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Abstract

Amyotrophic lateral sclerosis (ALS) is a fatal progressive neurodegenerative disease that
causes degeneration of both upper and lower motor neurons primarily affecting the motor
system, but individual people with ALS show heterogenous presentations of motor and
non-motor symptoms and disease progression rate. Therefore, diagnosis of ALS, which is
based on the clinical examination and exclusion of mimic conditions like spinal muscular
atrophy (SMA), Kennedy’s disease, Myasthenia gravis, multiple sclerosis (MS), is
extremely challenging. Additionally, ALS progression is measured using clinical scales
that are subject to variance (i.e., cannot effectively capture heterogeneity) and are a proxy
for underlying disease pathobiology. Therefore, there is an urgent need for reliable and
quantitative biomarkers that can be used for early diagnosis, tracking disease progression,
and importantly, deep phenotyping and stratification for clinical trials.
Neurophysiological studies in ALS have illustrated the potential of network connectivity
measures to enable early detection of brain networks impairments before manifestation of
clinical symptoms and before structural alterations become visible in structural imaging.
ALS is a multi-network dysfunction causing deficits in motor and extra-motor brain
networks. Understanding the changes in motor networks is key to unveiling disease
pathology in ALS. Impairment of sensorimotor and extra-motor networks in ALS has been
identified from resting-state paradigm. However, motor paradigms, that involve the pre-
motor stage, motor planning, and motor execution and can directly access sensorimotor
pathways, might be needed to unravel motor networks pathology in ALS for biomarker
design.

In this project, high-density electroencephalogram (EEG) and bipolar surface

electromyogram (EMG) were recorded from people with ALS and healthy controls when



they were performing an isometric motor task: pincer grip between thumb and index finger
of the right hand at 10% of their maximal voluntary contraction. The neuroelectric signal
analysis was done at both sensor and source levels to interrogate ALS-related motor
network pathology. The spectral power and banded spectral coherence were obtained from
EEG signals at sensor level to investigate the effect of neurodegeneration in functional
motor networks during different stages of the task such as rest, pre-motor stage and motor
execution. Similarly, banded corticomuscular coherence (CMC) at source level, which
measures the synchrony between EEG and EMG signals, was used to investigate the
dysfunctional involvement of corticospinal tracts in the cortico-peripheral networks in
ALS. Furthermore, at source level, generalised partial directed coherence (gPDC) was used
to investigate the effect of neurodegeneration on effective (directional or causal) cortical
networks in ALS during pre-motor (motor planning) and motor execution.

This work has established that ‘banded spectral coherence,” based on non-parametric
methods such as 1-sample signed rank statistics and 2-D spatial median, was a simpler and
improved alternative to classical ‘magnitude squared coherence’ to investigate functional
network disruption in motor neuron disease. This study revealed more widespread point-
to-point network connectivity (using banded spectral coherence), reflecting hyperactivation
of cortical regions in ALS during rest and motor task. Such cortical hyperactivation is
potentially due to a loss of inhibitory interneurons. Similarly, this study revealed increased
beta event related spectral perturbations over non-dominant-motor and parietal regions.
Furthermore, it demonstrated abnormal motor-parietal functional network at beta-band
during motor execution, which was also negatively correlated with clinical motoric
impairments. These findings indicate compensatory mechanism in ALS. More importantly,
this study revealed that pre-motor networks that were impaired in ALS were distinct and
not an extension of impairment in the primary motor cortex (M1). Furthermore, this study
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found reduction of CMC in alpha, beta, and gamma frequency bands in brain regions within
primary sensorimotor cortices (M1/S1), the supplementary motor area (SMA) and the
superior parietal lobule implying broader network impairment in ALS beyond the
sensorimotor networks, potentially reflecting dysfunction of other aspects of motor control
such as motor planning, task attention, and visuomotor processes. Finally, the study
identified several disruptions in directional networks within motor systems in ALS with
higher order motor regions such as SMA. Specifically, the SMA-driven sensorimotor
network was notably weaker in ALS, suggesting impaired motor planning. Also, the SMA
potentially compensated for M1 degeneration during motor execution, as evidenced by
stronger connections from ipsilateral SMA to contralateral M1 which could be attributed
to interhemispheric disinhibition and heightened motor demands in ALS.

The cortico-cortical and cortico-muscular network impairments underpinned by this study
have the potential to be used for clinical diagnostic, prognostic and phenotyping
applications or as primary/secondary outcome measure to track network changes in the

setting of disease modifying clinical trials.

Keywords: Amyotrophic Lateral Sclerosis, Network Connectivity, Corticomuscular

Coherence, Generalised Partial Directed Coherence, Biomarkers.
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1. Introduction

1.1 Amyotrophic Lateral Sclerosis

Neurodegenerative diseases exert billions of euros of costs on the economy and
dramatically affect the quality of life of patients and caregivers. The neurodegeneration
causes failure in the brain’s neural networks which is poorly understood, can differ across
individuals, and is difficult to quantify in clinics. Alzheimer’s disease, Parkinson’s disease,
Huntington’s disease, and Motor Neuron Disease (MND) are such diseases. MND is an
umbrella term that covers a wide range of rare neurodegenerative diseases that destroy
motor neurons, the nerve cells responsible for control of voluntary movement of the body.
MND includes diseases such as amyotrophic lateral sclerosis (ALS), primary lateral
sclerosis (PLS), progressive muscular atrophy (PMA), spinal muscular atrophy (SMA),
post-polio syndrome (PPS), and Kennedy’s disease. ALS 1is a progressive
neurodegenerative disease which primarily affects the motor neurons of the brain (upper
motor neurons, UMN) and spinal cord (lower motor neurons, LMN). In early stages of the
disease, the motor neurons (upper and lower), which carry neural signals from the brain to
muscles via the spinal cord and vice-versa, start to degenerate. This causes muscles to
weaken, fasciculate (twitch of a muscle), and waste (also called atrophy). The motor neuron
degeneration progresses over time and the patient gradually loses control over the voluntary
movement of muscles. Consequently, the patient suffers deterioration of strength and
ability to do simple day-to-day tasks. Over time, the motor neurodegeneration causes severe
dysphagia (difficulty in swallowing) and dyspnoea (shortness of breath) so that the patient
is unable to breathe and generally dies from respiratory failure. This happens typically 3-5
years after symptom onset, except in some cases (about 10%), where the patient survives

more than 10 years and has a slower disease progression rate.



1.1.1 ALS Epidemiology

ALS is the most common type of MND worldwide and can affect people between the ages
of 40 years and 90 years. The incidence of ALS increases with age and is reported to be
highest between 60 years and 79 years (Marin et al., 2018). There are no clear indicators
that the incidence of ALS has changed in the past couple of decades. Some studies have
reported that the incidence of ALS is stable over the past three decades (Ryan et al., 2019),
whereas others have reported a possible increase in the incidence rate (Xu et al., 2020). The
perceived increase in incidence could be the result of improved diagnosis, and improved
quality of ALS registries around the world (Feldman et al., 2022). Similarly, the prevalence
of ALS is also expected to increase because of an ageing population, improved disease
management, improved and personalised healthcare, and personalised treatment plans to
some extent, which increase the life expectancy by at a least few months. However, ALS
is still a rare disease with an overall crude global prevalence rate of 4.42 per 100,000
population (Xu et al., 2020). The overall crude global incidence of ALS is 1.75 per 100,000
person-years and 1.68 per 100,000 person-years after standardisation (Marin et al., 2017).
The incidence of ALS is heterogenous worldwide with a standardised incidence rate of 1.89
per 100,000 person-years in Northen Europe, 0.83 in East Asia and 0.73 in South Asia
(Marin et al., 2017). Oceania has the highest incidence of 2.25 per 100,000 person-years
(Marin et al., 2017). This variation of ALS incidence between the subcontinents could be
related to genetic factors, especially populations’ ancestries (Marin et al., 2017). On the
other hand, homogeneous incidence rates have been reported in populations from Europe,
North America, and New Zealand with a pooled ALS standardised incidence of 1.81 per

100,000 person-years (Marin et al., 2017).



Sex is another factor that affects the incidence of ALS, with male population being at higher
risk than female. A noticeable male-to-female sex ratio has been consistently reported by
population studies in ALS, with an overall pooled male-to-female ratio of 1.28 (Fontana et
al., 2021). In Irish population, the mean male-specific annual incidence rate is 1.8 per
100,000 persons and mean female-specific annual incidence rate is 1.3 per 100,000 persons
(Ryan et al., 2019). The predominance of male cases could be linked to difference of
response between male vs female to ALS risk factors (McCombe and Henderson, 2010).
Higher incidence of male cases could also be linked to some other factors such as an
occupational bias towards exposure to risk factors. For example, some studies have put
forward that, for some unknown reasons, military veterans are at higher risk (about 1.5 to
2 times) of developing ALS (McKay et al., 2021) and it is a well-known fact that the
majority of military personnel is male.

Genetics also play an important role in the incidence of ALS. Studies have shown that the
heritability of ALS is higher in mother-daughter pairings (Ryan et al., 2019). The C9orf72
gene, which is the most common gene associated with ALS, lowers the age of onset in the
male versus female population (Murphy et al., 2017). Similarly, the low incidence of ALS
in Asia compared to Europe and North America may be related to the low frequency of
C90rf72 gene mutation in Asian cohorts (Shahrizaila et al., 2016, Zou et al., 2017). The
C90rf72 repeat expansion accounts for more than 34% of familial ALS and about 5-20%
of sporadic ALS in the Caucasian population (Williams et al., 2013, Zou et al., 2017). In
contrast, the C9orf72 gene mutation accounts for less than 2% of the familial or sporadic
ALS in Asia (Ogaki et al., 2012, Shahrizailaetal., 2016, Zou et al., 2017). Thus, occurrence
of ALS is influenced by interrelationships between genetic factors, age, and sex, and this
has significant implications for both preclinical and clinical research, as well as clinical

trials.



1.1.2 Genetic Aspects of ALS

ALS is classified as either familial or sporadic based on the family history or the cause of
the disease. If the disease occurs at random without any family history or any clearly linked
risk factors than it is Sporadic ALS. Sporadic ALS is the most common form of ALS and
affects from 85% of people with the disease. For the remaining 10 to 15% of people with
ALS, the cause is genetic (Familial ALS) i.e., they inherit the disease from family members
with ALS or associated syndromes such as frontotemporal dementia or other
neuropsychiatric conditions (Goutman et al., 2022). Although sporadic ALS occurs without
the evidence that the disease was inherited, it shares several risk genes with familial ALS.
With increasing genetic studies in ALS, more and more gene mutations are being associated
with ALS. More than 40 ALS genes have been identified so far (Goutman et al., 2022) and
four genes, namely C9orf72 (chromosome 9 open reading frame 72), SOD1 (superoxide
dismutase 1), TARDBP (transactive response DNA binding protein 43), and FUS (fused in
sarcoma) account for about 48% of familial and 5% of sporadic ALS (Zou et al., 2017).
However, the distributions of these major ALS-related genes are not homogeneous amongst
the ALS population and there is a distinct genetic architecture between European and Asian
ALS populations (Zou et al., 2017). These four major ALS-related genes (C9orf72, SOD1,
TARDBP, and FUS) account for 55% of familial and 7% of sporadic ALS within the
population of European origin, and for about 40% of familial and 3% of sporadic ALS
within the population of Asian origin (Zou et al., 2017). In the European population, the
most common gene mutation in ALS is C9orf72 repeat expansion (~34% familial and ~5%
sporadic), followed by SOD1 (~15% familial and ~1% sporadic). On the other hand, in
Asian populations, the most common gene mutation in ALS is SOD1 (~30% familial and

~2% sporadic), followed by FUS (~6% familial and ~1% sporadic). The Irish ALS



population shows similar familial genetic traits as the European population with C9orf72
repeat expansion accounting for about 33% of known familial cases of ALS (Ryan et al.,

2018).
1.1.3 Clinical Presentation of ALS

1.1.3.1 Phenotypic Heterogeneity of ALS

Motor Phenotypes

ALS exhibits phenotypic heterogeneity due to dysfunction of either upper motor neurons
(UMN) that originate from the cerebral cortex and travel down to the brain stem or spinal
cord, or lower motor neurons (LMN) that begin from the spinal cord and innervate muscles,
or both (Figure 1.1 A). UMN dysfunction is characterised by increased and pathological
reflexes, pathological spread of reflexes, preserved reflexes in weak limb, and spasticity.
LMN dysfunction is characterised by muscle weakness, atrophy, and fasciculations. These
motor neuron dysfunctions lead to progressive weakening of voluntary skeletal muscles
involved in the movement of limbs, swallowing, speaking, and respiratory function, with
various phenotypic clinical presentations (Figure 1.1 B). Spinal onset and bulbar onset are
two most common phenotypic presentations of ALS, each constituting more than 30% of
the cases (Chio et al., 2011) . Spinal onset ALS is characterised by muscle weakness
starting either in the upper limbs, or lower limbs, or both. It presents both UMN and LMN
signs. The bulbar onset phenotype, which presents both UMN and LMN signs, is
characterised by weakness starting in the bulbar muscles that control speaking and
swallowing. Other less frequent phenotypic presentations of ALS are pyramidal, flail limbs
(flail arm and flail leg), primary lateral sclerosis (PLS), progressive muscular atrophy
(PMA), respiratory onset, or hemiplegia. Flail arm ALS is characterised by LMN

involvement with progressive, predominantly proximal weakness and wasting of the upper



limbs, whereas flail leg ALS is characterised by LMN involvement with progressive distal
onset weakness and wasting of the lower limbs. Flail limb ALS is a relatively milder
variants of ALS as it showed better survival than spinal or bulbar onset ALS (Wijesekera
et al., 2009). PLS is characterised by pure UMN dysfunction with no sign of LMN
involvement, causing weakness in limb muscles, speaking, and swallowing. Similarly,
PMA is characterised by LMN dysfunction with no sign of UMN involvement at onset
causing progressive weakness and muscle atrophy. However, as much as 70% of patients
with PMA will eventually show the signs of UMN degeneration (Latif, 2018). There is no
clear distinction, whether to consider PLS and PMA as separate clinical entities or a
phenotypic presentation of ALS. However, they have been often studied as part of the
clinical spectrum of ALS (Fontana et al., 2021, Mehta et al., 2022). Pyramidal variants,
also referred to as predominantly upper motor neuron ALS, concern patients with ALS
having a clinical manifestation dominated by pyramidal signs such as hyperreflexia,
spasticity, and Babinski signs at onset and not all patients with ALS show such signs. In a
cohort of 130 patients with ALS studied by Alvarez et al. (2018), only about 11% had a
complete pyramidal syndrome. Respiratory onset ALS is characterised by the prevalence
of respiratory impairments such as orthopnoea (shortness of breath when lying down) or
dyspnoea (shortness of breath) at onset. Such patients present with mild involvement of
spinal or bulbar signs in the first 6 months after onset and mild UMN involvement (Chio
etal., 2020). Hemiplegic ALS, also known as Mill’s syndrome, is an extremely rare variant
of ALS with asymmetric corticospinal degeneration. Case studies of hemiplegic ALS have
shown UMN involvement (Chugh et al., 2013, Algahtani et al., 2021).

Cognitive Phenotypes

Phenotypic heterogeneity in ALS is not only due to motor symptoms but also due to
cognitive and behavioural symptoms. Not all individuals with ALS develop cognitive and
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behavioural symptoms but about 35-45% of individuals with ALS may experience some
degree of cognitive or behavioural involvement with symptoms overlapping with
Frontotemporal Dementia (FTD) and about 14% meet the diagnostic criteria of FTD
(Pender et al., 2020). Therefore, ALS is introduced as part of the ALS-FTD spectrum
(Figure 1.1 C). Cognitive impairment in ALS is commonly characterised by manifestation
of executive and language dysfunction whereas behavioural impairment is characterised by
apathy, loss of sympathy and empathy, disinhibition, stereotyped or compulsive behaviours
and dietary changes (Pender et al., 2020, Strong et al., 2017). Based on the presentation of
cognitive and/or behavioural involvement, five phenotypes of ALS have been reported
namely, pure ALS (only motor symptoms, no cognitive or behavioural involvement), ALS
with cognitive impairment (ALSci), ALS with behavioural impairment (ALSbi), ALS with
cognitive and behavioural impairment (ALScbi), and ALS with concurrent dementia that

meets diagnostic criteria for FTD (ALS-FTD).

1.1.3.2 ALS as Multi-system Disorder

Although ALS has traditionally been viewed as a disease that specifically affects the motor
system, recent imaging and pathological research has shown that it is a multisystem
neurodegenerative disorder (Strong, 2017, Geser et al., 2008). In addition to motor deficits,
which is a primary ALS pathophysiology, cognitive deficits are consistently reported by

several clinical-based and large population-based studies (Chio et al., 2019).
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Figure 1.1 Amyotrophic lateral sclerosis (ALS) phenotypical heterogeneity and spectrum with
frontotemporal dementia (FTD). Figure taken from Feldman et al. (2022). (A) Schematics showing UMN

(blue) and LMN (yellow) which relay signals from the motor cortex to muscles. LMNs from the brain stem
innervate bulbar muscles, LMNs from the cervical region of spinal cord innervate muscles on upper limbs
and respiratory muscles, LMNs from thoracic region of the spinal cord innervate abdominal muscles, and
LMNs from the lumbar region of the spinal cord innervate lower limbs. (B) Schematics showing phenotypical
presentations of people with ALS based on the signs and anatomical locations of UMN (blue), LMN (yellow),
and combined UMN and LMN (green) dysfunctions. The percentages in the figure show the proportion of
ALS phenotypes from the total representative ALS population reported by Chio et al. (2011). (C) Schematics
showing the ALS-FTD spectrum. ALS is one end of the spectrum and presents with pure motor signs from

UMN and LMN degeneration. FTD is on the other end of the spectrum and presents with cognitive and



behavioural impairments from frontotemporal degeneration. Abbreviations: ALS, amyotrophic lateral
sclerosis; ALSci, amyotrophic lateral sclerosis cognitive impairment; ALSbi, amyotrophic lateral sclerosis
behavioural impairment; ALSchi, amyotrophic lateral sclerosis cognitive and behavioural impairment;
FTD, frontotemporal dementia; LMN, lower motor neuron; UMN, upper motor neuron; PLS, primary

lateral sclerosis; PMA, progressive muscular atrophy; MND, motor neuron disease.

It has been reported that about 50% of patients diagnosed as possible, probable, or definite
ALS have detectable cognitive or behavioural changes, and about one-third of these
patients exhibits the neurological signatures of frontotemporal degeneration (FTD)
(Grossman, 2019). The neurodegeneration in ALS begins in the pyramidal motor system
which includes motor cortex, brainstem motor nuclei of cranial nerves, and motor neurons
of spinal cord (Brettschneider et al., 2013). Over time, the neurodegeneration spreads to
neighbouring cortical regions by diffusion or to distant cerebral cites mediated by axonal
projections. The pathology initially spreads to brain regions such as premotor, sensory, and
prefrontal cortices, and eventually to portions of the parietal and temporal lobes, corpus
callosum, and deep grey structures (Fatima et al., 2015, Chio et al., 2014). This spreading
pathology causes several non-motor impairments in ALS such as in executive control
(difficulty with planning, organizing and inhibitory control), changes in behaviour and
personality (apathy, loss of empathy and disinhibition) and language disorders (non-fluent,
agrammatic speech and comprehension)(Grossman, 2019). In addition to cognitive and
behavioural impairment, recent studies have provided evidence of episodic memory
impairments in ALS subjected to the thinning of medial temporal lobe grey matter (Machts
et al., 2014, Machts et al., 2020). A clear understanding of multisystem nature of ALS will

be vital for improved diagnosis, prognosis, and disease management.



1.1.4 Propagation of ALS pathology

ALS is increasingly recognized as a network disorder. Disruption of network connectivity,
which involve multiple interconnected regions of the nervous system, could lead to the
propagation of pathology throughout the nervous system. Two hypotheses have been
debated to explain the pathogenesis of ALS namely ‘dying forward’ and ‘dying backward.’
The dying forward hypothesis suggests that ALS begins in the pyramidal neurons of motor
and premotor cortices of the brain and then progresses to affect the lower motor neurons in
the spinal cord and brainstem (Eisen, 2021). This hypothesis proposes that glutamate
excitotoxicity at the motor cortex is an important factor resulting in deficit of anterior horn cell
metabolism (Kiernan et al., 2011). The TMS studies reporting cortical hyperexcitability as an
early feature in sporadic ALS patients (Vucic and Kiernan, 2006) and precedes the clinical
onset of familial ALS (Mucic et al., 2008) support the dying forward hypothesis.

The dying backward hypothesis, on the other hand, proposes that ALS begins in the
peripheral nervous system such as muscle cells or at the neuromuscular junction, affecting
the lower motor neurons first, and then progresses centrally to involve the upper motor
neurons in the brain (Kiernan et al., 2011). This hypothesis is supported by the studies
reporting that synaptic denervation precedes motor neuron degeneration and is facilitated

by the accumulation of mutant SOD1 protein in Schwann cells (Clark et al., 2016).
1.1.5 Diagnostic Criteria for ALS

ALS is a heterogeneous disease, involving motor, cognitive, or behavioural impairments,
with the presentation of various clinical phenotypes which makes it difficult to diagnose.
Researchers and clinicians have been working for decades to come up with a gold standard
criterion that can be used for the diagnosis of ALS but with limited success. The definitive

diagnosis of ALS is difficult as there are several syndromes that mimic the symptoms of
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ALS, particularly in the early stages of the disease (Hardiman et al., 2011). To date, the
diagnosis of ALS is based on the clinical signs and symptoms in addition to investigations
to eliminate mimicking syndromes. The first widely recognised diagnostic criteria for ALS
were published in 1994 and are known as the El Escorial criteria (Brooks, 1994). They
were revised in 2000 as the El Escorial revisited criteria in order to increase their sensitivity
(Brooks et al., 2000). The revised criteria allowed the patients to be categorised on the
spectrum of probability from ‘Possible’ to ‘Definite’ ALS on clinical criteria alone based
on the involvement of UMN or LMN or both, the number and specific bodily regions
affected, and the presence or absence of supportive neurophysiological findings. A
summary of the El Escorial revisited criteria is shown in Table 1.1.

Table 1.1 Summary of the El Escorial revisited criteria for diagnosis of ALS from
Brooks et al. (2000)
The diagnosis of ALS requires:

(A) the presence of:
(A: 1) evidence of LMN degeneration by clinical, electrophysiological, or
neurological examination,
(A: 2) evidence of UMN degeneration by clinical examination, and
(A: 3) progressive spread of symptoms or signs within a region or to other
regions, as determined by history or examination,

together with:

(B) the absence of:
(B: 1) electrophysiological or pathological evidence of other disease
processes that might explain the signs of LMN and/or UMN degeneration,
and
(B: 2) neuroimaging evidence of other disease processes that might explain
the observed clinical and electrophysiological signs.

Categories of clinical diagnostic certainty on clinical criteria alone
Definite ALS Presence of UMN, as well as LMN signs, in the bulbar region

and at least two spinal regions or
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Presence of UMN and LMN signs in three spinal regions

Probable ALS Presence of UMN and LMN signs in at least two regions with
some UMN signs necessarily rostral to (above) the LMN signs.
Probable ALS — Presence of UMN and LMN signs in only one region, or
Laboratory Presence of UMN signs alone in one region, and LMN signs
supported defined by EMG criteria are present in at least two regions
Possible ALS Presence of UMN and LMN signs in only one region or

Presence of UMN signs in two or more regions or
Presence of LMN signs rostral to UMN signs and the diagnosis

of Probable ALS — Laboratory supported cannot be proven

To improve the diagnostic sensitivity of the EI Escorial criteria, the revised El Escorial
criteria introduced the category “Suspected ALS” that allowed the use of
Electromyography (EMG) results to support the clinical findings for the diagnosis (Brooks
et al., 2000) and removed the category “Laboratory-supported probable ALS”. The four
ALS categories of El Escorial revisited criteria (see Table 1.1) identified patients with ALS
with high specificity, but concern was raised on their sensitivity because of the way EMG
contributes to the diagnosis (De Carvalho et al., 1999). An Irish population-based study by
Traynor et al. (2000) indicated that the El Escorial and their revision were highly restrictive
and about 10% of deceased patients died without reaching trial eligibility. To solve this
issue, the Awaji criteria (de Carvalho et al., 2008) were introduced which modified the El
Escorial revisited criteria by further integrating electrophysiological criteria with clinical
findings. The Awaji criteria considered the EMG changes showing LMN dysfunction and
presence of fasciculations as LMN signs, removed “Laboratory-supported probable ALS”,

and retained definite, probable, and possible ALS categories.

Although, the Awaji criteria has demonstrated an improved diagnostic certainty of ALS

over the El Escorial revisited criteria (Gawel et al., 2014), both criteria are complex with
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high inter-rater variability and require training to use (Johnsen et al., 2019). Therefore, to
simplify, improve inter-rater reliability, and potentially replace the El Escorial revisited and
Awaji criteria, new diagnostic criterion for ALS called Gold Coast criteria (Shefner et al.,
2020) have been proposed in 2019. The Gold Coast criteria for diagnosis of ALS are shown
in Table 1.2. Multicentre population studies as well as regional population studies have
shown that the Gold Coast criteria offer greater diagnostic sensitivity compared to the El
Escorial revisited and Awaji criteria by considering the ‘definite’ or ‘probable’ diagnostic
categories as a positive finding and recommend using the criteria in clinical practice and
therapeutic trials (Hannaford et al., 2021, Pugdahl et al., 2021, Shen et al., 2021).

Table 1.2 Gold Coast criteria for diagnosis of ALS from Shefner et al. (2020)

1. Progressive motor impairment documented by history or repeated clinical

assessment, preceded by normal motor function, and

2. Presence of upper® and lower? motor neuron dysfunction in at least 1 body region?,
(with upper and lower motor neuron dysfunction noted in the same body region if
only one body region is involved) or lower motor neuron dysfunction in at least 2

body regions, and

3. Investigations* excluding other disease processes

Footnotes:

tUpper motor neuron dysfunction implies at least one of the following:
1. Increased deep tendon reflexes, including the presence of a reflex in a
clinically weak and wasted muscle, or spread to adjacent muscles.
2. Presence of pathological reflexes, including Hoffman sign, Babinski sign,
crossed adductor reflex, or snout reflex
3. Increase in velocity-dependent tone (spasticity)
4. Slowed, poorly coordinated voluntary movement, not attributable to weakness

of lower motor neuron origin or Parkinsonian features

2|_ower motor neuron dysfunctions in a given muscle requires either:

1. Clinical examination evidence of muscle weakness and muscle wasting, or
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2. EMG abnormalities that must include both:
Evidence of chronic neurogenic change, defined by large motor unit potentials
of increased duration and/or increased amplitude, with polyphasia and motor
unit instability regarded as supportive but not obligatory evidence, and
Evidence of ongoing denervation, including fibrillation potentials or positive

sharp waves, or fasciculation potentials

Body regions are defined as bulbar, cervical, thoracic, and lumbosacral. To be
classified as an involved region with respect to lower motor neuron involvement,
there must be abnormalities in two limb muscles innervated by different roots and
nerves, or one bulbar muscle, or one thoracic muscle either by clinical examination or
by EMG.

“The appropriate investigations depend on the clinical presentation, and may include
nerve conduction studies and needle EMG, MRI or other imaging, fluid studies of

blood or CSF, or other modalities as clinically necessary.

1.1.6 Diagnostic Delay and its Impact in ALS

The diagnosis of ALS is based primarily on clinical examination using the El Escorial, El
Escorial revisited or Awaiji criteria, and is often slow taking about 10 to 16 months from
symptoms onset (Richards et al., 2020). The newly proposed Gold Coast criteria, which are
simplified and have higher sensitivity compared to the former criteria, have the potential to
reduce the diagnostic delay (Falcdo de Campos et al., 2023) if used in clinical practice. The
revised El Escorial criteria are still the mainstay of ALS diagnosis, but the field is slowly
moving towards the Gold Coast criteria (Feldman et al., 2022). Several factors contribute
to the delay in diagnosis of ALS such as delays from referrals to specialists, delays from
misdiagnosis, delays related to site of disease onset, age of onset-related delays, and delays
related to the presence of comorbidities (Richards et al., 2020). Studies have demonstrated
that ALS with spinal onset and younger age onset have longer diagnostic delays (Richards
et al., 2020, Galvin et al., 2017, Falcdo de Campos et al., 2023, Nzwalo et al., 2014). The
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time from first symptom onset noted by the patient to their first visit to a physician or
general practitioner is about 3-6 months and about 60% of patients are referred to a

neurologist after their first or subsequent visit to a physician (Richards et al., 2020).

~40% _ Other

" Specialists
1
|
, ©
3-6 months ' Total 10-16 months
o | ®)~60% . N lodi t"l Formal
| > Neurologis Diagnosis
First symptom onset First Presentation
noted by patient To Physician

Figure 1.2 Pathway to ALS diagnosis from first symptom onset to final diagnosis. Figure taken from

Richards et al. (2020).

There is no treatment to halt or reverse the progressive neurodegeneration in ALS till date.
Early diagnosis of the disease could help individuals to receive personalized supportive
care from multidisciplinary teams of health care professionals, which could help to prolong
their life as well as improve their and their caregiver’s quality of life. The delay in diagnosis
also adds financial burden to the patient and/or state because of the significant waste of
financial resources arising from misdiagnosis and delayed diagnosis (Galvin et al., 2017).
More importantly, the emotional and psychological burden of misdiagnosis and delayed
diagnosis is significant for patients and their family. The delayed diagnosis prevents
patients and their family to adequately prepare for their future in terms of end-of-life care,

finances, social relationships, and psychological well-being.
1.1.7 Prognosis of ALS

The Amyotrophic Lateral Sclerosis Functional Rating Scale Revised (ALSFRS-R) is the
most widely used tool to measure functional decline and to monitor disease progression in

ALS by clinicians and researchers. The ALSFRS-R is a 48 points validated questionnaire-
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based clinical scale that ranges from score 0 (severe functional impairment) to 48 (no
functional impairment) (Cedarbaum et al., 1999). The 48-point total score can be divided
into 4 sub-scales namely bulbar (0-12), fine motor (0-16), gross motor (0-8), and respiratory
(0-12). Due to the lack of suitable alternatives, the ALSFRS-R remains the gold standard
of primary or secondary efficacy of clinical trial outcome (van Eijk et al., 2021) despite
having issues with multidimensionality (Franchignoni et al., 2013) i.e., the ALSFRS-R is
a composite scale that combines assessments of various functional domains, including
bulbar function, limb strength, fine motor skills, and respiratory function. Each domain
may progress at a different rate and be affected to a different extent in individual patients.
Another limitation with the ALSFRS-R is that some sub-scores improve with symptoms
management or with change in behaviour even though the disease is progressing (Fournier
et al., 2020).

To overcome the limitations of the ALSFRS-R, Fournier et al. (2020) proposed a new
clinical outcome measure to use in patients with ALS called the Rasch-Built Overall
Amyotrophic Lateral Sclerosis Disability Scale (ROADS). The ROADS consists of 28
patient-reported questions about their ability to perform daily activities that can be
weighted as 0 (able to perform without difficulty), 1 (able to perform, but with difficulty),
and 2 (unable to perform). The ROADS is a linearly weighted scale with high test-retest
reliability that captures overall disability of ALS patients (Fournier et al., 2020). The ability
of the ROADS questionnaire to capture overall disability of ALS was successfully
validated against the ALSFRS-R in a Chinese ALS population by modifying the
guestionnaire (Chinese version of ROADS) through standardised forward-backward
translation and cultural adaptation (Sun et al., 2021). A longitudinal study comparing the
ROADS and ALSFRS-R concluded that the performance of both measures was similar,

however, the ROADS offered psychometric advantages, such as Rasch-modelling and
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unidimensionality (Johnson et al., 2022). Similarly, a recent study evaluating the ROADS
and ALSFRS-R has shown that the ROADS detected clinically meaningful decline in about
60% of ALS versus about 46% detected by the ALSFRS-R on same ALS cohort (Fournier
et al., 2023). Therefore, the ROADS offers advantages over the ALSFRS-R and could be a
valuable tool for prognosis of ALS and in clinical trials, but more clinical validation from
multiple ALS centres is needed before it can be adopted globally.

A staging system, which identifies an individual’s position in the disease course, is another
way of measuring progression in ALS. Staging systems can be useful in clinical trials to
measure the efficacy of an intervention to halt or delay advancement from less-severe to
more-severe disease stages. Staging systems such as King’s staging (Roche et al., 2012)
and Amyotrophic Lateral Sclerosis Milano-Torino staging (ALS-MiToS) (Chio et al.,
2015) have been proposed for ALS but neither of them has a widespread use in clinical
practice and trials. King’s staging defines four disease stages where each stage reflects the
severity of the disease and its association with survival (Figure 1.3 A). King’s staging

differs from El Escorial categorisation because it doesn’t need information about
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King's staging

Time to stage

Stage 2a Stage 4a
Diagnosis Need for gastrostomy
Stage 1 Stage 2b Stage 3 Stage 4b
Symptom onset Involvement Involvement Need for
Involvement of first of second of third non-invasive
region region region ventilation
> 135 months
> 17-7 months
> 23-3 months
27-7 months to 4A
30-3 months to 4B
Stage 1 Stage 2 Stage 3 Stage 4A

Median survival
at each stage
(bulbar or limb)

19 months for bulbar,
59 months for limb

19 months for bulbar,
28 months for limb

13 months for
bulbar and limb

9 months for bulbar,
6 months for limb
Stage 4B,

3 months for bulbar,

8 months for limb

B

Stage 0 Stage 1 Stage 2 Stage 3 Stage 4 Stage 5
ALS-MiToS Nolossofa | Lossof Loss of Loss of Loss of Death
staging functional 1domain 2 domains 3 domains 4 domains

domain
Probability of
death at each 0-07 0-26 0-33 0-33 0-86
stage

Figure 1.3 ALS prognosis. Figure taken from Feldman et al. (2022). (4) King’s staging showing time to
reach each stage and survival at each stage. (B) ALS-MiToS staging showing number of functions loss at

each stage and probability of death at each stage.

UMN or LMN involvement and it is easy to use because it corresponds to symptoms
reported by patients and information relevant to the neurologist (Roche et al., 2012). ALS-
MiToS staging defines six disease stages (Stage 0 to Stage 5) based on the number of
functional domains lost and each stage is associated with probability of death (Figure 1.3
B). The functional domains of ALS-MiToS are four independent functions namely
walking/self-care, swallowing, communicating, and breathing, that are included in the

ALSRFS/ALSFRS-R scales. King’s staging and ALS-MiToS are complimentary to each
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other, with King’s staging showing higher resolution in early to mid-disease course, and
MiToS showing higher resolution for late disease course (Luna et al., 2021, Fang et al.,

2017).

1.2 Biomarkers in ALS

1.2.1 Definition of a Biomarker

Biomarkers are measurable indicators of normal biological processes, pathogenic
processes, or responses to an intervention (Group, 2001). Biomarkers play a crucial role in
diagnosing, monitoring progression, predicting outcomes, and evaluating the effectiveness
of treatments in ALS. One avenue of finding biomarker candidates for ALS is to study the
neurophysiological processes in the disease such as motor neuron degeneration (Holasek
et al., 2005), excitotoxicity (Foran and Trotti, 2009), protein misfolding and aggregation
(Parakh and Atkin, 2016), mitochondrial dysfunctions (Zhao et al., 2022), axonal transport
deficits (De Vos and Hafezparast, 2017), glial cell dysfunction (Philips and Rothstein,
2014) and neuroinflammation (Liu and Wang, 2017) amongst many others. By comparing
the measures of these neurophysiological processes with the healthy controls or other
diseased controls such as post-polio syndrome or multiple sclerosis, it is possible to identify
biomarkers that can identify neuropathophysiologies that are specific to ALS. Moreover, if
these neurophysiological process measures correlate with clinical impairments in ALS or
change over time, it becomes possible to identify biomarkers sensitive to the progression
of the disease or treatment effects. Table 1.3 shows the types of biomarkers in ALS, their

definition, and the current gold standards.
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Table 1.3 Types of biomarkers in ALS, their definition, and current benchmarks.

Biomarker Type Definition Current Gold Standards
Diagnostic Guide the clinical diagnostic Neurological examinations,
process of ALS at an early stage Revised El Escorial/Awaji

when signs are localized and subtle | criteria, Electromyography
allowing for timely treatment and

trial enrolment

Prognostic Identify patterns of progression and | Neurological evaluation,
stratify ALS patients for better trial | Revised ALSFRS scores
design by broadly distinguishing
between ALS sub-groups

Pharmacodynamic | Ensure that an experimental drug is | Revised ALSFRS scores
having the desired effect on the pre-
clinically identified therapeutic
pathway and curtail ineffective
therapeutic interventions at an early

stage

1.2.2 Properties of an Ideal Biomarker Candidate for ALS
An ideal biomarker candidate for ALS should have the following properties (Lesko and
Atkinson, 2001).

a. Clinical Relevance: Ability to reflect measures of, or change in,
pathophysiological process by showing association with the clinically relevant
measures such as disease duration, or clinically measured scores (ALSFRS-R,
UMN/LMN scores).

b. Specificity and sensitivity: Ability to identify ALS specific impairments and
discriminate it from healthy people or mimicking conditions. Detect smaller
changes in disease processes to effectively track disease progression or response to

therapeutic interventions.
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c. Reliability: Ability to reflect measure of, or change in, a pathophysiological
process with acceptable accuracy, precision, robustness, and reproducibility.

d. Practicality: Should be non-invasive or minimally invasive to avoid inconvenience
and discomfort to healthy controls or ALS patients.

e. Simplicity: Should be cost effective, suitable for routine utilisation without

extensive time requirement, and have wider acceptance.
1.2.3 Neurophysiological Biomarkers of ALS

The diagnostic utility of neurophysiological biomarkers for diagnosis of ALS has been
underlined in both the EIl Escorial revisited criteria (Brooks et al., 2000) and the Gold Coast
criteria (Shefner et al., 2020). Quantitative neurophysiological approaches such as motor
unit number estimate/index (MUNE/MUNIX) (Bromberg and Brownell, 2008, Gooch et
al., 2014, McComas et al., 1971, Nandedkar et al., 2004), electromyography (EMG) (Joyce
and Carter, 2013, de Carvalho et al., 2008), neurophysiological index (NI) (Swash and de
Carvalho, 2004), transcranial magnetic stimulation (TMS) (Huynh et al., 2019, Vucic and
Kiernan, 2017), and spectral electroencephalogram (EEG) have potential as biomarkers of
LMN/UMN degeneration. About 40% of clinical interventional trials in ALS using the
aforementioned neurophysiological measures as primary or secondary endpoint reported a
positive outcome with respect to at least one neurophysiological measure (Ahmed et al.,
2022).

MUNE/MUNIX, NI, and EMG biomarkers are widely used to identify LMN dysfunction
in individuals after they are clinically suspected of ALS and also for excluding mimicking
neurological disorders. However, these biomarkers alone cannot diagnose ALS without
clinical support (Wijesekera and Leigh, 2009). MUNE/MUNIX has shown potential to

quantify motor neuronal loss in ALS and track disease progression with high sensitivity
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and reproducibility (Fukada et al., 2016, Jacobsen et al., 2019). Similarly, NI has been
validated as a clinical meaningful measure for ALS prognosis with high sensitivity,
favourable reproducibility, and low intraindividual variability (Swash and de Carvalho,
2004, Cheah et al., 2011).

Cortical hyperexcitability, which is a pathogenic and distinguishing feature of UMN
degeneration in ALS, can be detected by using threshold-tracking paired pulse TMS in
terms of reduced short-interval intracortical inhibition (SICI) and increased motor evoked
potentials (MEP) (Vucic et al., 2011, Menon et al., 2020) or by using resting-state spectral
EEG in terms of increased functional connectivity between the frontal-parietal cortical
regions and bilateral motor regions (lyer et al., 2015, Nasseroleslami et al., 2017, Dukic et
al., 2019). EEG-based biomarkers of network degeneration can identify novel patient
populations (Al-Chalabi et al., 2016), with indications of what brain networks should be
targeted for therapeutic treatment. There is increasing evidence that TMS based biomarkers
have potential to identify UMN dysfunction in ALS, even before UMN clinical symptoms
arise, and to distinguish ALS from mimic disorders (Huynh et al., 2019, Vucic and Kiernan,
2017). However, TMS biomarkers are still in the research phase and need validation from
more studies before they can be used as biomarkers of UMN dysfunction in ALS in clinical

settings.

1.3 Thesis Outline

This thesis is organised as a 9-chapter document. This 1% chapter introduced about ALS
and its various aspects such as epidemiology, genetics, phenotypes, multi-systemic nature,
diagnosis, prognosis, and existing neurophysiological biomarkers. The 2" chapter “Aims
and Objectives” lists the aims and objectives of the research. The 3" chapter “Literature

Review” details the existing literatures about brain networks in ALS and the
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neurophysiological underpinnings of the materials and methods used in this study. The 4™
chapter is “Materials and Methods” which explains the equipment, experimental
paradigms, and mathematical/statistical methods and tools used in the study and the
rationale behind it. The 57, 6" 7" and 8" chapters contain the results from the four
different studies highlighting a different aspect of the research methodologically including
introduction, methods, results, discussion, conclusion, and limitations. The 9" chapter is
the overall discussions and conclusion of the research. Chapter 9 is followed by the list of
the references used in this thesis which is followed by the additional materials used in the

study as appendices.
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2. Aims and Objectives

2.1 Aims
The primary aim of my PhD research was to utilize high-density EEG and surface EMG,
known for their non-invasive electrophysiological properties in characterizing and
measuring ALS pathology, to address the urgent need for more economical, accurate, and
objective ALS biomarkers. EEG Functional/Effective connectivity and Corticomuscular
coherence (CMC) served as the key measures, with the primary hypothesis being that these
network connectivity measures could provide insights into specific alterations in the brain’s
motor networks, both within and beyond the primary sensorimotor cortex in ALS. By using
these methods, | aimed to enhance our understanding of both motor and non-motor network
pathology in ALS and explore their potential application in the development of prognostic
and diagnostic ALS biomarkers. More specifically, | aimed to determine the following—
1. To characterize and measure the dysfunction in cortical networks in ALS during
planning and execution of voluntary tasks.
2. To detect reduced or enhanced cortex-muscle synchrony in ALS using CMC.
3. To define reliable neurophysiological biomarkers of the integrity of cortical and
spinal networks in ALS and to validate them against clinical scores, specifically

ALSFRS-R.

2.2 Objectives

The objective of this research was to provide quantitative data that could support the
identification of network-specific diagnostic and prognostic biomarkers in clinical settings.
To achieve this, | conducted neuro-electrophysiological recordings, specifically high-
density EEG, and surface EMG, along with neural signal analysis to examine the spectral

characteristics and synchrony of the neuro-electric signals. The poorly understood
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mechanism of network-based propagation in ALS has encouraged me to set the following

objectives for this research—

2.2.1 Develop and validate a new method for the calculation of functional connectivity

(coherence) between neuro-electric signals.

The rationale for developing a new method for the calculation of functional connectivity
(coherence) is to harness the robustness of the non-parametric (median based) functional
connectivity measure against artefacts (Dukic et al., 2017) and represent the collective
connectivity strength with a single value over the range of frequencies within each distinct
neurophysiological frequency band. More importantly, the new method utilises non-
parametric rank statistics for coherence (Nasseroleslami et al., 2019) which presents
connectivity strengths as p-values so there is no need for separate significance testing
(close form solution or non-parametric bootstrapping) as required by other existing
connectivity measures. Additionally, the new method is robust against the bias introduced
by the number of epochs (L) used to estimate functional connectivity (Nasseroleslami et
al., 2019).

We hypothesised that the new method of estimating functional connectivity provides
stronger detection of network connectivity with a singular value for a frequency band,
reducing the effect of volume conduction and be useful to identify abnormal network

connections in patient groups.

2.2.2 Compare pre-motor stage and motor execution functional connectivity between

an ALS cohort and age-matched healthy controls.

Functional connectivity of brain networks have the potential to detect and quantify disease
specific adaptive and compensatory patterns of network activity. Prior to this study, the

functional connectivity differences between ALS and age-matched controls during rest has
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been investigated by our group reporting abnormal sensorimotor networks in ALS (Dukic
et al., 2019). However, motor paradigms, such as pre-motor (motor planning) and motor
execution that can directly access sensorimotor pathways, might be needed to unravel the
dynamics of motor network pathology in ALS for better biomarker design. Therefore,
understanding the impairment in functional motor networks is important to understand
disease pathology because the motor region is predominantly affected by the
neurodegeneration in ALS.

The involvement of cortical regions such as premotor cortex (PM) and supplementary
motor area (SMA), which are largely associated with pre-movement or pre-motor activity
(Churchland et al., 2006, Li et al., 2015, Shibasaki and Hallett, 2006, Glover et al., 2012),
during motor execution indicates an alternative strategy for optimizing motor performance
in ALS (Konrad et al., 2002). However, the alternative strategy or compensatory
mechanism during pre-motor stage in ALS, which is impaired as reported by event related
potential (ERP) studies (Thorns et al., 2010, Westphal et al., 1998), is unclear. So, we
hypothesized that understanding the EEG network topology in ALS during pre-motor stage
and motor execution could offer new insights for understanding motor network dysfunction

that can be useful for biomarker development.

2.2.3 Compare effective connectivity and graph-based causal network parameters
during motor planning and motor execution between an ALS cohort and age-matched

healthy controls.

Effective connectivity refers to the directional influence and information flow between
different brain regions, while graph-based causal network parameters such as inflow and
outflow provide insights into the causal interactions within the brain networks. The

rationale for comparing effective connectivity and graph-based causal network parameters
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during motor planning and motor execution between an ALS cohort and age-matched
healthy controls is to elucidate the dynamics of information processing and integration in
sensorimotor neural circuits which may help shed light on the underlying
pathophysiological mechanisms of ALS.

We hypothesize that individuals with ALS will exhibit altered effective connectivity and
graph-based causal network parameters during both motor planning and motor execution
compared to age-matched healthy controls. Specifically, we expect to observe disruptions
in the directional information flow and graph-based measures within the motor networks
of ALS cohort, indicating impaired neural communication and coordination during motor
tasks. These alterations in effective connectivity and graph-based network parameters are
likely to contribute to the motor deficits observed in ALS and may serve as potential

neurophysiological biomarkers for the disease.

2.2.4 Compare the connections that links brain to muscles using Corticomuscular

coherence (CMC) between an ALS cohort and age-matched healthy controls.

Studies have shown that beta CMC can provide valuable insights into the pathophysiology
of ALS, as well as potential biomarkers for diagnosis and disease progression (Issa et al.,
2017, Proudfoot et al., 2018b). Despite its potential as a biomarker for neurodegenerative
diseases, CMC analysis is still premature, and there is much that remains to be understood
about its correlation with ALS pathophysiology. Our recent sensor-level CMC studies on
patient with lower motor neuron dysfunction such as post-polio syndrome (Coffey et al.,
2021) and patients with upper motor neuron dysfunction, such as PLS (Bista et al., 2023),
exhibit abnormal patterns of brain activity in frontal, parietal and non-dominant primary
motor cortex (M1) including and beyond the beta band during voluntary movement. ALS

being the disease where both upper and lower motor neurons are affected, we, therefore,
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hypothesized that, impaired CMC could be detected beyond the beta frequency band and
dominant M1 in ALS and CMC could be a tool to reveal multiple aspects of motor network

dysfunction (such as motor planning, sensorimotor integration, and visuomotor integration)

in ALS.

28



3. Literature Review

3.1 Structural Connectivity

Structural connectivity pertains to the way the brain is anatomically organized through fibre
tracts. Recent developments in magnetic resonance imaging (MRI) and image processing
have introduced several non-invasive methods for quantifying structural connectivity.
These techniques utilize short-range local measures and long-range tract tracing
procedures, known as diffusion tractography (Babaeeghazvini et al., 2021). Understanding
the underlying structural connectivity alterations in ALS can help unravel the disease’s
pathophysiology and identifying potential therapeutic targets. Structural connectivity helps
to uncover the specific white matter tracts and brain regions affected by neurodegeneration,
elucidating how the disease spreads and progresses over time. This section aims to provide
an overview of the current knowledge regarding structural connectivity changes in ALS,
highlighting the techniques used to assess these alterations, their clinical implications, and

their limitations.
3.1.1 Quantitative Techniques for Assessing Structural Connectivity

The assessment of structural changes of brain networks in ALS using conventional clinical
magnetic resonance imaging (MRI) is challenging (Zhang et al., 2003, Renga, 2022).
Therefore, research studies rely on quantitative techniques such as diffusion tensor imaging
(DTI) (Baek et al., 2020, Behler et al., 2023), cortical thickness mapping (Agosta et al.,
2012, Ferrea et al., 2021, Dieckmann et al., 2022), or MRI spectroscopy (Kalra, 2019,
Caldwell and Rothman, 2021) which can provide clinically relevant quantitative measures
of structural network impairment in ALS. The most commonly used quantitative
neuroimaging techniques and measures to access structural connectivity in ALS are

explained in this section.
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2.1.1.1 Diffusion Tensor Imaging (DTI)

DTI is the most popular technique for structural connectivity analysis in ALS. DTI is
primarily used to assess microstructural brain changes by examining water molecule
motility within tissue and relies on determining the orientation and diffusion characteristics
of white matter (Acosta-Cabronero et al., 2010). Recent improvements in DTI resolution
allow for the identification of pathology-specific details, such as changes in axons and
myelin in brain white matter (Zeineh et al., 2012). Various DTI parameters derived from
raw DTI data, such as fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity
(RD) and mean diffusivity (MD), capture different pathological changes in ALS (Baek et
al., 2020). Among them, FA is the most used DTI parameter, offering insights into the
number and size of axon fibres and the density of crossing fibres (Roberts et al., 2013). In
ALS, DTI studies have shown reductions in FA in both motor and extra-motor regions
(Mdller et al., 2016, Andica et al., 2020), with FA proving to be a sensitive and specific
metric (biomarker) for diagnosis (Baek et al., 2020, Tahedl et al., 2021) and disease
progression (Kassubek et al., 2018, Menke et al., 2018).

Despite its widespread application in various clinical conditions (Tae et al., 2018, Baek et
al., 2020, Oishi et al., 2011), the semiquantitative nature of DTI data analysis poses a
significant limitation (Oishi et al., 2011, Tae et al., 2018) because DTI parameters are
influenced by scanner acquisition parameters such as voxel size, signal-to-noise ratio,
gradient strength and echo time. Additionally, DTI is sensitive to noise and artifacts, which
can affect the accuracy of diffusion measurements and subsequent tractography especially
when studying small or subtle changes in white matter integrity (Jones and Cercignani,

2010).

30



3.1.1.2 Cortical Thickness Mapping

Cortical thickness mapping is a neuroimaging technique that utilizes structural MRI scans
to measure the thickness of the cerebral cortex, enabling detection of changes in cortical
thickness and identification of potential diagnostic markers in neurodegenerative and
psychiatric disorders (Fischl and Dale, 2000). Cortical thickness studies have reported
cortical thinning of motor and extra-motor cortices in ALS compared to healthy controls
(Chen et al., 2018, Verstraete et al., 2012). The thinning of primary motor cortex or
precentral gyrus was dominant in ALS with clinical UMN involvement (Walhout et al.,
2015) and correlated to the speed of disease progression i.e., patient with faster disease
progression experienced a more severe M1 thinning (Agosta et al., 2012). A distinct
trajectory of cortical thinning at right fronto-temporal insular cortex was reported by
Consonni et al. (2020) in relation to King’s clinical disease stages suggesting a distinct
pattern of spread of neurodegeneration in ALS. Similarly, a multimodal longitudinal study
of structural brain involvement in ALS, with cortical thickness and other measures,
reported distinct patterns of cerebral degeneration based on phenotype
and C9orf72 genotype (van der Burgh et al., 2020). The cortical thickness of precentral
gyrus and temporal lobe, which showed significant cortical thinning, has been used to
distinguish ALS from healthy controls and UMN/LMN ALS phenotypes resulting in an
accuracy of 94% and 75%, respectively (Ferrea et al., 2021). Cortical thickness has also
been used as a feature and was shown to have higher contribution within multimodal
machine learning models to improve diagnostic accuracy of ALS compared to disease
controls (non-ALS neurodegenerative diagnosis) and healthy controls (Bede et al., 2022,

Wirth et al., 2018, Pisharady et al., 2023).
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3.1.1.3 Magnetic Resonance Spectroscopy (MRS)

Magnetic Resonance Spectroscopy (MRS) is a non-invasive neuroimaging technique used
to analyse the neurochemical composition of brain tissues (Radda et al., 1989). It offers
insights into neurotransmitters such as glutamate/GABA and metabolites such as N-
acetylaspartate (NAA), providing valuable information on neurochemical changes
associated with the ALS (Caldwell and Rothman, 2021). Glutamate excitotoxicity is
increasingly believed to be a key mechanism implicated in the pathogenesis of ALS (Van
Den Bosch et al., 2006, King et al., 2016), however, some believe that the elevated level of
extracellular glutamate is beneficial to ALS (Schiel, 2021). MRS studies in ALS have
revealed decreased NAA, reflecting neuronal loss or dysfunction in motor cortex (Foerster
et al., 2013, Atassi et al., 2017) and corticospinal tracts (Stagg et al., 2013), as well as a
reduced level of inhibitory neurotransmitter GABA in motor cortex (Foerster et al., 2013,
Foerster et al., 2012a). The levels of change in excitatory neurotransmitters such as
glutamate (Glu) in the motor cortex of ALS patients have been reported rather
inconsistently by MRS studies. For example, Atassi et al. (2017) reported decreased levels
of Glu in the precentral gyrus of people with ALS compared to healthy controls. On the
other hand, Han and Ma (2010) reported increased levels of Glu and Foerster et al. (2013)
reported normal levels of Glu in the motor cortex of ALS compared to healthy controls.
Although, there is some inconsistencies about the level of Glu in ALS, majority of the MRS
studies has reported increased neuronal Glu level (Caldwell and Rothman, 2021)
supporting the hypothesis of Glu excitotoxicity in ALS. These neurochemical changes
identified by MRS hold promise as biomarkers for early diagnosis, monitoring disease
progression, and assessing treatment effects in ALS (Kalra, 2019). While MRS has

limitations of low temporal and spatial resolution (Serkova and Brown, 2012), it remains a
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valuable tool for understanding the neurobiology of ALS and has potential as a research

and diagnostic tool (Caldwell and Rothman, 2021).
3.1.2 White Matter Alterations in ALS

White matter abnormality has been widely documented in ALS. Studies using DTI have
consistently reported reduced fractional anisotropy (FA) and increased mean diffusivity
(MD) compared to healthy controls indicating disrupted white matter integrity in various
regions, including the corticospinal tract, corpus callosum, frontal regions, brainstem and
hippocampal regions (Baek et al., 2020, Mdller et al., 2016, Li et al., 2012). The
corticospinal tract, which is crucial for motor function, demonstrates pronounced white
matter alterations, likely contributing to the motor impairments observed in ALS (Mdller
et al., 2016, Sarica et al., 2014, Metwalli et al., 2010). A multi-centre longitudinal study
has reported decline in white matter integrity in corticospinal tract over time in ALS
patients compared to healthy controls (Kalra et al., 2020). Additionally, alterations in the
corpus callosum, a major white matter pathway connecting the two cerebral hemispheres,
have been reported in ALS patients compared to healthy controls and may be linked to the
spread of pathological changes between brain regions (Sage et al., 2009, Bede et al.,
2013b). Moreover, white matter alterations have also been observed in frontotemporal
pathways (Agosta et al., 2017, Bede et al., 2013b) in ALS with C9o0rf72 genotype compared
to C9orf72-negative reflecting the overlap between ALS and frontotemporal dementia
(FTD). Furthermore, the correlation between white matter changes and clinical measures
of disease severity and progression reinforces the clinical relevance of these neuroimaging
findings (Kalra et al., 2020). White matter alterations have been linked to motor functions
(Thivard et al., 2007, Sage et al., 2009, Agosta et al., 2010a), cognitive and behavioural

measures (Agosta et al., 2016) and survival rates (Schuster et al., 2017, Agosta et al., 2010a)
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in ALS patients, suggesting their potential as biomarkers for the diagnostic pathway and

the prognostic stratification of patients (Agosta et al., 2016).
3.1.3 Network-Level Connectivity Alterations

ALS affects multiple brain regions including motor and extra-motor regions structurally
(Baek et al., 2020), therefore, studying structural connectivity alterations in ALS can
provide insights into the disease’s overall effects. This section focuses on network-based
approaches, such as graph theory analysis, to understand the alterations in structural
connectivity networks in ALS. Connectomics, a field based on graph theory, provides a
valuable tool for analysing the organization of cerebral networks and understanding the
relationships between brain regions (Sporns et al., 2005). Graph analysis and connectomics
involve representing brain regions as nodes connected by edges representing structural
connections, with cortical and subcortical brain regions represented as nodes and white
matter tracts between them represented as the edges. The human connectome exhibits non-
random features, including highly connected regions known as hubs (Achard et al., 2006).
These hubs play a crucial role in integrative processing and adaptive behaviours and are
vulnerable to neurodegeneration (van den Heuvel et al., 2013, Proudfoot et al., 2019).
While many brain disorders, such as brain injury (Warren et al., 2014), Parkinson’s disease
(Baggio et al., 2014), FTD (Agosta et al., 2013), Alzheimer’s disease (Dai et al., 2014) or
schizophrenia (Shi et al., 2012, Rubinov and Bullmore, 2013) exhibit a hub-centred pattern,
this finding is not evident in ALS connectivity studies (Fortanier et al., 2019, Crossley et
al., 2014). In terms of global network parameters such as global efficiency and clustering
coefficients, the white matter structural network studies have reported inconsistent
findings. For example, Dimond et al. (2017) reported preserved global efficiency, while

Buchanan et al. (2015) reported no significant difference in clustering coefficient and
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global efficiency in ALS compared to healthy controls. On the other hand, Fortanier et al.
(2019) reported significant decreased global efficiency and Li et al. (2021) reported
significant decreased clustering coefficient in ALS compared to healthy controls. In terms
of brain regions (nodes) in the structural network, studies have reported impairment in both
motor (Verstraete et al., 2011, Verstraete et al., 2014, Li et al., 2021) and extra-motor
regions (Buchanan et al., 2015, Dimond et al., 2017, Li et al., 2021). Until now, there have
been limited longitudinal studies focusing on how ALS affects the structural brain network
over time. Previously, a study by Verstraete et al. (2014) revealed an increasing loss of
network structures after six months, with a key involvement of the primary motor regions.
The loss of structural connectivity extended to frontal and parietal regions, indicating that
the disease may spread through motor neuron networks, starting in specific regions of the
brain or spinal cord and gradually affecting neighbouring neurons (Bede et al., 2013a,
Brettschneider et al., 2013). Recently, a longitudinal study has reported loss of white matter
integrity over time in regions connected to the motor cortex in a subgroup of ALS with

short disease duration (<10 months)(Burgh et al., 2020) .
3.1.4 Clinical Implications

The study of structural connectivity changes in ALS has significantly advanced our
understanding of the pathophysiology and underlying mechanisms of progressive
neurodegeneration in ALS and has indicated potential biomarkers for diagnosis, disease
stratification, and monitoring disease progression (Baek et al., 2020, Kalra, 2019, Agosta
etal., 2016). However, the main challenge lies in integrating these biomarkers into clinical
trials as study endpoints and clinical practice. So far, results have been promising but highly
variable due to small sample sizes, suboptimal patient characterization, and lack of

standardization in schemes and analysis procedures (Menke et al., 2017). Although, the FA
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changes in corticospinal tract have consistently been reported by the DTI studies, their
ability to differentiate patients from healthy controls is not promising (pooled sensitivity
65%) as reported by a meta-analysis of 30 studies (Foerster et al., 2012b). However, a
diagnostic accuracy as high as 80% has been reported by studies using ALS vs healthy
controls machine learning models and white matter diffusivity measures (Sarica et al.,
2017, Bede et al., 2022). Additionally, a few multi-centre studies have shown that using a
harmonized imaging protocol across multiple sites and pooling data together could be the
way going forward for having a clinically useful biomarker for therapeutic outcome (Mdller
et al., 2016, Kalra et al., 2020). Therefore, using machine learning models on multimodal
imaging data from multiple sites could pave the way for finding novel biomarkers for

diagnosis, disease stratification, and monitoring disease progression.

3.2 Functional Connectivity

The study of functional brain connectivity is crucial in ALS, despite promising results from
studies of structural connectivity. ALS is a complex neurodegenerative disease with both
structural and functional brain impairments (Basaia et al., 2020). While structural
connectivity studies provide insights into the anatomical connections between brain
regions, functional connectivity highlights the interactions and communication between
these regions during different tasks and states (Lang et al., 2012). Functional connectivity
measures, such as resting-state functional magnetic resonance imaging (fMRI) or resting-
state electroencephalogram (EEG), have shown promise in identifying specific patterns of
brain activity that correlate with ALS progression and clinical features (Dukic et al., 2019,
Bharti et al., 2022). These functional network biomarkers have the potential to serve as
valuable indicators of disease at the early symptomatic phase (Govaarts et al., 2022), of

disease severity (Sorrentino et al., 2018), disease progression (Castelnovo et al., 2020),
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phenotyping (Dukic et al., 2021), and response to treatment (Wei et al., 2022a). Early
detection of functional disruptions may enable early diagnosis and intervention, leading to
improved patient outcomes, and monitoring functional changes over time can provide
insights into disease progression and treatment efficacy. The following section describes
the tools and techniques for accessing functional connectivity of the brain in health or in

disease.

3.2.1 Techniques for Assessing Functional Connectivity

3.2.1.1 Functional Magnetic Resonance Imaging (fMRI)

Functional Magnetic Resonance Imaging (fMRI) is a non-invasive neuroimaging technique
that relies on the blood oxygen level-dependent (BOLD) signal, which reflects changes in
blood flow and oxygenation related to neural activity (Ogawa et al., 1990). By measuring
changes in BOLD signal, fMRI can identify brain regions that are functionally connected
and communicate with each other during specific tasks or at rest (Biswal et al., 1995, Fox
and Raichle, 2007). Resting-state fMRI (rs-fMRI) captures the brain’s spontaneous BOLD
signal fluctuations while participants are at rest, revealing functionally connected brain
regions without the need for specific tasks (Fox and Raichle, 2007). Task-based fMRI
involves measuring BOLD signal changes during specific cognitive, motor, or sensory
tasks to identify task-specific functional networks (Biswal et al., 1995). Seed-based
correlation is a commonly used method in fMRI to analyse functional connectivity, where
a seed region’s BOLD signal is correlated with other brain regions to identify connected
networks (Glover, 2011). Independent Component Analysis (ICA) (Wei et al., 2022b) and
graph theory analysis (Medaglia, 2017) are also employed to study functional connectivity,
providing insights into the spatial patterns of coherent BOLD activity. fMRI has

significantly advanced our understanding of functional connectivity in various neurological
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disorders, including ALS, facilitating investigations into disease-related alterations in
functional brain networks and their implications for cognitive and motor functions (Du et

al., 2018, Filippi et al., 2019).

3.2.1.2 Magnetoencephalogram (MEG)

Magnetoencephalography (MEG) is a non-invasive neuroimaging technigue that measures
the magnetic fields generated by electrical activity of neurons using highly sensitive sensors
called magnetometers placed outside the skull (Cohen, 1972). The magnetic fields
generated by electric currents in the brain is extremely small, in the range of femto-tesla to
pico-tesla, which requires highly sensitive magnetic field meters such as superconducting
quantum interference devices (SQUIDS) (Hamaldinen et al., 1993). Therefore, MEG is
recorded in a magnetically shielded room to attenuate the external magnetic noise. The
sensor level MEG signals are converted into source level signals using source localisation
techniques which overcome the effect of field spread (Schoffelen and Gross, 2009). The
functional connectivity between different brain regions using MEG is commonly assessed
through coherence analysis, which measures the neuronal amplitude or phase synchrony
between the brain regions (Gross et al., 2001). Other methods such the imaginary part of
coherence (iCOH) (Brookes et al., 2011), the phase lag index (PLI) (Stam et al., 2007), and
the weighted phase lag index (wPLI) (Vinck et al., 2011) are also used to evaluate
functional brain networks using MEG. MEG has been used to investigate functional
connectivity in healthy individuals and various neurodegenerative disorders such as
Alzheimer’s disease (Schoonhoven et al., 2022, Stam et al., 2008) or motor neurone disease
(Proudfoot et al., 2018a, Sorrentino et al., 2018), offering insights into pathological brain

networks.
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3.2.1.3 Electroencephalogram (EEG)

Electroencephalography (EEG) is a low-cost non-invasive technique which is pivotal for
unravelling real-time functional brain connectivity, with recent advancements in high
density montage (up to 256 channels) and source reconstruction techniques enhancing its
spatial resolution (Burle et al., 2015). EEG captures neuronal electrical activity at the scalp,
providing insights into the functional interactions among brain regions during rest (Dukic
etal., 2019), cognitive (McMackin et al., 2021), or motor tasks (Coffey et al., 2021). Source
reconstruction techniques (Kaur et al., 2022) enable the estimation of the neural sources
underlying the observed scalp EEG signals, significantly minimizing the effect of volume
conduction, increasing spatial resolution, and revealing the specific brain regions engaged
in functional networks. Functional connectivity analysis using EEG involves assessing
temporal correlations or synchronization patterns between EEG or between EEG and
muscle signals (EMG) at sensor or source level. Methods like coherence, phase
synchronization, and mutual information can quantify connection strength, offering
insights into EEG functional connectivity (Cao et al.,, 2022). In the study of
neurodegenerative conditions like ALS, EEG-based functional connectivity analysis can
reveal disease effects on brain network integrity (Dukic et al., 2019), assisting early
diagnosis (lyer et al., 2015), tracking disease progression (Nasseroleslami et al., 2017), and

phenotyping based on neurophysiological signatures (Dukic et al., 2021).

3.2.1.4 Surface Electromyogram (SEMG)

Surface electromyography (SEMG) serves as a valuable non-invasive technique for
investigating functional connectivity, especially in the context of voluntary motor tasks in
the realm of motor control. SEMG records electrical activity during muscle contractions,

offering insights into coordinated muscle actions and the neural pathways underlying motor
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tasks. SEMG is recorded with surface electrodes strategically positioned on skin regions
directly above the targeted muscle tissue being assessed. Through simultaneous recording
of SEMG signals from multiple muscles and EEG/MEG signals from the brain during
voluntary movements, techniques like coherence analysis can reveal functional
connectivity between the muscle groups (Weersink et al., 2021) or between brain and
muscles (Roeder et al., 2020). In the study of neurodegenerative disorders such as
ALS/PLS, sEMG-based functional connectivity analysis such as intermuscular coherence
(IMC) has provided insights into how UMN involvement impacts muscle synchronization
(Issa et al., 2017, Fisher et al., 2012). Additionally, sSEMG-EEG/MEG functional
connectivity analysis such as Corticomuscular coherence (CMC) has provided insights into
the involvement of extra-motor regions and dysfunctional corticospinal tract in ALS
(Proudfoot et al., 2018b) and PLS (Bista et al., 2023). Despite being susceptible to noise
such as cross talk, electrical and mechanical artefacts (Tirker, 1993), SEMG-based
analysis, when combined with other modalities such as EEG or MEG, can contribute to a
comprehensive understanding of neural mechanisms of motor control in healthy people or

in people with movement disorders (Liu et al., 2019).

3.2.1.5 Positron Emission Tomography (PET)

Positron Emission Tomography (PET) is a non-invasive neuroimaging technique that
primarily focuses on measuring cerebral blood flow, glucose metabolism, and
neurotransmitter receptor binding, providing insights into brain functions (Berger, 2003).
While PET is commonly used for assessing regional brain activity based on local change
in blood flow (Raichle, 1998), recent studies have explored its potential to offer insights
into functional connectivity among different brain regions (Watabe and Hatazawa, 2019).

PET studies employing resting-state paradigms have identified correlated regional brain
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activities referred to as default mode network (DMN) (Raichle et al., 2001), which is
equivalent to resting-state functional networks observed in techniques like fMRI (Greicius
et al., 2003), indicating synchronized intrinsic activity during rest (Raichle and Mintun,
2006). Additionally, PET has been used to study glucose metabolic connectivity,
examining how metabolic activity in one region correlates with others, revealing potential
functional connections between those regions (Passow et al., 2015). Furthermore, PET has
been used to study specific neurotransmitter systems such as Glutamate (DeLorenzo et al.,
2015) or GABA (Stokes et al., 2014) indirectly providing information about connectivity
among regions involved in those pathways. In case of neurodegenerative diseases such as
ALS, PET studies have reported glucose hypometabolism in sensorimotor cortices
(Hatazawa et al., 1988), bilateral frontal lobes (Jeong et al., 2005), and thalamus (Cistaro
et al., 2014) and hypermetabolism in brainstem (Liao et al., 2020), and cerebellum (Liao et
al., 2020) compared to healthy controls suggesting its potential for clinical utility as
diagnostic biomarker (Agosta et al., 2018). For a detailed review of PET in ALS, see the
review by Chew and Atassi (2019). However, it is important to consider the limitations of
PET, including lower temporal resolution compared to techniques like fMRI, and

constraints related to radioactive tracers and radiation exposure (Sander and Hesse, 2017).

3.2.1.6 Functional Near-Infrared Spectroscopy (fNIRS)

Functional near-infrared spectroscopy (fNIRS) is a non-invasive neuroimaging technique
that measures changes in the concentration of oxygenated, deoxygenated, and total
haemoglobin using pairs of light sources and detectors on the scalp, reflecting functional
interaction between different brain regions during rest or task (Villringer et al., 1994).
Resting-state fNIRS studies have been used to study functional brain reorganisation during

recovery from stroke (Arun et al., 2020), to evaluate the degree of damage to executive
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function in people with neurocognitive disorder after traumatic brain injury (Chang et al.,
2022), to understand typical and atypical development of functional brain networks and
topological organization from neonates to children (Hu et al., 2020), or access the
involvement of non-motor areas in ALS (Borgheai et al., 2019). Similarly, fNIRS has been
used in task paradigms to study neural correlates of motor control in healthy people
(Koenraadt et al., 2014) and people recovering from hemiplegic stroke (Fujimoto et al.,
2014), or cognitive decline in people with ALS compared to healthy controls (Kuruvilla et
al., 2013). While fNIRS has the advantage of being portable, less susceptible to motion
artifacts than MEG or fMRI, and well-suited for various populations, it also has limitations
such as its shallow penetration depth and sensitivity to superficial cortical regions (Pinti et
al., 2020). Nevertheless, fNIRS remains a valuable technique for studying functional brain
connectivity, providing a non-invasive and accessible window into the complex
interactions between different brain areas in health and in disease (Ferrari and Quaresima,

2012).
3.2.2 Comparison of techniques used for assessing functional connectivity

The properties of techniques used for assessment of functional brain networks are
summarised in Table 2.1. Each of these techniques has its strengths and limitations and the
choice of technique depends on the available resources and the balance between spatial and
temporal resolution needed to address the specific scientific question related to functional
connectivity. Having said that, EEG’s high temporal resolution, the availability of robust
source localisation methods to improve spatial resolution, its ability to measure neural
activity directly in real time, its non-invasiveness, affordability, and suitability for various
research settings during rest or tasks make it a valuable and frequently used technique for

studying functional connectivity in neurodegenerative disease such as ALS.
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Table 3.1 Comparison of imaging techniques used for assessing functional

connectivity. Summarized from Sadaghiani et al. (2022).

Imaging Cost Spatial Resolution Temporal SNR Operational
Modality Resolution Complexity
fMRI High Good (1-2 mm) Moderate (2-3 s) High Complex
MEG High Moderate (2-3 cm)  Excellent (ms) High Complex
EEG Low Moderate (2-3 cm)  Excellent (ms) Low to Moderate Low

SEMG Low Excellent (mm) Excellent (ms) High Low

PET High Moderate (4-6 mm) Poor (20-40 s) Moderate to High Complex
fNIRS Low Moderate (cm) Good (ms) Moderate Low

Abbreviations: MEG, magnetoencephalography; fMRI, functional magnetic resonance
imaging; EEG, electroencephalography; SEMG, surface electromyography; PET, positron
emission tomography; fNIRS, functional near-infrared spectroscopy; SNR, signal-to-noise

ratio

3.2.3 Methods for Accessing Functional Connectivity

3.2.3.1 Correlation Analysis

This is a simple statistical method of estimating functional connectivity between brain
regions most common with fMRI data. Pairwise correlations are computed between the
time series of different brain regions, or a ‘seed’ region is chosen as a point of interest, and
the correlation between the time series of this seed region and the time series of other brain
regions is calculated. A significant correlation between two time series indicates that those
brain regions are functionally connected. The most common measure used is Pearson
correlation coefficient, which measures the linear relationship between two time series.
Other correlation measures like Spearman’s rank correlation or Kendall’s tau are also used,
especially when the data are non-normally distributed. Studies have shown that the
functional connectivity estimated by non-parametric methods such as Spearman’s rank
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correlation or Kendall’s tau are superior to Pearson correlation for differentiating disease
from health (Ahmadi et al., 2023). For EEG/MEG data, functional coupling is also
estimated by correlating amplitude envelop between two narrow-band time series referred

to as amplitude envelop correlation (AEC) (Bruns et al., 2000).

3.2.3.2 Magnitude Squared Coherence

Magnitude squared coherence (MSC) is one of the most popular methods of estimating
functional connectivity using EEG/MEG. It measures squared correlation coefficient in
frequency domain that estimates relative amplitude and phase consistency between two
signals (Bendat and Piersol, 2011). In practice, EEG/MEG coherence depends mostly on
the consistency of phase differences between the channels (Nunez, 1995). High magnitude
squared coherence between two EEG/MEG channels indicate that brain regions associated
with those channels are functionally connected with each other. Although coherence is
widely used method to assess functional connectivity in the brain using EEG/MEG, a
significant limitation the method possess is the interference caused by volume conduction
through the tissues that separate the brain sources and electrodes. This causes superfluous
coherence between the nearby electrodes and overestimation of functional connectivity.
However, this limitation can be partly overcome by using surface Laplacian filtering of the
EEG/MEG channels (Bradshaw and Wikswo, 2001). The surface Laplacian technique
isolates the source activity under each electrode that is distinct from the surrounding tissue
under adjacent electrodes. Therefore, the coherence measured between electrodes that
underwent surface Laplacian filtering can be directly related to coherence between the
underlying sources, facilitating the interpretation of functional connectivity in the brain.

However, surface Laplacian may remove genuine source coherence associated with widely

44



distributed source regions and very low spatial frequencies, leading to potential loss of

important neural information (Nunez and Srinivasan, 2006).

3.2.3.3 Imaginary Coherence

Imaginary coherence (iCOH) is another popular method for the estimation of functional
connectivity between neural signals recorded by EEG/MEG. Its popularity is based on the
fact that it is robust to the effect of volume conduction and measures true phase synchrony
between the neural signals disregarding the amplitude information (Nolte et al., 2004).
Unlike magnitude squared coherence, which considers both phase and amplitude,
imaginary coherence exclusively captures phase relationships, making it particularly
suitable for studying the temporal coordination of neural oscillations. By focusing on the
phase component of the signals, imaginary coherence can attenuate spurious coherence
caused by volume conduction because volume conduction tends to preserve the amplitude

of neural signals but not their phase relationships (Shahbazi et al., 2010).

3.2.3.4 Phase Lag Index

Phase lag index (PLI) is a measure that evaluates the asymmetry of distribution of
instantaneous phase differences between two signals, thereby reflecting the strength of
functional interconnection between the underlying brain regions (Stam et al., 2007). Just
like imaginary coherence, PLI is motivated by the fact that non-zero phase differences
cannot be caused by volume conduction. Several studies have demonstrated the
effectiveness of PLI in mitigating the effects of volume conduction and have shown that it
provides more accurate estimates of functional connectivity compared to imaginary
coherence, particularly in the presence of volume conduction artifacts (Ruiz-Gomez et al.,
2019, Stam et al., 2007). Vinck et al. (2011) has proposed some adjustments to the PLI,

yielding the weighted PLI (wPLI) make the metric more robust against volume conduction,
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and noise. wPLI modifies the PLI by weighting the contribution of observed phase leads
and lags by the magnitude of the imaginary component of the cross-spectrum, making it
sensitive to additional, uncorrelated noise sources and increasing its capacity to detect true

changes in phase-synchronization.

3.2.3.5 Independent Component Analysis

Independent component analysis (ICA) is a powerful data-driven method for estimating
functional connectivity (often using fMRI data). The fundamental concept of ICA involves
decomposition of a time series into a set of distinct and interrelated time sequences to
identify groups of voxels or areas that exhibit simultaneous fluctuations over time or
activation across experiments (rest or task). Consequently, each component represents a
network of regions demonstrating functional connectivity with one another (Eickhoff and

Miiller, 2015).

3.2.3.6 Mutual Information

The methods such as correlations, MSC, iCOH and PLI for measuring functional
connectivity estimate a linear relationship between the neuronal sources. However, the
communication between the neuronal sources is not always linear. To quantify nonlinear
coupling between the brain source, information theory-based methods such as mutual
information (MI) can be used (Ostwald and Bagshaw, 2011). This approach helps uncover
both linear and nonlinear patterns of neural communication and can reveal underlying
functional networks within the brain, contributing to better understanding of brain function

and connectivity in health and in disease (Ince et al., 2017).
3.2.4 Resting-state Functional Networks Impairments in ALS

Resting state functional connectivity (FC) has been used to identify abnormal brain

networks in ALS compared to healthy controls (Nasseroleslami et al., 2017, Dukic et al.,
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2019) and to monitor disease progression (Menke et al., 2018, lyer et al., 2015). Reduced
FC has been reported by fMRI (Trojsi et al., 2023, Avyarthana et al., 2023, Barry et al.,
2021, Zhou et al., 2014) and EEG (Dukic et al., 2019) studies within resting state
sensorimotor networks (networks that include somatosensory regions and motor regions,
specifically M1 and S1) in ALS, when compared to healthy individuals. This reduced FC
of sensorimotor networks was correlated to high disease severity as indicated by lower
ALSFRS-R scores (Zhou et al., 2014, Dukic et al., 2019). On the other hand, a higher
resting state FC was observed within motor and non-motor areas (brain regions that are not
primarily involved in the control and execution of voluntary movements, such as prefrontal
cortex, temporal cortex, parietal cortex etc.) in ALS compared to healthy controls by fMRI
(Deligani et al., 2020, Basaia et al., 2020, Zhou et al., 2014), EEG (Nasseroleslami et al.,
2017, lyer et al., 2015) and MEG studies (Proudfoot et al., 2018a, Govaarts et al., 2022)
and this increased cortical FC was subjected to altered intracortical inhibition resulting in
cortical hyperexcitability in ALS compared to healthy controls (Proudfoot et al., 201843,
lyer et al., 2015, Govaarts et al., 2022). Additionally, longitudinal studies using fMRI have
shown decreased FC in the resting state sensorimotor network and increased FC in the left
fronto-parietal network over time (Menke et al., 2018, Castelnovo et al., 2020). A fronto-
parietal network FC increase over time in ALS in the gamma band was also reported by an
EEG study (Nasseroleslami et al., 2017). In terms of network topology from graph analysis
of FC measures of M/EEG, the nodal strength was reduced in ALS compared to healthy
controls in alpha (Romano et al., 2022) and beta (Fraschini et al., 2016) frequency bands.
Moreover, resting state EEG FC networks have been used in phenotyping ALS in four sub-
groups based on distinct neurophysiological profiles such as impairment of sensorimotor,

frontotemporal and frontoparietal networks (Dukic et al., 2021).
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These findings collectively highlight altered FC patterns in ALS compared to healthy
controls in terms of brain regions involved, temporal characteristics, connectivity strength
and network topology, as observed through various FC methods and neuroimaging
techniques (See Table 3.2). These studies were identified by searching over the databases
(PubMed, Google Scholar, and Scopus) using the combinations of keywords such as
‘resting state’, ‘functional connectivity’, ‘ALS’, ‘EEG’, ‘MEG’, ‘fMRI’ and ‘fNIRS’ and

filtered by date to exclude publications that were published before 2014.

Table 3.2 Resting state functional network impairments in ALS. FC— Functional
connectivity, HC— Healthy controls, fMRI— functional magnetic resonance imaging,
EEG— Electroencephalography, MEG— Magnetoencephalography, fNIRS— functional

near-infrared spectroscopy.

Reference; Modality; Findings

Participants; FC Method

Zhou et al., 2014; fMRI,; ALS showed reduced FC in the right sensorimotor
12 HC, 12 ALS; network (postcentral/precentral/superior frontal gyrus)

Coherence compared to HC, which was correlated with high disease
severity (as indicated by lower ALSFRS-R scores). On
the other hand, ALS showed higher FC in the left sensory
network (postcentral gyrus and inferior parietal cortex)
compared to HC, which was related to longer disease

duration.

lyer et al., 2015; EEG FC was higher in ALS compared to HC in the parietal
(Source level); 17 HC, 18  region in the theta and alpha bands.

ALS; Cross spectral

density

Fraschini et al., 2016; Network topology parameters such as leaf fraction were

EEG (Sensor level); 16 significantly lower in ALS compared to HC in the beta
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HC, 21 ALS; Phase lag
index and graph analysis

band. ALS network topology tended to deviate from
more centralized (star-like topology) to more

decentralized (line-like topology).

Nasseroleslami et al.,
2017; EEG (Sensor level);
34 HC, 100 ALS; Median
Coherence

Widespread increases in average connectivity in ALS
compared to HC with most notable increase detected
over bilateral motor regions in the theta band and parietal
and frontal regions in the gamma band.

Menek et al., 2018; fMRI;
13 ALS; ICA and
Regression analysis

Progressive decreases in resting state FC between the
sensorimotor and frontal pole, between a network
comprising thalamic and an area in the visual cortex over
time and in relation to ALSFRS-R decline. Progressive
increases in resting state FC between the left primary
motor cortex and the left fronto-parietal networks over
time and in relation to ALSFRS-R decline.

Proudfoot et al., 2018;
MEG (Source level); 24
HC, 24 ALS; Correlations

FC was higher throughout the cortical networks in ALS
compared to HC, particularly in posterior cingulate

cortex.

Dukic et al., 2019; EEG
(Source level); 47 HC, 74
ALS; Imaginary
Coherence

Reduced FC in the sensorimotor region in the beta band
and in frontal and temporal regions in the delta band in
ALS compared to HC.

Basaia et al., 2020; fMRI;
79 HC, 173 ALS;
Pearson’s Correlation and

graph analysis

Increased local FC (pair-wise functional connectivity
between the nodes within a same region) was observed
in ALS in the precentral, middle, and superior frontal

areas compared to HC.

Castelnovo et al., 2020;
fMRI; 39 HC, 25 ALS;

Regression analysis

After 6 months from baseline fMRI scan, ALS showed
reduced FC of the right middle frontal gyrus (MFG) with
frontoparietal regions compared to HC. After 6 months
from baseline, ALS showed an increased FC of left
anterior cingulate, left MFG and left superior frontal

gyrus within the frontostriatal network, and left MFG,
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left supramarginal gyrus and right angular gyrus within

the left fronto-parietal network.

Deligani et al., 2020;
EEG/fNIRS; 9 HC, 10
ALS; Coherence for EEG
FC, Pearson’s correlation

for fNIRS FC

Increased fronto-parietal EEG connectivity in the alpha
and beta bands and increased interhemispheric and right
intra-hemispheric fNIRS connectivity in the frontal and

prefrontal regions observed in ALS compared to HC.

Dukic et al., 2021; EEG
(Source level); 77 HC, 95
ALS; Amplitude envelope
correlation and imaginary

coherence

ALS were sub-grouped into four phenotypes with
distinct neurophysiological profiles characterized by
disruption in the somatomotor (increased alpha band
FC), frontotemporal (increase beta-band power and
decreased gamma-band FC) and frontoparietal
(increased gamma-band FC) networks, which correlated
with distinct clinical profiles and different disease

trajectories.

Barry et al., 2021; fMRI;
9 HC, 12 ALS;

Correlation

Reduced FC between bilateral cerebellar lobule VI and

sensorimotor cortex in ALS compared to HC.

Romano et al., 2022;
MEG (Source level); 39
HC, 39 ALS; Phase

linearity measurement

Nodal strength in the alpha band was reduced in ALS
compared to HC in the right inferior parietal lobule,
right cuneus, and

right  parahippocampal gyrus,

left amygdala in the alpha band.

Govaarts et al., 2022;
MEG (Source level); 18
HC, 34 ALS; Amplitude

envelope correlation

FC was higher in frontal, temporal, limbic and sub-
cortical regions in delta and gamma frequency bands in
ALS compared to HC.

Avyarthana et al., 2023;
fMRI; 52 HC, 52 ALS;

Correlation

ALS showed reduced functional connectivity between
primary motor cortex and primary sensory, premotor,
supplementary motor, frontal, temporal, and putamen
regions compared to HC.
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Sensorimotor networks: ALS patients showed reduced
Trojsi et al., 2023; fMRI;  FC in left medial frontal gyrus (MFG), and in the left
26 HC, 26 ALS; postcentral gyrus compared to HC.
Independent component Default mode networks: ALS patients showed reduced
analysis (ICA) FC in right MFG and left precuneus and higher FC in the
left middle temporal gyrus compared to HC.
Frontoparietal networks:
ALS showed reduced FC in right and left MFG and in
the left inferior frontal gyrus compared to HC.
Salience networks:
ALS patients showed reduced FC in the right and left
anterior insular cortices and in the anterior cingulate

cortex compared to HC.

3.2.5 Motor Task Cortical Activity and Functional Networks Impairments in ALS

Impairment of sensorimotor and non-motor networks in ALS has been identified from
resting state paradigms as discussed in previous subsection. However, motor paradigms,
such as motor preparation, planning and execution that can directly access sensorimotor
pathways, can unravel the dynamics of motor networks pathology in ALS for biomarker

design.
3.2.5.1 Motor preparation and planning
Event related potentials

Before initiating voluntary movements, the brain prepares and plans the movements and
represents them, with the premotor area (PM) (Cisek et al., 2003, Churchland et al., 2006)
and the supplementary motor area (SMA) (Ball et al., 1999, Cunnington et al., 2005)
playing a crucial role in preparation and planning preceding motor execution activity in

M1. The pre-movement cortical activity has been reported in terms of event related
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potentials (ERP) such as the Bereitschaftspotential (BP) or readiness potential (Deecke,
1987) and contingent negative variation (CNV) (Walter et al., 1964). Investigation of the
BP reveals preparatory and planning activity up to 2 seconds before voluntary action
(Deecke, 1996), associated with movement-specific preparation/planning like direction
(Cui and Deecke, 1999), body part (Kitamura et al., 1993), force (Becker and Kristeva,
1980), and cognitive control (Baker et al., 2011) but its precise function is still unclear.
Similarly, another ERP that precedes voluntary movement is the CNV, which occurs in
response to a warning stimulus (get ready cue) that precedes the imperative stimulus (go
cue) that requires a motor action (Walter et al., 1964). The CNV is the result of anticipation
of an upcoming stimulus and sustained attention needed to generate a correct motor
response, which shows a wide distribution over prefrontal, M1, S1, SMA, temporal and
occipital regions (Hamano et al., 1997, lkeda et al., 1996).

ALS being a motor neurone disease that primarily affects sensorimotor regions, it is
expected that the pre-movement ERPs such as BP or CNV are impaired, but very few
studies have investigated the pre-movement ERPs in ALS. A study by Westphal et al.
(1998) reported reduced amplitude of BP along central midline electrodes in ALS with
pronounced spasticity (hyperreflexia) compared to healthy controls indicating impaired
pre-movement cortical activity in ALS. This finding was reinforced by Thorns et al. (2010)
who reported reduced amplitude of the lateralised readiness potential over the premotor
cortex highlighting impaired movement preparation in ALS compared to healthy controls.
The reduction of BP amplitude has also been reported in other neurological disorders, as
indication of impaired movement preparation, such as multiple sclerosis (MS) (Bardel et
al., 2022). The CNV has been used to study cognitive and attentional impairment in ALS
(Mannarelli et al., 2014, Hanagasi et al., 2002) with inconsistent findings. A higher mean

CNV amplitude in ALS compared to healthy controls was reported by Hanagasi et al.

52



(2002) and related to cortical hyperexcitability in ALS. On the other hand, Mannarelli et
al. (2014) reported a significant reduction in CNV amplitude in bulbar onset ALS compared
to healthy controls indicating dysfunctional attention in that cohort. In other movement
disorders such as Parkinson’s disease, significant reduction in late CN'V amplitude has also

been reported (Tzvetanov et al., 2022).
Event related desynchronisation

Sensorimotor mu or beta power decreases pre-movement or during movement compared
to baseline (rest), referred to as event related desynchronisation (ERD), indicating cortical
activation during motor preparation, planning, and execution (Pfurtscheller and Berghold,
1989). Following the motor execution, sensorimotor mu or beta power increases or
rebounds to baseline (rest), referred to as event related synchronisation (ERS), indicating
cortical idling post-execution (Neuper et al., 2006). Therefore, ERD/ERS captures the
cortical signature of different phases of voluntary movement (Nasseroleslami et al., 2014).
The pathophysiological cortical oscillatory mechanisms during motor preparation and
planning to neurodegeneration in ALS have been studied previously by using ERD (Riva
et al., 2012, Proudfoot et al., 2017, Bizovicar et al., 2014). However, the results reported
by these studies are inconsistent. Riva et al. (2012) reported unaltered mu or beta ERD in
ALS compared to healthy controls during motor preparation. Similarly, an EEG study
during self-paced finger movement reported reduced beta ERD during movement
preparation (Bizovicar et al., 2014). On the contrary, a magnetoencephalography (MEG)
study by Proudfoot et al. (2017) reported intensified beta ERD during preparation in ALS
during a cued finger movement task.

Although, the study ERD in ALS provides abnormal engagement of sensorimotor cortices

and non-motor areas during motor preparation and planning, the results are inconsistent
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between studies. Furthermore, ERD do not provide a direct measure of influence of non-
motor cortices or sub-cortical regions on the sensorimotor cortices (functional
connectivity) which could be key to understanding neuropathophysiological mechanisms

in ALS.
Corticocortical connectivity

Functional assessments of brain networks have the potential to detect and quantify disease
specific network impairments or adaptive and compensatory patterns of network activity
pre-movement during motor preparation and planning. Studies have shown the
involvement of M1, S1, PM, SMA and parietal regions during movement preparation and
planning (Churchland et al., 2006, Li et al., 2015, Shibasaki and Hallett, 2006, Ariani et al.,
2022, Nasseroleslami et al.,, 2014, Glover et al.,, 2012). By managing functional
communication among these cortical areas, the brain forms comprehensive motor plans and
generates precise motor commands based on sensory and visual feedback (Wong et al.,
2015, Requin et al., 1990). Previous studies have suggested a crucial role of parietalM1
(Koch et al., 2010, Mackenzie et al., 2016) and PM-M1 (Vesia et al., 2018, Koch et al.,
2010) pathways for movement preparation. Corticocortical functional connectivity in ALS
during motor preparation and planning has been seldom studied despite evidence of
impaired preparation and planning from ERPs and ERDs studies (Thorns et al., 2010,

Bizovicar et al., 2014).
3.2.5.2 Motor execution
Event related desynchronisation

Similar to pre-movement (motor preparation and planning), motor execution is
characterised by mu/beta ERD of primary sensorimotor (M1/S1) cortices (Pfurtscheller and

Lopes da Silva, 1999), and parietal regions (Nasseroleslami et al., 2014). In addition to the
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cortical regions, deeper brain regions such as thalamus (Alegre et al., 2005) and basal
ganglia (Klostermann et al., 2007) also show mu/beta ERD during movement execution in
healthy individuals. The pathophysiological cortical oscillatory mechanisms during motor
execution due to neurodegeneration in ALS have been widely studied by using ERD, but
just like for motor preparation or planning, inconsistent results are reported (Riva et al.,
2012, Proudfoot et al., 2017, Bizovicar et al., 2014). Riva et al. (2012) found no changes in
mu or beta ERD in ALS compared to healthy controls during motor task execution.
Bizovicar et al. (2014) reported reduced beta ERD in ALS compared to healthy controls
using EEG. On the contrary, a MEG study by Proudfoot et al. (2017) reported intensified
beta ERD in ALS compared to healthy controls during execution of a cued finger
movement task. The inconsistency in the ERD/ERS results in ALS reported by these studies
could be due to the heterogenous phenotypical presentations of ALS populations,
differences in the selections of the range of beta band, and the tasks’ demand (Peter et al.,

2022).
Corticocortical connectivity

Corticocortical connectivity is fundamental to motor control, reflecting the coordination of
neural signals between different regions of the primary motor (M1), primary sensory (S1),
premotor (PM), and supplementary motor area (SMA) (Grefkes et al., 2008, Ohara et al.,
2001). Other brain regions such as dorsolateral prefrontal cortex (DLPF), cingulate cortex,
and superior parietal lobule also play an important role involuntary motor control
(Alahmadi et al., 2015, Nasseroleslami et al., 2014).

Very few studies have interrogated the corticocortical functional connectivity in ALS
during a motor task. A MEG study by Proudfoot et al. (2018b) has reported significant

reduction in beta coupling between interhemispheric M1 during bilateral grip force
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production. However, numerous studies have compared activation patterns of cortical and
sub-cortical regions between healthy controls and ALS patients using fMRI during
performance of voluntary motor tasks. The activation of contralateral motor regions
(Stanton et al., 2007, Kollewe et al., 2011), ipsilateral sensorimotor regions and SMA
(Konrad et al., 2002, Kollewe et al., 2011), bilateral premotor and cerebellum (Schoenfeld
et al., 2005) and bilateral S1 and parietal regions (Poujois et al., 2013) was higher in ALS
compared to controls during execution of a motor task. On the other hand, reduced
activation of primary sensorimotor and premotor areas in ALS has also been previously
reported using fMRI (Cosottini et al., 2012). The involvement of cortical regions such as
premotor and SMA, which are largely associated with movement planning and initiation
(Churchland et al., 2006, Li et al., 2015, Shibasaki and Hallett, 2006, Glover et al., 2012),
during motor execution underlines the alternative strategy for optimizing motor

performance in ALS (Konrad et al., 2002).
Corticomuscular connectivity

During voluntary contractions, oscillatory signals originating from the sensorimotor
cortices are coherent with contralateral muscle signals. This cortex-muscle synchrony can
be measured using Corticomuscular coherence (CMC) (Conway et al., 1995). CMC is
typically observed as synchrony (in the beta and gamma-bands) between EEG/MEG
electrodes over M1 and EMG activity (Halliday et al., 1998). It is indicative of the efferent
drive to the spinal motoneurons, while also being subject to the modulating influence of
peripheral afference (Witham et al., 2011). The frequency of synchrony between cortex and
muscles is modulated by various factors including the type of task and level of contraction
force (Kilner et al., 2000, Liu et al., 2019). For low force isometric contractions, the CMC

is observed in the beta band (13-30 Hz) whereas in more forceful and dynamic contractions,
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the CMC shifts to the gamma band (31-97Hz) (Omlor et al., 2007, Gwin and Ferris, 2012,
Andrykiewicz et al., 2007).

Recent studies have shown that CMC can provide valuable insights into the
pathophysiology of ALS, as well as potential biomarkers for diagnosis and disease
progression. A study using MEG has previously reported that the beta-band CMC over the
motor cortex is reduced in ALS compared to healthy controls (Proudfoot et al., 2018b).
This reduction is thought to be due to the progressive loss of motor neurons, which results
in a decrease in the number of signals that can be transmitted between the brain and muscles
leading to a decline in motor function. Even in ALS with preserved motor functionality
(ALSFRS-R scores >40), no significant CMC (compared to statistical threshold) was
reported for either hand during tonic wrist-extension at 30-50% of maximum voluntary
contraction (Yazawa et al., 2017), indicating the potential of CMC for early diagnosis of
ALS. The reduction of beta CMC was also observed in other neurodegenerative diseases
with a movement deficit such as Parkinson’s disease (Yokoyama et al., 2020, Zokaei et al.,
2021) and neurological disorders that cause motor impairment such as chronic stroke

(Meng et al., 2009).
3.2.6 Clinical Implications

Functional connectivity has the capacity to enable early detection of brain networks
impairments before clinical symptoms emerge and before structural alterations are visible
on structural imaging such as MRI (Marzetti et al., 2019, Sadaghiani et al., 2022). Studying
functional connectivity in ALS during various experimental paradigm such as rest, pre-
movement (motor preparation and planning) and motor execution, encompassing event-
related potentials (ERPs), event-related desynchronization (ERD), -corticocortical

connectivity, and corticomuscular connectivity, may have clinical implications. Analysing
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resting-state functional connectivity have shown potential for the early detection of neural
network changes, as markers of neurodegeneration, and phenotyping (Dukic et al., 2019,
Dukic et al., 2021). Exploration of motor preparation and planning phases through ERPs
and ERD offers insights into the neural processes underlying motor anticipation and
planning deficits in ALS (Thorns et al., 2010, Bizovicar et al., 2014). Concurrently, changes
in ERD, corticocortical connectivity, and corticomuscular connectivity during motor
execution may unveil disruptions in cortical and corticospinal neural networks responsible
for motor control, and could be indicators of disease progression and therapeutic responses
(Proudfoot et al., 2019, Proudfoot et al., 2017, Proudfoot et al., 2018b). Similarly, reduced
corticomuscular coherence post-stroke and increased coherence during motor recovery
(Krauth et al., 2019) indicate its potential as an objective primary outcome for drug trials,
surpassing subjective measures like ALSFRS-R scores. Moreover, combining insights
from both structural and functional connectivity studies links brain anatomy changes with
functional impairments, potentially enhance the understanding of ALS pathophysiology
and potential therapeutic targets (Verstraete et al., 2010, Douaud et al., 2011). This
comprehensive approach may reveal the neural mechanisms underlying ALS progression
and the interplay between structural alterations and brain function (Schmidt et al., 2014,
Nasseroleslami et al., 2018). This knowledge could potentially aid in early diagnosis,

treatment efficacy assessment, and the formulation of personalized interventions for ALS.

3.3 Effective Connectivity

3.3.1 Methods for Assessing Effective Connectivity

Functional connectivity gives the correlation between neural activities in the interacting
brain regions, but the direction of information flow is not defined (Friston, 2011). So,

cortical networks derived from functional connectivity lack the causal information, such as
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inflow or outflow, which could be crucial for explaining a neurophysiological process in
health and in disease. Effective connectivity resolves the issue by providing a causal
relationship between the brain regions of interest (Friston, 2011). The effective brain
networks can be estimated from the EEG/MEG/fMRI/PET/fNIRS time series by a using
model-based method, where the causal pathways are specified and anatomical and
functional knowledge are provided, such as Dynamic causal modelling (DCM) or a model-
free data driven method, where the signals are used directly for estimation, such as Granger
causality, directed transfer function (DTF), partial directed coherence (PDC), or transfer
entropy (TE).

Granger causality is a statistical method used for inferring causal relationships between
time series data, used to estimate the effective connectivity in brain networks (Geweke,
1982). It assesses whether the past values of one time series can predict the future values
of another time series using a multivariate auto-regressive model (MVAR), indicating a
causal influence. This approach has been employed in neuroimaging studies to infer
directional interactions between brain regions (Seth et al., 2015). Another MVAR method
for estimation of effective connectivity is partial directed coherence (PDC) (Baccala and
Sameshima, 2001), which is a frequency domain version of Granger causality. PDC is a
widely used method which has proven to be more reliable and faster than DTF to quantify
causal interactions between multi-channel EEG signals (Huang et al., 2016). The
asymptotic distribution of the PDC is not well known, therefore, bootstrap-based
approaches are commonly used to test for significant connectivity. Variance stabilisation
is recommended when it comes to bootstrap-based PDC connectivity approaches (Baccala
et al., 2007), that can be done by using normalised PDC or generalised PDC
(gPDC)(Baccala and Sameshima, 2021). Other Granger causality-based frequency domain
methods such as the direct transfer function (DTF) (Kaminski and Blinowska, 1991) can
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be used to find the causal interaction between the brain regions, however, DTF is prone to
be affected by alternative interactions or unpredictable factors (Baccala and Sameshima,
2001).

Effective connectivity can also be estimated using information theory such as transfer
entropy (TE) that measures the directed exchange of information between brain regions,
and unlike mutual information, ignores static correlations due to common inputs
(Schreiber, 2000). TE has been used previously on fMRI time series data to establish the
directed information structure between brain regions during rest (Wu et al., 2021) or during
a visuo-motor tracking task (Lizier et al., 2011) in healthy controls. However, despite its
evident strengths, such as ability to estimate non-linear directed interactions, the accuracy
of TE estimation can be affected by several elements within the estimation procedure
including the embedding dimension, delays in state space reconstruction, the size of the
data sample, and the specific approach employed to estimate high-dimensional conditional
probabilities (Zhou et al., 2022, Hlavackova-Schindler et al., 2007, Vicente et al., 2011).
Dynamic Causal Modelling (DCM) is another popular non-linear method for estimating
causal interactions between the brain sources, but it requires a prior specification of

connectivity linkages (Sato et al., 2009).

3.3.2 Effective Connectivity Impairments in ALS

3.3.2.1 Resting-state effective network impairments in ALS

Studies using functional connectivity measures have reported altered sensorimotor and
extra-motor networks in ALS compared to healthy individuals during rest (Agosta et al.,
2011, Zhou et al., 2014, Douaud et al., 2011, Menke et al., 2018, Dukic et al., 2019).
Although resting state effective connectivity measures have the potential to reveal more on

ALS network neuropathophysiology compared to functional connectivity, the use of the
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measure to estimate brain network abnormalities in ALS have been rather limited. lyer et
al. (2015) studied the effective network topology in ALS using partial directed coherence
measures on resting state EEG and reported that degree values of the network nodes (no.
of connections converging into a node) were higher in ALS compared to healthy controls
in central and frontal regions in the theta band suggesting pathological alteration of neural
networks. A resting state fMRI based effective connectivity study on ALS and healthy
controls showed altered causal interaction between sensorimotor cortices, specifically loss
of bidirectional communication between M1 and SMA and unidirectional communication
from SMA to S1, reflecting damage in motor neurons (Fang et al., 2016). Since the study
focused on three cortical regions only (M1, S1 and SMA), the causal interaction of cortices

beyond sensorimotor regions was not known.

3.3.2.2 Motor task effective network impairments in ALS

The study of effective connectivity networks in healthy individuals during motor execution
has underpinned significant bidirectional interaction between primary motor (M1), primary
sensory (S1), and higher order motor regions such as premotor (PM) and supplementary
motor area (SMA) (Grefkes et al., 2008, Kim et al., 2018, Brovelli et al., 2004, Gao et al.,
2011, Anwar et al., 2016). Similarly, during the execution of a visuomotor task, inputs
to/from dorsolateral prefrontal (DLPF) and posterior parietal cortex (PPC) into the
sensorimotor regions were found (Kim et al., 2018, Rowe et al., 2004, Gao et al., 2011,
Anwar et al., 2016). However, the impairment of effective connectivity networks in ALS
during motor tasks such as motor preparation, planning and execution has been rarely
studied. Recently, using fMRI, Abidi et al. (2020) reported that the effective connectivity

of SMA to striatum was decreased, whereas, connectivity from striatum to superior parietal
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lobule was increased in upper motor neuron predominant ALS during the preparation of

self-initiated movement.
3.3.3 Clinical Implications

Although, the effect of neurodegeneration in effective connectivity brain networks has
rarely been studied in ALS, it has potential to untangle complex network
neuropathophysiology. It is believed that ALS pathology is propagated via networks, the
study of effective networks could therefore shed more light on the dying forward or dying

backward hypothesis in ALS.

3.4 Discussion

Functional and effective connectivity network analysis during motor tasks in ALS has
potential for unravelling the neuropathophysiology of the disease and designing biomarkers
for diagnosis and tracking disease progression. While structural connectivity studies offer
insights into the static physical interconnections between brain regions, the functional and
effective connectivity network analyses quantify dynamic interactions and information
flow within neural circuits which has potential for early detection of brain networks
impairments before clinical symptoms emerge and before structural alterations are visible
in structural imaging such as MRI (Marzetti et al., 2019, Sadaghiani et al., 2022).
Functional and effective connectivity network measures identified from resting-state or
task-based paradigms have shown promise in identifying specific patterns of brain activity
that correlate with ALS progression and clinical features (Dukic et al., 2019, Bharti et al.,
2022). These network biomarkers have the potential to serve as valuable indicators of
disease at the early symptomatic phase (Govaarts et al., 2022), of disease severity
(Sorrentino et al., 2018), disease progression (Castelnovo et al., 2020), phenotyping (Dukic

et al., 2021), and response to treatment (Wei et al., 2022a).
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In conclusion, functional and effective connectivity network analysis during motor tasks in
ALS offers profound insights into the disease’s neuropathophysiology. By deciphering
alterations in network connectivity, synchronization, and causal interactions, we not only
advance our understanding of ALS as a complex multi-system neurodegenerative disorder
but also lay the foundation for objective biomarkers, predictive tools, and personalised

interventions.
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4. Materials and Methods

This chapter describes the general methodology used for the research study. Section 4.1
explains the participant recruitment along with inclusion/exclusion criteria. Section 4.2
explains the ethical approval of the study and consent procedures. Section 4.3 describes the
details of experiments performed including the materials/equipment used for the
experiments and the clinical data collected. The section 4.4 details the sensor level and
source level data analysis pipelines and network connectivity methods. In section 4.5, the

statistical analysis and tools used in this study are explained.

4.1 Participants Recruitment, Inclusion and Exclusion Criteria

The ALS cohort was recruited from the National ALS Specialty Clinic at Beaumont
Hospital whereas the healthy controls were recruited from a database of volunteers
maintained at the Academic Unit of Neurology, Trinity College Dublin and through the
National VVolunteering Database (i-VOL).

Any healthy individual (health based on the questionnaires that assess present medical
conditions and past medical history) aged above 18 could be included in the study as
control. Any individual aged above 18, with a diagnosis of ALS or its subtypes could be
included in the study as patient. However, people with psychiatric disease, or a medical
condition that affects the nervous system (e.g., diabetes) were excluded from the study.
Similarly, people who previously had allergic reactions in a similar recording environment
(e.g., with an allergy to electrode gels) and pregnant women were also excluded from the

study.

4.2 Ethical Approval and Informed Consent
Ethical approval was obtained from the Tallaght Hospital/St. James’s Hospital Joint
Research Ethics Committee for St. James’s Hospital, Dublin, Ireland [REC: 2019-07
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Chairman’s Action (22)] (See appendix). All participants provided written informed
consent before the recording of EEG/EMG and force data (See appendices for consent
forms). All experiments were conducted in accordance with the standards set by the

Declaration of Helsinki, 2013.

4.3 Experimental Paradigm and Data Collection

4.3.1 Experimental Setup

The participants were comfortably seated on a chair in front of a screen (23 computer
monitor), on which visual cues for the experiments were presented, inside a shielded room
(Faraday cage) at HRB-Wellcome Clinical Research Facility (CRF), St. James’s Hospital.
The screen was positioned at eye level, approximately 1 metre from the participants. A
semi-deflated aircushion was used to support their elbow, with the upper arm elevated at

approximately 40 degrees from the shoulder and the elbow was flexed at 90 degrees.

4.3.1.1 Electroencephalography (EEG)

The EEG signal was recorded with 128 active electrodes (Biosemi ActiveTwo system,
Biosemi B.V., Amsterdam, The Netherlands) with a sampling frequency of 2048 Hz. An
EEG headcap was chosen and positioned based on the size of the participant’s head (i.e.,
maximum head circumference, distance between Inion and Nasion, and distance between
ear lobes) using measuring tape such that the electrode Cz was centred above the scalp. The
electrode holders of the headcap were then gelled with electrolyte gel (SignaGel, Parker
Laboratories, Inc.) and the active electrodes were connected to the headcap. Eight external
channels were connected using flat active sintered Ag-AgCl electrodes (BioSemi B.V.,
Amsterdam, The Netherlands) with the help of alcohol swabs, disposable adhesive disks,
electrode gel and medical tape. The positions of external electrodes were— (i) above and

below the left eye, (ii) to the left of the left eye and to the right of the right eye, (iii) left and
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right mastoid, and (iv) left and right earlobe. All electrode signals (128 EEG + 8 external)

were visually inspected to maintain electrode offset below + 25uV.

4.3.1.2 Surface Electromyography (EMG)

Surface EMG recordings were conducted simultaneously with EEG using the same
BioSemi ActiveTwo system with flat active sintered Ag-AgCl electrodes (BioSemi B.V.,
Amsterdam, The Netherlands), which provided a circular recording area (d=3mm) in a
17x10mm support surface area. Surface EMG was recorded with a sampling frequency of
2048 Hz from eight muscles in the right upper arm: FDI (first dorsal interosseous); EDC2
(Extensor Digitorum Communis); FDS2 (Flexor Digitorum Superficialis); APL (Abductor
Pollicis Longus) and EPB (Extensor Pollicis Brevis); FPB (Flexor Pollicis Brevis); APB
(Abductor Pollicis Brevis); ADM (Abductor Digiti Minimi); FDMB (Flexor Digiti Minimi
Brevis). The electrode locations were chosen based on surface anatomy guidelines and
activation manoeuvres (Lee and DeLisa 2004; Pease et al. 2007; Cram and Criswell 2011;
Barbero et al. 2012). Bipolar channels were used according to the provided
recommendation by SENIAM (Hermens et al. 2000; Merletti and Hermens 2000). For skin
preparation, the electrode areas were cleansed with alcohol swabs. The electrodes cables
were fixed with a light flexible elastic mesh to minimise movement artefacts. The presence
of reliable EMG signal (signal amplitude and frequency increased during muscle
contraction) was verified by visual inspection of the recordings and the electrodes were re-

attached as needed to assure reliable signals.

4.3.1.3 Force
The grip force was recorded using two flat resistive force sensors (FlexiForce A201 Sensor,
Tekscan, Inc., Boston, MA, USA) with their circular sensing area (d=9.7mm) attached to

the two bases of a hexagonal wooden prism (edge=30mm, thickness=25mm) as in Figure

66



4.1. The resistance was converted to analogue voltage using a small circuit board (Tekscan,
Inc., Boston, MA, USA) and was recorded and digitised using a Data Acquisition Card
(PCle-6321, National Instruments, Austin, TX, USA). Simulink Desktop Real-Time
(Mathworks, Inc.) was used to record the grip force from the data acquisition device at
2000 Hz in real time, send to a local User Datagram Protocol (UDP) port and subsequently

visualised.
4.3.2 Experiments

Resting state (eyes open) and voluntary motor task (isometric pincer grip between thumb
and index/little finger) simultaneous EEG/EMG data were recorded from an ALS cohort
and age-matched healthy controls. In addition to EEG/EMG data, during the voluntary
motor task, force data were also recorded. The experiments were designed by Assistant
Professor Bahman Nasseroleslami, Trinity College Dublin, who is also the supervisor of
this study. The participants were instructed to minimize their eye movements and stay

relaxed during the experiments.

4.3.2.1 Resting States

During this experiment, resting-state EEG data were recorded with eyes open. The
participants were requested to fixate their eyes on a cross on the presentation screen with
mind wandering. In this experiment, three blocks of EEG data were recorded, each block
2 minutes long, with short breaks (~30 sec) between blocks. This recording allowed
comparisons of the findings in subsequent experiments to the recently found ALS-related

brain network changes in resting-state EEG (Dukic et al., 2019).

4.3.2.2 Voluntary Motor Tasks
Experiment 1: Participants were asked to perform an isometric pinch grip of the force

sensor between thumb and index finger of the right upper limb, irrespective of the right or
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the left-hand dominance, producing maximum force (Figure 4.1). The participants applied
maximum force for 5 seconds when an arrow appeared at the top of the screen and relaxed
when the arrow shifted to the bottom of the screen. Participants were provided with real-
time feedback of the force applied, given by the height of a filled rectangular green bar
visible on screen (shown in Figure 4.2). Five trials were recorded with 30 s rest between
the trials. The average peak of the five trials, which were within 10% of each other, was
used as the maximal voluntary contraction (MVC). This experiment was used to quantify

the participants’ strength to be used for other experiment.

Figure 4.1 Experimental grip tasks using thumb-index (left) and thumb-little (right) fingers. The force is

applied on two flat force sensors on the wooden prism.

Experiment 2: Participants were asked to perform 30 trials of isometric pinch grips of the
force sensor between thumb and index finger of right upper limb at 10% MVC (target
force), according to visual cues. Five seconds after the start of a trial, an empty rectangular
box was displayed onscreen as go cue where the height of the box represented target force.
Participants were provided with real-time feedback of the force applied by filling the box
with a green bar. The participants then pinched the force sensors to increase the height of
the green bar to reach the height of the rectangular box and then hold to keep a constant
force. After 5 seconds, the box disappeared as a cue for participants to relax. Participants

were told to use their preferred pace for increasing and decreasing the grip
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Figure 4.2 Experimental setup and EEG/EMG/Force data format for Experiment 2. (A) A Biosemi system-
based simultaneous EEG, EMG and force recording experimental setup, (B) EEG/EMG/Force data format
for experiment 2 showing 30 trials, each trial consists of 3 phases. The 5 seconds before the start of the visual
cue are the motor planning phase, the 5 seconds during the visual cue are the motor execution phase, and

the 5 seconds after the end of the cue are the between trial rest phases.

force but to avoid abrupt changes. Each trial lasted for 15 seconds as shown in Figure 4.2
B. The exerted force level by the participants was deemed correct, if the error was less than

10% of the range. This experiment aimed to capture brain networks, brain-muscle
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coordination, and muscle-muscle coordination during low-force levels, as well as during
slow force onset and offset.

Experiments 3-4 were similar to experiments 1-2, except that the requested isometric
pinch grip force was the opposition between the thumb and little finger of the right upper

limb (See Figure 4.1).
4.3.3 Clinical Measures

The students/staff of the Academic Unit of Neurology, Trinity College Dublin and the
National ALS Clinic, Beaumont Hospital collected functional, behavioural, and cognitive
scores that were obtained separately from this research project. The clinical measures were
recorded at least once for most of the ALS participants who took part in this study. The
scores were obtained by a neurologist or a trained member of the research team from the
Academic Unit of Neurology, during the patients’ visits to the Irish National ALS Clinic at
Beaumont Hospital. The clinical scores recorded closest in time (ideally within a week

before or after) to the EEG/EMG recording were chosen for the correlation analysis.

4.3.3.1 ALS Functional Rating Scale Revised (ALSFRS-R)

The ALS functional rating scale revised (ALSFRS-R) is 48 points validated questionnaire-
based clinical scale that measures the severity of various functional impairments associated
with ALS. It consists of 12 items, a revision from the 10-item original ALSFR scale, related
to different aspects of daily functioning, including speech, swallowing, handwriting,
cutting food, dressing, walking, and breathing. Each item is rated on a scale from O to 4,
with higher scores indicating better functioning. The total ALSFRS-R score ranges from 0
to 48, with 48 representing normal functioning. The 48-point total score can be divided into

4 sub-scales namely bulbar (0-12), fine motor (0-16), gross motor (0-8), and respiratory (0-
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12) (Cedarbaum et al., 1999). Each sub-scale can be used to assess a specific functional

impairment due to neurodegeneration.

4.3.3.2 Edinburgh Cognitive and Behavioural Assessment Scale (ECAS)

The Edinburgh Cognitive and Behavioural Assessment Scale (ECAS) is a
neuropsychological assessment tool designed to evaluate cognitive and behavioural
functions in individuals with neurodegenerative disorders, including ALS. ECAS is a 136
points clinical scale which assesses a range of cognitive domains affected by ALS including
executive functions (0-48), memory (0-24), language (0-28), visuospatial skills (0-12), and
verbal fluency (0-24). A higher score means better cognitive performance. The scores can
be divided into two domains namely ALS specific (0-100) and ALS non-specific (0-36).
The ALS specific domain combines the scores of language, verbal fluency, and executive
functions, whereas the ALS non-specific domain combines the scores of memory and
visuospatial scales. In addition to cognitive assessment, the ECAS also includes a section

to assess behavioural changes, such as apathy and disinhibition.
4.3.4 EEG/EMG Data Sets

Each EEG/EMG data recording session lasted for about 3 hours with two or three
experimenters involved, which included time for written consenting (approximately 15
minutes), EEG/EMG set up (approximately 45 minutes), running experiments
(approximately 90 minutes) and cleaning up the equipment (approximately 30 minutes).
So, it was difficult to collect EEG/EMG data solely by one individual because it would take
double the amount of time. Furthermore, the gel used for EEG/EMG recording would dry
out and the data would be very noisy. In addition, ALS participant wouldn’t be able to sit
on a chair for a long time to perform the experiments. Therefore, at least two experimenters

(most of the time three experimenters) were present during the EEG/EMG data recording
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to avoid longer sessions. Table 4.1 shows the total EEG/EMG data collected, from different
patient populations and my contribution (involvement in number of 3-hour recording
session), before the submission of this thesis (September 2023).

Table 4.1 Number of EEG/EMG recording sessions (data collected) per group and my

contribution in those sessions.

Groups Total My Contribution
Healthy Controls 30 18
ALS 40 27
PLS 16 5
PPS 25 10
SMA 11 11
Grand Total 122 71

Abbreviations: ALS Amyotrophic Lateral Sclerosis, PLS Primary Lateral Sclerosis, PPS

Post-polio Syndrome, SMA Spinal Muscular Atrophy

4.4 Data Analysis
The data processing pipelines are different based on the type of analysis, so they have been

discussed separately accordingly.
4.4.1 Sensor Level Study

In this study, the data collected during rest and Experiment 2 (self-paced isometric pinch
grip motor task) were studied. The motor task was studied during planning and execution
phases. A separate visual cue was not provided for motor planning to resemble a real-life
motor planning scenario. Therefore, 5 seconds period before the execution cue was taken

as the motor planning phase (See Figure 4.2 B).

4.4.1.1 Data Pre-processing

The pre-processing of resting-state EEG and motor task simultaneous EEG/EMG data was
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carried out in MATLAB R2021a using the Fieldtrip toolbox (fieldtrip.org). The various

steps performed during pre-processing of the data in sensor space are explained below—
Data Extraction

The segment of raw EEG/EMG data extracted for the analysis depended upon the type of
connectivity analysis performed such as EEG-EEG or EEG-EMG (Corticomuscular)
coherence.

1. EEG-EEG Coherence: For resting state, 30 seconds of data from the first block,
which was 120 seconds long, were extracted for analysis. Similarly, for the pre-
motor stage, 1 second of data between the 3 and the 4" second, and for motor
execution 1 second of data between the 8" and the 9™ second of each trial were
extracted. Therefore, the total length of data extracted for analysis for each
participant was 30 seconds (1 s x 30 trials) for each task condition (rest, pre-motor,
and execution). For motor tasks, data epochs where the coefficient of variation of
the force produced during sustained contraction was above 0.2, or where the mean
force was less than 8% or more than 20% MVC, were excluded from analysis.

2. EEG-EMG Coherence: Corticomuscular coherence or EEG-EMG coherence is
manifested during performance of a voluntary task (Halliday et al., 1998) and
quantifies the cortex-muscle synchrony for motor control. Therefore, for the EEG-
EMG coherence study, the section of trials where the participant exerted force
(motor execution) were extracted. Specifically, a 4 second segment between 6 to 10
seconds of a 15 second trial (1 second after presentation of visual cue until
presentation of the relax cue) was extracted for the analysis. Therefore, a total of
120 seconds (4 x 30 trials) were extracted for each participant. Data epochs where

the coefficient of variation of the force produced was above 0.2, or where the mean
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force was less than 8% or more than 20% MVC, were excluded from analysis.
Channel Selection

Bad channels were detected by visual inspection of the 128-channels of EEG data. Bad
channels were removed and reconstructed by using weighted average interpolation of the
neighbouring channels (Perrin et al., 1989). Based on the type of analysis and their
neurophysiological underpinnings, different sets of EEG channels were selected.

Eight EEG channels A5, B22, B31, C25, D4, D12, D19, and D28 (International 10-10
System equivalent P1, C4, FC4, F1, F3, FC3, C3, and CP3) were chosen a prior for the
EEG-EEG coherence analysis (marked by blue circles in Figure 4.3 A). D19/B22 cover the
left/right primary motor cortex (M1) whereas left/right premotor cortex (PM) is covered by
the electrodes D12/B31. The left primary sensory cortex (S1) is covered by D28 and left
superior parietal lobule (SPL) is covered by A5. Similarly, the electrodes D4 and C25 cover
left dorsolateral prefrontal cortex (DLPFC) and left dorsomedial prefrontal cortex
(DMPFC) respectively. The electrodes pertaining to the aforementioned cortical regions
were chosen because they are known to be activated during planning (Churchland et al.,
2006, Riehle, 2005, Pfurtscheller and Berghold, 1989, Glover et al., 2012, Ariani et al.,
2015, Papitto et al., 2020) and execution (Hanakawa et al., 2008, Papitto et al., 2020,
Lacourse et al., 2005, Alahmadi et al., 2015, Cisek et al., 2003) of motor tasks in healthy
individuals.

Five EEG channels Al, Al19, B22, C21 and D19 (International 10-20 System equivalent
Cz, Pz, C4, Fz and C3 respectively) and 3 EMG signals (first dorsal interosseous [FDI],

flexor pollicis brevis [FPB], and abductor pollicis brevis [APB]) were chosen a priori for
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Figure 4.3 Channels selected for analysis and their surface Laplacian electrodes. (A) EEG channels (blue)
and their surface Laplacian electrodes (green) for sensor level EEG-EEG coherence analysis. (B) EEG
channels (blue) and their surface Laplacian electrodes (green) for sensor level EEG-EMG or

Corticomuscular coherence analysis.

the EEG-EMG analysis (EEG channels marked by blue circles in Figure 4.3 B). The EEG

electrodes were chosen due to their representative coverage of the cortical motor network.
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The C3, Cz, and C4 cover the contralateral hand area, central, and ipsilateral hand
sensorimotor regions for the chosen tasks. Fz pertains to the frontal areas that reflect the
activity from supplementary motor regions (and, to some extent, premotor areas). Finally,
Pz reflects the activity from parietal areas that play important roles in visuomotor tasks
(Nasseroleslami et al., 2014). Importantly, these regions have minimal spatial overlaps and
allow the activity of more distinct regions to be assessed. The target muscles were selected
based on their biomechanical involvement in the pincer grip task (Danna-Dos Santos et al.

2010).
Referencing and Filtering

The selected channels were (re)referenced using a surface Laplacian spatial filter.
Laplacian filtering was used because it helps to minimize the effect of volume conduction
in EEG data (Bradshaw and Wikswo, 2001). For 8 electrode EEG-EEG coherence analysis,
the surface Laplacian filter was designed with 3 neighbouring channels within the radius
of ~20 mm separated approximately by 120 degrees, such that no Laplacian channel is a
common neighbour for any of the 8 selected channels. The Laplacian electrodes chosen
(marked as green circle in Figure 4.3 A) were A3, Al7, D17 for A5; B16, B20, B29 for
B22; B24, C2, C5 for B31,; C23, C27, D13 for C25; C31, D6, C24 for D4; D2, D5, D21 for
D12; D10, D14, D26 for D19; and D16, D20, D29 for D28. Similarly, for 5 electrode EEG-
EMG coherence analysis four channels were chosen as Laplacian electrodes based on the
Large Surface Laplacian configuration defined by McFarland et al. (1997). Specifically,
the Laplacian electrodes chosen were A19, B22, C21, D19 for Al (Cz); Al, A23,B22, D19
for A19 (Pz); A1, Al19, C21, D23 for D19 (C3); A1, Al19, C21, B26 for B23 (C4); and A1,

B22, D19, C17 for C21 (Fz).
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The Laplacian filtering was followed by dual-pass band pass filtering between 1-100 Hz
using a 4" order Butterworth filter to remove very-low frequency noise (<1Hz) and high
frequency noise (>100Hz) from the EEG data. Similarly, a dual-pass band pass filtering
between 10-100 Hz using a 4™ order Butterworth filter was used for EMG data. A dual-
pass band stop Butterworth filter of a 4" order with cut-off frequencies 49-51 Hz was used
to remove powerline noise from the EEG/EMG data. EMG was not rectified because our
preliminary analysis showed that when EEG was filtered between 1-100 Hz, rectification

of EMG did not affect the significance of EEG-EMG coherence at beta (14-30 Hz) band.
Automatic Artefact Detection and Rejection

Fieldtrip implemented threshold-based automatic artefact detection and rejection was used
to detect and remove eyeblink artefacts, muscle artefacts, and jump artefacts. The same
pipeline was used to detect and reject artefacts for all sensor level analysis (EEG-EEG or
EEG-EMG coherence analysis). A copy of the data was filtered according to the nature of
the artefact, for example a bandpass filter of 1-15 Hz was used to detect eyeblinks. For each
channel, the filtered data were converted into z-scores using mean and standard deviation
calculated over all trials. The z-scores were averaged over the channels to get a single time
series with accumulated artefacts. The artefactual trials were detected using threshold z-
values i.e., if the average z-score was greater than the threshold z-value for any timepoint
in a trial, the trial was considered artefactual and removed from the original data. The
threshold z-values were selected using visual inspection. Each trial was browsed using a
low threshold z-value i.e., 4 for eyeblinks, 8 for muscles, and 12 for jump artefacts. The
threshold z-value was adjusted (increased or decreased in steps of 1) looking into the
segment of original data marked as artefactual data. The adjustment of the threshold z-

value was continued until all artefactual data were marked and non-artefactual data were
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unmarked. The threshold value was set such that no more than 20% of trials were rejected

as artefactual trials.
4.4.2 Source Level Study

Similar to the sensor level study, this study focused on the data collected from Experiment
2 (self-paced isometric pinch grip motor task). The motor task was studied during pre-

movement (referred to as motor planning) and execution phases.
4.4.2.1 Data Pre-processing
Data Extraction

Data extraction for source level studies was similar to the data extraction for sensor level
studies explained in sub-section 4.4.1.1 except that for pre-movement (motor planning), 1

second data segments between the 4™ and 5" second of the trials were taken.
Referencing and Filtering

The EEG data were common average referenced followed by 1-100 Hz dual-pass band pass
filtering using a 4" order Butterworth filter. Similarly, dual-pass band pass filtering
between 10-100 Hz using a 4" order Butterworth filter was used for EMG data. A 4" order
dual-pass Butterworth band stop filter with a stop band of 49-51 Hz was used to remove
power line noise from EEG/EMG data. EMG was not rectified as stated in the previous

section.
Automatic Artefacts Detection and Rejection

Artefacts such as electrooculogram (EOG), electromyogram (EMG), electrocardiogram
(ECG), and jump artifacts were removed automatically using the Fieldtrip toolbox just like
in sensor level studies using paradigm explained in automatic artefacts detection and

rejection sub-topic in sub-section 4.4.1.1.
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4.4.2.2 Source Reconstruction

A template structural MRI (https://identifiers.org/neurovault.image:29404) was used to
compute the forward model (lead-field matrix). The source reconstruction was done using
linearly constrained minimum variance (LCMV) beamformer (Van Veen et al., 1997) using
the Fieldtrip toolbox. Twelve anatomical brain regions were chosen bilaterally, 6 on each
side of the brain, using the automated anatomical labelling (AAL) atlas (Tzourio-Mazoyer
et al., 2002). The chosen anatomical brain regions (regions of interest, ROI) were the
Primary Motor Cortex (M1), Primary Sensory Cortex (S1), Supplementary Motor Area
(SMA), Medial Prefrontal Cortex (PFC), Superior Parietal Lobule (SPL) and Anterior
Cingulate Cortex (ACC) of both hemispheres. To derive a single time-series for each ROI
all time-series within a ROl were weighted using a Gaussian weighting function with the
half width at half maximum set to approximately 17 mm (Dukic et al., 2019, Brookes et
al., 2016, Tewarie et al., 2016). This implies that signals located 17 mm away from the
centre of the region of interest (ROI) will be weakened by a factor of 0.5. However, it
should be noted that the orientation of each estimated dipole may not align with the
orientations of other dipoles within the ROI. This can lead to interference and incorrect
estimation of the effective activity of the ROI if a simple averaging of neighbouring
dipoles’ time-series is performed. To address this, after Gaussian weighting, we first
determined the dominant direction of each ROI by conducting singular value
decomposition on the dipole orientations within the ROI. Any dipoles with orientations
opposite (>90 degrees) to the estimated maximal activity vector of the ROl were inverted.
Following these procedures, we obtained 12 broadband time-series, each representing an

individual ROI. This process was performed for each subject independently.
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Figure 4.4 Cortical regions of interest (ROIs) and the central dipole current sources used for source

reconstruction. SPL: Superior parietal lobule, S1: Primary sensory cortex, M1: Primary motor cortex,
SMA: Supplementary motor area, PFC: Medial prefrontal cortex, ACC: Anterior cingulate cortex, L: Left,

R: Right.
4.4.3 Time-Frequency Analysis

The pre-processed time series EEG data, x;(n,c); n: number of trials,
c: number of channels, of motor experiments (planning and execution), was first
averaged over trials (Equation 4.1) to get event-related potentials erp;(c). The erp, was
then subtracted from every trial of x; to get non-phase locked time series data npl;(n, ¢)
(Equation 4.2).

erpe(c) = ~Xi_y xe(k,€) (4.0)

npl;(n,c) = x;(n,c) — erp.(c) (4.2)
npl, was decomposed into time-frequency components using wavelet transform with the
Fieldtrip toolbox. A Morlet wavelet with 5 cycles, a frequency resolution of 1 Hz, and a
time resolution of 0.025 seconds was used. The output time-frequency power obtained from

wavelet decomposition of npl, was normalised to an inter-trial rest period of 5 seconds of
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motor task experiment (i.e., -3 to 2 second baseline window). The normalised time-
frequency power was averaged over time components to obtain event related spectral
perturbations (ERSP). Finally, the ERSP was averaged over participants of each group

separately to get the group average ERSP.

4.4.4 Connectivity Analysis

4.4.4.1 Functional Connectivity (Banded Spectral Coherence)

The pre-processed EEG data were converted into the frequency domain using the Fourier
Transform (Hanning taper, 1 Hz spectral smoothing, 2-100 Hz bandwidth, and 1 Hz
frequency resolution).

Auto spectra (S;(f),i = 1,2,...,c; (number of channels); f = 2,3,...100 Hz) and
cross spectra (S;;(f),j = 1,2,...,¢; i <j) were calculated using the Fieldtrip toolbox for
each trial. The 2-100 Hz spectral bandwidth was divided into 8 frequency bands as shown
in Table 4.2, excluding the 48-52Hz range to avoid mains power interference. The
frequency bands were defined based on the typical physiological EEG frequency bands
(Sanei and Chambers, 2007) as well as their relevance both in sensorimotor control
(Nasseroleslami et al., 2014) and quantifying network dysfunction in motor neuron diseases
(Dukic et al., 2019, Dukic et al., 2021).

The band auto spectra [S;;(fb), fb = 6,0,a;,an, B, Br, Y1, ¥n] and band cross
spectra [S;;(fb)] were calculated for each trial by taking the spatial median, which

minimizes the sum of Euclidean distances, of the signal spectra over the specific band
frequencies (Equation 4.3). For example, the banded spectrum for the & band is the spatial
median of the signal spectrum at 2, 3 and 4 Hz; the banded spectrum for 6 band is the spatial
median of the signal spectrum at 5, 6 and 7 Hz, and so on. The spatial median is a variation

of the median operator for complex-valued spectra, which is more robust to outliers when
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compared to the algebraic averaging (Niinimaa and Oja, 2014, Nasseroleslami et al., 2019,

Dukic et al., 2017).

§*(fb) = argomin(2f=fb||5(f) ) (4.3)

Table 4.2 Division of EEG spectral bandwidth into frequency bands.

Frequency band Notation Frequency range (Hz)
Delta ) 2-4

Theta 0 5-7
Low-alpha a 8-10
High-alpha ah 11-13
Low-beta Bi 14-20
High-beta Bn 21-30
Low-gamma M 31-47
High-gamma Yh 53-97

The optimisation of equation 4.3 was done by Weiszfeld's algorithm (Weiszfeld, 1937).
The banded cross spectrum was then normalised by using banded auto spectra for a given
frequency band to obtain a banded spectral coherency (C;;)estimate for each trial

(Equation 4.4) (Nasseroleslami et al., 2019).

5;(Fb)

C;(fb) = ———
[sii(royxs;; ()

4.4.4.2 Effective Connectivity (Generalised Partial Directed Coherence)

(4.4)

Generalized partial directed coherence (gPDC) was used to evaluate the causal influences
or effective connectivity between the cortical regions of interest (ROIs). gPDC is a
normalized form of Partial directed coherence (PDC). PDC is a frequency domain
multivariate method based on Granger causality introduced by Baccala and Sameshima

(2001). “Partial directed coherence describes the direction of information flow between
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multivariate time series data based on the decomposition of multivariate partial coherences
computed from multivariate autoregressive models” (Baccald and Sameshima, 2001).
A multivariate autoregressive model of EEG time series data X(t) = [x;(t), ..., xy(t)]

with N channels and of order p can be defined by,

x1(t) x1(t—1) wy (1)
[ : ]: P_LA(T) +| ] (4.5)
Xy (t) xy(t—T1) wy (1)
ay (r) o an(r)

where, A(r) = [ ] is the autoregressive parameter.

ay1 () ayy(r)
The coefficients a;;(r) represent the linear interaction effects of x;(t —r) onto x;(t).
w;(t),i = 1,2, ..., N are the estimated errors. After adequate estimation of A(r), it can be
converted into the frequency domain A(f) as follows:

A(f) = L7 A@) e~ 20T (4.6)
The transfer function for N channel EEG signals can be defined as A(f) =1 — A(f) =
[a;(fa,(f) - ay(f)]. The column vector a;(f) (i = 1,2,...N) is the ith column of the

matrix A(f). The i, jth element of A(f) is denoted by A;;(f) and given by,

1-YP_ a;(r)e 27, ifi=j

p —i2nfr

P ay(r)e 4.7)

14_' B o

Y ) { , otherwise

The PDC from channel j to i defined by Baccala and Sameshima (2001) as follows:
Ai;(f)

/Z’,Ll |4k ()]

Finally, the PDC was normalized by its variance () to get the generalized PDC (Baccala

et al., 2007).

A;;(f)/ oy

/z’,leaii|ffk,-<f)|2
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In this study, gPDC for a bandwidth of 1-100 Hz was calculated using the Fieldtrip toolbox.
The 1-100 Hz bandwidth was divided into 8 frequency bands as mentioned in Table 4.2,
excluding the 48-52Hz range to avoid mains power interference. One gPDC value was
obtained for each frequency band by taking the spatial median of the gPDC values at the

frequencies covering the band, according to equation 4.3.

4.4.5 Graph Analysis

4.4.5.1 Global Clustering Coefficient (GCC)

The clustering coefficient of an undirected network captures the small-worldness of that
network. Small-worldness of a network is characterised by the maximum connectedness
and the short average path length between the nodes. Cortical networks are small-world
networks (Masuda et al., 2018). We used the global clustering coefficient (GCC) to
calculate small-worldness (or density) of functional networks using the Watts and Strogatz
method (Watts and Strogatz, 1998). Based on the significant banded spectral coherence
(See sub-section 4.5.1 for the details), an EEG functional network was constructed using
electrodes as vertices (nodes) and significant EEG-EEG banded coherence as edges. In a
functionally connected EEG network, suppose that a node v has k,, neighbouring nodes;
then the maximum number of connections or edges (E;,,) that exist between the node v and
its neighbour is given by:

By = 2= (4.10)

This occurs when every neighbour of node v is connected to every other neighbour of v.
Let E,, denote the number of these allowable edges that actually exist i.e., the number of
significant EEG-EEG banded coherence between node v and its neighbours. Then, the local

clustering coefficient C, of node v is given by:

E,
C, =%
Em

(4.11)
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Finally, the GCC for the functionally connected EEG network is the average of local

clustering coefficients C,, over all v nodes:
GCC = =%V, C, (4.12)
The value of GCC ranges from 0 (no connection) to 1 (fully connected network).

4.4.5.2 Causal Flow

The adjacency matrix for effective connectivity was created by comparing the significance
(p values) of generalised partial directed coherence (gPDC), which was obtained by
bootstrapping (described in sub-section 4.5.2), with a significance level of 0.01. For a
gPDC value, if p < 0.01, the effective connectivity was considered significant and
represented by 1 in the adjacency matrix. The adjacency matrix was visualized by using
directed graphs, which represented a network of causally influencing brain regions. In the
directed graph representation of causal networks or effective connectivity, nodes
represented ROIs and arrows represented the causal interaction between the ROIs.
Furthermore, for each node/ROI in the network, causal inflow and outflow were calculated.
Causal inflow (InF) of a node is the number of incoming links/arcs to the node from the
rest of the nodes in the network. Similarly, causal outflow (OutF) is the number of
outgoing links/arcs from the node to the rest of the nodes in the network. Therefore, the
causal flow (CF) of a node is given by the difference between the causal outflow and causal
inflow.

CF = OutF — InF (4.13)

In effective/causal networks, if OutF > InF for a node, then the node acts as a source

whereas, if InF > OutF, the node acts as a sink.
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4.5 Statistical Analysis

4.5.1 Banded Spectral Coherence Statistics

Coherence was presented based on equivalent z-scores and p-values at both individual and
group-level. This approach prevents bias by eliminating the dependence on the number of

trials for the coherence analysis.

4.5.1.1 Participant (Individual) Level

Participant-level statistics were calculated using one-sample non-parametric rank statistics
for spectral coherence (Nasseroleslami et al., 2019). This method provides individual p-
values for spectral coherence in each frequency band for both patient and control groups.
Stouffer's method (Stouffer et al., 1949, Westfall, 2014) was used to combine individual p-

values to derive group average p-values (pgy)-

Let, individual p-values be py, k = 1,2, ...,n, where n is the number of p-values to be

combined and the p,,, be the combined/average p-value.
The z-scores of the p-values are given by:

Zy =07 (1—py) (4.14)
where, @ is the standard normal cumulative distribution function.

The average z-score, Z,,,4, and the average p-value, pg,,4, are given by:

Yre1Z
Zapg = an" (4.15)
Pavg = 1 — @(Zyyy) (4.16)

This procedure is similar, but not procedurally equivalent, to pooled coherence analysis
(Amjad et al., 1997). Both methods can be used to combine information from several

participants (or trials). The p-values were corrected for multiple comparisons using the

86



false discovery rate (FDR) at g = 0.05 (Benjamini and Hochberg, 1995) (See sub-section
4.5.4 for details of correction for multiple comparison procedures). The negative logarithm

of the average p-value was used to visualise group average banded coherence (Cgyg).
Cavg = _loglo(pavg) (4-17)

A coherence value greater than 1.30 (i.e., payg< 0.05) indicated a significant functional

connectivity between two regions.

4.5.1.2 Group Level

The banded coherence of the patient group was compared with the control group using 2
sample non-parametric rank statistics (Nasseroleslami et al., 2019, Oja and Randles, 2004,
Nordhausen and Oja, 2011) with the resulting p-value (pgirf) corrected for multiple
comparisons using adaptive FDR at g = 0.05 (Benjamini and Hochberg, 2000) (See sub-

section 4.5.4 for details of correction for multiple comparison procedures).

4.5.2 Effective Connectivity (Generalised PDC) Statistics

4.5.2.1 Participant (Individual) Level

The asymptotic distribution of the generalised partial directed coherence (gPDC) is not
well known therefore non-parametric bootstrap-based approaches are commonly used to
test for significant connectivity. Gaussian white noise was used for non-parametric
bootstrapping (Efron and Tibshirani, 1993) with 2000 repetitions to estimate the null
distribution for banded gPDC values. The Empirical Bayesian Inference (EBI) method
(Nasseroleslami, 2019) was used to calculate p-values for gPDC values. The p-values were
corrected for multiple comparison using false discovery rate (FDR) at g=0.05 (Benjamini
and Hochberg, 1995) (See sub-section 4.5.4 for details of correction for multiple

comparison procedures).
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4.5.2.2 Group Level

For group analysis, the spatial median of the individual gPDC was taken as group effect
whereas the individual p-values were combined or averaged using Stouffer’s method
(Stouffer et al., 1949) (See sub-section 4.5.1.1 for details of Stouffer’s method) to get group
level significance of gPDC. The group level difference (patients vs controls) between the
effective connectivity measure (gPDC) was calculated by using non-parametric Wilcoxon
rank sum test (Gibbons and Chakraborti, 2003). The p-values obtained from group
comparisons were subjected to correction for multiple comparison using adaptive FDR at

q=0.05 (See sub-section 4.5.4 for details of correction for multiple comparison procedures).
4.5.3 Effect Size

The effect size provides a standardized measure of the magnitude or strength of an observed
effect or relationship and helps to better understand the practical significance of the
findings. In this study, the effect size of the abnormal network measures (significantly
different measure in patients compared to controls) was reported to indicate its usefulness
as a network biomarker. Effect sizes are often categorized as small (d = 0.2), medium
(d = 0.5),orlarge (d = 0.8) based on benchmarks proposed by Cohen (1988). However,
it is important to note that these benchmarks are somewhat arbitrary and should not be
interpreted in a rigid manner (Thompson, 2007, Correll et al., 2020). The following

measures of effect size have been reported in this study.

4.5.3.1 Cohen’s d

Suppose n, and n, are the number of participants in two groups (control and patient) and
X, and X, are the mean of a network measure (for example, coherence) for the two groups,
respectively. If SD; and SD, are the standard deviations of the network measure, then the

pooled standard deviation of the measure is given by:
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(ny—-1)SD?+(n,—1)SD?

SDpooled = \/ 42 (4.18)

Cohen’s d for the measure is then given by:

d= Xi-X2 (4.19)

SDpooled

4.5.3.2 Hedge’s g

Cohen’s d as explained above is based on the difference between the sample means and
gives a biased estimate of the population effect size especially for small sample sizes
(n < 20) (Hedges and Olkin, 1985). For this reason, Cohen’s d is sometimes referred to
as the uncorrected effect size (Lakens, 2013). The corrected effect size which is unbiased

for smaller samples is given by Hedge’s g (Hedges and Olkin, 1985).

g=dx(1-———) (4.20)

4(n1+n2)—9
Here d is Cohen’s d (equation 4.19). Although Cohen’s d and Hedge’s g are similar for
large sample sizes (n > 20), Hedge’s g is more useful if the sample size is small (n < 20)

(Kline, 2004).
4.5.4 Correction for Multiple Comparisons

Typically, during single hypothesis testing, to reject the null hypothesis and consider the
observed difference or change as statistically significant, researchers aim for a significance
level of 0=0.05. However, when multiple hypothesis tests are conducted within an
experiment (for example, the hypotheses that EEG-EMG coherence between an ALS
cohort and healthy controls differs in multiple frequency bands), the likelihood of false
positive findings (type | error) or incorrectly rejecting the null-hypothesis increases.
Correcting for multiple comparisons is then required to reduce the likelihood of obtaining

false positive results when testing multiple hypotheses.
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One straightforward and commonly used method for multiple comparison correction is the
Bonferroni method, where the significance level is divided by the number of comparisons
made. This method is suitable for small numbers of comparisons, but it becomes more
conservative, leading to limited statistical power and a higher chance of false negative
findings (type Il error) when the number of comparisons increases (Valerie et al., 1999).

To counteract the multiplicity problem with higher statistical power, an alternative method
is to control the false discovery rate (FDR). The FDR represents the proportion of errors
committed by falsely rejecting null hypotheses, providing a more flexible approach
compared to familywise error rate control such as the Bonferroni method (Benjamini and

Hochberg, 1995).

4.5.4.1 False Discovery Rate (FDR) Correction
We have used the Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995) which
is the most commonly used method for controlling the false discovery rate (FDR). The
steps involved in applying the FDR correction with Benjamini-Hochberg method are as
follows:
Step 1: Perform the individual statistical tests for each hypothesis of interest (say
Hy, H,, ... H, where n is the number of hypotheses tested).
Step 2: Obtain the p-values associated with each test (say p,,p,, ...p, be p-values
associated with hypothesis H,, H,, ... Hy, respectively).
Step 3: Sort the p-values in ascending order, from smallest to largest (say p; < p, < -+ <
Pn)-
Step 4: Estimate the critical threshold or alpha level for controlling the FDR by determining
the desired FDR level, typically denoted as g. For example, if we want to control

the FDR at 0.05, then ¢ = 0.05.
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Step 5: Calculate the critical value, k, which is the largest index where p;, < %.

Step 6: Reject the null hypothesis for p-values less than or equal to py i.e., reject all H,,

where x = 1,2, ..., k.

4.5.4.2 Adaptive False Discovery Rate (adaptive FDR) Correction

During multiple independent significance testing of group differences, an FRD correction

could be less powerful or more conservative and may not reject the hypotheses that are in

fact false (Benjamini and Hochberg, 2000). To overcome this limitation, an adaptive FDR
correction method has been proposed by Benjamini and Hochberg (2000). We have used
adaptive FRD correction after comparing the groups (for example, ALS cohort vs healthy
controls) and to correct p-values for the correlation analysis. The steps involved in adaptive

FDR correction method are as follows:

Step 1: Perform Step 1 to Step 5 of the FDR correction procedure from sub-section 4.5.4.1
above. If k doesn’t exist, then do not reject any hypothesis, and stop, otherwise
proceed to the next step.

Step 2: Calculate the slope S; = (1 — p;)/(m =1 —i), wherei = 1,2,...,n.

Step 3: Starting with i = 2, proceed if S; = S;_;. When for the first time §; < S;_; stop
and set g = min ([Sl + 1] ,m).
J

Step 4: Starting with the largest p-value p,, compare each p; to iq/n, (where g is FDR
level) until reaching the first p-value that satisfies p, < kq/n,.

Step 5: Reject all k null-hypotheses having p-values smaller than py.
4.5.5 Correlation Analysis

The association of the ALS network measures, such as functional/effective connectivity

and causal inflow/outflow, with clinical measures such as ALSFRS-R scores was tested
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using non-parametric Spearman’s rank correlation coefficients. Spearman’s rank
correlation uses the rank of the data as opposed to the data itself for the estimation of the
correlation which makes it robust against outliers. If d; is the difference of the rank between
the it" observations of two variables x and y within total n observations, then the

Spearman’s correlation coefficient p,,, between variables x and y is given by:

6%, d?
Pry =1 == (4.21)

The p-values of Spearman’s rank correlation can be obtained by using test statistics such

as z-statistics with the help of Fisher’s transformation.

In this study, the p-values obtained from multiple correlation tests were adjusted for
multiple comparisons using adaptive FDR at g = 0.05 (See sub-section 4.5.4 for details of
correction for multiple comparison procedures). A line was fitted to the data in scatter
plots, to visualise the relationship, using Robust linear least-square fitting method (Holland

and Welsch, 1977).
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5. Results: Banded Spectral Coherence as a Tool

Published Work List

The work described in this chapter has been published in the peer-reviews journal Cerebral
Cortex as:

Bista S, Coffey A, Fasano A, et al., Cortico-muscular coherence in primary lateral sclerosis
reveals abnormal cortical engagement during motor function beyond primary motor
areas, Cerebral Cortex, Volume 33, Issue 13, 1 July 2023, Pages 8712
8723, https://doi.org/10.1093/cercor/bhad152

This chapter describes the new method we have developed to assess the functional
connectivity (coherence) of neuro-electric signals in relation to sensor level CMC in
healthy controls and PLS. It contains all figures and tables as well as the results and
discussion section text from this publication. In addition, the figures and text from the
supplementary materials of this publication have been included in this chapter. Introduction
and methods section text from this publication have been abbreviated in this chapter to

avoid repetition of the contents of chapters 1-4.

5.1 Introduction

Functional connectivity (FC) is a measure of functional coupling or synchrony between
neuronal sources. The modalities and methods used for functional connectivity analysis
within brain (EEG-EEG) or between brain and muscles (EEG-EMG) have already been
reviewed in literature review chapter with each modality/method having their own
advantages and disadvantages. The rationale for developing a new method for the
calculation of functional connectivity (coherence) is to harness the robustness of the non-
parametric (median based) functional connectivity measure against artefacts (Dukic et al.,

2017) and to represent the collective connectivity strength with a single value over the

93



range of frequencies within each distinct neurophysiological frequency band. More
importantly, the new method utilises non-parametric rank statistics for coherence
(Nasseroleslami et al., 2019) which presents connectivity strengths as p-values so there is
no need for separate significance testing (close form solution or non-parametric
bootstrapping) as required by other existing connectivity measures. Additionally, the new
method is robust against the bias introduced by the number of epochs (L) used to estimate
the functional connectivity (Nasseroleslami et al., 2019) which is not in the case of existing
coherence based methods.

We hypothesised that the new method of estimating functional connectivity provides robust
detection of network connectivity with a singular value for a frequency band and will be

useful to identify the abnormal network connections in patient groups.

5.2 Methods

5.2.1 Ethics

The study was approved by the Tallaght University Hospital / St. James's Hospital Joint
Research Ethics Committee - Dublin [REC Reference: 2019-05 List 17 (01)] and performed
in accordance with the Declaration of Helsinki (2013). All participants provided informed

written consent to the procedures before undergoing assessment.
5.2.2 PLS Cohort

The PLS cohort was prospectively recruited in this cross-sectional study between June
2017-August 2019 through the national ALS clinic at Beaumont Hospital. All participants
with PLS fulfilled the clinical criteria for PLS (Turner et al., 2020). Healthy controls, age-
matched to the PLS cohort, were recruited from a database of healthy controls interested in
taking part in the ongoing research studies in the Academic Unit of Neurology, Trinity

College Dublin, the University of Dublin.

94



Subjects with a history of major head trauma or other neurological conditions that could
affect cognition, alcohol dependence syndrome, current use of neuroleptic medications or
high-dose psychoactive medication were excluded. Those with diabetes mellitus, a history
of cerebrovascular disease, and those with neuropathy from other causes were also
excluded. The entire PLS cohort underwent nerve conduction studies and
electromyography to exclude other concurrent peripheral nerve disorders that could

interfere with CMC analyses.
5.2.3 Clinical assessment

On the day of EEG recording the PLS cohort underwent an extensive clinical assessment.
Disease duration from symptom onset and site of disease onset were recorded. Muscle
strength was assessed using the Medical Research Council (MRC) score (Compston, 2010)
in 9 bilateral (i.e., 18) upper limb muscles, including deltoid, triceps, biceps, wrist flexors
and extensors, fingers flexors and extensors, and abductors of the index fingers and thumbs.
The degree of clinical upper motor neuron (UMN) involvement in the upper limbs was
graded by an UMN score (de Carvalho et al., 2003). An adapted UMN score based on Kent-
Braun et al (Kent-Braun et al., 1998) was calculated using reflex and UMN signs
assessment. Reflexes were assessed at three sites in the upper limbs (biceps, triceps and
brachioradialis). The UMN-score ranges from 0 (normal) to 16 (reflecting hyperreflexia
[0-6], hypertonia [0-4], clonus [0-2], Babinski [0-2] and Hoffmann sign [0-2]). The
Edinburgh Cognitive ALS Screen (ECAS), which evaluates cognitive performance across
language, verbal fluency, executive, memory and visuospatial domains (Abrahams et al.,
2014), was performed on 14 of the 16 PLS participants (two declined). The Edinburgh
handedness inventory (EHI) (Oldfield, 1971) with 10 questions was performed to assess

the handedness of the PLS cohort as well as healthy controls.
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HD-EEG and bipolar surface EMG were subsequently recorded in all participants for

calculation of CMC during motor tasks.
5.2.4 Experimental Paradigm

Assessment was conducted in the same manner for the PLS and control groups, described
as Experiment 2 in sub-section 4.3.2.2 in chapter 4 Materials and Methods. The reason
behind choosing for experiment 2 for the analysis is explained in sub-section 5.3.3 below.
Participants held a force transducer between the thumb and the index finger of their right
hand, irrespective of the right- or left-hand dominance, to measure pincer grip force. The
maximal voluntary contraction (MVC) was determined as the average peak force achieved
during three short (5 s) maximal contractions, where the peak force in these attempts lay
within 10% of each other. Participants were asked to produce a force at 10% MVC for 5 s
while holding the force transducer in pincer grip, guided by visual force feedback on screen

(pincer grip task). Participants attempted a total of 30 trials for each task.
5.2.5 Recording of (Neuro-)electrophysiological Signals

All participants were seated comfortably, EEG data were recorded in a special-purpose
laboratory, using a 128-channel scalp electrode cap. Data were filtered over the range of
0-400 Hz and digitized at 2048 Hz using the BioSemi® ActiveTwo system (BioSemi B.V,
Amsterdam, Netherlands). Each participant was fitted with an appropriately sized EEG cap.
Surface EMG data were recorded simultaneously with EEG using a bipolar electrode
configuration from eight muscles in the right upper arm, with the electrode pairs placed in
accordance with the SENIAM guidelines (Hermens et al., 2000). The online hardware gain
and filter settings for the EMG signals during recordings were the same as for the EEG
channels. Recording was followed by further offline pre-processing. Five EEG channels

(Cz, Pz, C4, Fz, C3) and three EMG signals (first dorsal interosseous, FDI; Flexor Pollicis
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Brevis, FPB and Abductor Pollicis Brevis, APB) were chosen apriori for the cortico-
muscular coherence analysis (CMC). The EEG electrodes were chosen due to their
representative coverage of the cortical motor network. The C3, Cz, and C4 cover the
contralateral, central, and ipsilateral hand sensorimotor regions for the chosen tasks. Fz
pertains to the frontal areas that reflect the activity from supplementary motor regions (and
to some extent premotor areas). Finally, Pz reflects the activity from parietal areas that play
important roles in visuomotor tasks and spatiotemporal integration (Nasseroleslami et al.,
2014). Importantly, these regions have minimal spatial overlap and allow the activity of
more distinct regions to be assessed. The target muscles were selected based on their

biomechanical involvement in the pincer grip task (Danna-Dos Santos et al., 2010).
5.2.6 Signal Pre-processing and Spectral Analysis

EEG/EMG data analysis (Figure 5.1) was performed as described in detail in sub-section
4.4.1 of section 4.4 Sensor Level Analysis in this thesis and in a previous study (Coffey et
al., 2021). Briefly, automated artefact rejection routines (Fieldtrip Toolbox) (Oostenveld et
al., 2011) were used to discard data contaminated by noise. After visual inspection of the
128-channel recordings, EEG channels with higher levels of noise were removed and
reconstructed using weighted average interpolation of neighbouring channels (Perrin et al.,
1989). An average of 2216 trials (i.e., 8824 seconds) for the five target EEG channels
were retained for the Corticomuscular coherence calculation across all participants. A time
window/epoch duration of 4 s (starting 1s after the visual cue) was chosen for analysis.
Data epochs where the coefficient of variation of the force produced was above 0.2, or
where the mean force was less than 8% or more than 20% MVC, were excluded from
further analysis. An average of 3 £ 6 trials (i.e., 12 + 24 seconds) were removed across all

participants for these reasons. The raw EEG data were (re-)referenced using a surface
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Laplacian spatial filter (Bradshaw and Wikswo, 2001, McFarland et al., 1997), which
served to provide signals that are more spatially specific to each EEG electrode (See topic
Referencing and Filtering of sub-section 4.4.1.1 and Figure 4.3 in chapter 4 Materials and
Methods for the details). The EMG data (signal amplitude) were normalized with respect
to root mean square EMG amplitude at 100 % MVC. EEG and EMG data were filtered
between 1-100Hz and 10-100 Hz respectively using a dual-pass 4th order Butterworth
bandpass filter. The auto-spectrum of each EEG/EMG signal, and the cross-spectrum
between all combinations of EEG-EMG signals (frequency resolution 1Hz, bandwidth 2-
100Hz) were calculated using the Fieldtrip toolbox (Hanning taper and frequency

smoothing at 1Hz, non-overlapping windows of 1s). EMG signals were not rectified.
5.2.7 Estimation of Coherence Spectrum and Banded Coherence

Coherence is presented based on equivalent z-scores and p-values at both subject and
group-level. This approach prevents bias by eliminating the dependence on the number of
trials for the coherence analysis. See sub-sections 4.4.4.1 and 4.5.1 in chapter 4 Materials
and Methods for the detailed formulation and statistics of banded spectral coherence.

CMC was examined in 8 different frequency bands (Table 4.2) and a single coherence
estimate was obtained for each band. CMC was estimated based on the spatial median using
the following procedure. Coherence was estimated using the median value of the auto- and
cross-spectra represented by their real and imaginary components in two-dimensional
space calculated across epochs (Niinimaa and Oja, 2014, Weiszfeld, 1937) and Figure 2 in
Nasseroleslami et al. (2019). This contrasts with classical coherence estimates which are
based on the expected value or arithmetic mean of the spectra. The auto- and cross-spectra
for each 1 s epoch were calculated for each participant. The spatial median coherence was

then estimated from the spatial median of the auto- and cross-spectra with a resolution of
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2 Hz, Figure 5.1 F, and across each of the 8 defined frequency bands to obtain the ‘banded
coherence’, Figure 5.1 H. The banded spectral cortico-muscular coherence was normalized
by dividing the band cross-spectrum by the respective band auto-spectra. The strength of
coherence was subsequently presented using the equivalent p-value as -log(p), which we
denote as “pCoh”.

To represent the banded CMC as a probability, each coherence value was compared against
zero using a non-parametric one-sample test for significant coherence [spatial (signed)
ranks (Hannu Oja & Randles, 2004; Hannu Oja, 2010; Nordhausen & Oja, 2011)]. This
procedure yielded individual p-values for each frequency band, for each individual (both
PLS and control groups). Stouffer’s method was used to combine individual p-values to
derive average p-values within each group, i.e. in the healthy group, and in the PLS group
(Stouffer et al., 1949, Westfall, 2014). This procedure is similar, but not procedurally
equivalent, to the pooled coherence analysis (Amjad et al., 1997). Both methods can be
used to combine information from several participants (or trials). The negative logarithm
of the p-values, i.e. -log10(p), was used as a measure of CMC strength to visualize cortico-
muscular coherence. The band-specific coherence values, expressed in -logl0(p), were
used to represent the collective coherence over the range of frequencies within each distinct

frequency band (Figure 5.1 H).
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Figure 5.1 Example showing the estimation of banded cortico-muscular coherence (CMC), using data

from a healthy control participant.pre-processed EEG signal recorded from C3 electrode, (B) pre-processed
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EMG signal recorded from abductor pollicis brevis (APB) muscle during the same time interval, (C) Power
spectrum of EEG signal, (D) Power spectrum of EMG signal in the frequency range of interest, (E) CMC
estimated using the magnitude squared coherence with spectral smoothing (“classical coherence”), (F) CMC
calculated using the spatial median to estimate the auto- and cross-spectra of the EEG and EMG data
(“pCoh”). Here the spatial median was used to group the coherence spectra over bands with a 2Hz interval
to facilitate the comparison of pCoh with classical coherence, (G) conversion of classical magnitude squared
coherence into banded CMC values. Here the spatial median method is used to group the classical coherence
spectra so that there is one coherence value for each of the pre-defined bands, (H) pCoh CMC calculated
using the spatial median method to group coherence spectra over pre-defined bands. Note that F and H use
the same coherence methodology, with the only difference being the bandwidth of the frequency bands used
for grouping the coherence spectra. Frequency bands: delta (3), theta (6), low alpha (al), high alpha (o),
low beta (B)), high beta (Pn), low gamma (), high gamma (yn). This figure has been published in Bista et al.

(2023) as Figure 2, see appendix 5.1.

For comparison, the magnitude squared coherence, referred to here as ‘“classical
coherence”, was also estimated in the frequency range 2-100 Hz in addition to the banded
coherence. Spectral smoothing of auto- and cross-spectrum was done using a Hanning

filter. The significance threshold (upper 95% confidence limit) was calculated as 1 —

1
0.05¢-v+0375 where L is the number of segments used to calculate coherence and the
factor 0.375 is a correction for spectral smoothing using a Hanning filter (Halliday and

Rosenberg, 1999).

5.3 Results

5.3.1 Clinical Profile

16 participants with PLS (7 females and 9 males, age: 62.7 + 8.7 [mean = SD]) were
prospectively recruited from the national ALS Clinic based in Beaumont hospital, Dublin.
All participants with PLS were diagnosed with definite PLS fulfilling the consensus criteria

(Turner et al., 2020) defined as the absence of LMN degeneration 4 or more years from
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symptom onset. 18 healthy controls (7 female) were recruited (age: 62.5 + 8.97 [mean +

SD]). Table 5.1 shows the detailed profile of the recruited participants.

Table 5.1 Clinical and demographic data of the analysed PLS and control groups. This

table has been published as Table 1 in Bista et al. (2023), see appendix 5.1.

PLS Controls

Biological Sex (Female/Male) 7/9 7/11
Average age at recording (years) 62.7+8.7 62.5£8.9
EHI (Right/Left) 14/2 16/2
Disease duration (years) 7.6+6.01 -
UMN score (max 16) 128+ 2.3
Spasticity score (upper limb) (max 4) 3.5+£1.09
MRC (upper limb) (max 100) 71.6+£4.08
ECAS Total abnormal score n (%) 4 (28%)

Language 1 (7%)

Verbal Fluency 2 (14%)

Memory 2 (14%)

Visuospatial 1 (7%)

EHI (Edinburgh Handedness Inventory)
UMN (Upper Motor Neuron Score)

MRC (Medical Research Council Scale for Muscle Strength)

ECAS results were scored as normal or impaired based on education and age (Pinto-Grau

et al., 2017). Four participants with PLS (28%) showed evidence of cognitive impairment

based on the total ECAS score. The details are listed in Table 5.1. Abnormal performance

in visuospatial domains (7%) were uncommon based on our screening assessment with

ECAS.
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5.3.2 Comparison of banded and classical CMC

5.3.2.1 Group average banded and classical Corticomuscular coherence (CMC) for all
EEG and EMG channels

The group average of Classical CMC spectra (Figure 5.3) is similar to the group average
of banded CMC spectra (Stouffer’s averaging of p values-based CMC) (Figure 5.2) for

both PLS cohort and healthy controls.
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Figure 5.2 Group average banded cortico-muscular coherence (CMC) across 5 selected EEG and 3
selected EMG channels in the PLS cohort vs. healthy controls. The EEG channels (C3, Cz, C4, Pz, and Fz)

are surface Laplacian-referenced and the EMG channels are bipolar surface EMG channels. The CMC were
corrected for multiple comparison using adaptive FDR at q = 0.05. The coherence spectra were grouped
over pre-defined bands using the spatial median (“pCoh”). The CMC values that were significantly different

between PLS and control groups are outlined in Figure 5.8 in this chapter.
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Figure 5.3 Group average classical magnitude-squared CMC across 5 selected EEG and 3 selected EMG
channels in the PLS cohort vs. healthy controls. The EEG channels (C3, Cz, C4, Pz, and Fz) are surface

Laplacian-referenced and the EMG channels are bipolar surface EMG channels.

5.3.2.2 Comparing CMC in the PLS participants using different spectral averaging and
banded coherence methods

Both methods (classical and banded) have detected significant CMC in the low-beta (14-
20 Hz) and high-gamma (53-97Hz) bands in a PLS participant and the coherence spectra
are also similar (Figure 5.4). The banded CMC, however, gave a single value for each

frequency band.
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Figure 5.4 Banded and classical magnitude-squared CMC between Fz and 3 EMG channels in a PLS
participant.

5.3.2.3 Spatial Topology of beta CMC for Controls

The spatial topology of banded beta “pCoh” CMC between EMG and the five EEG
channels showed maximum CMC within the sensorimotor cortices (C3, Cz) and
visuomotor processing areas (Pz) in controls (Figure 5.5 top panel). Similar results were
observed with classical magnitude-squared CMC (Figure 5.5 bottom panel), however the

banded pCoh resulted in more localised CMC patterns.
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Figure 5.5 The spatial topology of group average beta CMC between 5 EEG (C3, C4, Cz, Fz, Pz) and 3
EMG (APB, FDI, FPB) channels using banded “pCoh” CMC method (top panel) and classical magnitude-
squared CMC method in the same band (bottom panel) in healthy controls.

5.3.3 Verification of the task-effect

In our pilot experiments in the control group, the pincer grip task (Experiment 2) generated
low levels of beta-band CMC when compared with the precision grip task (Coffey et al.,
2021), suggesting that the pincer grip task may be more suitable for studying abnormally
increased CMC patterns in patients. The results of the pilot experiments are shown in
Figure 5.6, depicting both classical and banded group average CMC in controls for the 10%
MVC pincer grip task and the precision grip task. During the precision grip task, the

controls showed clear and significant beta CMC peaks at group level.
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Figure 5.6 Classical and banded group average Corticomuscular coherence (CMC) for healthy controls
between C3 (contralateral primary motor cortex) and Abductor Pollicis Brevis (APB) muscle during pincer
grip at 10% maximum voluntary contraction (top panel) and precision grip (bottom panel) using thumb

and index finger of the right hand. The comparison confirms that the pincer grip task generates lower typical
beta CMC compared to the precision grip task. The pincer grip task was chosen as it was hypothesised that

a lower level of beta CMC would facilitate the detection of abnormally increased CMC in the PLS group.

The 10% MVC pincer grip task exhibited a lower group average CMC peak in the beta-
band when compared with CMC during precision grip, Figure 5.6. However, significant
beta-band coherence peak was still detected during the pincer grip task in 14 out of 18
control participants using classical coherence (Figure 5.7). The lower CMC observed in the

pincer grip task is expected as the force is exerted against a rigid load cell with no digit
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displacement and no object flexibility. Previous studies have shown that beta-band CMC
is lower for isometric pinch grip contractions against a rigid force transducer when

compared with those performed with a compliant, or spring-like load (Kilner et al., 2000).
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Figure 5.7 Individual classical magnitude squared CMC between C3 (contralateral primary motor cortex)

and Flexor Pollicis Brevis (FDI) muscle for pincer grip (10% MVC) task. The significance threshold or

1
estimate of the upper 95% confidence limit for classical CMC is calculated as 1 — 0.05&-1+0375  where L

is the number of trials used to calculate coherence.
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5.3.4 Abnormally high cortico-muscular coherence in PLS
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Figure 5.8 Participants with PLS show abnormal Cortico-Muscular (EEG-EMG) Coherence in primary

motor areas, and beyond typical beta band during pincer grip task. The first column displays pCoh grouped
over shorter 2 Hz frequency bands and the second column shows the banded coherence (“pCoh”) grouped
over pre-defined frequency bands. The pCoh spectra show the strength of synchrony of the EEG electrodes
over the contralateral primary motor area C3 (A & B) and ipsilateral primary motor area C4 (C) with EMG
(First Dorsal Interosseous, FDI; and Flexor Pollicis Brevis, FPB, muscles) in different frequency bands. This

figure has been published in Bista et al. (2023) as Figure 3, see appendix 5.1.
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Figure 5.9 Box plot of banded CMC (expressed as z-scores) for the EEG-EMG channel and frequency
band combinations that were found to show significant CMC in PLS after FDR correction. The plots show

the CMC for control and PLS participants overlayed with individual values. The groups were compared using
the Kolmogorov-Smirnov test. Significant group differences are marked with an asterisk (*p < .05, corrected

at FDR g = 0.05). This figure has been published in Bista et al. (2023) as Figure 4, see appendix 5.1.

The results show that there were statistically significant differences in the frequency,
location (EEG-EMG pair), and magnitude of the CMC between healthy controls and the
PLS group, Figure 5.8 (q < 0.05, with FDR multiple comparison correction). The coherence
spectra for all EEG channels and muscles investigated are presented in Figure 5.2 and
significant differences between PLS and control groups are summarized in Figure 5.8 and

Table 5.2.
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Table 5.2 Table showing group average banded Corticomuscular coherence (CMC)

values expressed as p values. The CMC measures pertain to selected EEG-EMG channel
and frequency band combinations that were significant in the PLS group after FDR
correction at g = 0.05. The CMC values are shown for controls and PLS along with group
difference p values and effect size. This table has been published as Table 2 in Bista et al.

(2023), see appendix 5.1.

CON PLS Kolmogorov- Effect Size

EEG/EMG Frequency Avg pCoh Avg pCoh Smirnov test Cohen’s d
(p) (p) (P)

C3-FDI High Beta 0.135 0.011 0.465 0.381
C3-FDI Low Gamma 0.093 0.003 0.006 0.987
C3-FPB High Alpha 0.040 0.033 0.047 0.374
C3-FPB High Gamma 0.0412 0.009 0.052 0.524
C4-FDI Low Beta 0.788 0.009 0.015 0.786

Healthy controls did not show strong beta-band CMC peaks over the contralateral motor
area when grouped across all participants (C3), likely due to the task selection (pincer grip
vs precision grip), Figure 5.6 and Figure 5.8 A-B. However, when examined on an
individual basis significant beta-band CMC was detected in 14/18 controls, Figure 5.7.
Biological sex had no effect on CMC detected in the PLS cohort (p > 0.05, tested using

Mann-Whitney U test).
5.3.5 CMC pattern over the contralateral primary motor area

C3-FDI and C3-FPB CMC were significantly higher in the gamma- and alpha-band,
respectively, in the PLS group when compared with controls. The coherence was not
statistically significant for the control group at the C3 channel location over contralateral

motor area (between C3 and for both the FDI and FPB muscles, respectively, Figure 5.8
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A-B). It is notable that statistically significant gamma- and alpha- band cortico-muscular
coherence was observed in the PLS cohort (Figure 5.8 A-B) as this is not typically observed

in healthy subjects during low force muscle contractions.

5.3.6 CMC pattern over the ipsilateral primary motor area

Significant beta-band CMC (i) was observed between C4 and the FDI over the ipsilateral

motor area in the PLS cohort, and not observed in controls (Figure 5.8 C).

5.3.7 Correlates with UMN dysfunction score show location-specific positivity and
negativity

We then conducted a separate analysis to test for significant correlations between CMC
and UMN score (calculated for all pre-defined frequency bands and EEG and EMG
channels). Several of the CMC measures were significantly correlated with the UMN
dysfunction score after FDR correction, Table 5.3, and Figure 5.10. In Table 5.3 and Figure
5.10, a negative correlation between a CMC measure and UMN score indicates that higher
UMN-impairment (more severe clinical symptoms) are associated with reduced EEG-EMG
synchrony (CMC) in the PLS cohort.

A positive correlation indicates that PLS participants with more severe UMN symptoms
exhibited stronger CMC in these muscles/brain regions. Both alpha- and gamma-band
CMC between the APB muscle and the contralateral motor cortex (C3) were lower in PLS
participants with more severe UMN impairments (significant negative correlation with
UMN score). Theta-band CMC coherence between the FDI and the frontal brain region
(Fz) was also significantly lower in PLS participants with greater UMN dysfunction.
Gamma-band CMC between the APB and the ipsilateral motor area (C4) varied with the

degree of upper motor neuron dysfunction. PLS participants with greater UMN
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impairments exhibited lower CMC in the high gamma-band (yn) but higher CMC in the

low gamma-band (yi). Finally, PLS participants with greater UMN impairments exhibited

greater beta-band CMC between the APB and the parietal brain region (beta-band CMC in

the parietal region is not typically observed in healthy controls).
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Figure 5.10 Measures of Cortico-Muscular (EEG-EMG) Coherence in PLS show significant strong

positive and negative correlations with the clinically defined Upper Motor Neuron (UMN) dysfunction

score. The p-values have been corrected for false discovery rate (FDR) at q = 0.05. Notice that the

correlations are partial correlations with the effect of age removed from the inference. This figure has been

published as Figure 5 in Bista et al. (2023), see appendix 5.1.
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Figure 5.11 Significant correlations of cortico-muscular coherence with clinically defined Upper Motor

Neuron (UMN) dysfunction score show location-specific positivity and negativity. This figure has been

published as Figure 6 in Bista et al. (2023), see appendix 5.1.

Table 5.3 Summary of Cortico-Muscular Coherence (CMC) Measures of Interest.

This table has been published as Table 3 Bista et al. (2023), see appendix 5.1.

CMC EEG/EMG Frequency Band Significant Significant  Significant +/-

Measure Location Coherence difference Correlation
observed between with UMN
in PLS PLS and Score
Controls
1 C3-FDI High Beta v
2 C3-FDI Low Gamma v v
3 C3-FPB High Alpha v v
4 C3-FPB High Gamma v
5 C4-FDI Low Beta v v
6 Fz-FDI Delta -
7 C3-APB Low Alpha -
8 C3-APB High Gamma -
9 C4-APB High Gamma -
10 C4-APB Low Gamma +
11 Pz-APB Low Beta +
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5.4 Discussion

To date, studies investigating CMC in motor neuron diseases have focused on estimating
beta-band CMC between muscles of the hand/arm and M1, as a direct reflection of
UMN/LMN pathology (Proudfoot et al., 2018b). However, our recent EEG studies in ALS
(Dukic et al., 2019, McMackin et al., 2020) and Post-Polio Syndrome (Coffey et al., 2021)
suggest that abnormalities in cortical network activity extend beyond M1 in these
conditions, a finding that is also supported by neuroimaging studies (Finegan et al., 2019).
We have used CMC to demonstrate how brain activity in participants with PLS differs from
that of healthy controls during the performance of a pinch grip motor task. Here we
characterised the engagement of different brain regions by the oscillatory functional
coupling between signals recorded from brain and muscle, Figure 5.8, and Table 5.2. In
PLS, higher CMC at contralateral M1 was observed in the gamma- and alpha-band when
compared with controls. Significant beta-band CMC was also detected in ipsilateral M1,
which is not typically observed in healthy participants. In each case, the CMC measures
were higher in PLS than in controls, suggesting that these observed differences are unlikely
to be attributable to muscle wasting or dysfunction (which would typically decrease CMC).
We also identified several other CMC measures that were correlated with clinical measures
of UMN dysfunction, which were also identified outside of the contralateral primary motor

area.
5.4.1 PLS-specific differences in CMC

Higher alpha and gamma-band CMC between contralateral M1 and FDI/FPB was observed
in PLS when compared to controls, Figure 5.8 C and B, respectively, with a large difference
in gamma-band reported (Cohen’s d = 0.987). Altered functional connectivity throughout

the sensorimotor cortex has been similarly demonstrated in ALS in resting-state EEG
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studies (Nasseroleslami et al., 2017). In the present study, gamma-band CMC was detected
in participants with PLS during low force muscle contractions. This is unusual as gamma
band CMC is typically only observed in healthy controls during more forceful or dynamic
muscle contractions (Omlor et al., 2007, Gwin and Ferris, 2012). Previous literature has
shown that gamma- and beta -band CMC are present under different conditions and are
often inversely related (i.e., when gamma-band CMC increases, beta-band CMC
decreases). For example, gamma-band coherence appears during strong contractions, with
a corresponding reduction in beta-band CMC and is thought to reflect a stronger excitation
of the motor cortex or greater attention to the task (Brown et al., 1998).

The observed broad increase in CMC in PLS may reflect a combination of pathogenic,
adaptive, and/or compensatory increases in the synchronization of neuronal groups in
response to upper motor neuron degeneration and dysfunction in the inhibitory inter-
neuronal circuitry in PLS (Agarwal et al., 2018). Neuronal loss in M1 in PLS, and the
cortical and subcortical changes beyond M1 are likely to disrupt information flow in both
local neural circuits and larger scale networks. This may require a rebalancing of inter-
regional interactions and a reorganisation of the sensorimotor networks that are engaged in
processing and transferring information during movement. This in turn would manifest as
changes to the synchronization patterns across the sensorimotor network and alterations in
the coupling between cortical/subcortical and spinal regions.

Another key finding was the detection of beta-band CMC in the ipsilateral motor cortex in
PLS, with a strong difference reported between PLS and controls (Cohen’s d = 0.786).
Ipsilateral premotor activity has been previously observed in ALS (specifically in ALS
participants that exhibited a greater number of UMN signs relative to LMN symptoms) in
an EEG-based investigation of movement-related cortical potentials (Inuggi et al., 2011).

It is possible that the increased activation of the ipsilateral sensorimotor cortices is
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functionally relevant and aids in the performance of the motor task. Ipsilateral cortical
activation is increased in other populations in which elements of the cortical network have
been damaged, e.g., in stroke, multiple sclerosis and spinal cord injury (Prak et al., 2021,
Lenzi et al., 2007, Ward et al., 2003). Previous studies suggest that ipsilateral M1 aids the
contralateral motor cortex in the planning and organization of hand movements (Chen et
al., 1997), but it remains unclear whether ipsilateral M1 plays a significant role in mediating
the motor command to motoneurons of the hand (Soteropoulos et al., 2011). There is
limited evidence to support a monosynaptic pathway to convey direct ipsilateral actions to
hand muscles, but it is possible that ipsilateral projections are conveyed through other
indirect/polysynaptic pathways (Calvert and Carson, 2022). Though data presented in this
study cannot elucidate the precise neural circuits and pathways through which ipsilateral
M1 signals influence muscle activity, the results demonstrate for the first time that the
contributing brain regions in sensorimotor control are altered in PLS during a motor task.

This manifests as a reshaping of synchronous oscillations between cortex and muscle.
5.4.2 Associations between CMC and Clinical Scores

PLS participants with greater clinical impairment exhibited larger CMC in brain regions
which are not directly associated with motor execution (positive correlations in Figure 6
between APB and the ipsilateral motor cortex, C4, and the parietal region, Pz). This finding
suggests that PLS affects a wider brain network extending beyond M1, as indicated in
previous neuroimaging studies (Finegan et al., 2019). Less impaired PLS participants
exhibited higher alpha and gamma band coherence in contralateral M1. The significant
correlations between CMC and UMN score were primarily observed in the APB muscle
(5/6 correlations), though the reason for this is unclear. Previous studies have found no

evidence that PLS conforms to the “split-hand plus” feature of ALS, whereby greater
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weakness and atrophy is observed in APB relative to other muscles innervated by the
median nerve (Menon et al, 2012).

PLS participants with greater motor impairments exhibited higher beta-band CMC in the
parietal area (Pz) (Figure 5.11). Studies in non-human primates have shown that activity in
posterior parietal sites is modulated by beta-band oscillations from the somatosensory
cortex, and that they in turn exert an influence on the motor cortex (Brovelli et al., 2004).
Though the majority of corticospinal neurons originate from M1, neuroanatomical and
electrophysiological studies in primates have also found evidence of corticospinal
projections from the supplementary motor area, somatosensory and parietal cortices
(Murray and Coulter, 1981, Maier et al., 2002, Galea and Darian-Smith, 1994). CMC at
EEG electrodes over non-M1 cortical areas could thus occur due to an increase in the
relative contribution of alternative descending pathways to muscle activation, other than
direct M1 projections. These synchronies could also reflect a restructuring of cortico-
cortical communication between non-ML1 regions and areas such as M1 that have direct
projections to the spinal motor pools. For example, the enhanced beta-band coupling
between the parietal brain region and muscular activity could reflect an increase in the
functional connectivity of these brain networks (Meoded et al., 2015). It is also possible
that the chronic loss of corticospinal input to the spinal motoneurons, which is combined
with extreme muscle weakness and slowing of movement in PLS, could produce a change
in afferent activity. This would in turn influence CMC. Though beta-band CMC is
primarily driven by efferent supraspinal structures, there is now evidence to suggest that it
can be modulated by sensory receptors that provide afferent feedback to the central nervous
system (Witham et al., 2011).

Although the observed CMC differences in PLS could arise from both the direct and

indirect effects of UMN degeneration, the increased CMC in more impaired PLS
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participants for specific brain regions could potentially suggest that these changes are
compensatory/adaptive in nature. Taken together, these results could suggest that the
pattern of brain network re-organization in PLS follows a similar trajectory to recovery in
stroke, where more impaired PLS participants rely on contributions from the ipsilateral
hemisphere but those that are minimally affected can recover function by restructuring the
functional connectivity in the contralateral hemisphere (Brancaccio et al., 2022). Future
studies are needed to elucidate the pathways through which these wider brain regions could
influence muscle activity and determine the exact nature of the observed changes in CMC
(pathogenic, adaptive, or compensatory). These network level changes could be further
characterised in future longitudinal studies of PLS by examining changes in the CMC

measures alongside changes in clinical scores of upper motor neuron impairment.
5.4.3 Banded CMC as a tool for accessing network dysfunction

The differences between more and less impaired PLS participants further suggest that
banded CMC has the potential for development as a tool to monitor disease progression or
importantly as a measure to assess target engagement in clinical trials (Jeromin and Bowser,
2017). These measures are particularly needed for PLS, as longitudinal progression is
difficult to quantify in such a slowly progressing disease. The PLS-specific differences in
CMC and the differences between more and less impaired PLS participants reported in this
study provide the basis for further development of these markers of motor network

dysfunction.

5.5 Conclusion
This study demonstrates the presence of abnormal cortico-muscular coherence in PLS for
the first time using the banded coherence method, which we suggest could reflect a

restructuring of the cortical network connectivity in response to UMN degeneration. This

119



observation suggests that PLS affects a sensorimotor brain network extending beyond the
primary motor cortex. Correlations showed that higher CMC in specific brain regions was
also observed in more impaired PLS participants compared with those with less severe
impairments. This may suggest these differences are compensatory/adaptive in nature,
though these differences could arise from both the direct and indirect effects of UMN
degeneration. The correlations with clinical UMN scores demonstrate the potential for
CMC measurements to be used as a tool to identify dysfunction in specific cortical
networks during motor tasks, and prompt further development of quantitative

neurophysiology-based biomarker candidates in PLS.

5.6 Limitations

The banded coherence method could underestimate the unique coherence value in group
average coherence spectra for a broadband frequency band such as the high-gamma band
if majority of coherence values are close to zero. For example, in Figure 5.8 A, even though
there are four significant peaks in the 2Hz banded group average coherence spectra for
controls in the high gamma-band, it is not significant after banding for whole bandwidth
because majority of 2Hz banded coherence values within the high-gamma band are close
to zero. One possible solution for this problem is to break down the broadband frequency
into smaller bandwidths. For example, breaking down the high gamma band (52-97Hz) into

high-gamma 1 (52-75Hz) and high-gamma 2 (76-97Hz).
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6. Results: Sensor Level Study of EEG Functional Connectivity

Under Review Work List

The work described in this chapter has been submitted in the peer-reviews journal the
Journal of Neural Engineering as:

Bista S, Coffey A, Fasano A, et al., Abnormal EEG spectral power and coherence measures
during pre-motor stage in Amyotrophic Lateral Sclerosis: Implications for developing

biomarker candidates, Journal of Neural Engineering, 2024 (Under review).

6.1 Introduction

ALS is a multi-network dysfunction (Dukic et al., 2021) causing deficits in motor (Cividini
et al., 2021, Dukic et al., 2019, Dukic et al., 2021) and cognitive (McMackin et al., 2021,
Cividini et al., 2021, Dimond et al., 2017) brain networks. However, understanding the
changes in motor networks is important to understand disease pathology because the motor
region is predominantly affected by the neurodegeneration. Impairment of sensorimotor
and non-motor networks in ALS has been identified from resting state paradigms using
EEG (Dukic et al., 2019, lyer et al., 2015) or fMRI (Agosta et al., 2011, Douaud et al.,
2011, Menke et al., 2018, Zhou et al., 2014). However, motor paradigms, involving pre-
motor stage or motor execution that can directly access sensorimotor pathways, might be
needed to unravel the dynamics of motor network pathology in ALS for biomarker design.
Previous electrophysiological studies have reported the manifestation of distinct EEG
signatures of cortical sensorimotor activity, such as the Bereitschaftspotential (BP), as early
as nearly 2 seconds before a voluntary movement (Pfurtscheller and Berghold, 1989,
Deecke, 1996, Shibasaki and Hallett, 2006, Walter et al., 1964, Kornhuber and Deecke,

1965). Depending on the experimental design and the time window investigated, the pre-
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movement or pre-motor activity is often associated with preparation (Requin et al., 1990),
planning (Nasseroleslami et al., 2014), anticipation (Mauritz and Wise, 1986) or attention
(Mannarelli et al., 2014) to upcoming motor execution. During the pre-motor stage and
motor execution, there is a decrease in sensorimotor mu or beta power compared to the
baseline (rest), known as event-related desynchronization (ERD), signifying cortical
activation. Conversely, following execution, there is an increase or rebound in this power,
indicating cortical idling or deactivation (Neuper et al., 2006, Pfurtscheller and Lopes da
Silva, 1999). Several studies have reported that mu or beta ERDs are altered during pre-
motor stage and during motor execution in ALS, however, previous findings have been
inconsistent (Riva et al., 2012, Proudfoot et al., 2017, Bizovicar et al., 2014). This is
especially important, as this pre-motor activity is associated with the engagement and
function of non-primary motor regions such as parietal areas, dorsolateral prefrontal cortex,
and pre-motor cortex, that network directly with primary motor areas (M1), and are
therefore, most likely to be affected — possibly in a heterogenous manner — in motor system
degeneration.

Changes in neural activity and network function can also be investigated using measures
that quantify alterations in the spectral content and characteristics of neural activity, such
as coherence and Event-Related Spectral Perturbations (ERSPs). While ERDs provide
information on the timing and relative neural activity in different brain regions at narrow
bands (mu or beta), ERSPs can provide information on the broad band spectral content of
this neural activity and how the power of different frequency components (e.g., alpha, beta,
gamma) changes over time. In addition, coherence can provide a direct measure of (phase)
coupling of non-primary motor cortices with sensorimotor cortices (functional
connectivity) which could be key to understanding neuropathophysiological mechanisms

in ALS at a network level. We hypothesize that in ALS, the pre-motor activity, as reflected
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in ERSPs and the coherence between neural activity in different brain regions, shows
abnormal characteristics compared to healthy controls that are distinct from neural activity
in motor execution. The rationale is based on the direct effects of motor system
degeneration that might affect the connections between primary motor cortex and
secondary motor and pre-motor areas, as well as secondary effects such as adaptations,
plasticity, or compensatory processes. To examine this, we will compare ERSPs and
coherence, between ALS and control groups. More specifically, we will investigate
whether particular phases of movement (resting state, pre-movement, motor execution)
show larger differences in EEG network connectivity between ALS and controls; and
whether the altered EEG networks in ALS show associations with clinical measures of
impairment such as ALSFRS-R scores. Lastly, we will test whether these measures are
reproducible and show strong effect sizes, which is a prerequisite for developing
prospective network-based biomarker candidates in ALS for diagnosis, prognosis, and

phenotyping.

6.2 Methods

6.2.1 Ethical Approval

Ethical approval was obtained from Tallaght Hospital/St. James's Hospital Joint Research
Ethics Committee for St. James's Hospital, Dublin, Ireland [REC: 2019-07 Chairman's
Action (22)], and experiments were conducted under the standards set by the Declaration
of Helsinki (2013). All participants provided written informed consent before participating

in the experiments.
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6.2.2 Participants

6.2.2.1 Inclusion Criteria
Healthy individuals aged between 18 and 65 and all ALS patients fulfilling the revised EL

Escorial diagnostic criteria for possible, probable, or definite ALS were included.

6.2.2.2 Exclusion Criteria

Patients diagnosed with primary lateral sclerosis, progressive muscular atrophy, multiple
sclerosis, epilepsy, stroke, brain tumours, prior transient ischemic attacks, structural brain
disease, psychiatric diseases, medical conditions that affect the nervous system (e.g.,
diabetes), other neurodegenerative conditions and other terminal conditions, such as human
immunodeficiency virus, were excluded. Similarly, people who have previously had
(allergic) reactions in similar recording environments (e.g., to recording gels) and pregnant

women were also excluded.

6.2.2.3 Clinical and Demographic Profile

Resting state and motor task EEG data were recorded from 22 ALS patients [age:
65.56+9.92 (mean + std)] and 16 healthy controls [age: 62.67+9.42 (mean % std)]. The
patients and controls were age matched (Mann-Whitney U test, p=0.30). The clinical and

demographics data of analysed patients and healthy controls are shown in Table 6.1.

6.2.3 Experiment

6.2.3.1 Experimental paradigm

Participants were comfortably seated on a chair in front of a screen, on which visual cues
for the experiment were presented, inside a shielded room (Faraday cage). The screen was
positioned at eye level, approximately 1 metre from the participants. Participants were
given practice trials to produce and maintain the target force displayed onscreen using their

right hand’s thumb and index finger (irrespective of their handedness) before starting the
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main experiment. The experiment started with a resting-state (eyes open and fixated on a
cross on the presentation screen with mind-wandering) recording for 3 blocks of 2 minutes.
A motor task followed the resting state recording. Participants were asked to produce a
maximum force and hold (for 5 seconds) by pinching the force sensor according to visual
cues. Participants were provided with the real-time feedback of the force applied, given by
the height of a filled rectangular green bar visible onscreen. Five trials were recorded with
30s rest between the trials, and the average force of the five trials was calculated online and
used as the maximal voluntary contraction (MVC). The participants then performed 30
trials of isometric pinch grips at 10% MVC following the target force displayed onscreen.
Five seconds after the start of a trial, an empty rectangular box was displayed onscreen as
a go cue. The participants pinched the force sensors to increase the height of the green bar
to reach the height of the target box and then hold to keep a constant force. After 5 seconds,
the box disappeared as a cue for participants to relax. A separate cue for the pre-motor stage
was not provided. Each trial lasted for 15s (5s pre-motor, 5s execution, and 5s rest), as

shown in Figure 6.1 B.

6.2.3.2 EEG and force acquisition

EEG was recorded with a 128-channel active electrode system (Biosemi ActiveTwo
system, Biosemi B.V., Amsterdam, The Netherlands). Eight external electrodes were
placed on the scalp and face, and the electrode offset was maintained below £25uV. The
force applied during the pinch grip experiment was measured using two flat resistive force
sensors (FlexiForce A201 Sensor, Tekscan, Inc., Boston, MA, USA). The sensor’s circular
sensing areas (d=9.7mm) were attached to a wooden hexagon prism (edge=30mm,
thickness=25mm). An example of force profiles recorded from 30 trials for a healthy

participant is shown in Figure 6.1 C.
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Table 6.1 The clinical and demographics data of analysed patients and healthy

controls.
Group N Male Female Age (years)® Disease Diagnostic  ALSFRS-R?
duration delay
(years)? (months)?
Controls 16 10 6 62.67+9.41
ALS
ALL 22 16 6 65.56+9.92  2.37+2.02 20.19+25.02  39.59+5.61
Spinal 19 13 6 65.71+10.51 2.55+2.12 22.24+26.42  40.36+4.69
Bulbar 3 3 0 64.61£6.06 1.20£0.29  7.25+2.00 34.66+9.50
CI90RF72- 21 15 6 65.74+10.13 2.39+2.07 20.40+25.65 39.7115.71
C90RF72+ 1 1 0 61.77£0.00 1.9740.00 15.91+0.00  37.00+0.00

Note: Disease duration is the time interval between the estimated symptom onset and the
EEG recording. Diagnostic delay is the time interval between the estimated symptom onset
and date of diagnosis.

Abbreviations: ALSFRS-R, amyotrophic lateral sclerosis functional rating scale revised;
C90RF72+, presence/absence of the repeat expansion in the Chromosome 9 open reading
frame 72; EEG, electroencephalography.

@ Number shown meanz standard deviation.

6.2.3.3 Disease severity
The revised ALS functional rating scale (ALSFRS-R) scores (Cedarbaum et al., 1999) were
obtained from all ALS participants to examine the correlation of EEG connectivity

measures with disease severity.
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Figure 6.1 EEG channel selection, data format of experiment 2, and force data. (a) EEG data format
showing 30 trials, each trial consisting of 3 phases. Trial 3, for example, is expanded to show the sequence
of visual cues and timings of different phases of the task. From left to right: 1. White screen for 5 seconds
preceding cue onset where participants take no action: motor planning phase. 2. GO cue, as a red rectangle
appears on screen whose height is the target to be matched. 3. Section of 5 seconds during the visual cue:
motor execution phase (between trigger 2 and trigger 3), and 5 seconds after the end of the cue: between
trial rest phase (between trigger 3 and trigger 1), (b) 2D layout of electrode positions for 128 channel Biosemi
system. The blue electrodes are the eight electrodes chosen for analysis, (c) Illustration of the recorded force
for all 30 trials and their average for a healthy participant. Target force is 10% of maximum voluntary
contraction (MVC). One second time windows were selected for analysis, a blue block (3-4 sec) for pre-motor

stage and a red block (8-9 sec) for motor execution.
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6.3 Data analysis

6.3.1 Data Pre-processing

The pre-processing of EEG data was carried out in MATLAB using the Fieldtrip toolbox
(fieldtrip.org). The details of the data pre-processing pipeline used in this study are
explained in sub-section “4.4.1 Sensor Level Study” of Chapter 4 Materials and Method of
this thesis.

Briefly, data analysis involved the extraction of specific segments of EEG data for different
conditions. For the resting state, 30 seconds of data from the first block was used. In motor
task experiments, “bad trials’> where participants did not achieve the target force within the
acceptable range were excluded from analysis. For pre-motor stage, 1-second data between
the 3" and 4™ second of good trials were extracted, while for motor execution, 1-second
data between the 8" and 9™ second of good trials were extracted (see Figure 6.1 c). The bad
channels detected by visual inspection were removed and reconstructed using weighted
average interpolation of the neighbouring channels (Perrin et al., 1989).

Eight EEG channels A5, B22, B31, C25, D4, D12, D19, and D28 (International 10-10
System equivalent P1, C4, FC4, F1, F3, FC3, C3, and CP3) were chosen a priori for the
analysis (Figure 6.1 b). D19/B22 cover left/right primary motor cortex (M1) whereas
left/right premotor cortex (PM) is covered by the electrodes D12/B31. The left primary
sensory cortex (S1) is covered by D28, and the left superior parietal lobule (SPL) is covered
by A5. Similarly, the electrode D4 and C25 covers left dorsolateral prefrontal cortex
(DLPFC) and left dorsomedial prefrontal cortex (DMPFC), respectively. The electrodes
pertaining to the aforementioned cortical regions were chosen because they are known to
be activated during pre-motor activity (Churchland et al., 2006, Riehle, 2005, Pfurtscheller
and Berghold, 1989, Glover et al., 2012, Ariani et al., 2015, Papitto et al., 2020) and

execution (Hanakawa et al., 2008, Papitto et al., 2020, Lacourse et al., 2005, Alahmadi et
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al., 2015, Cisek et al., 2003) of motor tasks in healthy individuals. Additionally, cortical
regions such as M1, S1, PM and DLPFC work together to integrate higher-order cognitive
processes with sensorimotor functions, facilitating complex movement coordination and
task execution based on cognitive demands and goals (Miller and Cohen, 2001). DLPFC is
usually associated with the executive control network (Heinonen et al., 2016, Beaty et al.,
2015, Shen et al., 2020) or central-executive network (Bressler and Menon, 2010, Bi et al.,
2017) whereas M1, S1 and PM are critical parts of sensorimotor networks (Penfield and
Boldrey, 1937, Luo et al., 2020). Therefore, the functional interconnection between these
brain regions is referred to as the executive sensorimotor network (ESMN). The ESMN
enable flexible motor adaptation and cognitive control during various tasks.

The selected channels were (re)referenced using a surface Laplacian spatial filter (see topic
“Referencing and Filtering” of sub-section 4.4.1.1 of section 4.4.1 of this thesis for the
details of Laplacian filter used) because it helps to minimise the effect of volume
conduction in EEG data (Bradshaw and Wikswo, 2001). The Laplacian filtering was
followed by dual-pass bandpass filtering between 2-100 Hz and dual-pass bandstop
filtering between 49-51 Hz using 4th order Butterworth filters designed using Fieldtrip
toolbox. Fieldtrip implemented threshold-based automatic artefact detection, and rejection
were used to detect and remove eyeblinks, muscle artefacts, and jump artefacts (see topic
“Automatic Artefacts Detection and Rejection” of sub-section 4.4.1.1 of section 4.4.1 of
this thesis for the details). The threshold value was fixed such that no more than 20% of

trials were rejected as artefactual trials.
6.3.2 Banded Spectral Coherence

The detailed formulation of banded spectral coherence is explained in sub-section 4.4.4.1.

Here, a summary of the method is included to avoid repetition. Briefly, the pre-processed
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EEG data were converted into the frequency domain using Fourier Transform (Hanning
taper, 1 Hz spectral smoothing, 2-100 Hz bandwidth, and 1 Hz frequency resolution). Auto
spectra and cross spectra were calculated using the Fieldtrip toolbox for each trial. The 2-
100 Hz spectral bandwidth was divided into 8 frequency bands namely delta 6, 0, o, an, Bi,
Bn, y1 and yn excluding the 48-52Hz range to avoid mains power interference. The banded
auto- and cross- spectra were calculated for each trial at each frequency band by taking the
spatial median of the signal spectra at the specific band frequencies. The banded cross-
spectrum was normalised by auto-spectra to obtain a banded spectral coherence estimate

for each trial (Nasseroleslami et al., 2019).
6.3.3 Banded Spectral Coherence Statistics

The details of banded spectral coherence statistics are explained in sub-section 4.5.1.
Briefly, participant-level statistics (individual p-values) were calculated using one-sample
non-parametric rank statistics for spectral coherence (Nasseroleslami et al., 2019).
Stouffer's method (Stouffer et al., 1949, Westfall, 2014) was used to combine individual p-
values to derive average group p-values. The negative logarithm of the average p-value was
used to visualise group average EEG coherence (see equation 4.17). An EEG coherence
(C) greater than 1.30 (i.e., pgyg < 0.05) indicated a significant functional connectivity
between two underlying cortical regions (connected by orange lines in result figures). EEG
coherence of the patient group was compared with the control group using 2 sample non-
parametric rank statistics (Nasseroleslami et al., 2019, Oja and Randles, 2004, Nordhausen
and Oja, 2011) with p-value (pg;f ) corrected for multiple comparisons using adaptive FDR
(Benjamini and Hochberg, 2000). Significant differences in EEG coherence values

between the patient and control groups (i.e., CaLs > CcontroLs Or Cars < CcontroLs and
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paifr < 0.05), referred to as abnormal EEG connectivity for ALS, are indicated by a bold

purple line connecting the underlying cortical regions, Figures 6.3-6.5.
6.3.4 Event Related Spectral Perturbation (ERSP)

See time-frequency analysis (sub-section 4.4.3) for the details of this method. Briefly, the
pre-processed time series data of motor experiments (pre-motor and execution), was first
averaged over trials to get the event-related potential (ERP). The ERP was then subtracted
from every trial of pre-processed data to get non-phase locked (NPL) time series data. The
NPL data were decomposed into time-frequency components using wavelet transform
(morlet wavelet with 5 cycles, a frequency resolution of 1 Hz, and a time resolution of 0.05
seconds) using the Fieldtrip toolbox. The output time-frequency power was normalised to
an inter-trial rest period of 5 seconds of motor task experiment (i.e., -3 to 2 second baseline
window). The normalised time-frequency power was averaged over time components to
obtain event related spectral perturbations (ERSP). Finally, the ERSP was averaged over
participants of each group separately to get the group average ERSP for ALS and healthy

controls.
6.3.5 Event Related Spectral Perturbation Statistics

Significant differences (p-values) of ERSP between ALS and healthy controls were
calculated using Mann-Whitney U test. Adaptive FDR at q=0.05 was used to correct for
multiple comparisons (Benjamini et al., 2006). A 95% confidence interval was also

calculated for group average ERSP.
6.3.6 Global Clustering Coefficient

The global clustering coefficient (GCC), which measures the connectedness or network
density of the EEG functional network, was calculated for eight frequency band, for both
ALS patients and healthy controls, using the Watts and Strogatz method (Watts and
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Strogatz, 1998). See sub-section 4.4.5.1 of chapter 4 of this thesis for the details of

calculation of GCC.
6.3.7 Classification and Clinical Correlation

A simple machine learning (pattern classification) method was used to assess the level of
discrimination provided by the EEG measures from different stages of the task, and to test
if any stage provided better discrimination and/or additional information compared to the
other stages. A nested 5-fold cross-validated linear support vector machine (LSVM)
classification model, designed using MATLAB’s Machine Learning Toolbox, was trained,
and validated to discriminate patients and healthy controls. The nested cross-validation
method was used to avoid feature selection bias and overfitting due to the smaller sample
size (Vabalas et al., 2019) by selecting features at threshold value of g = 0.05 within the
cross-validation loop. To determine the level of discrimination provided by each feature
(EEG measure) on the predicted outcome of the LSVM model, we used the Shapley value-
based explanation (Lundberg and Lee, 2017). The feature with higher absolute Shapley
value is viewed as the most discriminant feature within the classification model
(Rodriguez-Pérez and Bajorath, 2020, Ding et al., 2022). We averaged the absolute
Shapley value over each fold in the 5-fold cross validation and reported the mean value to
avoid biased interpretation based on a single model (Ding et al., 2022).

The association of the ALS abnormal EEG connectivity with their corresponding ALSFRS-
R scores was tested using Pearson’s correlation coefficients. The p values of correlation
coefficients were adjusted for multiple comparisons using adaptive false discovery rate at
g =0.05. A line was fitted to the scatter plot of the data, to visualise the relationship, using
the linear least-square fitting method. The degree-of-freedom-adjusted coefficient of

determination (Adj R?) was calculated for the fitted line to assess the goodness of the fit.
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6.3.8 Effect Size and Statistical Power

Hedge’s g was used to calculate the effect size of the EEG connectivity comparison
between healthy controls and ALS patients (See sub-section 4.5.3). Similarly, the area
under the curve of the receiver operating characteristic (AUROC), a non-parametric test
statistic, was obtained using De Long's method (Zhou et al., 2009) for each connectivity
comparison. Empirical Bayesian Inference, implemented using AUROC (Nasseroleslami,
2019), was used to find the statistical power to assess the reproducibility of the group

comparison results.

6.4 Results

6.4.1 Spectral power revealed task dependent increase in task-related areas

The EEG channels above contralateral prefrontal and parietal regions (DLPFC and SPL)
showed significant increases in spectral power in the 6 band (Figure 6.2 A-B) during the
pre-motor stage in ALS patients. Similarly, during motor execution,  power was increased
in ALS patients compared to healthy controls (i.e., decreased event related
desynchronisation) in all pre-selected Laplacian EEG channels (see appendix 6.7), but the
difference was statistically significant only in EEG channels over contralateral superior

parietal (SPL) and ipsilateral primary motor (M1) regions (Figure 6.2 C-D).
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Figure 6.2 Motor task (pre-motor and execution) event related spectral perturbation (ERSP) for channels
that exhibited significant differences between the participant groups (p<0.05, corrected for multiple

comparisons using adaptive FDR at g = 0.05). (A, B) Pre-motor ERSP in (A) contralateral superior parietal
lobule (SPL) showing significant group difference in the theta (6, 5-7 Hz) frequency band, and (B)
contralateral dorsolateral prefrontal cortex (DLPFC) showing significant group difference in the theta (6,
5-7 Hz) frequency band. (C, D) Motor execution ERSP in (C) contralateral SPL showing significant group
difference in the beta (B, 14-30 Hz) frequency band, and (D) ipsilateral primary motor cortex (M1) showing
significant group difference in the beta (8, 14-30 Hz) frequency band. CON: Healthy controls, ALS: people
with ALS. The vertical doted lines divide the plots into very-low (delta, 2-4 Hz), low (theta and alpha, 5-13

Hz), high (beta, 14-30) and very-high (gamma, >30) frequency bands.
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6.4.2 EEG connectivity reflects task dependent abnormal motor networks in ALS

6.4.2.1 Sensorimotor network abnormal during resting state
The resting state functional networks for ALS patients and healthy controls for all
frequency bands are shown in appendix 6.2. The EEG connectivity between left M1 and

left S1 was significantly increased in ALS compared to healthy controls in the 6 band

(Figure 6.3).

Resting State

CON‘TROLS ALS

CALS >0 *<0 05
Ceon >0 '

. . Cars > Ceon& p*<0.05

CALS < Ccon& p*<0.05

* corrected for multiple comparison

CONTROLS ALS

S$1, -M1

p=0.046

0(5-THz)

2 4

CON ALS

Figure 6.3 Resting state (RS) functional connectivity (FC) network for HC (Left) and ALS patients

(Centre) based on the group average corticocortical coherence in the theta () frequency band. (Right)

Distribution of individual M1-S1 corticocortical coherence (Coh) for HC/ALS in the 6 frequency band, along

with the group difference p-value.
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Figure 6.4 Pre-motor stage (PMS) functional connectivity (FC) networks based on the group average

corticocortical coherence. (First column) PMS FC network for healthy controls (HC) in the ai, an, and fhn
frequency bands. (Second column) PMS FC network for ALS patients in the a1, an, and Bn frequency bands.
(Third column) Distribution of individual PM-S1, DLPF-DMPF, and M1-DLPF corticocortical coherence

(Coh) for HC/ALS in the au, an, and S frequency bands, respectively, along with group difference p-values.
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Figure 6.5 Motor execution (ME) functional connectivity (FC) networks based on the group average

corticocortical coherence. (First column) ME FC network for healthy controls (HC) in the Sy, and
frequency bands. (Second column) ME FC network for ALS patients in the fn and y frequency bands. (Third
column) Distribution of individual M1-SPL and DLPFC-DMPFC corticocortical coherence (Coh) for
HC/ALS in the pn, and y frequency bands along with group difference p-values.

6.4.2.2 Pre(motor) network connectivity abnormal during pre-motor stage

The pre-motor stage functional networks for ALS and healthy controls for all frequency
bands are shown in appendix 6.3. The networks involving contralateral primary motor (M1)
and premotor (PM) regions were abnormal in ALS during the pre-motor stage. The
connectivity between left PM and left S1 in the oy band was significantly stronger in ALS
compared to healthy controls (Figure 6.4 top row). Similarly, the left M1-DLPFC
connectivity was significantly weaker in the pn band (Figure 6.4 middle row). In addition,

a frontal network abnormality, i.e., significantly higher DLPFC-DMPFC synchrony in the
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an band, was observed during the pre-motor stage in ALS patients compared to healthy

controls (Figure 6.4 bottom row).

6.4.2.3 Frontoparietal network connectivity abnormal during motor execution

The motor execution functional networks for ALS and healthy controls for all frequency
bands are shown in appendix 6.4. ALS patients showed significantly stronger connectivity
between the left primary motor (M1) and left parietal (SPL) regions in the Bn frequency
band compared to healthy controls (Figure 6.5 top row). Frontal network abnormality,
involving DLPFC-DMPFC connectivity in the Bn and yi bands, was observed during motor

execution (Figure 6.5).

6.4.3 The levels of average closed-path functional connectivity in the executive-

sensorimotor network are higher in ALS

In this study, we have reported the EEG-based functional interconnections over primary
motor (M1), premotor (PM), primary sensory (S1), and dorsolateral prefrontal (DLPF)
cortices as main regions within the executive-sensorimotor network (ESMN) because these
cortical regions are key contributors to pre-motor activity and motor execution, and control
of voluntary movements. The characteristics of the functional point-to point connections
within the selected regions of the ESMN in healthy controls and ALS patients are
summarized in Table 6.2. In terms of the number of functional connections between the
main nodes of the ESMN, ALS showed a higher number of average point-to-point
connections over the frequency spectrum during all three experiments (resting state, pre-
motor stage and motor execution) but the difference was not statistically significant.

To further characterise whether these general higher levels of connectivity, pertain to global
or scattered increases, or form closed paths and connections, the global clustering

coefficient (GCC) values are reported. GCC was increased in ALS in all three experimental
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conditions (rest, pre-motor stage, and motor execution), Table 6.3. The most notable
increase occurred during resting state and motor execution.

Table 6.2 Comparative summary of executive sensorimotor networks (ESMC) in

healthy controls (HC) and ALS during resting state, pre-motor stage and motor

execution.
Experiment | ESMN in healthy controls ESMN in ALS Remarks
Resting observed in a, B, and y frequency | observed in all frequency | See figure
State bands, sparse at the 0 band, and | bands except §, where it was | appendix 6.1

disappeared in the 3 band sparse

Pre-motor observed in B and y bands, sparse in | observed in all frequency | See figure

Stage other frequency bands bands except & and 0, where it | appendix 6.2
was sparse

Motor observed in the y band, sparse in | observed in all frequency | See figure

Execution other frequency bands bands except 8, where it was | appendix 6.3
sparse

Abbreviations: ESMN, executive-sensorimotor network, 6, delta (2-4 Hz); 0, theta (5-7
Hz); a, alpha (8-13Hz); B, beta (14-30 Hz); v, gamma (31-97 Hz)

Table 6.3 Global clustering coefficient (GCC) for healthy controls (HC) and ALS

during resting state, pre-motor stage, and motor execution.

Exp Group GCC in different frequency bands Mean | Group
§ 0 w | on | B | B | m | w | GCC | Diff. (p)

Resting HC 0 0.14 | 0.18 | 0.18 | 0.29 | 0.21 | 0.25 | 0.32 | 0.20 0.023*
State ALS 0.11 | 0.21 | 0.29 | 0.29 | 0.32 | 0.36 | 0.32 | 0.43 | 0.29
Pre-motor | HC 0.11 | 0.11 | 0.18 | 0.11 | 0.25 | 0.25 | 0.29 | 0.36 | 0.21 0.062
Stage ALS 0.11 | 0.14 | 021 {021 |0.25 | 0.25 | 0.32 | 0.43 | 0.24
Motor HC 0.04 {011 |0.14 {0.11 | 0.14 | 0.14 | 0.29 | 0.46 | 0.18 0.046*
Execution ALS 0.11 | 0.18 | 0.21 [ 0.21 | 0.21 | 0.25 | 0.29 | 0.43 | 0.24

Abbreviations: 6, delta (2-4 Hz); 0, theta (5-7 Hz); ai, low alpha (8-10 Hz); an, high alpha
(8-10 Hz); Bi, low beta (14-20 Hz); Bn, high beta (21-30 Hz); yi, low gamma (31-47 Hz); yn,
high gamma (53-97 Hz).

* p value < 0.05 after correction for multiple comparison using adaptive false discovery

rate at g = 0.05.
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6.4.4 EEG measure of altered connectivity discriminate ALS patients from healthy

controls and reflect uniquely impaired functional networks during pre-motor stage

6.4.4.1 Pre-motor stage abnormal EEG connectivity contributes most to discriminate ALS
patients from controls

The abnormal EEG connectivity measures (Table 6.4) were used as features to discriminate
patients and healthy controls using a nested k-fold cross-validated LSVM. The
classification accuracy of the LSVM was 79.21% with sensitivity of 83.33% and specificity
of 71.67%. Amongst the 7 features used for the classification, the features during the pre-
motor stage showed a higher contribution to discrimination (as quantified by Shapley
values) than the rest and motor execution stages (Figure 6.6). Specifically, the functional
connectivity between M1 and DLPFC on the contralateral side in the high-beta band during
the pre-motor stage, which was significantly lower in ALS patients compared to healthy
controls, showed the highest Shapley value. The resting state functional connectivity
between contralateral primary sensorimotor cortices (M1-S1) in the theta band, which was
significantly higher in ALS compared to controls, showed the lowest Shapley value
amongst the seven connectivity features used. The Shapley values of motor execution

features were higher than those during resting state but lower than in the pre-motor stage.

6.4.4.2 Correlation of abnormal EEG connectivity with clinical scores reflects functional
impairment in ALS

The correlation between abnormal EEG connectivity in ALS and their ALSFRS-R scores
showed that six abnormal EEG connectivity (out of seven) were negatively correlated with
the ALSFRS-R scores (see appendix 6.5). However, only two abnormal EEG connectivity
were statistically significant (p<0.05) after correction for FDR at g = 0.05 (Figure 6.7). A

negative correlation (r=-0.378, p=0.042) was obtained between ALSFRS-R scores and
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contralateral M1-S1 connectivity in the 6 band during rest. Similarly, contralateral M1-SPL
connectivity in the Bn band during motor execution showed a significant negative
correlation with the ALSFRS-R scores (r=-0.505, p=0.025). The motor planning abnormal

EEG connectivity did not show any significant correlations with the ALSFRS-R scores.

Table 6.4 Group average EEG coherence values for healthy controls (HC) and ALS
patients in different frequency bands where significant group-level differences were

observed.
Exp Freq EEG Location  Avg. Coh Group Effect Size? Power
Bands Connectivity -log10(pavg)  Diff. 0=0.05
HC ALS (p)

Resting 0 M1-S1 CONT 0.15 6.14 0.046* 0.75 0.659

State [0.09, 1.43]
oy PM-S1 CONT 0.03 214 0.039* 0.67 0.669

Motor [0.02, 1.35]
Planning Oh DLPFC- CONT 0.02 232 0.026* 0.70 0.734

DMPFC [0.05, 1.38]
Bn M1-DMPFC CONT 6.66 0.77 0.042* -0.79 0.634

[-1.48,-0.14]

Bh DLPFC- CONT 192 12.00 0.033* 0.69 0.702

Motor DMPFC [0.04, 1.37]
Execution Bh M1-SPL CONT 001 141 0.031* 0.84 0.682

[0.18, 1.53]
M DLPFC- CONT 6.70 12.00 0.033* 0.89 0.709

DMPFC [0.23, 1.59]

Abbreviations: 0, theta (5-7 Hz); a, low alpha (8-10 Hz); an, high alpha (8-10 Hz); gn, high beta
(21-30 Hz); 1, low gamma (31-47 Hz); M1, primary motor cortex, S1, primary sensory cortex; PM,
premotor cortex; DLPFC, dorsolateral prefrontal cortex; DMPFC, dorsomedial prefrontal cortex;
SPL, superior parietal lobule; CONT, contralateral.

* p value < 0.05 after correction for multiple comparison using adaptive false discovery rate at q =
0.05.

aNumber in [] shows 95% confidence interval.
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Figure 6.6 Absolute Shapley values for the EEG connectivity measures show the uniquely stronger
contribution of the pre-motor stage to discrimination based on the predicted outcome of the nested 5-fold
cross-validated linear support vector machines (LSVM) model.
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Figure 6.7 Correlation between Amyotrophic lateral sclerosis functional rating scale revised (ALSFRS-R)

scores and pairwise corticocortical coherence Coh [-log10(p)]. (a) Resting-state functional connectivity
between left primary motor cortex (M1) and left primary sensory cortex (S1) in the theta band (6) showed
significant negative correlation with the ALSFRS-R scores. (b) Motor execution functional connectivity
between left primary motor cortex (M1) and left superior parietal lobule (SPL) in the high-beta band (Bn)
showed significant negative correlation with the ALSFRS-R scores. r is Pearson’s linear correlation
coefficient; p is the level of significance adjusted for multiple comparisons using false discovery rate at q =
0.05. Adj R? is the degree of freedom adjusted coefficient of determination for the fitted line using the linear

least-squares fitting method.
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6.4.5 EEG measure of connectivity change are meaningful and reliable

The abnormal EEG connectivity observed in ALS in all three experimental conditions
reflects meaningful and strong disease-related abnormalities (statistical effect size>0.7 for
6 out of 7 comparisons) and shows acceptable levels of reliability (post-hoc statistical

power>0.6), Table 6.4.

6.5 Discussion
6.5.1 Pre-motor networks are impaired in ALS with significant prefrontal and

parietal involvement

Neural activity in premotor cortex, primary motor cortex, and supplementary motor area is
known to drive several processes, including the successful planning of a motor action
during the pre-motor stage, based on invasive studies in non-human primates (Churchland
etal., 2006, Li etal., 2015, Shibasaki and Hallett, 2006, Cisek and Kalaska, 2005) and non-
invasive EEG study in humans (Nasseroleslami et al., 2014), which leads to faster reaction
times (Haith et al., 2016) and more accurate response selection (Wong and Haith, 2017,
Ariani and Diedrichsen, 2019). The neural correlates of motor preparation or planning
during the pre-movement stage in humans can be studied by the Bereitschaftspotential (BP)
or readiness potential (Shibasaki and Hallett, 2006) and the contingent negative variation
(CNV) (Walter et al., 1964), as well as the corresponding event related spectral
perturbations (ERSPs) that are typically referred to as event-related (de)synchronisation
(ERD/ERS) (Pfurtscheller and Berghold, 1989).

Previous studies have reported reduced amplitude of the readiness potential in ALS during
preparation of a motor response during pre-movement phase (Thorns et al., 2010, Westphal
et al., 1998). However, in terms of § ERD, the results are inconsistent (Bizovicar et al.,

2014, Proudfoot et al., 2017, Riva et al., 2012). Our results support the study by Riva et al.
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(2012) who reported no significant difference in w/f ERD in ALS pre-movement in
sensorimotor regions. In addition, we looked outside of typical p/p frequency bands, which
is equally important when looking into abnormal activity underpinned by disease
pathophysiology and found significant power increases in ALS compared to healthy
controls in the prefrontal and the parietal region in the 6 band. This suggests that,
physiologically, ALS patients tend to put more effort prior to motor activity to prepare or
plan a motor task by recruiting neuronal pools over wider cortical areas to overcome the
burden of motor neuron degeneration in sensorimotor cortices.

We reported stronger functional connectivity between PM-S1 and DLPFC-DMPFC and
weaker functional connectivity between M1-DLPFC the pre-motor stage in ALS compared
to healthy controls indicating abnormal involvement of M1, pre-motor, and prefrontal
regions in ALS. The functional coupling between these regions is associated with planning
of a motor task prior to movement execution (Vesia et al., 2018, Koch et al., 2010).
Therefore, the abnormal pre-motor stage spectral power and coherence observed here could
be the consequence of abnormal motor planning in ALS. Motor planning is a complex pre-
motor neurophysiological process consisting of three sub-processes: abstract kinematics,
action selection, and movement-specific transformation of motor goals into the desired
movement (Wong et al., 2015). The motor goal is formed by sensory inputs followed by
the attention phase to choose an object or action of interest (Wong et al., 2015). In this
motor task, the motor goal is predefined, consisting of the pincher grip action of a single
object. Thus, the phase for motor goal preparation is brief and may consist of alignment of
sensory information from the environment only (i.e., sensory information pertaining to the
contacts between fingers and the wooden block). Similarly, the abstract or ambiguous
kinematics sub-phase is absent during the planning phase of this task because participants
know what movement is required (Cisek et al., 2003, Cisek and Kalaska, 2005). Thus, only
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part of the three sub-phases, namely the alignment of sensory information, action selection,
and movement specification, might modulate the motor planning networks during pre-
movement in our motor task.

The contralateral PM-S1 connectivity was significantly higher in ALS during the pre-motor
stage in the oy frequency band. This could be due to the abnormal involvement of premotor
and primary sensory regions in sensorimotor integration during an environment-sensing
sub-phase of motor goal formation (Nakayashiki et al., 2021, Koch et al., 2010) in ALS.
Similarly, the higher EEG connectivity within the frontal region (DLPFC-DMPFC) in the
an band in ALS is likely associated with impairment in the action selection phase.
Interestingly, significantly reduced EEG connectivity was observed within the contralateral
M1-DLPFC at Bn band in ALS. This reduced beta coupling between M1 and DLPFC in
ALS could reflect impairment in generation of descending motor commands due to
neurodegeneration in the primary motor cortex. These neurophysiological phenomena
suggest that pre-motor networks which showed properties of motor planning are impaired
in ALS, not only at the level of neuronal oscillations but also at the level of network-level
cortical communication, which leads to poor motor performance (task performance
accuracy was significantly lower in ALS compared to controls, p = 0.043).

The functional activity in the pre-motor stage, while abnormal and affected, is
fundamentally different. While resting state and motor execution measures show direct
correlation with ALSFRS-R, pre-motor measures do not, suggesting that they reflect a

different aspect of network impairment.
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6.5.2 Underlying factors for observed changes

6.5.2.1 The potential role of cortical hyperexcitability in abnormal but preserved executive-
sensorimotor network connectivity

The EEG network density of closed-loop connections, quantified by mean GCC, was higher
in ALS than in healthy controls during all three stages of the experiments (rest, pre-motor
stage, and motor execution). This widespread property of the EEG network observed in
this study and in other studies on ALS (lyer et al., 2015, Sorrentino et al., 2018) can
potentially reflect cortical hyperexcitability, a well-established signature of ALS (Menon
etal., 2015, Vucic et al., 2011). The abnormal contralateral M1-S1 connectivity during rest
in ALS agrees with widely-reported impaired sensorimotor networks in ALS by EEG
studies (Nasseroleslami et al., 2017) and fMRI studies (Agosta et al., 2011, Zhou et al.,
2014, Douaud et al., 2011, Menke et al., 2018). Furthermore, the resting-state sensorimotor
network abnormality was negatively correlated with the ALSFRS-R score suggesting that
motoric impairment is associated with increased sensorimotor functional coupling in ALS.
This corroborates with the increased S1 disinhibition in ALS and negative correlation of
S1 excitability with ALSFRS-R scores reported by Hoffken et al. (Hoffken et al., 2019).
Importantly, our finding of abnormal sensorimotor EEG connectivity strengthens the
argument that sensorimotor functional connectivity can be captured both at rest and during
stages of motor tasks (pre-motor and motor execution), with each stage providing both
shared and unique information on network-level dysfunction. Such measures have potential
to be used as quantitative neurophysiological biomarker candidates for diagnosis,
prognosis, and phenotyping/stratification of ALS (Dukic et al., 2019, Zhou et al., 2014).
Previous studies in healthy participants have shown that contralateral sensorimotor cortices

(M1, PM, and S1) along with DLPFC were active during pre-movement or pre-motor
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stages (Churchland et al., 2006, Riehle, 2005, Pfurtscheller and Berghold, 1989, Glover et
al., 2012, Ariani et al., 2015, Papitto et al., 2020) and motor execution (Hanakawa et al.,
2008, Papitto et al., 2020, Lacourse et al., 2005, Alahmadi et al., 2015, Cisek et al., 2003).
Beta band cortex-muscle synchrony is a well-known neurophysiological phenomenon
involved in the generation and control of sustained motor movements (Conway et al., 1995,
Halliday et al., 1998). Gamma band cortex-muscle synchrony is likely due to repetitive
force control, which manifests as higher frequency oscillations in cortical regions because
of processing of sensory information and sensorimotor integration (Pfurtscheller and Lopes
da Silva, 1999, Muthukumaraswamy, 2010). This study demonstrated significant EEG
connectivity within contralateral executive-sensorimotor network in healthy controls
during both pre-motor and motor execution stages at  and y frequency bands as expected.
Notably, we reported the presence of f and Y ESMN in ALS, similar to healthy controls,
during the pre-motor and motor execution stages despite the degeneration of upper motor
neurons. This may explain why the control of voluntary movement is preserved in non-
weak ALS (10 out of 22 ALS in our study could produce force within mean+1.5sd of force
produced by healthy controls, p=0.44). Furthermore, EEG connectivity within ESMC
during pre-motor and motor execution stages was observed at lower frequency bands in
ALS that were not present in healthy controls. The manifestation of a low-frequency ESMC
network in ALS may arise as a frequency-based compensation for disrupted high frequency
(B or y) ESMC networks for weak ALS (12 ALS participants in our study unable to produce
force within mean+1.5sd of force produced by healthy controls, p<0.001). This finding
supports the concept of ‘motor reserve’ in ALS (Bede et al., 2021) and corroborates with
the results of Verstraete et al. (2010), who reported that ‘although the structural motor
network deteriorates in ALS, the functional motor network is preserved.” A longitudinal

study on ESMN change over time is required to determine whether the preservation on
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ESMN is temporary and disappears over time, or whether it is preserved regardless of

disease progression and structural network degeneration.

6.5.2.2 Reduced beta ERD during motor execution

ERD studies in ALS have reported alterations in cortical activity during pre-movement and
execution, reflecting the impact of neurodegenerative processes on the motor system (Riva
et al., 2012, Bizovicar et al., 2014). Spectral frequency analysis during motor execution
revealed the commonly observed B event-related desynchronization (ERD) phenomenon in
sensorimotor regions of healthy controls, resulting from task-related cortical inhibition by
interneurons (Zaepffel et al., 2013, Ariani et al., 2022, Nasseroleslami et al., 2014).
Although no significant differences were found in mu/beta ERD between ALS and healthy
controls during the pre-motor stage, ALS patients exhibited significantly reduced p ERD
in the ipsilateral motor region and contralateral parietal region during motor execution. This
finding is consistent with previous reports of reduced cortical mu/beta ERD in ALS patients
during motor execution (Bizovicar et al., 2014). The reduced ERD in ALS during motor
execution is likely due to the loss of GABAergic cortical interneurons (Zhou et al., 2013,
Poujois et al., 2013, Hoffken et al., 2019, Agosta et al., 2011, Fraschini et al., 2016) and

imbalances in inhibitory-excitatory neurotransmitters (Foerster et al., 2013).

6.5.2.3 Functional compensation by non-dominant-motor and non-motor regions

The increased B ERSP (i.e., reduced B desynchronisation) in ALS compared to controls in
ipsilateral M1 during execution motor task reflects the compensatory role of the non-
dominant motor region (Konrad et al., 2002, Schoenfeld et al., 2005, Bede et al., 2021) to
overcome the disease burden in the dominant motor region. Similarly, we have shown that,
during execution motor task, B ERSP is higher over the contralateral superior parietal

region (SPL) along with higher functional coupling with contralateral M1 in the B band.

148



This is likely to reflect a compensatory role of the superior parietal region in ALS (Poujois
et al., 2013, Zhou et al., 2013, Lulé et al., 2007), even though the direct or indirect nature
of this contribution needs further investigation. The involvement of frontal and parietal
regions in abnormal networks, during motor execution, underpins the abnormal
frontoparietal network in ALS (Deligani et al., 2020, Cosottini et al., 2012). In addition,
the negative correlation between ALSFRS-R scores and contralateral motor-parietal
network connectivity (M1-SPL) during motor execution indicates the increased
compensatory role of the parietal cortex in functionally weaker ALS as opposed to those
with relatively stronger functionality. This network connectivity appears to counteract the

motor control dysfunction resulting from M1 motor neuron degeneration.
6.5.3 Multistate functional network impairments as diagnostic tool

Our result showed that, the abnormal EEG connectivity measures in each stage of the
experiment (rest, pre-motor, or execution) contributed to classify ALS from controls. The
contribution of the pre-motor stage features during classification was highest followed by
motor execution and rest features. This suggests that differences between ALS and controls
in functional networks may become more marked during the pre-motor stage enabling the
two groups to be more accurately classified. However, the classification power of a
standalone stage/experiment/modality is not sufficient to be used as diagnostic tool in
clinical settings (Huynh et al., 2016). Combining quantitative EEG features from different
battery of analysis has previously been shown to be useful for classifying various
neurodegenerative diseases (Garn et al., 2017). This is especially important as the results
(Figure 6.3-6.5) indicate that each stage provides unique information on the impairment of
specific parts of the ESMN, most notably during the pre-motor stage. Furthermore,

combining quantitative EEG and neuropsychology was recommended for differential
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diagnosis of Frontotemporal dementia and Alzheimer’s disease (Lindau et al., 2003). Our
findings suggest that combining features reflecting functional network impairment from
multistate experimental paradigms (resting state, pre-motor, and execution) provides the
ability to classify between ALS and healthy controls. The inclusion of pre-motor network
impairment could be the key to designing quantitative neurophysiological biomarkers of
network disruption because, as we have shown, pre-motor stage functional connectivity
grabs a fundamentally different type of motor network impairments than motor execution

and rest and has the highest contribution for the classification of ALS and healthy controls.

6.6 Conclusion

This study was the first to interrogate the pre-motor networks in ALS based on the
alterations in the intensity of task-related neural oscillations and functional connectivity
during resting state, the pre-motor stage, and motor execution. Our results highlighted that
non-motor or non-primary motor cortical regions less affected by neurodegeneration (i.e.,
contralateral prefrontal and superior parietal) or non-dominant motor regions (i.e.,
ipsilateral primary motor) have a distinct - possibly compensatory - role in pre(motor)
network function in ALS. Finally, that pre-motor network impairments in ALS are distinct
and not an extension of impairment in the primary motor cortex, and therefore can
contribute to characterising the disease heterogeneity and developing biomarker candidates

of motor networks dysfunction in ALS.

6.7 Limitations

The EEG connectivity calculated using spectral coherence quantifies the neural synchrony
or frequency-specific phase-locking and therefore the magnitude of information flow
between two underlying cortical regions (functional connectivity) but not the direction of

information flow. Incorporating the magnitude and direction of information flow (effective
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connectivity) as a classification feature could further increase the accuracy of machine
learning models in discriminating between ALS and healthy controls. Source localisation
techniques could more accurately detect abnormal motor networks in ALS than Laplacian
spatial filtering because they are more robust at reducing volume conduction and can

provide information on deeper oscillating cortical sources.
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7. Results: Source Level Study of Corticomuscular coherence

7.1 Introduction

Recent electroencephalography (EEG) studies have demonstrated a correspondence
between neuroelectric activity and UMN pathology in ALS (McMackin et al., 2019b). The
high temporal resolution of EEG is well suited to provide information concerning rhythmic
or oscillatory brain activity across a range of frequencies. Previous EEG investigations in
people with ALS conducted at rest, have demonstrated altered functional connectivity
across brain networks in the theta (4-7 Hz) and gamma (31-60 Hz) frequency bands
(Nasseroleslami et al., 2017, Blain-Moraes et al., 2013, Westphal et al., 1998, Dukic et al.,
2019). During voluntary contractions, oscillatory signals originating from the sensorimotor
cortices are coherent with contralateral muscle signals. This cortex-muscle synchrony can
be measured using Corticomuscular coherence (CMC) (Conway et al., 1995). CMC is
typically observed as synchrony (in the beta and gamma-bands) between EEG electrodes
over M1 and EMG activity (Halliday et al., 1998). It is considered to be indicative of the
efferent drive to the spinal motoneurons, while also being subject to the modulating
influence of peripheral afference (Witham et al., 2011). The frequency of synchrony
between cortex and muscles is modulated by various factors including the type of task and
level of contraction force (Kilner et al., 2000, Liu et al., 2019). For low force isometric
contractions, the CMC is observed in the beta band (13-30 Hz) whereas in more forceful
and dynamic contractions, the CMC shifts to the gamma band (31-97Hz) (Omlor et al.,
2007, Gwin and Ferris, 2012, Andrykiewicz et al., 2007).

Recent studies have shown that CMC can provide valuable insights into the
pathophysiology of ALS, as well as potential biomarkers for diagnosis and disease

progression. Peak beta-band CMC over M1 is reduced in conditions characterised by UMN
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degeneration, including stroke (Fang et al., 2009, Aikio et al., 2021) and ALS (Issa et al.,
2017, Proudfoot et al., 2018b). This reduction is thought to be due to the progressive loss
of motor neurons, which results in a decrease in the number of signals that can be
transmitted between the brain and muscles.

Despite its potential as a biomarker for neurodegenerative diseases, CMC analysis is still
premature, and there is much that remains to be understood about its relationship with the
disease. Our recent CMC study on patients with lower motor neuron dysfunction such as
post-polio syndrome (Coffey et al., 2021) and patients with upper motor neuron
dysfunction, such as PLS (Bista et al., 2023), found abnormal patterns of brain activity
beyond M1 and the beta band during voluntary movement. ALS being the disease where
both upper and lower motor neurons are affected, we, therefore, hypothesized that (1)
Impaired CMC could be detected beyond the beta frequency band and contralateral
sensorimotor cortices in ALS, (2) CMC could be a tool to reveal multiple network

dysfunction in ALS.

7.2 Method

7.2.1 Ethics

The study was approved by the Tallaght University Hospital / St. James's Hospital Joint
Research Ethics Committee - Dublin [REC Reference: 2019-05 List 17 (01)] and performed
in accordance with the Declaration of Helsinki (2013). All participants provided informed

written consent to the procedures before undergoing assessment.
7.2.2 Participants

ALS patients were prospectively recruited in this study through the national ALS clinic at
Beaumont Hospital. All participants with ALS were clinically diagnosed as possible,

probable, or definite ALS (Hardiman et al., 2011). Healthy controls, age-matched to the
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ALS cohort, were recruited from a database of healthy controls interested in taking part in
the ongoing research studies in the Academic Unit of Neurology, Trinity College Dublin,
the University of Dublin.

Participants with a history of major head trauma or other neurological conditions that could
affect cognition, alcohol dependence syndrome, current use of neuroleptic medications or
high-dose psychoactive medication were excluded. Those with diabetes mellitus, a history
of cerebrovascular disease, and those with neuropathy from other causes were also

excluded.
7.2.3 Clinical assessment

Disease duration from symptom onset, diagnostic delay, and site of disease onset were
recorded. The revised ALS functional rating scale (ALSFRS-R) scores (Cedarbaum et al.,
1999) were obtained from ALS cohort. ALSFRS-R is a 48-point validated questionnaire-
based clinical scale that ranges from score 0 (severe functional impairment) to 48 (no
functional impairment). The 48-point total score can be divided into 4 sub-scales namely
bulbar (0-12), fine motor (0-16), gross motor (0-8), and respiratory (0-12) (Cedarbaum et
al., 1999). The fine motor and gross motor sub-scales are combined as motor sub-score (0-
24) that weigh the level of motor impairment in ALS patients.

The Edinburgh handedness inventory (EHI) (Oldfield, 1971) with 10 questions was

performed to assess the handedness of participants.
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Figure 7.1 Motor task and related electromyography (EMG) and force signals. (A) Pincher grip motor task
performed by thumb and index finger of the right hand, (B) a segment of the force profile of the pincer grip
motor task performed at 10% of maximum voluntary contraction (MVC), (C) a force trajectory of the pincer
grip motor task averaged over 30 trials, (D) segment of electromyography (EMG) signal recorded from the
first dorsal interosseous (FDI) muscle during 10% MVC pincher grip motor task. This figure has been

published in Bista et al. (2023) in Figure 1, see appendix 5.1.

7.2.4 Experimental Paradigm

Assessment was conducted in the same manner for the ALS and control groups, similar to
the previously described sensor level study in chapter 6 of this thesis and was also described
in Coffey et al. (2021) and Bista et al. (2023). Briefly, participants held a force transducer
between the thumb and the index finger of their right hand to measure pincer grip force
(Figure 7.1 A). The maximal voluntary contraction (MVC) was determined as the average
peak force achieved during three short (5 s) maximal contractions, where the peak force in

these attempts lay within 10% of each other. Participants were asked to produce the pincer
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grip force at 10% MVC for 5 s with the aid of visual feedback from the force transducer.
A 5 s rest period before and after the task was provide (Figure 7.1 C). Participants

attempted a total of 30 trials for each task.
7.2.5 Recording of (Neuro-)electro-physiological Signals

All participants were seated in a comfortable seat, EEG data were recorded in a special
purpose laboratory, using a 128-channel scalp electrode cap, filtered over the range 0—400
Hz and digitized at 2048 Hz using the BioSemi® ActiveTwo system (BioSemi B.V,
Amsterdam, Netherlands). Each participant was fitted with an appropriately sized EEG cap.
Surface EMG data were recorded simultaneously with EEG using a bipolar electrode
configuration from 8 muscles in the right upper arm, with the electrode pairs placed in
accordance with the SENIAM guidelines (Hermens et al., 2000). The online hardware gain
and filter settings for the EMG signals during recordings were the same as for the EEG

channels, which was followed by further offline pre-processing.
7.2.6 Signal Pre-processing

EEG/EMG data analysis was performed as described in detail in a previous study (Coffey
etal., 2021). Briefly, automated artefact rejection routines (Fieldtrip Toolbox) (Oostenveld
etal., 2011) were used to discard data contaminated by noise. After visual inspection of the
128-channels recordings, EEG channels with higher levels of noise were removed and
reconstructed using weighted average interpolation of neighbouring channels (Perrin et al.,
1989). A time window/epoch duration of 4 s (starting 1s after the visual cue) was chosen
for analysis. Data epochs where the coefficient of variation of the force produced was above
0.2, or where the mean force was less than 8% or more than 20% MVC, were excluded
from further analysis. An average of 7 + 8 trials (i.e., 28 + 32 seconds) data were removed

across all participants for these reasons. An average of 156 trials (i.e., 60+24 seconds) for
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the 128 EEG channels were retained for source reconstruction. The EEG data were (re-
)referenced using common average referencing. The EMG data (signal amplitude) were
normalized with respect to the root mean square EMG amplitude at 100 % MVC. EEG and
EMG data were filtered between 1-100Hz and 10-100 Hz, respectively, using a dual-pass
4th order Butterworth bandpass filter. The EMG signals were not rectified. Three EMG
signals (First Dorsal Interosseous, FDI; Flexor Pollicis Brevis, FPB and Abductor Pollicis
Brevis, APB) were chosen apriori for the cortico-muscular coherence analysis. The target
muscles were selected based on their biomechanical involvement in the pincer grip task

(Danna-Dos Santos et al., 2010).
7.2.7 Source Reconstruction

The details of source reconstruction are explained in sub-section 4.4.2.2 of chapter 4 of this
thesis. Briefly, a template structural MRI was used to compute the forward model. The
source reconstruction was done using linearly constrained minimum variance (LCMV)
beamformer (Van Veen et al., 1997) using the Fieldtrip toolbox. Ten anatomical brain
regions were chosen bilaterally, 5 on each side of the brain, using the automated anatomical
labelling (AAL) atlas (Tzourio-Mazoyer et al., 2002). The chosen anatomical brain regions
(regions of interest, ROI) were Primary Motor Cortex (M1), Primary Sensory Cortex (S1),
Supplementary Motor Area (SMA), Medial Prefrontal Cortex (PFC), and Superior Parietal
Lobule (SPL) of both hemispheres. To derive a single time-series for each ROI all the
time-series within a ROI were weighted using a Gaussian weighting function with the half
width at half maximum set to approximately 17 mm (Dukic et al., 2019, Brookes et al.,
2016, Tewarie et al., 2016). Before deriving a single time-series of each ROI, the direction
along the maximum power for each region was estimated by using singular vector

decomposition on the orientations of the dipoles. Dipoles with the opposite direction (>90
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degrees) to the estimated ROI’s maximal activity vector were sign-flipped. After
completing these steps, we obtained 10 broadband time-series, each representing one ROI.

This pipeline was applied to each subject individually.
7.2.8 Spectral Analysis

CMC was examined in eight different frequency bands (Table 4.2) and a single coherence
estimate was obtained for each band. The frequency bands were defined based on the
typical physiological EEG frequency bands (Sanei and Chambers, 2007) as well as their
relevance both in sensorimotor control (Nasseroleslami et al., 2014) and quantifying
network dysfunction in motor neuron diseases (Dukic et al., 2019, Dukic et al., 2021).

CMC was estimated based on the spatial median using the procedure as described in sub-
section 4.4.4.1 in chapter 4 Materials and Methods of this thesis and in previous studies
(Coffey et al., 2021, Bista et al., 2023) . Briefly, the auto- and cross-spectra for each 1 s
epoch were calculated for each participant. The spatial median coherence was then
estimated from the spatial median of the auto- and cross-spectra across each of the eight
defined frequency bands to obtain the banded coherence. The banded spectral cortico-
muscular coherence was normalized by dividing the band cross-spectrum by the respective
band auto-spectra. To represent the banded CMC as a probability, each coherence value
was compared against zero using a non-parametric one-sample test for significant
coherence [spatial (signed) ranks (Nordhausen and Oja, 2011, Oja, 2010, Oja and Randles,
2004)]. This procedure yielded individual p-values for each frequency band, for each
individual (both ALS and control groups). Stouffer’s method was used to combine
individual p-values to derive average p-value within each group, i.e. in the healthy group,
and in the ALS group (Stouffer et al., 1949, Westfall, 2014). This procedure is similar, but

not procedurally equivalent, to the pooled coherence analysis (Amjad et al., 1997). Both
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methods can be used to combine information from several participants (or trials). The
negative logarithm of the p-values, i.e. -log10(p), was used as a measure of CMC strength
to visualize cortico-muscular coherence. The band-specific coherence values, expressed in
-log10(p), were used to represent the collective coherence over the range of frequencies

within each distinct frequency band.
7.2.9 Statistics

To find significant group differences between the banded CMC values, the band specific
CMC values (expressed as p values) were converted into z-scores by taking the inverse of
cumulative distribution function (CDF) of 1 — p. Resulting z-scores of CMC values were
compared between healthy controls and ALS patients using a non-parametric 2-sample
Wilcoxon rank sum test which reports the test values as z scores. In total 240 comparisons
(10 EEG x 3 EMG x 8 Frequency bands) were made. Correction for multiple comparisons
was performed using the adaptive false discovery rate at g = 0.05 (Benjamini et al., 2006).
The effect size of the CMC differences was also calculated using Cohen’s d.

The association of the CMC measures of the ALS cohort with their corresponding
ALSFRS-R scores, task performance accuracy, and disease duration was tested using
Spearman’s rank correlation coefficient. The p values of correlation coefficients were
adjusted for multiple comparison (240 comparisons in total, 10 EEG x 3 EMG x 8
Frequency bands) using adaptive false discovery rate at g = 0.05. A line was fitted to the
scatter plot of the data, to visualise the relationship, using Robust linear least-square fitting
method. The degree-of-freedom-adjusted coefficient of determination (Adj R?) was

calculated for the fitted line to measure the goodness of the fit.

159



7.3 Results

7.3.1 Clinical Profile

24 ALS (6 females and 18 males, age: 65.33+9.82 [mean £ SD]) were prospectively

recruited from the national ALS Clinic based in Beaumont hospital, Dublin. 22 age-

matched healthy controls (10 female and 12 male) were recruited (age: 62.27+8.97 [mean

+ SD]). Table 7.1 shows the detailed profile of the recruited participants.

Table 7.1 Clinical and demographic data of analysed participants.

ALS Cohort Controls
(n=24) (n=22)

Age at recording (years)* 65.33+9.82 62.27+8.97
Gender

Female 6 10

Male 18 12
EHI

Right 22 21

Left 2 1
Diagnostic delay (months)* 19.04+24.32
Disease duration (months)* 27.41+ 23.43
Site of onset

Spinal 22

Bulbar 2

Thoracic/Respiratory 0
ALSFRS-R score (max 48)* 40.40+5.65

Fine motor sub-score (max 16)* 12.95+2.17

* Numbers show mean * standard deviation

EHI (Edinburgh Handedness Inventory)

ALSFRS-R (Amyotrophic Lateral Sclerosis Functional Rating Scale Revised)
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7.3.2 Behavioural aspect of task performed

The participants were asked to maintain a sustained contraction (steady force) at 10% MVC
for 5 seconds after a visual cue and were provided with visual feedback of the force exerted.
Because of the rigid force sensor and low force condition, which makes pincer grip control
relatively difficult compared to spring type load or higher force condition (for example
20% MVC or greater), both the control and ALS participants performed the task with
periodic adjustment (error correction) of force. Although, the epochs with exerted force not
within the acceptable range (i.e., less than 8% MVC and greater than 20% MVC) were
rejected, it did not guarantee a smooth force trajectory in individuals (for example see
Figure 7.1 B-C). Individually, 14/22 healthy controls and 13/24 ALS patients exhibited
significant periodicity (tested by using Fisher’s g-statistic) of exerted force at ~0.5 Hz, and
12/22 healthy controls and 7/24 ALS patients exhibited significant periodicity of exerted
force at ~0.7 Hz. At the group level (Figure 7.2 A), both healthy controls and ALS patients
exhibited a significant spectral power (p<0.001) of exerted force at ~0.5 Hz and ~0.7 Hz
with no group differences at either frequency (p = 0.938 for ~0.5Hz and p=0.991 for ~0.7
Hz), Figure 7.2 B. ALS patients made significantly more (p=0.003) force exertion errors
compared to controls (Figure 7.2 C) i.e., on average, 32.13+27.52 percent of epochs were

rejected for ALS patients and 10.60+15.95 percent for healthy controls.
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Figure 7.2 Analysis of exerted force during sustained contraction (steady force) task. (A) Group average
(median) power spectra of exerted force at 10% maximal voluntary contraction (MVC) for controls and ALS
patients showing significant peaks at ~0.5 Hz and ~0.7 Hz. (B) Boxplot overlayed by scatter plot showing no
difference in spectral power of exerted force between controls and ALS at ~0.5 Hz and ~0.7 Hz. (C) Boxplot
overlayed by scatter plot of bad epochs (epochs rejected because the exerted force was not in the acceptable

range) for controls and ALS patients showing a significant difference between the groups.
7.3.3 Beta and Gamma sensorimotor CMC during low force pincer grip of rigid object

in healthy controls

The CMC results showed that healthy controls exhibited significant synchronization
between the cortex and muscles in the beta band (14-30 Hz) during voluntary isometric
contraction at 10% MVC. This synchronization occurred between the hand muscles (APB,
FDI, FPB) and the contralateral primary sensorimotor cortices (M1/S1) and was observed
consistently in all healthy participants in individuals as well as at the group level (Figure
7.3 A-C). In addition to beta CMC, which is a well-known cortex-muscle synchrony

associated with generating sustained isometric force at low levels, high-gamma (53-97 Hz)
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synchronization was also consistently observed between all three hand muscles and
contralateral M1/S1 (Figure 7.3 D-F). Moreover, gamma CMC was also consistently

detected between the contracting muscles and the contralateral SMA.
7.3.4 Reduced CMC in Primary Sensorimotor Cortex and beyond in ALS

In the ALS group, there was a significant decrease in CMC compared to the controls
between the hand muscles and the primary sensorimotor cortex (M1/S1) and beyond in
multiple frequency bands. Specifically, CMC between FDI- ipsilateral S1 at high-alpha
(Figure 7.4 A and 7.5 A), FDI- bilateral M1 at low-beta (Figure 7.4 B and 7.5 B-C), FDI-
contralateral SPL at low-beta (Figure 7.4 B and 7.5 D), and FDI- ipsilateral SMA at low-
beta (Figure 7.4 B and 7.5 E) were significantly lower in ALS patients. Similarly, CMC
between APB- contralateral M1/SMA at high-gamma band was also significantly lower in

ALS patients (Figure 7.4 C, 7.5 F-G).
7.3.5 Higher CMC in Ipsilateral Prefrontal Cortex in ALS

CMC between FPB and ipsilateral PFC in the low-beta band was significantly higher in

ALS patients compared to healthy controls (Figure 7.4 D and 7.5 H).
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Figure 7.3 Contralateral sensorimotor regions (M1, S1, SMA) in healthy controls show significant

(p<0.01) group average Corticomuscular coherence (CMC) with muscles. (APB, FDI, FPB) in beta (A-C)
and gamma bands (D-F) during a low force (10% MVC) pincer grip task of a rigid object. Muscles: Abductor
pollicis brevis (APB), First dorsal interosseous (FDI), Flexor pollicis brevis (FPB). Brain regions: Primary

motor (M1), Primary sensory (S1), Supplementary motor area (SMA).
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Figure 7.4 Brain regions showing significant group differences (z-scores) in Corticomuscular coherence
(CMC) values between ALS patients and controls. (A) Significantly lower CMC in ALS between the FDI

muscle and ipsilateral S1 in the high-alpha band. (B) Significantly lower CMC in ALS patients between the
FDI muscle and bilateral M1, ipsilateral SMA, and contralateral SPL in the low-beta band. (C) Significantly
lower CMC in ALS patients between the APB muscle and contralateral M1 and contralateral SMA in the
high-gamma band. (D) Significantly higher CMC in ALS patients between the FPB muscle and ipsilateral
PFC in the low-beta band. Muscles: Abductor pollicis brevis (APB), First dorsal interosseous (FDI), Flexor
pollicis brevis (FPB). Brain regions: Primary motor (M1), Primary sensory (S1), Supplementary motor area

(SMA), Superior parietal lobule (SPL), Prefrontal cortex (PFC).
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Figure 7.5 Scatter plot overlayed in the box plot of Corticomuscular coherence (CMC) values (z-scores)

showing significant group differences (marked by *) between ALS patients and controls. Significant lower
CMC in ALS patients between the FDI and (A) ipsilateral S1 in the high-alpha band, (B, C) bilateral M1 in
the low-beta band, (D) contralateral SPL in the low-beta band, and (E) ipsilateral SMA in the low-beta band.
Significantly lower CMC in ALS patients between the APB and (F) contralateral M1 in the high-gamma band
and (G) contralateral SMA in the high-gamma band. Significantly higher CMC in ALS patients between FPB
and (H) ipsilateral PFC in the low-beta band. The purple colour circle in ALS scatter plots represent left-
handed ALS participant, similarly the yellow colour circle in controls scatter plots represent left-handed
control participant. Muscles: APB Abductor pollicis brevis, FDI First dorsal interosseous, FPB Flexor
pollicis brevis (FPB). Brain regions: M1 Primary motor, S1 Primary sensory, SMA Supplementary motor
area, SPL Superior parietal lobule (SPL), PFC Prefrontal cortex. The prefix c/i represents

contralateral/ipsilateral side of the brain.
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Table

7.2 Cortex-Muscle

pairs

where

significant group differences

in

Corticomuscular coherence (CMC) were observed between ALS patients and

Controls.

Group Difference (ALS-CON)
Cortex-Muscle Location Frequency

z-score p value Cohen’sd
S1-FDI Ipsilateral High alpha -2.27 0.022 0.633
M1-FDI Contralateral Low beta -2.18 0.028 0.610
M1-FDI Ipsilateral Low beta -2.05 0.039 0.553
SMA-FDI Ipsilateral Low beta -2.29 0.021 0.621
SPL-FDI Contralateral Low beta -2.25 0.024 0.574
SMA-APB Contralateral  High gamma -2.45 0.014 0.768
M1-APB Contralateral  High gamma -2.20 0.027 0.574
PFC-FPB Ipsilateral Low beta 2.05 0.039 0.553

SMA: Supplementary motor area, M1: Primary motor cortex, S1: Primary sensory cortex,

SPL.: Superior parietal lobule, PFC: Prefrontal cortex, FDI: First dorsal interosseous, APB:

Abductor pollicis brevis, FPB: Flexor pollicis brevis.

7.3.6 CMC Correlates with Clinical Motor Impairment and Task Performance in

ALS patients

Stronger clinical fine motor impairment in ALS, assessed using the ALSFRS-R fine motor

sub-scores (lower score means higher impairment), was associated with reduced CMC

between FDI muscle and ipsilateral S1 in the delta band (Figure 7.6 A, r = 0.529, p=0.016)

and contralateral S1 in the high-alpha band (Figure 7.6 B, r = 0.460, p = 0.048). On the

other hand, stronger fine motor impairment in ALS was also associated with increased

CMC between APB and ipsilateral SPL in the theta band (Figure 7.6 C, r = -0.473, p =

0.039). Additionally, better task performance accuracy in ALS patients (i.e., the ability to

maintain force at an acceptable limit of 10% MVC) was associated with higher CMC
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between FDI and contralateral SPL in the low-beta band (Figure 7.6 D, r = 0.562, p =

0.042).
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Figure 7.6 Measures of Corticomuscular coherence (CMC) in ALS showed significant strong associations
(Spearman’s correlation) with the clinically defined ALSFRS-R fine motor sub-scores (A, B, and C) and

Task performance accuracy (D). The fine motor sub-score ranges from 0-16, 16 being normal or no
impairment and 0 being severe impairment. The p-values have been corrected for false discovery rate (FDR)
at g = 0.05. (A) CMC between the FDI muscle and ipsilateral S1 show significant positive correlation with
ALSFRS-R fine motor sub-score in the delta band. (B) CMC between the FDI muscle and contralateral S1
show significant positive correlation with ALSFRS-R fine motor sub-score in the high-alpha band. (C) CMC
between the APB muscle and ipsilateral SPL show significant negative correlation with ALSFRS-R fine motor
sub-score in the theta band. (D) CMC between the FDI muscle and contralateral SPL show significant

positive correlation with task performance accuracy (ratio of number of good epochs to total number of

epochs performed) in the low-beta band.
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7.4 Discussion

To date, studies investigating CMC in motor neuron diseases have focused on estimating
beta-band CMC between muscles of the hand/arm and M1, as a direct reflection of
UMN/LMN pathology (Proudfoot et al., 2018b). However, our recent studies in patients
with ALS (Dukic et al., 2019, McMackin et al., 2020), Post-Polio Syndrome (Coffey et al.,
2021), and PLS (Bista et al., 2023) suggest that abnormalities in cortical network activity
extend beyond M1 in these conditions, a finding that is also supported by neuroimaging
studies (Finegan et al., 2019). Here we have used CMC to demonstrate that brain activity
in patients with ALS differs from that of healthy controls during the performance of a pinch
grip motor task (the engagement of different brain networks is characterised here by the
oscillatory coupling between signals recorded from brain and muscle) (Figure 7.4 and
Table 7.2). Furthermore, CMC was detected over brain regions and frequency bands
distinct from the beta-band CMC that is typically recorded over M1/S1. These observations
suggest that ALS affects a wider brain network extending beyond the primary sensorimotor
cortex. We also identified several CMC measures that correlated with clinical measures of

functional motor dysfunction and motor performance.
7.4.1 Gamma CMC during low force isometric contractions in healthy controls

Beta CMC is dominant during sustained isometric contractions but when the muscle
contraction is dynamic, CMC shifts from beta to gamma to account for increased attention
to the task and rapid integration of visual, proprioceptive, tactile, and planning information
(Andrykiewicz et al., 2007, Gwin and Ferris, 2012, Omlor et al., 2007, Brown et al., 1998).
However, beta CMC is not the sole neurophysiological signature of sustained contraction
task if additional task parameters are involved. For example, alpha and beta CMC were

distinctly observed in mechanically induced physiological tremor in healthy controls
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during low force sustained muscle contraction (Halliday et al., 1999, Budini et al., 2014).
The observed distinct gamma CMC in addition to beta CMC in healthy controls during our
sustained contraction task could be the result of the low frequency periodicity of the exerted
force (Figure 7.2 A) which mimics the neurophysiology of a low force dynamic contraction
task (Andrykiewicz et al., 2007). In controls, during a low precision (£20% of target) low
force (8% MVC) isometric contraction task, gamma CMC in addition to beta CMC has
been reported previously by Kristeva-Feige et al. (2002). Similarly, in healthy controls,
significant beta and gamma CMC has been reported not only during isometric contraction

but also during hand grasping (Tun et al., 2021).
7.4.2 Sensorimotor Dysfunction in ALS

In this study, we compared the CMC between an ALS cohort and age-matched controls for
eight frequency bands. The result indicated reduced CMC (except for ipsilateral PFC-FPB
in the low-beta band where CMC increases) in the ALS cohort compared to controls in
alpha, beta, and gamma frequency bands and in brain regions within and beyond M1. Beta
CMC plays an important role in facilitating the efferent/afferent communication between
the motor cortex and muscles (Witham et al., 2011), and fine-tuning motor control to adapt
to changing task demands (Kilner et al., 2000). CMC in the alpha band is associated with
the afferent sensory feedback information from muscles to sensorimotor cortex (Harada et
al., 2009) or may reflect the functional connection between M1 and S1(Ohara et al., 2000).
Our study showed decreased o/ CMC between primary sensorimotor cortices (M1/S1) and
muscle (FDI) in ALS (Figure 7.4 A-B). Previous studies investigating cortex-muscle
synchrony using CMC in ALS patients also reported that beta CMC between muscles and
sensorimotor areas was significantly reduced in ALS patients compared to controls

(Proudfoot et al.,, 2018b). The reduction of beta CMC was also observed in other
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neurodegenerative diseases with movement deficit such as Parkinson’s disease (Yokoyama
et al., 2020, Zokaei et al., 2021) and neurological disorders that cause motor impairment
such as chronic stroke (Meng et al., 2009). Therefore, the observed reduction of o/ CMC
in ALS could be attributed to the dysfunction of the corticospinal tract and could be
considered a marker of sensorimotor network dysfunction in ALS (Proudfoot et al., 2018b).
The reduced CMC for regions other than M1/S1 and/or frequency bands other than o/
could imply broader network impairment in ALS beyond sensorimotor networks

(Nasseroleslami et al., 2017, Dukic et al., 2019).
7.4.3 Motor Planning Dysfunction in ALS

The SMA, a motor area with higher-order motor function, plays a crucial role in movement
preparation and planning (Shibasaki and Hallett, 2006, Hoshi and Tanji, 2004). Despite
very few (about 6%) of corticospinal projections from the SMA to the spinal motor nuclei
supplying hand and finger muscles as opposed to more abundant (about 81%) from M1 in
non-human primate, the former could contribute to movement preparation and selection by
directly influencing the excitability of the spinal circuitry (Maier et al., 2002). Our result
showed significant CMC between contralateral SMA and muscles (Figure 7.3) in the y-
band in healthy controls during muscle contraction that may be the result of direct
activation of motoneurons to facilitate motor control in addition to the indirect influence
through M1 that occurs concurrently (Meng et al., 2008). CMC in the y-band is associated
with dynamic muscle contractions and it is thought to reflect stronger excitation of the
motor cortex or greater attention to the task and rapid integration of visual, proprioceptive,
tactile, and planning information (Andrykiewicz et al., 2007, Gwin and Ferris, 2012, Omlor
et al., 2007, Brown et al., 1998). Previous research has also indicated that y oscillations act

as an online “updating system” for managing motor control (Fries et al., 2007) and y
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oscillations from SMA have been found to be important for sudden changes in the motor
plan (Hosaka et al., 2016). Consistent with this idea, it has been reported that y tACS
(transcranial alternating current stimulation) can improve specific components of visuo-
motor task execution when sudden changes in the motor plan are required (Santarnecchi et
al., 2017). Similarly, y-band corticospinal coherence between the contralateral motor region
and spinal motor neurons has been previously linked to the readiness to respond
(Schoffelen et al., 2005). Therefore, significantly lower CMC between SMA and muscles
(APB in the y-band and FDI in the B-band) in ALS patients compared to controls
demonstrated by our results (Figure 7.4 B-C) could indicate dysfunctional motor planning
networks in ALS (Thorns et al., 2010, Westphal et al., 1998). The reduction of y-band CMC
during initiation of isotonic contraction has previously also been reported in other

movement disorders such as cerebral palsy (Riquelme et al., 2014).
7.4.4. Attention Deficit and Cognitive Burden in ALS

Fast or gamma oscillations from M1 have been associated with task engagement in non-
human primates (Donoghue et al., 1998). Studies have previously shown that motor
performance is enhanced by y tACS over M1 (Moisa et al., 2016, Joundi et al., 2012), and
in turn, observed compensatory neural activity modulation in prefrontal cortex (Moisa et
al., 2016). During a dynamic force control task, y-band CMC between M1 and muscles is
linked to higher attention to the task (Andrykiewicz et al., 2007, Omlor et al., 2007, Brown
et al., 1998). We have already demonstrated above that although we asked the participants
to maintain static (sustained) force, because of the nature of the task, dynamic components
were introduced which required increased attention. Therefore, significantly lower y CMC
between contralateral M1 and APB in ALS patients compared to controls (Figure 7.4 C)

could be attributed to an attention deficit in ALS (Mannarelli et al., 2014, McMackin et al.,
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2019a). Additionally, we have shown that CMC between ipsilateral (right) PFC and FPB
muscle in the  band is significantly increased in ALS compared to controls (Figure 7.4 D).
This could result from role of prefrontal cortex in compensating for reduced y CMC
between M1 and APB muscle for improving motor performance (Moisa et al., 2016).
Furthermore, the increased CMC between right PFC and FPB muscle could be attributed
to higher cognitive efforts used by ALS cohort to maintain force at the target level because
of cognitive decline (McMackin et al., 2021, Beeldman et al., 2020). High functional
connectivity with right PFC in ALS patients has been reported previously by a
neuroimaging study (Borgheai et al., 2020) and interpreted as executive dysfunction in ALS

patients specifically relating to deficits in task-related working memory processes.
7.4.5 Altered Visuomotor Integration in ALS

The superior parietal lobule (SPL) is involved in various cognitive functions, including
visuomotor integration which is the ability to coordinate visual information with motor
output. During visuomotor tasks, activity in the SPL is specifically associated with the
integration of visual and proprioceptive information, suggesting that the SPL plays a key
role in combining sensory information for motor control (Medendorp et al., 2003).
Individuals with SPL lesions had difficulty in performing visuomotor tasks that required
the integration of visual and proprioceptive information (Pellijeff et al., 2006), which
further strengthens the role of the SPL for the integration of sensory information that is
critical for motor planning and execution. In ALS, we showed that f CMC between the
contralateral SPL and FDI muscle is significantly reduced compared to controls which
could be the signature of altered visuomotor integration due to dysfunction of the
corticospinal system. Such phenomenon has been previously reported in neurodegenerative

diseases such as Alzheimer’s disease (Lu et al., 2021). Oculomotor abnormality has been
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previously reported in ALS (Rojas et al., 2020, Kang et al., 2018) which further strengthens

our interpretation that visuomotor integration could be altered in ALS.

7.4.6 No effect of handedness on the significant CMC differences between ALS

patients and controls

The motor task was standardised to be performed by the right hand only, irrespective of
left-hand dominance for some participants. Since, we had very few left-hand dominant
participants (2 ALS and 1 control) who performed the task using their non-dominant hand,
we could not directly compare the effect of handedness on significant CMC differences
between ALS patients and healthy controls using statistical test. However, we have visually
confirmed by showing a box plot overlayed by scatter plot of CMC measures using
different colour (purple for ALS and yellow for controls) for left-handed participants
(Figure 7.5), which indicated that those measures were not the outliers (i.e., lie within the
standard deviation from the mean). Therefore, we can say that there was no effect of

handedness on the significant CMC differences between ALS patients and controls.

7.5 Conclusions

Corticomuscular coherence (CMC) as a tool for investigating motor neuron diseases has
traditionally focused on the beta-band CMC between muscles of the hand/arm and M1.
However, our recent studies on patients with Post-Polio Syndrome and PLS suggest that
abnormalities in cortical network activity extend beyond M1 in these conditions. This study
found that the brain activity of ALS patients differed from that of healthy controls during
a pinch grip motor task, with CMC detected between brain-muscle pairs and frequency
bands distinct from beta-band CMC typically observed between M1/S1 and muscles. These

observations suggest that ALS affects a wider brain network directly or indirectly extending

174



beyond the primary sensorimotor cortex. Additionally, several CMC measures correlated
with clinical measures of functional motor dysfunction and motor performance. In ALS
patients, there was a reduction of CMC in alpha, beta, and gamma frequency bands, which
could be attributed to the dysfunction of the corticospinal tract and could be considered a
marker of sensorimotor network dysfunction. The reduction of CMC between muscles and
brain regions other than M1/S1 and/or frequency bands other than alpha/beta could imply
broader network impairment in ALS beyond sensorimotor networks, potentially
contributing to dysfunction of other aspects of motor control such as motor planning, task
attention, and visuomotor integration. Overall, these findings suggest that CMC may be a
useful tool for studying motor neuron diseases and understanding the underlying neural

mechanisms of these conditions.

7.6 Limitations
The CMC studied here using banded spectral coherence doesn’t provide directional
information. Therefore, the study cannot make inferences whether the corticospinal

network dysfunction is driven by descending efferent or ascending afferent pathways.
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8. Source Level Study of Effective Connectivity

8.1 Introduction

One promising area of research for early diagnosis of ALS is to find brain network based
neurophysiological biomarkers. Directed or non-directed brain networks can be estimated
from non-invasive neurophysiological recording or brain imaging technologies such as
functional magnetic resonance imaging (fMRI), functional near-infrared spectroscopy
(FNIRS), magnetoencephalography (MEG), electroencephalography (EEG) et cetera.
Among all brain imaging technologies, EEG is the most cost-effective technology which
has already proven its value in brain research. One limitation of EEG is its low spatial
resolution, which could be easily overcome by using high-density electrodes with
beamforming techniques i.e., estimate source signals from sensor level signals. In addition,
source level EEG provides a robust means to identify directional connectivity between
brain regions in comparison to fMRI and fNIRS (Anwar et al., 2016).

The network-level changes in brain during rest or on task can be quantified by using brain
connectivity measures such as functional connectivity (FC) or effective connectivity (EC).
Functional connectivity employs the correlation between the interacting brain regions, and
the direction of information flow is not defined (Friston, 2011). So, cortical networks based
on functional connectivity lack the causal information such as inflow or outflow which
could be crucial for explaining a neurophysiological process in health and in disease.
Effective connectivity resolves the issue by providing a causal relationship between the
brain regions of interest (Friston, 2011). The effective brain networks can be estimated
from the EEG time series by using partial directed coherence (PDC) (Baccala and
Sameshima, 2001), which is a frequency domain version of Granger causality. Other

Granger causality-based frequency domain methods such as the direct transfer function
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(DTF) (Kaminski and Blinowska, 1991) can be used to find the causal interaction between
the brain sources, however, DTF is prone to being affected by alternative interactions or
unpredictable factors (Baccald and Sameshima, 2001). On the other hand, PDC is a widely
used method which is proven to be more reliable and faster to quantify causal interactions
among multi-channel EEG signals (Huang et al., 2016). Dynamic Causal Modelling (DCM)
is another popular method for estimating causal interactions between brain sources, but it
requires a prior specification of connectivity linkages (Sato et al., 2009) which is not
required with PDC. The asymptotic distribution of PDC is not well known therefore
bootstrap-based approaches are commonly used to test for significant connectivity.
Variance stabilisation is recommended when it comes to bootstrap-based PDC connectivity
approaches (Baccala et al., 2007). Therefore, in this study, we used a normalised version
of PDC also called generalised PDC or gPDC. The motivation for choosing gPDC was that
it provides variance stabilisation to overcome the lack of scale invariance in PDC (Baccala
and Sameshima, 2021).

Studies using functional connectivity measures have widely reported altered sensorimotor
and extra-motor networks in ALS compared to healthy individuals during rest (Agosta et
al., 2011, Zhou et al., 2014, Douaud et al., 2011, Menke et al., 2018, Dukic et al., 2019)
and tasks (Stanton et al., 2007, Kollewe et al., 2011, Poujois et al., 2013, Cosottini et al.,
2012). Similarly, effective connectivity has been widely used to study causal brain
networks in neurological disorder such as Alzheimer’s disease during rest (Scherr et al.,
2021) or task (Agosta et al., 2010b). Although effective connectivity measures could reveal
more on ALS neuropathophysiology, the use of the measure to estimate brain network
abnormalities in ALS has been rather limited. A resting state fMRI based effective
connectivity study on ALS showed altered causal interaction between sensorimotor

cortices reflecting damage in motor neurons (Fang et al., 2016). Since, studies have focused
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on three cortical regions only (primary motor, primary sensory and supplementary motor),
and causal interaction of cortices beyond these sensorimotor regions were not known.

The compensatory mechanism and/or plasticity in ALS, which are well observed
phenomena, depend on the functional role of the network. Therefore, we hypothesized that
causal network-level changes (motor and extra-motor) can be observed in ALS during
different motor tasks (motor planning and motor execution). Our aim for this study was to
detect any patterns of changes in causal neuro-electric communication between motor as

well as non-motor cortices in ALS during motor tasks.

8.2 Methods

8.2.1 Ethical Approval

Ethical approval was obtained from Tallaght Hospital/St. James's Hospital Joint Research
Ethics Committee for St. James's Hospital, Dublin, Ireland [REC: 2019-07 Chairman's
Action (22)], and experiments were conducted under the standards set by the Declaration
of Helsinki (2013). All participants provided informed written consent before participating

in the experiments.

8.2.2 Participants

8.2.2.1 Inclusion Criteria
Healthy individual aged between 18 and 65 and all ALS patient fulfilling the revised EL

Escorial diagnostic criteria for possible, probable, or definite ALS were included.

8.2.2.2 Exclusion Criteria

Patients diagnosed with primary lateral sclerosis, progressive muscular atrophy, multiple
sclerosis, epilepsy, stroke, brain tumours, prior transient ischemic attacks, structural brain
disease, psychiatric diseases, medical conditions that affect the nervous system (e.g.,
diabetes), other neurodegenerative conditions and other terminal conditions, such as human
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immunodeficiency virus, were excluded. Similarly, people who have previously had

(allergic) reactions in similar recording environments (e.g., to recording gels) and pregnant

women were also excluded.

8.2.2.3 Clinical and Demographic Profile

Motor task EEG data were recorded from 22 ALS patients (mean age: 65.88+10.17) and

16 healthy controls (mean age: 62.67+£9.42). The patients and controls were age matched

(Mann-Whitney U test, p=0.30). The clinical and demographics data of analysed patients

and healthy controls are shown in Table 8.1.

Table 8.1 Clinical and demographics data of analysed ALS patients and healthy

controls
ALS Patients Healthy Controls
(n=20) (n=19)

Gender (Male/Female) 15/5 10/9
Age at recording (years)* 64.36+9.61 62.06+8.86
Handedness (Right/Left) 20/0 17/2
Site of Onset (Spinal/Bulbar/Respiratory) 17/3/0 -

Age at onset (years)* 61.99+9.80 -
ALSFRS-R Score (max 48)* 39.35+5.83 -
ALSFRS-R Motor Sub-scores (max 24)* 17.95+3.01 -
C9orf72 Status (Negative/Positive) 19/1 -

* Numbers show mean + standard deviation

Abbreviations: ALSFRS-R amyotrophic lateral sclerosis functional rating scale-revised,

C9orf72 Chromosome 9 open reading frame 72
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Figure 8.1 Experimental paradigm showing different aspects of task performed and cortical regions of

interest for data analysis. (A) A pincher grip task using thumb and index finger of the right hand, (B) EEG
data format showing 30 trials, each trial consists of 3 phases. Trial 3, for example, is expanded to show the
sequence of visual cues and timings of different phases of the task. From left to right: 1. White screen for 5
seconds preceding cue onset where participants take no action: motor planning phase. 2. GO cue, as a red
rectangle appears on screen whose height is the target to be matched. 3. Section of 5 seconds motor execution
phase showing visual feedback of force applied when the force is incorrectly matched (underfilled). 4. Section
of the execution phase showing visual feedback of force applied when the force is correctly matched. 5.
Section of execution phase showing visual feedback of force applied when the force is incorrectly matched
(overfilled). 5. RELAX cue, white screen for 5 seconds: between trial rest phase, (C) Illustration of the
recorded force for all 30 trials and their average for a healthy participant. Target force is 10% of maximum
voluntary contraction (MVC). One second time windows were selected for analysis, a blue block (4-5 sec)
for motor planning and a red block (8-9 sec) for motor execution, (D) Cortical regions of interest (ROIs) and
their dipole current source used for source reconstruction. SP superior parietal lobule, S1 primary sensory
cortex, M1 primary motor cortex, SM supplementary motor area, PF prefrontal cortex, AC anterior

cingulate cortex, R right, L left.
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8.2.3 Experimental Paradigm

Assessment was conducted in the same manner for the ALS and control groups, similar to
the previously described sensor level study in chapter 6 or source level study in chapter 7
of this thesis and was also described in Coffey et al. (2021) and Bista et al. (2023). Briefly,
participants performed 30 trials of isometric pinch grips at 10% MVC using their thumb
and index finger of the right hand (Figure 8.1 A), irrespective of their hand dominance,
following the target force displayed onscreen. A separate cue for motor planning was not
provided. Each trial lasted for 15s (5s planning, 5s execution, and 5s rest), as shown in
Figure 8.1 B. An example of force profiles recorded for 30 trials from a healthy participant

is shown in Figure 8.1 C.
8.2.4 Clinical measures of disease severity

The revised ALS functional rating scale (ALSFRS-R) scores (Cedarbaum et al., 1999) were
obtained from all patients to examine the correlation of EEG effective connectivity
measures with disease severity. ALSFRS-R is 48 points validated questionnaire-based
clinical scale that ranges from score 0 (severe functional impairment) to 48 (no functional
impairment). The 48-point total score can be divided into 4 sub-scales namely bulbar (0-
12), fine motor (0-16), gross motor (0-8), and respiratory (0-12) (Cedarbaum et al., 1999).
The fine motor and gross motor sub-scales are combined as motor sub-score (0-24) that

weigh the level of motor impairment in ALS patients.

8.2.5 Data Analysis

8.2.5.1 Preprocessing
The EEG data was common average referenced followed by 1-100 Hz bandpass filtering
using dual-pass 4" order Butterworth filter. A 4™ order dual-pass Butterworth band stop

filter with stop band of 49-51 Hz was used to remove power line noise. Further, artifacts
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such as electrooculogram (EOG), electromyogram (EMG), electrocardiogram (ECG), and
jump artifacts were removed automatically using Fieldtrip toolbox. Data epochs where the
coefficient of variation of the force produced was above 0.2, or where the mean force was

less than 8% or greater than 20% MVC, were excluded from analysis.

8.2.5.2 Source Reconstruction

The details of source reconstruction are explained in sub-section 4.4.2.2 of chapter 4 and
in previous chapter of this thesis. Briefly, a template structural MRI data was used to
compute the forward model. The source reconstruction was done using linearly constrained
minimum variance (LCMV) beamformer (Van Veen et al., 1997) using the Fieldtrip
toolbox. Ten anatomical brain regions were chosen bilaterally, 5 on each side of the brain,
using the automated anatomical labelling (AAL) atlas (Tzourio-Mazoyer et al., 2002). The
chosen anatomical brain regions (regions of interest, ROI) were Primary Motor Cortex
(M1), Primary Sensory Cortex (S1), Supplementary Motor Area (SMA), Medial Prefrontal
Cortex (PFC), Superior Parietal Lobule (SP), and anterior cingulate cortex (ACC) of both

hemispheres.

8.2.5.3 Effective Connectivity using Generalized Partial Directed Coherence

Generalized partial directed coherence (gPDC) was used to evaluate the causal influences
or effective connectivity between the ROIs. gPDC is a normalized form of Partial directed
coherence (PDC). PDC is a frequency domain multivariate method based on Granger
causality which describes the direction of information flow between multivariate time
series data based on the decomposition of multivariate partial coherences computed from
multivariate autoregressive models (Baccald and Sameshima, 2001). For the detailed

formulation of gPDC see sub-section 4.4.4.2 of Chapter 4.
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In this study, gPDC for a bandwidth of 1-100 Hz was calculated using the Fieldtrip toolbox.
The 1-100 Hz bandwidth was divided into eight frequency bands (Table 4.2). One gPDC
value was calculated for each frequency band by taking the spatial median of the gPDC
values at the specified frequencies. For example, the gPDC value for the theta band was

the spatial median of gPDC at 5, 6 and 7 Hz.

8.2.5.4 Graph Analysis
Causal inflow (InF) and outflow (OutF) were calculated for both controls and ALS groups
from the directed graph representation of effective connectivity. See sub-section 4.4.5.2 of

chapter 4 for the details.

8.2.5.5 Statistical Analysis

Gaussian white noise was used for non-parametric bootstrapping (Efron and Tibshirani,
1993) with 2000 repetitions to estimate the null distribution for banded gPDC values. The
Empirical Bayesian inference method (Nasseroleslami, 2019) was used to calculate p
values for gPDC values. The p values were corrected for multiple comparisons using false
discovery rate (FDR) at g=0.05 (Benjamini and Hochberg, 1995). For group analysis, the
spatial median of individual gPDC values was taken as group effect whereas the individual
p values were combined or averaged using Stouffer’s method (Stouffer et al., 1949) to get
group level significance of gPDC.

The group level difference (Control versus ALS) for the effective connectivity measure
(i.e., gPDC) was calculated by using the non-parametric Wilcoxon rank sum test (Gibbons
and Chakraborti, 2003). Similarly, the group level difference between graph measures (i.e.,
causal inflow and outflow) was calculated by using a parametric 2-sample t-test. The p
values obtained from group comparisons were subjected to correction for multiple

comparisons using adaptive FDR at g=0.05.
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8.2.5.6 Correlation Analysis

The association of the ALS network measures, such as effective connectivity, causal
inflow, and causal outflow, with ALSFRS-R motor sub-scores was tested using Spearman’s
rank correlation coefficients. The p values of the correlation coefficients were adjusted for
multiple comparison using adaptive FDR at q = 0.05. A line was fitted to the scatter plot

data, to visualise the relationship, using the Robust linear least-square fitting method.

8.3 Results
8.3.1 Weaker motor planning and stronger motor execution effective network

patterns in ALS

The causal cortical networks demonstrating significant group differences (p<0.05,
corrected for multiple comparison using adaptive FDR at q=0.05) between healthy controls
and ALS patients during motor tasks (planning and execution) are shown in Figure 8.2 and
Table 8.2. The group comparison result showed that, motor planning effective networks
were weaker in ALS and the frequencies of those networks range from a to y bands (see
Figure 8.2 or 8.3 A). SMA driven contralateral sensorimotor connection (left SMA— left
S1) in the B band wase significantly weaker in ALS patients during motor planning.
Similarly, the contralateral SMA received significantly weaker input from ipsilateral S1
(right S1— left SMA) at a band. Ipsilateral SMA received significantly weaker input from
ipsilateral M1 in the y frequency band.

During execution of the motor task, out of those effective cortical networks that showed
significant group differences, all of them were significantly stronger in ALS patients except
for a contralateral parieto-frontal connection (left SPL— left PFC) which was significantly
weaker in the a band. In the same frequency band, an interhemispheric parieto-frontal

connection (right SPL— left PFC) was significantly stronger in ALS patients. Importantly,
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the interhemispheric motor connection (i.e., right SMA— left M1) in the B band was

significantly stronger in ALS patients during motor execution.
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Figure 8.2 Effective connectivity between cortical sources where significant differences were observed

between ALS and controls during (A) planning of the motor task and (B) execution of the motor task. The
causal connectivity stronger in ALS is represented by solid arrows and the causal connectivity weaker in ALS
is represented by dashed arrows. The frequency band is encoded by the colour of the arrows. M1 primary
motor cortex, SM supplementary motor area, SP superior parietal lobule, AC anterior cingulate cortex, PF
prefrontal cortex, S1 primary sensory cortex. The prefix c/i represents contralateral/ipsilateral side of the

brain.
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Figure 8.3 Summarized version of figure 8.2 showing most important significant differences observed
between ALS patients and controls during (A) planning of the motor task and (B) execution of the motor

task. The causal connectivity stronger in ALS is represented by solid arrows and the causal connectivity
weaker in ALS is represented by dashed arrows. The frequency band is encoded by the colour of the arrows.
M1 primary motor cortex, SMA supplementary motor area, SPL superior parietal lobule, PFC prefrontal
cortex, S1 primary sensory cortex.

Table 8.2 Effective connectivity between cortical sources where significant differences

were observed between ALS patients and Controls during planning and execution of

a motor task.

Average Generalised )
Group Difference

Motor Task Connectivity Frequency PDC

CON ALS p value Cohen’s d

iS1—cSM Low Alpha 0.243 0.168 0.041 0.974

iSP—iSM Low Alpha 0.260 0.172 0.032 0.814

CAC—iS1 Low Alpha 0.220 0.154 0.027 1.053

Motor cSM—cS1 Low Beta 0.272 0.185 0.014 1.116

Planning iAC—cSP Low Beta 0.279 0.197 0.024 0.908

iM1—iSM Low Gamma 0.230 0.191 0.048 0.722

cSM—cAC High Gamma 0.228 0.202 0.020 1.026

iPF—CPF High Gamma 0.236 0.192 0.009 1.183

CPF—iSM Low Alpha 0.161 0.224 0.020 0.981

E)I(\:(c:)::il;)n iPF—iSM Low Alpha 0.150 0.217 0.045 0.641

cSM—cPF Low Alpha 0.153 0.214 0.035 0.737
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cSP—cPF Low Alpha 0.201 0.128 0.035 0.903

iS1—cAC Low Alpha 0.169 0.241 0.013 1.109
iSP—CcPF High Alpha 0.174 0.249 0.017 1.030
iSM—cM1 Low Beta 0.163 0.232 0.032 0.997
iM1—iSP High Gamma 0.197 0.219 0.014 1.132

M1 primary motor cortex, SM supplementary motor area, SP superior parietal lobule, AC
anterior cingulate cortex, PF prefrontal cortex, S1 primary sensory cortex. The prefix c/i
represents contralateral (left)/ipsilateral (right) side of the brain.
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Figure 8.4 Scatter plot overlayed in the box plot of effective connectivity values showing significant group

differences (marked by *) between ALS patients and controls during motor planning. — represents the
direction of the connectivity. Yellow colour circle in controls scatter plots represent left-handed control
participant. Brain regions: M1 Primary motor, S1 Primary sensory, SMA Supplementary motor area, SPL
Superior parietal lobule (SPL), PFC Prefrontal cortex. The prefix c/i represents contralateral/ipsilateral side

of the brain.
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Figure 8.5 Scatter plot overlayed in the box plot of effective connectivity values showing significant group

differences (marked by *) between ALS patients and controls during motor execution. — represents the
direction of the connectivity. Yellow colour circle in controls scatter plots represent left-handed control
participant. Brain regions: M1 Primary motor, S1 Primary sensory, SMA Supplementary motor area, SPL
Superior parietal lobule (SPL), PFC Prefrontal cortex. The prefix c/i represents contralateral/ipsilateral side

of the brain.

8.3.2 Cortical network underloading during motor planning and overloading during

motor execution in ALS

The brain regions which showed significant differences when their causal flow values were
compared between controls and ALS patients during planning and execution for various
frequency bands are shown in Figure 8.6 and 8.7, respectively. During motor planning
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(Figure 8.6), the signal inflow was significantly reduced towards contralateral S1 in the low
a band (Figure 8.6 A), contralateral ACC in the high a band (Figure 8.6 B), and
contralateral M1 and ipsilateral ACC in the high B band (Figure 8.6 C). Similarly, a
significant reduction in the outflow of oscillatory information from contralateral SMA and
ipsilateral PFC in the high B band (Figure 8.6 D) and contralateral ACC and ipsilateral M1
in the low y band (Figure 8.6 E) was observed in ALS patients compared to controls.

On the other hand, during motor execution (Figure 8.7), the signal inflow was significantly
higher in ALS patients compared to controls towards contralateral M1 in the low  band
(Figure 8.7 A) and ipsilateral ACC in the high B band (Figure 8.7 B). Similarly, the signal
outflow was significantly higher in ALS patients compared to controls from contralateral
PFC and ipsilateral SPL in the low o band (Figure 8.7 C).

A significant increase in causal outflow of extra-motor cortical signals was observed in
ALS patients during motor execution in the low a band compared to controls. The outflow
increase was localized to the contralateral prefrontal region and ipsilateral superior parietal

lobule as shown in Figure 8.5 C.

8.3.3 Effective network measures correlate with functional motor impairment in ALS

patients within sensorimotor and prefrontal regions

The relationship of effective network measures (gPDC values) with the disease pathology
was investigated by correlating them with clinical scores. Several of the effective
connectivity measures were significantly correlated with the ALSFRS-R motor sub-scores
after FDR correction at g=0.05. In Figure 8.8, a significant negative correlation between an
effective connection and the ALSFRS-R motor sub-score indicates that higher motor
impairment (more severe clinical symptoms indicated by a reduced ALSFRS-R motor sub-

score) is associated with increased causal connectivity in patients. A positive
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Figure 8.6 Brain regions where significant differences in causal inflow (A, B, C) and outflow (D, E) were

observed in ALS patients compared to controls during motor planning. (A) shows significantly less inflow
towards contralateral primary sensory cortex in the low-alpha band in ALS. (B) shows significantly less
inflow in ALS towards contralateral anterior cingulate cortex in the high-alpha band. (C) shows significantly
less inflow towards contralateral primary motor cortex and ipsilateral anterior cingulate cortex in ALS
patients in the high-beta band. (D) shows significantly less outflow from ipsilateral prefrontal cortex and
contralateral supplementary motor area in the high-beta band in ALS patients. (E) shows significantly less
outflow flow from ipsilateral primary motor cortex and contralateral anterior cingulate cortex in the low-

gamma band in ALS patients.
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Figure 8.7 Brain regions where significant differences in causal inflow (A, B) and outflow (C) were

observed in ALS patients compared to controls during execution of a motor task. (A) shows significantly
more inflow towards contralateral primary motor cortex in the low-beta band in ALS patients. (B) shows
significantly more inflow towards ipsilateral anterior cingulate cortex in the high-beta band in ALS patients.
(C) shows significantly more outflow from contralateral prefrontal cortex and ipsilateral superior parietal

lobule in ALS patients in the low-alpha band.

correlation indicates that patients with more severe motor symptoms exhibited reduced
causal connectivity between the brain regions.

We found that, during motor planning, the ipsilateral causal connectivity from prefrontal
region to SMA (iPFC—iSMA) at low a band was weaker in patients with more severe
motor impairments (i.e., iPFC—iSMA network showed significant positive correlation

with ALSFRS-R motor sub-score) (Figure 8.8 A). The causal inflow or outflow of cortical
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ROIs did not show any significant correlation with the motor impairments in ALS patients
during motor planning.

During motor execution, interhemispheric effective connections from contralateral M1 to
ipsilateral PFC (Figure 8.8 B) and ipsilateral S1 to contralateral S1 (Figure 8.8 D) in the a
band were reduced in ALS patients with more severe motor impairment. On the other hand,
the causal connectivity from contralateral S1 to contralateral SMA in the high o band was
significantly higher in ALS with higher motor impairment during motor execution (Figure
8.8 C). Similarly, the causal inflow of contralateral PFC and SMA was higher in ALS
patients with higher motor impairment in the 6 and high a bands, respectively (Figure 8.8
E-F). The causal outflow of ROIs did not exhibit any significant correlations with

ALSFRS-R motor sub-scores during motor execution.

8.4 Discussion

The motor task was standardised to be performed by the right hand only, irrespective of
left-hand dominance for some participants. Since, we had very few left-hand dominant
participants (2 healthy controls only) who performed the task using their non-dominant
hand, we could not directly compare the effect of handedness on significant connectivity
differences between ALS patients and healthy controls using statistical test. However, we
have visually confirmed by showing a box plot overlayed by scatter plot of effective
connectivity measures using different colour (yellow for controls) for left-handed
participants (Figure 8.4 and 8.5), which indicated that those measures were not the outliers
(i.e., lie within the standard deviation from the mean). Therefore, we can say that there was
no effect of handedness on the significant effective connectivity differences between ALS

patients and controls.
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Figure 8.8 Significant correlations between directional connectivity measures (generalised partial directed
coherence and causal inflow) and ALSFRS-R motor sub-scores during planning (A) and execution (B, C,

D, E, F) of a motor task. r is Spearman’s correlation coefficient, and the p value is adjusted for multiple
comparisons using adaptive FDR at g = 0.05. M1 primary motor cortex, SM supplementary motor area, SP
superior parietal lobule, AC anterior cingulate cortex, PF prefrontal cortex, S1 primary sensory cortex. The

prefix c/i represents contralateral/ipsilateral side of the brain.
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8.4.1 Motor planning effective networks are impaired and reflect neurodegeneration

in ALS

The present study deciphered several directional network level abnormalities in ALS motor
networks compared to healthy controls. In ALS patients, during motor planning, we
reported weaker effective networks within and beyond bilateral motor regions (M1 and
SMA) compared to controls. Specifically, we showed that an SMA driven sensorimotor
network (SMA—ST1) at contralateral side in the p band was significantly weaker in ALS
compared to controls during motor planning in ALS patients. Previous studies have shown
similar weakness in SMA driven sub-cortical networks in ALS patients during movement
preparation (Abidi et al., 2020). The pre-movement (motor preparation or planning)
alpha/beta event-related de-synchronisation (ERD) of contralateral sensorimotor cortices
is a well-known neurophysiological correlate of activated cortical areas (Pfurtscheller and
Berghold, 1989). Upper motor neuron degeneration, such as in ALS and primary lateral
sclerosis (PLS), causes higher ERD of bilateral sensorimotor regions (Proudfoot et al.,
2017). So, the weaker effective connectivity in our results to/from bilateral SMA/S1 and
ipsilateral M1, during motor planning, could be the reflection of increased de-synchronous
firing patterns of upper motor neurons in ALS as the result of motor neuron degeneration.
The effect of motor neuron degeneration in the motor planning circuitry in ALS is also
reflected in neuronal firing potential (movement-related potential, MRP). The motor
planning/preparation MRP, also called readiness potential, is reduced in ALS patients
(Bizovicar et al., 2013, Thorns et al., 2010, Westphal et al., 1998) indicating a reduced
number and/or synchrony of active motor neurons due to neurodegeneration. This indicates

that neurophysiological signatures of motor planning networks in ALS, including effective
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connectivity within sensorimotor networks as demonstrated by this study, are weaker
compared to controls and could be directly or indirectly linked to neurodegeneration.

Furthermore, the hypothesis of weaker motor and sensory cortical activation or synchrony
in ALS during motor planning as a reflection of neurodegeneration (Bizovicar et al., 2013,
Thorns et al., 2010, Westphal et al., 1998, Proudfoot et al., 2017) is supported by the fact
that we observed motor and sensory network underloading in ALS compared to controls,
meaning a significantly smaller number of incoming connections (inflow) towards
contralateral sensorimotor cortices (M1/S1) and outgoing connections (outflow) from
contralateral SMA. More importantly, the ipsilateral frontocentral connection at a band
(PFC—SMA) showed significant positive correlation with ALSFRS-R motor sub-scores
indicating association of severe motor impairment (clinical sign of neurodegeneration) with

decreased motor planning effective connectivity in ALS.

8.4.2 SMA compensates for M1 degeneration and facilitates sensorimotor integration

in ALS during task execution

The study of effective networks in healthy individuals during motor execution has
underpinned significant bidirectional interaction between primary motor (M1), primary
sensory (S1), and higher order motor regions such as premotor (PM) and supplementary
motor area (SMA) (Grefkes et al., 2008, Kim et al., 2018, Brovelli et al., 2004, Gao et al.,
2011, Anwar et al., 2016) contralateral to the limb movement. Additionally, during
execution of a unimanual voluntary task, the interhemispheric inhibition causes laterization
of motor cortex for motor control (Shibasaki and Hallett, 2006, Welniarz et al., 2015,
Duque et al., 2007). The evidence for compensatory and adaptive changes in cortical motor
networks are abundant in ALS neurophysiological studies investigating voluntary

movements, reporting recruitment of ipsilateral sensorimotor cortices, premotor regions,
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and non-motor regions in ALS (Bede et al., 2021, Abidi et al., 2020, Konrad et al., 2002,
Inuggi et al., 2011). Our findings showed similar neurophysiological signatures in ALS
during motor tasks. We reported stronger causality from ipsilateral SMA to contralateral
M1 and higher signal inflow towards contralateral M1 (overloading) in the  band in ALS
patients compared to controls, which could reflect two neuropathophysiological
mechanisms in ALS. First, the interhemispheric disinhibition between motor regions is
increased in ALS as pointed out by various TMS studies (Karandreas et al., 2007, Bos et
al., 2019). The interhemispheric pathways are not just limited to M1-M1 interactions but
also include the pathway that link higher order motor areas such as PM and SMA to
contralateral M1 (Hinder et al., 2012) resulting in stronger connectivity from ipsilateral
SMA and contralateral M1 overloading in ALS. Second, the recruitment of ipsilateral SMA
and increased signal inflow towards contralateral M1 in ALS patients during motor
execution could be to overcome the burden of neurodegeneration in M1.M1 degeneration
causes higher demand on motor system in ALS and it has been shown that the motor
systems respond to higher motor demand by enhancing information flow between
sensorimotor regions of both hemispheres even when the movements are unimanual
(Gerloff et al., 1998).

Moreover, we have also reported stronger contralateral S1I—-SMA effective connectivity
and higher causal inflow towards contralateral SMA in the o band for more functionally
impaired ALS participants, indicating facilitation of sensorimotor integration and stronger

connectedness by higher order motor regions such as the SMA.
8.4.3 Altered fronto-parietal (executive) network in ALS during motor execution

The fronto-parietal network for slower oscillations (6 or a bands) is often associated with

executive functions in healthy controls (Sauseng et al., 2005, Marek and Dosenbach, 2018,
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Zanto et al., 2011). An abnormal fronto-parietal network has been reported in ALS by
resting state EEG studies (Dukic et al., 2019, Dukic et al., 2021, Nasseroleslami et al.,
2018). On the one hand, we have reported significantly weaker contralateral fronto-parietal
connectivity (left SPL— left PFC) in the a band in ALS patients compared to controls, on
the other hand we have found that the interhemispheric fronto-parietal connection (right
SPL— left PFC) at a band is significantly stronger in ALS patients. This indicates that the
ipsilateral SPL compensates for weaker influence of the contralateral SPL on fronto-
parietal networks in ALS. This is also reflected in causal outflow of ipsilateral SPL in ALS
patients in terms of cortical overloading. Furthermore, the 6 band inflow of the contralateral
PFC is negatively correlated to ALSFRS-R motor sub-scores i.e., ALS patients with severe
motor impairment has higher number of incoming connections towards contralateral PFC.
This could be attributed to higher cognitive efforts taken by ALS patients to maintain force
at the target level during the execution task. The lateralized effect on the prefrontal network
in ALS patients with a higher number of functional connections with the right PFC has
been reported previously by a neuroimaging study employing visuo-mental cognitive task
(Borgheai et al., 2020) and was interpreted as an executive dysfunction in ALS cohort

specifically relating to deficits in task-related working memory processes.

8.4.4 Inter-hemispheric somatosensory interaction during motor execution decreases

with disease severity in ALS

In previous studies using sensory evoked potentials (SEP), it has been reported that ALS
patients exhibited higher somatosensory disinhibition or cortical hyperexcitability in S1
(Hoffken et al., 2019, Machii et al., 2003, Shimizu et al., 2018, Nardone et al., 2020).
However, interhemispheric connectivity between S1 areas in ALS has received relatively

little attention, despite the observation of reduced functional connectivity between the left
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and right M1 as reported in an fMRI study (Jelsone-Swain et al., 2010). We revealed a
significant positive correlation between the strength of interhemispheric somatosensory
effective connectivity (from ipsilateral S1 to contralateral S1) and functional motor
impairments in ALS. Specifically, the strength of this interhemispheric connectivity (right
S1— left S1) was found to be diminished in cases of ALS accompanied by severe
functional motoric deficits. Interestingly, a similar neurological pattern has been previously
reported in other disorders, such as stroke, which also lead to motor impairments. Post
stroke, a reduction in S1-S1 functional connectivity has been identified which was shown

to correlate with the degree of motor impairment (Frias et al., 2018).
8.5 Conclusion

The study focused on examining effective network abnormalities related to motor
functioning in people with ALS compared to healthy controls. The study identified several
disruptions in directional networks within motor systems in ALS with higher order motor
regions such as the SMA playing a crucial role. The SMA-driven sensorimotor network
was notably weaker on the contralateral side in ALS patients, suggesting impaired motor
planning. Stronger SMA-driven effective connectivity may compensate for M1
degeneration during motor execution, with stronger ipsilateral-to-contralateral connections
possibly driven by interhemispheric disinhibition and heightened motor demands in ALS.
We also reported simultaneous occurrence of pathological and compensatory fronto-
parietal connectivity which could be the consequence of executive dysfunction in ALS
patients. Additionally, decreased interhemispheric somatosensory interaction during motor
execution correlated with disease severity in ALS. These findings contribute to a better
understanding of the neurodegenerative processes underlying ALS and how they manifest

in motor-related brain networks.
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8.6 Limitations

The effective connectivity analysis was based on partial directed coherence (PDC) which
is a data driven method unlike dynamic causal modelling (DCM) which is a model driven
method. Therefore, we cannot make a direct comparison between ALS patients and controls
based on the presence or absence of network causality but must rely on the statistical
comparison of causality strength. This limited us from reporting those causal networks
which were not statistically different between ALS patients and controls or showed no
significant correlation with clinical measures but has neurophysiological importance in

health or in disease.
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9. Discussions and Conclusion

In this chapter an overall summary and interpretation of the project’s results, a discussion
of the relevance of results to understanding and quantifying ALS motor network
impairments, a consideration of the limitations of the project and the future research that is
called for are described. An overall summary of the project results is given in section 9.1.
The advantages of using the employed electrophysiological paradigms for investigating
motor networks of ALS are described in Section 9.2. The potential impact and clinical
applications of this work are mentioned in section 9.3 and the limitations of this work are
summarised in section 9.4. Future work that can build upon this project to bring these
results towards more sophisticated understanding of the disease and real-world applications
are described in section 9.5. Finally, section 9.6 contains a brief conclusion with regards to

the entire thesis.

9.1 Summary of the results

9.1.1 Corticomuscular coherence patterns in primary lateral sclerosis

We used CMC to demonstrate how brain activity in participants with PLS differs from that
of healthy controls during the performance of a pinch grip motor task. In PLS patients,
higher CMC between contralateral M1 and FPB muscle in the alpha band and between
contralateral M1 FDI muscle in the gamma band was observed when compared with
healthy controls. Significant beta-band CMC was also detected between ipsilateral M1 and
FDI muscle, which is not typically observed in healthy participants. We also identified
several CMC measures that correlated with clinical measures of UMN dysfunction, which
were also identified outside of contralateral M1. PLS participants with greater motor
impairments exhibited higher beta-band CMC between parietal area (Pz) and APB muscle
whereas less impaired PLS participants exhibited higher alpha- and gamma-band
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coherence between contralateral M1 and APB muscle. Although the observed CMC
differences in PLS patients could arise from both direct and indirect effects of UMN
degeneration, the increased CMC in more impaired PLS participants for specific brain
regions could potentially suggest that these changes are compensatory/adaptive in nature.
Taken together, these results could suggest that the pattern of brain network re-organization
in PLS follows a similar trajectory to recovery in stroke, where more impaired PLS
participants rely on contributions from the ipsilateral hemisphere but those that are
minimally affected can recover function by restructuring the functional connectivity in the

contralateral hemisphere (Brancaccio et al., 2022).

9.1.2 Resting state, pre-movement, motor planning, and motor execution networks

9.1.2.1 Resting state sensorimotor network is abnormal in ALS

Functional assessments of brain networks have the potential to detect and quantify disease
specific adaptive and compensatory patterns of network activity. Prior to this study, the
functional connectivity differences between ALS patients and age-matched controls during
rest have been investigated by our group reporting abnormal sensorimotor networks in ALS
(Dukic et al., 2019). We also found that during rest, the functional connectivity between
EEG electrodes pertaining to cortical regions M1 and S1 in the 6 band was significantly
stronger in ALS patients compared to healthy controls. Furthermore, the resting state
sensorimotor connectivity (M1-S1) abnormality in the 6 band was negatively correlated
with the ALSFRS-R score suggesting that motor impairment is associated with increased
sensorimotor functional coupling in ALS. This corroborates the increased S1 disinhibition
in ALS patients and negative correlation of S1 excitability with ALSFRS-R scores reported
by Hoffken et al. (Hoffken et al., 2019). Importantly, our finding of abnormal sensorimotor

EEG connectivity strengthens the argument that sensorimotor functional connectivity at
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rest has potential to be a quantitative neurophysiological biomarker candidate for diagnosis

and prognosis of ALS (Dukic et al., 2019, Zhou et al., 2014).

9.1.2.2 Cortical hyperexcitability in ALS

We have reported that the EEG functional network density or small-worldness, quantified
by the mean global clustering coefficient, was higher in ALS than in healthy controls during
rest, pre-movement and motor execution indicating widespread EEG networks. Similar
widespread functional brain networks have previously been reported by M/EEG studies
using graph analysis in ALS (lyer et al., 2015, Sorrentino et al., 2018) which reflected
cortical hyperexcitability, a well-established pathological finding in ALS (Menon et al.,

2015, Vucic et al., 2011).

9.1.2.3 Pre-motor and motor planning networks are impaired in ALS

We studied pre-motor networks in ALS using ERD and functional connectivity in sensor
space and motor planning effective connectivity in source space. We reported no significant
differences in mu or beta ERD in ALS pre-motor stage in sensorimotor regions, but
significantly higher event related spectral perturbations in the prefrontal and the parietal
region in the 6 band indicating higher attention to the task pre-movement by recruiting a
neuron pool distributed over wider cortical areas to overcome the burden of motor neuron
degeneration in sensorimotor cortices. In terms of functional network abnormalities during
the pre-motor stage, we found that functional connectivity between contralateral premotor
and primary sensory cortices (PM-S1) was significantly higher in the alpha-band in ALS
patients compared to controls. Similarly, the functional connectivity within the frontal
region (DLPFC-DMPFC) in the alpha-band was significantly higher in ALS. Interestingly,
significantly reduced EEG functional connectivity was observed within the contralateral

M1-DLPF in the beta-band in ALS patients compared to controls. These functional network
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abnormalities suggest that that pre-motor activity, which combines attention, preparation,
and planning of upcoming motor tasks, is abnormal in ALS not only at the neuronal
oscillatory level (Thorns et al., 2010) but also at the cortical network level, which leads to
poor motor performance (task performance accuracy was significantly lower in ALS
compared to controls, p = 0.043).

Using source space analysis, during motor planning, we reported significantly weaker
effective connectivity within and beyond bilateral motor regions (M1 and SMA) in ALS
patients compared to controls. Specifically, we demonstrated that effective sensorimotor
networks involving the SMA, SMA—S1 at the contralateral side at beta-band and
ipsilateral S1— contralateral SMA in the alpha-band, were significantly weaker in ALS
compared to controls indicating impaired motor planning in ALS. Previous studies have
shown similar weaknesses in the SMA-driven sub-cortical networks in ALS during
movement preparation (Abidi et al., 2020). Furthermore, we observed a significantly
smaller number of incoming connections (inflow) towards contralateral sensorimotor
cortices (M1/S1) in the alpha/beta band and outgoing connections (outflow) from the
contralateral SMA in the beta band. This indicated weaker involvement of sensorimotor
regions during motor planning due to neurodegeneration as indicated by previous studies

(Bizovicar et al., 2013, Thorns et al., 2010, Westphal et al., 1998, Proudfoot et al., 2017).

9.1.2.4 Motor execution networks are impaired in ALS

We studied motor execution networks in ALS using four different EEG measures, namely
ERD and functional connectivity in sensor space and corticomuscular coherence and
effective connectivity in source space. The CMC patterns in ALS are summarised in the

next section.
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We reported higher ERSP (reduced beta ERD) in ipsilateral M1 during motor task
execution in ALS patients compared to controls. We have also shown that beta ERSP
increases (ERD decreases) over the contralateral superior parietal region (SPL). We
showed increased functional coupling between M1-SPL in the beta-band which was
negatively correlated with ALSFRS-R scores (i.e., higher contralateral M1-SPL coupling
for more severe ALS patients). These observations reflect a compensatory role of the non-
dominant motor region (Konrad et al., 2002, Schoenfeld et al., 2005, Bede et al., 2021) and
non-motor regions (parietal cortex) in ALS to overcome the motor control dysfunction due
to neurodegeneration in the dominant motor region (Poujois et al., 2013, Zhou et al., 2013,
Lulé et al., 2007).

A potential compensatory mechanism in ALS during motor execution was also observed
in our source level study of effective connectivity. We reported stronger effective
connectivity from ipsilateral SMA to contralateral M1 and higher signal inflow towards
contralateral M1 in the beta-band in ALS patients compared to controls. We have also
reported stronger contralateral S1—>SMA effective connectivity and higher causal inflow
towards contralateral SMA in the o band for more functionally impaired ALS participants.
These findings indicate that neurodegeneration in ALS causes a higher demand on the
motor system and the motor systems in ALS respond to higher motor demand by enhancing
information flow between contralateral primary sensorimotor regions (M1/S1) and bilateral

SMA even if the movements are unimanual (Gerloff et al., 1998).

9.2 Advantages of electrophysiological measures to quantify network impairments in
ALS

9.2.1 Measuring non-structural network reorganisation

In the presence of neurodegeneration causing structural network atrophy in ALS, non-

structural (functional or effective) network reorganisation occurs to compensate for the
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structural network degeneration especially in pre-symptomatic or early symptomatic
phases of the disease (Bede et al., 2021, Abidi et al., 2020, Konrad et al., 2002, Inuggi et
al., 2011). For example, the involvement of cortical regions such as the premotor cortex
and SMA, which are largely associated with movement preparation and planning
(Churchland et al., 2006, Li et al., 2015, Shibasaki and Hallett, 2006, Glover et al., 2012),
during movement execution underlines an alternative strategy for optimizing motor
performance in ALS (Konrad et al., 2002). Our study showed similar compensatory
mechanisms in ALS i.e., during the performance of a voluntary task, the information flow
from ipsilateral SMA to contralateral M1 in the beta band was significantly stronger in ALS
patients compared to controls. Another observation of effective network reorganisation in
ALS during motor execution was the increased information flow (incoming links or inflow)
towards contralateral M1 in the beta band. This suggests that M1 receives effective signal
overloading from neighbouring motor and non-motor regions during task execution to
compensate for structural atrophy caused by neurodegeneration. We have also found
changes in long range fronto-parietal effective connectivity in ALS patients during task
execution. The weak contralaterally driven fronto-parietal network (contralateral superior
parietal to contralateral prefrontal) was accompanied by strong ipsilaterally driven fronto-
parietal network (ipsilateral superior parietal to contralateral prefrontal). The involvement
of the parietal region in compensatory mechanisms during motor execution was also
observed in functional network analysis, where we found that the functional
communication between contralateral M1 and the superior parietal lobule was significantly
stronger in ALS. This functional network connectivity strength was more in ALS with
higher clinical impairments. This highlights the utility of EEG for detecting non-structural

network reorganisation in the presence of structural network atrophy.
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9.2.2 Sensor vs source EEG measures

We have used both sensor and source space EEG to study the abnormal brain networks in
ALS. The spatial resolution of sensor space EEG is poor because scalp sensors record
electrical activity from adjacent and distant cortical and sub-cortical sources, referred to as
volume conduction, that affects the coherence analysis causing spurious connectivity
(Nunez et al., 1997). However, sensor space analysis is a popular way of analysing M/EEG
data because of its convenience (Schaworonkow and Nikulin, 2022). First, we used spatial
filtering (surface Laplacian) during sensor space analysis to minimize the effect of volume
conduction and improve the spatial resolution of EEG (Bradshaw and Wikswo, 2001).
Additionally, we used spatial median based non-parametric rank statistics (Nasseroleslami
et al., 2019) to estimate the banded coherence, which is more robust against EEG artefacts
(Dukic et al., 2017) and provided more localized coherence measures compared to classical
magnitude squared coherence (see chapter 5 for details). Prior research has demonstrated a
correlation between network measures derived from EEG sensor space analysis with
reduced spurious connectivity and EEG source space analysis (Lai et al., 2018).

In comparison to sensor space EEG measures, source space EEG measures offer higher
spatial resolution and reconstruct the true neural sources despite volume conduction,
offering a more accurate representation of the underlying brain activity. However, source
reconstruction requires head models acquired from individual MRI or template MRI and
computationally extensive and complicated inverse modelling. Therefore, to perform
source space analysis, one might need special data analysis training and skill sets. In this
study we have used source space analysis to investigate functional corticomuscular and
effective corticocortical networks during task execution. With sensor space

corticomuscular coherence, such as our study in Chapter 5, we must rely on the electrode
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position on the scalp to interpret the results. For example, the C3 electrode is usually
considered to cover the left primary sensorimotor cortex. Using source space analysis, such
as our studies in chapter 7 and 8, we have identified the exact cortical regions that are

involved in pathological or compensatory networks in ALS.
9.2.3 Functional vs effectivity connectivity measures

We have used both functional and effective connectivity measures to investigate the
network impairments in ALS, each having their own advantages. The functional
connectivity measures were based on banded coherence and effective connectivity
measures were based on partial directed coherence. Functional connectivity gives a
measure of co-activation patterns of brain regions, whereas effective connectivity untangles
the directional influence of one brain region to another. Therefore, they can provide
answers to different questions. For example, we reported an overall increase of functional
coupling between brain regions in ALS during motor execution which could be the result
of cortical hyperexcitability (Menon et al., 2015, Vucic et al., 2011). But using effective
connectivity we found an increased signal flow towards contralateral M1 from other
neighbouring cortical regions during motor execution in ALS suggesting compensatory
behaviour of less degenerated cortical regions surrounding severely degenerated motor
cortex. This corroborates the fact that neurodegeneration in ALS starts at the motor cortex
and progressively spreads outward to non-motor regions (Brettschneider et al., 2013).
Additionally, functional connectivity measures captured abnormal connectivity
(significantly stronger or weaker compared to controls), such as M1-S1 at rest and M1-SPL
during motor execution, that were also significantly correlated with ALSFRS-R scores.
Effective connectivity, on the other hand, did not show any overlap between the networks

that were significantly different from controls and networks that were correlated to clinical
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measures. Therefore, the use of functional and effective connectivity measures in our study

elucidated different aspects of network impairments in ALS.

9.2.4 Experimental design and its effect on neurophysiological measures

9.2.4.1 Choice of motor task

We have chosen isometric pincer grip motor task at 10% of MVC for comparison of
neurophysiological measures between ALS patients and healthy controls. The choice of the
task was based on our previous studies on PPS (Coffey et al., 2021) and PLS (Bista et al.,
2023) where we have shown that the task can successfully identify the abnormal
corticospinal neural circuitry (increased functional connectivity between cortex and
muscles in patient group compared to controls) affected by LMN or UMN degeneration.
Furthermore, our preliminary study of two motor tasks, isometric pincer grip at 10 % MVC
(force control task) and isometric precision grip (position control task), has demonstrated
that the isometric pincer grip task at 10% MVC elicited lower level of beta CMC compared
to precision grip task in healthy controls, and therefore, was more sensitive to detect

abnormal CMC (increased CMC in patient group compared to controls) in patient groups.

9.2.4.1 Right hand standardisation for motor task

Previous studies using similar motor paradigm have used dominant hand to perform the
task, and later flipped the neurophysiological measures for group analysis (Rossiter et al.,
2013). For example, beta CMC between right M1 and left-hand muscle for the left-handed
participant was considered equivalent to beta CMC between left M1 and right-hand muscle
for the right-handed participant during group averaging. Handedness can influence brain
organisation (Amunts et al., 1996) and function (Lajtos et al., 2023), with differences
observed between left-handed and right-handed individuals. Furthermore, it is important to

consider that neural activity in the dominant hemisphere may not always be mirrored
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between left- and right-handed individuals, especially in patient groups affected by
neurodegeneration and this could ultimately introduce variability in the group results.
Therefore, in this thesis, we have standardised right hand, irrespective of the handedness
of the participant, to perform the motor task which make our results more consistent across
the groups and robust against the potential interference of individual differences in brain
lateralisation. We have shown the box plot overlayed by scatter plot of connectivity
measures using different colour (purple for ALS and yellow for controls) for left-handed
participants (chapter 7 and chapter 8), which indicated that those measures were not the

outliers (i.e., within the standard deviation from the mean).

9.3 Impact and future clinical applications
The significance of this project to the understanding of normal and ALS-related network
(dys)functioning and the potential applications of the findings of this project to the medical

field and further research are summarised in this section.

9.3.1 Spatial median based spectral coherence is a state-of-the-art method for

capturing disease specific functional network impairments in motor neurone disease

We have previously proposed a median-based rank statistic for functional connectivity
(coherence) (Nasseroleslami et al., 2019) that harnesses the robustness of non-parametric
methods (Dukic et al., 2017). We have used the method previously to report abnormal
functional connectivity between EEG and EMG (corticomuscular coherence) in people
with LMN involvement such as post-polio syndrome (PPS) (Coffey et al., 2021). Here, we
have used the method to report abnormal EEG-EMG networks in UMN degeneration such
as PLS (see chapter 5), published in Cerebral Cortex (Bista et al., 2023), which established
the novelty of the method to capture functional network impairments in people with MND.

Therefore, we have extended the use of the method to investigate sensor level EEG-EEG
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functional networks (see chapter 6) and source level EEG-EMG functional networks (see
chapter 7) in ALS. Studies investigating functional connectivity in health and in disease
using coherence usually rely on the maximum value (Aikio et al., 2021) or the area (under
the significant coherence spectra) (Tun et al., 2021) to represent the collective connectivity
strength with a single value over the range of frequencies within each distinct
neurophysiological frequency band. We, on the other hand, used the 2D spatial median
(real and imaginary part of normalised cross-spectra as separate dimensions) which
provides a balance between overestimating the connectivity using measures such as
maximum value or underestimating it, using the area under the significant coherence
spectra. More importantly, the new method presents connectivity strengths as p-values so
there is no need for separate significance testing such as close form solution or non-
parametric bootstrapping as required by other existing connectivity measures. Additionally,
this method is robust against the bias introduced by the number of epochs (L) used to
estimate functional connectivity (Nasseroleslami et al., 2019). Hence, our method of
estimating functional connectivity provides a more powerful detection of network
connectivity with a singular value for a frequency band and can identify abnormal network

connections in MND or any in other patient group for that matter.
9.3.2 Corticomuscular coherence as a therapeutic outcome measure in MND

In MND, the neurodegeneration disrupts the communication between the brain and
muscles, resulting in motor impairments. Those abnormal brain muscles communications
can be quantified using Corticomuscular coherence (CMC). We have shown indirectly,
using sensor and source level study that PLS and ALS had distinct patterns of abnormal
CMC. Specifically, a significant reduction in beta CMC between contralateral M1 and

muscle was observed in ALS compared to controls whereas a significant increase in the
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beta CMC between ipsilateral M1 and muscle and significant increase in the gamma band
CMC between contralateral M1 and muscle was observed in PLS compared to controls.
This difference in the pattern of CMC between ALS and PLS compared to controls should
be further investigated by comparing these groups directly. Therefore, in future, monitoring
changes in the beta/gamma CMC over time can provide insights into the efficacy of
therapeutic interventions aimed at preserving or improving motor function. By
investigating the magnitude and frequency of brain-muscle synchronization and by
associating those measures with clinical motor assessments and behavioural performance
of the task, we can track the effects of treatments (Salenius et al., 2002), rehabilitation
programs (Delcamp et al., 2022), or assistive devices (Airaksinen et al., 2013). Positive
changes in corticomuscular coherence patterns could indicate improved neural control and
enhanced motor unit recruitment, reflecting potential therapeutic benefits as indicated by
CMC studies in stroke (Krauth et al., 2019, Delcamp et al., 2022) and Parkinson’s disease
(Salenius et al., 2002, Airaksinen et al., 2013). Therefore, longitudinal studies utilizing
corticomuscular coherence as an outcome measure has potential to a better understanding

of the disease’s progression and the impact of various interventions in MND.

9.3.3 Novel network biomarkers design

9.3.3.1 Diagnostic biomarker design

Studies have argued that the discriminatory power of a standalone experiment or modality
is not sufficient to be used as a diagnostic tool for ALS in clinical settings (Huynh et al.,
2016). Combining quantitative EEG features from different analyses has previously been
shown to be useful for classifying various neurodegenerative diseases (Garn et al., 2017).
Similarly, combining quantitative EEG and neuropsychology was recommended for

differential diagnosis of Frontotemporal dementia and Alzheimer’s disease (Lindau et al.,
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2003). We recommend combining functional network impairment measures from
multistate experimental paradigm such as resting state, pre-motor stage, and motor
execution to design diagnostic biomarkers for ALS because our results have shown that
features from different experiments contribute differently for the classification of ALS
patients from healthy controls. Furthermore, the inclusion of pre-motor network
impairments could be the key to designing quantitative neurophysiological biomarkers of
network disruption because, as we have shown, pre-motor activity grabs a fundamentally
different type of motor network impairments than motor execution and rest and has the
highest contribution for classifying ALS patients from healthy controls. Thus, by training
machine learning algorithms with the multistate network abnormalities from large ALS and
control datasets, our findings support that this may lead to a novel diagnostic tool that could

accurately classify ALS patients from healthy controls.

9.3.3.2 Prognostic biomarker design

Our study has demonstrated abnormal involvement of higher order motor regions such as
the SMA and S1 in effective motor networks in ALS. We identified a stronger information
flow from S1 to SMA on the contralateral side of the contracted muscle (i.e., SI-SMA
effective connectivity) and higher causal inflow toward the contralateral SMA in the alpha
band in ALS participants with more severe motor impairment as assessed by the ALSFRS-
R motor sub-score. This suggests enhanced sensorimotor integration was facilitated by the
SMA in more severe ALS because the alpha oscillations are involved in sensorimotor
integration processes, helping to coordinate sensory feedback with motor commands which
is crucial for accurate and efficient motor control. Additionally, we found a positive
correlation between the strength of interhemispheric somatosensory effective connectivity

(from ipsilateral S1 to contralateral S1) and motor impairment in ALS. Specifically, for

212



more severe motor deficits, the strength of this interhemispheric somatosensory
connectivity (iIS1—cS1) was notably diminished. A similar neurological pattern has been
previously reported in stroke, which also manifests motor impairments. After a stroke,
reduced interhemispheric S1-S1 functional connectivity has been identified, exhibiting a
correlation with the extent of motor impairment. Even though these effective connections
were not significantly different between ALS patients and healthy controls, they are still
clinically relevant as a biomarker as they satisfy one property of a biomarker (correlates
with clinical scores) and could be combined with other biomarkers for a complete
biomarker design. Furthermore, these connectivity measures could provide high sensitivity
and specificity compared to the clinical motor assessments such as ALSFRS-R scores. The
clinical scores are known to have low sensitivity and specificity and are affected by
multidimensionality problems. It requires trained personnel to perform clinical motor
assessment, and this might introduce inter-assessor variability in the scores. Therefore, the
assessment of two effective connections, namely contralateral SI—-SMA and ipsilateral to
contralateral S1—S1, that showed positive and negative correlations with motor
impairments holds promise for quantifying disease severity and acting as markers for

tracking disease progression.

9.3.3.3 Phenotyping biomarker design

We have shown that corticomuscular coherence (CMC) can capture disease specific
functional network reorganisation in UMN/LMN involvement. For example, we have
previously shown that CMC between muscles and frontal and parietal cortical regions in
the gamma band is significantly higher in people with post-polio syndrome which isa LMN
disorder (Coffey et al., 2021). In this study, we have shown that CMC between FDI muscle

and contralateral M1 in the gamma band and between FDI muscle and ipsilateral M1 in the
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beta band are significantly higher in people with PLS which is a UMN disorder (Bista et
al., 2023). Similarly, in case of ALS, which entails both UMN and LMN involvement, we
have shown that CMC is significantly reduced between contralateral M1 and FDI muscle
in the beta band and between contralateral M1 and APB muscle in the gamma band. This
indicates that CMC captures three network patterns related to the LMN/UMN involvement,
1. the brain regions involved in network reorganisation, 2. the oscillatory coupling
behaviour of those brain regions, and 3. the direction (increase or decrease compared to
healthy controls) of functional coupling between brain and muscles. From this indirect
comparison, we can argue that the CMC has the potential to segregate people with MND
based on LMN/UMN involvement, thus making it a novel candidate for sub-phenotyping
motor phenotypes of ALS. However, a direct comparison is needed to validate this

argument.

9.4 Limitations
In this section, general limitations which influenced the design of this project or limited the
analyses/interpretation of results within this project are discussed along with some

measures used to minimize the effects of those limitations.
9.4.1 Participant recruitment and small sample size

The rapid rate of ALS progression and low prevalence of the disease posed a recruitment
challenge for this research. The participants needed to attend the data recording session in-
person in the hospital setting which limited some people with ALS to participate in the
research. For example, some ALS participants had severe decline in motor functions and
were unable to use a wheelchair to access the research facility or did not have someone
available who could transport them. Additionally, participants were required to have

sufficient motor function for the motor tasks. Recruitment was further constrained by the
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exclusion criteria of the studies. Participants were excluded if they had co-morbid
neuromuscular or psychiatric conditions that could affect the electrophysiological
measurements being studied, a common exclusion criterion in this type of research. Some
participants were also excluded due to the use of specific medications that affect the central
nervous system. Furthermore, the study had a smaller sample size because the participant
recruitment and data recording were affected by the Covid-19 pandemic. To take the small
sample size into account, we have used non-parametric methods such as rank statistics,
bootstrapping etc (Nasseroleslami, 2019, Nasseroleslami et al., 2019) and probabilistic
methods such as Empirical Bayesian Inference (Nasseroleslami, 2019) to report the
statistical significance and power. Additionally, we have reported effect size and
confidence intervals of the network measures along with p-values to highlight that our

findings are actual effects rather than some statistical noise.
9.4.2 Exclusion of deeper brain sources

We have used high density EEG (128-channels) to record the brain activity and used the
AAL atlas for source reconstruction which allows estimating EEG source activity from 90
brain regions that include cortical, sub-cortical and deeper brain sources. However, for our
sensor level study, we have preselected up to 8 channels and for our source level study we
have preselected up to 12 cortical brain regions. The channel/source preselection was based
on brain regions reported to be activated during voluntary motor control. This has restricted
our analysis to frontal, central and parietal cortical regions only, limiting the investigation
of temporal, sub-cortical and deeper brain sources which have been shown to have
significant effects in network pathophysiology of ALS (Abidi et al., 2020, Dukic et al.,

2021).
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9.5 Future Work

9.5.1 Continuation of data collection

The EEG/EMG data collection will be continued in the future to make sure we have a
reasonable sample size that can provide sufficient power to the analysis. Additionally,
longitudinal EEG/EMG data for multiple timepoints (with no fixed interval between the

timepoints but separated at least by 3 months) will be collected in the future.
9.5.2 Whole brain network analysis

This work is based on preselection of EEG channels and brain sources which is one of its
limitations. In future we will be looking into the whole brain network, including sub-
cortical and deeper cortical sources, which will provide more robust evidence of multi-
network dysfunction in ALS and the role of deeper brain sources for compensating for

abnormal motor networks in ALS.
9.5.3 Direct comparison of CMC between different patient groups

We have indirectly compared the CMC patterns of ALS and PLS with reference to the
controls which has provided us new insights about the potential of CMC to capture disease
specific functional network impairments. Therefore, in the future we will be comparing
different patient groups such as ALS, PLS, and PPS directly using CMC to identify

neurophysiological markers that can be used for differential diagnosis.
9.5.4 Directional CMC analysis

Using undirected CMC, we have indirectly identified disease specific functional network
dysfunction and reorganisation. However, the CMC based on coherence quantifies the
combined effect of efferent motor and afferent sensory pathways in motor control (Witham
et al., 2011). In the future, we will be using directional CMC to untangle the contribution

of ascending afferent and descending efferent pathways in sensorimotor networks during
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different types (force control, position control) and phases (sustained, transient) of motor
tasks in healthy people and people with MND. This will help us to understand effects of

neurodegeneration on different corticospinal pathways.
9.5.5 Clustering

ALS is a heterogenous disease with motor and non-motor symptoms found to varying
degrees within each individual. The resting-state EEG measures have previously identified
four sub-phenotypes of ALS using clustering; each sub-phenotype showing distinct
network patterns that correlated with clinical measures (Dukic et al., 2021). Furthermore,
here we have indirectly shown that CMC during voluntary task execution can capture
UMN/LMN specific impairments. Therefore, a combination of network measures during
rest and task, which we have identified here, that collectively capture motor, sensory,
cognitive, behavioural, and language impairment in ALS could potentially establish a
foundation for objectively grouping people with ALS into network-based sub-phenotypes
using clustering analyses. These clusters will then be compared to existing criteria for
categorizing ALS such as site of symptom onset, degree of UMN/LMN involvement,

genetic factor etc to assess their utility in clinical practice for improving ALS prognoses.
9.5.6 Longitudinal analysis

As evidenced by a previous longitudinal study during rest, tracking spectral EEG measures
over time offers valuable understanding of the dynamics of network dysfunction in ALS
and its associations to disease progression (Nasseroleslami et al., 2017). To enhance the
insights from the cross-sectional task based functional and effective connectivity analyses
presented here, further investigations are necessary to ascertain whether the network
pathophysiology remains consistent or is linked to a particular stage of ALS progression.

Longitudinal data collection has been less prioritised but an ongoing aspect of this project.
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To date, we have collected 2-time points data from five and a 3 time point data from one
ALS participant. In the future, we will prioritise the longitudinal data collection and

subsequent analysis based on the foundation of this study.

9.6 Conclusion

Neurodegeneration in ALS begins in the pyramidal motor system (Brettschneider et al.,
2013) causing motor impairments which overtime spread to neighbouring cortical regions
by diffusion or to distant cerebral cites mediated by axonal projections. This spreading
pathology causes several non-motor impairments such as cognitive and behavioural
impairments in ALS (Grossman, 2019). A clear understanding of the multisystem nature
of ALS in terms of a network disorder and its association with clinically assessed measures
will be vital for improved diagnosis, prognosis, and disease management. However, for
early diagnosis, understanding and unravelling the early neurophysiological signatures of
pathological changes in motor system is important because motor signs and symptoms
appear earliest at the disease onset with various phenotypical heterogeneity, focality, and
spread (Ravits and La Spada, 2009). We used voluntary movement related experimental
paradigm that can directly access the motor networks in ALS. We have shown that the
cortico-cortical and corticospinal motor networks during voluntary movement are impaired
in ALS and show associations with clinical measure of functional impairment in ALS such
as ALSFRS-R scores. The network impairments underpinned by this study, if further
validated by similar studies in a large cohort of patient groups and longitudinal studies,
have potential to be candidate biomarkers for clinical diagnostic, prognostic and
phenotyping applications or as primary/secondary outcome measure to track network changes

in the setting of disease modifying clinical trials.
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Appendices

Appendix chapter 4

Appendix 4.1 Ethical approval letter

REC Reference: 2019-05 List 17 (01)
Previous REC Reference: 2015-01 Chairman’s Action (1)
{Please quote reference on all correspondence)

EudraCT Number: N/A

Date of Valid Submission to REC: 26.03.2019
Date of Ethical Review: 08.05.2019
R&I application Number: N/A

Dear Ms Coffey,

Thank you for your correspondence in which you submitted an amendment for the above
named study.

The Chairman has reviewed the documentation you submitted and approved this
amendment. The following documents were reviewed:
* Non-clinical Amendment Request Form, dated 22.03.2019
PIL & CF
Protocol
DPIA
EMG Electrodes booklet
Medical history form

.« 8 & & @

Applicants must submit an annual report for ongoing projects and an end of project report upon completion af
the study. It is the responsibility of the researcher/research team to ensure all aspects of the study are executed
in compliance with the Geufmf D::rm Protection regu!‘ai‘mn {GDPR) Hm!i'ﬁ Research Regm‘an ons and the
Data Protection Act 2018, Adg g § s P tte b 25 (ha

REC and the Chair are not confirmin .!‘hm‘ i e docnmm!r are GD.PR compliant, they are approving the

document from an ethical perspective,

Yours sincerely,

REC Officer — Dr Sadhbh O'Neill - STH/TUH Research Ethics Committee

Ospidéal na hOllscoile, Tamhlacht Tallaght Univarsity Hospital Tallaght Universily Hospital is a registerad
Tamhlacht, Baile Atha Cliath, D24 NROA, Eire Tallaght, Dublin, D24 NROA, Ireland business namea of "The Adelaide and Meaath
Priomhline: +353 1 414 2000 Tel: +353 1 414 2000 Haspital, Dublin Incorporating The Mational
woanw lubLia warw luhLie Children's Hospital'.
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Appendix 4.2 Control consent form

$MH / ANMBNCH RESEARCH ETHECS COMMITTEE.
COMNTROH. COMEENT FORM

Study thla: “Impairmants of Neuno-mescular Communication In Motor-Naungn
Diseasn: A Blo-Marker for Early and Parsonalbed Dlagnosis™

1 harwe read arvd undarstood the Costtnol rformrostion Laxfist about this Tea O | MO
research project. The Tnformatdon has been fully explained to me and | have
beert able tor etk guestions. all of which heve beer answened to my
=athfactian.

1 urderstznd thart | don®t e 1o ek paart In this stody ard that | can opt YesO | WaO
aut at arnytdma. | undersiand thet | don't hawe b give 8 meason for opting
out ard | undarstand that opting out won't affect mmy future medical cane.
1 mm swure of the polantial risks, benefit, and slimmetives of this mosach | Yea O | NaO
stiachy.
| ghva permizdon far ressarche s with delegeied suthordty from Profesor YesO | NaO
Hardiman and har resaarch team to ook st my medicsl moonds to get
Inforrmation. | have besn assured that Tnformatdon about me will be kept
private and confidential.

1 have been gheen a copy of the Informaton Leaflets and this completed Yeu O | N0
consert form for ey recordd. | urderstand that 2 copry s malrdained T iy
mudical records snd 8 copy will be sant to the prindpal |nesstgetor.

1 exnesent To bake part In thils reseanch study randing been fully nformred of Yeu O | Mo
tha rsks, banefits, and albernetves.
1 ghee Informed explcit corsent to kave my data processed as part of this YouO | MO
resmnrch study.
1 eoressent ta be contacted by researchers s part of this research study. Yes O | MaO

AJTURE CONTACT [plssca chooza one or mars as you sea fit]

OPTHON 1: | consertt to he re-oomtscted by researmchers ahout possibia Yeal |ManO
future MND research related to the curment study for which | may be
aligitde.
OPFTHOM 2= | consent to be re-cormacted by researchers about possible TeaO |0
future MND research mareloted to the current study for wivich | may be
aligible.

Version L3 1Nfea S 200 Pagal
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STORAGE AND FUTURE USE OF INFORMATION

RETENTION OF RESEARCH MATENIAL IN THE FUTURE

PLEASE TICK YES FOR EITHER OPTION 1 OR OPTION 2 OR NEITHER

OPTION 1: | ghve permission for marteral/data to be stored for possible fisure Yax[O | NoO
riegvch refhid to the current study ooy i corpennt B plvfadnedl ot the time of

the future msasrch but only If the meaerch s spproved by m Ressarch Ethics

Cornmittes.

OPTION 2: | giva parrnbaTon for material/deta to be stored for pogeible Ay | YesO | NeD

reseprch relrteg to the current study withoot Aather congent baing negiuingd
but onky IF the research Is approved by a Reseanch Bthics Commities,

PLEASE TICK YES FOR EITHER DPFTION 3 OR DPFTION 4 DR NEITHER

OPTION 3: | ghve permizsion for materal/data to be stored for possiie R Y= |NeO
resegrch connehgbed to the current study oaly If consent i olstained et the ime

of the future essarch but only if the mssarch ls spproved by » Ressarch Ethics

Committes.

OPTION & | ghee perrril shon Tow' ronirbes e |felarbn o be stawed for popotils Gelover | YesO | Ho O

rerearch ety to the currsnk shudy withost forther oonst being requirsd
hut onby ¥ the research s approved by a Ressanch Erhics Committes (A5 detalled
In "Consent ro Furure Uses*in the information leaflet.

YOL! MAY TICX YES FOR DPTION 5 AND/OR & OR NETHER

OPTION 3 | agree that some future research projects may be carmied out by
researchers working for commercial/charmaceutical comeanies,

Yaz [

Ho O

OPTION 6: | understand | will ot be sntiisd to & shars of amv profits that may
axrTee from the future use of mw matenal fdata or produets derheed from it

Yoz [

He O

PARTKIPANTS MANE:

PARTIOIPANT'S SIGMATLUIRE:

DATE:

Strtmmant of rexponeibiity of the Prindpl |mestipsine’s or hisfhar nominzisd sspedmanters: |
heave taken the time to =qpdain the nature, purpose, procedures, benefits, and risks of this research
study to the above patient in a way they could understand. | hawe offered to answer any questions
ubout any sapect of the study that corwerrs them o fully srewered suth questions. | bellews that

the partidpant urdarsands my explanation and has fresty ghven Informed consant.

Enprin manbanr™s Ml

Exprr mupnitas”s. signtures

The B cogles needesdt: 1 original Tor the purticipant’s mesioal records In heagitel. 1 copy for the partideant, 1 =opy for

the Inestigeinr's reeards.
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Appendix 4.3 Patient consent form

SMH / AWBNCH RESEARCH ETHICS COMMITTEE.
PATIEMT CGMEENT FORM

Study thila: “Impalrmants of Neuro-muxsgular Communication In Motor-Nauron
Disssan: A Bio-Marker for Early and Parsonaliaed Dlagnosis™

| harve read ard undarstood the Patiant Inforrotion Lexfiat about this YO |[MaO
nesearch praject. The Tnformation has been fully explained to me and | have
been abbe to ek guestions, all of which heve been answened to my
mtbfactian.

| ursderstunnd theat | dare't hir: to take part i this study ard thet 1o opt YesO [MoO
aut xt any ima. | undersiand thet | don't awe io give 2 resson for opting
aut and | understand that ppting out won't affect mmy future medical care.
| mm mware of the potantil risks, benefia, and siametives of this moach | Yea O | Ne O
shudy.
| ghvn permission far ressarche s with delsgeied suthority from Profesor YesO [NaO
Hardiman and har research taam to loak st my medical reconds o get
Information. | have been assured that Imformation about me will be kept
private and confidentlal.

| have been gheen a copy of the Information Leaflets and this completed YeuO |MoO
consertt form for mry records, |understand theat & oopry 15 malniained v my
mudical records snd & capy will b sant to the prindpal Imastprior.

| eovsent to ke part I this researeh study having been fully Informed of Yul |MoQ
tha risks, bansfits, end alternathves.
| ghve Informed expliclt corsent to kave my date processed as part of this YO |[MoO
revanrch study.
| vorsent to be contocted by researchers es part of this neseardh study. ¥YesO | WaO

FUTURE CONTACT [ plesza choozs ons or mom e you ses fit]
OPTION 1: | consernt to be re-cortscted by ressarchers about possibin YeaO |[MaO
future MND research related to the current study for which | may be
| eligibie.

OPFTHON 3 | ppnpent to be re-cortacted by researchers about possible YeuO |[Mo0O
future MND researeh wiieloted te the eurment study for whieh | mey be

| allgibls.

Versiom 1.9 188072022 Paga 1
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STORASE AND FUTURE LUSE DOF INFORMATION

RETENTION OF RESEARCH MATERIAL |IN THE FUTLRE

PLEASE TICK YES FOR EITHER OFTION 1 OR OPTION 2 OR NEITHER

OPTION 1= | giwe permisshon Tor materialidats b be stored for poaiiss Griopne
rexearch refrbed to the curment study ool i conper b oisdolined et the time of
the future research birt gnly I the research |5 approved by a Research Ethics
Committes.

Yes(

He O

QIPTICN 2= | ghva parrnilasTon for ml‘tu'lll.fdmtnbn whrm
resegrch refmtad to the current study withost g i b
hut anby ¥ the research I8 appeoved by a Iu.-mn:h Eﬂu r.:wnmttwe

Yex[O

He O

PLEASE TICK YES FOR EITHER OPTION 3 OR QPTION & OR NEITHER

OPTION 3: | give permission for material/deta to be stored for possiis B

rersarch peawighed to the current study palv if coroent by obdaiped at the time
of the future meearch but only Fthe rasarch Ls spproved by & Resaarch Ethics

Cormnmithes.

Yex [

Ho O

OPTION 4: | ghva permizalon for rmortarialfdais to b stored for posibie Ghomn

research oansigted to the curment study withou? forther cpnaget being required
but only ¥ the research s approwed by a Besearch Ethics Committes [As detalled
In *Consent fo Future LUses* m the imformation leaflet

¥es O

Ne 0O

YOU MAY TICK YES FOR OPTION 5 AND/OR 5 OR NETHER

TPTION B | agree that sorme fiture reseandch projects may be carred out by
rasearchars wor king for commarsiel/ohaonascsuiianl comesnise,

Yex [

He O

UPTION & | understond | will et ba entitied to 4 shars of aiv pyofits that may
arfsn from the future use of my maierial fdete ar products derbvad fram &

Yes(

Ne O

PARTIOPANT'S MAREE:

PARTICIPANT S SIGNATURE:

DATE:

Where the participant k (ncapable of comprehending the nature, significance and scope of the
tomment required, the form most be signed by @ person campetent ta ghe comsent B his or ber
participation In tha research study (other then » parsan wha applled 1o undertaka or conducs the
study]. i the subject |5 a minor {under 18 years old) the signature of parent or guardian must be

obtained: -

NAME QF CONSENTOR, PARENT pr GLUARDLAN:

SKNATURE:

RELATHON TG PARTICIPANT:
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‘Wherm the partic’pant oan camprehend the natum, significance and scape of the comesnt mquired,
but ls physcally unable to sign written consent, signatures of two witnesses present when consent
was ghven by the partiipant ta a registered medical practitioner treating him or her for the iliness.

MAMF OF ARST WITMESS: SGNATLRE:

MAME OF SECOND WITNESS: SIGMATLRE:

Strimmant of responyl By off the Principal Imastipetor's or hisfher nomineted sperimanterty: |
have taken the tme to explaln the nature, purpose, procedurnes, benefits, and risks of this research
study to the ubove putient In @ winy they ould understand. | e offered 1o answer any guestions
about any axpect of tha study that concarma tham and fully arswered such guestiors. | balin that
the partidpant understands my smplaration and has fresty gheen Informad consent.

Erxgrar menter"s Nama:

Enpar mupnier’y. dgnwture:

The 3 coples needed: 1 ariginal for the partficipants medical records In hospital, 1 copy for the
parteipant, 1 copy for the Investgertor's recards.
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Appendix 4.4 Patient Information Leaflet

Patient Information Leaflet

Study title: “Impalrments of Neure-muscular Communication in Motor-Neuron Disease:
A Bio-Marker for Early and Personzlised Disgnosis”

Principal Invectigatar's saena: Prof Orla Hardiman

Principal Investigator s tie: Professor, Academic Unit of Neurology,
Trinity College Dublin

Consultant Meurclogist, Beaumont Hospital,

Dublin
Contact of principal investigator: +353 1 896 4496
Co-lmwastigator’s Dir Colin Doherty
Co-lmmstigarhoes titha: Consultant Neurologist,
Nuurology Dapt., Stiemes’ Hosphal, Dublin.
Data Controller's ldentity: The Academic Unit of Neurology, Trinity
College Dublin
Data Controller's Contact Details: Address: Aademic Unit of Neurology
Room 5.43,

Trinity Biomedical Sciences Inst.
Trinity College Dublin
152-160 Pearse Street
Dublin 2
Phone: +353 1 896 4376

Data Protection Officar’s |dentity: Trinity College Dublin Data Protection Officer
Darts Prorimction Officer’s Contact Dadulle: ~ Address: Data Protection Officer

Secretary's Office,

Trinity College Dublin,

Dublin 2, Ireland.

Email: dataprotectioni@tcd.ie.

Version 1.2 03/01/2019 Page 1
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You are being invited to take part in a research study to be carried out at the Wellcome HRB
Clinical Research Fadiity (CRF} at 5t lames"s Hespltal by the academic Unit of Meurology, Trinity
College Dublin.

Before you decide whether or not you wish to take part, you should read the information
provided below carefully and, if you wish, discuss it with your family, friends or GP (doctor).
Take time to ask guestions = dow't fesl rushed and don't fesl unsler pressure to maks § Quick
decision.

You should clearly understand the risks and benefits of taking part in this study so that you can
make a decision that is right for you. This process I known es ‘informed Corsant”.

You don't have to take part in this study. If you decide not to take part, it won't affect your
future medical care

You can change your mind about taking part in the study any time you like. Even if the study
has started, you can still opt out. You don't have to give us a reason. I you do opt out, rest
assured it won't affect the quality of treatment you get in the future.

[ Why is this study being done? |

Earlier diagnosis of Motor neuron disease (MND) or ALS will help toward better care and finding
potential future treatments. 'We are aiming to find a new way to diagnose MND and its sub-
categories earlier and with greater accuracy. In this new method we lock at how the brain and
miuscles talk to each other.

In doing so we are trying to find out more about how the disease affects the brain and signals in
miovement with new ways to diagnose ALS and its sub-categories.

We are also looking at how spinal muscular atrophy (SMA), primary lateral sclerosis (PLS), post-
polio syndrome (PPS) and multiple sclerosis (MS) affect these parts of brain signalling to improve
the ability to distinguish between these diseases and ALS, while also helping us understand more
about these diseases themselves and improve our ability in dizgnosing them.

We will measure brain activity using a procedure called Electroencephalography (EEG) as well
as the signalling networks involved in hand movement via surface electromyography (EMG).
This is deséfsed urder What will happen 1o me If | agree th take part ™

Page 2
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| Why am | being asked to take part? |
You have been invited to take part in this study because you are over the age of 18 years and have
been diagnosed with ALS, PLS, PPS, SMA or M5.
We will be recruiting 200 partiapants with ALS, PLS, SMA, MS or PPS and 100 participants without
these conditions as controls.

Who should NOT attend the study (exdusion criteria)®
If you have any of the following, you will not be able to parficipate in this study:

1 Psychiztric condition
2 Anyone taking psychiatric medications or illicit drugs

3. Medical condition that affect the nervous system (e.g., uncontrolled diabetes, seizure
disorders)
4 Previous (allergic) reactions in similar recording environments, e.g., to recording gels

5. Pregnancy

|Whﬂt will happen to me if | agree to take part? |

If you agree to participate, you will be asked to attend the Clinical Research Facility in 5t James's
Hospital for a recording session. The session will last approximately 3.5 hours. You may withdraw
from the study at any time, incduding before, during and after the session. We will ask you to
attend up to 3 sessions at 4-month intervals, to monitor changes in the brain over time. However,
participation in all 3 sessions is not reguired to contribute to this study.

When you amrive you, the contents of this leaflet will be revised with you by a member of the
research team. The details of what you will be asked to do and what you will experience will be
described again and you will be offered the chance to ask any questions or address any CONCEMms
you may have before agreeing to participate.

If you agree to participate, you will be asked to sign a consent form. Once completed you will be
asked a series of guestions to determine handedness and recent caffeine consumption. These
guestions are used to ensure that the experiment will be successfully performed, and the results
are appropriately interpreted.

A neurclogical examination will be performed to determine aspects such as power, reflexes and
muscle tone of the upper limbs.

We will also ask you to tell us of any medications you are currently taking or if you have/have had
any serious medical problems, 5o we can maximise your care should you require medical attention
for any reason. This information will be destroyed at the end of the session.

MNext, you will be asked to partidpate in EEG and EMG recording sessions.

In each recording session, we will put 16 electrodes on your right hand and forearm these are
the electromyography (EMG) electrodes, which will allow us to record musde activity of the
right arm.

we will also place a cap on your head. Electrodes will be placed into holes in the cap over your
scalp to record the activity of your brain. 8 electrodes will be placed around the ears and eyes

Page 3
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to record background activity. We will use some conductive gel when attaching the electrodes
to your skin. This is called electroencephalography (EEG)

We will then do the recording while you are at rest, when you do some simple right hand/finger
movements such as pressing a wooden block. The experimenter will tell you the details of the
instructions of the task in advance.

You may need to wash your hand/head after the experiment to remove the conductive gels.
Showering facilities are available on site. You may also use a towel to wipe away the gel and
subsequently wash it completely away after you leave if you prefer to do so.

These technigues are non-invasive, i.e., there are no needles involved and all electrodes are placed
on the surface of the skin. You may feel bored, restless or stiff from sitting ina chair for 3.5 hours.
You may move while seated in the chair between recording periods, however due to the number of
cables which connect the electrodes to the recording device, we will ask you to stay seated for the
duration of the session once we begin applying the equipment. If you wish to withdraw from the
study at any time this equipment can be quickly removed by a member of the research team so
that you can leave the chair.

Your responsibilities as a participant:

If you agree to participate in this study, we request that you cooperate to the best of your ability.
You can withdraw from the study at any stage without justifying your decdision and your future
treatment will not be affected.

0 ibiliti . . .
Alleviating any discomfort is important to us during this recording, both to ensure your own
comfort is maximised and to improve the quality of the data we collect, which is best when the
muscles are relaxed. Therefore, please alert one of the research team during the session if at any
time you feel uncomfortable or tense, if you wish to change position in the chair of if you would
like a pillow to support your arm or back.

All data will be maintained in a strictly confidential manner. The information that you provide will
be stored in a way that it cannot be accessed except by the study team.

| What are the benefits? |

There is no direct benefit to you for taking part in this study.

Your participation, however, helps scentific and dinical research and postgraduate researchers
undertaking this research as part of a higher degree. Your participation may also benefit those
affected by neurclogical diseases in future.

| What are the risks? |

There is no risk involved in taking part in this study, as the procedure and devices are safe and
commonly used. In the unlikely event that you show allergic reactions to the gels, the experiment
will stop, and we will provide medical advice to treat the reaction.

However, there may be discomforts for you while taking part in the experiment. The experiment

may be boring, tiring and fatiguing as it indudes sitting in a position for 3-3.5 hours. The conductive

gel used to attach the electrodes to your skin may feel cold or warm, cause wet and mild itching
Page 4
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sensation, and will need washing to remove after the experiment. The removal of tape on hand and
forearm may be slightly painful or uncomfortable for some patients. If at any time you feel that
your participation in this study has become unduly stressful, you are free to discontinue. This will
not affect in any way the quality of care that you receive.

There is no intention to look for diseases using the recorded data. In case of incidental findings in
the EEG and EMG recordings that may be an indirect sign of a previously unknown disease, you will
be asked for permission to discuss the findings a neurologist, your GP or other doctors for follow up
care.

|Wmtifmmeﬂitp-mul-|rmuhupnlnthhmiﬂ |

If for any reason you feel unwell, please alert a member of the research team and the study can
be halted immediately. If you require medical attention there are nurses on site at the
Wellcome Trust Cinical Research Fadility who are on hand to provide any necessary
care/assistance. Any leads/cables connecting the electrodes can be easily removed by the
experimenter. Once these are removed you can stand, leave the room, go to the bathroom or
elsewhere.

If you feel uncomfortable or for any reason wish to pausefstop the session, alert a member of
the research team and we will do so immediately. You do not need to provide an explanation to
the study team.

| Who is organising and funding this study? |

This research is being conducted by The Academic Unit of Meurology, Trinity College Dublin. The
research is funded by academic grants provided by The Irish Research Coundil, The Health
Research Board anmd Science Foundation Ireland in addition to charities such as Research Motor
MNeurone.

Members of the research team are undertaking postgraduate research at The Academic Unit of
MNeurology, induding PhD candidates who are researching ALS, PLS, PPS and/or MS.

| Is the study confidential? |

Your participation in this study will only be known to members of the Academic Unit of
Neuralogy, Trinity College Dublin. Members of Academic Unit of Neurology, Trinity College
Dublin who may provide/have provided medical care to you that is separate from this study,
such as Prof. Orla Hardiman, may be made aware of your participation in this study. Your
participation will mot be disclosed to others in your healthcare or the public. We will not contact
your GP to inform them of your participation in this study, unless you request us to do s0.

All the information cbtained from participating individuals will be treated in a strictly confidential
manner. All of the personal and dinical information obtained will be stored on a secure password-
protected computer database to which only the study team will have access. Each individual
entered on the database will be assigned a unique numeric (code). Therefore, the data will be
*odad”, e, your name will not appear on the database. A code will be used instead of your name.
Page 5
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The link between your name and this code will be maintained in a separate password-protected
encrypted database with access limited to named researchers from the study team.
All paper records, including your consent form will be stored in a limited-access, secure storage

space.

What Personal Data will be collected?

To help answer the research guestions, the study team will collect Personal Data about you so that
they can understand your medical history and your brain activity responses. The following are
examples of Personal Data that may be collected during this session:

*  MName

¢ Date of birth

& Diagnosis of ALS, PLS, PPS, SMA or MS diagnosis

» Handedness (using a test called the Edinburgh Handedness Scale)
» Meurclogical examination recorded on day of the study

* Signals from your brain and hand musdes and details of the task that was ongoing while
thiese signals were recorded.

To halp ua understand how the sgrals we messure mista to other aspacts of the braln's setivity or
structure, we may also investigate the relationship between the signals we collect and data you
have provided to the Academic Unit of Neurology, Trinity College Dublin during other research
studies the Unit performs. The following are examples of Personal Data that may be collected from
other studies performed by the Academic Unit of Neurclogy:

* MNeuropsychological test scores
& MRl scans of your brain
»  MUNIX data

Your participation in other such studies is voluntary, you do not need to provide this information to
us during this session or participate in these other studies to complete participation in this study.

If you have a diagnosis of ALS, we may also gather information relating to your diagnosis from the
Mational ALS Register, to imvestigate how these signals relate to different symptoms or subgroups
of the disease. The following are examples of Personal Data that may be collected from the
Mational ALS Register:

& Symptoms you experience
» Genetic risk factors you do/do not have

Contribution of your data to the National ALS Register is voluntary, you do not need to provide this
information to us during this session or contribute data to the Mational ALS Register to complete
participation in this study. Such information about your disease will only be obtained from the

Page &
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Mational ALS Register upon approval of a justifiable request to a manager of the ALS register. We
will not collect or store unnecessary information about your disease from the Register, only that
which is used to help us better understand the signals we measure in this study.

How will my Personal Data be used?
If you agree to take part in this study, your Personal Data will be used:

»  To determine if you can take part in the study

»  To measure how your brain and musde signals responds during the study and compare this
to other study participants

»  Tolearmn more about the disease and to help develop new diagnostic tests
# To provide you with treatment in the event of a study related injury
& To develop new analysis methods to improve the study of neurclogical diseases.

The research team at 5t Jamess Hospital and Trinity College Dublin use your health data for
research only based on your consent.

Your Coded Data may also be used in continued medical research projects investigating Motor
MNeuron Disease, Post-Polio Syndrome, Multiple Sderosis and the development of new research
methods that can be used to study these diseases. This is optional and you will be asked to consent
for future use of your Coded Data for related research projects. Further information is provided in
tha “Corsant ta Futumm Usas” saction below.

Who will receive my Personal Data?

The Academic Unit of Neurology research team will have access to your coded data. The key which
links your name to the code associated with this data can only be accessed by a limited number of
people within the Academic Unit of Neurclogy. Your name is maintained only for the purposes of
relating data you have provided here to other data you may have provided to the Academic Unit of
Neurology (described in "what Personal Data will be oollected v above).

The results of this study and optional future research may be published in study reports, scientific
presentations and publications. Information that could reasonably identify you will not be incduded
in such publications. Your results will not be sent to you or your GP, consultant or other healthcare
providers, unless you request us to do so.

We will store the coded files and a separately stored file which relates your name to your study
code for up to 5 years after the study of brain function in ALS, PLS, PPS and M5 by the Academic
Unit of Neurclogy has been completed. Thereafter your data will be fully anonymised, by
destroying the link between your name and the study code, so that the data can no longer be
attributed to/associated with you. This fully anonymised data may be used for future research and
may be provided to other research teams or made available online to maximise the information
learned from it.

In order to ensure that the study has been conducted carefully national or international

agendies (e.g., Department of Health, Irish Research Council, Health Research Board, American

ALS Asspdation etc.) may require access to the data we collect for this study: you hereby give
Page 7
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permission to the investigators to provide information obtained as a result of your participation
in this study (muscde and brain signals) to such bodies. Your name or personal contact details
will not be provided, only your coded data files.

| Data Protection |

This section addresses the protection of your Personal Data. Personal Data means any

information relating to an identified or identifiable living person. Sensitive Personal Data
includes biological/health measurements.

We will be using your Sensitive Personal Data in our research to help us study how
neurodegenerative diseasws (ALS, PLS, PPS and MS) afTadt the brains functan and how any
changes in brain function relate to different symptoms or subtypes of these diseases. This may
improve our ability to diagnose these diseases or their subtypes, predict how the disease will
progress in different individuals with these diseases, and test new medications for these
diseases.

Here we address questions you may have related to how your data will be protected in
compliance with Irish and European law, induding the General Data Protection Regulation 2016
[GDPR):

What is the legal basis under which we are processing your data?

The legal basis under which we will process the collected data is for reasons of public interest in
the area of public health (Artide &{1)e and Articde 9(2)j of the General Data Protection
Repulation 2016).

Who is the recipient of your data?

The Academic Unit of Neurclogy research team will have access to your coded data. The key which
links your name to the code associated with this data can only be accessed by a limited number of
peaple within the Academic Unit of Neurclogy. Further information ks provided inthe “ls This Sthudy
Confldertial ™ section.

How long will your data be stored for?

These data will be kept for 5 years after the end of the study of brain function in ALS, M5 and
PPS in the Academic Unit of Neurology. After this, the collected data will be anonymised so that
it can no longer be attributed to you by any means. Your data may also be fully anonymised
before this time.

Is there any risks which might arise from processing your data?

There are low risks with remote likelinood of harm which might arise from processing your
data. Such risks indude hacking of computers holding your data, loss of coded data files by
experimenters, loss of paper consent/handedness files, failure to destroy medical history
information and unconsented/non-GDPR compliant data sharing.

In order to minimise the potential for these risks to occur we have implemented the following
measures:

& All computers storing data are password protected.
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» The hard drive and remotely accessible computer are encrypted and locked in an office
{on Trinfty College Dublin's campus). Thix hard drive = not mmoved fram tha offios.

# The spreadsheet storing the key to your pseudoanonymised data encrypted and is only
stored on a password protected remotely accessible computer and an additional
password protacted computer Incked on Trinkty's campes. This Ale s anly accesshis by »
limited number of the research team members.

» Your coded data files are directly transferred from the CRF where the session takes
place to the remotely accessible computer by a secure, password protected connection.

& Files are not otherwise transferred to personal devices.

*  The research team have will be carefully instructed how to handle participants
information noted on the paper forms and have undergone GDPR training

» Any future backup/archiving of your data with a third-party vendor will be subject to a
Data Sharing Agreement approved by Trinhy Cnllmge Dublin’s Data Protection Officer to
ensure the data is stored in compliance with GDPR and is not misused

How can you withdraw from this study?
You have a right to withdraw consent at any time. This can be done before, during or
after the recording session in person by telling a member of the research team or using
the contact detzils provided at the end of this leaflet.

How can you file a complaint?
If you would like to lodge a complaint regarding our data policy, you may do so by
contacting Data Protection Commissioner in Trinity College Dublin (contact details are
on the first page of this leaflet)

What rights do you have regarding your data?
Under the General Data Protection Regulation from 2016 you have the following rights:
& Right to access [Article 15): You have a right to request access to your data and a copy of
it
» Right to rectification (Article 16): You have a right to have any inaccurate information
about you corrected or deleted.
# Right to erasure (Article 17): You have a right to have your personal data deleted.
» Right to restriction of processing (Artidle 18): You have a right to restrict or object to
processing of your personal data.
» Right to data portability (Article 20): You have a right to move your personal data that
we have collected to another in a readable format (e.g., CD or USE).
» Right to object automated processing (Article 21-22): We will be applying automated
methods on the collected data to sub-categorize patients into groups that might be used
to facilitate more patient-specific future dinical trials. You have a right to object this.

As data processing is being performed on the legal basis of public interest and personal health,
we may not fulfil some of these rights, according to Article 89 of General Data Protection
Regulations 2016 ("Safeguards and derogations relating to processing for archiving purposes in
tha public Intarest, sclantific or histor’oal resesrch purposes or stetist il purposes™).

Page 3
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Namely, in the future you may be unable to restricted processing, object to automated
processing or request erasure of data we have already collected with your consent. This is
because loss of this collected data may lead to us having insufficient information for performing
the analysis required for this research.

Will your personal data be processed further after this study? If so, could your data leave the
EU?

We would like to maximise the amount of information that can be leamed from your data, by
utilising it in future research. Consenting to the future use of your data beyond this project is
optional and will be restricted to use for specific aims, with data sharing agreements in place to
aafeguard your ightx. Thix Ix dearribed In mpra detall bakow inthe sactian *Cansent to Future
Use™,

| Consent to Future Uses |

We wish to maximise the amount of information that can be learned from the data you provide
during this study. We therefore ask for your consent to use this data for further research of
neurological diseases. Consenting to future uses of your data beyond this study is optional.
Such further research is for the purposes of one or more of the following:

Improving understanding of neurological disorders

Improving the ability to diagnose neurclogical disorders

Improving the prediction of how neurological disorders will progress.

Developing new analysis methods, measurements or tools which can be used for
purposes 1-3.

This research may be performed by research groups or commerdal entities other than The
Academic Unit of Neurology, Trinity College Dublin, and may be within or outside the EU/EEA.
Commercial entities such as pharmaceutical companies may wish to investigate the data, we
collect in order to develop new tools for use in medical practice or drug testing. Any
research/commercial groups will only be provided with coded files. The key which links your
name to this data to make it identifiable will not be accessible to anyone other than a limited
number of team members within The Academic Unit of Neurology, Trinity College Dublin.

Furthermore, if you consent to the future use of your data by another research
group/commercial entity, data will only be provided to them if a Data Sharing Agreement has
been produced and approved by the Data Protection Officer of Trinity College Dublin to ensure
your data protection rights are maintained. If this group is outside of the EU a Cross Border
Transfer Agreement approved by the Data Protection Officer of Trinity College Dublin will also
be in place to protect your rights.

| Where can | get further information? |

If you have any further questions about the study or if you want to opt out of the study, you can
rest assured it won't affect the quality of treatment you get in the future.
If you need any further information now or at any time in the future, please contact:
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Saroj Bista

Address: Room 543,
Trinity Biomedical Sciences Institute,
152-160 Pearse 5t.,
Trinity College Dulbdin,
Dublin 2,
Ireland.
Phone No: +353 1 896 4497
Email: sbista@tcd.ie
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Cortico-muscular coherence in primary lateral sclerosis
reveals abnormal cortical engagement during motor
function beyond primary motor areas
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Primary latemal sclerosis (PLS) is a slowly progressing disonder, which & characterized primarily by the degeneration of upper motor
neamns (UMNs) in the primary motor area (M1). [t is not yet clear how the fanction of sensorimaotor networks beyond M1 are affected
by PLS. The aim of this study was to use cortico-muscalar coherence {CMC) to chamcterize the oscllatory drives between cortical
regions and muscles during a motor task in PLS and to examine the pelat ip between CMC and the level of clinical impaimment.
We recorded EEG and EMG from hand muscles in 16 participants with PLS and 18 contmls during a pincer-grip task. In PLS, higher
(MC was aobsereed ower contralateral-M1 (o- and p-band) and ipsilateral-M]1 (2-band) compared with contmls. Significant correlations
betwesn clinically assessed UMN scores and CMC measur=s showed that hi clinical impairment was associated with lower CMC
ower contralateral- M1/ frontal aress, higher CMC over parietal area, and both higher and lower CMC {in different bands) over ipsilatermal-
M1. The results suggest an atypical engagement of both contralateral and ipsilateral M1 during motor activity in PLS, indicating the
presence of pathogenic and/or adaptive/compensatory alterations in neural activity. The findings demonstrate the potential of CMC
for identifying dysfunction within the ssnscrimotor networks in PLS.

Eey words: primary latemal sclerosis (FLS); cortico-muscular coherenos; upper motor neuron; neurcdegenemation EEG; EMG.

I i .
Primary lateral sclerosis (PLS) is 2 slowly progressive discrder of
upper motar neumn [UMN) degeneration (Finegan et al. 20159).
A definite diagnosis of PLS requires clinical signs of UMM dys-
function, a dis=ase duration of at least 3 ye=ars, and an abs=nce
of the significant lower mator newron (LMK} degenemation that
differentiates it froen amyctrophic lateral sclerasis (ALS) (Tumer
et al. 2020). PLS is also characterized by cartical and subcortical
changss beyand primary mator area (M1) and the corticospinal
tracts (Finegan et al. 2015). These widespread structural changes
in the sensorimotar netwark are likely to, in tum, impact the func-
Hon and neural communication between different parts of this
network. Such patental differences in the interactions between
different parts of the sensocrimator netwark during motor tasks
can be best assessed by quantifying the fast oscllatory intemac-
Hons between neurcelectric signal recordings [Coffey =t al. 2000;
Dukic et al_ 2077).

Aecent electroencephalogam [EEG) studies have demon-
strated a coorespondence betwesn neumelsctric actvity and
UMN pathalogy in ALS Mchackin et al. 2019). The high temparal
resolution of EEG is well suited to prowide information conceming
rhythmic ar cscllatory brain activity across a range of frequen-
cies. Previous EEG investigations in people with ALS, conducted
at rest, have demonstrated an altered functional connectiwity
across brain netwarks in the theta (4-7 Hz) and gamma (31-60 Hz)
frequency bands [(Westphal =t al. 199E; Blain-Morass et al. 3013;
Massemleslami et al. 2007; Dukic et al. 3015). The UMN pathology
of ALSis similarto that of PLS, though ALS has both UMN and LMN
pathology. This suggests that caortico-cortical communication is
also similarly alter=d in PLS, and this is supparted, in part, by
magnetic resonance imaging (MRI} studies [Agosta et al 3014;
Meoded et al. 2015).

The functional significance of abnormal cortical commu-
nication can be better understocd by examining cortical
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engagement during active motor tasks. More specifically, the
cortical regions engaged in the exerution of motor tasks n
be assessed by calculating the coherence between ensemble
neural activity reconded ower cortex {measured with EEG) and
the collective activity of spinal motor neumns recorded from
the contracting muscle [EMG) [Comway et al. 1995; Halliday et al.
1558). Cortico-rouscular coberence (CMC) is typically observed
as synchrony fin the beta and gamma bands) betwesn EEG
electrodes over M1 and EMG activity. It is considered to be
indicative of the efferent drive to the spinal motoneurons while
also being subject to the modulating influence of peripheral
afference (Witham et al. 3011). Peak beta-band CMC over M1
is reduced in conditions chamacterized by UMN degenemation,
including stroke (Fang =t al. 3005, Aicio et al. 3071) and ALS
[=sa et al. 2017; Proudfoot et al. 3018). In princple, CWC
also provides a method of inwestpating whether changes in
the engagement of other cortical regions during mowement
acoompany the PLS-induced newrcnal loss in M1, It might be
anticipated that the loss of fast-conducting corticospinal axans
in PLE will be accompanied by pathogenic, adaptive, andfor
compensatory changes throughout the sspsorimotor network,
given the redundancy in the sensorimotor system (Neflscn and
Neilsan 2005; Ajemian et al 2013, Macdlinnon I01E). This may
imvolve the engagement of cortical regions beyond M1 (Bede et al.
2021).

Here, we used EEG and EMG signals recorded during the per-
formances of a mator task to test the hypothesis that, in PLS, CMC
can be detected aver brain regions extending beyond M1, We also
sought to determine whether the variations in CMC are comelated
with the dinical measures of UMN dysfunction.

Materials and methods

Ethics

The study was approwved by the “Tallaght University Hospital/St.
James's Hospital Joint Research Ethics Committee—Duhblin,™ REC
Reference: 2019-05 List 17 (01), and was performed in acoor-
dance with the Declaration of Helsinit All participants provided
informed written consent to the procsdures before undergoing
asseszment

FLS cohort

The FLS cohart wene prospectively recruited in this cross-sectonal
study betwesn June 3017 and August 2019 through the natonal
ALE clinic at Beaumont Hospital. All participants with PLS fulfilled
the clinical criteria for PLS [Turner =t al. 3030). Healthy contmals,
age-matched to the PLS cohort, were recruited from a database of
healthy controls interested in taking part in the ongoing research
studies in the Academic Unit of Neurology, Trinity College Dublin,
the University of Dublin.

Suhjects with a history of major head trauma or other neo-
rological conditions that could affect cognition, alcchal depen-
dence syndrome, curment use of neuraleptic medications, ar high-
dose peychoactive medication were excluded. Those with dizbetes
mellitus, a history of cerebrovascular disease, and those with
neuropathy from other causes were also excluded. All of the PLS
cahort underwent nerve conduction studies and EMG to excluds
ather concurrent peripheral nerve disorders that could interfens
with CMC analyses.

Clinical assessment

Om the day of EEG recording, the FLS cohort underwent an exten-
sive dimiral assessment. Disexs= duration from the symptom

onset and the site of disease onset were recorded. Musde strength
was assessed using the Madical Ressarch Coundl [MRC") score
[(Compston 2010} in 9 hilateral §i.e 1E) upper limb musdes, incad -
ing deltoid, triceps, biceps, wrist flexces and extensors, fingers
flexors and extensors, and abductors of the index fingers and
thumbs. The degres of dinical UMN inwolvement in the upper
limbs was graded by a UMN score [de Carvalho et al 2003).
An adapted UMM score based on Kent-Braun =t al {195E) was
calculated using reflex and UM signs assessment. Refleoes were
assessed at 3 sites in the upper mbs (biceps, triceps, and brachia-
radialig). The UMN score mnges from O [nonmal) to 16 [peflect-
ing hyperreflexia [0-£], hypertonia [0-4], clonus [0-3], Bakinski
[0-2]. and Hoffmann sign [~2]). The Edinburgh Cognitive ALS
Screen (ECAS), whidh evaluates cognitive performancs across
languags, verbal flusncy, execubive, memory, and visuospatial
damains (Abrzhams et al. 3014), was performed on 14 of the 16
PLS participants (2 dedined). Edinburgh handedness inventoory
[Qidfeld 1571} with 17 questionnaires was performed to assess
the handedness of the participant.

HD-EEC and bipalar surface EMG were subsequently recomed
in all participants for the calculatiom of CMC during motor tasks.

Experimental paradigm

Assessment was conducted in the same manner for the PLS
and contro] groups, similar to previous work carmied out by our
group, and as described in detzil by Coffey et al (2000}, with
additional notes in Supplementary files. Participants held a foroe
transducer between the thumb and the index finger of thedir right
hand to measure the pincer grip force [Fig. 1A). The maximal
woluntary contrmction (M) was determined as the average peak
fomce achieved during 3 short (5 s) maximal contractions, where
the peak force in these attempts lay within 10% of each other
Similar to gur previous study, participants were asked to produce
a farce at 10 MWC far 5 5, while holding the foroe transducer in
pincer grip, guided by visual foree feedback an screen (pincer grip
task). In a second task, participants wers also asked to hold the
formce transducer for'5 s (precision grip task). Preliminary analysis
showed that participants exhibited lower beta-band CMC during
the mncer grip task comparsd with precision grp (Supplemesntany
Fig. £1). The present study focussd an the mncer grip task, as the
preliminary CMC analysis at the sensor bevel indicated greater dif-
ferences between FLE and contmils during this task. Participants
attempted a total of 30 trials for each task.

Recording of (neuro-jelectro-physiological signals
All participants were seated comfortably, and the FEG data were
recorded in a special-purpose labomatory, using 178-channe] scalp
elactrode cap, filtered over the range of 0400 Hz and digitized
at 3,048 Hz using the BioSemni ActiveTwo system (BioSemi BV,
Amsterdam, Netherlands). Each particpant was fitted with an
appropriately sized EEG cap

Surface EMG data were recorded using a hipalar slectrode
configuation from 8 muscles in the dght upper arm, with the
elactrode pairs placed in accordance with the SENIAM guidelines
[Hermens et al. 2000). The online hardware gain and filter sethings
for the EMG sigmals during recordings were the same as EEG
chanmnels, which was followed by further offline preprocessing,
Five EEG channels (Cz, Pz, C4, Fz, and C3) and 3 EMG signals
[first dorsal interosseous [FOH), flexor pallics brevis [FPE|, and
abducter pollicis brevis [APR]) were chosen a prics for the CMC
analysis. The EEG electrodes wers chosen due to their repre-
sentative coverage of the cortical motor network. The C3, Cz,
and Cd cover the contralateral hand area, central, and ipsilateral
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Fig: 1. &) Finchar grip motor task performed by thumb and indax firger of right hand. H) A sagmant of force profils of pincher grip motor task parfommed
at 10% of maximal woluntary contraction (MWC). C) A fore trajectary of the pinchar grip motor task avweraped owar 30 triaks. O Segmant of EMG signal

memrded from tha FDI musde during 10% MVC pinchar grip motor task.

hand sensorimotor regions for the chosen tasks. Fz pertains to
the frontal arsas that reflect the activity from supplementary
mator regions (and, to scme extent, premiotor areas). Finally, Pz
reflects the activity from parietal areas that play important roles
in visuomotaor tasks (Massemoleslami et al. 2014). Importanthy,
these regions have minimal spatial overlaps and allow the activity
of more distinct regions to be assessed. The target musdes were
selected basad on their bicmechanical imvalvenent in the pincer
grip task [Danna-Dos Santos =t al. 2010).

Signal preprocessing and spectral analysis

EEG/EMG data analysis (Fig. Z) was perfonmed as described in
detail in a previous stady (Coffey et al. 3070). Briefly, automatesd
artifart rejection routines (Fisldtrip Toclbox) (Oostemveld et al.
3011y were used to discand data contaminated by noise After
visual inspection of the 12B-ch mecardings, EEG channels with
higher levels of noise were remowed and were reconstructed wsing
weighted average interpolation of neighboring channels (Permin
et al. 1985). An average of 72 46 trials e B8 4+ 24 <) for the 5 target
EEG chanmnels wers retzined for the corficomuscular coherence:
calculation across all particpants. A time window/=poch duration
of 4 s (starting 1 = after the visual cue) was chosen for analysis.
Data epochs, where the coeffident of vandation of the force
produced was =002, or where the mean force was <E% or = 30%
MVC, were excluded from further analysis. An average of 3+6
trizls (e 124324 £} data were renoved across all participants
for thess reasons. The raw EEG data were (re-jreferenosd wsing
surface Laplacian spatial filter (McFarland et al. 1957; Bradshaw
and Wikswo 2001}, which served to provide signals that are more
spatially spedific to each EEG elactrode The EMG data (signal
amplitude) were normalized with respect to oot mean sguoare
EMG amphtude at 100% MVC EEG and EMG dats were filtered
betwesn 1-100 and 10-100 Hz, respectively, using a doal-pass
fourth-arder Butterworth bandpass filter The auto-spectrum

of mach EEG/EMG signal, and the cross-spectrum betwesn all
comhbinations of EEG-EMG sigmals (frequency resalution: 1 Hz,
tandwidth: 3-100 Hz) were calculated using Fieldtrip toclbax
[Hanning taper and frequency senoathing at 1 Hz, nonoverlapping
windaws af 1 ). EMG signals were not rectified.

Estimation of coherence spectrum and banded
coherence

Coherence is presented based on squivalent z-scores and P-valoes
at both subject and group levels. This appmach prevents bias
by eliminating the dependence on the number of trials for the
coherence analysis.

CMC was examined in B different frequency bands, and a single
coherence estimate was abtained for sach band—delta (21 Hi,
theta (57 Hz), low alpha (3-10 Hz), high alpha [11-13 Hz), low beta
(14-20 Hz), high beta {71-30 Hz), low gamma 3147 Hz), and high
gamma (53-57 Hz, excluding the 4B-52 Hx range to awoid mains
power naise). The frequency bands were defined based on the
typical physiological EEG frequency bands (fanei and Chambers
007 as well as their redevance both in s=nsarimotor contml
[Hass=roleslami et al. 2014) and quantifying netanrk dysfonction
in motor neuron diseases (Dukic =t al. 2018, 2021).

CMC was estimated based on the spatial median using the
following procedure. Coherence was estimated using the median
walue of the autc- and cros-spectra represented by their real
and imaginary components in the 70 space calculated acmoss
epochs (Weszfeld 1937; Mbmimaa and Oja 3014) and Figure 2
in Massercleslami et al. (20719]. This contrasts with classical
coherence estimates which are based on the expected value ar
arithmetic mean of the spectma. The auto- and cross-spectra for
each 1-s epoch were calculated for each participant. The spatial
median coherence was then estimated from the spatial madian
of the aute- and cross-spectra with a resclution of 2 He, Fig. IF,
and across each of the B defined frequency bands to obtin
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Fig. 2. Exarnple showing tha estiration of CMIC using data from a haalthy contml] participant {O0M13 in Supplemantary Fig. 57). A) Prepmomssad EEC
signal recoeded from C3 aloctrode. B) Preproomssed EMC signal roneded from APS musclo during the sama tima. O Powsr spectrum of EEC signal 0
Powerr spectrurs af EMC signal i the fraquarcy rarge of intomst. E) CMC estimated using the magnitude sguared coherones with spactral

{"damiral cohamenoe”). F) CMC calouktod usirg the spatiz] median to estimata tha auto- and ooes-spactra of tha EEC and EMC data (“pCoh™). Hom, the
spatial median was wad to group the cobarenoe spectta over bands with 2 2-Hz interal to Gdtate the comparison of pCoh with classima] coherono. G
Corrversion of classol magnitude squarmd cobarencs nto banded CMC valuaes. Fero, the spatial median method & used to group the dassical cobanenoe
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frequency bands usad for grouping the cohasnos spectra. Frequancy bands: dalts {8, theta (), low alpha (o), high alpha (o), low bata (M), high beta
{Ph}, low gamama (y1), and high gamma (yh).
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the “handed coherence,” Fig 7H. The banded spectral CMC was
normalized by dividing the band cross-spectnom by the espective
band auto-spectra. The strength of coberence was subsequenthy
press=nted using the equivalent P-value as -log{F}, which we denote:
as “ploh.”

To represent the banded CMC as a probahbility, =ach coherence
walue was compamnesd against 0 using a2 nonpamametrc 1-sample
test for significant coherence [spatial [signed] anks; Hannu Of
and Randles 3004; Hanm Oja 2010; Nordbhausen and Ofa 3317).
This procedure yielded individual Pvalues for each frequency
‘band for each individual (both PLS and control groups). Stouffer's
method was used to combine individual P-values to derve average
F-value within each gmup, i= in the healthy group and in the
PLS group (Stouffer et al. 1945; Westfall 3014). This pooedure is
similar, but nat procedurally equivale=nt, to the poaled coherence
analysis [Amjad exal. 1957). Both methods can be used to combine
information from several particpants [or trials). The negative
logarithm of the P-values, iz —log(F), was used as 2 measure
of CMC strength to visualize CMC The band-specific coherenoe
walues, expressad in —loguw(F), wens used ta represent the collec-
tive coherence aver the rangpe of frequencies within each distnct
frequency kand (Fig. 3H).

For comparisan, the magnitude squared coberence, referred to
here as “dassical coherence,” was also estimated in the frequency
mnge af 2-100 Hx in addition to the banded coherence. Spectral
smpathing af the autc- and cross-spectrum was done using a2
Hanning filter: The significance threshold fupper 95% confidence
limit) was calculated as 1 - IZI.-.'}G]{‘-‘!'“", where L is the number
of segments used to loalate coherence and the factor 0.375 is
coorection for spectral smoothing using Hanning filter (Halliday
and Rossnherg 19559).

Statistics

To find significant group differences between the banded CMC
walues, the band-spedific CMC values (expressed as P-values) were
converted into r-soores by taking inverse of cumulative distrbuo-
tion function of 1 - P. The resulting r-scones of CMC values were
comparsd betwesn controls and PLS using a nonparametric 2-
sample Kolmogoror—Smimow test (Massey 1951), which compares
the shapes of 2 distributions rather the central tendency {mean
and median). In total, 120 comparisons (5 EEGx 3 EMG = B fre-
guency bands) wers made. Correction for multiple comparisons
was performed using the adaptive false discovery rate (FOE) at
q=0.05 [Benjarmini et al. 2006). The =fact size of the CMC differ
ences was calculated using Cohen's d.

Cormelation of the CMC measures with clinically assessed UMN
scares was caloulated for all the predefined frequency bands and
the preselected EEG and EMG channels [fe=. 120 CMC measures
in total, 5 » 3 EEG-EMG combinations » & frequency bands).
The assccation of the CMC measures, sxpressed in —login{f).
in the PLS cchart with their corresponding UMN scores was
tested using Spearman’s rank cormelation coeflicient. For this
purpase, partial correlations wemr used to remove the potential
effects of age from the inference (mnge: 46.3%-77.43 years).
The P-values of comelation ooeffidents were adjusted for
multiple comparison (13} cormparisans in total, S EEG « 3 EMG « 8
frequency bands) using adaptive FDE at g=0.05. A line was
fitted to the correlation data to visualize the relatonship wsing
the mbust linear l=ast-sguare fitting method. The degrees-af-
freedom-adjusted coefficent of determination [Adj F7) was
malculated for the fitted line to measure the goodness of
the fit.

SarnjBista etal | 5

Table 1. Clinical and demographic data of the analyzed PLE and
control groups.

FLS Controls

Binlogical sax (fomaladmala) M s b
Avorapa age at reoordirg (years) ELT£EY B2 5+B9
EHI [right/1aft) AT 1572
Disasg duration fyears) TEEED -
LIMN s0om [max 1] 12.B+23
Spasticity soora {uppar linh) max 4] 154106
MIRC [uppar limb) (max 100) TLE: 408
ECAS total abmoemal sooem n (3] 4 [28%)

Larguags 1)

Viarbal fluancy T [LA)

Mcrnoey 2 [14%]

Visuospatial 1[FH]
EHI, Edinburgh Handedrass ; LGN, Uppar Mokor Mouron. Soong

SoTRen

Results

clinical profile

Sixteen participants with FLS (7 females and 9 males, age:
E2.7 2 B.7 [mean £ S0 with PLS wern= prospectively recruited from
the naticnal ALS Clinic based at Braumont hospital, Dublin. ATl
participants with FLS were diagnosed with definite PLS, fulfilling
the consensus criteria {Turmer et al. 3330) defined as the absence
of LMN degeneration 4 or more years from symptom anset;
1E healthy contrels 7 female) were recruited [ape: 62.5£897
[mean 4 50]). Table 1 shows the detailad profile of the recnited
participants.

ECAS results wer= scared as nommal or impaired based on
education and age [Finto-Graw et al. 3017). Four participants with
FLS [2B%) showed evidence of cognitive impairment based on
the total ECAS scare. The details are Ested in Table 1. Abnoomal
performance in visunspatial domains [7%) were uncomman based
o pur screening assessment with ECAS

Abnormally high CMC in FLS

The results show that there were statistically significant dif-
ferences in the frequency, location, and magmitude of the CMC
betwesn healthy contrals and the PLS groap, Fig. 3 (g <0005, with
FDR multiple comparison carmection). The coherence spectra for
all EEG channels and musdes investigated are presented in Sup-
plementary Fig 53, and the significant differenoess between FLS
and cantrol groups ane summarized in Fig. 4 and Tahle 2. Healtiny
controls did not show strong beta-band CMC peaks ower the
contralateral motar ar=a when grouped acmoss all participants
(€3}, likely due to the task selection [pincer grip vs. precision
grip), Supplemmentary Fig. 51 and Fig- 3A and B. However, when
examined on an individual basis, significant beta-band CMC was
detected in 1418 contmls: [Supplementary Fig. 57). Bialogical sex
had no effect on the CMC detected in the PLS ocoheost (P= 005,
tested using Mann-Whitney 1 test).

CMC pattern over contralateral primary motor are

CMC was significantly higher in the garnma and alpha bands in
the PLS group when compared with contrals. The coherence was
not statistically significant far the control group at the C3 channel
location ower cantralateral motor area (between 3 and for both
the FDI and FPE muscles, mepectively, Fig. 34 and B). [t is notable
that statistically significant gamma- and alpha-band CMC was
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Fig: 3. Partidpants with FLS show abmormal cortioo-musoular (EEG-EMG) cohamenos in primary motor ameas and aboomal frequency bends. The

first oolumn displays

proupsd over sharter 2-Hz frequency bands, and the second column: shows the banded coharenos ["pCoh”) grouped ower

poh
pradafined frequancy bands. Tha pCoh spectra show tha strangth of synchrony of the EEG dectrodes over tha contelateral primary motor amea C3 (A
and B} and ipslateral primary motor area 4 {C) with EMC {FOI and FPB muscles) i diffarent frequency bands. The shadad area cormesponds to the
norsignificant walues at o=10.05 threshold for P-values [cormectad for multipla comparison, 130 comparisons in total, using FOS 2t g =0.05). In FLS, CMC
botwaon C3-FDOI was prasant in the gamma band irstead of the typiz] bata-band CWMC observed in healthy controks during this type of task. The FLE
cohart also axhibited CRC batwean ipsilatoral C4-FO0 in the beta band which was not present in contmlks.

abserved in the PLS cohoet, as this is not typically observed in
healthy subjects during low-force muscle contractons.

CMC pattern over ipsilateral primary motor area
Significant beta-band CMC (] was cbserved between C4 2nd the
FOI aver the ipsilateral motor area in the PLS cohort and was not
observed in contmls (Fig. 30).

Correlates with UMN dysfunction score show
location-specific positivity and negativity

We then conducted a separate analysis to test for significant
correlations hetwesn CMC and UMM score (mloulated for all

predefined frequency bands and EEC and EMGC channels). Sev-
eral of the CMC measures were significantly correlated with
the UMN dysfunction score after FDR cormection (Takle 3 and
Fig. 5).In Takle 3 and Fig. 5, a negative correlation between a CMC
measure and UMM score indicates that higher UMN impairment
[rnore severe clinical syrmptoms) are assocated with reduced EEG—
EMG synchmny [CMC) in the PLS cohort. A pasitive correlation
indicates that PLS participants with mome severs UMN symp-
tommnis exhibited stromger CMC in these muscles/hrain regions. Bath
alpha- and gamma-band CMC between the APB muscle and the
contralateral motor cortex were lower in FLS particpants with
mare severe UMM impairments (significant negative correlation
with UMM score). Theta-band CMC coherence betwesn the FDI
and the frontal brain region (Fz) was also significantly lower in
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Fig- 4 Bax pict of banded CMC faxpressed as -scomes) for the EEC-ERC chanmal and freguancy band combirations that were fourd to show signifiznt
CMC in FLS after FOR comection fhased an Takle 2, see Fiz, 3 and Supplementary Fig. 53). The plots show the CMC, between EEC electmdas ovar the
moatralateral primary motor asa C3 (A, B C and O] and ipsilateral promary motoe ama C4 () with EMG (FDE and FPE muscle) in differont frequency

‘bands, for control and PLS participarts overlayed with individuz] values. Tha groups wene compared usng.
diffarempa & marked with an asterisk {*F = 005, ocormected 2t FOR g=0u5).

PLS participants with greater UMM dysfoncticn. Gamma-band
CMC betweesn the APH and the ipsilateml motor ames {C4) varied
with the degres of UMN dysfunction. FLE participants with greater
UMHN impairments exhibited lower CMC in the high gamma band
[3hn) but higher CMC in the low gamma band {j4). Finally, PLS
participants with greater UMN impairments exhibited greater
beta-band CMC between the APE and the parietal brain regian
[beta-kand CMC in the parietal region is nat typically abserved
in healthy contmls).

Di -
To date, studies imvestigating CMC in motor neuron dissases
have forused on estimating beta-band CMC hetween muscles
of the handfarm and M1 as a direct reflecton of UMN/LMN
mathology (Proudioot et al. 301E). However, our recent EEG studies

test Signifimnt group

in ALS (Duldc et al. 201%; McMaddn et al 3020) and Post-
Polio Syndrome {(Coffey =t al. 20209 suggest that abnornmalities
in the cortical netwark activity extend beyond Ml in these
conditions, a finding that is also sopported by neurcimaging
studies (Finsgan et al. 2019). We have usad CMC to demonstrte
how brain activity in participants with PLE differs from that of
healthy contrals during the perfoemance of a pinch grip motar
task. Here, we chamacterized the engagement of different brain
regions by the osdllatory functional coupling between signals
recarded from brain and muscle (Fig. 3, and Takle Z). In PLS, higher
CMC at the contralateral M1 was observed in the gpmma and
alpha bands when compared with controls. Significant beta-
tand CMC was alsa detected in ipsilateral M1, which = not
typically chserved in healthy partidpants. In =ach case, the
CMC measures were higher in PLS than in controls, suggesting
that these observed differences ame unlikely to be attributable to
muscle wasting or dysfunction (which would typically decrzase
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Table 2. Table shaowing group average banded Corticomusoular coherence {CMC) waluss expressed as P-values, The CMC measures
pertain to selected EEG-EMG channel and frequency band combinations that were significant in the PLS group after FOR correction at
g=0.05 (based on Fig,. 3 and Supplementary Fig. 53). The CMC values are shown for controls and PLE alang with group difference

P-values and effect size

ERC/EMIC Frequancy CON Avg pCoh (B FLS Awg ploh {F) Knlmiogrery—Smitray tast [Fy Effert siza Cobam's d
O-FD{ High bata 0L3s 0011 L1 £ 5] 03g
O-FD{ Lowr gRImma o3 ] 000 0287
3-FFB High alpka 0040 0033 04T 0I7e
3-FFB High gamma [0.0412 LT ] aosz 054
C4-FDI Lowr batn ores DL oS 07es

Tha bold values in Tabie I indicaie the CMC comparison betwean cootrols and FLS marked by an asterisk [7) In Flgare 4

Table 3. Summary of cortico-rmuscular coherence {CMC) measures of interest

T maasura EEG/EMIG location Fraquancy band Significant cmharenoa Significant differanca Significnt /- cormalatian
obsarwed in FLS batwaan PLS and contoks wath LIMM scara
1 o3-FM High bata o
2 o3-FM Low gamma o o
3 C3-FFB Eigh alpha o o
4 C3-FFB Eigh gamma '
5 C4-FIi Low bata " o
& Fz-FDU Diclta -
7 C3-AFB Low alpka -
] C3-AFB Eigh pamma -
] CA-AFB Eigh gamma -
be] C4-AFE Low gamma +
11 Pz-AFB Low bata +
FOFz & & |5-THz) APB-CI & 1., [3-10Hz| APB-F2 &% i) {21-30Hz)
* 1= 06D " 1= -0 4 =DT68
el E= {III?II‘ k| p=|:|.-|;|3"' 2 u=I:I.I:=N"
E z - Ad] R7=0,5035 u Aid] RO=0 BT P ‘I-':Lﬂ =075%
| "'Lr-l_h 1 .\"\M‘ 1
S [ u o - ]
s i i PO " it m s ) 5 3

APB-C4 {7 (31-47Hz)

APBSE ) 53-97Hzl

&

* (20,712 re DEES = 1676

3 GrERIE 3 p=ngaT 3 o= 0045
o ] B¥=0,720 4 . Al] R0 ; L ¥ agrtenrin
=
&y * 1 . *

ST o Tt A

lg I 15 PE i, ' Mo 13 5 e

Tabal UMN Sconc

Tokal UMM Scons

Todal WM Score

Fig: 5 Measures af oortico- musoalar [EEG-EMG) ooherenos in FLS shows significant strong positive and negative assocations with the dimiclly dafmed
UMM dysfunction scom fi.2. Spearman's rho batwean 0.6 and 0.8 or batwean —0.5 and - 0.6 for each cormlation). The F-values have been cormecied for
FDR at g =0.05. Notioe that the cormelations am partial cormelations with thae effact of ape mmoved from the infasnce.

CMC). We also identifind several CMC measumes that wens
correlated with clinical measures of UMM dysfunctian, which
were also identified cutside of the contmalateral primary maotor
area.

FLS-specific differences in CMC

Higher alpha- and gamma-band CMC between contralateral M1
and FOLFFE was ohserved in PLS when compared to contrals,
Fig. 4 and C, respectively, with a large differenos reported
in the gamma band [Coben’s d=0.887). Altered functomal

connectivity throughout the sensorimotor cortex has been
similarly demonstmated in ALS in resting-state EEG studies
[Massercleslami et al. 2017). n the present study, gamma-band
CMC was detected in participants with PLS during the low-force
muscle contractions. This is unusual as the gamma-band CMC is
typically anly abserved in healthy controls during more foroeful
or dynamic muscle contractions: [Omlar et al. 2007; Gwin and
Ferris 701Z). Previgus Gterature has shown that gamma- and
beta-band CMC ame present under different conditions and are
often mwersely related .= when gamema-band CMC increases,
beta-band CMC decreas=s). For example, gamma band coherence
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appears during strong contractions, with a correspanding rechac-
tion in the beta-band CMC and & thought to reflect a stromper
excitation of the motar cortex or greater attenbion to the sk
[Brown et al. 1558].

The ohserved broad increase in CMC in PLS may reflect a com-
bination of pathogenic, adaptive, and/or compensatary increases
in the synchronization of neumnal groups in respanse o UMN
degeneration and dysfuncHon in the inhibitory interneoronal
cimouitry in PLE {Agarwal =t al. J01E). Meuronal lazs in M1 in PLS
and the cortical and subcortical changes beyond M1 are Beely to
disrupt information flaw in both local neural drcwits and larger-
scale networks. This may reguire 2 ehalancing of interregional
interactions and a recoganization of the sensorimotar networks
that are engaged in processing and transfeming information dor
ing movement. This, in tum, would manifest as changes o the
synchronization patterns across the sensorimotor nebwork and
alterations in the coupling betwesn the corticofsubcartical and
spinal regiomns.

Anather key finding was the detection of beta-band CMC in the
ipsilateral motor cortex in PLE, with a strong difference meported
between FLS and controls (Cohen's d=0.7BG). [psilateral prema-
tor activity has been previously observed in ALS [specifically,
in ALS participants who exhibited a greater number of UMN
signs relative to LMN symptoms) in an EEG-basad imrestigation of
mavemnent-related cortical potentials {Inuggi et 2l 2011). It is pos-
sible that the increased activation of the ipsilateral sensorimator
cortices is functonally relevant and aids in the perfformance of
the maotor task. Ipsilateral cortical activation is increased in other
populatioms in which elements of the cortical netwark hawve been
damaged, =g. in stroke, multiple sclemsis, and spinal cord imjurny
[Ward et al 3003; Lenzi et al. 3007; Prak et al. 2021). Previous stud-
ies suggest that ipsilateral M1 zids the contralateral motar cartex
in the planning and crganization of hand movements [Chen et al
1537), but it remains unclear whether ipsilateral M1 plays a
significant role in mediating the motor coommand to motoneurons
of the hand (Soteropoulos et al. J011). There is lmited evidenoe
to suppart 2 monocsynaptc pathway to conwey dimect ipsilateral
actions to hand muscles, but it is possible that ipsilateral pro-
jections ar= comveyed through other indirect/polysynaptic path-
ways (Calvert and Carson 2027). Though data presented in this
study cannot elucidate the precise neaml cncuits and pathwenys
through which ipsilatea]l M1 signals influence musde actvity,
the r=ults demonstrate for the first e that the contributing
‘brain regions in the sensorimator cantrol are altered in PLS during
a motor task. This manifests as a reshaping of synchronous
oscillations between cortex and muscle.

Associations betwean CMC and clinical scores

PLE participants with greater clinical impairment exhibited b ger
CMC in brain regions which ar= nat directly associated with mator
execution (positive coorelations in Fig. & hetween APB and the
ipsilateral motar cortex, C4, and the parietal region, Pz). This
finding suggests that PLS affects a wider brain nebwork extend-
ing beyond M1, as indicated in previous neurimaging studies
[Finegan =t al. 2019). Less-impaired PLS particpants exhibyitesd
higher alpha- and gamma-band coherence in contralatemal M1
The significant correlations hetwesn CMC and UMN soore weere
primarily observed in the AFE muscle 5 correlations), though
the reasan for this is unclear. Previous studies hawe found no
evidenos that PLS confarms to the “split-hand plus™ feature of ALS,
wihersby greater weakness and atrophy is observed in APB relative
to other muscles innervated by the median nerve [Aenon et al.
013y
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Fig- 6. Significant ormalations of the CC with ciniclly defined Uk
dysfimction soore show location-spedfic positivity and negativaty

PLS particpants with greater motor impairments exhibited
higher beta-band CMC in the parietal amea [P (Fig. £]). Stodies
in nonhuman primates have shown that activity in the pasteriar
parietal sites is modulated by beta-band oscillations from the
somatosensory cortex and that they, in tum, exert an influence
on the motor cortex (Brovelli =t al. 2004). Though the majonity
of corticospinal neurons originate from M1, the neomanatoomical
and elsctrophysiclogical studies in primates have also found
evidence of corticospinal projections fram the supplementary
mator area and somatos=nsary and parnietal cortices (Murmy and
Coulter 138]; Galea and Daran-Smith 1954; Maier et al. 2003).
CMC at EEG electrodes over non-M1 cortical areas could thus
cocur dus toan increase in the relative contribution of alt=rmative
descending pathways to muscle activation, other than direct M1
projections. These synchronies could alsa reflect a restructuring
of cortico-cortical commumication between non-M1 regions and
areas such as M1 that hawe direct projections to the spinal motar
peools. For example, the enhanced beta-band coupling between
the parietal brain region and muscular activity could meflect an
increase in the functional connectivity of these bmain networs
[Meoded e al. 2015). It is also possible that the chronic loss of
corbicospinal input to the spinal motoneurons, wiich is combined
with extremie muscle weakness and slowing of movement i PLS,
could produce a change in afferent activity. This would in tum
influence CMC. Though beta-band CMC is primarily driven by
efierent supraspinal structures, there is now evidenos to suggest
that it can be modulated by s=nsory receptors that provide affer
ent feadhack to the central nervons systen (Witham et al. 2011)

Although the chserved CMC differences in PLS could arse
from koth the direct and indirect effiects of UMN degeneration,
the increased CMC in more-impaired PLS participants for spedfic
brain regions could potentally suggest that these changes are
compensatary/adaptive in nature. Taken together, these results
could suggest that the pattern of bmain network reorganization
in PLS follaws a similar trajectory to recovery in stroke, whers
mare=-impaired PLS particdpants rely an contributions from the
ipsilateral hemisphere, but those who are minimally affected
can recover function by restructuring the functional connectivity
in the contmalateral hemisphere (Brancaccio =t al. 2027). Futare
studies are needed to cluddate the pathways through which
these wider brain regions could influence muscle actviby
and determine the exact nature of the ohserved changess in
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CMC (pathogenic, adaptive, or compensatory). Thess netwark-
level changes could be further chamcterized in the fotare
longitudinal studies of PLS by examining the changes in the
CMC measures alongside changes in the dinical scones of LTWM
impaimment

Future directions

The novel findings of this shudy identify distinct differences in the
CMC patterns found in PLE. Though the dats pressnted in the oor-
rent study cannat determine the sxmct mechanism and/or neamn-
anatomiral pathways through which cortical signals origmating
gutside of contralateral M1 influence muscle activity, we suggest
several possible mechanisms through which abnormal CMC in
PLS could arise.

Future studies could alss examine whether thes= CMC patterns
can discriminate PLS from mare rapidly progressive ALS pheno-
types. There is a clear need for quantitative measunes to support
diagnosis, as people with PLE currently have long pericds aof
diagnostic uncertainty and face exclusion from ALS dinical trials
{people with restricted UMM symptoms and suspected PLS typd-
cally do not meet inclusion oritera) (Brooks et al. 2000; D0 Amioo
atal. 2013). The differences betwesn more- and less-impaired PLS
particpants further suggest that CMC has the patential for devel -
apment as a tool to monitor disease progression ar importantly as
2 measure to assess target engagement in clinical trals (Jeromin
and Bowser 2017). These measures are particularly nesded for LS,
as longitudinal progression is difficalt to quantify in such a slowly
progressing disease The FLS-specific differences in CMC and the
differences betwesen more- and less-impaired FLE participants
reparted in this study provide the basis for further development
af these markers of motar network dysfunction.

c hasi
This study demonstrates the presence of abnormal corticomnmas-
cular coherencs in PLS for the first time, which we suggest could
reflect a restructuring of the cortical network connectivity in
respanse ta UMN degenemtion. This observation sugpests that
PLS affects a sensorimator brain network extending beyond the
primary mator cortex. Correlations showed that higher CMC in
specific bmin regions was also ohserved in mone-impaired PLS
particpants compared with those= with less severe impairments.
This may sugpest these differences are compensatary/adaptive
in nature, though these differences could ariss from both the
direct and indirect effects of UMN degeneration. The correlations
with clinical UMN scores demmonstrate the potential for CMC
mensurements to be used as a toal to identify dysfuncton in
specific cortical networks during motor tasks and prompt further
development of quantitative newropbysiology-based hiomarker
candidates in PLE.
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Appendix chapter 6

CONTROLS
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Appendix 6.1 Resting state functional connectivity networks in healthy controls and ALS patients at all 8

frequency bands.

296



CONTROLS

5(2-4Hz)

ALS

/4(14-20Hz) A, (21-30Hz) 7,(31-47Hz) 1, (53-97Hz)

Appendix 6.2 Pre-motor stage functional connectivity networks in healthy controls and ALS patients at all

8 frequency bands.
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Appendix 6.3 Motor execution functional connectivity networks in healthy controls and ALS patients at

all 8 frequency bands.
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Appendix 6.4 Correlation of abnormal functional connectivity observed in ALS patients with ALSFRS-R
scores during resting state (top row), pre-motor (middle row), and motor execution (bottom row). r is
Pearson’s linear correlation coefficient and p is level of significance adjusted for false discovery rate at q =

0.05. Linear least-squares fitting was used to fit the line.
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Appendix 6.5 Pre-motor stage non-phase locked normalised power (db) for ALS patients and healthy

controls at cortical regions of interest.
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Appendix 6.6 Motor execution non-phase locked normalised power (db) for ALS patients and healthy

controls at cortical regions of interest.
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