in ALS is likely associated with impairment in the action selection phase. 

Interestingly, significantly reduced EEG connectivity was observed within the contralateral 

M1-DLPFC at βh band in ALS. This reduced beta coupling between M1 and DLPFC in 

ALS could reflect impairment in generation of descending motor commands due to 

neurodegeneration in the primary motor cortex. These neurophysiological phenomena 

suggest that pre-motor networks which showed properties of motor planning are impaired 

in ALS, not only at the level of neuronal oscillations but also at the level of network-level 

cortical communication, which leads to poor motor performance (task performance 

accuracy was significantly lower in ALS compared to controls, p = 0.043).  

The functional activity in the pre-motor stage, while abnormal and affected, is 

fundamentally different. While resting state and motor execution measures show direct 

correlation with ALSFRS-R, pre-motor measures do not, suggesting that they reflect a 

different aspect of network impairment. 
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6.5.2 Underlying factors for observed changes 

6.5.2.1 The potential role of cortical hyperexcitability in abnormal but preserved executive-

sensorimotor network connectivity 

The EEG network density of closed-loop connections, quantified by mean GCC, was higher 

in ALS than in healthy controls during all three stages of the experiments (rest, pre-motor 

stage, and motor execution). This widespread property of the EEG network observed in 

this study and in other studies on ALS (Iyer et al., 2015, Sorrentino et al., 2018) can 

potentially reflect cortical hyperexcitability, a well-established signature of ALS (Menon 

et al., 2015, Vucic et al., 2011). The abnormal contralateral M1-S1 connectivity during rest 

in ALS agrees with widely-reported impaired sensorimotor networks in ALS by EEG 

studies (Nasseroleslami et al., 2017) and fMRI studies (Agosta et al., 2011, Zhou et al., 

2014, Douaud et al., 2011, Menke et al., 2018). Furthermore, the resting-state sensorimotor 

network abnormality was negatively correlated with the ALSFRS-R score suggesting that 

motoric impairment is associated with increased sensorimotor functional coupling in ALS. 

This corroborates with the increased S1 disinhibition in ALS and negative correlation of 

S1 excitability with ALSFRS-R scores reported by Höffken et al. (Höffken et al., 2019). 

Importantly, our finding of abnormal sensorimotor EEG connectivity strengthens the 

argument that sensorimotor functional connectivity can be captured both at rest and during 

stages of motor tasks (pre-motor and motor execution), with each stage providing both 

shared and unique information on network-level dysfunction. Such measures have potential 

to be used as quantitative neurophysiological biomarker candidates for diagnosis, 

prognosis, and phenotyping/stratification of ALS (Dukic et al., 2019, Zhou et al., 2014). 

Previous studies in healthy participants have shown that contralateral sensorimotor cortices 

(M1, PM, and S1) along with DLPFC were active during pre-movement or pre-motor 
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stages (Churchland et al., 2006, Riehle, 2005, Pfurtscheller and Berghold, 1989, Glover et 

al., 2012, Ariani et al., 2015, Papitto et al., 2020) and motor execution (Hanakawa et al., 

2008, Papitto et al., 2020, Lacourse et al., 2005, Alahmadi et al., 2015, Cisek et al., 2003). 

Beta band cortex-muscle synchrony is a well-known neurophysiological phenomenon 

involved in the generation and control of sustained motor movements (Conway et al., 1995, 

Halliday et al., 1998). Gamma band cortex-muscle synchrony is likely due to repetitive 

force control, which manifests as higher frequency oscillations in cortical regions because 

of processing of sensory information and sensorimotor integration (Pfurtscheller and Lopes 

da Silva, 1999, Muthukumaraswamy, 2010). This study demonstrated significant EEG 

connectivity within contralateral executive-sensorimotor network in healthy controls 

during both pre-motor and motor execution stages at β and γ frequency bands as expected. 

Notably, we reported the presence of β and γ ESMN in ALS, similar to healthy controls, 

during the pre-motor and motor execution stages despite the degeneration of upper motor 

neurons. This may explain why the control of voluntary movement is preserved in non-

weak ALS (10 out of 22 ALS in our study could produce force within mean±1.5sd of force 

produced by healthy controls, p=0.44). Furthermore, EEG connectivity within ESMC 

during pre-motor and motor execution stages was observed at lower frequency bands in 

ALS that were not present in healthy controls. The manifestation of a low-frequency ESMC 

network in ALS may arise as a frequency-based compensation for disrupted high frequency 

(β or γ) ESMC networks for weak ALS (12 ALS participants in our study unable to produce 

force within mean±1.5sd of force produced by healthy controls, p<0.001). This finding 

supports the concept of ‘motor reserve’ in ALS (Bede et al., 2021) and corroborates with 

the results of Verstraete et al. (2010), who reported that ‘although the structural motor 

network deteriorates in ALS, the functional motor network is preserved.’  A longitudinal 

study on ESMN change over time is required to determine whether the preservation on 
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ESMN is temporary and disappears over time, or whether it is preserved regardless of 

disease progression and structural network degeneration.   

6.5.2.2 Reduced beta ERD during motor execution 

ERD studies in ALS have reported alterations in cortical activity during pre-movement and 

execution, reflecting the impact of neurodegenerative processes on the motor system (Riva 

et al., 2012, Bizovicar et al., 2014). Spectral frequency analysis during motor execution 

revealed the commonly observed β event-related desynchronization (ERD) phenomenon in 

sensorimotor regions of healthy controls, resulting from task-related cortical inhibition by 

interneurons (Zaepffel et al., 2013, Ariani et al., 2022, Nasseroleslami et al., 2014). 

Although no significant differences were found in mu/beta ERD between ALS and healthy 

controls during the pre-motor stage, ALS patients exhibited significantly reduced β ERD 

in the ipsilateral motor region and contralateral parietal region during motor execution. This 

finding is consistent with previous reports of reduced cortical mu/beta ERD in ALS patients 

during motor execution (Bizovicar et al., 2014). The reduced ERD in ALS during motor 

execution is likely due to the loss of GABAergic cortical interneurons (Zhou et al., 2013, 

Poujois et al., 2013, Höffken et al., 2019, Agosta et al., 2011, Fraschini et al., 2016) and 

imbalances in inhibitory-excitatory neurotransmitters (Foerster et al., 2013). 

6.5.2.3 Functional compensation by non-dominant-motor and non-motor regions 

The increased β ERSP (i.e., reduced β desynchronisation) in ALS compared to controls in 

ipsilateral M1 during execution motor task reflects the compensatory role of the non-

dominant motor region (Konrad et al., 2002, Schoenfeld et al., 2005, Bede et al., 2021) to 

overcome the disease burden in the dominant motor region.  Similarly, we have shown that, 

during execution motor task, β ERSP is higher over the contralateral superior parietal 

region (SPL) along with higher functional coupling with contralateral M1 in the β band. 
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This is likely to reflect a compensatory role of the superior parietal region in ALS (Poujois 

et al., 2013, Zhou et al., 2013, Lulé et al., 2007), even though the direct or indirect nature 

of this contribution needs further investigation. The involvement of frontal and parietal 

regions in abnormal networks, during motor execution, underpins the abnormal 

frontoparietal network in ALS (Deligani et al., 2020, Cosottini et al., 2012). In addition, 

the negative correlation between ALSFRS-R scores and contralateral motor-parietal 

network connectivity (M1-SPL) during motor execution indicates the increased 

compensatory role of the parietal cortex in functionally weaker ALS as opposed to those 

with relatively stronger functionality. This network connectivity appears to counteract the 

motor control dysfunction resulting from M1 motor neuron degeneration.  

 6.5.3 Multistate functional network impairments as diagnostic tool 

Our result showed that, the abnormal EEG connectivity measures in each stage of the 

experiment (rest, pre-motor, or execution) contributed to classify ALS from controls. The 

contribution of the pre-motor stage features during classification was highest followed by 

motor execution and rest features. This suggests that differences between ALS and controls 

in functional networks may become more marked during the pre-motor stage enabling the 

two groups to be more accurately classified. However, the classification power of a 

standalone stage/experiment/modality is not sufficient to be used as diagnostic tool in 

clinical settings (Huynh et al., 2016). Combining quantitative EEG features from different 

battery of analysis has previously been shown to be useful for classifying various 

neurodegenerative diseases (Garn et al., 2017). This is especially important as the results 

(Figure 6.3-6.5) indicate that each stage provides unique information on the impairment of 

specific parts of the ESMN, most notably during the pre-motor stage. Furthermore, 

combining quantitative EEG and neuropsychology was recommended for differential 
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diagnosis of Frontotemporal dementia and Alzheimer’s disease (Lindau et al., 2003).  Our 

findings suggest that combining features reflecting functional network impairment from 

multistate experimental paradigms (resting state, pre-motor, and execution) provides the 

ability to classify between ALS and healthy controls. The inclusion of pre-motor network 

impairment could be the key to designing quantitative neurophysiological biomarkers of 

network disruption because, as we have shown, pre-motor stage functional connectivity 

grabs a fundamentally different type of motor network impairments than motor execution 

and rest and has the highest contribution for the classification of ALS and healthy controls.  

6.6 Conclusion 

This study was the first to interrogate the pre-motor networks in ALS based on the 

alterations in the intensity of task-related neural oscillations and functional connectivity 

during resting state, the pre-motor stage, and motor execution. Our results highlighted that 

non-motor or non-primary motor cortical regions less affected by neurodegeneration (i.e., 

contralateral prefrontal and superior parietal) or non-dominant motor regions (i.e., 

ipsilateral primary motor) have a distinct - possibly compensatory - role in pre(motor) 

network function in ALS. Finally, that pre-motor network impairments in ALS are distinct 

and not an extension of impairment in the primary motor cortex, and therefore can 

contribute to characterising the disease heterogeneity and developing biomarker candidates 

of motor networks dysfunction in ALS. 

6.7 Limitations 

The EEG connectivity calculated using spectral coherence quantifies the neural synchrony 

or frequency-specific phase-locking and therefore the magnitude of information flow 

between two underlying cortical regions (functional connectivity) but not the direction of 

information flow. Incorporating the magnitude and direction of information flow (effective 
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connectivity) as a classification feature could further increase the accuracy of machine 

learning models in discriminating between ALS and healthy controls. Source localisation 

techniques could more accurately detect abnormal motor networks in ALS than Laplacian 

spatial filtering because they are more robust at reducing volume conduction and can 

provide information on deeper oscillating cortical sources.  
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7. Results: Source Level Study of Corticomuscular coherence  

7.1 Introduction 

Recent electroencephalography (EEG) studies have demonstrated a correspondence 

between neuroelectric activity and UMN pathology in ALS (McMackin et al., 2019b). The 

high temporal resolution of EEG is well suited to provide information concerning rhythmic 

or oscillatory brain activity across a range of frequencies. Previous EEG investigations in 

people with ALS conducted at rest, have demonstrated altered functional connectivity 

across brain networks in the theta (4–7 Hz) and gamma (31–60 Hz) frequency bands 

(Nasseroleslami et al., 2017, Blain-Moraes et al., 2013, Westphal et al., 1998, Dukic et al., 

2019). During voluntary contractions, oscillatory signals originating from the sensorimotor 

cortices are coherent with contralateral muscle signals. This cortex-muscle synchrony can 

be measured using Corticomuscular coherence (CMC) (Conway et al., 1995). CMC is 

typically observed as synchrony (in the beta and gamma-bands) between EEG electrodes 

over M1 and EMG activity (Halliday et al., 1998). It is considered to be indicative of the 

efferent drive to the spinal motoneurons, while also being subject to the modulating 

influence of peripheral afference (Witham et al., 2011). The frequency of synchrony 

between cortex and muscles is modulated by various factors including the type of task and 

level of contraction force (Kilner et al., 2000, Liu et al., 2019). For low force isometric 

contractions, the CMC is observed in the beta band (13-30 Hz) whereas in more forceful 

and dynamic contractions, the CMC shifts to the gamma band (31-97Hz) (Omlor et al., 

2007, Gwin and Ferris, 2012, Andrykiewicz et al., 2007).  

Recent studies have shown that CMC can provide valuable insights into the 

pathophysiology of ALS, as well as potential biomarkers for diagnosis and disease 

progression. Peak beta-band CMC over M1 is reduced in conditions characterised by UMN 
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degeneration, including stroke (Fang et al., 2009, Aikio et al., 2021) and ALS (Issa et al., 

2017, Proudfoot et al., 2018b). This reduction is thought to be due to the progressive loss 

of motor neurons, which results in a decrease in the number of signals that can be 

transmitted between the brain and muscles. 

Despite its potential as a biomarker for neurodegenerative diseases, CMC analysis is still 

premature, and there is much that remains to be understood about its relationship with the 

disease. Our recent CMC study on patients with lower motor neuron dysfunction such as 

post-polio syndrome (Coffey et al., 2021) and patients with upper motor neuron 

dysfunction, such as PLS (Bista et al., 2023), found abnormal patterns of brain activity 

beyond M1 and the beta band during voluntary movement. ALS being the disease where 

both upper and lower motor neurons are affected, we, therefore, hypothesized that (1) 

Impaired CMC could be detected beyond the beta frequency band and contralateral 

sensorimotor cortices in ALS, (2) CMC could be a tool to reveal multiple network 

dysfunction in ALS. 

7.2 Method 

7.2.1 Ethics 

The study was approved by the Tallaght University Hospital / St. James's Hospital Joint 

Research Ethics Committee - Dublin [REC Reference: 2019-05 List 17 (01)] and performed 

in accordance with the Declaration of Helsinki (2013). All participants provided informed 

written consent to the procedures before undergoing assessment. 

7.2.2 Participants  

ALS patients were prospectively recruited in this study through the national ALS clinic at 

Beaumont Hospital. All participants with ALS were clinically diagnosed as possible, 

probable, or definite ALS (Hardiman et al., 2011). Healthy controls, age-matched to the 
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ALS cohort, were recruited from a database of healthy controls interested in taking part in 

the ongoing research studies in the Academic Unit of Neurology, Trinity College Dublin, 

the University of Dublin.  

Participants with a history of major head trauma or other neurological conditions that could 

affect cognition, alcohol dependence syndrome, current use of neuroleptic medications or 

high-dose psychoactive medication were excluded. Those with diabetes mellitus, a history 

of cerebrovascular disease, and those with neuropathy from other causes were also 

excluded.  

7.2.3 Clinical assessment 

Disease duration from symptom onset, diagnostic delay, and site of disease onset were 

recorded. The revised ALS functional rating scale (ALSFRS-R) scores (Cedarbaum et al., 

1999) were obtained from ALS cohort. ALSFRS-R is a 48-point validated questionnaire-

based clinical scale that ranges from score 0 (severe functional impairment) to 48 (no 

functional impairment). The 48-point total score can be divided into 4 sub-scales namely 

bulbar (0-12), fine motor (0-16), gross motor (0-8), and respiratory (0-12) (Cedarbaum et 

al., 1999). The fine motor and gross motor sub-scales are combined as motor sub-score (0-

24) that weigh the level of motor impairment in ALS patients.  

The Edinburgh handedness inventory (EHI) (Oldfield, 1971) with 10 questions was 

performed to assess the handedness of participants.  
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Figure 7.1 Motor task and related electromyography (EMG) and force signals. (A) Pincher grip motor task 

performed by thumb and index finger of the right hand, (B) a segment of the force profile of the pincer grip 

motor task performed at 10% of maximum voluntary contraction (MVC), (C) a force trajectory of the pincer 

grip motor task averaged over 30 trials, (D) segment of electromyography (EMG) signal recorded from the 

first dorsal interosseous (FDI) muscle during 10% MVC pincher grip motor task. This figure has been 

published in Bista et al. (2023) in Figure 1, see appendix 5.1. 

7.2.4 Experimental Paradigm 

Assessment was conducted in the same manner for the ALS and control groups, similar to 

the previously described sensor level study in chapter 6 of this thesis and was also described 

in Coffey et al. (2021) and Bista et al. (2023). Briefly, participants held a force transducer 

between the thumb and the index finger of their right hand to measure pincer grip force 

(Figure 7.1 A). The maximal voluntary contraction (MVC) was determined as the average 

peak force achieved during three short (5 s) maximal contractions, where the peak force in 

these attempts lay within 10% of each other. Participants were asked to produce the pincer 
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grip force at 10% MVC for 5 s with the aid of visual feedback from the force transducer. 

A 5 s rest period before and after the task was provide (Figure 7.1 C).  Participants 

attempted a total of 30 trials for each task.   

7.2.5 Recording of (Neuro-)electro-physiological Signals 

All participants were seated in a comfortable seat, EEG data were recorded in a special 

purpose laboratory, using a 128-channel scalp electrode cap, filtered over the range 0–400 

Hz and digitized at 2048 Hz using the BioSemi® ActiveTwo system (BioSemi B.V, 

Amsterdam, Netherlands). Each participant was fitted with an appropriately sized EEG cap.  

Surface EMG data were recorded simultaneously with EEG using a bipolar electrode 

configuration from 8 muscles in the right upper arm, with the electrode pairs placed in 

accordance with the SENIAM guidelines (Hermens et al., 2000). The online hardware gain 

and filter settings for the EMG signals during recordings were the same as for the EEG 

channels, which was followed by further offline pre-processing. 

7.2.6 Signal Pre-processing 

EEG/EMG data analysis was performed as described in detail in a previous study (Coffey 

et al., 2021). Briefly, automated artefact rejection routines (Fieldtrip Toolbox) (Oostenveld 

et al., 2011) were used to discard data contaminated by noise. After visual inspection of the 

128-channels recordings, EEG channels with higher levels of noise were removed and 

reconstructed using weighted average interpolation of neighbouring channels (Perrin et al., 

1989). A time window/epoch duration of 4 s (starting 1s after the visual cue) was chosen 

for analysis. Data epochs where the coefficient of variation of the force produced was above 

0.2, or where the mean force was less than 8% or more than 20% MVC, were excluded 

from further analysis. An average of 7 ± 8 trials (i.e., 28 ± 32 seconds) data were removed 

across all participants for these reasons. An average of 15±6 trials (i.e., 60±24 seconds) for 
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the 128 EEG channels were retained for source reconstruction. The EEG data were (re-

)referenced using common average referencing. The EMG data (signal amplitude) were 

normalized with respect to the root mean square EMG amplitude at 100 % MVC. EEG and 

EMG data were filtered between 1-100Hz and 10-100 Hz, respectively, using a dual-pass 

4th order Butterworth bandpass filter. The EMG signals were not rectified. Three EMG 

signals (First Dorsal Interosseous, FDI; Flexor Pollicis Brevis, FPB and Abductor Pollicis 

Brevis, APB) were chosen apriori for the cortico-muscular coherence analysis. The target 

muscles were selected based on their biomechanical involvement in the pincer grip task 

(Danna-Dos Santos et al., 2010). 

7.2.7 Source Reconstruction 

The details of source reconstruction are explained in sub-section 4.4.2.2 of chapter 4 of this 

thesis. Briefly, a template structural MRI was used to compute the forward model. The 

source reconstruction was done using linearly constrained minimum variance (LCMV) 

beamformer (Van Veen et al., 1997) using the Fieldtrip toolbox. Ten anatomical brain 

regions were chosen bilaterally, 5 on each side of the brain, using the automated anatomical 

labelling (AAL) atlas (Tzourio-Mazoyer et al., 2002). The chosen anatomical brain regions 

(regions of interest, ROI) were Primary Motor Cortex (M1), Primary Sensory Cortex (S1), 

Supplementary Motor Area (SMA), Medial Prefrontal Cortex (PFC), and Superior Parietal 

Lobule (SPL) of both hemispheres.  To derive a single time-series for each ROI all the 

time-series within a ROI were weighted using a Gaussian weighting function with the half 

width at half maximum set to approximately 17 mm (Dukic et al., 2019, Brookes et al., 

2016, Tewarie et al., 2016). Before deriving a single time-series of each ROI, the direction 

along the maximum power for each region was estimated by using singular vector 

decomposition on the orientations of the dipoles. Dipoles with the opposite direction (>90 
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degrees) to the estimated ROI’s maximal activity vector were sign-flipped. After 

completing these steps, we obtained 10 broadband time-series, each representing one ROI. 

This pipeline was applied to each subject individually.  

7.2.8 Spectral Analysis 

CMC was examined in eight different frequency bands (Table 4.2) and a single coherence 

estimate was obtained for each band. The frequency bands were defined based on the 

typical physiological EEG frequency bands (Sanei and Chambers, 2007) as well as their 

relevance both in sensorimotor control (Nasseroleslami et al., 2014) and quantifying 

network dysfunction in motor neuron diseases (Dukic et al., 2019, Dukic et al., 2021).  

CMC was estimated based on the spatial median using the procedure as described in sub-

section 4.4.4.1 in chapter 4 Materials and Methods of this thesis and in previous studies 

(Coffey et al., 2021, Bista et al., 2023) . Briefly, the auto- and cross-spectra for each 1 s 

epoch were calculated for each participant. The spatial median coherence was then 

estimated from the spatial median of the auto- and cross-spectra across each of the eight 

defined frequency bands to obtain the banded coherence. The banded spectral cortico-

muscular coherence was normalized by dividing the band cross-spectrum by the respective 

band auto-spectra. To represent the banded CMC as a probability, each coherence value 

was compared against zero using a non-parametric one-sample test for significant 

coherence [spatial (signed) ranks (Nordhausen and Oja, 2011, Oja, 2010, Oja and Randles, 

2004)]. This procedure yielded individual p-values for each frequency band, for each 

individual (both ALS and control groups). Stouffer’s method  was used to combine 

individual p-values to derive average p-value within each group, i.e. in the healthy group, 

and in the ALS group (Stouffer et al., 1949, Westfall, 2014). This procedure is similar, but 

not procedurally equivalent, to the pooled coherence analysis (Amjad et al., 1997). Both 



   

 

 159 

methods can be used to combine information from several participants (or trials). The 

negative logarithm of the p-values, i.e. -log10(p), was used as a measure of CMC strength 

to visualize cortico-muscular coherence. The band-specific coherence values, expressed in 

-log10(p), were used to represent the collective coherence over the range of frequencies 

within each distinct frequency band. 

7.2.9 Statistics 

To find significant group differences between the banded CMC values, the band specific 

CMC values (expressed as p values) were converted into z-scores by taking the inverse of 

cumulative distribution function (CDF) of 1 − 𝑝. Resulting z-scores of CMC values were 

compared between healthy controls and ALS patients using a non-parametric 2-sample 

Wilcoxon rank sum test which reports the test values as z scores. In total 240 comparisons 

(10 EEG × 3 EMG × 8 Frequency bands) were made. Correction for multiple comparisons 

was performed using the adaptive false discovery rate at q = 0.05 (Benjamini et al., 2006). 

The effect size of the CMC differences was also calculated using Cohen’s d. 

The association of the CMC measures of the ALS cohort with their corresponding 

ALSFRS-R scores, task performance accuracy, and disease duration was tested using 

Spearman’s rank correlation coefficient. The p values of correlation coefficients were 

adjusted for multiple comparison (240 comparisons in total, 10 EEG × 3 EMG × 8 

Frequency bands) using adaptive false discovery rate at q = 0.05.  A line was fitted to the 

scatter plot of the data, to visualise the relationship, using Robust linear least-square fitting 

method. The degree-of-freedom-adjusted coefficient of determination (Adj R2) was 

calculated for the fitted line to measure the goodness of the fit. 
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7.3 Results 

7.3.1 Clinical Profile 

24 ALS (6 females and 18 males, age: 65.33±9.82 [mean ± SD]) were prospectively 

recruited from the national ALS Clinic based in Beaumont hospital, Dublin. 22 age-

matched healthy controls (10 female and 12 male) were recruited (age: 62.27±8.97 [mean 

± SD]). Table 7.1 shows the detailed profile of the recruited participants.  

Table 7.1 Clinical and demographic data of analysed participants.  

 ALS Cohort 

(n = 24) 

Controls 

(n=22) 

Age at recording (years)* 65.33±9.82 62.27±8.97 

Gender 

Female 

Male 

 

6 

18 

 

10 

12 

EHI 

Right 

Left 

 

22 

2 

 

21 

1 

Diagnostic delay (months)* 19.04±24.32  

Disease duration (months)* 27.41± 23.43  

Site of onset  

Spinal 

Bulbar 

Thoracic/Respiratory 

 

22 

2 

0 

 

ALSFRS-R score (max 48)* 

Fine motor sub-score (max 16)* 

40.40±5.65 

12.95±2.17 

 

* Numbers show mean ± standard deviation 

EHI (Edinburgh Handedness Inventory) 

ALSFRS-R (Amyotrophic Lateral Sclerosis Functional Rating Scale Revised) 
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7.3.2 Behavioural aspect of task performed 

The participants were asked to maintain a sustained contraction (steady force) at 10% MVC 

for 5 seconds after a visual cue and were provided with visual feedback of the force exerted. 

Because of the rigid force sensor and low force condition, which makes pincer grip control 

relatively difficult compared to spring type load or higher force condition (for example 

20% MVC or greater), both the control and ALS participants performed the task with 

periodic adjustment (error correction) of force. Although, the epochs with exerted force not 

within the acceptable range (i.e., less than 8% MVC and greater than 20% MVC) were 

rejected, it did not guarantee a smooth force trajectory in individuals (for example see 

Figure 7.1 B-C). Individually, 14/22 healthy controls and 13/24 ALS patients exhibited 

significant periodicity (tested by using Fisher’s g-statistic) of exerted force at ~0.5 Hz, and 

12/22 healthy controls and 7/24 ALS patients exhibited significant periodicity of exerted 

force at ~0.7 Hz. At the group level (Figure 7.2 A), both healthy controls and ALS patients 

exhibited a significant spectral power (p<0.001) of exerted force at ~0.5 Hz and ~0.7 Hz 

with no group differences at either frequency (p = 0.938 for ~0.5Hz and p=0.991 for ~0.7 

Hz), Figure 7.2 B. ALS patients made significantly more (p=0.003) force exertion errors 

compared to controls (Figure 7.2 C) i.e., on average, 32.13±27.52 percent of epochs were 

rejected for ALS patients and 10.60±15.95 percent for healthy controls.  
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Figure 7.2 Analysis of exerted force during sustained contraction (steady force) task. (A) Group average 

(median) power spectra of exerted force at 10% maximal voluntary contraction (MVC) for controls and ALS 

patients showing significant peaks at ~0.5 Hz and ~0.7 Hz. (B) Boxplot overlayed by scatter plot showing no 

difference in spectral power of exerted force between controls and ALS at ~0.5 Hz and ~0.7 Hz. (C) Boxplot 

overlayed by scatter plot of bad epochs (epochs rejected because the exerted force was not in the acceptable 

range) for controls and ALS patients showing a significant difference between the groups.   

7.3.3 Beta and Gamma sensorimotor CMC during low force pincer grip of rigid object 

in healthy controls 

The CMC results showed that healthy controls exhibited significant synchronization 

between the cortex and muscles in the beta band (14-30 Hz) during voluntary isometric 

contraction at 10% MVC. This synchronization occurred between the hand muscles (APB, 

FDI, FPB) and the contralateral primary sensorimotor cortices (M1/S1) and was observed 

consistently in all healthy participants in individuals as well as at the group level (Figure 

7.3 A-C). In addition to beta CMC, which is a well-known cortex-muscle synchrony 

associated with generating sustained isometric force at low levels, high-gamma (53-97 Hz) 
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synchronization was also consistently observed between all three hand muscles and 

contralateral M1/S1 (Figure 7.3 D-F). Moreover, gamma CMC was also consistently 

detected between the contracting muscles and the contralateral SMA. 

7.3.4 Reduced CMC in Primary Sensorimotor Cortex and beyond in ALS 

In the ALS group, there was a significant decrease in CMC compared to the controls 

between the hand muscles and the primary sensorimotor cortex (M1/S1) and beyond in 

multiple frequency bands. Specifically, CMC between FDI- ipsilateral S1 at high-alpha 

(Figure 7.4 A and 7.5 A), FDI- bilateral M1 at low-beta (Figure 7.4 B and 7.5 B-C), FDI- 

contralateral SPL at low-beta (Figure 7.4 B and 7.5 D), and FDI- ipsilateral SMA at low-

beta (Figure 7.4 B and 7.5 E) were significantly lower in ALS patients. Similarly, CMC 

between APB- contralateral M1/SMA at high-gamma band was also significantly lower in 

ALS patients (Figure 7.4 C, 7.5 F-G). 

7.3.5 Higher CMC in Ipsilateral Prefrontal Cortex in ALS 

CMC between FPB and ipsilateral PFC in the low-beta band was significantly higher in 

ALS patients compared to healthy controls (Figure 7.4 D and 7.5 H). 
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Figure 7.3 Contralateral sensorimotor regions (M1, S1, SMA) in healthy controls show significant 

(p<0.01) group average Corticomuscular coherence (CMC) with muscles. (APB, FDI, FPB) in beta (A-C) 

and gamma bands (D-F) during a low force (10% MVC) pincer grip task of a rigid object. Muscles: Abductor 

pollicis brevis (APB), First dorsal interosseous (FDI), Flexor pollicis brevis (FPB). Brain regions: Primary 

motor (M1), Primary sensory (S1), Supplementary motor area (SMA). 
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Figure 7.4 Brain regions showing significant group differences (z-scores) in Corticomuscular coherence 

(CMC) values between ALS patients and controls. (A) Significantly lower CMC in ALS between the FDI 

muscle and ipsilateral S1 in the high-alpha band. (B) Significantly lower CMC in ALS patients between the 

FDI muscle and bilateral M1, ipsilateral SMA, and contralateral SPL in the low-beta band. (C) Significantly 

lower CMC in ALS patients between the APB muscle and contralateral M1 and contralateral SMA in the 

high-gamma band. (D) Significantly higher CMC in ALS patients between the FPB muscle and ipsilateral 

PFC in the low-beta band. Muscles: Abductor pollicis brevis (APB), First dorsal interosseous (FDI), Flexor 

pollicis brevis (FPB). Brain regions: Primary motor (M1), Primary sensory (S1), Supplementary motor area 

(SMA), Superior parietal lobule (SPL), Prefrontal cortex (PFC). 
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Figure 7.5 Scatter plot overlayed in the box plot of Corticomuscular coherence (CMC) values (z-scores) 

showing significant group differences (marked by *) between ALS patients and controls. Significant lower 

CMC in ALS patients between the FDI and (A) ipsilateral S1 in the high-alpha band, (B, C) bilateral M1 in 

the low-beta band, (D) contralateral SPL in the low-beta band, and (E) ipsilateral SMA in the low-beta band. 

Significantly lower CMC in ALS patients between the APB and (F) contralateral M1 in the high-gamma band 

and (G) contralateral SMA in the high-gamma band. Significantly higher CMC in ALS patients between FPB 

and (H) ipsilateral PFC in the low-beta band. The purple colour circle in ALS scatter plots represent left-

handed ALS participant, similarly the yellow colour circle in controls scatter plots represent left-handed 

control participant. Muscles: APB Abductor pollicis brevis, FDI First dorsal interosseous, FPB Flexor 

pollicis brevis (FPB). Brain regions: M1 Primary motor, S1 Primary sensory, SMA Supplementary motor 

area, SPL Superior parietal lobule (SPL), PFC Prefrontal cortex. The prefix c/i represents 

contralateral/ipsilateral side of the brain.  
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Table 7.2 Cortex-Muscle pairs where significant group differences in 

Corticomuscular coherence (CMC) were observed between ALS patients and 

Controls.  

Cortex-Muscle Location Frequency 
Group Difference (ALS-CON) 

z-score p value Cohen’s d 

S1-FDI Ipsilateral High alpha -2.27 0.022 0.633 

M1-FDI Contralateral Low beta -2.18 0.028 0.610 

M1-FDI Ipsilateral Low beta -2.05 0.039 0.553 

SMA-FDI Ipsilateral Low beta -2.29 0.021 0.621 

SPL-FDI Contralateral Low beta -2.25 0.024 0.574 

SMA-APB Contralateral High gamma -2.45 0.014 0.768 

M1-APB Contralateral High gamma -2.20 0.027 0.574 

PFC-FPB Ipsilateral Low beta 2.05 0.039 0.553 

SMA: Supplementary motor area, M1: Primary motor cortex, S1: Primary sensory cortex, 

SPL: Superior parietal lobule, PFC: Prefrontal cortex, FDI: First dorsal interosseous, APB: 

Abductor pollicis brevis, FPB: Flexor pollicis brevis. 

7.3.6 CMC Correlates with Clinical Motor Impairment and Task Performance in 

ALS patients 

Stronger clinical fine motor impairment in ALS, assessed using the ALSFRS-R fine motor 

sub-scores (lower score means higher impairment), was associated with reduced CMC 

between FDI muscle and ipsilateral S1 in the delta band (Figure 7.6 A, r = 0.529, p=0.016) 

and contralateral S1 in the high-alpha band (Figure 7.6 B, r = 0.460, p = 0.048). On the 

other hand, stronger fine motor impairment in ALS was also associated with increased 

CMC between APB and ipsilateral SPL in the theta band (Figure 7.6 C, r = -0.473, p = 

0.039). Additionally, better task performance accuracy in ALS patients (i.e., the ability to 

maintain force at an acceptable limit of 10% MVC) was associated with higher CMC 
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between FDI and contralateral SPL in the low-beta band (Figure 7.6 D, r = 0.562, p = 

0.042).  

 

Figure 7.6 Measures of Corticomuscular coherence (CMC) in ALS showed significant strong associations 

(Spearman’s correlation) with the clinically defined ALSFRS-R fine motor sub-scores (A, B, and C) and 

Task performance accuracy (D). The fine motor sub-score ranges from 0-16, 16 being normal or no 

impairment and 0 being severe impairment. The p-values have been corrected for false discovery rate (FDR) 

at q = 0.05. (A) CMC between the FDI muscle and ipsilateral S1 show significant positive correlation with 

ALSFRS-R fine motor sub-score in the delta band. (B) CMC between the FDI muscle and contralateral S1 

show significant positive correlation with ALSFRS-R fine motor sub-score in the high-alpha band. (C) CMC 

between the APB muscle and ipsilateral SPL show significant negative correlation with ALSFRS-R fine motor 

sub-score in the theta band. (D) CMC between the FDI muscle and contralateral SPL show significant 

positive correlation with task performance accuracy (ratio of number of good epochs to total number of 

epochs performed) in the low-beta band. 
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7.4 Discussion 

To date, studies investigating CMC in motor neuron diseases have focused on estimating 

beta-band CMC between muscles of the hand/arm and M1, as a direct reflection of 

UMN/LMN pathology (Proudfoot et al., 2018b). However, our recent studies in patients 

with ALS (Dukic et al., 2019, McMackin et al., 2020), Post-Polio Syndrome (Coffey et al., 

2021), and PLS (Bista et al., 2023) suggest that abnormalities in cortical network activity 

extend beyond M1 in these conditions, a finding that is also supported by neuroimaging 

studies (Finegan et al., 2019). Here we have used CMC to demonstrate that brain activity 

in patients with ALS differs from that of healthy controls during the performance of a pinch 

grip motor task (the engagement of different brain networks is characterised here by the 

oscillatory coupling between signals recorded from brain and muscle) (Figure 7.4 and 

Table 7.2). Furthermore, CMC was detected over brain regions and frequency bands 

distinct from the beta-band CMC that is typically recorded over M1/S1. These observations 

suggest that ALS affects a wider brain network extending beyond the primary sensorimotor 

cortex. We also identified several CMC measures that correlated with clinical measures of 

functional motor dysfunction and motor performance. 

7.4.1 Gamma CMC during low force isometric contractions in healthy controls  

Beta CMC is dominant during sustained isometric contractions but when the muscle 

contraction is dynamic, CMC shifts from beta to gamma to account for increased attention 

to the task and rapid integration of visual, proprioceptive, tactile, and planning information 

(Andrykiewicz et al., 2007, Gwin and Ferris, 2012, Omlor et al., 2007, Brown et al., 1998). 

However, beta CMC is not the sole neurophysiological signature of sustained contraction 

task if additional task parameters are involved. For example, alpha and beta CMC were 

distinctly observed in mechanically induced physiological tremor in healthy controls 
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during low force sustained muscle contraction (Halliday et al., 1999, Budini et al., 2014). 

The observed distinct gamma CMC in addition to beta CMC in healthy controls during our 

sustained contraction task could be the result of the low frequency periodicity of the exerted 

force (Figure 7.2 A) which mimics the neurophysiology of a low force dynamic contraction 

task (Andrykiewicz et al., 2007). In controls, during a low precision (±20% of target) low 

force (8% MVC) isometric contraction task, gamma CMC in addition to beta CMC has 

been reported previously by Kristeva-Feige et al. (2002). Similarly, in healthy controls, 

significant beta and gamma CMC has been reported not only during isometric contraction 

but also during hand grasping (Tun et al., 2021). 

7.4.2 Sensorimotor Dysfunction in ALS 

In this study, we compared the CMC between an ALS cohort and age-matched controls for 

eight frequency bands. The result indicated reduced CMC (except for ipsilateral PFC-FPB 

in the low-beta band where CMC increases) in the ALS cohort compared to controls in 

alpha, beta, and gamma frequency bands and in brain regions within and beyond M1. Beta 

CMC plays an important role in facilitating the efferent/afferent communication between 

the motor cortex and muscles (Witham et al., 2011), and fine-tuning motor control to adapt 

to changing task demands (Kilner et al., 2000). CMC in the alpha band is associated with 

the afferent sensory feedback information from muscles to sensorimotor cortex (Harada et 

al., 2009) or may reflect the functional connection between M1 and S1(Ohara et al., 2000). 

Our study showed decreased α/β CMC between primary sensorimotor cortices (M1/S1) and 

muscle (FDI) in ALS (Figure 7.4 A-B). Previous studies investigating cortex-muscle 

synchrony using CMC in ALS patients also reported that beta CMC between muscles and 

sensorimotor areas was significantly reduced in ALS patients compared to controls 

(Proudfoot et al., 2018b). The reduction of beta CMC was also observed in other 
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neurodegenerative diseases with movement deficit such as Parkinson’s disease (Yokoyama 

et al., 2020, Zokaei et al., 2021) and neurological disorders that cause motor impairment 

such as chronic stroke (Meng et al., 2009). Therefore, the observed reduction of α/β CMC 

in ALS could be attributed to the dysfunction of the corticospinal tract and could be 

considered a marker of sensorimotor network dysfunction in ALS (Proudfoot et al., 2018b).  

The reduced CMC for regions other than M1/S1 and/or frequency bands other than α/β 

could imply broader network impairment in ALS beyond sensorimotor networks 

(Nasseroleslami et al., 2017, Dukic et al., 2019). 

7.4.3 Motor Planning Dysfunction in ALS 

The SMA, a motor area with higher-order motor function, plays a crucial role in movement 

preparation and planning (Shibasaki and Hallett, 2006, Hoshi and Tanji, 2004). Despite 

very few (about 6%) of corticospinal projections from the SMA to the spinal motor nuclei 

supplying hand and finger muscles as opposed to more abundant (about 81%) from M1 in 

non-human primate, the former could contribute to movement preparation and selection by 

directly influencing the excitability of the spinal circuitry (Maier et al., 2002). Our result 

showed significant CMC between contralateral SMA and muscles (Figure 7.3) in the γ-

band in healthy controls during muscle contraction that may be the result of direct 

activation of motoneurons to facilitate motor control in addition to the indirect influence 

through M1 that occurs concurrently (Meng et al., 2008). CMC in the γ-band is associated 

with dynamic muscle contractions and it is thought to reflect stronger excitation of the 

motor cortex or greater attention to the task and rapid integration of visual, proprioceptive, 

tactile, and planning information (Andrykiewicz et al., 2007, Gwin and Ferris, 2012, Omlor 

et al., 2007, Brown et al., 1998). Previous research has also indicated that γ oscillations act 

as an online “updating system” for managing motor control (Fries et al., 2007) and γ 
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oscillations from SMA have been found to be important for sudden changes in the motor 

plan (Hosaka et al., 2016). Consistent with this idea, it has been reported that γ tACS 

(transcranial alternating current stimulation) can improve specific components of visuo-

motor task execution when sudden changes in the motor plan are required (Santarnecchi et 

al., 2017). Similarly, γ-band corticospinal coherence between the contralateral motor region 

and spinal motor neurons has been previously linked to the readiness to respond 

(Schoffelen et al., 2005). Therefore, significantly lower CMC between SMA and muscles 

(APB in the γ-band and FDI in the β-band) in ALS patients compared to controls 

demonstrated by our results (Figure 7.4 B-C) could indicate dysfunctional motor planning 

networks in ALS (Thorns et al., 2010, Westphal et al., 1998). The reduction of γ-band CMC 

during initiation of isotonic contraction has previously also been reported in other 

movement disorders such as cerebral palsy (Riquelme et al., 2014).  

7.4.4. Attention Deficit and Cognitive Burden in ALS 

Fast or gamma oscillations from M1 have been associated with task engagement in non-

human primates (Donoghue et al., 1998). Studies have previously shown that motor 

performance is enhanced by γ tACS over M1 (Moisa et al., 2016, Joundi et al., 2012), and 

in turn, observed compensatory neural activity modulation in prefrontal cortex (Moisa et 

al., 2016). During a dynamic force control task, γ-band CMC between M1 and muscles is 

linked to higher attention to the task (Andrykiewicz et al., 2007, Omlor et al., 2007, Brown 

et al., 1998). We have already demonstrated above that although we asked the participants 

to maintain static (sustained) force, because of the nature of the task, dynamic components 

were introduced which required increased attention. Therefore, significantly lower γ CMC 

between contralateral M1 and APB in ALS patients compared to controls (Figure 7.4 C) 

could be attributed to an attention deficit in ALS (Mannarelli et al., 2014, McMackin et al., 
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2019a). Additionally, we have shown that CMC between ipsilateral (right) PFC and FPB 

muscle in the β band is significantly increased in ALS compared to controls (Figure 7.4 D). 

This could result from role of prefrontal cortex in compensating for reduced γ CMC 

between M1 and APB muscle for improving motor performance (Moisa et al., 2016).  

Furthermore, the increased CMC between right PFC and FPB muscle could be attributed 

to higher cognitive efforts used by ALS cohort to maintain force at the target level because 

of cognitive decline (McMackin et al., 2021, Beeldman et al., 2020). High functional 

connectivity with right PFC in ALS patients has been reported previously by a 

neuroimaging study (Borgheai et al., 2020) and interpreted as executive dysfunction in ALS 

patients specifically relating to deficits in task-related working memory processes.       

7.4.5 Altered Visuomotor Integration in ALS 

The superior parietal lobule (SPL) is involved in various cognitive functions, including 

visuomotor integration which is the ability to coordinate visual information with motor 

output. During visuomotor tasks, activity in the SPL is specifically associated with the 

integration of visual and proprioceptive information, suggesting that the SPL plays a key 

role in combining sensory information for motor control (Medendorp et al., 2003). 

Individuals with SPL lesions had difficulty in performing visuomotor tasks that required 

the integration of visual and proprioceptive information (Pellijeff et al., 2006), which 

further strengthens the role of the SPL for the integration of sensory information that is 

critical for motor planning and execution. In ALS, we showed that β CMC between the 

contralateral SPL and FDI muscle is significantly reduced compared to controls which 

could be the signature of altered visuomotor integration due to dysfunction of the 

corticospinal system. Such phenomenon has been previously reported in neurodegenerative 

diseases such as Alzheimer’s disease (Lu et al., 2021). Oculomotor abnormality has been 
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previously reported in ALS (Rojas et al., 2020, Kang et al., 2018) which further strengthens 

our interpretation that visuomotor integration could be altered in ALS.  

7.4.6 No effect of handedness on the significant CMC differences between ALS 

patients and controls 

The motor task was standardised to be performed by the right hand only, irrespective of 

left-hand dominance for some participants. Since, we had very few left-hand dominant 

participants (2 ALS and 1 control) who performed the task using their non-dominant hand, 

we could not directly compare the effect of handedness on significant CMC differences 

between ALS patients and healthy controls using statistical test. However, we have visually 

confirmed by showing a box plot overlayed by scatter plot of CMC measures using 

different colour (purple for ALS and yellow for controls) for left-handed participants 

(Figure 7.5), which indicated that those measures were not the outliers (i.e., lie within the 

standard deviation from the mean). Therefore, we can say that there was no effect of 

handedness on the significant CMC differences between ALS patients and controls. 

 

7.5 Conclusions 

Corticomuscular coherence (CMC) as a tool for investigating motor neuron diseases has 

traditionally focused on the beta-band CMC between muscles of the hand/arm and M1. 

However, our recent studies on patients with Post-Polio Syndrome and PLS suggest that 

abnormalities in cortical network activity extend beyond M1 in these conditions. This study 

found that the brain activity of ALS patients differed from that of healthy controls during 

a pinch grip motor task, with CMC detected between brain-muscle pairs and frequency 

bands distinct from beta-band CMC typically observed between M1/S1 and muscles. These 

observations suggest that ALS affects a wider brain network directly or indirectly extending 



   

 

 175 

beyond the primary sensorimotor cortex. Additionally, several CMC measures correlated 

with clinical measures of functional motor dysfunction and motor performance. In ALS 

patients, there was a reduction of CMC in alpha, beta, and gamma frequency bands, which 

could be attributed to the dysfunction of the corticospinal tract and could be considered a 

marker of sensorimotor network dysfunction. The reduction of CMC between muscles and 

brain regions other than M1/S1 and/or frequency bands other than alpha/beta could imply 

broader network impairment in ALS beyond sensorimotor networks, potentially 

contributing to dysfunction of other aspects of motor control such as motor planning, task 

attention, and visuomotor integration. Overall, these findings suggest that CMC may be a 

useful tool for studying motor neuron diseases and understanding the underlying neural 

mechanisms of these conditions. 

7.6 Limitations 

The CMC studied here using banded spectral coherence doesn’t provide directional 

information. Therefore, the study cannot make inferences whether the corticospinal 

network dysfunction is driven by descending efferent or ascending afferent pathways. 
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8. Source Level Study of Effective Connectivity 

8.1 Introduction 

One promising area of research for early diagnosis of ALS is to find brain network based 

neurophysiological biomarkers. Directed or non-directed brain networks can be estimated 

from non-invasive neurophysiological recording or brain imaging technologies such as 

functional magnetic resonance imaging (fMRI), functional near-infrared spectroscopy 

(fNIRS), magnetoencephalography (MEG), electroencephalography (EEG) et cetera. 

Among all brain imaging technologies, EEG is the most cost-effective technology which 

has already proven its value in brain research. One limitation of EEG is its low spatial 

resolution, which could be easily overcome by using high-density electrodes with 

beamforming techniques i.e., estimate source signals from sensor level signals. In addition, 

source level EEG provides a robust means to identify directional connectivity between 

brain regions in comparison to fMRI and fNIRS (Anwar et al., 2016). 

The network-level changes in brain during rest or on task can be quantified by using brain 

connectivity measures such as functional connectivity (FC) or effective connectivity (EC). 

Functional connectivity employs the correlation between the interacting brain regions, and 

the direction of information flow is not defined (Friston, 2011). So, cortical networks based 

on functional connectivity lack the causal information such as inflow or outflow which 

could be crucial for explaining a neurophysiological process in health and in disease. 

Effective connectivity resolves the issue by providing a causal relationship between the 

brain regions of interest  (Friston, 2011). The effective brain networks can be estimated 

from the EEG time series by using partial directed coherence (PDC) (Baccalá and 

Sameshima, 2001), which is a frequency domain version of Granger causality. Other 

Granger causality-based frequency domain methods such as the direct transfer function 
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(DTF) (Kaminski and Blinowska, 1991) can be used to find the causal interaction between 

the brain sources, however, DTF is prone to being affected by alternative interactions or 

unpredictable factors (Baccalá and Sameshima, 2001). On the other hand, PDC is a widely 

used method which is proven to be more reliable and faster to quantify causal interactions 

among multi-channel EEG signals (Huang et al., 2016). Dynamic Causal Modelling (DCM) 

is another popular method for estimating causal interactions between brain sources, but it 

requires a prior specification of connectivity linkages (Sato et al., 2009) which is not 

required with PDC. The asymptotic distribution of PDC is not well known therefore 

bootstrap-based approaches are commonly used to test for significant connectivity. 

Variance stabilisation is recommended when it comes to bootstrap-based PDC connectivity 

approaches (Baccala et al., 2007). Therefore, in this study, we used a normalised version 

of PDC also called generalised PDC or gPDC. The motivation for choosing gPDC was that 

it provides variance stabilisation to overcome the lack of scale invariance in PDC (Baccalá 

and Sameshima, 2021). 

Studies using functional connectivity measures have widely reported altered sensorimotor 

and extra-motor networks in ALS compared to healthy individuals during rest (Agosta et 

al., 2011, Zhou et al., 2014, Douaud et al., 2011, Menke et al., 2018, Dukic et al., 2019) 

and tasks (Stanton et al., 2007, Kollewe et al., 2011, Poujois et al., 2013, Cosottini et al., 

2012). Similarly, effective connectivity has been widely used to study causal brain 

networks in neurological disorder such as Alzheimer’s disease during rest (Scherr et al., 

2021) or task (Agosta et al., 2010b). Although effective connectivity measures could reveal 

more on ALS neuropathophysiology, the use of the measure to estimate brain network 

abnormalities in ALS has been rather limited. A resting state fMRI based effective 

connectivity  study on ALS showed altered causal interaction between sensorimotor 

cortices reflecting damage in motor neurons (Fang et al., 2016). Since, studies have focused 
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on three cortical regions only (primary motor, primary sensory and supplementary motor), 

and causal interaction of cortices beyond these sensorimotor regions were not known.   

The compensatory mechanism and/or plasticity in ALS, which are well observed 

phenomena, depend on the functional role of the network. Therefore, we hypothesized that 

causal network-level changes (motor and extra-motor) can be observed in ALS during 

different motor tasks (motor planning and motor execution). Our aim for this study was to 

detect any patterns of changes in causal neuro-electric communication between motor as 

well as non-motor cortices in ALS during motor tasks. 

8.2 Methods 

8.2.1 Ethical Approval 

Ethical approval was obtained from Tallaght Hospital/St. James's Hospital Joint Research 

Ethics Committee for St. James's Hospital, Dublin, Ireland [REC: 2019-07 Chairman's 

Action (22)], and experiments were conducted under the standards set by the Declaration 

of Helsinki (2013). All participants provided informed written consent before participating 

in the experiments. 

8.2.2 Participants 

8.2.2.1 Inclusion Criteria 

Healthy individual aged between 18 and 65 and all ALS patient fulfilling the revised EL 

Escorial diagnostic criteria for possible, probable, or definite ALS were included. 

8.2.2.2 Exclusion Criteria 

Patients diagnosed with primary lateral sclerosis, progressive muscular atrophy, multiple 

sclerosis, epilepsy, stroke, brain tumours, prior transient ischemic attacks, structural brain 

disease, psychiatric diseases, medical conditions that affect the nervous system (e.g., 

diabetes), other neurodegenerative conditions and other terminal conditions, such as human 
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immunodeficiency virus, were excluded. Similarly, people who have previously had 

(allergic) reactions in similar recording environments (e.g., to recording gels) and pregnant 

women were also excluded. 

8.2.2.3 Clinical and Demographic Profile 

Motor task EEG data were recorded from 22 ALS patients (mean age: 65.88±10.17) and 

16 healthy controls (mean age: 62.67±9.42). The patients and controls were age matched 

(Mann-Whitney U test, p=0.30). The clinical and demographics data of analysed patients 

and healthy controls are shown in Table 8.1.  

Table 8.1 Clinical and demographics data of analysed ALS patients and healthy 

controls 

 ALS Patients 

(n=20) 

Healthy Controls 

(n=19) 

Gender (Male/Female) 15/5 10/9 

Age at recording (years)* 64.36±9.61 62.06±8.86 

Handedness (Right/Left) 20/0 17/2 

Site of Onset (Spinal/Bulbar/Respiratory) 17/3/0 - 

Age at onset (years)* 61.99±9.80 - 

ALSFRS-R Score (max 48)* 39.35±5.83 - 

ALSFRS-R Motor Sub-scores (max 24)* 17.95±3.01 - 

C9orf72 Status (Negative/Positive) 19/1 - 

* Numbers show mean ± standard deviation 

Abbreviations: ALSFRS-R amyotrophic lateral sclerosis functional rating scale-revised, 

C9orf72 Chromosome 9 open reading frame 72 
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Figure 8.1 Experimental paradigm showing different aspects of task performed and cortical regions of 

interest for data analysis. (A) A pincher grip task using thumb and index finger of the right hand, (B) EEG 

data format showing 30 trials, each trial consists of 3 phases. Trial 3, for example, is expanded to show the 

sequence of visual cues and timings of different phases of the task. From left to right: 1. White screen for 5 

seconds preceding cue onset where participants take no action: motor planning phase. 2. GO cue, as a red 

rectangle appears on screen whose height is the target to be matched. 3. Section of 5 seconds motor execution 

phase showing visual feedback of force applied when the force is incorrectly matched (underfilled). 4. Section 

of the execution phase showing visual feedback of force applied when the force is correctly matched. 5. 

Section of execution phase showing visual feedback of force applied when the force is incorrectly matched 

(overfilled). 5. RELAX cue, white screen for 5 seconds: between trial rest phase, (C) Illustration of the 

recorded force for all 30 trials and their average for a healthy participant. Target force is 10% of maximum 

voluntary contraction (MVC). One second time windows were selected for analysis, a blue block (4-5 sec) 

for motor planning and a red block (8-9 sec) for motor execution, (D) Cortical regions of interest (ROIs) and 

their dipole current source used for source reconstruction. SP superior parietal lobule, S1 primary sensory 

cortex, M1 primary motor cortex, SM supplementary motor area, PF prefrontal cortex, AC anterior 

cingulate cortex, R right, L left. 
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8.2.3 Experimental Paradigm 

Assessment was conducted in the same manner for the ALS and control groups, similar to 

the previously described sensor level study in chapter 6 or source level study in chapter 7 

of this thesis and was also described in Coffey et al. (2021) and Bista et al. (2023). Briefly, 

participants performed 30 trials of isometric pinch grips at 10% MVC using their thumb 

and index finger of the right hand (Figure 8.1 A), irrespective of their hand dominance, 

following the target force displayed onscreen. A separate cue for motor planning was not 

provided. Each trial lasted for 15s (5s planning, 5s execution, and 5s rest), as shown in 

Figure 8.1 B. An example of force profiles recorded for 30 trials from a healthy participant 

is shown in Figure 8.1 C. 

8.2.4 Clinical measures of disease severity 

The revised ALS functional rating scale (ALSFRS-R) scores (Cedarbaum et al., 1999) were 

obtained from all patients to examine the correlation of EEG effective connectivity 

measures with disease severity. ALSFRS-R is 48 points validated questionnaire-based 

clinical scale that ranges from score 0 (severe functional impairment) to 48 (no functional 

impairment). The 48-point total score can be divided into 4 sub-scales namely bulbar (0-

12), fine motor (0-16), gross motor (0-8), and respiratory (0-12) (Cedarbaum et al., 1999). 

The fine motor and gross motor sub-scales are combined as motor sub-score (0-24) that 

weigh the level of motor impairment in ALS patients.  

8.2.5 Data Analysis 

8.2.5.1 Preprocessing 

The EEG data was common average referenced followed by 1-100 Hz bandpass filtering 

using dual-pass 4th order Butterworth filter. A 4th order dual-pass Butterworth band stop 

filter with stop band of 49-51 Hz was used to remove power line noise. Further, artifacts 
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such as electrooculogram (EOG), electromyogram (EMG), electrocardiogram (ECG), and 

jump artifacts were removed automatically using Fieldtrip toolbox. Data epochs where the 

coefficient of variation of the force produced was above 0.2, or where the mean force was 

less than 8% or greater than 20% MVC, were excluded from analysis. 

8.2.5.2 Source Reconstruction 

The details of source reconstruction are explained in sub-section 4.4.2.2 of chapter 4 and 

in previous chapter of this thesis. Briefly, a template structural MRI data was used to 

compute the forward model. The source reconstruction was done using linearly constrained 

minimum variance (LCMV) beamformer (Van Veen et al., 1997) using the Fieldtrip 

toolbox. Ten anatomical brain regions were chosen bilaterally, 5 on each side of the brain, 

using the automated anatomical labelling (AAL) atlas (Tzourio-Mazoyer et al., 2002). The 

chosen anatomical brain regions (regions of interest, ROI) were Primary Motor Cortex 

(M1), Primary Sensory Cortex (S1), Supplementary Motor Area (SMA), Medial Prefrontal 

Cortex (PFC), Superior Parietal Lobule (SP), and anterior cingulate cortex (ACC) of both 

hemispheres.  

8.2.5.3 Effective Connectivity using Generalized Partial Directed Coherence 

Generalized partial directed coherence (gPDC) was used to evaluate the causal influences 

or effective connectivity between the ROIs. gPDC is a normalized form of Partial directed 

coherence (PDC). PDC is a frequency domain multivariate method based on Granger 

causality which describes the direction of information flow between multivariate time 

series data based on the decomposition of multivariate partial coherences computed from 

multivariate autoregressive models (Baccalá and Sameshima, 2001). For the detailed 

formulation of gPDC see sub-section 4.4.4.2 of Chapter 4. 
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In this study, gPDC for a bandwidth of 1-100 Hz was calculated using the Fieldtrip toolbox. 

The 1-100 Hz bandwidth was divided into eight frequency bands (Table 4.2). One gPDC 

value was calculated for each frequency band by taking the spatial median of the gPDC 

values at the specified frequencies. For example, the gPDC value for the theta band was 

the spatial median of gPDC at 5, 6 and 7 Hz. 

8.2.5.4 Graph Analysis 

Causal inflow (InF) and outflow (OutF) were calculated for both controls and ALS groups 

from the directed graph representation of effective connectivity. See sub-section 4.4.5.2 of 

chapter 4 for the details.  

8.2.5.5 Statistical Analysis 

Gaussian white noise was used for non-parametric bootstrapping (Efron and Tibshirani, 

1993) with 2000 repetitions to estimate the null distribution for banded gPDC values. The 

Empirical Bayesian inference method (Nasseroleslami, 2019) was used to calculate p 

values for gPDC values. The p values were corrected for multiple comparisons using false 

discovery rate (FDR) at q=0.05 (Benjamini and Hochberg, 1995). For group analysis, the 

spatial median of individual gPDC values was taken as group effect whereas the individual 

p values were combined or averaged using Stouffer’s method (Stouffer et al., 1949) to get 

group level significance of gPDC.  

The group level difference (Control versus ALS) for the effective connectivity measure 

(i.e., gPDC) was calculated by using the non-parametric Wilcoxon rank sum test (Gibbons 

and Chakraborti, 2003). Similarly, the group level difference between graph measures (i.e., 

causal inflow and outflow) was calculated by using a parametric 2-sample t-test. The p 

values obtained from group comparisons were subjected to correction for multiple 

comparisons using adaptive FDR at q=0.05. 
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8.2.5.6 Correlation Analysis 

The association of the ALS network measures, such as effective connectivity, causal 

inflow, and causal outflow, with ALSFRS-R motor sub-scores was tested using Spearman’s 

rank correlation coefficients. The p values of the correlation coefficients were adjusted for 

multiple comparison using adaptive FDR at q = 0.05.  A line was fitted to the scatter plot 

data, to visualise the relationship, using the Robust linear least-square fitting method. 

8.3 Results 

8.3.1 Weaker motor planning and stronger motor execution effective network 

patterns in ALS 

The causal cortical networks demonstrating significant group differences (p<0.05, 

corrected for multiple comparison using adaptive FDR at q=0.05) between healthy controls 

and ALS patients during motor tasks (planning and execution) are shown in Figure 8.2 and 

Table 8.2. The group comparison result showed that, motor planning effective networks 

were weaker in ALS and the frequencies of those networks range from α to γ bands (see 

Figure 8.2 or 8.3 A). SMA driven contralateral sensorimotor connection (left SMA→ left 

S1) in the β band wase significantly weaker in ALS patients during motor planning. 

Similarly, the contralateral SMA received significantly weaker input from ipsilateral S1 

(right S1→ left SMA) at α band. Ipsilateral SMA received significantly weaker input from 

ipsilateral M1 in the γ frequency band. 

During execution of the motor task, out of those effective cortical networks that showed 

significant group differences, all of them were significantly stronger in ALS patients except 

for a contralateral parieto-frontal connection (left SPL→ left PFC) which was significantly 

weaker in the α band. In the same frequency band, an interhemispheric parieto-frontal 

connection (right SPL→ left PFC) was significantly stronger in ALS patients. Importantly, 
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the interhemispheric motor connection (i.e., right SMA→ left M1) in the β band was 

significantly stronger in ALS patients during motor execution.  

 

Figure 8.2 Effective connectivity between cortical sources where significant differences were observed 

between ALS and controls during (A) planning of the motor task and (B) execution of the motor task. The 

causal connectivity stronger in ALS is represented by solid arrows and the causal connectivity weaker in ALS 

is represented by dashed arrows. The frequency band is encoded by the colour of the arrows. M1 primary 

motor cortex, SM supplementary motor area, SP superior parietal lobule, AC anterior cingulate cortex, PF 

prefrontal cortex, S1 primary sensory cortex. The prefix c/i represents contralateral/ipsilateral side of the 

brain. 
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Figure 8.3 Summarized version of figure 8.2 showing most important significant differences observed 

between ALS patients and controls during (A) planning of the motor task and (B) execution of the motor 

task.  The causal connectivity stronger in ALS is represented by solid arrows and the causal connectivity 

weaker in ALS is represented by dashed arrows. The frequency band is encoded by the colour of the arrows. 

M1 primary motor cortex, SMA supplementary motor area, SPL superior parietal lobule, PFC prefrontal 

cortex, S1 primary sensory cortex. 

Table 8.2 Effective connectivity between cortical sources where significant differences 

were observed between ALS patients and Controls during planning and execution of 

a motor task.  

Motor Task Connectivity Frequency 

Average Generalised 

PDC 
Group Difference 

CON ALS p value Cohen’s d 

Motor 

Planning 

iS1→cSM Low Alpha 0.243 0.168 0.041 0.974 

iSP→iSM Low Alpha 0.260 0.172 0.032 0.814 

cAC→iS1 Low Alpha 0.220 0.154 0.027 1.053 

cSM→cS1 Low Beta 0.272 0.185 0.014 1.116 

iAC→cSP Low Beta 0.279 0.197 0.024 0.908 

iM1→iSM Low Gamma 0.230 0.191 0.048 0.722 

cSM→cAC High Gamma 0.228 0.202 0.020 1.026 

iPF→cPF High Gamma 0.236 0.192 0.009 1.183 

Motor 

Execution 

cPF→iSM Low Alpha 0.161 0.224 0.020 0.981 

iPF→iSM Low Alpha 0.150 0.217 0.045 0.641 

cSM→cPF Low Alpha 0.153 0.214 0.035 0.737 
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cSP→cPF Low Alpha 0.201 0.128 0.035 0.903 

iS1→cAC Low Alpha 0.169 0.241 0.013 1.109 

iSP→cPF High Alpha 0.174 0.249 0.017 1.030 

iSM→cM1 Low Beta 0.163 0.232 0.032 0.997 

iM1→iSP High Gamma 0.197 0.219 0.014 1.132 

M1 primary motor cortex, SM supplementary motor area, SP superior parietal lobule, AC 

anterior cingulate cortex, PF prefrontal cortex, S1 primary sensory cortex. The prefix c/i 

represents contralateral (left)/ipsilateral (right) side of the brain. 

 

 

Figure 8.4 Scatter plot overlayed in the box plot of effective connectivity values showing significant group 

differences (marked by *) between ALS patients and controls during motor planning. → represents the 

direction of the connectivity. Yellow colour circle in controls scatter plots represent left-handed control 

participant. Brain regions: M1 Primary motor, S1 Primary sensory, SMA Supplementary motor area, SPL 

Superior parietal lobule (SPL), PFC Prefrontal cortex. The prefix c/i represents contralateral/ipsilateral side 

of the brain.  
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Figure 8.5 Scatter plot overlayed in the box plot of effective connectivity values showing significant group 

differences (marked by *) between ALS patients and controls during motor execution. → represents the 

direction of the connectivity. Yellow colour circle in controls scatter plots represent left-handed control 

participant. Brain regions: M1 Primary motor, S1 Primary sensory, SMA Supplementary motor area, SPL 

Superior parietal lobule (SPL), PFC Prefrontal cortex. The prefix c/i represents contralateral/ipsilateral side 

of the brain.  

 

8.3.2 Cortical network underloading during motor planning and overloading during 

motor execution in ALS 

The brain regions which showed significant differences when their causal flow values were 

compared between controls and ALS patients during planning and execution for various 

frequency bands are shown in Figure 8.6 and 8.7, respectively. During motor planning 
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(Figure 8.6), the signal inflow was significantly reduced towards contralateral S1 in the low 

α band (Figure 8.6 A), contralateral ACC in the high α band (Figure 8.6 B), and 

contralateral M1 and ipsilateral ACC in the high β band (Figure 8.6 C). Similarly, a 

significant reduction in the outflow of oscillatory information from contralateral SMA and 

ipsilateral PFC in the high β band (Figure 8.6 D) and contralateral ACC and ipsilateral M1 

in the low γ band (Figure 8.6 E) was observed in ALS patients compared to controls.  

On the other hand, during motor execution (Figure 8.7), the signal inflow was significantly 

higher in ALS patients compared to controls towards contralateral M1 in the low β band 

(Figure 8.7 A) and ipsilateral ACC in the high β band (Figure 8.7 B). Similarly, the signal 

outflow was significantly higher in ALS patients compared to controls from contralateral 

PFC and ipsilateral SPL in the low α band (Figure 8.7 C). 

A significant increase in causal outflow of extra-motor cortical signals was observed in 

ALS patients during motor execution in the low α band compared to controls. The outflow 

increase was localized to the contralateral prefrontal region and ipsilateral superior parietal 

lobule as shown in Figure 8.5 C. 

8.3.3 Effective network measures correlate with functional motor impairment in ALS 

patients within sensorimotor and prefrontal regions 

The relationship of effective network measures (gPDC values) with the disease pathology 

was investigated by correlating them with clinical scores. Several of the effective 

connectivity measures were significantly correlated with the ALSFRS-R motor sub-scores 

after FDR correction at q=0.05. In Figure 8.8, a significant negative correlation between an 

effective connection and the ALSFRS-R motor sub-score indicates that higher motor 

impairment (more severe clinical symptoms indicated by a reduced ALSFRS-R motor sub-

score) is associated with increased causal connectivity in patients. A positive  
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Figure 8.6 Brain regions where significant differences in causal inflow (A, B, C) and outflow (D, E) were 

observed in ALS patients compared to controls during motor planning. (A) shows significantly less inflow 

towards contralateral primary sensory cortex in the low-alpha band in ALS. (B) shows significantly less 

inflow in ALS towards contralateral anterior cingulate cortex in the high-alpha band. (C) shows significantly 

less inflow towards contralateral primary motor cortex and ipsilateral anterior cingulate cortex in ALS 

patients in the high-beta band. (D) shows significantly less outflow from ipsilateral prefrontal cortex and 

contralateral supplementary motor area in the high-beta band in ALS patients. (E) shows significantly less 

outflow flow from ipsilateral primary motor cortex and contralateral anterior cingulate cortex in the low-

gamma band in ALS patients. 
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Figure 8.7 Brain regions where significant differences in causal inflow (A, B) and outflow (C) were 

observed in ALS patients compared to controls during execution of a motor task.  (A) shows significantly 

more inflow towards contralateral primary motor cortex in the low-beta band in ALS patients. (B) shows 

significantly more inflow towards ipsilateral anterior cingulate cortex in the high-beta band in ALS patients. 

(C) shows significantly more outflow from contralateral prefrontal cortex and ipsilateral superior parietal 

lobule in ALS patients in the low-alpha band. 

correlation indicates that patients with more severe motor symptoms exhibited reduced 

causal connectivity between the brain regions. 

We found that, during motor planning, the ipsilateral causal connectivity from prefrontal 

region to SMA (iPFC→iSMA) at low α band was weaker in patients with more severe 

motor impairments (i.e., iPFC→iSMA network showed significant positive correlation 

with ALSFRS-R motor sub-score) (Figure 8.8 A). The causal inflow or outflow of cortical 
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ROIs did not show any significant correlation with the motor impairments in ALS patients 

during motor planning.  

During motor execution, interhemispheric effective connections from contralateral M1 to 

ipsilateral PFC (Figure 8.8 B) and ipsilateral S1 to contralateral S1 (Figure 8.8 D) in the α 

band were reduced in ALS patients with more severe motor impairment. On the other hand, 

the causal connectivity from contralateral S1 to contralateral SMA in the high α band was 

significantly higher in ALS with higher motor impairment during motor execution (Figure 

8.8 C). Similarly, the causal inflow of contralateral PFC and SMA was higher in ALS 

patients with higher motor impairment in the θ and high α bands, respectively (Figure 8.8 

E-F). The causal outflow of ROIs did not exhibit any significant correlations with 

ALSFRS-R motor sub-scores during motor execution. 

8.4 Discussion 

The motor task was standardised to be performed by the right hand only, irrespective of 

left-hand dominance for some participants. Since, we had very few left-hand dominant 

participants (2 healthy controls only) who performed the task using their non-dominant 

hand, we could not directly compare the effect of handedness on significant connectivity 

differences between ALS patients and healthy controls using statistical test. However, we 

have visually confirmed by showing a box plot overlayed by scatter plot of effective 

connectivity measures using different colour (yellow for controls) for left-handed 

participants (Figure 8.4 and 8.5), which indicated that those measures were not the outliers 

(i.e., lie within the standard deviation from the mean). Therefore, we can say that there was 

no effect of handedness on the significant effective connectivity differences between ALS 

patients and controls. 
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Figure 8.8 Significant correlations between directional connectivity measures (generalised partial directed 

coherence and causal inflow) and ALSFRS-R motor sub-scores during planning (A) and execution (B, C, 

D, E, F) of a motor task.  r is Spearman’s correlation coefficient, and the p value is adjusted for multiple 

comparisons using adaptive FDR at q = 0.05. M1 primary motor cortex, SM supplementary motor area, SP 

superior parietal lobule, AC anterior cingulate cortex, PF prefrontal cortex, S1 primary sensory cortex. The 

prefix c/i represents contralateral/ipsilateral side of the brain. 
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8.4.1 Motor planning effective networks are impaired and reflect neurodegeneration 

in ALS 

The present study deciphered several directional network level abnormalities in ALS motor 

networks compared to healthy controls. In ALS patients, during motor planning, we 

reported weaker effective networks within and beyond bilateral motor regions (M1 and 

SMA) compared to controls. Specifically, we showed that an SMA driven sensorimotor 

network (SMA→S1) at contralateral side in the β band was significantly weaker in ALS 

compared to controls during motor planning in ALS patients. Previous studies have shown 

similar weakness in SMA driven sub-cortical networks in ALS patients during movement 

preparation (Abidi et al., 2020). The pre-movement (motor preparation or planning) 

alpha/beta event-related de-synchronisation (ERD) of contralateral sensorimotor cortices 

is a well-known neurophysiological correlate of activated cortical areas (Pfurtscheller and 

Berghold, 1989). Upper motor neuron degeneration, such as in ALS and primary lateral 

sclerosis (PLS), causes higher ERD of bilateral sensorimotor regions (Proudfoot et al., 

2017). So, the weaker effective connectivity in our results to/from bilateral SMA/S1 and 

ipsilateral M1, during motor planning, could be the reflection of increased de-synchronous 

firing patterns of upper motor neurons in ALS as the result of motor neuron degeneration. 

The effect of motor neuron degeneration in the motor planning circuitry in ALS is also 

reflected in neuronal firing potential (movement-related potential, MRP). The motor 

planning/preparation MRP, also called readiness potential, is reduced in ALS patients 

(Bizovičar et al., 2013, Thorns et al., 2010, Westphal et al., 1998) indicating a reduced 

number and/or synchrony of active motor neurons due to neurodegeneration. This indicates 

that neurophysiological signatures of motor planning networks in ALS, including effective 
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connectivity within sensorimotor networks as demonstrated by this study, are weaker 

compared to controls and could be directly or indirectly linked to neurodegeneration.  

Furthermore, the hypothesis of weaker motor and sensory cortical activation or synchrony 

in ALS during motor planning as a reflection of neurodegeneration (Bizovičar et al., 2013, 

Thorns et al., 2010, Westphal et al., 1998, Proudfoot et al., 2017) is supported by the fact 

that we observed motor and sensory network underloading in ALS compared to controls, 

meaning a significantly smaller number of incoming connections (inflow) towards 

contralateral sensorimotor cortices (M1/S1) and outgoing connections (outflow) from 

contralateral SMA. More importantly, the ipsilateral frontocentral connection at α band 

(PFC→SMA) showed significant positive correlation with ALSFRS-R motor sub-scores 

indicating association of severe motor impairment (clinical sign of neurodegeneration) with 

decreased motor planning effective connectivity in ALS.  

8.4.2 SMA compensates for M1 degeneration and facilitates sensorimotor integration 

in ALS during task execution 

The study of effective networks in healthy individuals during motor execution has 

underpinned significant bidirectional interaction between primary motor (M1), primary 

sensory (S1), and higher order motor regions such as premotor (PM) and supplementary 

motor area (SMA) (Grefkes et al., 2008, Kim et al., 2018, Brovelli et al., 2004, Gao et al., 

2011, Anwar et al., 2016) contralateral to the limb movement. Additionally, during 

execution of a unimanual voluntary task, the interhemispheric inhibition causes laterization 

of motor cortex for motor control (Shibasaki and Hallett, 2006, Welniarz et al., 2015, 

Duque et al., 2007). The evidence for compensatory and adaptive changes in cortical motor 

networks are abundant in ALS neurophysiological studies investigating voluntary 

movements, reporting recruitment of ipsilateral sensorimotor cortices, premotor regions, 
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and non-motor regions in ALS (Bede et al., 2021, Abidi et al., 2020, Konrad et al., 2002, 

Inuggi et al., 2011). Our findings showed similar neurophysiological signatures in ALS 

during motor tasks. We reported stronger causality from ipsilateral SMA to contralateral 

M1 and higher signal inflow towards contralateral M1 (overloading) in the β band in ALS 

patients compared to controls, which could reflect two neuropathophysiological 

mechanisms in ALS. First, the interhemispheric disinhibition between motor regions is 

increased in ALS as pointed out by various TMS studies (Karandreas et al., 2007, Bos et 

al., 2019). The interhemispheric pathways are not just limited to M1-M1 interactions but 

also include the pathway that link higher order motor areas such as PM and SMA to 

contralateral M1 (Hinder et al., 2012) resulting in stronger connectivity from ipsilateral 

SMA and contralateral M1 overloading in ALS. Second, the recruitment of ipsilateral SMA 

and increased signal inflow towards contralateral M1 in ALS patients during motor 

execution could be to overcome the burden of neurodegeneration in M1.M1 degeneration 

causes higher demand on motor system in ALS and it has been shown that the motor 

systems respond to higher motor demand by enhancing information flow between 

sensorimotor regions of both hemispheres even when the movements are unimanual 

(Gerloff et al., 1998).  

Moreover, we have also reported stronger contralateral S1→SMA effective connectivity 

and higher causal inflow towards contralateral SMA in the α band for more functionally 

impaired ALS participants, indicating facilitation of sensorimotor integration and stronger 

connectedness by higher order motor regions such as the SMA.  

8.4.3 Altered fronto-parietal (executive) network in ALS during motor execution 

The fronto-parietal network for slower oscillations (θ or α bands) is often associated with 

executive functions in healthy controls (Sauseng et al., 2005, Marek and Dosenbach, 2018, 
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Zanto et al., 2011). An abnormal fronto-parietal network has been reported in ALS by 

resting state EEG studies (Dukic et al., 2019, Dukic et al., 2021, Nasseroleslami et al., 

2018). On the one hand, we have reported significantly weaker contralateral fronto-parietal 

connectivity (left SPL→ left PFC) in the α band in ALS patients compared to controls, on 

the other hand we have found that the interhemispheric fronto-parietal connection (right 

SPL→ left PFC) at α band is significantly stronger in ALS patients. This indicates that the 

ipsilateral SPL compensates for weaker influence of the contralateral SPL on fronto-

parietal networks in ALS. This is also reflected in causal outflow of ipsilateral SPL in ALS 

patients in terms of cortical overloading. Furthermore, the θ band inflow of the contralateral 

PFC is negatively correlated to ALSFRS-R motor sub-scores i.e., ALS patients with severe 

motor impairment has higher number of incoming connections towards contralateral PFC. 

This could be attributed to higher cognitive efforts taken by ALS patients to maintain force 

at the target level during the execution task. The lateralized effect on the prefrontal network 

in ALS patients with a higher number of functional connections with the right PFC has 

been reported previously by a neuroimaging study employing visuo-mental cognitive task 

(Borgheai et al., 2020) and was interpreted as an executive dysfunction in ALS cohort 

specifically relating to deficits in task-related working memory processes.  

8.4.4 Inter-hemispheric somatosensory interaction during motor execution decreases 

with disease severity in ALS 

In previous studies using sensory evoked potentials (SEP), it has been reported that ALS 

patients exhibited higher somatosensory disinhibition or cortical hyperexcitability in S1 

(Höffken et al., 2019, Machii et al., 2003, Shimizu et al., 2018, Nardone et al., 2020). 

However, interhemispheric connectivity between S1 areas in ALS has received relatively 

little attention, despite the observation of reduced functional connectivity between the left 
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and right M1 as reported in an fMRI study (Jelsone-Swain et al., 2010). We revealed a 

significant positive correlation between the strength of interhemispheric somatosensory 

effective connectivity (from ipsilateral S1 to contralateral S1) and functional motor 

impairments in ALS. Specifically, the strength of this interhemispheric connectivity (right 

S1→ left S1) was found to be diminished in cases of ALS accompanied by severe 

functional motoric deficits. Interestingly, a similar neurological pattern has been previously 

reported in other disorders, such as stroke, which also lead to motor impairments. Post 

stroke, a reduction in S1-S1 functional connectivity has been identified which was shown 

to correlate with the degree of motor impairment (Frías et al., 2018). 

8.5 Conclusion 

The study focused on examining effective network abnormalities related to motor 

functioning in people with ALS compared to healthy controls. The study identified several 

disruptions in directional networks within motor systems in ALS with higher order motor 

regions such as the SMA playing a crucial role. The SMA-driven sensorimotor network 

was notably weaker on the contralateral side in ALS patients, suggesting impaired motor 

planning. Stronger SMA-driven effective connectivity may compensate for M1 

degeneration during motor execution, with stronger ipsilateral-to-contralateral connections 

possibly driven by interhemispheric disinhibition and heightened motor demands in ALS. 

We also reported simultaneous occurrence of pathological and compensatory fronto-

parietal connectivity which could be the consequence of executive dysfunction in ALS 

patients. Additionally, decreased interhemispheric somatosensory interaction during motor 

execution correlated with disease severity in ALS. These findings contribute to a better 

understanding of the neurodegenerative processes underlying ALS and how they manifest 

in motor-related brain networks. 
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8.6 Limitations 

The effective connectivity analysis was based on partial directed coherence (PDC) which 

is a data driven method unlike dynamic causal modelling (DCM) which is a model driven 

method. Therefore, we cannot make a direct comparison between ALS patients and controls 

based on the presence or absence of network causality but must rely on the statistical 

comparison of causality strength. This limited us from reporting those causal networks 

which were not statistically different between ALS patients and controls or showed no 

significant correlation with clinical measures but has neurophysiological importance in 

health or in disease.  
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9. Discussions and Conclusion 

In this chapter an overall summary and interpretation of the project’s results, a discussion 

of the relevance of results to understanding and quantifying ALS motor network 

impairments, a consideration of the limitations of the project and the future research that is 

called for are described. An overall summary of the project results is given in section 9.1. 

The advantages of using the employed electrophysiological paradigms for investigating 

motor networks of ALS are described in Section 9.2. The potential impact and clinical 

applications of this work are mentioned in section 9.3 and the limitations of this work are 

summarised in section 9.4. Future work that can build upon this project to bring these 

results towards more sophisticated understanding of the disease and real-world applications 

are described in section 9.5. Finally, section 9.6 contains a brief conclusion with regards to 

the entire thesis. 

9.1 Summary of the results 

9.1.1 Corticomuscular coherence patterns in primary lateral sclerosis 

We used CMC to demonstrate how brain activity in participants with PLS differs from that 

of healthy controls during the performance of a pinch grip motor task. In PLS patients, 

higher CMC between contralateral M1 and FPB muscle in the alpha band and between 

contralateral M1 FDI muscle in the gamma band was observed when compared with 

healthy controls. Significant beta-band CMC was also detected between ipsilateral M1 and 

FDI muscle, which is not typically observed in healthy participants. We also identified 

several CMC measures that correlated with clinical measures of UMN dysfunction, which 

were also identified outside of contralateral M1. PLS participants with greater motor 

impairments exhibited higher beta-band CMC between parietal area (Pz) and APB muscle 

whereas less impaired PLS participants exhibited higher alpha- and gamma-band 
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coherence between contralateral M1 and APB muscle. Although the observed CMC 

differences in PLS patients could arise from both direct and indirect effects of UMN 

degeneration, the increased CMC in more impaired PLS participants for specific brain 

regions could potentially suggest that these changes are compensatory/adaptive in nature. 

Taken together, these results could suggest that the pattern of brain network re-organization 

in PLS follows a similar trajectory to recovery in stroke, where more impaired PLS 

participants rely on contributions from the ipsilateral hemisphere but those that are 

minimally affected can recover function by restructuring the functional connectivity in the 

contralateral hemisphere (Brancaccio et al., 2022).   

9.1.2 Resting state, pre-movement, motor planning, and motor execution networks 

9.1.2.1 Resting state sensorimotor network is abnormal in ALS 

Functional assessments of brain networks have the potential to detect and quantify disease 

specific adaptive and compensatory patterns of network activity. Prior to this study, the 

functional connectivity differences between ALS patients and age-matched controls during 

rest have been investigated by our group reporting abnormal sensorimotor networks in ALS 

(Dukic et al., 2019). We also found that during rest, the functional connectivity between 

EEG electrodes pertaining to cortical regions M1 and S1 in the θ band was significantly 

stronger in ALS patients compared to healthy controls. Furthermore, the resting state 

sensorimotor connectivity (M1-S1) abnormality in the θ band was negatively correlated 

with the ALSFRS-R score suggesting that motor impairment is associated with increased 

sensorimotor functional coupling in ALS. This corroborates the increased S1 disinhibition 

in ALS patients and negative correlation of S1 excitability with ALSFRS-R scores reported 

by Höffken et al. (Höffken et al., 2019). Importantly, our finding of abnormal sensorimotor 

EEG connectivity strengthens the argument that sensorimotor functional connectivity at 
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rest has potential to be a quantitative neurophysiological biomarker candidate for diagnosis 

and prognosis of ALS (Dukic et al., 2019, Zhou et al., 2014). 

9.1.2.2 Cortical hyperexcitability in ALS 

We have reported that the EEG functional network density or small-worldness, quantified 

by the mean global clustering coefficient, was higher in ALS than in healthy controls during 

rest, pre-movement and motor execution indicating widespread EEG networks. Similar 

widespread functional brain networks have previously been reported by M/EEG studies 

using graph analysis in ALS (Iyer et al., 2015, Sorrentino et al., 2018) which reflected 

cortical hyperexcitability, a well-established pathological finding in ALS (Menon et al., 

2015, Vucic et al., 2011).  

9.1.2.3 Pre-motor and motor planning networks are impaired in ALS 

We studied pre-motor networks in ALS using ERD and functional connectivity in sensor 

space and motor planning effective connectivity in source space. We reported no significant 

differences in mu or beta ERD in ALS pre-motor stage in sensorimotor regions, but 

significantly higher event related spectral perturbations in the prefrontal and the parietal 

region in the θ band indicating higher attention to the task pre-movement by recruiting a 

neuron pool distributed over wider cortical areas to overcome the burden of motor neuron 

degeneration in sensorimotor cortices. In terms of functional network abnormalities during 

the pre-motor stage, we found that functional connectivity between contralateral premotor 

and primary sensory cortices (PM-S1) was significantly higher in the alpha-band in ALS 

patients compared to controls. Similarly, the functional connectivity within the frontal 

region (DLPFC-DMPFC) in the alpha-band was significantly higher in ALS. Interestingly, 

significantly reduced EEG functional connectivity was observed within the contralateral 

M1-DLPF in the beta-band in ALS patients compared to controls. These functional network 
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abnormalities suggest that that pre-motor activity, which combines attention, preparation, 

and planning of upcoming motor tasks, is abnormal in ALS not only at the neuronal 

oscillatory level (Thorns et al., 2010) but also at the cortical network level, which leads to 

poor motor performance (task performance accuracy was significantly lower in ALS 

compared to controls, p = 0.043).  

Using source space analysis, during motor planning, we reported significantly weaker 

effective connectivity within and beyond bilateral motor regions (M1 and SMA) in ALS 

patients compared to controls. Specifically, we demonstrated that effective sensorimotor 

networks involving the SMA, SMA→S1 at the contralateral side at beta-band and 

ipsilateral S1→ contralateral SMA in the alpha-band, were significantly weaker in ALS 

compared to controls indicating impaired motor planning in ALS. Previous studies have 

shown similar weaknesses in the SMA-driven sub-cortical networks in ALS during 

movement preparation (Abidi et al., 2020). Furthermore, we observed a significantly 

smaller number of incoming connections (inflow) towards contralateral sensorimotor 

cortices (M1/S1) in the alpha/beta band and outgoing connections (outflow) from the 

contralateral SMA in the beta band. This indicated weaker involvement of sensorimotor 

regions during motor planning due to neurodegeneration as indicated by previous studies 

(Bizovičar et al., 2013, Thorns et al., 2010, Westphal et al., 1998, Proudfoot et al., 2017).  

9.1.2.4 Motor execution networks are impaired in ALS 

We studied motor execution networks in ALS using four different EEG measures, namely 

ERD and functional connectivity in sensor space and corticomuscular coherence and 

effective connectivity in source space. The CMC patterns in ALS are summarised in the 

next section. 
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We reported higher ERSP (reduced beta ERD) in ipsilateral M1 during motor task 

execution in ALS patients compared to controls. We have also shown that beta ERSP 

increases (ERD decreases) over the contralateral superior parietal region (SPL). We 

showed increased functional coupling between M1-SPL in the beta-band which was 

negatively correlated with ALSFRS-R scores (i.e., higher contralateral M1-SPL coupling 

for more severe ALS patients). These observations reflect a compensatory role of the non-

dominant motor region (Konrad et al., 2002, Schoenfeld et al., 2005, Bede et al., 2021) and 

non-motor regions (parietal cortex) in ALS to overcome the motor control dysfunction due 

to neurodegeneration in the dominant motor region (Poujois et al., 2013, Zhou et al., 2013, 

Lulé et al., 2007). 

A potential compensatory mechanism in ALS during motor execution was also observed 

in our source level study of effective connectivity. We reported stronger effective 

connectivity from ipsilateral SMA to contralateral M1 and higher signal inflow towards 

contralateral M1 in the beta-band in ALS patients compared to controls. We have also 

reported stronger contralateral S1→SMA effective connectivity and higher causal inflow 

towards contralateral SMA in the α band for more functionally impaired ALS participants. 

These findings indicate that neurodegeneration in ALS causes a higher demand on the 

motor system and the motor systems in ALS respond to higher motor demand by enhancing 

information flow between contralateral primary sensorimotor regions (M1/S1) and bilateral 

SMA even if the movements are unimanual (Gerloff et al., 1998).  

9.2 Advantages of electrophysiological measures to quantify network impairments in 

ALS 

9.2.1 Measuring non-structural network reorganisation 

In the presence of neurodegeneration causing structural network atrophy in ALS, non-

structural (functional or effective) network reorganisation occurs to compensate for the 
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structural network degeneration especially in pre-symptomatic or early symptomatic 

phases of the disease (Bede et al., 2021, Abidi et al., 2020, Konrad et al., 2002, Inuggi et 

al., 2011). For example, the involvement of cortical regions such as the premotor cortex 

and SMA, which are largely associated with movement preparation and planning 

(Churchland et al., 2006, Li et al., 2015, Shibasaki and Hallett, 2006, Glover et al., 2012), 

during movement execution underlines an alternative strategy for optimizing motor 

performance in ALS (Konrad et al., 2002). Our study showed similar compensatory 

mechanisms in ALS i.e., during the performance of a voluntary task, the information flow 

from ipsilateral SMA to contralateral M1 in the beta band was significantly stronger in ALS 

patients compared to controls. Another observation of effective network reorganisation in 

ALS during motor execution was the increased information flow (incoming links or inflow) 

towards contralateral M1 in the beta band. This suggests that M1 receives effective signal 

overloading from neighbouring motor and non-motor regions during task execution to 

compensate for structural atrophy caused by neurodegeneration. We have also found 

changes in long range fronto-parietal effective connectivity in ALS patients during task 

execution. The weak contralaterally driven fronto-parietal network (contralateral superior 

parietal to contralateral prefrontal) was accompanied by strong ipsilaterally driven fronto-

parietal network (ipsilateral superior parietal to contralateral prefrontal). The involvement 

of the parietal region in compensatory mechanisms during motor execution was also 

observed in functional network analysis, where we found that the functional 

communication between contralateral M1 and the superior parietal lobule was significantly 

stronger in ALS. This functional network connectivity strength was more in ALS with 

higher clinical impairments. This highlights the utility of EEG for detecting non-structural 

network reorganisation in the presence of structural network atrophy. 



   

 

 206 

9.2.2 Sensor vs source EEG measures 

We have used both sensor and source space EEG to study the abnormal brain networks in 

ALS. The spatial resolution of sensor space EEG is poor because scalp sensors record 

electrical activity from adjacent and distant cortical and sub-cortical sources, referred to as 

volume conduction, that affects the coherence analysis causing spurious connectivity 

(Nunez et al., 1997). However, sensor space analysis is a popular way of analysing M/EEG 

data because of its convenience (Schaworonkow and Nikulin, 2022). First, we used spatial 

filtering (surface Laplacian) during sensor space analysis to minimize the effect of volume 

conduction and improve the spatial resolution of EEG (Bradshaw and Wikswo, 2001). 

Additionally, we used spatial median based non-parametric rank statistics (Nasseroleslami 

et al., 2019) to estimate the banded coherence, which is more robust against EEG artefacts 

(Dukic et al., 2017) and provided more localized coherence measures compared to classical 

magnitude squared coherence (see chapter 5 for details). Prior research has demonstrated a 

correlation between network measures derived from EEG sensor space analysis with 

reduced spurious connectivity and EEG source space analysis (Lai et al., 2018).  

In comparison to sensor space EEG measures, source space EEG measures offer higher 

spatial resolution and reconstruct the true neural sources despite volume conduction, 

offering a more accurate representation of the underlying brain activity. However, source 

reconstruction requires head models acquired from individual MRI or template MRI and 

computationally extensive and complicated inverse modelling. Therefore, to perform 

source space analysis, one might need special data analysis training and skill sets. In this 

study we have used source space analysis to investigate functional corticomuscular and 

effective corticocortical networks during task execution. With sensor space 

corticomuscular coherence, such as our study in Chapter 5, we must rely on the electrode 
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position on the scalp to interpret the results. For example, the C3 electrode is usually 

considered to cover the left primary sensorimotor cortex.  Using source space analysis, such 

as our studies in chapter 7 and 8, we have identified the exact cortical regions that are 

involved in pathological or compensatory networks in ALS. 

9.2.3 Functional vs effectivity connectivity measures 

We have used both functional and effective connectivity measures to investigate the 

network impairments in ALS, each having their own advantages. The functional 

connectivity measures were based on banded coherence and effective connectivity 

measures were based on partial directed coherence. Functional connectivity gives a 

measure of co-activation patterns of brain regions, whereas effective connectivity untangles 

the directional influence of one brain region to another. Therefore, they can provide 

answers to different questions. For example, we reported an overall increase of functional 

coupling between brain regions in ALS during motor execution which could be the result 

of cortical hyperexcitability (Menon et al., 2015, Vucic et al., 2011). But using effective 

connectivity we found an increased signal flow towards contralateral M1 from other 

neighbouring cortical regions during motor execution in ALS suggesting compensatory 

behaviour of less degenerated cortical regions surrounding severely degenerated motor 

cortex. This corroborates the fact that neurodegeneration in ALS starts at the motor cortex 

and progressively spreads outward to non-motor regions (Brettschneider et al., 2013). 

Additionally, functional connectivity measures captured abnormal connectivity 

(significantly stronger or weaker compared to controls), such as M1-S1 at rest and M1-SPL 

during motor execution, that were also significantly correlated with ALSFRS-R scores. 

Effective connectivity, on the other hand, did not show any overlap between the networks 

that were significantly different from controls and networks that were correlated to clinical 
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measures. Therefore, the use of functional and effective connectivity measures in our study 

elucidated different aspects of network impairments in ALS. 

9.2.4 Experimental design and its effect on neurophysiological measures 

9.2.4.1 Choice of motor task 

We have chosen isometric pincer grip motor task at 10% of MVC for comparison of 

neurophysiological measures between ALS patients and healthy controls. The choice of the 

task was based on our previous studies on PPS (Coffey et al., 2021) and PLS (Bista et al., 

2023) where we have shown that the task can successfully identify the abnormal 

corticospinal neural circuitry (increased functional connectivity between cortex and 

muscles in patient group compared to controls) affected by LMN or UMN degeneration. 

Furthermore, our preliminary study of two motor tasks, isometric pincer grip at 10 % MVC 

(force control task) and isometric precision grip (position control task), has demonstrated 

that the isometric pincer grip task at 10% MVC elicited lower level of beta CMC compared 

to precision grip task in healthy controls, and therefore, was more sensitive to detect 

abnormal CMC (increased CMC in patient group compared to controls) in patient groups.  

9.2.4.1 Right hand standardisation for motor task 

Previous studies using similar motor paradigm have used dominant hand to perform the 

task, and later flipped the neurophysiological measures for group analysis (Rossiter et al., 

2013). For example, beta CMC between right M1 and left-hand muscle for the left-handed 

participant was considered equivalent to beta CMC between left M1 and right-hand muscle 

for the right-handed participant during group averaging. Handedness can influence brain 

organisation (Amunts et al., 1996) and function (Lajtos et al., 2023), with differences 

observed between left-handed and right-handed individuals. Furthermore, it is important to 

consider that neural activity in the dominant hemisphere may not always be mirrored 
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between left- and right-handed individuals, especially in patient groups affected by 

neurodegeneration and this could ultimately introduce variability in the group results. 

Therefore, in this thesis, we have standardised right hand, irrespective of the handedness 

of the participant, to perform the motor task which make our results more consistent across 

the groups and robust against the potential interference of individual differences in brain 

lateralisation. We have shown the box plot overlayed by scatter plot of connectivity 

measures using different colour (purple for ALS and yellow for controls) for left-handed 

participants (chapter 7 and chapter 8), which indicated that those measures were not the 

outliers (i.e., within the standard deviation from the mean).  

9.3 Impact and future clinical applications 

The significance of this project to the understanding of normal and ALS-related network 

(dys)functioning and the potential applications of the findings of this project to the medical 

field and further research are summarised in this section. 

9.3.1 Spatial median based spectral coherence is a state-of-the-art method for 

capturing disease specific functional network impairments in motor neurone disease 

We have previously proposed a median-based rank statistic for functional connectivity 

(coherence) (Nasseroleslami et al., 2019) that harnesses the robustness of non-parametric 

methods (Dukic et al., 2017). We have used the method previously to report abnormal 

functional connectivity between EEG and EMG (corticomuscular coherence) in people 

with LMN involvement such as post-polio syndrome (PPS) (Coffey et al., 2021). Here, we 

have used the method to report abnormal EEG-EMG networks in UMN degeneration such 

as PLS (see chapter 5), published in Cerebral Cortex (Bista et al., 2023), which established 

the novelty of the method to capture functional network impairments in people with MND. 

Therefore, we have extended the use of the method to investigate sensor level EEG-EEG 
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functional networks (see chapter 6) and source level EEG-EMG functional networks (see 

chapter 7) in ALS.   Studies investigating functional connectivity in health and in disease 

using coherence usually rely on the maximum value (Aikio et al., 2021) or the area (under 

the significant coherence spectra) (Tun et al., 2021) to represent the collective connectivity 

strength with a single value over the range of frequencies within each distinct 

neurophysiological frequency band. We, on the other hand, used the 2D spatial median 

(real and imaginary part of normalised cross-spectra as separate dimensions) which 

provides a balance between overestimating the connectivity using measures such as 

maximum value or underestimating it, using the area under the significant coherence 

spectra. More importantly, the new method presents connectivity strengths as p-values so 

there is no need for separate significance testing such as close form solution or non-

parametric bootstrapping as required by other existing connectivity measures. Additionally, 

this method is robust against the bias introduced by the number of epochs (L) used to 

estimate  functional connectivity (Nasseroleslami et al., 2019). Hence, our method of 

estimating functional connectivity provides a more powerful detection of network 

connectivity with a singular value for a frequency band and can identify abnormal network 

connections in MND or any in other patient group for that matter. 

9.3.2 Corticomuscular coherence as a therapeutic outcome measure in MND  

In MND, the neurodegeneration disrupts the communication between the brain and 

muscles, resulting in motor impairments. Those abnormal brain muscles communications 

can be quantified using Corticomuscular coherence (CMC). We have shown indirectly, 

using sensor and source level study that PLS and ALS had distinct patterns of abnormal 

CMC. Specifically, a significant reduction in beta CMC between contralateral M1 and 

muscle was observed in ALS compared to controls whereas a significant increase in the 
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beta CMC between ipsilateral M1 and muscle and significant increase in the gamma band 

CMC between contralateral M1 and muscle was observed in PLS compared to controls. 

This difference in the pattern of CMC between ALS and PLS compared to controls should 

be further investigated by comparing these groups directly. Therefore, in future, monitoring 

changes in the beta/gamma CMC over time can provide insights into the efficacy of 

therapeutic interventions aimed at preserving or improving motor function. By 

investigating the magnitude and frequency of brain-muscle synchronization and by 

associating those measures with clinical motor assessments and behavioural performance 

of the task, we can track the effects of treatments (Salenius et al., 2002), rehabilitation 

programs (Delcamp et al., 2022), or assistive devices (Airaksinen et al., 2013). Positive 

changes in corticomuscular coherence patterns could indicate improved neural control and 

enhanced motor unit recruitment, reflecting potential therapeutic benefits as indicated by 

CMC studies in stroke (Krauth et al., 2019, Delcamp et al., 2022) and Parkinson’s disease 

(Salenius et al., 2002, Airaksinen et al., 2013). Therefore, longitudinal studies utilizing 

corticomuscular coherence as an outcome measure has potential to a better understanding 

of the disease’s progression and the impact of various interventions in MND. 

9.3.3 Novel network biomarkers design 

9.3.3.1 Diagnostic biomarker design 

Studies have argued that the discriminatory power of a standalone experiment or modality 

is not sufficient to be used as a diagnostic tool for ALS in clinical settings (Huynh et al., 

2016). Combining quantitative EEG features from different analyses has previously been 

shown to be useful for classifying various neurodegenerative diseases (Garn et al., 2017). 

Similarly, combining quantitative EEG and neuropsychology was recommended for 

differential diagnosis of Frontotemporal dementia and Alzheimer’s disease (Lindau et al., 
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2003).  We recommend combining functional network impairment measures from 

multistate experimental paradigm such as resting state, pre-motor stage, and motor 

execution to design diagnostic biomarkers for ALS because our results have shown that 

features from different experiments contribute differently for the classification of ALS 

patients from healthy controls. Furthermore, the inclusion of pre-motor network 

impairments could be the key to designing quantitative neurophysiological biomarkers of 

network disruption because, as we have shown, pre-motor activity grabs a fundamentally 

different type of motor network impairments than motor execution and rest and has the 

highest contribution for classifying ALS patients from healthy controls. Thus, by training 

machine learning algorithms with the multistate network abnormalities from large ALS and 

control datasets, our findings support that this may lead to a novel diagnostic tool that could 

accurately classify ALS patients from healthy controls. 

9.3.3.2 Prognostic biomarker design 

Our study has demonstrated abnormal involvement of higher order motor regions such as 

the SMA and S1 in effective motor networks in ALS. We identified a stronger information 

flow from S1 to SMA on the contralateral side of the contracted muscle (i.e., S1→SMA 

effective connectivity) and higher causal inflow toward the contralateral SMA in the alpha 

band in ALS participants with more severe motor impairment as assessed by the ALSFRS-

R motor sub-score. This suggests enhanced sensorimotor integration was facilitated by the 

SMA in more severe ALS because the alpha oscillations are involved in sensorimotor 

integration processes, helping to coordinate sensory feedback with motor commands which 

is crucial for accurate and efficient motor control. Additionally, we found a positive 

correlation between the strength of interhemispheric somatosensory effective connectivity 

(from ipsilateral S1 to contralateral S1) and motor impairment in ALS. Specifically, for 
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more severe motor deficits, the strength of this interhemispheric somatosensory 

connectivity (iS1→cS1) was notably diminished. A similar neurological pattern has been 

previously reported in stroke, which also manifests motor impairments. After a stroke, 

reduced interhemispheric S1-S1 functional connectivity has been identified, exhibiting a 

correlation with the extent of motor impairment. Even though these effective connections 

were not significantly different between ALS patients and healthy controls, they are still 

clinically relevant as a biomarker as they satisfy one property of a biomarker (correlates 

with clinical scores) and could be combined with other biomarkers for a complete 

biomarker design. Furthermore, these connectivity measures could provide high sensitivity 

and specificity compared to the clinical motor assessments such as ALSFRS-R scores. The 

clinical scores are known to have low sensitivity and specificity and are affected by 

multidimensionality problems. It requires trained personnel to perform clinical motor 

assessment, and this might introduce inter-assessor variability in the scores. Therefore, the 

assessment of two effective connections, namely contralateral S1→SMA and ipsilateral to 

contralateral S1→S1, that showed positive and negative correlations with motor 

impairments holds promise for quantifying disease severity and acting as markers for 

tracking disease progression. 

9.3.3.3 Phenotyping biomarker design 

We have shown that corticomuscular coherence (CMC) can capture disease specific 

functional network reorganisation in UMN/LMN involvement. For example, we have 

previously shown that CMC between muscles and frontal and parietal cortical regions in 

the gamma band is significantly higher in people with post-polio syndrome which is a LMN 

disorder (Coffey et al., 2021). In this study, we have shown that CMC between FDI muscle 

and contralateral M1 in the gamma band and between FDI muscle and ipsilateral M1 in the 
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beta band are significantly higher in people with PLS which is a UMN disorder (Bista et 

al., 2023). Similarly, in case of ALS, which entails both UMN and LMN involvement, we 

have shown that CMC is significantly reduced between contralateral M1 and FDI muscle 

in the beta band and between contralateral M1 and APB muscle in the gamma band. This 

indicates that CMC captures three network patterns related to the LMN/UMN involvement, 

1. the brain regions involved in network reorganisation, 2. the oscillatory coupling 

behaviour of those brain regions, and 3. the direction (increase or decrease compared to 

healthy controls) of functional coupling between brain and muscles. From this indirect 

comparison, we can argue that the CMC has the potential to segregate people with MND 

based on LMN/UMN involvement, thus making it a novel candidate for sub-phenotyping 

motor phenotypes of ALS. However, a direct comparison is needed to validate this 

argument. 

9.4 Limitations 

In this section, general limitations which influenced the design of this project or limited the 

analyses/interpretation of results within this project are discussed along with some 

measures used to minimize the effects of those limitations.  

9.4.1 Participant recruitment and small sample size 

The rapid rate of ALS progression and low prevalence of the disease posed a recruitment 

challenge for this research. The participants needed to attend the data recording session in-

person in the hospital setting which limited some people with ALS to participate in the 

research. For example, some ALS participants had severe decline in motor functions and 

were unable to use a wheelchair to access the research facility or did not have someone 

available who could transport them. Additionally, participants were required to have 

sufficient motor function for the motor tasks. Recruitment was further constrained by the 
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exclusion criteria of the studies. Participants were excluded if they had co-morbid 

neuromuscular or psychiatric conditions that could affect the electrophysiological 

measurements being studied, a common exclusion criterion in this type of research. Some 

participants were also excluded due to the use of specific medications that affect the central 

nervous system. Furthermore, the study had a smaller sample size because the participant 

recruitment and data recording were affected by the Covid-19 pandemic. To take the small 

sample size into account, we have used non-parametric methods such as rank statistics, 

bootstrapping etc (Nasseroleslami, 2019, Nasseroleslami et al., 2019) and probabilistic 

methods such as Empirical Bayesian Inference (Nasseroleslami, 2019) to report the 

statistical significance and power. Additionally, we have reported effect size and 

confidence intervals of the network measures along with p-values to highlight that our 

findings are actual effects rather than some statistical noise.  

9.4.2 Exclusion of deeper brain sources 

We have used high density EEG (128-channels) to record the brain activity and used the 

AAL atlas for source reconstruction which allows estimating EEG source activity from 90 

brain regions that include cortical, sub-cortical and deeper brain sources. However, for our 

sensor level study, we have preselected up to 8 channels and for our source level study we 

have preselected up to 12 cortical brain regions. The channel/source preselection was based 

on brain regions reported to be activated during voluntary motor control. This has restricted 

our analysis to frontal, central and parietal cortical regions only, limiting the investigation 

of temporal, sub-cortical and deeper brain sources which have been shown to have 

significant effects in network pathophysiology of ALS (Abidi et al., 2020, Dukic et al., 

2021). 
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9.5 Future Work 

9.5.1 Continuation of data collection 

The EEG/EMG data collection will be continued in the future to make sure we have a 

reasonable sample size that can provide sufficient power to the analysis. Additionally, 

longitudinal EEG/EMG data for multiple timepoints (with no fixed interval between the 

timepoints but separated at least by 3 months) will be collected in the future. 

9.5.2 Whole brain network analysis 

This work is based on preselection of EEG channels and brain sources which is one of its 

limitations. In future we will be looking into the whole brain network, including sub-

cortical and deeper cortical sources, which will provide more robust evidence of multi-

network dysfunction in ALS and the role of deeper brain sources for compensating for 

abnormal motor networks in ALS. 

9.5.3 Direct comparison of CMC between different patient groups 

We have indirectly compared the CMC patterns of ALS and PLS with reference to the 

controls which has provided us new insights about the potential of CMC to capture disease 

specific functional network impairments. Therefore, in the future we will be comparing 

different patient groups such as ALS, PLS, and PPS directly using CMC to identify 

neurophysiological markers that can be used for differential diagnosis. 

9.5.4 Directional CMC analysis 

Using undirected CMC, we have indirectly identified disease specific functional network 

dysfunction and reorganisation. However, the CMC based on coherence quantifies the 

combined effect of efferent motor and afferent sensory pathways in motor control (Witham 

et al., 2011). In the future, we will be using directional CMC to untangle the contribution 

of ascending afferent and descending efferent pathways in sensorimotor networks during 
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different types (force control, position control) and phases (sustained, transient) of motor 

tasks in healthy people and people with MND. This will help us to understand effects of 

neurodegeneration on different corticospinal pathways.  

9.5.5 Clustering 

ALS is a heterogenous disease with motor and non-motor symptoms found to varying 

degrees within each individual. The resting-state EEG measures have previously identified 

four sub-phenotypes of ALS using clustering; each sub-phenotype showing distinct 

network patterns that correlated with clinical measures (Dukic et al., 2021). Furthermore, 

here we have indirectly shown that CMC during voluntary task execution can capture 

UMN/LMN specific impairments. Therefore, a combination of network measures during 

rest and task, which we have identified here, that collectively capture motor, sensory, 

cognitive, behavioural, and language impairment in ALS could potentially establish a 

foundation for objectively grouping people with ALS into network-based sub-phenotypes 

using clustering analyses. These clusters will then be compared to existing criteria for 

categorizing ALS such as site of symptom onset, degree of UMN/LMN involvement, 

genetic factor etc to assess their utility in clinical practice for improving ALS prognoses. 

9.5.6 Longitudinal analysis 

As evidenced by a previous longitudinal study during rest, tracking spectral EEG measures 

over time offers valuable understanding of the dynamics of network dysfunction in ALS 

and its associations to disease progression (Nasseroleslami et al., 2017). To enhance the 

insights from the cross-sectional task based functional and effective connectivity analyses 

presented here, further investigations are necessary to ascertain whether the network 

pathophysiology remains consistent or is linked to a particular stage of ALS progression. 

Longitudinal data collection has been less prioritised but an ongoing aspect of this project. 
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To date, we have collected 2-time points data from five and a 3rd time point data from one 

ALS participant. In the future, we will prioritise the longitudinal data collection and 

subsequent analysis based on the foundation of this study.  

9.6 Conclusion 

Neurodegeneration in ALS begins in the pyramidal motor system (Brettschneider et al., 

2013) causing motor impairments which overtime spread to neighbouring cortical regions 

by diffusion or to distant cerebral cites mediated by axonal projections. This spreading 

pathology causes several non-motor impairments such as cognitive and behavioural 

impairments in ALS (Grossman, 2019). A clear understanding of the multisystem nature 

of ALS in terms of a network disorder and its association with clinically assessed measures 

will be vital for improved diagnosis, prognosis, and disease management. However, for 

early diagnosis, understanding and unravelling the early neurophysiological signatures of 

pathological changes in motor system is important because motor signs and symptoms 

appear earliest at the disease onset with various phenotypical heterogeneity, focality, and 

spread (Ravits and La Spada, 2009). We used voluntary movement related experimental 

paradigm that can directly access the motor networks in ALS. We have shown that the 

cortico-cortical and corticospinal motor networks during voluntary movement are impaired 

in ALS and show associations with clinical measure of functional impairment in ALS such 

as ALSFRS-R scores. The network impairments underpinned by this study, if further 

validated by similar studies in a large cohort of patient groups and longitudinal studies, 

have potential to be candidate biomarkers for clinical diagnostic, prognostic and 

phenotyping applications or as primary/secondary outcome measure to track network changes 

in the setting of disease modifying clinical trials.  
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Appendix chapter 6 

 

Appendix 6.1 Resting state functional connectivity networks in healthy controls and ALS patients at all 8 

frequency bands. 
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Appendix 6.2 Pre-motor stage functional connectivity networks in healthy controls and ALS patients at all 

8 frequency bands. 
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Appendix 6.3 Motor execution functional connectivity networks in healthy controls and ALS patients at 

all 8 frequency bands. 
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Appendix 6.4 Correlation of abnormal functional connectivity observed in ALS patients with ALSFRS-R 

scores during resting state (top row), pre-motor (middle row), and motor execution (bottom row). r is 

Pearson’s linear correlation coefficient and p is level of significance adjusted for false discovery rate at q = 

0.05. Linear least-squares fitting was used to fit the line. 
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Appendix 6.5 Pre-motor stage non-phase locked normalised power (db) for ALS patients and healthy 

controls at cortical regions of interest.  
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Appendix 6.6 Motor execution non-phase locked normalised power (db) for ALS patients and healthy 

controls at cortical regions of interest.  

 

 


