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Abstract

Advancements in speech synthesis technology have mandated the need for reliable methods

for its evaluation. Present day evaluation, dominated by subjective listening tests, provides at

best, a general overall picture of the perceived speech quality. It does not provide information

about the relationship between acoustic parameters, and their contribution to perceived

attributes of synthetic speech such as naturalness, similarity and pleasantness. Naturalness

in particular, which is a widely used standard in synthetic speech evaluation, is often under-

specified. It has also been reported that factors like modified instructions, contextual framing,

or user-expectations with the application of synthetic speech can influence the ratings of

naturalness. However, we see evidence of consistent listener agreement on their ratings of

naturalness, in multiple studies of synthetic speech evaluation. This leads us to hypothesize,

that there may be information in the acoustic signature of Text-To-Speech (TTS) signals that

the listeners exploit to make a judgment on naturalness.

The primary goal of this thesis is to use contrastive properties of speech segments present in

corpora of synthetic speech for evaluating the naturalness of synthetic speech. The concept

of naturalness has been discussed as a multi-faceted perceptual attribute. The scope of this

thesis is limited to one aspect: the human-likeness of TTS voices. We have selected the

Blizzard Challenge 2013 (BC-2013) corpus for our analysis, because it provides parallel TTS

data over a wide selection of Hidden Markov Model (HMM), Unit-selection, Hybrid and more

recently neural TTS techniques. Contrastive features of vowels and obstruent consonants

are extracted using standard acoustic-phonetic and corpus phonetics techniques. Features

of each synthetic voice are compared with the human voice, which is held as the reference.

Then, a new subjective evaluation framework is proposed which complements the diagnostic

nature of the segmental analysis.

Our results show that segmental evaluation can be used to provide diagnostic information

that is often missed by traditional subjective tests. In non-neural systems, we find features

of obstruent consonants such spectral tilt and RMS amplitude can be useful for identifying

quality-differences between systems and groups of systems. Additionally, vowel features

such as within-category dispersion showed an above chance correlation (ρ = 0.64) with the

perceived Mean Opinion Score (MOS). Next, we show that segmental evaluation can be
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extended successfully to evaluating modern, neural TTS synthesizers. First, we find that

neural TTS performs very well in modelling vowels, and has improved over several features

of the older, non-neural TTS synthesizers. Only a few features like F0 onset and spectral

tilt show statistically significant deviations from the human voice. However, features of

voiceless obstruents were found to be distorted, i.e, they deviated significantly from the

reference human voice. This is one of the major findings of this thesis. We also investigate the

perceptual significance of the deviation in obstruents, through a novel subjective evaluation

design. The study involved presenting stimuli of varying lengths to 128 participants, who

were asked to identify whether each stimulus was produced by a human or a machine. We

hypothesized that the length of the stimuli would aid in more accurate detection between

human and machine stimuli. The participants’ responses were captured using a 2-alternative

forced choice task, and were analyzed using a logistic regression. In obstruent-rich stimuli,

we indeed found a 22.37% increase in accuracy as length increased with strongly significant

effects (p-val < 0.001).

The findings in this thesis can be used to provide localized insights into feature distortion, and

can be extended to provide real-time feedback for TTS engineers. These findings also highlight

the usefulness of phonetics in TTS technology, and enable greater interaction between the

communities.
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1 | Introduction

Human beings project human-like attributes to inanimate objects in their surroundings.

Nicholas Epley theorizes anthropomorphism as a psychological tendency of humans (Epley

et al., 2007). He suggests that attributing such characteristics enables us to predict the

behaviour of our surroundings, and give us a survival advantage. Anthropomorphism is

actively exploited in marketing strategies. Kevin the Carrot wishes us Merry Christmas at

Aldi, and the mascot for Tayto crisps is a potato in a suit. Attributing human traits also

stems from a compelling desire in humans to form social bonds. Adding eyes on dollar bills

in a commercial ad increased humans’ protectiveness towards it, and enhanced their saving

behaviours (Wang et al., 2023). Anthropomorphism also drives some of the most popular

inventions in the present-day AI systems. The breakthrough success of conversational AI

demonstrates that talking machines can achieve high rates of acceptance in the human

society.

Voice is the most natural medium of communication. So great is our reliance on voice, that we

project our expectations of age, accent and gender even on robotic sounding voices (Seaborn

et al., 2021; Nass et al., 1997). Moreover, we are sensitive to unnaturalness even with very

minimal input (Nusbaum et al., 1997; Antons et al., 2012). Although present day voice-based

agents serve a predominantly functional role, their integration with advanced conversational

Large Language Models (LLMs) can result in lifelike conversational support. Agents like Alexa

are social agents which have been used to help elderly patients through periods of loneliness,

and have also helped to increase confidence in public speaking (Chang et al., 2018; Pradhan

et al., 2019). Furthermore, just like talking to colleague is easier than e-mailing them, a voice

based interaction is expected to reduce friction
1

in interacting with computers. In preparation

for this possibility, we would like to establish a closer understanding of the characteristics of

an agents’ voice, especially with the human voice as a reference. We aim to understand how

we know that a human-sounding speech is in fact real, human speech.

The main objective of this thesis is to use contrastive properties of speech segments present

in corpora of synthetic speech for evaluating the human-likeness of synthetic speech. In

other words, we investigate the role of the small stuff in speech to make us sound human.

1
https://www.amazon.science/blog/making-alexa-more-friction-free
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The BC-2013 corpus is used for our analysis, because it provides identical lexical content in

older, and modern TTS voices. Features of vowels and obstruent consonants are extracted

using techniques inspired from acoustic phonetics. Then, each feature is compared with the

human voice to identify which features, or which segments as a whole are not produced well

by TTS synthesizers. We explore whether these shortcomings, manifested as distortions, are

perceivable to human listeners.

1.1 Thesis outline
Chapter 2 presents a detailed discussion on the state-of-the-art approaches in Text-to-Speech

evaluation. We first provide a summarized background of techniques in TTS that will be

relevant for the present thesis. Then, we provide an in-depth discussion on TTS evaluation,

covering aspects of intelligibility and naturalness in older and present-day TTS synthesizers.

We describe how segmental evaluation had dominated the scene of intelligibility evaluation,

but has not been explored sufficiently for other perceptual attributes of TTS synthesizers.

Next, we discuss the somewhat ambiguous concept of naturalness, and present a definition

of naturalness as a multi-faceted perceptual attribute. Our arguments for circumscribing

naturalness to human-likeness of TTS synthesizers are also presented, thus defining the

scope of this thesis. Finally, we discuss how segmental evaluation can be combined with

existing techniques in phonetics and speech sciences, and how it can be used to evaluate the

human-likeness of TTS synthesizers.

Chapter 3 introduces the acoustic analysis framework known as the Dive Into Divisions

approach. First, we discuss how contrastive features can be more informative than other

acoustic measurements, because human listeners are more attuned to listen for them. Next,

we present a complete description of the Blizzard 2013 corpus which will be used for analysis

throughout this thesis. Then, we present the techniques for segmentation the corpus at a

phonemic and sub-phonemic level. Particular reference to obstruent consonants is made,

which require a sub-phonemic demarcation before feature extraction. This is the division part

of the approach. Once marked for boundaries, the resulting segments can be analyzed through

their characteristic, representative acoustic-phonetic features. These features, also called

contrastive features are listed for each segment, and the extraction methods are provided.

Finally, statistical analyses are conducted to identify those features or segments, that show

statistically significant deviation from the human voice.

Chapter 4 extends the Dive Into Divisions approach to include modern, neural TTS synthesiz-

ers. Where only broad class categorizations were made in Chapter 3, here we systematically

categorize and analyze segments in their positional, transitional and voicing related contexts.

Particularly, obstruent consonants are discussed in detail. Transitional cues are captured in the
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features of their neighbouring vowels. Similar to Chapter 3, we conduct a statistical analysis

which shows sites of segmental distortion with respect to the human voice. By categorizing

segments, more diagnostic trends are revealed in terms of global acoustic consequences (such

as voicelessness). This chapter demonstrates that a segmental evaluation approach can be

used to identify locations of distortion in high-rated, neural TTS synthesizers as well.

Chapter 5 introduces a novel methodological framework for a subjective evaluation of TTS

synthesizers. This is a specialized design suited for evaluating utterances with segmental

distortion. Obstruent-rich stimuli are compared with obstruent-poor ones to investigate

if their distortion is perceivable. Instead of complete utterances, stimuli of logarithmically

increasing lengths are presented to the listeners. And instead of rating naturalness, partic-

ipants are simply asked Does this voice sound like a human or a machine? Their binary

responses are collected in a 2-AFC task. The inspiration is borrowed directly from the stimulus

accumulation phenomenon, well-documented in psychophysics. which hypothesizes that a

longer exposure to the stimuli should result in more accurate responses. The presentation

of logarithmically increasing lengths is designed within the Weber-Fechner law of human

perception.We hypothesize that a long, obstruent-rich utterance would more often be detected

as machine-like. Results are analyzed through a logistic regression model, and the likelihood

of accuracy is reported.

Chapter 6 provides an overarching conclusion of the methods proposed in this thesis. We

discuss the limitations of our present approaches, and suggest ways of its improvement.

Finally, we outline major directions of future work.

1.2 Original contributions
This thesis develops an evaluation strategy using contrastive features of phonemic units,

which are described as segments. The Dive into Divisions approach evaluates the signal at the

acoustic-phonetic level, while the Long Arms approach investigates the perceptual significance

of the results. The original contributions can be summarized as follows:- Chapter 2

• Illustrated description of naturalness as a multi-faceted perceptual attribute

Chapter 3

• Introduction to the Dive Into Divisions approach: providing a methodological framework

for analyzing segments in TTS utterances

• Embedding a core speech science perspective in TTS evaluation

– contrastive features used as characteristic segmental features for analysis
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– corpus-phonetics techniques used for automating the analysis to handle large

scale TTS output

Chapter 4

• Further categorization of segments to reveal diagnostic trends in high-quality, neural

synthesizers

• Exploring the viability of neural TTS synthesizers as a tool for phonetics research

Chapter 5

• Introduction to the Long Arms approach

– providing a novel methodological framework for subjective evaluation of TTS

utterances, specifically suited for segmental distortion

– diagnostic trends revealed between acoustic models, often overlooked in traditional

MOS based evaluation

• Embedding a core behavioural science perspective in TTS evaluation utterances of

logarithmically increasing lengths presented in accordance with the Weber-Fechner

laws of human perception

1.2.1 List of publications
The work in this thesis has been in part disseminated in the following publications:

1. Pandey, A., Edlund, J., Le Maguer, S., and Harte, N. (2023). Listener sensitivity to

deviating obstruents in WaveNet. In Proceedings of InterSpeech 2023 (pp. 1080–1084).

DOI: 10.21437/Interspeech.2023-1843.

2. Pandey, A., Le Maguer, S., Edlund, J., and Harte, N. (2023). Natural Choice: Comparing

place classification between natural and Tacotron fricatives. In Proceedings of the 20th

International Congress of Phonetic Sciences, 2023, (pp. 3161-3165) ISBN: 978-80-908

114-2-3.

3. Pandey, A., Le Maguer, S., Carson-Berndsen, J., and Harte, N. (2022). Formants in text-

to-speech systems: Comparing TTS voices of Blizzard Challenge 2013. In Proceedings

of the 33rd Swedish phonetics meeting Fonetik 2022.

4. Pandey, A., Le Maguer, S., Carson-Berndsen, J., and Harte, N. (2022) Production charac-

teristics of obstruents in WaveNet and older TTS systems. In Proceedings of Interspeech

2022, (pp. 2373-2377), DOI: 10.21437/Interspeech.2022-10606
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5. Pandey, A., Le Maguer, S., Carson-Berndsen, J., and Harte, N. (2021). Mind your p’s

and k’s–Comparing obstruents across TTS voices of the Blizzard Challenge 2013. In

Proceedings of the 11th ISCA Speech Synthesis Workshop (SSW 11) (pp. 166-171), DOI:

10.21437/SSW.2021-29.

All articles have been made publicly available on ResearchGate and can also be accessed

through the conference website.
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2 | Approaches to the evaluation of Text-
to-Speech synthesizers

The evaluation of TTS synthesizers is a cross-disciplinary research field, encompassing several

disciplines of signal processing, deep-learning, behavioural sciences and human-robot inter-

action. It is aimed at designing techniques that can accurately judge the quality of speech

generated by a TTS synthesizer. The main purpose of this chapter is to provide a structured

description of the prevalent techniques in TTS evaluation, and discuss their relevance with

respect to the modern TTS technology. The relationship between speech science and technol-

ogy is also presented, with the perspective that TTS evaluation has been an important site

for reciprocal dialogue between the two communities. A progression of techniques in TTS

synthesis is also provided to form the groundwork of the synthesizers used in this thesis. We

discuss how each paradigm shift in TTS contributed to improvements in quality, and brought

distinctive artifacts to the resultant speech.

The two major components of quality, i.e, intelligibility and naturalness are described in

sequential detail. A TTS voice is considered intelligible, when there is sufficient correspondence

between the intended message (i.e., input text) and the received one (i.e, the spoken form).

This definition receives little disagreement. Thus, TTS intelligibility has been a primary

focus of several evaluation designs, and will be described in Section 2.3. The definition of

naturalness is however fraught with disagreement. Several researchers consider naturalness

synonymous with human-likeness, i.e, it should be indistinguishable from a human-voice.

Several other researchers argue that this definition is neither suitable nor sufficient. This is

because naturalness fluctuates with how appropriate the voice is for a particular application

or a context. Section 2.4 explains that naturalness is a multi-faceted perceptual attribute. We

discuss that the human-likeness is a component of naturalness, and remains an important

goal for several diverse applications of TTS synthesizers. Therefore, the central focus of this

thesis is the perceived human-likeness of TTS voices.

Next, in Section 2.5 we discuss the historical contributions of speech science into TTS and to

TTS evaluation. The relevance of phonetics in the present day TTS analysis and evaluation is

also discussed. Finally, we establish that the exchange between modern phoneticians and TTS
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evaluation designs is focussed largely on prosodic control, and on the utterance as a whole.

Segments, or smaller meaningful units of language, have received limited attention for TTS

evaluation. We introduce the field of corpus-phonetics, and lay out the tools and techniques

within the field which can be extended to evaluate TTS synthesizers. Finally, we present a

roadmap for the thesis, drawing on the foundations discussed in the present chapter.

2.1 Text-to-Speech synthesisers
Text-to-Speech synthesizers generate speech by converting written text into the spoken form.

Usually, the text is converted into an intermediate representation such as mel-spectrogram,

speech parameters or phonetic transcriptions. A vocoder is then used to generate this inter-

mediate representation into speech.

The main reference for formant synthesizers is (Klatt, 1987), while the algorithmic details

have been taken from (Taylor, 2009). The structure of progression from concatenative to

unit-selection synthesizers also resembles Taylor (Taylor, 2009). A thorough description of

statistical parametric synthesizers, including hybrid synthesizers is presented in (Zen et al.,

2009, 2013). And most recently, a comprehensive compilation of neural TTS is available in

(Tan, 2023). The following sub-sections cover a summarization of TTS techniques that will be

relevant for the thesis.

2.1.1 Formant synthesizers
Some of the earliest designs of an electronic formant synthesizer come from Stweart (Stewart,

1922). In this design, the lowest formants were produced through manipulating the resonance

characteristics of two resonators and the source excitation was provided by a buzzer. Then

in 1939, we see the appearance of Homer Dudley’s “Voder” (Dudley et al., 1939), following

the development of the analysis/synthesis systems in the mid 1930s, and the vocoder in 1938.

The Voder was also based on manipulating source excitation through a set of bandpass filters,

or resonators which mimicked the articulation mechanism of human speech production.

This system involved an intricate hardware setup and was controlled by a trained human

operator. The speech produced was not clear or intelligible, but it demonstrated the potential

of synthesizing speech from parameters. Then, a team led by Ralph Potter designed the

spectrograph, a machine that could reproduce sound into visible patterns “readily interpretable

by the eye” (Potter, 1945). The broadband spectrogram, which provided a time-frequency

representation of speech, contributed to several developments in speech science. For example,

the observation of a “voice bar” still in practice today emerged from these developments.

Following this, Alvin Liberman and his colleagues Cooper, Delattre invented the Pattern
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Playback Synthesizer (Cooper et al., 1952).

The early 50s saw the the development of two important rule-based formant synthesiers: the

Parametric Artificial Talker (PAT) (Lawrence, 1953) and the Orator Verbis Electris (OVE) (Fant,

1953). They were based on modelling the vocal tract as a transfer function, such that the poles

of a transfer function corresponded to amplified resonant frequencies, also known as formants.

The major difference between PAT and OVE was in the combination of resonators: PAT used a

parallel while the OVE a series arrangement. The series type arrangement involves the transfer

functions of the individual formants to be multiplied, to return an all-pole transfer function

and a time domain difference equation. The series setup allows to create a transfer function

for the complete vocal tract with minimal input. However, since errors can propagate through

the individual formant multiplication, the synthesiser loses some controllability. Therefore,

the alternative parallel setup accepts a source input individually, for each of the formants and

then the resultant output is combined. The parallel arrangement was eventually favoured,

and developed into multiple systems, finally leading to commercial ones. In particular, John

Holmes developed a parallel formant synthesizer, where non-nasalized vowels were produced

through inverse filtering of the glottal pulse (Holmes, 1973). The resultant waveform was

reported to be “indistinguishable” from the human voice. This also contributed to the first

implementations of KlattTalk, which was later developed as DECTalk, a commercial rule-based

formant synthesizer (Klatt et al., 1984).

Although the formant synthesizers were quite customizable and had reached high intelligibility,

they depended on sophisticated linguistic rules. A data-driven approach was not feasible, and

that limited their progress beyond the 1980s. On the other hand, development of concatenative

synthesizers (described next) was continued until recently.

2.1.2 Concatenative synthesisers
Concatenative synthesizers involved joining or concatenating segments of pre-recorded natu-

ral speech, and smoothing the resultant trajectory. Although their inception was simultaneous

with formant synthesizers, their prevalence has continued until recently. Similarly, the use of

LPC techniques was also influential in this concatenative synthesizers.

It was established early enough that phonemes, or syllables cannot be strung satisfactorily

together, because the points of concatenation were severely influenced by their context (Harris,

1953). However, since contextual influences are minimal at the midpoint of the phoneme

Peterson et al. (Peterson et al., 1958) proposed that chunks should be extracted from the

acoustic midpoint of one phoneme to the other, instead of using phonemes as chunks. This

unit was known as the diphone and the synthesis technique was called diphone synthesis.

A large diphone inventory was required, usually of the order of the square of number of
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phonemes in the language. However, it provided an advantage because it reduced the reliance

on specialized rules and exceptions. Additionally, contributions from the LPC techniques

provided further support to the diphone synthesis approach. Linear prediction is a method to

extract the filter coefficients of a signal and approximating its value as a linear sum of the

values at previous timepoints (Makhoul, 1975; Markel and Gray, 1976; Taylor, 2009). For use

in diphone synthesizers, the LP coefficients could be estimated from the diphones, and then

joined together into an independent parameter sequence. However, the source modelling was

still explicit, meaning that separate sources were used for voiced (impulse train) and unvoiced

sounds (white noise). So, signal processing techniques such as the Pitch Synchronous Overlap

and Add (PSOLA) were developed (Hain et al., 2005; Moulines and Verhelst, 1995). In PSOLA,

the pitch and the duration of units of speech (like a diphone) are manipulated and then

resynthesized to generate speech. This method greatly improves the quality of speech, and is

regarded as an optimal solution for pitch and timing modification. Then, incorporating LP

techniques for pitch period detection further enhanced its capabilities.

However, using pitch and timing modification was not enough, as it resulted in a number of

artefacts (amplitude and stress mismatch, poor articulation of function words). The solution

was offered in the form of a unit-selection approach, presented by Hunt and Black (Hunt

and Black, 1996). This made use of larger collections of speech recordings, or corpora and

thus provided a wider variability in the features of the units to be concatenated. To preserve

the naturalness of the original recordings, only minimal modifications were performed on the

units. The focus was instead of their selection, and their joining. These solutions were put

forward in the form of costs: for selection; the target cost and for joining; the concatenation

cost.

In further detail, they visualized a large-scale database of speech recordings as a “state-

transition” network, where the selection of the target (state-occupancy) should minimize

the target cost, and the movement to the next target (state-transition) should minimize the

concatenation cost. The ideal candidate units must have minimal spectral distortion from the

target units (Iwahashi et al., 1992). Also, the synthesized sequence should match the prosodic

contours, required for maximizing naturalness. Usually, a pitch-correction algorithm was also

applied to the generated waveform (Moulines and Charpentier, 1990).

Despite recording enormous speech databases, the complete variation required for producing

speech can not be fully achieved. Hence, a distinct approach emerged in the early 2000s,

known as the Statistical Parametric Speech Synthesis (SPSS). This is described next.
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2.1.3 Statistical parametric synthesisers
Here, instead of selecting and concatenating units, statistical parametric synthesisers generate

speech from parameters, that is feature values averaged over several instances of units. A

HMM has been the most popular algorithm for modelling parameters, and later deep neural

network (DNN) have also been implemented.

HMM based speech synthesisers have two primary components. The first component is

the HMM, which is used to model spectral and pitch characteristics of the phonemes in

a dataset, usually through a maximum likelihood estimation (MLE) approach. An HMM

is created for each phoneme, which are then concatenated using decision trees for the

purpose of sentence/phrase construction. Both single and multi-speaker corpora (Yamagishi

et al., 2009a) can be used to develop models of the respective characteristics through HMMs.

Textual features (phonological, linguistic, prosodic) are extracted from the input text. Since

human speech contains both voiced and voiceless regions, a different set of parameters

need to be estimated for each region. This selective pitch modelling has been explored

through several methods, (Jensen et al., 1993; Ross and Ostendorf, 1994), a multi-space

probability distributions (Tokuda et al., 2000) is seen as a standard technique. In the synthesis

phase, a sequence of context-dependent HMMs matching the description are concatenated

together. Parameters are generated for each of these HMMs in the sequence. To ensure

smooth trajectories of the resultant speech, a matrix relationship between the static and

dynamic parameters is also incorporated into the maximization step. Finally, a vocoder such

as STRAIGHT (Kawahara, 2006), or WORLD (Morise et al., 2016) is used for the final waveform

generation procedure.

A primary advantage of parametric synthesis is its adaptability to multiple speakers, accents

and emotional variation. Predominantly, the Maximum Aposteriori (MAP) and the Maximum

Likelihood Linear Regresssion (MLLR) techniques have been implemented to achieve adapta-

tion in parametric synthesis. Using MLLR, speaker adaptation has been achieved with very

limited amounts of speaker-specific information (Yamagishi et al., 2008; Wan et al., 2013).

HMM voices are also beneficial to reduce computational footprint, because the parameters

and the architecture has been shown to be stored in a few MB of space. Similarly, the robust-

ness of HMM synthesis against recording conditions (Yanagisawa et al., 2013; Karhila et al.,

2013) and data sparsity (Phung et al., 2013; Yamagishi et al., 2010) has been shown, further

demonstrating its adaptable nature. However, some commonly occurring characteristics

(King, 2010) of voices generated by HMMs, are creakiness, or a muffled nature. Additionally,

a buzziness can be observed in the resultant speech. Often, this is attributed to spectral

averaging, or oversmoothing of the speech parameters from the database.
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2.1.4 Hybrid synthesisers
The hybrid approach of TTS generation combines methods from unit-selection TTS as well as

HMM-based TTS techniques (Tiomkin et al., 2011). Several hybrid approaches use HMMs to

guide the selection of the units (Ling and Wang, 2006, 2007). Additionally, some use units from

real speech, but prosodic patterns generated by HMMs are borrowed. For example, in Plumpe

et al. (Plumpe et al., 1998) an HMM was used to locate those coefficients which minimized

the objective function that included parameters from both static and dynamic properties

of the signal. Building from this, variable sized units (diphone, phoneme) were used for

determining spectral trajectories for concatenation and the intervening dynamics respectively.

On the other hand, some hybrid studies use natural speech segments interchangeably with

statistically averaged speech segments (Tiomkin et al., 2011). Data sparsity also motivates

the need for using these segments (Aylett and Yamagishi, 2008; Okubo et al., 2006).

Before the rise of neural TTS (described next), hybrid speech synthesis could ensure high-

quality synthetic speech, as it drew advantages from both methods. Hybrid synthesizers were

rated high in naturalness (King and Karaiskos, 2013; King, 2014), and were used in commercial

TTS systems like Cereproc (Aylett and Yamagishi, 2008) and INNOETICS (Raptis et al., 2012,

2016).

2.1.5 Neural synthesizers
In neural synthesizers, the text-analysis module is more simplified compared to older, non-

neural TTS synthesizers. Since representations can be learned directly from text, only the

normalization and grapheme to phoneme conversion step is required for the pipeline. However,

introducing a more granular text specification such as phrase-break prediction (Liu et al.,

2020), respiratory patterns and hesitations (Yan et al., 2021; Li et al., 2023), have resulted in im-

provements of prosody. Similarly, semantic and syntactic representations of text embeddings

have proved useful in prosodic prediction (Guo et al., 2019; Hayashi et al., 2019). The purpose

of acoustic modelling is to produce features from text or phonemes. The sequence-to-sequence

modelling nature of neural acoustic models overcomes several text-to-phoneme alignment

steps, and is capable of producing high-dimensional mel-spectrograms as a representation of

speech.

Tacotron (Wang et al., 2017) is an encoder-decoder architecture which serves as an acoustic

model. A pre-net in the encoder converts text into hidden representations, which are further

transformed into an output through a 1-D convolution bank + highway network + bidirectional

gated recurrent unit (CBHG) module. Then, the decoder part uses the attention mechanism

to the encoder input and then an RNN to generate the mel-spectrogram sequence. Although

the mel-spectrogram is converted to waveform through the Griffin-Lim algorithm (Griffin
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and Lim, 1984) in the source text, other vocoders have also been used in the later versions of

Tacotron. Additionally, the use of bidirectional LSTMs in both the encoder and decoder has

further improved the resultant speech. Particularly, replacing its recurrent nature with more

parallelizable architectures has gained special importance. For example, TransformerTTS can

facilitate a parallel training of the encoder and decoder. And FastSpeech (Ren et al., 2020) and

related models rid themselves of the attention mechanism, and instead match the duration

between the phoneme sequence and the mel-spectrogram sequence.

The task of the vocoder is to convert acoustic features of a representation of speech (such as

mel-spectrogram) into waveform. WaveNet (Van den Oord et al., 2016) which was the first

and presently a popular vocoder was conceived at Google DeepMind. It used dilated causal

convolutions which accommodates modelling of both the high-resolution and the sequential

nature of speech. It outperformed the older, non-neural baselines through “never before

reported” scores on naturalness, and has been highly influential in other designs of neural

TTS. However, despite producing high quality speech, WaveNet struggled with slow inference

speed. Therefore, several neural vocoders have been designed to improve computational speed

without reducing the quality of the synthesized speech. For example, Parallel WaveNet (Oord

et al., 2018) uses an Inverse Autoregressive Flow models (IAF) based model, which improves

speed by predicting the samples of an utterance in parallel. Since the training of this setup is

still sequential, a teacher-student setup is designed, where the student network learns from

the autoregressive WaveNet through the probability distillation process. Other designs of

wave generation through neural vocoders come from Generative Adversarial Assistants (GAN)

based vocoders. These are composed of a generator-discriminator network, and also have a

specialized loss function. In Parallel WaveGAN (Yamamoto et al., 2020) follows a standard

generator-discriminator architecture, where the purpose of the generator is to deceive the

discriminator between real and generated samples. However, the optimal stability of the

adversarial process is achieved through a specialized loss function. This is the multi-resolution

STFT loss, which offers a specialized function from multiple analysis parameters (frame shift,

frame window). Another popular GAN-based vocoder is Hi-Fi GAN (Kong et al., 2020). In

the generator part, a convolution network upsamples the mel-spectrogram input until the

output sequence matches the desired waveform resolution. The discriminator is composed of

a mixture of multi-period and multi-scale sub-discriminators, which each handle different

parts of the input signals and successively evaluates audio at multiple scales. Thus, GAN

based vocoders overcome the speed constraints and offer greater parallelizability in the

architectures. Other methods of vocoding include diffusion based models, where random

noise is first incrementally introduced into the waveform, and is reversed through a denoising

procedure. The correspondence between data and the latent distribution is learnt in this

way, to result in high-quality voice. Some examples are (Kong et al., 2021; Koizumi et al.,

2022).
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2.2 TTS evaluation: an introduction
TTS evaluation refers to the quality estimation of a synthetically produced voice, often in

comparison with a previous baseline or the human voice. Although subjectively interpreted,

this quality of a synthesizer can be parameterized into analyzable attributes. A semantic

differentiation scaling analysis (McGee, 1964), conducted in the mid-60s revealed that “natu-

ralness", and “intelligibility" were the two components of perceived quality of speech. Then,

Klatt explains that in the time of rule-based and diphone concatenative synthesizers, eval-

uation was conducted on three parameters: intelligibility, naturalness and suitability to a

particular application (Klatt, 1987). More recently, Hinterleitner (Hinterleitner et al., 2013)

also described that “naturalness" and “intelligibility, along with “prosodic quality" were the

most important components of speech quality. This means that a high quality TTS voice

has predictable expectations with attributes which receive some agreement in the literature.

Therefore, evaluation of TTS synthesizers has predominantly centred around these attributes.

The target of intelligible speech had been achieved since the early 70s, and “never-before"

(van den Oord et al., 2016) naturalness is being reported since the arrival of WaveNet. Some

researchers also report that voices created by TTS are close to human-like voice in quality

(Shen et al., 2018; Noah et al., 2021). Then it might appear that TTS is a solved problem
1
.

Several researchers disagree.

In her seminal review of the field (Wagner et al., 2019), Wagner argues that compared to

technological developments in TTS, its evaluation has not progressed with commensurate

rigour. Most results are based on conventional methods, like asking a listener to rate the

naturalness on an ordered scale. The concept of naturalness with respect to the present day

synthesizers is not properly defined, and it relies on the listeners’ own interpretation of the

term. Just like a new disease needs new diagnostic tests, we need newer methods for detecting

the weaknesses of the synthesized signal. To this end, Wagner insists that TTS evaluation

should develop as its own, independent research field. Consequently, TTS evaluation has

become an active area of research in the successive years. Targeted subjective tests are

being designed to test synthesized speech in various contexts, lengths, conversational and

interaction settings (O’Mahony et al., 2021; Clark et al., 2019; Betz et al., 2018) . Automatic

methods are being developed to predict users’ subjective opinion, mainly to provide feedback

to the TTS engineers simultaneous with building the voice (Cooper et al., 2023; Huang et al.,

2022; Hinterleitner, 2017; Lo et al., 2019). Several contributions from phoneticians are visible

too: some in using the speech synthesizer as a research tool (Kirkland et al., 2022; Lameris

et al., 2023; Pérez Zarazaga et al., 2023), thus pushing its limits, some in designing more

diagnostic evaluation tests (Gessinger et al., 2016; Gutierrez et al., 2021).

1
https://twitter.com/tmalsburg/status/609824961339887616

https://twitter.com/urknallen/status/1231904633653727232
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Our contribution is to explore TTS evaluation through a computational phonetics perspective.

Through the following discussion, we trace the historical progress of TTS evaluation in the

intelligibility and naturalness of TTS synthesizers. Specifically, we highlight that segmental

evaluation was an important concern for intelligibility, and also contributed to higher order

attributes like naturalness. However, segmental evaluation for naturalness, or human-likeness,

has received very limited attention. This can be achieved through techniques in corpus-

phonetics and acoustic-phonetics, and is a major contribution of this thesis.

2.3 TTS evaluation: producing intelligible speech

2.3.1 What is intelligibility?
As mentioned in the introduction, TTS voice is considered intelligible, when there is sufficient

correspondence between the intended message (i.e., input text) and the received one (i.e, the

spoken form). This definition receives little disagreement. Taylor (Taylor, 2009) describes

intelligibility as the “easiest problem to solve", and reports that intelligibility was already

achieved in the early 70s with formant synthesizers. In the present day, intelligibility evaluation

of TTS synthesizers is reported in terms of the Word Error Rate (WER) on semantically

unpredictable, i.e, meaningless sentences. The most recent results on intelligibility of the state-

of-the-art TTS systems report a median of 0% WER (Perrotin et al., 2023). This means that at

least half of the sentences generated by most TTS systems are error-free. High-intelligibility

has been achieved for low-resource languages (Xu et al., 2020; Lux et al., 2022) and found

data, where transcriptions are not standardized (Baljekar and Black, 2016; Watts et al., 2013).

Additionally, Cohen et al. (Cohn and Zellou, 2020) report higher intelligibility scores with

older, concatenative voices. This suggests that modern, neural TTS synthesizers do not (or are

not required to) bring drastic improvements to intelligibility of TTS.

Although intelligibility is not the main focus of the present thesis, early TTS evaluation had

centred around intelligibility, especially at the segmental level. It was important to make the

evaluation test quite diagnostic so as to pinpoint the source of distortion in the synthesized

signal. The next subsection provides a detailed description of intelligibility evaluation.

2.3.2 How is intelligibility evaluated?
In this section, we review the tests and techniques used for evaluating intelligibility of TTS

synthesizers. Most techniques were initially designed for intelligible communication over

transmission of speech, and were quickly adopted for TTS. A wide range of tests are based on

segmental intelligibility, that is to identify which segments (phonemes, units) in a speech
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stream are corrupted during transmission or synthesis. On the other hand, sentential tests are

those that evaluate intelligibility over complete utterances, with prosodic and/or contextual

support. Figure 2.1 shows the progress in these tests, concurrent with the techniques in

TTS. It can be seen that segmental tests were more frequently designed, and the Modified

Rhyme Tests were extremely popular. We begin with a discussion on segmental evaluation of

intelligibility in TTS synthesizers.

2.3.2.1 Segmental evaluation

The Phonetically Balanced Wordlists

Among the earliest tests designed for intelligibility is the Phonetically Balanced wordlists

(PB-50) (Egan, 1948), developed at the Harvard psychoacoustics lab for evaluating the intel-

ligibility of transmitted speech signal. These wordlists were a set of 6 wordlists composed

of 50 monosyllabic words each, and reflected the natural distribution of phonemes in con-

versational English. Moreover, in comparison to the previous tests (Fletcher and Steinberg,

1929), the evaluation procedure did not require the listener to be phonetically trained. For

these reasons, these lists gained popularity in the domain evaluating the intelligibility of

the transmitted speech signal, both in cases where analysis-synthesis method was used,

(Bayston and Campanella, 1957; Young, 1957; David et al., 1962; Flanagan, 1960), and some

other transmission techniques like time-compression (Fairbanks and Kodman Jr, 1957), or

time-frequency sampling (Peterson and Subrahmanyam, 1959; Subrahmanyam and Peterson,

1959).

A common criticism of the PB-50 lists was that several low frequency words had also crept

into the PB-50 list, and their rarity could alter the listeners’ perception of intelligibility. The

CID W-22 lists (Hirsh et al., 1952) were developed to incorporate higher frequency words

which appeared in Thorndike’s list of 1,000 words (Thorndike, 1932) and another list of the

most frequent 128 words (Dewey, 1923) in English. Additionally, the words were presented at

a homogenous volume level, as opposed to the PB-50 where this consideration was not made.

Finally, the CID W-22 was a shorter 200 word list, compared to a 1000 words in the PB-50.

This made the intelligibility evaluation more manageable for the listeners.

Another offshoot of the PB-50 lists appeared in the form of Consonant Nucleus Consonant

(CNC) lists, developed by Lehiste and Peterson in 1959 (Lehiste and Peterson, 1959a). They

argued that the phonetic balance was inadequate in the PB-50. Moreover, they pointed out

that this was rather a phonemic balance, since the phonetic manifestation, or pronunciation

of the phoneme was subject to too many contextual influences to be balanced. Therefore, they

created 10 lists of 50 monosyllabic words that were more representative of the distribution of

monosyllabic words in English. Like in CID W-22, these lists were also derived from the lists
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developed by Thorndike et al. However only monosyllabic words were chosen for a phonemic

representation, as opposed to the PB-50 where statistics of the English corpora were used

entirely.

Despite these further developments, we find that the PB-50 and its derivatives were not

accepted with great ease into evaluating TTS synthesizers. For example, the acceptance of

Linear Predictive Coding (LPC) techniques in speech synthesis was rapid (Atal and David,

1978; Sambur and Jayant, 1976; McGonegal et al., 1977), we see only limited evidence of PB-50

lists for their intelligibility (Chandra and Lin, 1977; Dettweiler and Hess, 1985). This means

that LPC synthesizers did not use PB-50 lists very frequently for intelligibility evaluation.

However, we do see PB-50 being employed for independent synthesisers used for computer

aided instruction (Sanders et al., 1976) and screen reader devices (Suen and Beddoes, 1973),

and their continued usage of techniques for speech transmission (Wishna, 1973; Painter et al.,

1973). In the 80s, we see their application in the field of intelligibility evaluation of synthetic

speech, especially for comparing commercial synthesizers like DECTalk, but were often used

in combination with other evaluation tests (Pisoni et al., 1985; Greenspan et al., 1988; Nusbaum

and Pisoni, 1985).

The Rhyme Tests

Following the PB-50 lists, the late 50s saw the development of a series of Rhyme Tests (RTs),

initially designed by Fairbanks (Fairbanks, 1958). In these tests, evaluation was quite precise

and fine-grained, because perceptual intelligibility could be evaluated at the level of a single

consonantal feature at a time. These designs were particularly helpful in identifying specific

locations where intelligibility of a speech communications system suffered. In the original

design (Fairbanks, 1958), a recording of the stimulus word was presented to the participants.

The test was a completion type, where the participants were provided with a response sheet,

on which all letters except the first one were already written. For example, “-ot" was given,

when the stimulus was “cot". Participants were expected to complete the spelling of the word,

by providing the initial consonant. Since the initial consonant was the only variable, the exact

source of confusion could be pinpointed.

However, there were two issues with this design. The first was of coverage, in that only the

initial consonant was tested. And second, that the response that the listeners wrote, could

be quite diverse, depending on the listeners’ subjective experience with English vocabulary

(Voiers, 1967). Therefore, in later years, this design was further modified to the Diagnostic

Rhyme Test (DRT) (Cohen et al., 1965), and the Modified Rhyme Test (MRT) (House et al.,

1965; Griffiths, 1966). In the DRT, participants were presented with a set of minimal pairs (for

example: "but" vs "cut"), each of which differed only in the initial consonant. The listener was

required to select one option among the pair, reducing the variability of the responses. And
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in the MRT designs, consonants both in the initial and final positions were evaluated. The

listeners in this case, circled their choice from a list of five alternatives.

Therefore, despite some criticism, the RTs gained much credibility as tests of intelligibility

both in the domains of speech communications and synthesis. For example, for designing

optimal filters (Griffiths, 1968; Arees, 1967), calculation of intelligibility scores (Voiers et al.,

1965), especially in vocoded speech (Voiers, 1968; Cassel and Steele, 1963; Helms, 1968a), as

well as various methods of analysis-synthesis speech synthesizers (Helms, 1968b; Strong, 1967;

Carlson, 1968).

Some of the first uses of RTs to evaluate the intelligibility of synthesized speech, comes from

Nye and Gaitenby in the early 70s (Nye and Gaitenby, 1973). The RTs were accepted with

greater ease into the intelligibility evaluation of LPC based speech synthesisers. We find

their use in diverse applications, comparing speech synthesis techniques (Keeler et al., 1974,

1976; Zahorian, 1979), and also vocoder modification techniques (Wong and Markel, 1978)

for speech synthesis. Although the reason is not explicitly mentioned, we find evidence that

LPC algorithms are quite sensitive to channel errors, with acceptable error rates of only 5%

(Fussell et al., 1978). It is possible that the acute diagnostic nature of the RTs were a better fit

for intelligibility evaluation in these cases.

This popularity of the RTs continued in later decades, especially for speech interfaces (Streeter,

1988) and TTS (Pisoni and Hunnicutt, 1980; Sherwood, 1979). Particularly, comparative

evaluation of low-cost vs high-cost synthesizers was frequent, and we see active uses of

the RTs in the assessment of their intelligibility (Keating et al., 1986; Greene et al., 1986;

Logan et al., 1989). When HMM started to appear in the field of speech synthesis (Donovan

and Woodland, 1995; Donovan, 1996; Chen et al., 1997), the RTs were borrowed into their

usage as well. This means that the RTs have been an important strategy for evaluating the

intelligibility of Text-to-Speech synthesizers. Figure 2.1 shows the coverage of RTs through

the progression of TTS techniques. Although RTs were extremely popular, there were some

studies (Greenspan et al., 1989, 1998) that pointed out that single-feature confusion (i.e, the

presentation of minimal pairs) was insufficient for making a thorough enough evaluation

of intelligibility. This led to the development of more specialized segmental tests, which are

described next.

Other segmental tests

In addition to those pointed out (Greenspan et al., 1989, 1998), one of the primary shortcomings

of such tests, was that the responses that could be elicited from the participant, were limited

to the answers in the response sheet. To overcome this issue, Standard Segmental Test

(SAM) (Pols and Partners, 1992), and Cluster Identification Test (CLID) (Jekosch, 1992), were

developed. In SAM, syllable level stimuli of the form CV, VCV and VC were presented to
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Figure 2.1: How do we evaluate intelligibility? Segmental evaluation dominated the scene of

intelligibility evaluation, but sentential tests were also in active use. Thick dashed lines trace

the popularity of the evaluation test across TTS techniques. Narrowing lines in Modified

Rhyme Test (MRT) indicate that although not popular, MRT is still used in some studies.
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the listener, while in CLID, clusters made up the consonantal region. Participants, through

this evaluation, may input whatever they perceived, instead of selecting from a limited set

of responses. In addition to segmental quality, the consonant-to-vowel transitional capacity

of the synthesizer could also be tested. These tests also offered syllable-level stimuli, but

allowed participants to input what they heard, making their responses more open-ended.

However, this setup resulted in very involved subjective listening procedures, and these tests

were usually not scalable on an industrial level.

Therefore, the previous decades saw iteratively improving designs for segmental speech

synthesis evaluation. However, none of these designs could faithfully diagnose users’ actual

experience with synthesised speech on real-world parameters.

2.3.2.2 Sentential evaluation

To overcome the problems posed by segmental evaluations, a set of sentence based evaluation

tests was designed. In addition to his contribution of the PB-50 lists, Egan (Egan, 1948) also

developed a collection of regular usage English sentences for evaluation of speech communi-

cation systems. This collection, known as the Harvard sentences, was a set of 68 lists of 20

sentences each. Each sentence was composed of 5 words, with 4 monosyllabic words and 1

disyllabic word. The participants were requested to write down as many words as possible, so

that their correct comprehension scores indicated the intelligibility of the systems. In 1948, it

was believed that sentence-level evaluation had important, but few benefits. Egan himself ar-

gued that in evaluating the intelligibility of a sentence, the listener could use cues like rhythm

and meaningfulness, and gain a higher score when comprehending speech from a system

(Egan, 1948; Nickerson and MILLER Jr, 1960). Despite this, in subsequent years, the use of

Harvard sentences for intelligibility evaluation, can still be observed either in conjunction with

the word-level tests in analysis-synthesis systems (Howard, 1956), and speech transmission

systems (Kryter, 1956; Hanley, 1956), or standalone as providing test material for pattern

playback synthesizers (Cooper et al., 1952). In this version, the testing format was modified

further to include 72 lists of similar patterns, and the sentence length was variable (Rothauser,

1969). Following this, the Harvard sentences were used to evaluate synthetic speech produced

by concatenating basic phonemes (Suen and Beddoes, 1973; Yeung, 1974), by LPC-based

analysis-synthesizers (Bush, 1972), diphone based synthesizers (Wolf et al., 1978). Similarly, in

subsequent years, we find the use of Harvard sentences in evaluating intelligibility of various

types of speech synthesizers: concatenative synthesizers (Hauptmann, 1993; Stylianou, 1998;

Sydeserff et al., 1992), commercial synthesizers (Gunderson, 1991; Venkatagiri, 1994), and

later for unit-selection synthesizers (Kain and van Santen, 2007), and HMM-based speech

synthesizers (Valentini-Botinhao et al., 2014; Cooke et al., 2013), and the more modern neural

speech synthesiers as well (Tang, 2021; Tits et al., 2019). As an alternative format, the use of
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Harvard sentences has also been extended in simply collecting user ratings on intelligibility

through a mean opinion score (Stylianou, 2001; Beutnagel et al., 1998).

In addition to Harvard sentences that tested the intelligibility over proper English sentences, it

was also considered important to reduce the dependence on contextual cues from the sentence.

This led to the development of the Syntactically Normal Sentence Test (Nye and Gaitenby,

1973), which were syntactically proper sentences, but were not factual sentences. For example

“The old farm cost the blood". These were later popularized as the Haskins sentence set. Their

use was established in several studies on intelligibility of synthetic systems under development

(Pisoni and Hunnicutt, 1980; Schwab et al., 1985; Jenkins and Franklin, 1982) in later years.

While the Haskins sentences did reduce reliance on context, they exploited only one type of

syntactic structure. The need for reducing dependence on context for intelligibility evaluation

was established more rigorously, with the emergence of the Semantically Unpredictable

Sentences, or the SUS (Grice, 1989; Hazan and Grice, 1989). Unlike the aforementioned sets

of sentences, the SUS were not a fixed set of sentences. Instead, they were generated by

grammatical rules and filled with vocabulary items, covering an exhaustive set of scenarios

for evaluation. This significantly increased their flexibility, and was expanded to cover even

multilingual TTS systems. (Benoit, 1990; Pols and Partners, 1992; Benoît et al., 1996). In the

present two decades, the SUS have been among the most popular methodology to assess the

intelligibility of synthetic systems, covering techniques like Unit-Selection (Raptis et al., 2016;

Bachan and Tokarski, 2017; Cohn and Zellou, 2020) and HMM-based synthesizers (King et al.,

2008; Yamagishi et al., 2009b; Picart et al., 2012; Rusko et al., 2016), and more recently neural

synthesizers (Cohn and Zellou, 2020; Quintas and Trancoso, 2020).

Therefore, intelligibility of speech synthesizers was assessed both at a segmental and sentential

level, where one technique complemented the other. Among these, the RTs, and the SUS

continue to be used as most popular techniques for evaluation. Another important learning

from this discussion, is that, since the developments in speech telecommunications technology,

and speech synthesis we e often interlinked, their evaluation methodologies also saw frequent

overlaps, especially upto the late 1980s. However, the development of the Haskins set of

sentences and the SUS, provide a more specialized direction into evaluating intelligibility of

speech synthesizers.

2.4 TTS evaluation: naturalness

2.4.1 What is naturalness?
The question of naturalness, presented usually as “how natural does this utterance sound?",

has been considered “nebulous" (Wagner et al., 2019), or “poorly defined" (King, 2014), as it
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Figure 2.2: Naturalness of Text-to-Speech synthesizers a multi-component perceptual at-

tribute. Elements of human-likeness and appropriateness both contribute to a complete social

integration. Sub-components and individual applications of each component are displayed.
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relies on listeners’ own interpretation of naturalness. However, listeners who participate in

large-scale evaluation experiment have been found to consistently agree on the evaluation

results (King, 2014). In this section, we cover the extant research on naturalness in synthetic

speech. Through next sub-sections, we explain that naturalness is a multi-faceted perceptual

attribute, and visualize it through Figure 2.2. Human-likeness is a major component of

TTS naturalness, and has diverse applications. Human-likeness of synthetic voices, or their

anthropomorphism, relates to overall anthropomorphism in AI, where non-human devices

are designed to represent human-like traits. However, for many applications, human-likeness

in TTS neither enough, nor suitable. In such cases, it is more important for the voice to be

appropriate to the conversation, and match the overall expectations that a user has from the

conversation. We categorize naturalness into these components and the end-user applications

that each delivers.

2.4.1.1 Naturalness as appropriateness

Although approaching human-likeness caters to several applications, some studies assert the

importance of appropriateness should determine its perceived naturalness. Appropriateness

can be further categorized into three aspects: contextual, physical and social, as shown in

Figure 2.2. Contextual appropriateness encompasses those applications, where synthesized

speech feels like a natural part of a larger discourse, or dialogue. Physical appropriateness

refers to a correspondence between the physical features and its voice of a robot or an agent

in a multimodal conversational setting. Finally, social contexts address the expectations from

the agent in specific social settings.

First, read speech, which often serves as training data for several TTS designs is not con-

sidered appropriate in spontaneous conversational agents. For example, the MOS score for

naturalness of utterances was found to vary with context-dependent instructions (Dall et al.,

2014). Here, when the instruction specified placing the utterance “as part of a conversation"

versus “read aloud", the rating on naturalness differed. On the other hand, when no instruc-

tion was specified, the spontaneous style was preferred. Since the experiments involved

only human recorded speech, we can infer that the human-likeness of the voice alone was

not the sole determinant of its naturalness. Other investigations have explored prosodic

expectations of context on synthetic speech. For example, Gutierrez et al. (Gutierrez et al.,

2021) situated synthetic utterances in a question-answer format (e.g. “Who ate the cake?",

“MARY ate the cake.", as opposed to “Mary ate the CAKE"), and requested their listeners

to mark prosodic errors. Their results showed that in sentential context influences listener

expectations, such that TTS voices trained on read speech alone cannot suffice. Similarly,

participants in (Wallbridge et al., 2021) used non-lexical, or discourse cues to determine those

samples which prosodically matched their preceding context. These experiments, indicate that
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when conversational demands are explicitly specified, then contextual appropriateness is also

an important part of naturalness. This holds true in human speech, and can be extrapolated to

synthetic speech. Another example of contextual appropriateness comes from a corpus study

on fictional characters in (Wilson and Moore, 2017). The authors show that voices of these

characters revealed systematic differences from the human voice with respect to different

personality types (e.g, good vs evil), and argue that the voice should fit the overall narrative

context. In short, speech with artefacts was sometimes more important for some character

personas and stories instead of human-likeness of the voice.

Similarly, the physical characteristics of the conversational agent also play an important role.

Particularly, (Mitchell et al., 2011) show that a mismatch in physical features with voice can

cause “eeriness”. Mitchell et al. (Mitchell et al., 2011) demonstrate this through a multimodal,

video analysis. Their participants accorded high levels of “eeriness" to a robot speaking in

a human voice, suggesting that the mismatch was unacceptable. Similarly, McGinn et al.

(McGinn and Torre, 2019) requested their participants to associate a voice with the image

of a robot. The purpose here was to explore whether the participants form a mental image

of the robots’ physical and personality features based on its features. They found that the

human voice was preferred for robots with human-like features (Nao, Stevie), while a synthetic

voice was preferred for the more functional looking robots. Then, participants in Mara et al.

(Mara et al., 2020) drew human-like facial features when they heard a human-like voice, and

mechanical features when they heard a mechanical one. These observations appear robust

across other languages, as demonstrated in Trovato et al. for Brazilian Portuguese (Trovato

et al., 2015). They found that the human voice was not considered appropriate for a humanoid

robot, especially when compared to a more anthropomorphic conversational agent. These

findings suggest that a plain approach to human-likeness of synthetic speech is limited in an

understanding of naturalness, especially in a multi-modal interaction setting.

Social appropriateness is also important for a conversation to be natural. First, a conditional,

task-specific preference for robotic voices has been seen when the task is more functional.

Torre et al. (Torre and Le Maguer, 2020) found that accent preferences transferred to robotic

voices as well. This means that native speakers prefer an accent in robots which is already

considered prestigious and trustworthy in human speech. Similarly, participants from New

Zealand showed a selective preference for synthetic speech in their native accent, especially

when the task involved a real-world interaction requiring trust (Tamagawa et al., 2011).

Additionally, persuasive effects of native and non-native accents have been found to vary with

different therapeutic approaches (Alam et al., 2021). Other aspects of social appropriateness

have been associated with expectations of gender. Through a comparative analysis of several

results on voice and conversational agents, Seaborn et al. observe that gender influences the

perception of a robotic voice “in line with stereotypes" (Seaborn et al., 2021). For example, Nass

et al. (Nass et al., 1997) report that despite explicitly removing all gender-specific information
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from the interaction, the perceptual attributes was stereotypical to gender roles. Similarly,

a masculine voice was rated friendlier, and allowed participants to request help from the

humanoid Nao (Behrens et al., 2018). Gender was also reported to interact with personality

features for specific applications, such as extroverted feminine voices were better matched

for healthcare agents (Tay et al., 2014). Even though the voice quality sounded non-human

in older synthesizers, participants responded appropriately to gender cues (Lee et al., 2000).

While it is clear that gendered expectations from robotic voices are persistent, some text-

to-speech designers question whether this is natural. For example, methods of generating

gender-neutral voices are proposed (Danielescu, 2020; Yu et al., 2022; Markopoulos et al., 2023).

Although rated less natural than conventional voices (Yu et al., 2022; Markopoulos et al., 2023),

Danielescu et al. (Danielescu, 2020) argue that a gender-neutral voice caters to a broader

spectrum of non-binary users.

Therefore, in this subsection, we have seen that the appropriateness of the voice is important

for naturalness. Listeners are sensitive to prosodic appropriateness, and a uniform training

dataset is not useful. The expectation for a physical feature correspondence necessitates

that there be a controllability, or a degree of human-likeness in a synthetic voice. Also,

appropriateness is particularly marked for social settings, and therefore must be incorporated

in TTS designs, suited to end-user applications.

2.4.1.2 Naturalness as human-likeness

In targeted applications of TTS, the concept of human-likeness is closely linked with natu-

ralness, which is a widely tested attribute in TTS evaluation. For example, in the Blizzard

Challenge series
2
, where the purpose is to compare TTS techniques through a common evalu-

ation platform, the word “natural” is implicitly used to refer to the human voice. For example,

“..to find out how far our synthesizers are from natural speech." (Black and Tokuda, 2005), and

“..A denoting natural speech" (King and Karaiskos, 2013), where A referred to human speech.

This points to an implicit bias of “natural” = “human" in the literature. The question though

is: why does a speech synthesizer need to sound like a human?

Attributing human-likeness, or anthropomorphism has historically been an important aspect

of automata design (Fron and Korn, 2019). Epley et al. (Epley et al., 2007) argue that human

values are also attributed to non-human, AI devices because of the compelling desire for

human beings to form social bonds, especially in absence of human connections. This means

that the human-likeness of automata is important for social integration of intelligent

devices. Increasing the human-likeness of automata has been shown to increase trust (Waytz

et al., 2014; Chen and Park, 2021) and error-tolerance (De Visser et al., 2016) among human

users.

2
http://festvox.org/blizzard/
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Specific to the voice of automata, an important finding comes from Schroeder et al. (Schroeder

and Epley, 2016), where they specifically tested the effect of a human voice on assigning

human authorship to written text. Participants were asked to determine whether a given

text was written by a human or AI. Text stimuli were presented to them in 4 conditions:

a) text (display only text), b) audio (listen to the human speaker reading out the text), c)

subtitled video (watch an actor read the text with subtitles but no audio), and d) all modalities

combined (audio, visual and text). While text was generated in all cases by a text generator

(Bulhak, 1996) a participant was found most likely to determine that the text was composed

by a human, if the participant listened to the human voice. Further, they showed that the

human voice, especially one with rich intonational variation can “uniquely humanize” an

interaction, even more effectively than the audiovisual medium. The authors argue that the

voice communicates the presence of a creative mind more effectively, similar to biological

movements indicate presence of living beings. This work highlights the importance of the

human-likeness in synthetic voices, as a primary need for human communication.

This is also supported by the many findings in voice based interaction where human, or human-

like, voices are consistently rated as more socially acceptable (Schreibelmayr and Mara, 2022),

pleasant (Kühne et al., 2020) and trustworthy (Weidmüller, 2022). In (Schreibelmayr and Mara,

2022), the authors tested the response of participants in to synthesized speech recordings

in a variety of application specific contexts (e.g, caregiving, navigation assistance, finance

assistance). Except in highly social applications like caregiving, increased human-likeness

showed positive correlations with acceptance and negative correlations with eeriness. This

is further supported by results on modern, neural voices (Baird et al., 2018) that show that

likeability of Tacotron voices in fact, increases with their human-likeness. They argue that

the uncanny valley then is not applicable for synthetic speech, at least in an audio only

medium. However, a clear conception of the uncanny valley is not fully established with

some disagreement within the literature (Im et al., 2023; Jansen, 2019). This thesis does not

attempt to resolve the debate. Instead, we hold that human-likeness is an important target

for synthesized speech.

The need for human-likeness of TTS is also explained by the socio-commercial success of

voice-based assistants (VBA)s, such as Alexa, Google Home and Siri. It must be noted that their

disembodied form shares no other physical features with humans, except voice. In fact, human

participants of some studies have experienced doubt in their ontological classification between

human and machine (Etzrodt and Engesser, 2021; Pradhan et al., 2019), and their classification

as “hybrid" beings has also been reported (Weidmüller, 2022). This indicates that users

interpret an interaction with VBAs socially similar to that between humans. Consequently,

we find several applications of the human-likeness of VBAs for users with special needs of

companionship and social assistance. For example, elderly consumers of Alexa were found

to assign greater anthropomorphic characteristics to Alexa selectively during periods of
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loneliness (Pradhan et al., 2019). Similarly, lower levels of pitch and intonational variation was

selectively preferred by participants who self-reported loneliness (Chang et al., 2018). These

applications of VBAs are particularly relevant in countries where the elderly form the majority

population (Chang et al., 2018). Then, participants who used Alexa as an anxiety-reducing

public speaking coach suggested improvements through prosodic modulation (e.g “adding

more variation in her tone while she speaks") (Wang et al., 2020a).

Human-like voice serves their classic purpose for advancing assistive technologies and
healthcare. Text-to-speech is a crucial application for learners with difficulties, especially to

promote confidence and aid in destigmatizing their educational instruction. Dyslexic children

have been shown to find the human voice more intelligible (Giannouli and Banou, 2020) and

has improved their comprehension on quizzes (Brunow and Cullen, 2021). Then, usability

testing protocols for assistive devices developed for children with cerebral palsy also specify

the requirement for a TTS to be “natural and human sounding” (Jreige et al., 2009). Developers

of assistive and augmented technologies in Nepali identify that an “ideal” synthesizer must

be able to “replicate speech as a human” (Basnet et al., 2023). Visually impaired listeners that

used audio descriptions preferred the human voice (referred to as “natural”) for dubbed feature

films in Catalan (Fernández-Torné and Matamala, 2015). Similarly, in an AX discrimination

task, visually impaired participants were reported to detect quality differences in synthetic

voices with better precision than their sighted counterparts (Melnik-Leroy and Navickas,

2023). Through these studies, we conclude that TTS can serve as a highly enabling assistive

technology.

Finally, human-like voices are required for advancing research in speech science. Malisz

et al. (Malisz et al., 2019) argue that modern, neural synthetic speech can be a versatile tool

for modelling human speech. In tasks such as lexical decision making and subjective score

manipulation, participant performance and reaction times were found comparable to the

human voice. If patterns, such as phonemic contrast, prosodic control and speaker variation

in synthetic speech can generalize faithfully to human speech, dependence on data collection

can be immensely reduced. Present studies on phonetics usually rely on carefully controlled

recordings, collected at the syllable level. Although many researchers insist on using naturally

occurring corpora (Chodroff, 2018; Liberman, 2019), the pre-processing of such corpora may

be time-consuming as the data is often designed for other purposes. However, synthesizing

high-quality, human-like speech can either augment existing corpora, or facilitate the creation

of suitable corpora. Next, an important concern of speech perception is to determine the those

properties of speech which remain invariant despite variation (Blumstein and Stevens, 1979).

If single-speaker, syllable-level data is available as recordings (as is common), variation in

positional, vocalic and cluster contexts can be synthesized, thus furthering our understanding

on acoustic invariance. Additionally, the success of multi-speaker, and accented TTS (Moss

et al., 2020) can ensure the necessary diversity required to understand invariant cues in

41



speech perception. Finally, synthesizing speech can also aid in language preservation and

documentation (Chasaide et al., 2015; Sakti and Nakamura, 2013).

Through this discussion, we show that human-likeness is an important target for TTS syn-

thesizers. For targeted applications of TTS, such as healthcare, social integration of VBAs,

naturalness can be synonymous with human-likeness. This thesis caters to these applications,

and presents a methodology to evaluate the human-likeness TTS voices. Naturalness and

human-likeness are used interchangeably to maintain consistency with the existing TTS

literature. However, in Chapter 5, where we do not draw results from previous studies, the

word naturalness is altogether suspended. The next section describes the various evaluation

methodologies, and situates our methods within this scope.

2.4.2 How is naturalness evaluated?
Naturalness evaluation of TTS synthesizers can be classified into 3 broad categories: sub-

jective evaluation, objective evaluation and behavioural evaluation. Figure 2.3 visualizes

TTS evaluation as a triangular approach. The most dominant method of evaluation is the

subjective evaluation, where users’ opinion is collected from them through listening tests,

paired comparisons, and other interactive settings.Developing scales for such evaluation is an

active resaerch area in many fields such as machine translation (Graham et al., 2013), video

captioning (Graham et al., 2018) and surface realization (Mille et al., 2018). However, this

approach is time consuming and expensive, so objective evaluations aim to automate this

process. Finally, behavioural evaluations sidestep the collection of user opinion. Changes in

physiological measures like heart rate, pupil dilation give us an estimate of the impression

they had of the voice. While each framework has its own merit, a diagnostic analysis of the

signal itself is missing from the discussion (see middle of the triangle, Figure 2.3). We describe

each evaluation framework in detail. A note on segmental evaluation is also provided under

subjective evaluation. Those (few) studies are highlighted where segmental evaluation has not

been limited to intelligibility evaluation, but extended to attributes like system-preferences

and naturalness.

2.4.2.1 Subjective evaluation: collecting user opinion

Subjective evaluation is the method of obtaining feedback directly from the consumer of

the voice. Since their first appearance in the mid-60s, the MOS based design remains the

dominant method in TTS evaluation until the present day in voice quality evaluation. We

trace the timeline of its emergence (see Figure 2.4) , discuss its strengths and shortcomings,

and analyze its alternatives.

Among several popular evaluation techniques, the isopreferent method (Munson and Karlin,
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Objective
Automatically predicting scores of the 
subjective listening tests.

Techniques: POLQA/PESQ/ViSQOL; 
MOSNet; VoiceMOS

Behavioral
Neuronal responses; EEG 
measurements

Reaction times; Pupil dilation; 
Heart-rate monitoring

Subjective
Isolated sentences; paragraphs
real-world settings; humanoid 
interaction

Mean Opinion Scores/MUSHRA

Diagnosis?

Figure 2.3: Evaluation techniques for TTS synthesizers include subjective methods, gathering

listener opinions through tests; objective methods, predicting subjective scores automatically;

and behavioral metrics, quantifying subconscious listener decisions and physiological changes.

A diagnosis of the synthesized signal is missing. It can be achieved through analyzing acoustic-

phonetic attributes of the TTS voice.

1962), the relative preference method and the category judgment methods (Richards and

Swaffield, 1959) were among the predominant techniques. The isopreferent method involved

a pairwise examination of a reference (high-fidelity signal), and a test signal. The reference

signal was continually degraded, upto a point, at which the test signal and the reference signal

showed equal (iso-) preference by the listeners. The relative preference method, used a test

signal to be presented with a series of selected reference signals, and calculating the number

of times it was preferred over the reference signals. The third and the more important method

is the category judgment method, which had already received C.C.I.T.T standardization for

speech quality assessment in 1962. This method is also called the Absolute Category Rating

(ACR). To the best of our knowledge, some of the first applications of a mean opinion score in

speech synthesis, comes from Richards et al.’s (Richards and Swaffield, 1959) design of the

opinion assessment score on listening effort.

Here, listening tests involving untrained participants, were used to score the amount of

listening effort that was required to understand the message that was being transmitted

either as part of a conversation, or as independent sentences. Category judgments also

involved planning of telephone networks, simulating a real-life conversation (Richards, 1964),

and evaluating subjective variance in echo perception in a conversational setting (Richards

and Buck, 1960; Williams and Moye, 1971). Participants of the experiment were required
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to “vote” on a 5-point scale, over which a mean was obtained. Since listening-effort scores

(using a one-way setup) were relatively easier to calculate, efforts were made to connect

them to conversational scores (using two-way conversation setup) as well (Richards, 1974).

Another contribution of this study, was expressing subjective scores as functions of objective

measurements (such as spectral information of articulation, perception, and hearing thresholds

of listeners), so as to mitigate the cost of subjective listening tests .

In an important series of papers, the IBM research group presented a discussion on the

comparative value of different evaluation techniques for speech quality (Pachl et al., 1968;

Rothauser et al., 1971), as well as contributed one of their own designs of evaluation tests. In

this design, instead of a 5-point scale of the category judgment method, participants were

provided with a 10-point scale, where participants could assign even fractional scores to

assess the quality of the speech signal. Another rich contribution of their work (Rothauser

et al., 1971) was to provide a “preference unit (PU)” scale, i.e., a common metric, against all 4

evaluation schemes could be inter-related. Continuing in the vein, the group also used the 4

methods for a conducting a preference test over a large set of vocoded speech signals (Pachl

et al., 1971). Some examples of these vocoded signals included speech samples from formant

vocoders, cepstrum vocoders, rule-based, and diphone synthesizers. The relative simplicity of

the category judgment method, allowed the authors to conduct an evaluation test over all

the speech samples produced by the systems under comparison. However, to provide a clear

ranking of systems using the combined PU scale proved very difficult, given the complexity

of the testing material and several other factors.

Although no clear recommendation of a specific type of evaluation method was prescribed,

the following decades saw a rise in evaluating systems using a mean opinion score, using an

Absolute Category Rating method. At this stage, we have been able to identify two reasons for

the popularity of MOS-based evaluation of speech. The first is that evaluation of synthesized

speech can be conducted by naive, untrained listeners. This allows for large-scale comparative

evaluation of different speech synthesizers, as we saw in (Pachl et al., 1971). Second, as pointed

in (Grether and Stroh, 1973), ACR offered a multi-dimensional analysis of overall quality. For

example, aspects like a speech signal could be evaluated along various psychological attributes

like naturalness, harshness, clarity etc. As (Grether and Stroh, 1973) discuss, the pairwise

comparison metrics on the other hand, made the assumption that quality was based on a

unidimensional continuum.

In the mid-80s, Pols et al. (Pols and Boxelaar, 1986) describe their participation in the in-

ternational ESPRIT SPIN project, which involved the development and testing of the office

automation system using a speech interface. In this report, we note a few interesting points,

which identify some important trends in speech synthesis. First, they make the assertion that

quality and acceptability became the most important attribute of speech signals, and that sys-
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tems already could provide high levels of intelligibility. Next, they propose that a MOS-based

evaluation of speech synthesizers’ quality, can be expressed using a multidimensional format

- including criteria such as naturalness, preference, acceptability. A reference to Nusbaum

et al.’s (Nusbaum et al., 1984) report is made, so it seems likely that they were the first to

implement this. However, the exact document is not available through online/library searches.

Therefore, naturalness evaluation through a MOS-based listening test was first conducted in

the mid-80s.

Absolute 
Category 

Rating

Isopreference 

Relative 
preference

IEEE Quality 
recommendations P.80/P.800 recommends 

methods for degradation 
environments

ESPRIT SPIN core 
naturalness for 

synthetic speech

ITU.T P.85 recommends 
ACR/MOS for synthetic speech

Mid 80s

1993/1996

1994

C.C.I.T.T. 
approved 
method

1969

Figure 2.4: The stages of approval of Absolute Category Judgment method through the years.

In 1992, the organization C.C.I.T.T was renamed the ITU-T
3
. Almost immediately after, in the

Recommendation P.80/P.800 (Rec, 1996)
4
, came the approval for using several methods for

collecting the listener-opinion on quality evaluation of voice output devices. The recommen-

dation suggested the use of these methods in any degraded listening environment, such as,

echo, sidetone, environmental noise etc, and no explicit mention of speech synthesizers was

made. However, in 1994, we find Recommendation P.85 (ITU, 1994) dedicated to the subjective

quality testing of speech synthesizers, and the ACR, as well as Degradation Category Ratings

(DCR) (Combescure et al., 1982) scales are standardized for their evaluation. Once the user

inputs their ratings, a mean-opinion score is derived by taking an average of those scores. The

official definition, as described in ITU.T P.10 (P.10, 2006) is, “The value on a predefined scale

that a subject assigns to his opinion of the performance of the telephone transmission system

used either for conversation or for listening to spoken material.” Table 2.1 describes a set of

3
source:https://bit.ly/3z0pOAJ

4
P.80 was renumbered P.800 in 1996, and is often quoted as such
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Table 2.1: Questions posed to participants evaluating different aspects of speech quality in a

standard MOS based evaluation.

Aspect Question

Overall impression

How do you rate the sound quality of the voice you have

heard?

Listening effort How would you describe the effort you were required to make in order to understand the message

Comprehension Did you find certain words hard to understand?

Articulation Were the sounds distinguishable?

Pronunciation Did you notice any anomalies in pronunciation?

Speaking rate The average speed of delivery was:-

Voice pleasantness How would you describe the voice?

Acceptance Do you think that this voice could be used for such an information service by telephone?

questions in a standard MOS test, when different aspects of speech quality are tested.

The subsequent years have seen active usage of MOS in assessing the quality of speech synthe-

sizers; ranging from unit-selection synthesizers (Capes et al., 2017), HMM-based synthesizers,

and finally the most modern neural synthesizers like Tacotron (Wang et al., 2017) and WaveNet

(van den Oord et al., 2016). Their use has been extended to evaluation of synthetic speech in

several languages (Patil et al., 2013; Kishore et al., 2003), multiple contexts, such as interactive

avatar or wizard-of-oz settings (Mendelson and Aylett, 2017), crowd-sourced settings (Betz

et al., 2018), as well as multi-modal speech synthesis (Mattheyses and Verhelst, 2015).

Therefore, MOS based evaluation provides subjective scores for speech quality on a discrete,

ordered scale. Although these ratings give a descriptive measure of the global quality, there

are some reported issues with the design. Some have been solved intrinsically within the

paradigm of MOS, by means of a more extensive questionnaire (Polkosky and Lewis, 2003;

Handley, 2009), or by re-imagining listener tests in more interactive settings (Clark et al., 2019;

Mendelson and Aylett, 2017; O’Mahony et al., 2021). Le Maguer et al. (Le Maguer et al., 2024)

provide a complete description of the limitations of MOS, especially asserting the misleading

relative nature of the scale. Our main contention with MOS in this thesis is, as shown in

Figure 2.3, is with its limited diagnostic abilities. We describe in Chapter 5, how new subjective

evaluation methods can be designed, which can provide more diagnostic information about

signal distortion.

2.4.2.2 Objective evaluations: predicting user opinion

Naturalness can also been evaluated through objective measurements. Objective methods

such as algorithms or toolkits predict a measure of quality that correlates well with subjective

evaluations like the MOS score. Objective methods can be full-reference or non-intrusive,

dependent on the application. In the full-reference method, synthetic speech is measured

against human speech as a reference, using automatic, standardized measurements like the

Perceptual Evaluation of Speech Quality (PESQ) (Rix et al., 2001), its successors (Beerends
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et al., 2013) and competitors (Hines et al., 2015). Conversely, the reference signal is discarded

in non-intrusive methods (Malfait et al., 2006; Kim, 2005).

The PESQ algorithm (Rix et al., 2001) follows the P.862 recommendation and is used to

objectively predict the subjective quality of hand-held and telephonic devices. The perceptual

model transforms both the original source signal, and the degraded signal to an internal

representation, similar to the representation of auditory signals in human perception. Then,

the two signals are compared sample-by-sample to predict a measure of quality of the device.

Finally, a correspondence with the subjective MOS ratings is established using a correlation

metric. Next, Perceptual Objective Listening Quality Analysis (POLQA) which appears as

a successor to PESQ, overcomes the band and alignment limitations of PESQ. This means

that, while PESQ could support narrowband and was extended to wideband signals, POLQA

expanded the range to include super-wideband signals. An alternative metric known as Virtual

Speech Quality Objective Listener (ViSQOL) (Hines et al., 2015) was also developed with a

particular focus on degradation in voice over IP signals. ViSQOL uses a neurogram similarity

measure for comparing the source, reference signal with a degraded one. A signal is divided

into patches, where for every patch, a framewise comparison using the Neurogram Similarity

Index Measure (NSIM) yields the point of maximum similarity between the reference and the

degraded test signal. This maxima, averaged over samples returns the quality score for the

utterance. The ViSQOL method provided a comparable alternative to the existing POLQA

method for judging voice quality especially in VoIP settings. As can be seen, all the three

methods are full-reference methods, which use the natural voice as a reference against which

the transmitted, degraded or synthesized signal is compared.

Alternatively, methods that do not use a reference are known as “non-intrusive" and are

considered more challenging than the full-reference ones. The standard was approved by

the ITU.T P.563 (Malfait et al., 2006) recommendation in 2004, among other contenders. This

method pre-processes the received signal to separate speech and non-speech regions. Then,

the main sources of distortion are identified as key parameters using a set of signal parameters

obtained through a series of analyses. Other designs such as ANIQUE (Kim, 2005) propose a

hierarchical filterbank which models the modular decomposition of the temporal envelope

in human auditory processing mechanism. Similarly, Hinterleitner et al. (Hinterleitner

et al., 2010) describe a parametric approach where temporal differences between the natural

reference signal and the TTS signal are quantified through an HMM trained with features

of the human voice. Perceptual similarity is computed through a normalized log-likelihood

score. This score, optionally combined with other features is then passed through a linear

regression analysis to return a quality estimate.

Non-intrusive techniques offer reliable techniques of alleviating the dependence on the

reference signal, which is often not available in real-world settings. Additionally, the mismatch
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between the reference human voice and that of the TTS may be enhanced due to prosodic

differences. Since these metrics were mainly designed for codec conversion and impaired

listening conditions, their correspondence to subjective scores on TTS is unreliable (Huang

et al., 2022; Wagner et al., 2019). Therefore, many researchers are now actively exploring

deep-learning based techniques further reduce the dependence on parallel natural speech as

reference. An early design was the AutoMOS (Patton et al., 2016) which was developed using

a family of long short-term memory (LSTM) architectures, which accepted mel-spectrograms

as input. Then, fully-connected layers predicted the final MOS values through regression.

When averaged over multiple utterances and speakers, AutoMOS predictions obtained a high

correlation with the actual MOS scores. However, popularity of automatic MOS prediction

appears to grow only 2-3 years later. The MOSNet (Lo et al., 2019) employs convolutional

and Bi-LSTM architecture, while the stacking of the fully connected layers is similar to the

AutoMOS. The predicted system-wide naturalness shows high correlation with human ratings.

Then, prediction systems based on finetuned semi-supervised learning are designed either

to capture the generalizability across listening tests (Cooper et al., 2022) or to accommodate

variability in listener preferences (Tseng et al., 2021). Finally, VoiceMOS challenge conducted

to compare the state-of-art techniques in objective evaluation, is now successful in its second

year (Cooper et al., 2023). This further identifies an emerging trend in evaluation.

However, it must be noted that while end-to-end prediction systems automate the evaluation

process, their outputs still fail to diagnose the source of distortion in the synthesized signals.

Therefore, some researchers discard the Opinion Score altogether, and estimate the naturalness

of the signal through behavioural and physiological metrics. The next subsection describes

those methods.

2.4.2.3 Behavioural evaluations: sidestepping opinion

In addition to the inclination towards carefully designed evaluation tests, behavioral or

physiological metrics have emerged. In these methods, the conscious opinion of a listener

is discarded. Instead, we tap into a participants’ subconscious decision making through

a variety of behavioural methods. Changes in their behavioural responses - pupil dilation

(Govender and King, 2018; Govender et al., 2019), neuronal activity detection (Gupta et al.,

2013; Parmonangan et al., 2019; Antons et al., 2012) and reaction times can give us an estimate

of the impression they have of the system.

Electroencephalography (EEG) based measurements have explored the relationship between

neuronal activity in the subbands and estimation of quality in synthetic speech. An important

finding comes from Antons et al. (Antons et al., 2012), who examined neuronal response

to distortion in vowel level stimuli. In addition to collecting EEG data from different scalp

locations, behavioral data (reaction times; onset to button click, psychometric data; how
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accurate as a function of SNR), and opinion test was also collected and analyzed. They found

that pattern of brain activation related to processing degradations can also be detected in

trials not reported as degraded. Through these methods, they identified that distortion could

be detected through behavioural measures, even when these did not correspond to conscious

ratings. Following these results with connected speech, Gupta et al. (Gupta et al., 2013)

explored the effect of poor-quality TTS synthesizers was examined on specific event-related

potentials in an oddball paradigm. Significant effects of quality were found, indicating that

quality effects can be detected both with minimal exposure (vowels, (Antons et al., 2012)) and

with contextual support. Another useful resource is the PhySyQx dataset (Gupta et al., 2015),

where EEG data and the MOS scores are simultaneously collected. This dataset is further

explored by Maki et al (Maki et al., 2018), who demonstrate that ElectroEncephaloGram

(EEG) based methods can be utilized for predicting speech quality. Specifically, they identify

that the neuronal activity in the alpha-band of brain-waves correlates the most with MOS

prediction.

Govender et al. present a series (Govender and King, 2018; Govender et al., 2019)of pupillometry

based experiments for assessing the cognitive load of quality of synthetic speech generated by

various systems. In these experiments, the extent of participants’ pupil dilation was measured

using a pupillometer as a function of quality differences between synthesized speech. Both in

semantically unpredictable and meaningful sentences, pupil dilation was found to increase

as a function of quality. Additionally, recall, i.e., accurate repetition of the sentence stimuli,

was also the highest in the human voice. This finding suggests that using pupillometry, the

relationship between intelligibility and listening effort can be simultaneously estimated. These

generalizations extended to noisy listening conditions (Govender et al., 2019).

2.4.2.4 Segmental evaluation of naturalness

Studies that discuss the contribution of segmental properties of speech in perceived nat-

uralness of have been quite limited. However, evidence from several studies suggest that

segments, such as vowels and consonants can also influence the perception of naturalness

and overall quality. Segmental quality was a critical metric for overall speech quality (van

Heuven and van Bezooijen, 1995), and deficiencies in synthetic voices could be detected at

the word-level, even when the intelligibility was high (Klatt, 1987; Wright et al., 1986).

Evidence from electroencephalography based studies (Porbadnigk et al., 2010; Antons et al.,

2012) have found that degradation in a signal can be detected by changes in neuronal activity,

even when stimuli are as short as a vowel. These changes may not translate to conscious

behaviour ratings, but can affect listeners’ fatigue in long-term usage. Additionally, listeners’

sensitivity to naturalness in synthetic speech (Nusbaum et al., 1997), has been found even at

a “microscopic" level (i.e, when stimuli were only a few glottal pulses from a vowel). Studies
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on diphone synthesis found a significant effect of segmental features on listener preferences

(Bunnell et al., 1998), and their quality was reported to influence the naturalness of intonation

Vainio et al. (2002). In an investigation of unit-selection synthesisers, (Mayo et al., 2005),

segmental (or unit) appropriateness was reported to be an important dimension for listeners’

judgment of naturalness.

Although limited, the evidence suggests that the contribution of segmental units cannot

be ignored for TTS naturalness. Techniques for a systematic analysis of segments can be

borrowed directly from the field of acoustic-phonetics, where acoustic features are routinely

parsed to extract the most meaningful ones from the signal. The next section describes the

relevant techniques.

2.5 Speech science in TTS evaluation

2.5.1 Phonetics and speech synthesis
Phonetics is a branch of linguistics that explores the articulation, acoustics and perception

of speech sounds. Articulatory phonetics aims to explain the roles of speech organs that are

involved in producing various speech sounds. For example, during the production of voiceless

sounds, the post-crico-arytenoid muscles are drawn inwards such that the vocal folds can be

held apart with sufficient tension. Additionally, topics such as speaker variation, and speech

impairment also come under the purview of articulatory phonetics. Next, comes acoustic

phonetics, which provides systematic methods for analyzing the pressure variations in the air

as a consequence of each of these articulation patterns. For example, a short-term Fourier

transform can represent the signal into an informative time-frequency representation, from

which acoustic-phonetic features can be extracted for analysis. Techniques within acoustic

phonetics overlap with speech processing and technology, and are borrowed directly for the

analysis of speech signals. Finally, speech perception is the branch of phonetics where we

analyze which parts of the acoustic information is used by the listener to make contrastive or

meaningful distinctions in language. For example, the duration of the voicing onset time is

responsible for the perceived voicing difference between the English labiodental fricatives, as

in pull: /phUí/ and bull /bUí/.

In the early days of speech synthesizers, speech science and synthesis technology enjoyed a

reciprocal relationship. The distance between synthetic speech and phonetics grew because

synthetic speech produced by early speech synthesizers was often more unintelligible than

human speech, and its findings often did not extend to human language (Duffy and Pisoni,

1992). Although intelligibility improved with statistical parametric synthesis, it brought a

roboticity or “unnaturalness" to the speech output (King, 2014). But today, with neural TTS,
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high-quality, natural-sounding synthetic speech has become quite accessible. Malisz et al.

(Malisz et al., 2019) show that data-driven TTS is now more realistic, highly intelligible, and

perceptually closer to human speech.

Using synthetic speech as a research tool has attracted many modern phoneticians. For

example, some researchers synthesize variation in speech, in terms of disfluencies, or pause

locations (Kirkland et al., 2022; Székely et al., 2019) to understand perception of paralinguistic

personality traits. Similarly, architectures have been designed to support fine-grained ma-

nipulation of low-level phonetic features (Beck et al., 2022; Pérez Zarazaga et al., 2023). Also,

achieving prosodic control for speaker and style transfer (Šimko et al., 2020a,b), and cuing

non-explicit pragmatic functions (Lameris et al., 2023) is quite popular. In these studies, the

evaluation of a TTS synthesizer is achieved rather indirectly, wherein its limits are questioned

to generate nuanced speech phenomena.

By comparison, using techniques in phonetics directly for TTS evaluation has attracted

modest attention. Specifically, Gutierrez et al. (Gutierrez et al., 2021) incorporate the well-

established Rapid Prosody Transcription paradigm (Cole and Shattuck-Hufnagel, 2016) for

obtaining locations of perceived prosodic errors. Additionally, Gessinger et al. (Gessinger et al.,

2016, 2021) report differential effects of TTS techniques on phonetic entrainment patterns.

These studies display that although there is increasing exchange between speech science

and technology, only a few studies within phonetics target evaluation. This means that the

information that resides in the acoustic-phonetic features of speech remains under-explored

in TTS evaluation. The next subsection describes corpus phonetics, which is an upcoming

branch in phonetics owing to open-sourced analysis and segmentation toolkits.

2.5.2 Corpus phonetics: diving into divisions
Corpus phonetics is the science of analyzing large-scale speech and language data. It derives

from acoustic-phonetics, which fundamentally is the science of studying the physical, acoustic

properties of speech signals. Research in acoustic-phonetics has relied significantly on speech

and audio data collected at the isolated word-level, and within laboratory controlled settings.

But in recent years, the availability of large-scale audio recordings (Garofolo et al., 1993;

Panayotov et al., 2015; Godfrey et al., 1992), often accompanied with labeled transcription, or

tools for automatic analyses (McAuliffe et al., 2017; Sonderegger and Keshet, 2012), has had

an enormous impact on the field.

Additionally, in the previous two decades, research in forced alignment, both at the phonemic

(McAuliffe et al., 2017) and sub-phonemic level (Sonderegger and Keshet, 2012) has produced

reasonably reliable results. Similarly on the analysis front, there exist a series of toolkits

that provide integrated environments for annotation, database management and statistical
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analysis of speech datasets.

But, as pointed out by Liberman (Liberman, 2019), the link between acoustic-phonetic prop-

erties from corpora, and their perceptual significance, is still in its nascent stages. This is

because, as most speech corpora are collections of speech recordings, the analysis of acoustic-

phonetic properties of speech signals is still at a descriptive level. Due to lack of accompanying

perceptual data, the relationship between acoustic information in the signal, and the perceived

responses is very limited.

2.5.3 Our proposal
The bottom line is that present evaluation techniques are all centred around opinion. Opinions

in the form of user responses are collected through subjective methods, obtained physio-

logically in behavioural methods and predicted through objective ones. These approaches

to evaluation, however, lack one thing in common: a diagnostic analysis of the TTS signal.

Our proposal centres around making evaluation more diagnostic by analyzing the signal. A

background in intelligibility evaluation informs us that segmental evaluation can pinpoint

the location of distortion in the synthesized signal. Second, we know that the central goal in

acoustic-phonetics is to connect phonetic features to meaningful, i.e, phonemic categories. In

fact, a lot about what is meaningful is already known through decades of phonetics research.

Third, we know that we can use corpus annotation and analysis techniques to analyze large

scale corpora generated by TTS synthesizers. In other words, we know what is meaningful in

the signal and we can scale it to corpora. So, we propose to conduct a segmental evalua-
tion of TTS corpora using corpus-phonetics and acoustic-phonetic techniques. Using

these techniques, we propose to set up a feature-by-feature comparison of natural, human

speech with TTS generated corpora. We aim to establish which features differ in statistically

significant ways from the human voice. Chapters 3 and 4 will be dedicated to those. However,

Libermans’ original issue would still remain : how does this connect to perception?

Chapter 5 is dedicated to the design of a perceptual test based in psychophysics and speech

perception. Human-likeness is presented as a two-choice forced alternative (human or not).

Although a Likert scale based evaluation has several advantages, as described in Section 2.4.2,

a two-choice task is easier and has more inter-rater reliability compared to a Likert scale

based evaluation (Awad et al., 2014). This has recently been shown to hold for neural TTS as

well (Camp et al., 2023). Therefore, paired comparisons, already established for the quality

assessment of synthetic speech (Rothauser, 1969) can particularly favour the connection

between the segmental features and their perception as distinct categories. In the next

section we review TTS datasets that can be utilized for such an analysis, and conclude the

chapter.
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2.6 A review of synthetic speech datasets
In this section, we review some of the popularly available open-source datasets for speech

synthesis evaluation, and then present arguments for our selection.

First of all, the annual Blizzard Challenge series, conceptualized by Black et.al (Black and

Tokuda, 2005), and maintained by King et.al
5
, provide some of the most comprehensive

sources of state-of-the-art speech synthesis systems. The goal of the challenge is to provide a

common dataset for the participating teams, so that each team builds a synthetic voice using

their own technique. All the teams are requested to generate the same set of sentences, which

are then used for evaluation. The evaluation method is predominantly a subjective listening

test, where the participants assign a score to the quality of the speech they hear. A MOS is

calculated, and the quality of the system is thus determined. As mentioned in Section 2.5.2,

participant responses, in the form of MOS, often accompany the parallel synthetic speech

corpora as a final result of the challenge.

Another invaluable source of synthetic speech is the more recent Automatic Speaker Ver-

ification (ASV) Spoof Challenge series (Wu et al., 2015; Kinnunen et al., 2017; Wang et al.,

2020b). While TTS technology has a great number of uses, it can also be used to impersonate

someone, and misuse their biometric information. Therefore, the ASVSpoof Challenge was

organized to develop counter-measures to protect a person’s identity from different types of

attacks. This challenge also contains a MOS-based evaluation score. However, this response

is not exactly a score of system quality. Instead, it is used to measure the listener’s belief

on the human-ness of the speech played to them. The synthetic voices used in the dataset

have high-quality, state-of-the-art voices. This makes the ASVSpoof dataset another excellent

source for modeling human responses to naturalness.

Some other datasets provide various types of synthetic voices, but do not come with accompa-

nying user responses. These include the synthetic speech commands dataset, the FoR dataset

(Reimao and Tzerpos, 2019), and the SynSpeechDDB (Zhao, 2020) datasets. The first one is a

single-word command dataset, while the latter two have voluminous synthetic speech data,

and automatically detecting synthetic speech from real-speech. These are, however, good

sources to train an automatic classifier for synthetic speech recognition.

For the purpose of our experiments so far, we have chosen the Blizzard-2013 dataset. Despite

the advent of modern DNN based synthesis systems, the choice of basing our analysis on the

Blizzard 2013 is motivated by multiple crucial points. Firstly, the BC-2013 provides human

speech data from a single speaker, upon whose voice the other synthetic voices are modeled.

Therefore, without the need for speaker normalization, we can control for variability. Secondly,

the balanced audiobook rendition of the BC-2013 provided a good avenue for conducting

5
http://festvox.org/blizzard/
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fundamental acoustic-phonetic analysis, as most of the theoretical evidence is available for

adult speakers.
6
. Additionally, the 300-hour training data provided with the challenge, makes

it feasible for the creation and addition of state-of-the-art neural voices in future. Finally,

parallel synthetic speech generated by a wide variety of techniques in BC-2013 provides room

for a comprehensive comparative analysis using acoustic-phonetic attributes.

2.7 Conclusion
As modern, end-to-end speech synthesizers report near-human naturalness, better tests

are required to diagnose their still existing weaknesses. The purpose of this chapter is to

introduce TTS evaluation as an active and emerging research area. Evaluation tests designed

for intelligibility and naturalness have been chronologically described. This perspective is

presented to highlight that segmental evaluation can be quite informative, but has not been

adequately investigated for naturalness. We introduce corpus phonetics, and show that its

tools like forced alignment can be used to divide an utterance into its component segments.

Acoustic phonetics can then be used to dive into these divisions, and analyze how (or whether)

phonetic features are distorted in TTS voices.

The “nebulous" concept of naturalness has been presented as a multi-faceted perceptual

attribute. Its applications as human-likeness and appropriateness are individually described.

We maintain that although contextual appropriateness is necessary for a natural conversation,

human-likeness remains a critical target for TTS synthesizers, with diverse applications in

healthcare and social integration of robots. Moreover, since human-likeness can be encoded

as a binary, categorical variable (human or not), we can connect each category to the acoustic-

phonetic properties of the signal. Especially, if we find distortion in certain properties we can

explore whether participants can perceive it. This is inspired from phonetics, where a central

goal is to connect acoustic-phonetic features to contrast (for example, /p/-/b/ to voice onset

time).

Finally, the Blizzard Challenge 2013 is used throughout this thesis. It provides data on 3

diverse TTS techniques, and now also includes modern, neural voices. The next two chapters

provide a complete methodological description of our approach used on this dataset. Chapter

5 describes a novel methodology for subjective evaluation based on a paired comparison of

human-likeness, based on our findings in Chapter 4. Through this thesis, we aim to make

evaluation more diagnostic using techniques from phonetics.

6
The 2014-2015 editions focused on synthesis for Indian languages, the 2016-2018 editions were based on

audiobooks for children; the 2019 edition target language was Chinese.
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3 | Diving into divisions: a framework
for TTS evaluation

In this chapter, we introduce the Dive-into-Division approach, a methodological framework

for evaluating Text-to-Speech synthesizers. This approach involves segmenting synthetic

speech utterances into phoneme-level units (divisions) and extracting acoustic-phonetic mea-

surements from these segments (diving). These measurements are then compared between

human and synthesized voices. The segmentation and feature extraction techniques draw

inspiration from corpus-phonetics and acoustic-phonetics. The design is situated within the

larger framework of segmental evaluation of Text-to-Speech synthesizers.

3.1 Contrastive features for TTS evaluation
Native speakers of a language can differentiate between speech sounds to decode the meaning

of the words of their language
1
. For example, native speakers of English can distinctly hear

the difference between the words tin and din, which differ only in one sound, their initial

consonant. But an equivalent difference between teen and Teen, which is clear and meaningful

to a native Hindi speaker is frequently confused by English speakers. In other words, native

speakers have a collective knowledge of the meaningful differences, or contrasts between the

speech sounds of their language, and this knowledge is used to facilitate communication. An

understanding of contrasts and contrastive differences can also aid the distinction between a

phone and phoneme: a phone is any sound produced by human articulators, while a phoneme

is a sound understood as contrastive by the native speakers of a language. It can also be useful

to think of a phone as a language-independent, while a phoneme as a language-specific unit

of human speech (Moore and Skidmore, 2019).

A central goal in acoustic-phonetics and speech perception is to identify those physical or

acoustic properties which maximize the difference between phonemes in a language. Acoustic

attributes of the signal that robustly communicate contrastive, phonemic differences in a

1
Detailed reference (Zsiga, 2013)
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native speakers’ language are known as contrastive features. Babies are born with the ability

to differentiate between all speech sounds. However, within months their perceptual systems

attune to phonemes in the native language of their environment(s) (Kuhl, 1993; Kuhl et al.,

2006). This means that their neural auditory pathways rearrange to respond to phonemic

contrasts in their language. Contrastive features therefore can be understood to encode a

fundamental relationship between the auditory stimuli in a child’s physical environment

and their responses to it. Human listeners rely on contrastive features, as is evidenced by

studies in cochlear implants. In these studies, removal of acoustic cues either through noise or

signal manipulation causes confusions in segmental recognition (Dorman et al., 1990; Iverson

et al., 2006). In addition to perceptual importance, their acoustics also reveal articulatory

characteristics of the production mechanism. For example, changes in formant values are a

direct consequence of the changing shape of the oral cavity during vowel production (Zsiga,

2013; Stevens, 2000).

To the best of our knowledge, they have not been used in evaluating improperly produced

segments in TTS synthesizers. Through this thesis, we introduce the segmental analysis of

contrastive features for evaluating Text-to-Speech synthesizers. The approach is called the

Dive into Divisions approach. First, we segment the dataset into phonemic divisions. Then,

we extract contrastive features from each of these phonemes. This process is conducted over

the human voice and a diverse set of TTS voices. Then, statistical models are used for a

feature-by-feature comparison of the human voice with every TTS voice. We use naturally

occurring, unconstrained synthetic speech corpora from the Blizzard Challenge 2013 corpus.

Using computational techniques prevalent in corpus-phonetics enables automating the design.

The methodological framework is detailed in Section 3.2. It describes our dataset, the BC-2013,

segmentation techniques, feature extractions and experimental layouts. Then, we discuss the

results in Section 3.3. We find that comparing contrastive features of segments between the

human and synthetic voices, can reveal diagnostic trends, unavailable through traditional

MOS-based evaluations.

3.2 Experimental framework

3.2.1 Our dataset - The Blizzard Challenge 2013
In this study, we use data from BC-2013 (King and Karaiskos, 2013). The Blizzard Challenge is

an international challenge, hosted annually to compare state-of-the-art technologies in TTS.

It receives widespread participation from academic and industrial institutions. Participants

of the challenge are required to use the same training dataset to build a synthetic voice,

and submit an identical set of sentences. The sentences are then evaluated using a common

evaluation platform.
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TTS Technique System name Naturalness MOS

Hidden Markov Model

(HMM)

I 3.1

C 2.9

H 2.0

F 1.9

P 1.2

Unit-Selection

(UnS)

L 3.0

N 2.6

B 2.1

Hybrid M 3.9

K 3.2

Human voice

A 4.8

Table 3.1: 10 TTS systems contributed by the participating teams in the original Blizzard

2013 Challenge, categorized by the TTS technique. The rightmost column displays the Mean-

Opinion-Score for naturalness on a 5-point scale.

The training data in the BC-2013 was a set of audio books read by a professional voice

actor. The actor was a female, native speaker of American English. The dataset was recorded

by Lessac Technologies (Wilhelms-Tricarico et al., 2013) and contained up to 300 hours of

audio book recordings. These were segmented only by chapters of audio books, and not by

utterances. Additionally, 19 hours of utterance level speech-to-text aligned data was also

released, to be optionally used by the participants of BC-2013. Specifically, Task 2013-EH1

was designed where participants were required to use the full 300-hour audio dataset.

10 teams took part in the Challenge, and submitted an identical set of 100 sentences. Of these

10 teams, 5 teams used parametric HMM or HMM-based techniques, 3 used Unit-Selection,

and 2 used the Hybrid method for synthesis. Section 3.2.2 gives a brief description of these 3

predominant TTS techniques. Each team submitted a set of 100 identical sentences. Of these,

11 sentences were evaluated by 426 listeners. The sample of 11 sentences is chosen to balance

the number of utterances with the number of TTS systems. A large number of listeners

ensured that a proportionate distribution can been maintained in terms of expert/novice users

of TTS, native speakers and non-native speakers in addition to the gender balance. Figure 3.1

provides the rankings based on naturalness.

Table 3.1 displays the MOS scores obtained by each system BC-2013, categorized according

to the TTS technique. Figure 3.1 presents the global rankings of the systems in BC-2013.

Figure 3.2 shows participants scoring audio samples in a traditional listening test. System A,

or the human voice was given a score of 4.8 on naturalness. Among the TTS voices, system M

scored the highest MOS of 3.9 on naturalness. As Figure 3.1 shows, system I, K and L received
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Figure 3.1: Systems of the original Blizzard Challenge 2013 ranked according to the MOS

scores obtained through subjective listener tests. 10 TTS systems were built using 3 different

TTS techniques. System M was ranked the highest with a MOS of 3.9, while P the lowest at

1.2. System A is the human voice.
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Figure 3.2: A visual interpretation of a subjective listening test. A participant in a computer-

based listening test uses headphones. Utterance level samples of synthesized and human

speech are played to the participants. MOS scores are subjectively assigned to samples

based on naturalness and other perceived attributes of synthesized speech like similarity,

pleasantness.

a high MOS score of at least 3 points. On the other hand, the HMM system P ranked the

lowest on perceived naturalness, scoring a MOS of 1.2. The next section describes the general

principles of each TTS technique, and introduces how each participating team developed their

own contribution to the BC-2013 Challenge.

3.2.2 TTS techniques within BC-2013
This section describes the principles of the three techniques that have been used in the BC-2013

challenge. System identifiers will not be used in the description to maintain anonymity.

3.2.2.1 Unit-selection synthesis

In the Blizzard 2013 Challenge, 3 teams submitted Unit-Selection systems. These were systems

B, L and N. System B was the Festival baseline, provided by the Challenge organizers. Two

teams, i.e, Innoetics/ILSP (Chalamandaris et al., 2013) and Lessaca (Wilhelms-Tricarico et al.,

2013) submitted individual unit-selection systems. For selecting the target units, Innoetics

combined information from the prosodic context and the part-of-speech tags to compute the

target cost of the selected unit. Concatenation cost was comprised of the pitch continuity and

spectral similarity. The resultant picth contour is smoothed using a polynomial interpolation

method. Finally, TD-OLA performs the waveform generation. Additionally, utterances with
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mismatched recording conditions, alignment errors and highly deviant prosodic patterns were

removed, “pruned" from the training dataset. The system submitted by Lessac technologies

(Wilhelms-Tricarico et al., 2013), calculate target cost by computing the distance between

acoustic variables (F0, intensity, duration) and linguistic/prosodic features encoded in a text

representation. This text-based representation, known as Lessemes, predicts an intonation

trajectory. Candidate units are selected based on the distance between their acoustic features

and those predicted within the trajectory.

3.2.2.2 Parametric or hidden-markov-model based synthesis

In the Blizzard 2013 Challenge, 4 teams submitted HMM systems. These were systems C,

H, I, P and F. System C was the HTS baseline, provided by the Challenge organizers. No

documentation is available for system F. System Meraka used a cognitive theoretic model to

render several emotions. The emotional state of a speaker is determined using the consequence,

action and aspect of the environment. Positive or negative sentiments were then assigned to

utterances through Semaffect. Semaffect could operate on a clause-level and appraise the

emotional state based on the computed valence. Utterances that do not follow a conventional

semantic structure are discarded, and only 30 horus of the training data is used. Quality of

phonemic alignments was maintained phasewise, first at the chapter level and then realigned

at the utterance and speaker level. The NITECH system used chapter adaptive training to

prune out mismatched alignments between audio and phone transcriptions. Chapters are split

into utterance level, which are then passed through an automatic speech recognizer HDecode

(HTK version 3.4.1). Both speaker independent and speaker dependent models are sequentially

used for recognition. The word error rate (WER) is calculated as the confidence measure, which

is used prune out sentences from the speaker independent model.The pruned text is used to

train the speaker dependent model. Moreover, a chapterwise adaptive training was used to

further normalzie file formats, conditions of recording and delivery styles. While chapterwise

alignment was the main contribution, it is also relevant to know that they used a multi-space

probability distribution for modelling the F0 and spectrum part independently. The STRAIGHT

vocoder was used for parameter generation. The Simple4All system uses freely available found

data which is made more suitable with speaker diarisation. Only language-independent

resources are used to minimize the dependence on expert annotation.

3.2.2.3 Hybrid synthesis

In the Blizzard 2013 Challenge, 2 systems submitted TTS systems generated using the hybrid

technique. These were systems M and K.

The SHRC system (Yu et al., 2013) achieves unit-selection by maximising the likelihood of
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TTS Technique System name Key design points

Hidden Markov Model

(HMM)

C HTS Baseline

H Higher order linguistic information for text analysis at front-end

I Chapter adaptive training for MLLR feature extraction

P Speaker diarization for segmenting speech into speaking styles

F Unavailable documentation

Unit-Selection

(UnS)

B Festival baseline

L Intergration of POS-tagger within the prosody model

N Use of existing commercial voice as suppliers

Hybrid K Separation of 300 hours of data into acoustic model and system building

M Quality data selection for alignment and audio

Natural

A The human voice

Table 3.2: 10 TTS systems contributed by the participating teams in the original Blizzard 2013

Challenge, categorized by the TTS technique. The rightmost column displays the key design

points in the development of each system.

the observation sequence, where the probability of each observation is predicted by context-

dependent HMMs. Once the optimal sequence of units is selected, waveforms of consecutive

units are concatenated to synthesize speech. Discontinuities at concatenation boundaries

are smoothed with the cross-fade technique. Next, the USTC system (Chen et al., 2013) also

follows a similar training and synthesis procedure. Key differences between systems are in

acoustic modelling and training data selection. While USTC system uses 6 separate HMMs to

model acoustic features, the SHRC uses only 2 (for spectral and excitation only). In terms of

training dataset differences, SHRC uses the entire training dataset after an initial cleaning,

while USTC trains their acoustic models on only 100-hours of provided data.

3.2.3 Phonemic and sub-phonemic segmentation

3.2.3.1 Phonemic segmentation

Phonemic alignments refer to the process of annotating the starting and ending point of

a phoneme in the continuous spoken utterance. Employing human effort for annotation

may achieve greater precision, but is quite unscalable for large corpora analysis. Therefore,

speech-to-text systems have been adapted to automatically detect phoneme boundaries from

continuous speech. This process is known as forced alingment.

We select the Montreal Forced Aligner (MFA) (McAuliffe et al., 2017). MFA uses a GMM/HMM

based triphone adaptation model, with contextual support for robust, speaker-specific align-

ments. Each system in the BC-2013 was force-aligned separately, using a speaker-adapted

triphone acoustic model pre-trained on the LibriSpeech American English corpus. To maintain

consistency across pronunciations, a variant-free lexicon was created following the bootstrap-
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ping techniques in (Tanga and Bennettb, 2019; Pandey et al., 2020). Finally, 20% of these

transcriptions were evaluated against gold-standard, manually annotated ones. We found

that the mean error in the human voice was 7.53 ms, in the top-rated system M it was 7.1

ms, and the poorest rated systems was 8.22 ms. This means that the errors introduced by the

MFA were minimal, and comparable across human and TTS voices. Therefore, in the interest

of scalability of our design, we chose to retain these boundaries without further manual

intervention.

Regions marked for vowels and consonants could now be extracted from the resultant phoneme

boundaries. While alignment at phonemic level is sufficient for vowels and most consonants,

obstruent consonants require a deeper, sub-phonemic level of alignment.

MFA

Variant-free lexicon Audio files and
TextGrids

Phoneme 
segmentation

Pre-trained 
acoustic 

model

Take FFT of 
obstruent

Identify ✍
amplitude 
threshold 

Place left 
boundary

Moving 
average 

filter

remove 
low-frequency 
voicing energy 

Threshold 
detected

stop

affricate

fricative

p_noise
p a

Sub-phonemic alignment

Figure 3.3: Stages in sub-phonemic alignment to separate the silence region from the noise

in stops and affricates. The left boundary, i.e, the start of the noise region, is marked when

the amplitude exceeds a threshold of 50-55 dB. Since noise continues until the onset of the

neighbouring segment (see final step), the right boundary coincides with the end point of

the phoneme, as given by the Montreal Forced Aligner (MFA). Fricatives do not require sub-

phonemic alignment.

3.2.3.2 Sub-phonemic segmentation

The most important acoustic correlates of obstruent consonants are features extracted from

the noisy region of the consonants. While noise continues in fricatives through the length of

the consonant, in affricates and stops, it follows a region of silence. Therefore, a sub-phonemic

demarcation of the noise region, separated from the silent region needed to be identified.
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While most studies on obstruent contrasts depend on careful, hand-corrected methods for

the analysis, it would have rendered our corpus-based approaches quite unscalable. Similarly,

toolkits such as AutoVOT (Sonderegger and Keshet, 2012) require a sample of hand-annotated

training data, and did not provide usable results for our corpus.

However, visually examining the spectrographic properties of stops and affricates, we found a

sharp increase in amplitude, representing the burst. To extract this location automatically, we

first converted the consonantal signal to its frequency domain. Then, all amplitude values

<1.5 kHz were removed, because energy from the low-frequency voicing-bar interfered with

the estimation of the energy of the burst. Finally, the remaining frequency-domain signal was

passed through a moving-average filter. Where energy of the signal exceeded a threshold of

50-55 dB, and the point of the highest amplitude in that interval was marked as the beginning

of the noise region. The threshold was decided upon after examining 20% of the sentences

manually.

Algorithm 1 Marking subphonemic boundaries

1: convert signal to frequency domain

2: remove < 1.5 kHz amplitudes

3: apply a moving-average filter

4: if energy > 50-55 dB then
5: start point← start of boundary at highest point

6: end point← phonemic boundary

7: end if

Thus, segmentation of each system in the BC-2013 was achieved at the phonemic and sub-

phonemic level, using the MFA and the rule-based technique respectively. Representative

features were extracted from each segment, as described below.

3.2.4 Feature extraction: vowels and consonants
The categorization of our segments is intentionally broad, confined to vowels and consonants

alone. Further among consonants, only obstruent consonants are chosen. Firstly, because

their segmentation is prone to fewer errors (DiCanio et al., 2013; Tryfou et al., 2014). And

secondly, because speaker-dependent variation in nasal segments is more useful for similarity.

The entire set of vowel segments, on the other hand, is used in the analysis.

3.2.4.1 Vowels: distribution and feature extraction

Ladefoged and Maddison define vowels by “the physiologic characteristic of having no

obstruction in the vocal tract" (Ladefoged and Maddieson, 1996). This means that vowels

are produced with an open oral tract configuration, where a constant airflow is maintained
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throughout the duration of the vowel. Differences in vowel production relies predominantly

on the shape of the vocal tract, and are also subject to contextual variation. Production

characteristics, like the position of the tongue i.e, its height and frontness-backness, and the

shape of the lips (round/unrounded) are reflected in the acoustic signature of the vowel. In

the BC-2013 corpus, we find instances of 12 different American English vowels /I, i, æ, e, E,

a, @, Ä, O, o, U, u/. The chart in Figure 3.4 describes their distribution within the BC-2013

corpus.
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Figure 3.4: Frequency distribution of vowels in the 100 sentences of BC-2013 corpus. The

height and frontness-backness of the vowel indicate the position of the tongue during vowel

production. The frequency distribution is identical across systems, because every team

submitted the same 100 sentences.

Vowels are characterised predominantly by their resonant properties. Vowel formants, or the

peaks in the acoustic spectrum corresponding to the resonances in the vocal tract, provide

important distinctive features for the perception of vowel quality. Formants can also signal a

variety of paralinguistic cues when projected graphically.

Our featureset closely follows the work of Chen et al. (Chen et al., 2010) report a set of vowel

space metrics for non-native speech. As in (Bradlow et al., 1996; Scarborough et al., 2007),

they find that increased vowel space area and F2-F1 measurements are close correlates of

intelligible speech. A brief description is provided below:-

1. First and second formants (F1, F2):
The first (F1) and second formant (F2) values are measured as the two lowest peaks

in the vowel spectrum. They were extracted (Boersma and Weenink, 2018) at 20%

(onset) and 50% (midpoint) of the vowels. The optimal ceiling value for each vowel was

determined by the Escudero optimization procedure (Escudero et al., 2009), where the
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appropriate ceiling frequency minimized the within-vowel variance in the dataset. The

window size was set to 25ms. Other parameters followed the default settings in Praat.

Cross-linguistically, formants carry identifying information about the vowel identity,

reflecting the tongue height and backness during vowel production. Additionally,

formant transitions are considered important predictors of consonantal place of articu-

lation (Sussman et al., 1991; McCarthy, 2019; Nearey and Shammass, 1987; Delattre et al.,

1954; Liberman et al., 1954). An analysis of these informative, fundamental features

is important in synthetic speech. Their malformation can cause perceptual errors and

listening difficulties.

2. Vowel space area:

The average values of F1 and F2 from the three peripheral vowels, i.e, /i, a, o/ constitute

a vowel triangle. The area of this triangle is called the vowel space area. It is defined by

the following equation:-

area =
√

s(s − Di ,a)(s − Da,o)(s − Do,i) (1)

where s = 0.5× (Di ,a + Da,o + Do,i) and the euclidean distance “D" is described by:-

Dx ,y =
√

(F1x − F1y )2 + (F2x − F2y )2
(2)

Areas of vowel spaces have shown speaker-specific differences in sex-based, age-based,

pathological and emotional (Scherer et al., 2015a,b) comparisons of human speech.

Specifically, reduction, or shrinkage, in vowel spaces has also been shown to accompany

speech impairment (Turner et al., 1995; Shamei et al., 2023; Liu et al., 2005). If F2xF1

vowel spaces between human and synthetic speech are comparable, it may indicate

proper production of vowel characteristics by the synthesizer.

3. Overall dispersion:

The global dispersion is calculated as the Euclidean distance of F1 and F2 values for

each instance of the vowel, from the global mean of F1,F2 values for all the vowels put

together. This is then averaged over the total size of the vowels in the corpus.

dispersion =
∑

Di ,V +
∑

Da,V +
∑

Do,V

N
(3)

Although only 3 vowels are displayed, dispersion was calculated for each of the 12

vowels in the corpus.

4. Within-category dispersion:

Here, we take the distance of each vowel from the vowel-specific mean of F1,F2 values,
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instead of the global mean of vowels.

dispersion =
1
3
×
∑

Di ,Vi

Ni
+
∑

Da,Va

Na
+
∑

Do,Vo

No
(4)

An itemwise statistic was also calculated by subtracting the observed formant value

for every instance of the vowel with the category mean. This was useful for the linear

regression analysis.

5. Range of F1 and F2:

Range is calcuated as the difference between global minimum from the global maximum

for F1 and F2, for every vowel.

RF1 = F1A − F1i (5)

RF2 = F2A − F2i (6)

6. Distance between F2-F1:

the difference between the highest instance of F2 (for i) and the lowest F1 (for a)

Area is a static measurement calculated over averaged formants, and aids visual inspection of

the F2 x F1 space. The features (dispersion, ranges) offer an instance wise statistic, which are

more suitable for statistical analysis of the corpora. Their extraction is described in points 3-6

above.

All 6 vowel space characteristics were extracted for each of the 10 submitted systems, as well

as the human voice in BC-2013 dataset. Visual and statistical comparison between is carried

out between the human voice, and each system.

3.2.4.2 Obstruents: distribution and feature extractions

Obstruent consonants are a major phonological class of consonants, accounting for 6 distinct

phoneme types for stops, [p, t, k, b, d, g], 9 for fricatives, [f, v, T, D, s, z, S, Z, h], and 2 for

affricates [Ù, Ã] in English. Obstruents cover a large portion of the consonantal region in

any language or dataset. Cross-linguistic evidence Lindblom and Maddieson (1988) suggests

that obstruents cover between two-thirds and three-quarters of the frequency in phoneme

inventories across different language groups. In the BC-2013 dataset, obstruents cover 63.9%

of the total consonantal population. Their statistical dominance in the dataset makes a

compelling case for their analysis. Table 3.3 presents a distribution of the obstruents in the

BC-2013 corpus.

Acoustic-phonetic properties of obstruents across durational (Cho and Ladefoged, 1999; Repp,

1984; Jongman, 1989) , amplitudinal, spectral (Chodroff and Wilson, 2014; Jongman et al., 2000;
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Bilabial Labiodental Dental Alveolar Postalveolar Velar Glottal

Stop p b t d k g
122 130 519 402 191 78

Affricate Ù Ã
35 32

Fricative f v T D s z S Z h
130 122 53 219 314 172 96 1 218

Table 3.3: Frequency distribution of obstruent consonants in the 100 sentences of BC-2013

corpus. The rows represent the manners of articulation, while the columns represent the places

of articulation. This distribution is identical across systems, because every team submitted

the same 100 sentences.

Stevens and Blumstein, 1978) and transitional cues (Sussman et al., 1991, 1995; McCarthy,

2019) are well-established in the literature. The feature extraction procedure closely follows

the methodologies presented in Jongman et al.’s seminal work on fricatives (Jongman et al.,

2000), and their recent, and more comprehensive extension into all manners of obstruents

(Redmon, 2020). The present discussion omits transitional cues and limits the analyses only

to the consonantal portion of obstruents. The RMS amplitude has also been calculated

in the frequency domain. Also, those cues which cannot be compared across all manners

of articulation (for example, closure duration is only relevant for stops and affricates) are

excluded.

To extract the spectral parameters, all instances of obstruents were first passed through a

high-pass filter, so that the analysis spectrum remains between 550 Hz and 10,000 Hz, to

separate source and filter characteristics (Shadle and Mair, 1996; Koenig et al., 2013). For

fricatives, a full Hamming window was placed at the center of the frication noise. For stops

and affricates, a half Hamming window was placed at the start of the burst, such that the

silence region was not included. Then, spectral properties were computed using an 512-point

FFT taken over these windowed signals. A brief description is provided below:-

• Consonant duration: The duration of the consonantal region, as returned by the MFA.

In the pre-vocalic position, this region starts with the beginning of the closure, and ends

with the onset of the vowel. Conversely in the post-vocalic position, it begins at the

offset of the vowel, and follows to the end of the consonant. The unit of measurement

was milliseconds (ms).

• Noise duration: For stops and affricates, as described above. For fricatives, since noise

persists through the length of consonant, the entire region was included. The unit of

measurement was milliseconds (ms).

• RMS amplitude: The root-mean-squared amplitude of the power spectrum.

• Peak amplitude: The value of the highest amplitude in the spectrum. The unit of
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measurement is dB.

• Peak frequency: This is the spectral frequency at which peak amplitude was identified.

Its value was measured in Hz.

• Dynamic amplitude: The difference between the peak amplitude, and the minimum

amplitude below 2 kHz. The unit of measurement was dB.

• Spectral tilt: The frequency domain of the spectrum was log-transformed, and then a

least-squares regression line was fitted through it. The slope of this line returned the

spectral tilt.

These features were extracted for obstruent consonants across all the systems, as well as

the human voice, independently. The purpose of such an extraction was to compare these

features across all the systems, and to identify those features, where the system (or groups of

systems, See Section Table 3.6) showed significant differences from the human voice.

3.2.5 Statistical models

3.2.5.1 Spearman’s correlation

The Spearman correlation measures the strength of ranked correlation between two variables.

It is described by the following equation:-

ρ = 1− 6
∑

d2
i

n(n2 − 1)
(7)

In this equation, ρ or r represents the Spearman’s rank correlation coefficient. di represents

the differences between the ranks of corresponding data points in the two variables, and n

is the number of data points. The value of ρ can range between -1 and +1. A high positive

value indicates perfectly correlated variables, where a value of 0 indicates no correlation. We

begin with the null hypothesis that there will be no correlation between the calculated feature

means and the collected MOS scores. The significance of the correlation test is calculated on

the basis of its t value and is given by the following formulation:-

t =
r√

1− r 2

√
n − 2 (8)

The corresponding statistical significance is determined against the t distribution table of n-2

degrees of freedom. If this value is less than the one given for the value at df = n-2, then the

null hypothesis is rejected.

For our experiments, the Spearmans’ rank correlation was used to establish the relationship

between the segmental features and the MOS scores on naturalness. As discussed in Sec-
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tion 3.2.1, MOS captures naturalness in a single, per-system value, averaged over several

participants and utterances. Therefore, feature values were also computed as a single statistic

per system.

For example, if MOS for every system in the BC-2013 is given by a vector MOSBC−2013 =

[MOSM , MOSK , . . . , MOSP], where the subscript represents the name of each system. Vowel

space area computed over the entire set of vowels can be described as: AreaBC−2013 = [AreaM ,

AreaK , . . . , AreaP]. If a high positive correlation was found, it indicated that increasing vowel

space area increases the perceived naturalness. This helped us connect the predictive capacity

of each acoustic-phonetic measurement with the perceived scores.

3.2.5.2 The linear mixed-effects regression model

A linear regression analysis models the relationship between independent and dependent

variable. In its simplest form, it is described by the following equation:-

y = β0 + β1x1 + ε (9)

Here, y is the dependent variable, and the x1 the independent variable. The task of modelling

is to estimate the coefficient β1, which describes the relationship between x and y . A positive

value indicates a direct relationship, while a negative an inverse one between the two variables.

When no influence of the independent variable is found i.e, β1 is 0, then the dependent variable

is given by the intercept β0. Finally, ε is the error term which accounts for the uncertainty in

the model, particularly when the model is not a perfect fit to naturally occurring, real-world

data.

The influence of multiple independent variables can also be examined on y , where the equation

can take the following form:-

y = β0 + β1x1 + β2x2 + ... + βnxn + ε (10)

These variables are also known as fixed effects. A model created with multiple fixed effects is

a linear mixed effects model. A random effect can also be added, in case observations of a

certain sub-group in a population are expected to exhibit similar characteristics.

In analyzing the features of both vowels and obstruent consonants, the feature value is always

the dependent variable, the human voice the intercept and the TTS technique (or individual

system) is the dependent variable. An example model equation is:

Vowel .Dispersion = Human + β1TTS.Technique + (1|Utterance) + ε (11)
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Through this model, we examine how each TTS technique influences the value of a segmental

feature, in comparison to the human voice. Notice that the feature value calculated for the

human voice was considered the reference point (the intercept) in each case. The deviation
from this voice was the comparative metric across which different behaviours of groups were

recorded.

Figure 3.5: Pipeline describing the various stages of forced alignment, feature extraction and

statistical modeling. The type of analysis depends on the nature of the phonemic segment.

3.2.6 Experimental layout: vowels and obstruent conso-
nants

Contrastive features in vowels and consonants provide a range of features for analysis. In each

experiment, we aim to compare each feature between the human voice and every synthetic

voice in the BC-2013. Since the focus of this chapter was to build the methodology, only

the voice of a single, female speaker has been used as the reference voice throughout. (See

Section 3.2.1 for speaker details) A method for its extension to multiple speakers has been

discussed in Chapter 6, Section 6.2. Segmentation, feature extraction and statistical compari-

son between the human and synthetic voices are common in both vowels and consonantal

analyses. However, their experimental designs differ in the following ways.

First, vowel features are analyzed on the basis of a correlational model. Average feature values

per system have been correlated with the MOS scores obtained per system. Features found

significant are explored in further detail, using the linear mixed-effects regression model. But
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for consonants, we did not find significant correlations between the MOS and individual

features of obstruent consonants. This means that, segmental features could not be globally

correlated with MOS. Therefore, we localized the analysis to a within-technique one. Systems

of the same TTS technique (e.g. HMM, Unit-Selection) were grouped and compared only for

quality differences. Since these results were found statistically important, they are presented

in detail. Figure 3.5 displays the shows the basic workflow of the experimental pipeline.

3.3 Results

Figure 3.6: Vowel formant plots for Systems A-P, arranged in rows by TTS-technique, and in

columns by quality. The first row has Natural, Hybrid systems M, and K. The second row has

3 unit-selection systems (L, N, B) And the last two rows have HMM systems I, C, H, F and

P. HMM systems can be clearly seen to cluster instances of vowels around respective vowel

means.
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3.3.1 Analysis of vowels

3.3.1.1 Visual analysis of the vowel space area

Figure 3.6 displays the F2xF1 vowel space area plots for the systems in the BC-2013 dataset.

These measurements are displayed for 5 vowels /E, O, i, a, u/, which had maximum separability

in the vowel space.

The human voice exhibits a wide area, where instances of each vowel are dispersed around

the mean. Hybrid and unit-selection systems also replicate this pattern well. This indicates

that vowel units, both in the hybrid and unit-selection systems retain variability in vowel

instances that appears similar to human speech. By contrast, HMM synthesis exhibits a

more contracted vowel space. Vowel instances in systems I-P, regardless of quality can be

seen contracted within their categories, reducing the vowel space area. Specifically, system P

appears to centralize all of its vowels.

Figure 3.6 also shows that low back vowel a exhibits appears to have merged with the central

back vowel O. In all the other systems, however, these vowel categories are more distinct. These

observations are visually informative, and motivate the need for a quantitative analysis.

3.3.1.2 Correlation model: which vowel features correlate with MOS?

Table 3.4 displays the correlation with each of the features for a p-value < 0.05. A positive

correlation means that as the value of the concerned characteristic increases, so does the

MOS score on naturalness.

Within-category dispersion in vowels was found to have a positive and modestly significant

correlation with MOS on naturalness [r(8) 0.64, p-val ≤ 0.05]. Dispersion values in humans

voice is recorded at about 742.59 Hz. In Hybrid and Unit-selection systems, the dispersion

values are comparable to the human voice, within a 650-700 Hz range. But in HMM systems,

this value shrinks to 500-550 Hz. Therefore, we see that the correlation is also motivated by

the TTS technique. Rankings between individual systems of the same technique also exhibit

this trend. The higher ranked hybrid system M shows a wider vowel-specific space, than

lower ranked K. Similar comparisons can be made between unit-selection systems, L and B.

However, naturalness ratings in HMM systems do not correlate with within-category vowel

dispersion. Regardless of ranking, HMM systems tightly cluster the vowel instances around

their category means.

Next, F1-range was also found to correlate with the perceived MOS, with statistically signifi-

cant effects [r(8) 0.73, p-val < 0.05]. This vowel-independent F1 range for the human voice is

about a 1087.18 Hz. The highest ranked system M comes closest to this value, at 1066.05 Hz.

This value does not exceed 880 Hz in almost all other systems BC-2013 systems, regardless of
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Feature Correlation with MOS
Area 0.05

Dispersion 0.24

W-C Dispersion 0.64
F1 range 0.73
F2 range 0.55

F2-F1 (aa) -0.07

F2-F1 (iy) 0.07

Table 3.4: Spearman’s correlation of each feature with MOS ratings for similarity and natu-

ralness. Values in bold denote significant correlations determined using the t-distribution at

df=n-2. Dataset comprised of a total 2605 vowels (individual descriptions in Figure 3.4) from

100 test sentences of Blizzard Challenge 2013.

the TTS technique. This shows that a broad range of F1 values can be perceivable as greater

naturalness.

3.3.1.3 Statistical model: which TTS techniques affect features?

As can be seen in the above description, the within-category dispersion was most predictive of

naturalness. Therefore, we analyzed this feature using a linear regression model (Kuznetsova

et al., 2017). The system type (HMM, Hybrid and Unit-Selection) as well as the vowel type

(front or back) are considered as fixed effects. The effect of the utterance is coded as a random

effect shown as (1|Utterance). This is because the lexical content of individual utterance

(e.g, narration style, position in the audiobook chapter) is assumed to not influence the TTS

generation techniques.

Dispersioni ∼ TTS.technique + Vowel .Type + (1|Utterance) (12)

The results are presented in Table 3.5.

The results demonstrate that the human speech produces more dispersed F1 values than

any type of synthetic speech. In addition, the dispersion of F1 values for HMM synthesis

is significantly less than the other types of synthesis. HMM synthesis produces even less

dispersed F2 values. These results support the trends observed in the visual inspection and the

correlational analysis. We see that HMM synthesis produces more distinct vowels than any

type of synthesis, but it fails to generate more extreme or more nuanced vowel instances which

may be fundamental to naturalness. This is a consequence of the well-known over-smoothing

effect, due to the statistical nature of parametrical synthesis (Zen et al., 2009), which leads to

a reduction of the variability of the generated speech.

Additionally, we observed a significant effect of vowel-type on dispersion, where front vowels

were seen to lower dispersion (βfront = -5.933, 95% CI [-9.71, -2.16], p < 0.001). According to
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System β 95% CI p <

F1

Unit Sel -7.38 [-11.44, -3.31] 0.01

Hybrid -11.58 [-15.90, -7.26] 0.001

HMM -29.12 [-33.06, -25.18] 0.001

F2

Unit Sel -7.49 [-13.80, -1.17] 0.01

Hybrid -9.80 [-16.50, -3.10] 0.05

HMM -40.18 [-46.29, -34.06] 0.001

Table 3.5: F1 and F2 dispersion analysis

the degree of articulatory constraints (Recasens et al., 1997), front vowels, /i/ is quite resilient

to coarticulatory influence from surrounding contexts. The lack of dispersion in the front

vowels, could be contributed to the frequent presence of this vowel. However, to investigate an

interaction between the system-type and vowel-type, based on their indivdual coarticulatory

resistance, would be quite interesting as future work.

3.3.1.4 Vowels: summary of results

In this experiment, we compared representative features of vowels between the human

voice and the synthetic voices of the BC-2013. We found that the correlation between

within-category vowel dispersion patterns and the Blizzard Challenge 2013 MOS scores for

naturalness were statistically significant. An important observation is that HMM systems

cluster the vowel space more densely around their within-vowel means. These results are

supported by the visual, correlational and statistical analysis.

3.3.2 Analysis of obstruent consonants
As mentioned in the previous section, the BC-2013 provides a variety of synthetic speech

systems, which differ both in TTS technique and quality. To achieve this comparative analysis,

a grouping strategy between systems was created. The explanation for each of the schemes is

described below, and a concise description is displayed in Table 3.6.

Grouping strategy:-

Systems were first divided into 4 groups: R1, R2, R3 and R4. R denotes "rank", which was

decided simply by the obtained naturalness MOS for a given system. Systems that received

MOS in the same interval, i.e, shared the system quality attribute, were assigned the same

rank. Then, these groups were further subdivided, to explore technique-specific insights.

So, all systems of the same rank and TTS technique were grouped together. Therefore, the

resultant groups were: Hybrid-R1, HMM-R2, UnS-R2, HMM-R3, UnS-R3 and HMM-R4,

where UnS means Unit Selection. This strategy allowed us to compare high-rated systems
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Rank Group System Description

R1 Hybrid-R1

M

Hybrid systems with MOS 3-4

K

R2

HMM-R2

I

HMM systems with MOS 2-3

C

UnS-R2

L

UnS systems with MOS 2-3

N

R3

HMM-R3

H

HMM systems with MOS 1-2

F

UnS-R3 B UnS systems with MOS 1-2

R4 HMM-R4 P HMM systems with MOS 1

Table 3.6: Grouping strategy. Rank(R) of the system is decided by MOS for naturalness. The

groups correspond to the intersection of the rank and the TTS technique (Hybrid, HMM, Unit

Selection (UnS).

with low-rated systems from the same technique. HMM-R4 received poor ratings, and has

not been discussed.

3.3.2.1 How does quality differ within the same TTS technique?

The purpose of this experiment is to explore quality differences between groups of the same

TTS technique. The groups under comparison are HMM-R2 vs HMM-R3, and UnS-R2 vs

UnS-R3. Features which showed the most statistically significant differences between groups

have been identified. Comparative influences of groups on such features is presented in the

subsequent sections. Boxplots Figure 3.7 and Figure 3.8 that describe the group differences

have been associated with each experiment respectively.

HMM-R2 versus HMM-R3

The most informative features for observing quality differences between HMM-R2 and HMM-

R3 were RMS amplitude, peak amplitude and spectral tilt.

On the basis of RMS Amplitude, we see differences between HMM-R2 and HMM-R3 across

each manner of articulation. In affricates and fricatives, the HMM-R3 systems were observed

to lower the RMS Amplitude. HMM-R2, on the other hand, did not differ significantly from the

human voice in any manner of articulation. RMS Amplitude dropped in affricates by 1.8 dB,

and in fricatives by 1.5 dB, with strongly significant effects (p-val < 0.001). In stops, HMM-R3

systems were found to increase the amplitude by 0.51 dB, with a moderately significant effect

(p-val < 0.05). Therefore, through these results we can conclude that poor-quality HMM-R3

systems show lower amplitude in affricates and fricatives, and marginally higher amplitude

compared to the human voice. In each case, HMM-R2 was not found significantly different

from the human voice.
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Figure 3.7: Featural comparison between system-groups HMM-R2 vs HMM-R3 arranged

across manners of articulation. Median and mean values are represented with middle bar and

dot, respectively.

The second feature under consideration is the peak amplitude. Similarly as above, HMM-R3

systems are found to lower the peak amplitude in the context of affricates and in fricatives.

The peak amplitude dropped in affricates by 2.4 dB, and in fricatives by 1.4 dB, with significant

effects (p-val < 0.01). HMM-R2 systems, on the other hand, do not differ from the human

voice in affricates. On the contrary, they are seen to increase the amplitude for fricatives. The

behaviour of the two groups was not different in stops. Therefore, we can learn that fricatives

in HMM-R2 systems exhibit louder maxima of amplitude, and HMM-R3 have softer peak

amplitudes in affricates and fricatives alike.

The third feature considered important is the spectral tilt. In all the manners of articulation,
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low-quality HMM-R3 systems increase the spectral tilt with strongly significant effects. The

magnitude of this increase is 1.93 dB in affricates, 4.14 dB in fricatives, and 3.14 dB in stops

(p-val < 0.001). In affricates and fricatives, HMM-R2 systems do not differ significantly from

the human voice. But in stops, HMM-R2 also increase the spectral tilt. However, groups can

still be separable within this context, because the magnitude of this increase is much lesser

(0.95 dB) than in HMM-R3. Therefore, we observe that fricatives and affricates have steeper

slopes in low-quality HMM systems across all manners of articulation. But in the context of

stops, HMM-R2 also contribute to this effect.

UnS-R2 versus UnS-R3

The most important features for comparison between UnS groups are consonant duration,

noise duration and spectral tilt.

Both UnS-R2 and UnS-R3 systems shorten the consonant duration in the context of fricatives

and stops, while affricates do not show differences in groups for consonant duration. However,

the shortening in high-quality UnS-R2 systems is seen with a stronger effect (p-val < 0.001),

compared to UnS-R3 systems. In UnS-R2, fricatives are shortened by 7.5 ms and stops by

5.8 ms. In UnS-R3, on the other hand, fricatives and stops are shortened by 4.4 ms and 2.6

ms, respectively (p-val < 0.01). Therefore, we observe here that high-quality UnS-R2 systems

shorten fricatives and stops more than low-quality UnS-R3.

The second feature considered important for UnS quality comparison is noise duration.

Similar to observations for noise duration, a decrease of noise duration is found in both

UnS-R2 and UnS-R3 groups for all manners of articulation. However, there are two differences.

Firstly, stops show comparable decrease of noise duration between UnS-R2 and UnS-R3, and

therefore are not deemed a reliable context for group differentiation. Secondly, although both

fricatives and affricates have different influences of groups, they do so in different directions.

UnS-R2 systems reduce the duration of fricatives with stronger significance, but affricates are

shortened in UnS-R3 more strongly. Fricatives in UnS-R2 are shortened by 7.5 ms (p-val <

0.001), compared to 4.4 ms in UnS-R3 (p-val < 0.01). On the other hand, affricates are shorter

by 7.4 ms in UnS-R2 (p-val < 0.05), and 9.8 ms (p-val < 0.01) in UnS-R3. So here, we can

learn that noise duration is reduced in both UnS-R2 and UnS-R3 groups, across all manners of

articulation. group differences can be seen within fricatives and affricates. But the direction

of influence is not consistent across manners.

The third feature under consideration is the spectral tilt. Here we see, that UnS systems

on the whole lower the spectral tilt, instead of the increasing effect found in HMM systems.

While the effect of lowering is strong and significant in all manners of articulation alike (p-val

< 0.001), affricates and fricatives show greater separation between UnS-R2 and UnS-R3. In

affricates, UnS-R2 decrease the tilt by 3.3 dB, and UnS-R3 by 7.3 dB. Similarly for fricatives,
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Figure 3.8: Featural comparison between system-groups UnS-R2 vs UnS-R3 arranged across

manners of articulation. Median and mean values are represented with middle bar and dot,

respectively.

UnS-R2 decrease the tilt by 5.43 dB, and UnS-R3 by 8.7 dB. Stops, on the other hand, show

comparable lowering in both UnS-R2 and UnS-R3 groups. Therefore, this result indicates that

low-quality UnS-R3 systems flatten the spectral tilt more than UnS-R2 system, especially for

fricatives and affricates.
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3.3.2.2 How do individual systems differ within the same quality and
technique?

The purpose of this experiment is to explore individual differences between systems of the

same group. Comparison will be made under Hybrid-R1 between M and K, under HMM-R2

between I and C, and under UnS-R2 between L and N. Boxplots Figure 3.9 and Figure 3.10 that

describe the system differences have been associated with each experiment respectively.

System M versus System K (Hybrid-R1)

It is important to note that although M and K are in the same group, with obtained MOS of

3.9 and 3.4 respectively, that difference was statistically significant in the BC-2013 evaluations.

The three most important features identified for systemic differences are RMS amplitude,

peak frequency and spectral tilt.

Regarding RMS Amplitude, in the context of affricates, M was found to lower the RMS

Amplitude by 1.7 dB (p-val < 0.001), but K was not found to be significantly different from the

human voice. However, this trend completely reversed in the context of fricatives and stops.

K was observed to influence a strongly significant increase the amplitude of 1.72 dB (p-val

< 0.001). But in both of these contexts, M was not found different from the human voice.

Therefore, affricates are softer than the human voice in M, and fricatives and stops are louder

in K. So we can see that, although each manner of articulation shows systemic differences

between Hybrid systems, affricates oppose the trend exhibited by fricatives and stops.

The second feature considered reliable for systemic differences within Hybrid-R1 is peak
frequency. K shows a statistically significant raising of peak frequency in all affricates,

fricatives and stops context. In affricates, the increase is by 946.23 Hz, while in fricatives, we

see an increase of 337.46 Hz. Finally in stops, although the increase is smallest, of 201.8 Hz

compared to other places, the effect is still strongly significant. In no context does M differ

from the human voice. Therefore, K exhibits maximum amplitude at higher frequencies, while

M remains closer to natural.

Finally, K shows a statistically significant raising of spectral tilt in each context. The increase

was of 2.0 dB in affricates, 5.4 dB in fricatives, and 3.5 dB in stops. M does not differ significantly

from the human voice in fricatives and stops. However, greater separation in systems can

be seen in affricates, where M shows a moderately significant lowering of the spectral tilt

(p-val < 0.05). Therefore, K shows a steeper slope in the spectrum, while M does not differ

significantly from the human voice.

System I versus System C (HMM-R2)

Differences between I and C were not found in any feature, across any manner of articulation.
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Figure 3.9: Featural comparison between individual systems (System-M vs System-K) of

Hybrid-R1 arranged across manners of articulation. Median and mean values are represented

with middle bar and dot, respectively.

This indicates that systems I and C have consistent patterns of influence on all the features

across manners of articulation.

System L versus System N (UnS-R2)

The first feature to compare differences between L and N is RMS Amplitude. Differences

on the basis of RMS Amplitude can be seen in all three classes of Manner - i.e., in affricates,

fricatives and stops. In affricates and fricatives, N shows a strongly significant lowering

of RMS Amplitude. The magnitude of this lowering is 3.0 dB and 2.9 dB in affricates and

fricatives respectively (p-val < 0.001). L, on the other hand, does not differ significantly from
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Figure 3.10: Featural comparison between individual systems (System-L vs System-N) of

UnS-R2 arranged across manners of articulation. Median and mean values are represented

with middle bar and dot, respectively.

the human voice. Among stops, the difference is less distinct, because N brings about only a

modest lowering of 0.56 dB (p-val < 0.05).

The second feature under consideration is peak frequency. Systemic differences can be

seen predominantly in affricates, and modestly in Stops. In affricates, L shows a moderately

significant lowering of 211.86 Hz (p-val < 0.05), while N does not differ much from the human

voice. Among stops, although the systems differ individually, the pattern of affricates is not

replicated. Here, both L and N show a lowering of the frequency. The effect although, is

stronger in N, with a lowering of 173.14 Hz (p-val < 0.001), compared to L which lowers by

142.76 Hz (p-val < 0.01).
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Finally, differences based on spectral tilt can be seen in all three classes of Manner. In

affricates and stops, N shows a strongly significant lowering of 5.55 dB (p-val < 0.001) and

3.15 db (p-val < 0.001) respectively, and L does not differ from the human voice. In fricatives,

the difference between systems is less clearer, because both N and L show lowering. However,

a greater magnitude of lowering can be observed in N, of 8.7 dB with a strongly significant

effect.

Feature Manner Differences in R2 vs R3 Individual differences
HMM Unit-S Hybrid HMM UnS

RMS Amplitude
Affricate R3 lower by -1.8 dB M lowers by -1.7 dB N lowers by -3.0 dB

Fricative R3 lower by -1.5 dB K raises by +1.7 dB N lowers by -2.9 dB

Stop R3 raise by +0.51 dB K raises by +1.8 dB N lowers by -0.56 dB

Peak Amplitude
Affricate R3 lower by -2.4 dB

Fricative

R2 raise by +1.5 dB

R3 lower by -1.4 dB

Stop

Peak Frequency
Affricate K raises by 946.2 Hz L lowers by 211.9 Hz

Fricative K raises by 337.5 Hz

Stop K raises by 201.8 Hz

L lowers by 142.7 Hz

N lowers by 173.1 Hz

Consonant Dur
Affricate

Fricative

R2 lower by -7.5 ms

R3 lower by -4.4 ms

Stop

R2 lower by -5.8 ms

R3 lower by -2.6 ms

Noise Dur
Affricate

R2 lower by -7.4 ms

R3 lower by -9.8 ms

Fricative

R2 lower by -7.5 ms

R3 lower by -4.4 ms

Stop

Spectral Tilt
Affricate R3 raise by +1.9 dB

R2 lower by -3.3 dB

R3 lower by -7.3 dB
K raises by +2.0 dB N lowers by -5.5 dB

Fricative R3 raise by +4.1 dB

R2 lower by -5.4 dB

R3 lower by -8.7 dB
K raises by +5.4 dB

L lowers by -2.1 dB

N lowers by -8.7 dB

Stop

R2 raise by +0.95 dB

R3 raise by +3.1 dB

R2 lower by -1.9 dB

R3 lower by -2.33 dB
K raises by +3.5 dB N lowers by -3.15 dB

Table 3.7: Feature-wise summarization of results of the linear regression model both for

differences between system groups, and individual differences between systems. Each cell

lists significant differences from the human voice.

Obstruent consonants: summary of results

In the obstruent consonant analysis, 10 systems from BC-2013 were grouped on the basis

of their quality and TTS technique. A linear regression analysis was conducted to establish

a relationship between system groups and acoustic measurements, with the human voice

as reference. Features like spectral tilt, RMS amplitude were more clearly indicative of

quality differences between HMM systems. Particularly, a higher spectral tilt was found

associated with poor quality systems. Durational cues were more important for unit-selection

groups.
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3.4 Discussion and conclusion
In this chapter, we present the Dive into Divisions approach, which is an automatic and

lightweight tool for evaluating TTS synthesizers. Although vowel and fricative analysis is

completely automatic, adding sub-phonemic boundaries for stops and affricates has required

a minimal manual supervision. Through the experiments conducted in this chapter, we

provide a comparative analysis of TTS systems from the BC-2013, using contrastive features

extracted from vowels and obstruent consonants. We conducted a vowel-space analysis for

the steady-state portion of the vowel, and found that Hybrid and Unit-Selection systems

resemble the vowel-space of natural speech more. HMM systems cluster the instances of

the vowels tighter, closer to their means. A potential explanation is that HMM synthesizers

generate parameters of speech using the maximum-likelihood estimation (Tokuda et al., 2000).

This is an averaging step, which loses spectral detail which are irrecoverable during synthesis.

In fact, techniques like re-introducing variance in the parameters has been suggested to

maintain naturalness (King, 2010). In human speech, tighter clusters has been observed in

clear, hyper-enunciated speech (Ménard et al., 2016; Chen et al., 2010). HMM synthesizers

have been repeatedly shown to maximize intelligibility (King, 2014). These diagnostic patterns

are not visible through a traditional MOS based analysis. However, studying their features

provides information on their TTS technique.

Several different phenomena of quality, family and individual system differences can be

observed on the basis of spectral tilt. In general, better-rated systems were found to be

associated with spectral tilts similar to the natural voice. This is consistent with previous

findings on spectral tilt contributing to improved intelligibility (Lu and Cooke, 2009). In HMM-

R3 systems, spectral tilt increases from the human voice. However, in low-quality UnS-R3

systems, it is seen to decrease more steeply. Therefore, spectral tilt exhibits quality-specific

differences, but the influence is dependent on the TTS technique. In terms of perceived speech

quality, this indicates a preference for preserving the spectral tilt, and that deviation in either

direction compromises quality. Although there is little agreement on the relationship between

naturalness and intelligibility, we find that spectral tilt appears to differentiate system-groups

based on naturalness as well.

Another important result can be seen is that UnS systems show differences based on quality

in durational cues, while HMM systems on the other hand, impact spectral features more. As

discussed before, statistical averaging practised in HMM systems, compromises the necessary

variation required to retain spectral features. From these results, we can also speculate that

the cost function of the unit selection systems favours shorter units over longer ones.

Avoiding the use of expensive behavioural equipment, we have been able to connect the

domains of phonetics and speech technology. We have shown that the use of phonetic
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measurements is useful for a variety of comparison tasks, and the results are meaningful

from a speech production and perception standpoint. A complete description of segmental

properties of parallel synthetic speech can give speech synthesis researchers immediate

feedback about the expectation of naturalness in their systems. These studies can precede

subjective evaluation tests, by informing speech technologists about signal distortion at a

segment and co-articulation level. From an acoustic-phonetic point of view, these studies

allow us to understand phonemic properties that remain intact in the signal, despite a loss in

naturalness. Finally, a genuine test of this approach will be in analyzing modern, neural TTS

systems, whose quality far outperforms the systems discussed here. In the next chapter, we

extend our analysis to an extended version of the BC-2013 dataset. This includes neural voices

built using systems such as Tacotron (Shen et al., 2018) and FastPitch (?). It is important to

note that the same speaker has been used as reference throughout, and has also provided

the training data for building the neural voices. While extension of this approach with

multiple speakers is proposed (See Chapter 6, Section 6.2.1 and 6.2.2), the scope in this thesis

is maintained to a single speaker.
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4 | The obstruent consonants of WaveNet
and WaveGAN synthesizers

4.1 Introduction
In the previous chapter, we compared good-quality systems from the BC-2013 with poor-

quality ones, on the basis of contrastive features of vowels and obstruent consonants. We

showed that a selection of vocalic features correlate globally with the obtained MOS. Features

of obstruent consonants were shown to be more informative of quality within the same

technique. Quality differences between individual systems were also visible through an

analysis of obstruent consonants. Therefore, the primary goal of this chapter is to use

contrastive features of obstruent consonants to analyze neural TTS synthesizers.

Obstruents in this chapter are further categorized on their voicing status and their positional

context, in addition to the manner distinction in the previous chapter. Transitional properties

such as formant movements, relative vowel amplitude are also extracted from the vowels

that appear in their neighbourhood, i.e precede or follow them. The main theme of explo-

ration is: do features of obstruent consonants and their neighbouring vowels differ between

the human voice and neural TTS voices? We find that features of voiceless fricatives and

stops show more distortion than those of vocalic and voiced regions. Additionally, we also

discuss which features show improvement compared to older, non-neural TTS synthesizers.

The dataset comes from the recently extended version of the original BC-2013 corpus (Le

Maguer et al., 2022). This version contains 4 new neural TTS synthesizers: FastPitch WaveNet,

Tacotron WaveNet, FastPitch WaveGAN and Tacotron WaveGAN. Their details are presented

in Section 4.3.1.

The findings of this chapter have also contributed to a parallel exploration in phonetics and

speech science. The Dive into Division approach simply extracts contrastive features for

comparing TTS voices with the human voice. But are they serving their original purpose -

of communicating contrast - when produced by TTS voices? In other words, is phonemic

contrast in TTS voices (e.g, /p/-/b/) maintained through the same features in human and
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machine voices? A complete methodological description is beyond the scope of this chapter,

but the relevant findings have been described in Section 4.5.

4.2 Obstruents and their importance
We have already come across a brief introduction to obstruent consonants in Section 3.3.2. This

section provides a deeper discussion to English obstruents. We will also discuss why obstruents

should be given special attention in TTS, because of their role in speech perception.

4.2.1 Descriptive parameters of consonants
Phonemic differences between consonants are categorized on the basis of 3 parameters: their

voicing status, place of articulation and manner of articulation. The voicing status refers to the

periodic vibration of the vocal folds during their production. When vocal folds vibrate during

the production of a phoneme, the resultant sound is voiced and a repetitive or periodic pattern

can be seen in its acoustic signature. Conversely, when the vocal folds are held apart, the

phoneme reflects aperiodic, noise-like characteristics in its acoustics. Voicing is contrastive in

English. This means that when all the other parameters are held constant, being voiced or

voiceless can change the meaning of the word. For example, in the words “seal" and “zeal",

the only difference is the vibration of the vocal folds during the production of the /z/. Next,

the place of articulation refers to the location of the tongue as it makes a constriction in the

oral cavity. Constrictions can be anterior, i.e. made with tongue tip and blade, or posterior,

i.e. made with the dorsum (or back) of the tongue rising towards the velum. There are 7

places of articulation in English that identify different consonants. For example, the difference

between “sell" and “shell" is a place contrast. Finally, manner of articulation refers to the

degree of constriction made as air is passing through the vocal tract. In other words, manners

decide how the air escapes the oral tract. The broadest distinction is between obstruents
and sonorants. Obstruent consonants, as name suggests, obstruct the flow of air. Sonorant

consonants on the other hand, allow a continuous flow of air through parallel resonating

chambers such as the nasal cavity or the side chambers on the side of the tongue. Sonorant

consonants are always voiced, and can be further categorized as nasals and approximants. It

is important to note that voicing distinctions can be made only within obstruent consonants,

at least in English. In terms of manner, further categorizations can be made in obstruents.

These will be described next, and visualized in Figure 4.1.
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4.2.2 Manners of articulation in obstruent consonants
• Stops:- Stop consonants are characterized by a complete closure, followed by a burst

or “plosion" during their release. Bilabial stops are produced by forming a complete

closure at the lips. Alveolars /t/ and /d/ are coronals and are produced apically, i.e. using

the tongue tip. Finally, velars /k/ and /g are produced by raising the tongue dorsum is

towards the velum. In English, voiceless stops also exhibit allophonic variation, such

that the burst is followed by aspiration in the word-initial position. Therefore, in the

word-initial position, voicing distinctions can be made using the length of this aspiration.

• Fricatives:- Fricatives are characterised by forcing the airstream through a narrow

constriction in the vocal tract. This causes the air to escape with a high volume velocity,

causing audible “frication". English fricatives broadly appear in the labiodental /f, v/,

dental /T, D/, alveolar /s, z/ and postalveolar /S, Z/ places of articulation. The alveolar and

postalveolar fricatives also form a special class called “sibilants". In these consonants,

the airstream hits the upper teeth ridge causing a hiss like sound.

• Affricates:- Affricates combine the manners of stops and fricatives such that although

the air is occluded completely, its release is conducted through frication. These appear

predominantly in the postalveolar place of articulation /Ù, Ã/.

4.2.3 Perceptual relevance of obstruent consonants
Obstruent consonants have been documented (Lindblom and Maddieson, 1988) to account

for two-thirds to three-quarters of the consonantal population in cross-linguistic phoneme

inventories. In the BC-2013 dataset, obstruents cover 64.01% of the consonantal population.

This suggests that a large mass of acoustic cues in the utterance are comprised of obstruent

consonants, which can be used by listeners while making perceptual judgments about the

perceived attributes of synthetic speech.

Categorized along three manners and two voicing conditions, English obstruents also offer a

set of distinctive phonetic attributes, which cannot be studied in other phonological classes.

For example, effects of voicelessness may only be located within obstruents. Additionally,

vowels in their neighbourhood are also influenced by their properties, and carry cues to their

identification such as formant transitions (Delattre et al., 1954), F0 perturbations (Kirby and

Ladd, 2016), and amplitude and duration changes (Lehiste and Peterson, 1959b; Gracco, 1994)

as a function of manner and voicing.

Affricates and fricatives are known for their articulatory complexity, and their misarticulation

is apparent in dysarthric speech (Kim et al., 2010) compromising intelligibility. From a speech

perception perspective, obstruents are perceived less reliably in noise (Li and Loizou, 2010),
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Figure 4.1: Production characteristics of obstruent consonants, categorized across the three

manners of articulation (affricate, fricative and stop) found in English. Manners of articulation

describe the mechanism through which air escapes the oral cavity. The red mark shows the

type of alveolar tongue constriction in each manner: in stops and affricates we can see a

complete closure that blocks the air, while in fricatives a narrow opening is sustained through

production.
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and enhancing their target cues has resulted in improved recognition of speech (Li and Allen,

2011). These studies highlight the perceptual contribution of obstruents, and the critical role

their precise production plays in the perception of speech.

A targeted discussion on obstruents within TTS has been absent in the literature so far.

Subjective evaluations attest that WaveNet voices sound much more natural than non-neural

synthesizers (Van den Oord et al., 2016). Hence in this chapter, we hypothesize that production

characteristics of obstruents in neural TTS must come closer to human speech. In other

words, improvements in neural TTS may be connected to improvements in the segmental

characteristics of obstruents.

4.3 Experimental setup

4.3.1 Description of the dataset
The original BC-2013 is described in Section 3.2.1, and was used for analysis in the previous

chapter. The BC-2013 is an excellent resource for comparing TTS techniques on a parallel,

single-speaker dataset. Additionally, the accompanying 300-hour training dataset also makes

it suitable for developing modern, neural synthesizers. Therefore, it was recently extended (Le

Maguer et al., 2022) to include 4 new voices: Fastpitch WaveGAN (Q), Tacotron WaveGAN (R),

Fastpitch WaveNet (Y) and Tacotron WaveNet (Z). The hybrid system K, the HMM system C

and the unit-selection system N were chosen as representative non-neural systems from the

original challenge. A MOS based subjective evaluation showed that the neural voices scored

higher on subjective naturalness compared to each of the older TTS techniques. A pairwise

Wilcoxon signed rank test was used to determine the statistical significance of these MOS

scores. Data was collected over 59 participants (28 female, 31 male). The new MOS scores on

naturalness are summarized in the table below:-

System Human Z Y R Q K N C

MOS 4.37 3.91 3.31 3.42 3.12 2.56 1.92 1.78

Table 4.1: Mean Opinion scores on subjective naturalness as reported by (Le Maguer et al.,

2022). System K, N and C are hybrid, HMM and Unit-selection systems from the original

BC-2013, re-evaluated in comparison with the neural systems Y, Z (WaveNet) and Q, R

(WaveGAN).

Autoregressive systems are those systems that generate the next sample based on input

from the previous samples in a sequence. The autoregressive acoustic model in the extended

BC-2013 is Tacotron, and the vocoder is WaveNet. Non-autoregressive systems generate

samples of a sequence in parallel. The non-autoregressive acoustic model in the extended
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Human Z R Y Q K N C

Human NA

Z x NA

R x x NA

Y x x NA

Q x x NA

K x x x x x NA

N x x x x x x NA

C x x x x x x NA

Table 4.2: Significance results of a pairwise Wilcoxon signed rank test with Bonferroni cor-

rection for our listening test. Each cell marked with x indicates that the two systems are

considered different with a p-value < 0.01.

BC-2013 is FastPitch, and the vocoder is WaveGAN. This makes the extended BC-2013

extremely advantageous, because it provides a 4-way cross-combination of autoregressive

and non-autoregressive TTS generation techniques.

4.3.1.1 The autoregressive vocoder - WaveNet

WaveNet (Van den Oord et al., 2016) is an autoregressive generative neural architecture which

uses dilated causal convolutions for generating high-quality audio. The model is composed of

stacked convolution layers with no pooling steps, and a softmax layer to predict the output.

Each sample is predicted as a categorical distribution based on the conditional probabilities of

all the previous samples in the waveform. The use of causal convolutions ensures that the pre-

dicted sample depends only on the previous samples. To reduce computational cost and time

complexity, dilated convolutions are used. This means that units of the input are incrementally

skipped while stacking the convolutional layers. Categorical distribution, particularly softmax,

is recommended for modelling conditional probabilities, despite the continuous nature of in-

put in speech. This is because greater flexibility was observed, compared to mixture networks

where data had to fit certain shape assumptions. For activation functions, gated units were

preferred to linear ones based on better performance. A useful parameter, the conditional h is

also added to the conditional probability distribution in addition to the previous timesteps.

This enables WaveNet to adapt to multiple speakers, or switch between speech tasks (voice

conversion, text-to-speech). The local conditioning feature is specially important for TTS, as

linguistic features (log F0, phone duration) were extracted from the text.

While WaveNet produced high-quality audio, its speed was too slow for real-time applications.

Improvements in speed and scalability are proposed through Parallel WaveNet (Oord et al.,

2018) and ClariNet (Ping et al., 2018). In particular, parallel WaveNet, presents a dual approach

where the sampling procedure of IAF networks and the parallelizable, convolutional training

procedure of the original WaveNet are combined in a teacher-student framework. Given a
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sample xt , the IAF can infer the output at previous timesteps, therefore generate all samples in

parallel. This forms the student part of the network, which learns from the original WaveNet,

the teacher.

4.3.1.2 The non-autoregressive vocoder - WaveGAN

The non-autoregressive vocoder used in the extended BC-2013 is the WaveGAN (Yamamoto

et al., 2020). The autoregressive neural generation techniques showed promise in increas-

ing the processing time and complexity. However, the inference speed was still slow and

computationally expensive. Additionally, a trial-and-error method was used to optimize the

density distillation process. Therefore, Parallel WaveGAN (Yamamoto et al., 2020) was intro-

duced to sidestep the traditional teacher-student training methodology, and also overcome

the distillation process. WaveGAN also preserves the perceived TTS quality by providing

a straightforward estimation of the waveform, instead of linear prediction and conversion

approach. Instead, a “joint optimization” method is proposed. This involves a linear combi-

nation of adversarial loss, and the multi-resolution STFT loss functions. The adversarial loss

represents the loss function of the generator part of the adversarial network. The generator is

designed to produce samples which deceive the discriminator, and also capture the underlying

distribution of speech waveforms in the process.

Having a multi-resolution loss means combining individual loss from multiple analysis pa-

rameters, such as FFT size, window size and frame shift. This allows for greater flexibility, as

representation from multiple parameters reduces generator overfitting. While WaveGAN also

uses dilated convolutions, their relationship is not causal.

4.3.1.3 The autoregressive acoustic model - Tacotron

The main autoregressive acoustic model architecture used in the extended BC-2013 is the

Tacotron (Wang et al., 2017). Tacotron provides an end-to-end generative process for synthe-

sizing spectrograms directly from text, which can then be converted to waveforms. It employs

a sequence-to-sequence encoder model with an attention-based decoder. The purpose of

the encoder module is to extract representations from character sequences. For this, the

character input is passed through convolution filters, which model the target phoneme and

its context. The outputs are max pooled, incremented with the original character sequence

and passed into a highway network for extracting high-level features. A gated unit further

extracts features from both the preceding and succeeding contexts. The task of the decoder is

to convert features into spectrograms. First, a context vector and the output of a recurrent

layer is concatenated to form the input to the decoder. Although raw spectrograms can be

predicted, an 80-band mel-spectrogram is the chosen target so that proper alignment can
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be learnt between the speech signal and text. Additionally, multiple non-overlapping frames

are predicted together, utilizing the relationship between neighbouring phonemes and also

speeding up the prediction process. Finally a post-processing net converts the output of a

decoder to a representation that can be passed to a vocoder.

4.3.1.4 The non-autoregressive acoustic model - FastPitch

The main architecture used in the extended BC-2013 is the FastPitch (Łańcucki, 2021), which

predominantly builds on the FastSpeech Ren et al. (2020) architectures. The model employs a

stacked, length regulated feed-forward transformer structure to predict mel-spectrograms

from phoneme sequences. This structure comprises of self-attention and a 1-D convolutional

network. The self-attention network is built using a multi-head attention layer which can

detect cross-positional information of the phoneme sequences. Similarly, the 1-D convolutional

network is designed to take advantage of the relatively closer relationship between the hidden

states, when modelling phonemes and mel-spectrograms speech. An important contribution

of the Feed Forward Transformer (FFTr) network is the length regulator sequence. It addresses

the length mismatch in the phoneme and mel-spectrogram sequence. Specifically, the length

of the mel-spectrogram sequence is longer than the phoneme sequence, because multiple

mel-spectrogram sequences may collectively correspond to a single phoneme. The regulator

expands the length of phoneme sequence to match that of the mel-spectrogram sequence,

thus balancing the mismatch. Additionally, this allows for greater prosodic and pause insertion

flexibility. Another important detail of the FastSpeech model is the duration predictor network,

that predicts the number of mel-spectrograms required for one phoneme, or its duration. A

separate 2-layer 1-D convolutional network is trained on a an autoregressive Transformer

model, and used using TTS inference time.

Thus, the dataset for analysis comprised of these 4 voices (systems Y, Z, Q and R), 6 top-quality

non-neural voices and the human analysis. Each system provided an identical set of 100

sentences, which formed the parallel data for comparison. Features were independently

extracted from each voice, compared statistically against the human voice as the reference.

The feature extraction and statistical analysis steps are described below.

4.3.2 Feature extraction
Contrastive properties of obstruent consonants have been studied along the durational (Jong-

man, 1989), amplitudinal and spectral (Chodroff and Wilson, 2014; Stevens and Blumstein,

1978) attributes. The perceptual contribution of their surrounding vowels has also been

discussed (Sussman et al., 1995).

Audio files from all the systems were force-aligned using the MFA (McAuliffe et al., 2017)
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to create phoneme-level boundaries. Sub-phonemic boundaries for the noise duration of

stops and affricates were demarcated using a rule-based temporal boundary identification

procedure described in Section 3.2.3.2. Consonants were then separated into 3 positional

contexts: pre-vocalic (CV), post-vocalic (VC) and consonant clusters. Consonant clusters were

not analyzed for the present analysis. Vowels that appeared in the immediate neighbourhood

of these consonants were also categorized into the CV and VC positional contexts. Then, the

following feature set was extracted for the analysis of vowels:-

• Vowel duration (V-Dur):- The duration of the vocalic region, as returned by the

MFA. In the CV position, the vowel onset is marked at the first 20% of this duration.

Conversely, in the VC position, the offset is marked at the last 20% of this duration.

• RMS amplitude (RMS-Amp):- The root-mean-squared amplitude of the power spec-

trum of the vocalic region.

• Formant values (F1-F5):- The formant values of the first 5 formants at the onset/offset and

midpoint of the vowel. These were extracted using the Burg formant-tracking algorithm

in Praat (Boersma and Weenink, 2018). The Escudero optimization procedure (Escudero

et al., 2009) was used to estimate the appropriate ceiling value.

• Within-category dispersion:- The absolute difference between formant values of

individual instances of the vowel, and the mean of formants across all the instances

of that vowel. Dispersion values were calculated for formants at both onset/offset

(On-Fn-disp) and midpoint (Mid-Fn-disp).

• Relative amplitude (Fn-RA):- The difference between amplitude of the vowel spectrum

at F3, F4 and F5, and the consonant at the corresponding frequency.

• Spectral tilt (Sp-Tilt):- The slope of the least-squares regression line fitted after log-

transforming the frequency domain of the spectrum.

For the analysis of consonants, the feature extraction procedure was identical to the 8

features described in (Pandey et al., 2021). The features were:- consonant duration; noise

duration; RMS amplitude; peak amplitude; peak frequency ; dynamic amplitude; and spectral tilt.

In addition to these features, the present analysis also included spectral shape for consonantal

analysis. Spectral shape has been described (Evers et al., 1998) as the difference between the

spectral tilts below and above the mid-frequency region. (Tilt< 2.5 kHz - Tilt> 2.5 kHz). All of

these features were analyzed separately in their positional contexts (CV, VC), as opposed to

their global evaluation in (Pandey et al., 2021).
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4.3.3 Statistical analysis
The feature set failed the Shapiro-Wilk test for normality, and also had unequal variances

among the groups. Therefore, we decided to use non-parametric tests: the Kruskal-Wallis (Kruskal

and Wallis, 1952) test, and the Dunn Test (Dunn, 1964).

4.3.3.1 The Kruskal-Wallis test - grouped comparisons

The Kruskal-Wallis test (Kruskal and Wallis, 1952) examines group differences within a popu-

lation, especially when the data does not follow a parametric distribution. In other words, it

compares categorical differences within non-normal datasets. It was proposed as an alterna-

tive for the parametric analysis-of-variance methods, and used ranks in the data, instead of the

observed values themselves. Observations regardless of their group membership are arranged

in ascending order based on their numeric value. Then, the test statistic H is computed based

on the following equation:-

H = (N − 1)
∑g

i=1 ni(r i − r )2∑g
i=1
∑ni

j=1(rij − r )2
(1)

Here, rij is the rank of each observation j in group i , r i is the average ranks within the group

i and r is the average of all the rijs. N and g stands for number of observations and groups

respectively. As stated in the original paper, “Large values of H generally mean significant

results."

The H statistic computed is compared against a standard chi-square distribution with the

same degrees of freedom. To reject the null hypothesis, the computed H statistic must be

greater than Hc , at a chosen significance level.

H >= Hc at p − value < 0.05 (2)

For example, the critical value Hc for a chi-squared distribution is 7.815 at 3 degrees of freedom,

for a significance level of 0.05. If our computed H statistic is greater or equal to this value,

then the null hypothesis can be rejected. Throughout this chapter, the values of H statistic

and the degrees of freedom will be reported. Associated probability values (p-val) will also be

reported to indicate the strength of significance. It must be noted that Kruskal-Wallis is a test

of grouped data. For example, if observations from the human voice, HMM synthesizers and

neural synthesizers are put together, Kruskal-Wallis can identify that there are statistically

significant differences between the three techniques. However, how each technique is deviates

from the human voice is a task for a post-hoc analysis using the Dunn’s test. This is described

next.
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4.3.3.2 The Dunn’s test - pairwise comparisons

The Dunn’s test for pairwise comparisons was developed by the American scientist Olivia J

Dunn in 1964 (Dunn, 1964). While the Kruskal-Wallis can identify the presence of significant

differences among the groups in the populateion, the Dunn’s test pairwise compares each of

the groups, and identify those which differ from each other.

This is two-step procedure. First, the difference ym is computed as the difference between the

averaged ranks of the two groups that we want to compare. If A and B are the two groups,

then ym is described by the following equation:-

ym = rA − rB (3)

The rA and rB are the averaged ranks of each group and correspond to the r i value obtained

in the Kruskal-Wallis test. Second, this ym is divided by its own standard deviation σm. The

following equation describes the squared σ2
m:-

σ2
m =

[
N(N + 1)

12
−
∑g

k=1(t3
k − tk )

12(N − 1)

](
1∑
a nA
− 1∑

b nB

)
(4)

As before, N and g represent the total number of observations and groups respectively. Here,

tk depends on the previously computed rij , such that it represents the number of times the rij

appears in the dataset. It is subtracted from its cubed form t3
k and aggregated over g, i.e., the

total number of groups. The values nA and nB are the total number of observations in the

groups under comparison.

The resultant standardized difference ym/σm is a probability (p) value. At a chosen significance

level (usually, p < 0.05), we can compare it with the critical range of the z-score table. If our

obtained p-value falls outside this range, then the groups are significantly different.

Thus, a pairwise comparison is performed between the human voice and each TTS technique

or system. This helps to determine those features where the differences between the human

and TTS voices are statistically significant.

4.4 Results
In this section, we describe the results of statistical analysis from the consonantal and vocalic

feature-set. First, we explore those segmental features which show improvement compared

to older, non-neural TTS techniques. Then, we identify those features which deviate from

the human voice in neural vocoders. While global trends are discussed, a system-specific

comparison is detailed for each neural voice and the human one.
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4.4.1 Analysis of vowels
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Figure 4.2: Vowels following consonants (CV): Deviation in acoustic-phonetic features of

vowels following (CV) obstruent consonant. Deviation is calculated as statistically significant

difference between the human voice and each TTS system of the BC-2013 dataset, in a pairwise

Dunn’s test. Dark cells indicates strongly significant differences, while white cells represent

no significant difference compared to the human voice.

4.4.1.1 Visual analysis: trends in vowels

Figure 4.2 and Figure 4.3 show the features which deviate from the human voice on the basis

of Dunn’s test. Coloured cells show statistically significant differences, while white cells mean

no difference from the human voice.

In HMM synthesizers I and C, we see a blanket lowering of within-category dispersion in lower

96



F
ric

at
iv

e
S

to
p

Voiced Voiceless

Vowel_Duration

RMS_Amplitude

F0_offset

F1_midpoint_dispersion

F1_offset_dispersion

F2_midpoint_dispersion

F2_offset_dispersion

F3_midpoint_dispersion

F3_offset_dispersion

F4_midpoint_dispersion

F4_offset_dispersion

F5_midpoint_dispersion

F5_offset_dispersion

Rel_Amp_F3

Rel_Amp_F4

Rel_Amp_F5

Spectral.Tilt

Vowel_Duration

RMS_Amplitude

F0_offset

F1_midpoint_dispersion

F1_offset_dispersion

F2_midpoint_dispersion

F2_offset_dispersion

F3_midpoint_dispersion

F3_offset_dispersion

F4_midpoint_dispersion

F4_offset_dispersion

F5_midpoint_dispersion

F5_offset_dispersion

Rel_Amp_F3

Rel_Amp_F4

Rel_Amp_F5

Spectral.Tilt

w
N

et
−

Z

w
N

et
−

Y

w
G

A
N

−
R

w
G

A
N

−
Q

U
nS

−
N

U
nS

−
L

H
M

M
−

C

H
M

M
−

I

H
yb

rid
−

K

H
yb

rid
−

M

w
N

et
−

Z

w
N

et
−

Y

w
G

A
N

−
R

w
G

A
N

−
Q

U
nS

−
N

U
nS

−
L

H
M

M
−

C

H
M

M
−

I

H
yb

rid
−

K

H
yb

rid
−

M

F
ea

tu
re

s 
of

 v
ow

el
s 

pr
ec

ed
in

g 
co

ns
on

an
ts

 (
V

C
)

−
10

−
5

05

Z
−

va
lu

e

Figure 4.3: Vowels preceding consonants (VC): Deviation in acoustic-phonetic features

of preceding (VC) an obstruent consonant. Deviation is calculated as statistically significant

difference between the human voice and each TTS system of the BC-2013 dataset, in a pairwise

Dunn’s test. Dark cells indicates strongly significant differences, while white cells represent

no significant difference compared to the human voice.
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and higher formants. This is especially visible in the CV position especially for voiceless stops

and fricatives. Secondly, I and C also lower the relative amplitude in vowels. In comparison,

neural synthesizers Q, R, Y and Z show improvement in both these featuers, and show no

statistically significant deviation from the human voice.

Compared to Unit-selection L and N, and Hybrid synthesizers M, K, also we see improve-

ment on a select set of segmental features. Specifically, even the top-quality unit-selection

synthesizer L shows a lowered F0 onset in every vocalic context. Neural systems Q and Y

maintain human-like F0 onset, at least in the voiced contexts. It must be noted, that since

concatenative synthesizers use units directly from human voice recordings, these voices are

segmentally closer to the human voice than parametric synthesis.

In neural synthesizers, a distinct trend emerges from the lowering of spectral tilt, visible in all

the vocalic contexts. Although statistically significant in every neural voice, FastPitch systems

(Q, and Y) show a sharper dip compared to Tacotron. Darker cells are visible in both the CV

and VC contexts. Therefore, from Figure 4.3 and Figure 4.3 we gather that although neural

voices show improvement in a variety of segmental features, but some features consistently

deviate from the human voice.

4.4.1.2 Vowels: neural versus non-neural TTS

Compared to HMM systems I and C, neural voices show a variety of important differences.

First, as seen in the previous chapter, HMM voices lower the within-category dispersion.

Positional and voicing influences can be seen, as the effects are most consistent in vowels

following the voiceless obstruents (i.e, CV). Although all formant values show a significant

lowering, higher formants are impacted more. Dispersion at F5 midpoint drops by a median

of 159.75 Hz, and differs strongly from the human voice [χ2
(1) = 75.37, p-val < 0.0001].

Similarly, at F4 it drops by 139.99 Hz. Vowels that follow voiceless fricatives show the lowest

within-category dispersion values in HMM synthesizers.

In most neural voices, dispersion patterns do not show statistically significant deviation

in within-category dispersion. This means that in a majority of cases, neural voices have

overcome the tight, within-category clusters that were characteristic of HMM synthesizers.

Some effects of clustering are seen in system R, but only in lower formants (F1-F3). The

maximum reduction observed is only of 83.22 Hz at the F2 midpoint for VC vowels [p-val

< 0.0001]. This shows that the magnitude of lowering is notably lesser, compared to HMM

synthesizers I and C.

Neural voices also show improvement in terms of relative amplitude, when compared with

HMM synthesizers I and C. Relative amplitude signifies the amplitude difference between

the consonantal and vowel region. This relationship is important for proper production of
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sibilant fricatives, as it cues place contrast. The difference is found statistically reduced in

HMM synthesizers. Vowels neighbouring voiceless stops in both positional contexts exhibit

this trend, but VC shows greater median reduction of 5.24 dB [χ2
(1) = 31.07, p-val < 0.0001].

In neural synthesizers, human-like patterns of relative amplitude are generally maintained.

Only a a minor increase of 2.54 dB [p-val < 0.05] is seen in vowels preceding voiceless stops.

Other neural systems do not deviate from the human voice.

Finally, compared to unit-selection voices L and N, we can consider the case of F0 onset. Unit-

selection synthesizers lower the F0 in both positional contexts. The maximum lowering of

32.38 Hz can be observed in the vowels following voiceless fricatives, with strongly significant

effects [χ2
(1) = 301.58, p-val < 0.0001]. Although lowering of F0 can be seen in neural system

Z too [p-val < 0.0001], its magnitude 15.37 Hz is halved at the same positional and voicing

counterpart. This means that unit-selection synthesizers lower the F0 at onset with much

greater magnitude and statistical significance, compared to neural ones.

4.4.1.3 Vowels: neural TTS vs the human voice

Only a few vocalic features in neural TTS deviate from the human voice. However, global

tendencies, and those specific to each acoustic model can be identified.

First, a statistically significant lowering of the spectral tilt is observed in every vocalic

context, unconditioned by positional or voicing status of the adjacent vowel. Overall, spectral

tilt is reduced by 2.61 dB/log(Hz), with strongly significant group effects [χ2
(1) = 205.99,

p-val < 0.001]. Maximum lowering of 3.02 dB/log(Hz) is seen in vowels that follow voiced

fricatives, and is strongly significant [p-val < 0.001]. Similar effects are observed in the

voiceless condition, with a median reduction 2.71 db/log(Hz) [p-val < 0.001]. This means that,

although significant cross-contextually, vowels that follow fricatives contribute maximally to

the lowering of spectral tilt.

We also observe that FastPitch exhibits an even greater lowering of the tilt. Darker cells are

visible in Figure 4.3 and Figure 4.3 for FastPitch systems i.e, Q and Y. Combined over manners

and voicing conditions in the CV context, FastPitch systems lower the spectral tilt by 3.14

db/log(Hz), while Tacotron systems by 2.12 db/log(Hz). And specifically in vowels that follow

voiceless fricatives, FastPitch show lowering by 3.47 db/log(Hz), while Tacotron systems by

2.09 db/log(Hz). In the VC context, the difference between FastPitch and Tacotron is clearest

in the voiced stops condition. Here, FastPitch brings the tilt down by 2.35 db/log(Hz), while

Tacotron only by 1.23 db/log(Hz). Additionally, while FastPitch exerts strongly significant

effects [p-val < 0.001], Tacotron maintains only a minimal level of statistical significance [p-val

< 0.05]. So, spectral tilt lowering is an informative site for both overarching tendencies in

neural synthesizers, and also effects specific to the acoustic model.
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Other sites for locating acoustic-model specific effects are RMS amplitude. Darker cells

are visible for R and Z, i.e., Tacotron systems (see Figure 4.2). In stops, only Tacotron lowers

the amplitude, where FastPitch is not statistically different from the human voice. Between

Tacotron systems, system R maximally lowers amplitude in every context. In vowels that

precede voiced stops (VC), Tacotron reduces the amplitude by 3.55 dB [p-val < 0.001]. System

R on its own contributes a significant lowering of 4.02 dB [p-val < 0.001]. On the other hand,

system Q and Y maintain human-like amplitude in stops. They differ minimally in fricatives,

such that Q reduces amplitude by -0.96 dB, and Y by -1.11 dB. The strength of statistical

significance is also modest, compared to strong effects observed in Tacotron systems.

Finally, system R shows significant reduction in the within-category dispersion, which

is normally observed for HMM systems. This effect is the maximum in vowels that precede

voiced stops (VC), where the midpoint dispersion is reduced by 83.22 Hz [p-val < 0.001].

Similarly, in the CV position, system R reduces within category variation by 62.25 Hz [p-val

< 0.001]. However, higher formants are not majorly impacted, and the magnitude of this

reduction is also much lesser compared to HMM synthesizers.

4.4.1.4 Summary of vowel analysis

Through this analysis, we can see that neural synthesizers resemble the human voice over

a variety of vocalic features, extracted from vowels that appear in the neighbourhood of

obstruent consonants. Considerable improvements can be seen compared to non-neural

synthesizers, in terms of within-category dispersion, relative amplitude and F0 onset. However,

features like spectral tilt and RMS amplitude still exhibit deviation from the human voice.

4.4.2 Analysis of obstruent consonants

4.4.2.1 Obstruents: visual analysis

As in the case of vowel analysis, here we will describe the major trends that we can pick up

from Figure 4.4 and Figure 4.5. Then, we will support it with quantitative measures, as a result

of Kruskal-Wallis and the post-hoc Dunn’s test.

In neural synthesizers Figure 4.4 and Figure 4.5 clearly show major differences in the voiced

and voiceless regions of obstruent consonants. Most acoustic-phonetic features of voiceless

obstruents show deviation from the human voice. Particularly, system R shows deviation in

more features compared to other neural synthesizers. For example, in the voiceless fricative

context, every feature is impaired. Distortion in voiceless obstruents can be seen as an

overarching trend, evident in both fricatives and stops, in both the pre-vocalic (CV), and

post-vocalic (VC) positions, for both WaveNet and WaveGAN vocoders. It is quite apparent
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then, that neural synthesizers poorly reproduce the features of voicless obstruents.

In voiced obstruents, however, we can identify several improvements that neural synthesizers

have made, compared to older, non-neural TTS synthesizers. For example, in voiced fricatives,

we find that dynamic amplitude has been reduced compared to the human voice. In the

same positional and voicing context, neural synthesizers match the human voice more closely.

Similarly consider the case of unit-selection synthesizers. The duration of consonants is

shortened in both unit-selection systems L and N. In voiced obstruents especially in the CV

position, we can see that obstruents do not deviate.

Therefore, from Figure 4.4 and Figure 4.5 we can mark voiceless obstruents as an important site

where neural synthesizers can be seen to deviate from the human voice. In voiced obstruents,

improvements over non-neural TTS synthesizers can be seen over a variety of features.

4.4.2.2 Obstruents: neural versus non-neural TTS

As can be seen from Figure 4.4 and Figure 4.5, neural voices maintain the features of voiced

obstruent consonants fairly well. There are several improvements in these features com-

pared to older, non-neural TTS systems. The first feature under consideration is dynamic
amplitude. In HMM synthesizers, I and C, we can see a statistically significant lowering

of the dynamic amplitude in the pre-vocalic (CV) voiced fricative. The magnitude of this

difference is 1.94 dB, with strongly significant effects [χ2
(1)= 1.04, p-val < 0.001]. Since

dynamic amplitude is the difference between the high frequency peak and the low frequency

trough, the reduction means that the range of amplitudes in the obstruent spectrum has been

restricted. Comparatively in neural voices, this range is not statistically different from the

human voice.

Unit-selection voices L and N show reduced consonant duration, compared to the human voice

[χ2
(1)= 30.78, p-val < 0.001]. The shortening of duration can impact the contrastive perception

in sibilant fricatives, as longer durations are associated with sibilance. The maximum effect is

contributed by System N. System N shortens this duration by 11.99
1

ms in voiced fricatives,

and 8.72 ms in voiced stops. These effects are strongly significant in voiced fricatives (p-val <

0.0001), and consistent in voiced stops (0.01). These trends are maintained in the VC position

as well, with durations reduced in voiced fricatives by 7.51 ms (p-val < 0.05), and stops by

8.77 ms (p-val < 0.01). The duration of neural synthesizers also differs from the human voice.

However, as Figure 4.3 and Figure 4.3 clearly shows, this is limited to voiceless conditions in

both CV and VC conditions. In voiced fricatives and stops, the reduction is only by a 3.60 ms

and 5.11 ms respectively. In neither case is this significant. Furthermore, comparing individual

systems, we also note that the most contributive effects are localized to system R. Although

1
average values reported here, median subject to rounding error
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Figure 4.4: Consonants preceding vowels (CV): Deviation in acoustic-phonetic features

of preceding obstruent consonants (CV). Deviation is calculated as statistically significant

difference between the human voice and each TTS system of the BC-2013 dataset, in a pairwise

Dunn’s test. Dark cells indicates strongly significant differences, while white cells represent

no significant difference compared to the human voice.
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Figure 4.5: Consonants following vowels (VC): Deviation in acoustic-phonetic features

of following consonants (VC). Deviation is calculated as statistically significant difference

between the human voice and each TTS system of the BC-2013 dataset, in a pairwise Dunn’s

test. Dark cells indicates strongly significant differences, while white cells represent no

significant difference compared to the human voice.
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all neural voices exhibit relatively shorter durations, the difference is not significant in any

except R.

The next feature under consideration is the RMS amplitude of voiced stops, both in the CV

and VC position. As the amplitude of the burst spectrum is a useful place classification cue, its

increase may impact place perception in voiced stops. Hybrid synthesizers increase the RMS

amplitude [χ2
(1)= 8.45, p-val < 0.01]. Similar trends are exhibited by the HMM synthesizers

[χ2
(1)= 30.78, p-val < 0.001]. Upon comparing individual synthesizers, we find that Hybrid

system K increases the amplitude by a median of 1.92 dB, with strongly significant effects [p-val

< 0.0001]. Both HMM synthesizers also show significant increases, but system I [p-val < 0.01]

has a slightly stronger effect than system C [p-val < 0.05]. These values are reported for the CV

context, but the trends are comparable in the VC context. Conversely, FastPitch synthesizers

do not differ from the human voice in any positional context. Tacotron synthesizers do exhibit

lowering, but only system R is significant in both positional contexts.

4.4.2.3 Obstruents: neural TTS vs the human voice

From Figure 4.4 and Figure 4.5 we see that voiceless fricatives and stops show divergence

from the human voice across several features. This trend is visible in both CV and VC contexts,

and is more prominent in the CV context. This indicates a broad, overall tendency of neural

systems to model characteristics of voiced obstruents better than voiceless ones.

The most important featural divergence can be observed in terms of the consonantal spectral

tilt. As seen in vocalic features, this extends to both positional contexts, voicing conditions

and manners. This means that in neural voices, high frequency regions of the consonants

are more damped than they are in the human voice. On the whole, neural voices lower the

spectral tilt by 4.82 dB/log(Hz) in the post-vocalic CV context, with strong group differences

[χ2
(1)= 173.7, p-val < 0.0001]. Parallel trends are observed in the VC context, with a median

3.0 dB/log(Hz), statistically significant lowering [χ2
(1)= 56.78, p-val < 0.0001]. In voiceless

fricatives especially, we see a greatest drop of 9.53 dB/log(Hz) with strongly significant effects

[p-val < 0.0001]. In the VC obstruents, this is even sharper, exhibiting a median lowering of

11.18 dB/log(Hz). The neighbourhood of voiceless fricatives was noted as an important site

for vocal spectral tilt reduction, as seen in Section 4.4.1.3.

However, we had reported effects specific to acoustic-models. Specially, FastPitch systems

had displayed greater tilt lowering tendencies compared to Tacotron. This is not consistent

in consonants, because differences betweeen the two acoustic models are not significant.

Contrarily, we found consistent effects of the vocoder. First, Kruskal-Wallis test identifies

significant group differences [χ2
(1)= 13.73, p-val < 0.001]. Then, pairwise comparison shows

that WaveGAN vocoders lower the tilt by 5.48 dB/log(Hz), and WaveNet by 4.31 dB/log(Hz).

Systematic, individual system analysis reveals that vocoder-specific tendencies are consistent
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between each pair of systems that share an acoustic-model. Meaning, between Q and Y, Q

lowers the spectral tilt more than Y. The same trend is available in R and Z.

Next, significant differences were found from the human voice on the basis of spectral shape
[χ2

(1)= 122.73, p-val < 0.0001]. This means that there is a greater difference between the

spectral tilts above and below the mid-frequency range. Neural voices increase the spectral

shape by 1.8 db/log(Hz) and 1.9 dB/log(Hz) in the CV and VC position, respectively. The effect

is the clearest in the fricatives of the CV position. Here, spectral shape differences rise by

2.53 db/log(Hz) for voiceless fricatives and by 2.25 db/log(Hz) for voiced ones. No vocoder or

acoustic model specific effects however, were observed.

4.5 Discussion

4.5.1 Impact of distortion on quality perception
In this chapter, we analyzed production characteristics of obstruents and their neighbouring

vowels across different TTS systems. We found that neural voices deviate from the human

voice the most in the context of voiceless fricatives. This observation suggests that consonants

with a periodic source excitation are modeled more closely to the human voice than those with

an aperiodic excitation. Our previous work (Pandey et al., 2022) was limited to WaveNet voices,

and led us to hypothesise that the deviation emerged as a consequence of the autoregressive

nature of vocoder. However, this reasoning is put into perspective especially when similar

trends of deviation are seen in non-autoregressive synthesizers.

In the development of statistical parametric synthesis, there has been active interest in

appropriately modelling excitation for unvoiced regions for high quality speech synthesis

(Jensen et al., 1994; Drugman and Raitio, 2014). Parameters of voiced regions were estimated

using periodic or quasi-periodic impulse trains, and unvoiced regions using white noise. To

overcome the consequent buzziness, mixed excitation i.e., proportionally mixing the noise and

periodic parameters gained popularity (Yoshimura et al., 2001, 2005; Yu et al., 2007).

In present-day modern synthesizers, supporting evidence comes from designs of Neural

Source Filter Models (NSF) (Wang et al., 2019). Here periodic and aperiodic regions of the

waveform are consciously modelled by separate source-filter combinations. Specifically, the

h-NSF filter selectively allows high-pass filtering to the white noise excitation signal and

merges the voiced/unvoiced components at the resultant waveform, instead of merging at

the source signal. This improvement on the NSF results in comparable performance with

WaveNet, and outperforms the baseline NSF. In other related work (Fujimoto et al., 2018) we

find when WaveNet is enhanced with separate periodic/aperiodic decomposition it receives

more favourable scores in naturalness.

105



However, an in-depth exploration of modelling voicelessness in end-to-end neural synthesizers

is absent from the discussion on quality perception. As discussed in Section 4.2, obstruents

suffer greater masking in impaired listening conditions and transmission (Li and Loizou, 2008,

2010). It is possible that feature distortion observed in neural TTS may cause information

loss, that is not perceivable in ideal listening environments. Another consequence of improper

segmental modelling can appear on low-resource settings where pre-trained models are

frequently adapted (Prajwal and Jawahar, 2021; Debnath et al., 2020) to generate speech in a

target, low-resource language. The adaptation is more challenging when the languages are not

closely related. Pertinent to our case, the problem of voicelessness was identified in developing

a Vietnamese code-mixed TTS, adapting a pre-trained English model (Nguyen et al., 2021).

The mismatch occurred because Vietnamese does not support word-final fricatives as English

does. While the use of speaker embeddings returned favourable naturalness, the problem

remains open for other low-resource target languages.

Next, we found that the lowering of spectral tilt is a consistent trend in neural voices across all

contexts, both in consonants and vowels. Previous studies have highlighted the importance of

flatter spectral tilt on intelligibility (Lu and Cooke, 2009). Enhancing strongly negative tilts for

voiced frames has resulted in improved naturalness and speaker similarity for synthetic speech

(Sharma and Prasanna, 2017). Recent studies on masked speech also suggest a lowering of

spectral tilt (Magee et al., 2020) results in a muffled speech output. Additionally, attributes such

as pleasantness have been associated with energy in the high-frequency regions (VaroSanec-

SkariC, 1999). Therefore, dampening high frequencies may result in degraded perception of

voices.

4.5.2 Impact of distortion on contrastive perception
We have shown that contrastive features can be used to diagnose weaknesses of neural TTS

synthesizers. This section provides an additional use of contrastive features, with applications

of neural TTS in phonetics and speech science. Malisz et al (Malisz et al., 2019) argue that

the high realism, naturalness by neural voices ensures that the neural TTS can now be used

for phonetics research. In an additional, side-project (Pandey et al., 2023), we explored how

phonemic contrast is maintained in neural TTS synthesizers. To investigate whether phonemic

contrast is maintained in neural TTS in the same way as in a human voice, this paper provides

place classification of English fricatives as a targeted test case. If contrast is encoded in the

same parameters as in the natural voice, then TTS voices may be suitable tools for speech

science research. Conversely, if phonemic contrast is indexed by divergent trends in TTS

voices, then generalization may become more difficult. Additionally, unexpected acoustic

detail may enforce a cognitive load condition and increase reliance on lexical cues (Mattys

and Wiget, 2011). This can cause greater problems for non-native listeners (Mattys et al.,
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Figure 4.6: Relationship between accuracy and feature similarity with the human voice. Labels

for contrastive pair presented for Tacotron WaveGAN (R) and Tacotron WaveNet (Z). Dashed

lines show means on every axis.
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2010).

For this, we conducted an analysis of feature importance using the voices of Tacotron Wave-

GAN and Tacotron WaveNet of the extended BC-2013. Tacotron voices were selected because

more featural distortion was observed in the Tacotron voices (especially system R). Specifically,

we compared the trends of place classification in human and Tacotron fricatives. 6 pairs of

fricatives were classified using Support Vector Machines on the basis of contrastive features

described in Section 4.3.2. Then, 7 most important features for the SVM classification was

obtained using 1-AUC criterion through DALEX library in R (Biecek, 2018). Then, a Sorensen-

Dice coefficient was used to compute a similarity score between the most important features

in the human voice and each of the Tacotron voices. A high score meant that the contrastive

trends were comparable between the human voice.

We found that sibilant fricatives produced by both Tacotron voices followed similar contrastive

trends to the human voice. Figure 4.6 shows the concentration of sibilant fricatives in the

top-right quadrant. This means that sibilant fricatives were classified accurately, and also used

the same contrastive features for classification. Non-sibilant fricatives, on the other hand are

shown in the bottom-left quadrant in Figure 4.6. This means that they differ from the human

voice in the selection of important features, and that contrastive trends are not comparable.

On the basis of these findings, we expect that the generalizations made on synthetic sibilants

to extend to human sibilants. However, non-sibilants may require further investigation.

4.6 Conclusion
The MOS scores take us far enough to show that neural TTS is rated lower than the human

voice. However, there is no explanation or diagnosis into the cause of this unnaturalness. In

Section 2.4.2.4 we saw evidence from the studies where distortion or unnaturalness can be

perceived at a microscopic level (Nusbaum et al., 1984; van Heuven and van Bezooijen, 1995),

even when it does not result in conscious subjective ratings (Antons et al., 2012). We also

saw in Section 2.4.2 and Figure 2.3 that present day evaluations do not consider a diagnostic

analysis of the signal itself.

In a time-honoured quote, Ilse Lehiste writes that “In the terminology of semantics, phonemes

are signals not symbols. (Lehiste and Peterson, 1959a)". This quote is relevant to the present

discussion, because it ties together the idea of segmental evaluation using contrastive features

of phonemes. The signal distortion in phonemic segments is used here to evaluate the speech

synthesizer. Other metrics like PESQ also use a feature comparison between the human voice

and degraded signal. However, contrastive features present characteristic information about a

segment, which is expected to be robust to variations. Moreover, as described in Section 3.3.2,

human listeners are more attuned to their perception.
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This approach has several advantages over traditional evaluation of naturalness. First, it

provides specific insights into the location of distortion. Since the deviation in voiceless

segments and spectral tilt can be seen in 4 diverse neural architectures, a global tendency of

neural TTS is revealed. This is particularly important for spoofing and fake-speech detection,

especially in low-resource settings. Second, this has the potential of being developed as

a full-reference and a no-reference metric for objective evaluation. A step-by-step outline

is provided in Chapter 6. A final advantage caters to a more specific audience of speech

scientists, and encourages their contribution to TTS research. This is because we draw

directly from techniques in fundamental acoustic-phonetics and is automated to scale to

large corpora. Since diagnostic trends are revealed in contrastive features, more segments

(nasals, approximants) can be analyzed through this technique.

One final question remains: we do not know whether this distortion is perceivable to human

listeners. This cannot be tested through complete utterances, as in MOS, because it is difficult

to design complete utterances with obstruents. Moreover, we will not be able to disentangle

the support of prosodic and contextual context with segmental distortion to clearly validate

any trends. In the next chapter, design a subjective evaluation methodology, the Long Arms

approach, which is more suitable to segmental distortion.
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5 | Listener sensitivity to stimuli length
and segmental distortion in WaveNet

5.1 Introduction
In the previous chapter, we saw that neural voices deviate from the human voice, especially

for the voiceless regions. We also saw a blanket lowering of the spectral tilt in each of the

neural voices. In this chapter, we explore the perceptual relevance of these effects on the

perceived human-likeness of stimuli generated by the neural TTS synthesizers. Perception

experiments are limited to WaveNet (i.e. Systems Y and Z), because both the WaveNet voices

were ranked higher than the WaveGAN ones (See Chapter 3, Table 4.1). If segmental distortion

is perceivable in higher-ranked systems, then WaveGAN systems can be extrapolated to sound

distorted as well. The study involved presenting stimuli of varying lengths to 192 participants,

who were asked to identify whether each stimulus was produced by a human or a machine.

Their responses were captured using a 2-alternative forced choice task, and the results were

analysed with a generalized linear model (GLM).

5.1.1 The logarithmic nature of human perception
Human perception is widely believed to be logarithmic (Fechner, 1860; Varshney and Sun,

2013; Dehaene, 2003; Ditz and Nieder, 2016). The non-linear responses to increases in stimuli

was first observed by the nineteenth century philosopher, Ernst Weber. In measuring relative

differences between perceived weights of objects, he identified that small changes in weight

are more perceptible at the lower end of the scale (i.e, 20 g to 21 g). Conversely, in heavier

stimuli (i.e, 40 g) the increase needed to be doubled, for the difference to be noticeable. This

formulation was further advanced by his student, Gustav Theodor Fechner, who identified

that the relationship between stimulus and perception was in fact, logarithmic. In other

words, perceived change in sensation (∆S) is proportional to the logarithm of the ratio

between the stimulus intensity (S) and the reference stimulus intensity (S0), with a constant

of proportionality (k ) that varies depending on the sensory domain. Together, this relationship
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was encoded as the Weber-Fechner law (Fechner, 1860), and is given by:

∆S = k · ln
(

S
S0

)
(1)

The Weber-Fechner law has been attested with evidence from a variety of sensory stimuli, such

as taste, pressure, and intensity of brightness and amplitude (Varshney and Sun, 2013; Reichl

et al., 2010). Consequently, we see a wide range of its commercial applications; such as in

compression algorithms for maximizing visual comfort (Terzić and Hansard, 2016), identifying

optimal sending rates in audio transmission (Chen et al., 2012), and even improving sweetness

indices for artificial sweeteners (Mao et al., 2019). The Weber-Fechner law allows us to

determine the extent of the change in stimulus, that will cause a perceptual response. To the

best of our knowledge, it has not been introduced for synthetic speech evaluation. In this

chapter, we evaluate if logarithmically varying stimuli can help in detecting machine-likeness

in WaveNet stimuli.

Specifically, the influence of length is studied on the accuracy of responses. Participants

are presented with stimuli of 2-syllables (e.g, “gray wool"), which increase in length by a

multiplicative factor of 2, up to full-length utterances of 32-syllables (e.g, “he ceased to satirize

himself because time dulled the irony of the situation and the joke lost its humour with its

sting"). They are asked to rate these utterances simply as “human" or “machine", such that

2-alternative forced choice task (2AFC) captures their responses. With every doubling of

stimulus length, we expect accuracy to increase with length. This is the Long Arms approach to

subjective evaluation. Thus, the first question we explore in this Chapter is: does the accuracy

of human-machine detection increase with the length of the stimulus? Next, in Chapter 4, we saw

that features of voiceless obstruents, and spectral tilt deviates strongly from the human voice.

If this deviation is perceivable, then utterances with segmental distortion should provide

more clues as to the machine-likeness of an utterance. Hence, the second question we explore

in this chapter is: does accuracy of judgment increase even more when the stimulus is rich in

obstruents?

Three experimental conditions are designed to investigate these questions. Uniformly in each

condition, stimuli vary logarithmically in length. In the first experimental condition, the

baseline condition, the utterances are randomly selected from our dataset. In the second

condition, the obstruent-sonorant or ObSon condition, obstruent-rich stimuli are compared

with sonorant-rich ones. Finally, in the spectral-tilt condition, stimuli that deviate in spectral

tilt are compared with those that do not. We found that utterances that are rich in obstruents

are generally judged more machine-like, indicating that segmental distortion is perceivable.

We also found robust perceptual differences between the two acoustic models in our study,

i.e, Tacotron and FastPitch. The methodological details, results and discussion are described

111



in the subsequent sections.

5.2 Experimental Design

5.2.1 Description of dataset
A complete description is provided of the dataset is provided in Section 3.2.1 and Section 4.3.1.

A summarization is provided here for a standalone reading of this chapter. The source material

for the experiments in this chapter comes from the recently extended (Le Maguer et al., 2022)

version of the BC-2013 (King and Karaiskos, 2013). The human voice in the original challenge

came from audiobook renditions by an American, female voice artist. The extended version (Le

Maguer et al., 2022) contributes 4 neural voices, which are trained on the same human speaker

as in the original challenge. Tacotron (Wang et al., 2017) and FastPitch (Łańcucki, 2021) were

used as acoustic models for mel-spectrogram generation, and WaveNet (Van den Oord et al.,

2016) and WaveGAN (Yamamoto et al., 2020) as vocoders for waveform-generation. However,

only voices generated by the WaveNet vocoder are chosen: FastPitch WaveNet (System Y),

and Tacotron WaveNet (System Z). The original human voice is constantly maintained as the

reference.

All our stimuli were derived from the 100 utterances that originally formed the test corpus in

both the original and extended versions of BC-2013. The next subsection explains the design

and creation of the stimuli and presentation strategy.

5.2.2 Phrase extraction: text and audio
We developed a refined set of audio stimuli from the 100 utterances by taking the following

aspects into consideration:-

Grammatical well-formedness:- First, we divided each utterance into its constituent phrases

using the Stanford NLP parser (Manning et al., 2014). This ensured that our resultant phrases

were grammatically well-formedness, and followed the syntactic structure of English. For

example, we retained a syntactically appropriate noun phrase “big, solemn oaks", whereas

a roughly cut up phrase “before but she" was discarded. This allowed our participants to

focus only on the audio without getting sidetracked with grammatical anomalies. Finally, all

duplicates were removed.

Phrase length:- After all the ill-formed phrases were pruned, phrases were further selected

on the basis of length. The length of the phrase was determined in terms of the number

of syllables per phrase. We only preserved unique phrases of 2, 4, 8, 16, and 32 syllables to
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maintain a sufficiently perceivable “doubling" of their lengths. The number of phrases selected

at each length is described in Table 5.1, as is the distribution of the stimuli between human

and the two WaveNet systems. A total of 124 phrases was heard by each participant.

Phrase length

(in #syllables)
#phrases Human FastPitch (Y) Tacotron (Z) Total phrases

2 64 32 16 16

4 32 16 8 8

8 16 8 4 4 124
16 8 4 2 2

32 4 2 1 1

Total 124 62 31 31

Table 5.1: Number of phrases at each phrase-length heard by each participant across the

human voice, and systems Y and Z.

Audio extraction:- The corresponding audio for the selected phrases was extracted from

System Y, System Z and the human voice, and hand-corrected for phrases boundaries. Ad-

ditionally, a fade of 50 ms was also added before and after each utterance, to minimise

any audible clicks. The sampling rate was 44.1 kHz, bitrate 320 kbps, and the format was

.mp3.

5.2.3 Experimental conditions and groups
As shown in Table 5.1, each participant evaluated 124 phrases. First, 62 human stimuli were

extracted, in accordance with the phrase distribution in Table 5.1. These were maintained

identically throughout the experiments. Synthetic stimuli were extracted based on one of the

two conditions now described.

The baseline condition:- 62 synthetically produced stimuli of the required phrase length

were selected randomly, with no particular constraints on their lexical content. This condition

was designed to simply test the effect of increasing length on accuracy of human-machine

detection.

The ObSon condition:- Each unique phrase among the well-formed phrases was assigned

a score, based on the obstruent or sonorant concentration in its lexical content. Based on

this score, phrases were categorized as obstruent-rich, or sonorant-rich
1
. Of the required

62 synthetic phrases, we selected 31 obstruent-rich phrases (OBS-P), and 31 sonorant-rich

phrases (SON-P). This condition was designed for the second research question in Section 5.1.

1
obstruent-rich: “most self possessed"; sonorant-rich:“meaning in it."
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Based on Section 4.4, we expected the obstruent-rich stimuli to increase the accuracy of the

human-or-machine responses.

The ObSon condition required us to also confirm whether the effect we hypothesized was

truly an effect of obstruent-richness, and not that of a specific type of TTS system. In other

words, we wanted to examine if this effect was consistent across both the acoustic models.

Therefore, we designed our stimuli such that, for one group of participants, we retained those

OBS-P which were produced by FastPitch (Y) and SON-P produced by Tacotron (Z). Then for

another group, these pairings were reversed.

To maintain consistency between the two conditions, we also split the baseline stimuli equally,

and paired them alternately with each of the acoustic models. But this split was completely

arbitrary. The details of the individual participant groups are described in Table 5.2. Partici-

pants were assigned to one of the 4 groups listed. No participant was repeated in any group.

Their details are described in Section 5.2.4.

The Spectral Tilt condition:- Segmental spectral tilt was calculated for the consonantal

region, as well as at the transition boundary between the consonant and the vowel. Tilt

estimates were calculated for every well-formed phrase, by averaging the segmental spectral

tilt over the number of contributing segments, as described in Equation (2).

Ti =
1
ni

ni∑
j=1

Segmental Spectral Tilti ,j (2)

Here, Ti is the tilt estimate for the i th
phrase, and ni is the number of contributing segments

in the i th
phrase. Then, a phrase-by-phrase difference was calculated between the human

voice and each system, as described in Equation (3).

∆Ti = T human

i − T system

i (3)

Here, ∆Ti as the difference in tilt estimate for the i th
phrase between the natural voice and a

particular system.

Phrases were ranked based on the magnitude of this difference. Those that deviated maximally

formed the tilt-deviant (DEV-P) phrase set. Conversely, tilt-alike phrases (ALK-P) resembled

the human voice in averaged segmental spectral tilt. Similar to the ObSon condition, we

selected 31 phrases of each type, crossed them with the acoustic model, and assigned them in

groups of participants.
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Participant group FastPitch (Y) Tacotron (Z) Human

Baseline_Group I R1-P R2-P HM-P

Baseline_Group II R2-P R1-P HM-P

ObSon_Group I SON-P OBS-P HM-P

ObSon_Group II OBS-P SON-P HM-P

SpTilt_Group I ALK-P DEV-P HM-P

SpTilt_Group II DEV-P ALK-P HM-P

Table 5.2: Phrases paired with acoustic model for each group. R1-P = Random Phrases 1;

R2-P = Random Phrases 2; OBS-P = Obstruent-rich phrases; SON-P = Sonorant-rich phrases.

ALK-P = Tilt-alike phrases; DEV-P = Tilt-deviant phrases.

5.2.4 Participant details
A total of 192 participants (32participants x 3condition x 2group) participants through Prolific (Palan

and Schitter, 2018), an online participant recruiting platform. Gender balance was maintained

for each group, such that each group contained an equal number of male and female partic-

ipants. All participants were native speakers of English (UK or US English speakers, only),

and reported no history of hearing impairment. Their informed consent was obtained prior to

the experiment. The median time for completion was 25 minutes, and their remuneration

rate was 7 GBP/hour. Quality control of crowd-sourced data was ensured through 4 attention

checks. Here 4 audio samples of obvious machine-generated noise (e.g, sounds produced by

a typewriter, coin collector, washing machine) were included in the evaluation stimuli. If

participants marked the human-machine distinction correctly, their responses were recorded,

otherwise discarded. However, we did not find any participants who failed our attention

checks. Methods such as inter-annotator consistency (Graham et al., 2014) can also be used

for ensuring the quality of crowd-sourced data.

The following demographic information was collected: a) age, b) sex at birth, c) speaker of

UK or US English, d) experience with TTS devices or other TTS devices, and e) professional

experience in speech/audio processing. We now display the within-group distribution of

demographic information, to account for potential biases in their responses.

5.2.4.1 Distribution over participants’ age

Figure 5.1 demonstrates the number of responses obtained from members of three broad

age groups: young (18-35), middle-aged (35-50) and older (50-65) adults. As this was not a

controlled study on participant ages, we can see that age-groups do not fall into neat thirds.

Middle-aged adults are 1.8 times, while young adults are 2.78 times more numerous. This

means that the largest proportion of our responses is contributed by young adults.

Sex is also unevenly distributed within some groups. Particularly, Group I in the Baseline
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Figure 5.1: Age-wise distribution: Young, middle-aged and older participants in each group

and experimental condition.

condition contains most responses from young male participants (Number of response: 1487M ,

867F ). Similarly, in the obstruent-sonorant condition, there are more young females than

males, and vice versa in the middle-aged group. So it is important to note that, our data

predominantly comes from younger and middle-aged participants. Therefore, we will only

report broad trends in age-based differences.

5.2.4.2 Distribution over participants’ exposure to TTS devices

Baseline Group I Baseline Group II ObSon Group I ObSon Group II SpTilt Group I SpTilt Group II

Daily Never SomeT Daily Never SomeT Daily Never SomeT Daily Never SomeT Daily Never SomeT Daily Never SomeT

0.0

2.5

5.0

7.5

10.0

12.5

Exposure to TTS devices

N
um

be
r 

of
 p

ar
tic

ip
an

ts

Female Male

Figure 5.2: Exposure-wise distribution: Daily, Sometimes and Never users of TTS devices.

In Figure 5.2, we see the frequency distribution of participants based on their exposure to

TTS devices. Participants self-report whether they are "Daily" users of Amazon Alexa, Siri
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etc, have an occasional exchange with them (coded as "Sometimes"), or have no exposure

whatsoever to them ("Never"). Figure 5.2 shows a nearly uniform distribution between "Daily"

and "Sometimes" users of TTS devices. This numerically motivates a robust statistical compar-

ison between "Daily" and "Sometimes" users. However, the option "Sometimes" is somewhat

vague, and the range of exposure cannot be fully determined. On the other hand, partici-

pants who report "Never" interacting with TTS provide a more concrete analysis variable for

comparison with the "Daily" users. However, they are 4.4 times less numerous than "Daily"

users. Particularly, Group II in the Spectral Tilt condition has no such participants, and

Group I in the obstruent-sonorant condition has only 2. Finally, sex is approximately balanced

between these subgroups. A bias is only observed Group I, Spectral Tilt condition, where there

are more female "Daily" users, and male "Sometimes" users. Therefore, similar to the age

demographic, broad trends in this data will be presented, with their generalizability subject

to these confounds.

5.2.5 Presentation of the stimuli
The stimuli were presented in a random order, to remove any effect of sequencing on length.

In every trial, we presented only one stimulus to the participant, and requested their response

to the question: “Did this sound like a human, or a machine?". Stimuli were only played once.

Their responses were captured in a 2-alternative forced choice task: “Human" or “Machine".

The experiment was designed entirely in Psychopy (Peirce et al., 2022), and hosted online on

the Pavlovia server
2
. The results of each experiment are discussed in Section 5.3.

5.2.6 Statistical model
Listener responses are coded as a binary variable where 0=wrong i.e, the participant was

wrong, and 1=correct i.e, the participant is correct in detecting human or machine in a given

stimulus. A logistic regression represents a sigmoid function, which accepts a real number t ,
as input and returns a value between 0 and 1 as its output.

σ(x) =
1

1 + e−t (4)

x is the length of the stimulus, expressed as a continuous variable. For logistic regression, the

input t to the sigmoid function is the linear combination of the following form:-

t = β0 + β1(x) (5)

2
https://pavlovia.org/
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where, β0 is the intercept and β1 is the coefficient of regression. The sigmoid function, that

predicts the likelihood of correct responses is given by:-

P(Accurate|stimulusLength) =
1

1 + e−(β0+β1(stimulusLength)) (6)

The P(Accurate|stimulusLength) is the likelihood that a response is correct, and will here-

after be referred to as PACC . A chi-squared test reveals the significance of the model, by

comparing the full model to the intercept-only model. A p-value < 0.05 is considered statisti-

cally significant.

5.3 Results
Each subsection is dedicated to stimuli that share characteristics within an experimental condi-

tion. For example, obstruent-rich stimuli from the obstruent-sonorant condition are analyzed

together. The sequence is as follows: Section 5.3.1 Human stimuli, Section 5.3.2 Randomly

selected utterances, 5.3.3 Obstruent-rich Section 5.3.4 Sonorant-rich stimuli Section 5.3.5

Tilt-deviant and 5.3.6 Tilt-alike stimuli.

Next, system-specific effects are analyzed to identify those perceptual differences between

the acoustic models of Tacotron and FastPitch, while the vocoder in each case was WaveNet.

Reaction times and self-reported confidence scores are also presented, to identify whether

increasing length ensures faster processing. Finally, we examine if different demographic

variables, e.g. participants’ age, exposure to TTS devices and sex, influence the chance of

accuracy. Results of reaction times are expressed as a comparison of median values. All other

results are analyzed through the GLM model, based on the likelihood of correct responses, i.e,

PACC .

5.3.1 The human voice
In this section, we analyze utterances produced by the human speaker. Our aim is to observe

whether our participants achieve higher accuracy as stimuli length increases. First, we discuss

a combined model, where human stimuli from all the experiments are analyzed together. Next,

we analyze data from each experimental condition (Baseline, Obstruent-Sonorant, Spectral

Tilt), to identify any between-group effects among our participants. We supplement this

analysis by presenting reaction times and confidence scores, and a discussion on demographic

variables.
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Figure 5.3: Human stimuli: A GLM-model fit combined over all the human stimuli across

experimental conditions and participant groups. Model fit shows the relationship between

the predicted probability of correct responses (0=incorrect, 1=correct) and increasing stimulus-

length. Accuracy of correctly detecting human stimuli increases with stimulus length.

5.3.1.1 An overview of the human stimuli

First, participant responses on human stimuli are combined from all the experimental condi-

tions to identify the general relationship between likelihood of correct responses, PACC and the

stimulus length. Figure 5.4 shows a clear and gradual improvement in PACC with increasing

stimulus length. This relationship is also strongly significant [slope (SE) 0.05 (0.004), p-val

< 0.001]. At the shortest stimuli of 2-syllables, the PACC is 0.68, indicating that participants

are likely to be correct 68% of times. At full-length utterances, this escalates 23.08% to 0.91.

Comparing each individual increase in length, we find that PACC increases by 9.5% between

the two longest stimuli, i.e. of 16 and 32 syllables. Similarly, a comparable spike of 7.14% are

observed in the seond longest pair, i.e, between 8 and 16 syllables. A majority, i.e, 90% of

participants provide correct responses for more than half of the 2-syllable trials. This high

proportion is sustained, and further reaches 96.67% in full-length, 32-syllable utterances.

These results reflect that participants are highly likely to achieve correct responses on human

stimuli, and that this likelihood increases with length. The next sub-section investigates

whether this general trend is maintained over individual groups of participants.
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Figure 5.4: Groupwise trends in human stimuli: A GLM-model fit displaying data from

individual experimental conditions. The fit shows the relationship between predicted proba-

bility of correct responses (0=incorrect, 1=correct) and increasing stimulus-length. Accuracy

rises with length in all groups and experimental conditions.

5.3.1.2 Comparison between experimental conditions

Here, we individually examine the responses of participants in 3 experimental conditions,

with 2 sub-groups within each. As discussed before, the lexical content of the human stimuli

is identical throughout.

Length has a strongly significant influence [slope(SE) 0.06 (0.007), p-val < 0.001] on increasing

likelihood of responses in the baseline experiment, where participants heard randomly selected

WaveNet utterances. The relationship is consistent in both groups. Between the two endpoints,

2 and 32-syllable length stimuli, we see a 24.56% increase in Group I, and a 26.69% in Group

II. Adjacent lengths are comparable across groups. Between 16 and 32 syllables, Group II

however shows a sharper incline of 11.8%, compared to Group I at 9.5%. Finally, the proportion

of participants who are at least 50% accurate, is somewhat higher in Group I. For instance,

for long, 32-syllable utterances 100% participants are correct more than half the trials, while

in Group II the proportion is 93.3%. In the obstruent-sonorant condition, increasing length

holds a similar, strongly significant relationship with increasing PACC [slope (SE) 0.05 (0.007),

p-val < 0.001]. The maximum PACC in Group I is 0.92, showing a 25.98% increase from shorter

2-syllable utterances. Although consistent in Group II, we see the maximum PACC numerically

reduced to 0.87, and the endpoint difference to 17.98%. Comparing adjacent lengths, we

see that the difference between each pair (2-4, 4-8..) is higher in Group I. This indicates a

slightly faster rate of increase of PACC across lengths in Group I. Finally, the proportion of

participants who provide 50% correct responses are comparable between the groups at most

lengths, and identical at 96.67% for 32-syllable utterances. This means that, although the

effects are consistent in both the groups, Group I has a faster rate of increase PACC as length
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of the stimulus increases.

Human stimuli in the spectral-tilt condition are also very similar to the combined model. PACC

increases with increasing stimulus length, with strongly significant effects [slope (SE) 0.05

(0.007), p-val < 0.001]. PACC rises by 24.62% and 18.61% in Group I and Group II respectively.

The maximum PACC , and the rate of increase is faster in Group I, as evidenced by a slightly

sharper increase at every adjacent length. Like in other experimental conditions, a majority

of participants (i.e, above 89.6%) in both groups score accurately on at least 50% of the trials,

in every stimulus length.

The consistent high-accuracy across independently tested participant groups confirms no

between-group effects on the perception of human utterances. Shorter stimuli are also rated

above chance, showing that the distinction is clear with minimal input. This means, that

participants can accurately perceive human-likeness in human speech, and that increasing

length has a direct relationship with accuracy.

5.3.1.3 Reaction times and confidence scores
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Figure 5.5: Reaction times in human stimuli: Data pooled from all participants. Error bars

represent absolute deviation from the median, normalized by number of trials per stimulus

length.

Reaction times fall consistently up to stimuli of length 16-syllables, and then increase at

full-length utterances. As shown in Figure 5.5, this trend is uniform in all the experimental

conditions.

Participants require a median of 4.14 seconds to rate 2-syllable utterances. In the baseline

condition, participants are 80 ms slower than the spectral tilt, while the obstruent-sonorant

condition is closest to the global median. The minimum reaction time is 3.97 seconds at

16-syllables, with negligible variability across experimental groups. At 32-syllables, this value

increases by a median of 100 ms. Although consistent among conditions, baseline participants
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require the longest processing time of 4.10 seconds. Therefore, participants become gradually

faster up to 16-syllable stimuli, but take more time to rate the full-length utterances. Since

the lexical content of human stimuli was maintained identically, and we observe uniform

between-group trends it is possible that a subset of utterances are responsible for this.

Next, the self-reported confidence scores increase with length across all experimental condi-

tions. The proportion of participants who report "Very Confident" in their ratings rises by

35%, between short and full-length stimuli. The corresponding value is 75.7% in the Baseline

condition, and 75.4% in each of the obstruent-sonorant and the spectral tilt condition.

Therefore, in rating human stimuli, participants become faster and more confident as length

of the stimulus increases. This corroborates with the increased accuracy we had found in the

previous section.

5.3.1.4 Influence of demographic variables

Age Alexa_EXP Sex
18−35 35−50 50−65 Daily Sometimes Never Female Male
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Figure 5.6: Demographic variables in human stimuli: influence of age, exposure to TTS

and sex of the participant on the likelihood of correct responses PACC in each experimental

condition. Error bars represent the deviation of the PACC about standard error of the logistic

regression model.

Older adults do not differ significantly from younger adults. Middle aged participants show

lower PACC (p-val < 0.001). But as seen in Figure 5.6, this is limited to only the obstruent-

sonorant condition. In terms of exposure to TTS, occasional users have a 3.6% higher chance of

providing correct responses. This effect is significant [slope (SE) 0.32 (0.08), p-val < 0.001] and

consistent in the Baseline and the Spectral Tilt conditions. This means that participants who
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sporadically interact with TTS devices, have a higher chance of providing correct responses. On

the other hand, participants who report no exposure to TTS devices do not differ significantly,

or consistently among experimental conditions. Finally, as Figure 5.6 shows, male participants

are, 8% more likely to respond correctly, with uniforma and statistically significant [slope

(SE), p-val < 0.001] across experimental conditions.

Therefore, age does not have consistent effects on the chances of high accuracy. But higher

likelihoods of accuracy are found in occasional users of TTS, and male participants in our

population.

5.3.2 Randomly selected utterances
After a detailed discussion on human stimuli, we now analyze WaveNet stimuli in the Baseline

condition. No prior consideration has been made for their selection, except the filtering

described in Table 5.1. First, we combine data from both groups of participants. This helps

us observe the general relationship between the length of stimulus, and the participants’

chance of scoring correctly, i.e, the PACC . A system-specific comparison between FastPitch

and Tacotron WaveNet is a recurring theme in subsequent sections. Through this, we explore

system-specific perceptual patterns, which are often missed in MOS-based evaluations. Finally,

demographic variables will be analyzed for their unique influence on participant performance.
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Figure 5.7: Human vs Machine in the baseline condition: A GLM-model fit comparing all

human and machine stimuli from both groups and acoustic models in the baseline experi-

mental condition. Model fit describes the relationship between the predicted probability of

correct responses (0=incorrect, 1=correct) and increasing stimulus-length.
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5.3.2.1 An overview of randomly selected stimuli

Participant responses are combined from both the groups, and stimuli from both the acoustic

models in the Baseline condition. As Figure 5.7 shows, that PACC falls WaveNet, as opposed to

the clearly rising ones seen in the human stimuli. A reduction of 8.15% in PACC is seen between

the two endpoints, i.e. the shortest syllables of length 2 and full-length ones at 32 respectively.

This trend indicates that participants find full-length utterances more human-like. Comparing

adjacent lengths, we see that PACC falls with every incremental doubling. The sharpest drop

of 4.12%, is observed between stimuli of length 16 and 32.

The proportion of participants who provide at least 50% correct responses shows an 8% increase

at length 16, but does not increase at 32. Their average accuracy at length 2 is 62.8%, rises

slightly to 69.6% and plummets to 45.83% at 32-syllables. These combined results suggest

that human-machine distinction is more difficult in WaveNet utterances even with increasing

length of the stimuli.

5.3.2.2 Comparison between Tacotron and FastPitch

Taken individually, Tacotron and FastPitch display trends that are consistent with the com-

bined model, but vary uniquely in magnitude. The difference in individual behaviours can be

seen more clearly in Figure 5.8.

In Tacotron, the length of the stimulus has a minor, but significant effect (slope (SE) -0.02 (0.01),

p-val < 0.05) on lowering the likelihood of correct responses. Between the two end-points of

length, Tacotron shows a 11.85% lowering of PACC . By contrast, FastPitch only lowers PACC

by 4.16%, and the difference is non-significant. This indicates that participants make more

mistakes with Tacotron utterances at longer lengths.

Groups were established to observe whether the effects were robust across lexical content. In

Group I, FastPitch produces R1-P and Tacotron R2-P (see Table 5.1 for all details). A group-

wise analysis ( Figure 5.8 bottom panel) reveals divergent perceptual trends in each group. In

addition to the acoustic model, this also points to the conditional effects of lexical content. In

Group I, FastPitch shows a clear rising trend, such that full-length utterances are 13.27% more

likely to be rated correctly, compared to the shortest ones. Conversely, in Tacotron, a steep

drop of 26.84% is seen between the two endpoints. This drop is also strongly significant in

Tacotron [slope (SE) -.04 (.01), p-val < 0.001]. Next, in the Group II, we know that phrase-sets

are reverse-matched with the acoustic models. In FastPitch, which produced R2-P, the PACC

shows a steep and significant fall [slope (SE) -0.03 (0.01), p-val < 0.01]. By contrast in Tacotron,

length does not have a significant influence on increasing the participants’ chance of being

correct. PACC remains constant, with very minimal rises at every incremental doubling. It is

only 3.08% higher at full-length utterances compared to the shortest, 2-syllable ones.
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Figure 5.8: Tacotron vs FastPitch in the baseline condition A GLM-model fit showing

differences in the baseline experimental condition. Model fit describes the relationship

between the predicted probability of correct responses (0=incorrect, 1=correct) and increasing

stimulus-length. The top panel shows data combined over both the groups, while the bottom

panel shows individual groups. Trends in PACC can be seen to vary with the lexical content of

the phrase-sets for both the acoustic models.
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Therefore, we make two important observations. First, when producing R2-P, FastPitch and

Tacotron show similar trends of decreasing accuracy with longer stimulus lengths. However,

when presented with R1-P, PACC either increases or remains unchanged. This clearly demon-

strates that lexical content has an important influence on participants’ ability to determine

human/machine-likeness. Secondly, we observed that in FastPitch-produced R1-P, the rise in

accuracy PACC is more pronounced (13.8%), compared to Tacotron (3.08%). In other words,

participants have a higher chance of being accurate, and detecting machine-likeness in Fast-

Pitch for the same set of phrases. This suggests that there is a noticeable difference in the

machine-likeness conveyed by each of these acoustic models.

More differences can be seen in the reception of the acoustic models, by analysing the

proportion of participants who achieve at least 50% accuracy. This is lower in Tacotron at

every length. At full-length utterances, while the proportion is 53.3% in FastPitch, it is only

38% in Tacotron. This means that a greater number of participants are more likely in detecting

the machine-likeness of FastPitch produced utterances, compared to Tacotron ones.

Taking these results together, we find that Tacotron and FastPitch show measurable differences

in their perceived machine-likeness. FastPitch utterances are rated more machine-like, while

participants rate Tacotron as more human-like. Additionally, lexical content was also an

important influence on the participant accuracy.

5.3.2.3 Reaction times and confidence scores
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Figure 5.9: Reaction times in the baseline condition: Comparative display across acoustic

models with data pooled from participants in both the groups. Error bars represent absolute

deviation from the median, normalized by number of trials per stimulus length.

Reaction times vary between acoustic models, as seen in Figure 5.9.

In Tacotron, participants take an average of 4.17 seconds to rate the shortest utterances. This

progressively decreases to 4.09 seconds for middle-sized, 8-syllable stimuli. However, partici-
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pants take an additional 110 milliseconds, i.e., 4.20 seconds to rate utterances of 16 syllables

and above. This pattern is consistent across both groups of participants, indicating that longer

utterances in Tacotron require more processing time compared to shorter ones.

On the other hand, in FastPitch, reaction times generally decrease with increasing length.

Participants take 4.14 seconds to evaluate 2-syllable stimuli, and the minimum reaction time

of 3.99 seconds is recorded for 16-syllable stimuli. However, there is a slight increase of 30 ms

in reaction times for full-length utterances. Upon further analysis, we identify that this is

contributed by only one group (Group I), which also shows highest variance in the population.

It is possible that a subset of participants are responsible for this increase.

The trends of self-reported confidence scores are similar in both acoustic models but differ in

magnitude. In both models, stimuli of length 16 receive the highest confidence ratings. In

Tacotron, 57.3% of participants report being "Very Confident" for length 16, while in FastPitch,

this proportion is higher at 68.7%. For full-length utterances, the proportion is sustained in

FastPitch, but drops to 46.6% in Tacotron. This indicates that fewer participants report being

"Very Confident" in full-length utterances produced by Tacotron compared to FastPitch.

In summary, participants are generally quicker and more confident when rating FastPitch

stimuli, which aligns with the higher accuracy and perceived machine-likeness discussed

earlier. The next step is to analyze the demographic variables in our participant population to

determine if the results are influenced by any particular group of participants.

5.3.2.4 Influence of demographic variables

An analysis of the demographic variables shows (see Figure 5.10) that they all uniquely

influence the performance accuracy. The likelihood of providing correct responses declines

with age, and is influenced by the sex and exposure of participants to TTS devices.

In terms of age-based differences older adults show significantly poorer performance than

their younger and middle-aged counterparts. Older adults are 19.3% less likely to respond

correctly, compared to younger ones. Age-based differences in both acoustic models are

strongly significant (p-val < 0.001). Next, w.r.t exposure to TTS devices, participants with little

to no experience with TTS devices show the best performance. They are 11.9% more likely to

respond correctly, compared to daily users of TTS devices. Occasional users of TTS devices

are also reportedly higher than daily users, especially in FastPitch (p-val < 0.001). Finally,

sex-based differences vary in magnitude between acoustic models. Male participants are

shown to have better performance, but the effect is stronger in Tacotron stimuli [slope (SE)

+0.38 (0.09) p-val < 0.001), compared to FastPitch (p-val < 0.05).

Therefore, age-related differences can be seen, as older participants are less likely to be

accurate in WaveNet stimuli. However, in terms of exposure to TTS, users who reported no
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Figure 5.10: Demographic variables in the baseline condition: Influence of age, exposure

to TTS devices and sex of the participant on the likelihood of correct responses PACC in each

acoustic model in the baseline condition. Error bars represent the deviation of the PACC about

standard error of the logistic regression model.

exposure to TTS devices were most accurate, followed closely by occasional ones. Daily users

showed relatively poorer performance compared to these groups. Finally, male participants

showed higher accuracy, especially for Tacotron stimuli.

5.3.3 Obstruent-rich stimuli

5.3.3.1 Overview of all obstruent-rich data

From Figure 5.11, it can be clearly seen that the probability of correct responses in obstruent-

rich stimuli increases with increase in stimulus length. This indicates that the deviation in

WaveNet obstruents, first reported in (Pandey et al., 2022), is perceptible and contributes to

the perceived machine-likeness of the WaveNet stimuli.

Combined over both acoustic models, the PACC shows a sharp and consistent rise of 22.37%

between stimulus length 2 and 32, when the stimuli are obstruent-rich. This difference is

strongly significant [slope (SE) +0.03 (0.01), p-val < 0.001] PACC rises from 0.52 to 0.74, gradually

ascending with every doubling in length. The sharpest effect of doubling can be seen between

stimuli of lengths 16 and 32, where the jump is of 11.21%.

At longer lengths, we also find a larger number of participants who provide correct answers
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Figure 5.11: Human vs Machine in obstruent-rich stimuli: A GLM-model fit comparing

human and obstruent-rich WaveNet stimuli, combined over both groups and acoustic models.

Model fit describes the relationship between the predicted probability of correct responses

(0=incorrect, 1=correct) and increasing stimulus-length. Generally, PACC can be seen rising for

obstruent-rich machine stimuli.

for more than half the trials. While 63.2% of participants achieve at least 50% accuracy at

shorter lengths (2-8), this value reaches 78.3% and 81.7% at lengths 16 and 32 respectively.

Their average accuracy at length 2 is 51.2%, which rises to 81.7% for stimulus length 32.

Therefore, when the stimuli are obstruent-rich, then the likelihood of correct responses, the

average accuracy and the proportion of participants achieving at least 50% correct responses,

increase with stimulus length.

5.3.3.2 Comparison between Tacotron and FastPitch

There are notable distinctions between the voices generated by the Tacotron and FastPitch

acoustic models. As in Figure 5.12, FastPitch exhibits a more pronounced increase in accuracy

as a function of length, compared to Tacotron. Between stimuli lengths 2 and 32, the PACC of

FastPitch increases by 26.65%, while Tacotron by 17.85%. This indicates that participants are

more likely to classify FastPitch-generated stimuli as machine-like than those produced by

Tacotron. Comparing adjacent lengths, we find PACC shows sharper rises between adjacent

stimuli, while in Tacotron the movement is gentler. Between 16 and 32, the PACC in FastPitch

rises by 12.71%, and in Tacotron by 9.24%. However, between 8 and 16, FastPitch shows

another spike, as it rises by 7.75%. In contrast, Tacotron shows a softer rise of 4.89% between 8

and 16. This indicates that machine-likeness in FastPitch is more easily detectable at relatively

shorter stimuli lengths.
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Figure 5.12: Tacotron vs FastPitch in obstruent-rich stimuli: A GLM-model fit showing

differences between the two acoustic models in the obstruent-rich stimuli. PACC rises for

obstruent-rich stimuli for both groups and acoustic models. But a faster and sharper rise can

be seen in FastPitch.

Similarly, trends of participants who achieve at least 50% accuracy are comparable at shorter

lengths, but differ more when the stimulus length increases. At length 2, this proportion is

comparable between systems, i.e, 63.3 % in FastPitch, and 60% for Tacotron. But at length 32,

FastPitch escalates to 86.7%, while Tacotron shows a more modest rise up to 76.6%.

Therefore, while obstruent-rich stimuli are overall judged to be machine-like, the accuracy is

higher, and rises faster for utterances produced by FastPitch.

5.3.3.3 Reaction times and confidence scores

As can be seen in Figure 5.13, reaction times fall considerably with increasing phrase-length

(see Figure 5.13. This trend is uniform in obstruent-rich utterances produced by both the

acoustic models, but notably sharper in Tacotron.

In Tacotron, participants require a median of 4.10 seconds to rate 2-syllable utterances.

Progressively declining, this value lowers by 220 ms, and hits a minimum of 3.88 seconds for

full-length utterances. This demonstrates that participants are faster at responding to the

Tacotron stimuli.

Similarly in FastPitch, we see a gradual reduction in reaction time, indicating faster processing

for longer obstruent-rich utterances. Comparable to Tacotron, shorter, 2-syllable utterances
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require 4.11 seconds. At full-length utterances, we record a median of 4.01 seconds. Although

numerically higher than Tacotron, this group also reflects greater variance in the participant

population.
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Figure 5.13: Reaction times in obstruent-rich stimuli: Comparative display across acoustic

models with data pooled from participants in both the groups. Error bars represent absolute

deviation from the median, normalized by number of trials per stimulus length.

Finally, self-reported confidence scores show further differences. For shorter, 2-syllable

utterances, only 3̃5% of participants report "Very Confident". However, as length increases,

this proportion escalates to 86.2% in FastPitch, but remains at 58.6% in Tacotron.

Taking all these results together, we infer that although participants are quicker to judge

Tacotron produced stimuli to be more machine-like, fewer participants report high confidence

about their judgement.

5.3.3.4 Influence of demographic variables

Analysing the influence of demographic variables, we find that age, sex and experience with

TTS devices uniquely influence the probability of achieving correct scores.

Compared to younger adults (aged 18-35), older adults are 19.5% less likely to respond correctly.

This difference is consistent and significant across both acoustic models, with sharper effects

in Tacotron [slope (SE) -0.65 (0.20), p-val < 0.001]. This means that although older adults are

overall likely to respond incorrectly, they are even poorer with Tacotron. Middle-aged adults

also responded less accurately, but the difference is not significant. In terms of exposure

to TTS devices, participants who report having no experience with TTS devices show the

worst performance, with modestly significant differences. Compared to daily users of TTS

devices, they were 16.6% less likely to respond correctly. This age-based difference is strongly

significant in FastPitch [slope (SE) -0.90 (0.04), p-val < 0.001], but minimally so in Tacotron. As

can be seen in Figure 5.14, daily users also score lower for Tacotron, narrowing the difference
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Figure 5.14: Demographic variables in obstruent-rich stimuli: Influence of age, exposure

to TTS devices and sex of the participant on the likelihood of correct responses PACC in each

acoustic model for the obstruent-rich WaveNet stimuli. Error bars represent the deviation

of the PACC about standard error of the logistic regression model.

between them and no-exposure users. This indicates that regular exposure can aid human-

machine detection only in some cases. Occasional users, on the other hand, show maximum

chances of being correct. Finally, in terms of sex based differences, male listeners are 11%

more likely to respond accurately. This difference is not significant in FastPitch, but strongly

significant in Tacotron. As Figure 5.14 shows, females are less likely to be accurate for Tacotron

stimuli.

Therefore, analysing influence of other variables on the accuracy of participants we find

that older adults, and those who report no exposure to TTS devices show considerably

lower accuracy to younger ones, and daily and occasional users of TTS devices respectively.

Consistent with other experimental conditions, male participants are more likely than female

ones to respond correctly, especially in Tacotron. Effects are mostly uniform across both the

acoustic models, but females and daily listeners of Tacotron show comparatively lower PACC .

This points to an influence of Tacotron stimuli over specific sub-groups.

5.3.4 Sonorant-rich stimuli
After discussing randomly selected and obstruent-rich stimuli, this section analyzes those

phrases which are rich in sonorants. Figure 5.15 shows the combined model, plotted over both

the acoustic models across both groups of participants. We can see a flat slope, conveying
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Figure 5.15: Human vs Machine in sonorant-rich stimuli: A GLM-model fit comparing

human and sonorant-rich WaveNet stimuli, combined over both groups and acoustic models.

Model fit describes the relationship between the predicted probability of correct responses

(0=incorrect, 1=correct) and increasing stimulus-length. Generally, PACC can be seen unaf-

fected with stimulus length for sonorant-rich stimuli.

that length does not have a significant influence on the chance of participants’ scoring higher.

It is clear that the trends are quite different from the obstruent-rich data.

5.3.4.1 Overview of all sonorant-rich data

Although not statistically significant, we find that accuracy is likely to fall as length increases.

There is a small lowering of 1.98% in PACC , between stimuli lengths 2 and 32, i.e, the endpoints

of stimulus length. This means that participants are slightly less likely to respond correctly

for full-length utterances, than they are to shorter ones. Next, comparing other adjacent

lengths, we find that PACC lowers by <1% at every doubling of stimuli length. For example,

between stimuli of 16 and 32 syllables, where we expect maximum differences, we see only

0.69% lowering.

Next, participants who achieve accuracy for at least half of the trials is also relatively constant

across lengths. This value is 56.7% at length 2, and only rises up to 61.7%. This increase is

much smaller, compared to a 20% rise in obstruent-rich stimuli.

Therefore, length does not appear to aid perception of machine-likeness in sonorant-rich

stimuli. However, now we explore if these trends are motivated by a particular acoustic model,

or participant group, and whether they are reflected in reaction times.
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5.3.4.2 Comparison between Tacotron and FastPitch

The system-specific analysis shown in Figure 5.16 reveals clear trends of perceptual differ-

ences between the two acoustic models, FastPitch and Tacotron. Full-length, sonorant-rich

utterances produced by FastPitch are more likely to be detectable as machine-like, while the

falling accuracy may be contributed by Tacotron.
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Figure 5.16: Tacotron vs FastPitch in sonorant-rich stimuli: A GLM-model fit showing

differences between the two acoustic models in the sonorant-rich stimuli. PACC rises for

FastPitch but falls for Tacotron.

Tacotron stimuli show a consistently falling pattern, indicating that the stimuli sound more

human-like with every increase in stimulus length. Between the two endpoints, PACC falls

by 10.84%. Upon comparing adjacent increments, we find gradually falling PACC with every

doubling. The sharpest decline of 5.72% is seen when length doubles from 16 to 32. In FastPitch,

these trends are reversed. Sonorant-rich stimuli show a small but increasing trend in accuracy,

showing that machine-likeness of these stimuli is perceivable. There is 8.27% increase in PACC

between the shortest and full-length utterances, showing that an increase in length aids the

perception of machine-likeness. In the same vein, 76.67% of participants in FastPitch obtain

correct responses for at least half of the trials, while that proportion drops to 50% in Tacotron

in full-length utterances.

Taking these results together, we find that sonorant-rich stimuli sound machine-like when

produced by FastPitch, but appear human-like when by Tacotron. These trends are consistent

with our hypothesis, but not statistically significant. So, the predictive strength of this analysis
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is somewhat limited for future results.

5.3.4.3 Reaction times and confidence scores
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Figure 5.17: Reaction times in sonorant-rich stimuli:- Comparative display across acoustic

models with data pooled from participants in both the groups. Error bars represent absolute

deviation from the median, normalized by number of trials per stimulus length.

In sonorant-rich stimuli, especially for FastPitch, participants are overall faster at decision

making with increasing stimulus length.

In Tacotron, participants require a median of 4.24 seconds to judge the shortest, i.e, 2-syllable

stimuli. At 32-syllables, the reaction times drop by 240 ms and reach 4.00 seconds. However,

at 16-syllables, we see an inconsistent increase, with expected variance in the participant

population. This points to an inconsistent relationship of Tacotron with length in sonorant-rich

stimuli. On the other hand, in FastPitch, we find that reaction times consistently fall. They are

highest at 4.07 seconds, and lower quickly to 3.97 at middle-length, i.e 8-syllable utterances.

This value is sustained as length increases to 32-syllables. So, comparatively, FastPitch enables

a faster processing of shorter utterances, while Tacotron prompts the participant to continue

incorporating information from exposure.

Finally, higher confidence is associated with FastPitch at every length. The proportion of

participants who report "Very Confident" in their ratings rises from 35.4% to 69.0% in FastPitch.

In Tacotron, this proportion moves between 26.08% to 57.1%.

Recall from Table 5.1, that non-overlapping groups of participants rated sonorant-rich stimuli

from each acoustic model. Specifically, Group I rated FastPitch, and Group II rated Tacotron.

Our results from within-group analysis support that sonority of the lexical content has a

influence on confidence scores. For example, the proportion of participants who are "Very

Confident" drops by 10.4%, and 29.1% in Group I and Group II respectively. The sharper
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difference in Group II, further highlights the contrast between FastPitch produced obstruent-

rich and Tacotron produced sonorant-rich ones. In other words, participants detect machine-

likeness confidently in FastPitch obstruents.

5.3.4.4 Influence of demographic variables
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Figure 5.18: Demographic variables in sonorant-rich stimuli: Influence of age, exposure

to TTS devices and sex of the participant on the likelihood of correct responses PACC in each

acoustic model for the sonorant-rich WaveNet stimuli. Error bars represent the deviation of

the PACC about standard error of the logistic regression model.

As in obstruent-rich stimuli, we find that age, sex and experience with TTS devices contribute

individual influences to the probability of achieving correct scores.

Compared to younger adults (aged 18-35), older adults are 12.4% less likely to respond

correctly. However, the difference is only significant in FastPitch [slope (SE) -0.76 (0.18), p-val

< 0.001], and not in Tacotron. Middle-aged adults do not show significant differences in either

acoustic model. Next, compared to daily users of TTS devices, participants who report having

no experience are 9.6% less likely to respond correctly. This difference is only minimally

significant across both Tacotron and FastPitch (p-val < 0.1). On the other hand, responses

of occasional users are not consistent across acoustic model. In FastPitch they display a

strong, and statistically significant likelihood of being accurate [slope (SE) 0.81 (0.14), p-val <

0.001], but not specially different in Tacotron. Lastly, sex-based differences are consistent with

previous trends. Male listeners are 18.6% more likely to respond accurately. This difference is

also statistically significant (p-val < 0.001) in both acoustic models.
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It must be noted that sonorant-rich FastPitch utterances were rated by Group I participants.

As noted before, those who reported no exposure to TTS devices were also female participants

in the older age group. It is possible that the human-like reception of FastPitch is biased by

these participants, and the obtained PACC is lower. However, we refrain from an in-depth

analysis here.

5.3.5 Spectral tilt: tilt-deviant stimuli
We now move to the third experimental condition, where the stimuli, either deviant or alike,

are presented to our participants. This section analyzes stimuli produced by WaveNet, that

differ from the human voice in segmental spectral tilt.

5.3.5.1 Overview of all stimuli that deviate in spectral tilt
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Figure 5.19: Human vs Machine in tilt-deviant stimuli: A GLM-model fit comparing

human and tilt-deviant WaveNet stimuli, combined over both groups and acoustic models.

Model fit describes the relationship between the predicted probability of correct responses

(0=incorrect, 1=correct) and increasing stimulus-length. Generally, PACC can be seen rising for

tilt-deviant machine stimuli.

From Figure 5.19, we can see that the chance of providing correct responses steadily increases

with length. PACC rises from 0.66 to 0.79 between the endpoints of stimuli length, i.e, 2 and 32.

This 13.12% rise is a statistically significant [slope (SE) 0.02 (0.01), p-val < 0.01]. It must be

noted that even for shorter stimuli, the PACC is fairly high compared to other stimuli we have

seen before. The sharpest rise is between stimuli of length 16 and 32, where we see a 6.51%

increase in PACC .
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Most participants score accurately, as is evidenced by the proportion where they provide at

least 50% correct responses. At stimulus length 2, this proportion is high at 75.4%, while it

reaches 85.25% for full-length utterances. Their average accuracy is 63.3% at shorter stimuli

and peaks at 85.2% for full-length utterances. These trends together indicate that stimuli that

deviate from the human voice in terms of spectral tilt are likely to be judged machine-like. The

following sections explore the individual effects of and acoustic models, participant groups

and demographic variables.

5.3.5.2 Comparison between Tacotron and FastPitch

Taking individual systems apart, we find variable trends in the perception of acoustic models.

FastPitch stimuli rise sharply, comparable to an increase in the human stimuli. This indicates

that machine-likeness is as clear in tilt-deviant FastPitch, as human-likeness is in human

stimuli. Notably, shorter stimuli in both acoustic models retain their high PACC , indicating

that the tilt-deviant stimuli are fairly clear in machine-likeness even with different participant

groups.
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Figure 5.20: Tacotron vs FastPitch in tilt-deviant stimuli: A GLM-model fit showing

differences between the two acoustic models in the tilt-deviant stimuli. PACC rises for FastPitch

but remains more-or-less constant for Tacotron.

Stimuli length aids the chance of correct responses by 24.47%, and is strongly significant in

FastPitch [slope (SE) 0.05 (0.01), p-val < 0.001]. Comparing adjacent stimuli, we see a maximal

rise of 10.32% between stimuli of length 16 and 32. The next longest pair of stimuli, i.e, 8
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and 16 also show a fast incline of 7.39%. Conversely in Tacotron, we do not see a statistically

significant effect of length. The endpoint difference between stimuli lengths 2 and 32 is only

0.46%, indicating little support from length in machine-like perception. At other adjacent

lengths, PACC remains unchanged, with relative differences not exceeding 0.1%.

Participant data retains its high accuracy from the combined model. Participants who provide

correct answers at least 50% of the time are above 70% in both Tacotron and FastPitch. This

proportion further increases to 90.32% in FastPitch, while remains sustained at nearly 80% in

Tacotron. Most participants, therefore, score correctly on half or more trials.

Taking these results together, we can clearly see differences in the relative perception of

acoustic models. Now let us explore the trends of reaction times, and the unique influence

participant demographics on these trends.

5.3.5.3 Reaction times and confidence scores
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Figure 5.21: Reaction times in tilt-deviant stimuli: Comparative display across acoustic

models with data pooled from participants in both the groups. Error bars represent absolute

deviation from the median, normalized by number of trials per stimulus length.

In tilt-deviant utterances, increasing length supports faster decision making in both acoustic

models. However, the relationship is not consistent, as longer utterances require longer

processing time.

In Tacotron, the shortest 2-syllable stimuli are rated in a median of 4.14 seconds. Reaction

time reduces incrementally, with stimulus length increasing up to 8-syllables. The minimum

reaction time is 3.97 seconds and is sustained identically up to 16-syllables. As in Figure 5.21,

we see a sharp rise of 270 ms as full-length utterances are presented to participants. However,

diversity in responses for this group is also higher, as is reflected by a score of 0.14 on the

median absolute deviation.
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Next, in FastPitch, we also see that longer exposure results in faster decision making. Median

reaction times reduce from 4.14 seconds in 2-syllable stimuli, to 3.96 in 8-syllables. They rise

by 80 ms (with expected variance) in 16-syllables, but stabilize to 3.97 again for full-length

utterances.

Confidence scores reflect very similar patterns as seen before for the sonority experiment.

The proportion of participants who report "Very Confident" rises with length in both acoustic

models. But the rise is sharper in FastPitch (38.2%) compared to Tacotron (20.9%).

Like seen in most experiments above, reaction times fall and confidence increases with

increasing exposure to the stimuli. A sharp increase in Tacotron reaction times may be

attributed to the high variance of the data, while that in 16-syllable FastPitch is more uniform,

and needs to be investigated on its lexical content.

5.3.5.4 Influence of demographic variables
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Figure 5.22: Demographic variables in tilt-deviant stimuli: Influence of age, exposure to

TTS devices and sex of the participant on the likelihood of correct responses PACC in each

acoustic model for the tilt-deviant WaveNet stimuli. Error bars represent the deviation of the

PACC about standard error of the logistic regression model.

Figure 5.22 shows the unique influence of each demographic on the chance of providing

correct responses. As seen in most cases before, older adults have a lower likelihood of scoring

correct responses. They are 11.5% less likely to be accurate, and this difference is statistically

significant in both acoustic models. Effects are considerably sharper in Tacotron [slope (SE)

-.072 (0.19), p-val < 0.001], indicating that older people struggle more with tilt-deviant Tacotron
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stimuli. TTS exposure is only meaningful in the case of Group I participants, i.e. FastPitch

stimuli, because all participants in Group reported some experience with TTS. No-exposure

participants are 15.1%, less likely to provide correct answers. This is significantly lower [slope

(SE) -0.67 (0.23), p-val < 0.01] than daily users of TTS devices. Occasional users also exhibit

minimally significant lowering of PACC . Finally, sex-based differences are inconsistent across

acoustic models. Male participants in FastPitch have a higher chance of scoring correctly,

[slope (SE) 0.42 (0.14), p-val < 0.01], but lower in Tacotron [slope (SE) -0.31 (0.14), p-val <

0.05].

Therefore, older adults and no-exposure participants have a lower chance of scoring correctly.

Age-based results are sharper in Tacotron, while exposure-based are meaningful only for

FastPitch. On the other hand, sex of the participant is inconsistent in determining their

accuracy in this experimental condition.

5.3.6 Tilt-alike stimuli

5.3.6.1 An overview of stimuli that do not deviate in spectral tilt
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Figure 5.23: Human vs Machine in tilt-alike stimuli: A GLM-model fit comparing human

and tilt-alike WaveNet stimuli, combined over both groups and acoustic models. Model fit

describes the relationship between the predicted probability of correct responses (0=incorrect,

1=correct) and increasing stimulus-length. Generally, PACC can be seen rising for tilt-alike

WaveNet stimuli.

This is a discussion on those stimuli which do not deviate from the human voice in terms of

segmental spectral tilt. Figure 5.23 shows a rising trend, indicating that increasing length

allows for more machine-likeness, and consequently a greater chance of accurate responses.
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This relationship is also statistically significant [slope (SE) 0.03 (0.01), p-val < 0.01]. We see

an increase of 16.25% between the endpoints of stimuli lengths, where PACC rises from 0.63

to 0.79. A comparison of adjacent stimuli lengths suggest incremental increase with every

doubling of length. The sharpest increase is between 16 and 32, where the rise is 7.99%.

Participant data also suggests that most participants respond accurately. The proportion of

participants who provide correct answers for at least half the trials is above 85% in all the

stimuli lengths. This means that most participants can detect the machine-likeness of the

stimuli.

Taking these results together, we can see that stimuli whose segmental spectral tilt is quite sim-

ilar to the human voice, also appears quite machine-like. A careful observation of demographic

variables and individual acoustic models is required now.

5.3.6.2 Comparison of Tactron and FastPitch stimuli
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Figure 5.24: Tacotron vs FastPitch in tilt-alike stimuli: A GLM-model fit showing differ-

ences between the two acoustic models in the tilt-alike stimuli. PACC rises in both FastPitch

and Tacotron, but reaches higher values in FastPitch.

Individual trends in Tacotron and FastPitch are uniform, but vary in magnitude. Figure 5.24

shows that progression in stimulus length increases the likelihood of obtaining correct re-

sponses in both acoustic models, tested over distinct groups of participants. However, the

likelihood is visibly lower in Tacotron. We can also see that accuracy is predicted to be lower

for shorter stimuli, compared to tilt-deviant Tacotron in the previous section.
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In Tacotron, length is only a minimally significant influence (p-val < 0.1). The starting PACC

is 0.54 for 2-syllable stimuli. It rises to 0.695, with a 14.82% rise between the endpoints of

stimuli-lengths. Although PACC shows a rising pattern across adjacent stimuli lengths, there

are no major peaks. The largest increase is simply between 16 and 32. However interestingly,

participants who score above chance do not increase with length. This proportion is 64.5%

at syllable-length 2, rises to 83.8% for 8-syllables, and then falls below 75% in full-length

utterances. This indicates that longer tilt-similar utterances do appear human-like to some

participants.

In FastPitch, stimulus length has a stronger influence on PACC [slope (SE), 0.04 (0.01), p-val

< 0.05]. As noted before, PACC starts at 0.71, which is higher than the maximum predicted

for Tacotron. It rises 17.45% to 0.88 for full-length utterances. Comparing adjacent lengths,

we find that a high PACC of 0.75 is already seen at 8-syllables. The movement is however,

gentle like above, with a large spike obtained in the expected 16 and 32 range. The curve

is almost superimposed on the human-like utterances, indicating that machine-likeness is

clearly perceptible. Similarly, participants who respond correctly on at least 50% of the trials

is 96.7%, and remains above 90% for full-length ones.

These results show that tilt-similar stimuli do not appear human-like to our participants.

However, a closer look at the demographic variables is necessary.

5.3.6.3 Reaction times and confidence scores
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Figure 5.25: Reaction times in tilt-alike stimuli: Comparative display across acoustic

models with data pooled from participants in both the groups. Error bars represent absolute

deviation from the median, normalized by number of trials per stimulus length.

Reaction times for tilt-alike stimuli are uniform in both acoustic models. They fall up to

middle-length, show a minimal increase at 16-syllables, and then drop again at 32-syllables.

Overall, Tacotron is processed somewhat slower than FastPitch.
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The shortest utterances require 4.16 seconds to be rated in Tacotron. Reaction time progres-

sively declines to 3.91 seconds up to 8-syllable utterances. However, we see a notable rise of

130 ms at 16-syllable utterances, without much variance in the group. Full-length utterances

are rated quickly, at 3.99 ms again.

Similarly, reaction times reduce up to 8-syllables, reaching a minimum of 3.94 seconds from

4.01. However, the increase at 16-syllables is somewhat gentler, i.e. of 80 ms. Variance is low

overall, indicating uniform results. 32-syllable tilt-similar utterances are dismissed quickly as

machine-like, reporting the lowest reaction score so far.

The self-reported confidence scores also support that Tacotron offers more confusion. The

proportion of participants who report "Very Confident" is uniformly low, i.e. 38% and 30% in

FastPitch and Tacotron respectively. While it only rises to 48.3% in Tacotron, it reaches 68.9%

in FastPitch. Therefore, a majority of listeners report high confidence in rating FastPitch

stimuli. As seen in Figure 5.25, reaction times are faster at all lengths of stimuli. At full-length

utterances, participants are notably faster in FastPitch, i.e. by 240 ms in FastPitch compared

to Tacotron. Another notable trend is that 16-syllable stimuli require the longest reaction

times in both acoustic models. It is possible that the lexical content of a select set of utterances

demand a longer processing times.

5.3.6.4 Influence of demographic variables

Figure 5.26 clearly exemplifies that all population groups are more accurate in detecting the

machine-likeness of FastPitch utterances. Differences between groups are not as distinct as

previously found.

Age-based differences are only significant in FastPitch [slope (SE) -0.91 (0.20), p-val < 0.001],

where older adults are 18.8% less likely to respond correctly. Middle-aged adults also show

modestly significant (p-val < 0.05) lowering of PACC , compared to those in 18-35 (i.e. young) age

group. In Tacotron, neither of these results are significant. This indicates that young adults,

an otherwise high-performing group, are also confused with Tacotron stimuli. Next, in terms

of exposure to TTS devices, we see no significant differences in either of the acoustic models.

Similarly, sex based differences are inconsistent across acoustic models. Only in Tacotron, do

male participants have a 6.7% higher chance of responding correctly, with modestly significant

effects [slope (SE) 0.27 (0.13), p-val < 0.05]. But in FastPitch, males show a non-significant but

lower PACC by 3%. This shows that both male and female participants rate FastPitch stimuli

with comparable accuracy, but Tacotron can present challenge for females.
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Figure 5.26: Demographic variables in tilt-alike stimuli: Influence of age, exposure to TTS

devices and sex of the participant on the likelihood of correct responses PACC in each acoustic

model for the tilt-alike WaveNet stimuli. Error bars represent the deviation of the PACC about

standard error of the logistic regression model.

5.4 Discussion

5.4.1 Length and segmental distortion
Previous work on spoofing detection has demonstrated the realism of synthetic voices, and

has been described as indistinguishable from human speech (Wang et al., 2020b) in many

listening conditions (Terblanche et al., 2021). However, we found that machine-likeness could

be detected in a majority of experimental conditions and groups. Out of the 6 phrase-sets

tested, 4 corresponded with the increasing length hypothesis. Increasing stimulus length

had a positive influence on the likelihood of participant accuracy in a majority of cases in

WaveNet stimuli. In accordance with the Wecher-Febner’s law, participants responded with

minimal error to logarithmically increasing stimuli. Next, segmental distortion in terms of

spectral tilt deviation and obstruent-richness only enhanced the difference between human

and machine-likeness.

These results underscore the insufficient nature of traditional evaluation tests. Furthermore,

these results also indicate that segmental distortion is perceivable in obstruent-rich and

tilt-deviant utterances. It also supports previous research where distortion has pointed to

higher-level attributes like naturalness and system-preferences (Bunnell et al., 1998).
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The case of randomly selected phrases R2-P and the tilt-alike phrases is unclear. In the

baseline condition, R2-P is generally rated more human-like with increasing stimulus length.

Similarly, there are no major differences in the perception of tilt-deviant and tilt-alike stimuli.

We investigated our stimuli presentation details to locate the potential influence of context,

and quality of the preceding utterance. No sequential link between the previous utterances

was observed to introduce contextual effects. Similarly, based on quality of the previous

utterance, we could not locate any consistent ceiling effects. Since no obvious errors emerge

from experiment design, it is possible that the stimuli contain artefacts that we did not

account for. In previous work, spectral tilt deviation is computed per phrase, instead of the

per segment average we chose. Deviation is incrementally introduced in the same phrase.

Therefore, it will be important to recreate these experiments, with ideally a wider ranges of

spectral tilt deviations. Finally, the data is imbalanced between long and short utterances.

This may render our GLM model more sensitive to fluctuations in long utterances.

Phrase-set Lexical content Tacotron FastPitch

R2-P Within a short time she was walking briskly toward

the Emerald City, her silver shoes tinkling merrily on

the hard, yellow road bed.

23 16

R2-P To what training she owed her skill. 17 17

R2-P Was anything more than a tedious ridiculous nick-

name.

16 19

Tilt-Alike Done up in gray wool until she resembled a small

teddy bear

8 1

Tilt-Alike He ceased to satirize himself because time dulled the

irony of the situation and the joke lost its humor with

its sting.

2 8

Tilt-Alike his lordly patron’s noble leg 3 8

Table 5.3: Expectation failed:Phrases that were rated very human-like in the baseline condition,

or very machine-like in the tilt-alike condition across both groups and acoustic models. The

columns on the right display the number of times each utterance was rated human-like.

5.4.2 Tacotron and FastPitch
Tacotron voices were judged to be human-like more frequently than FastPitch voices. This

bears correspondence with the MOS evaluation in Table 4.1 where Tacotron WaveNet (Z)

received a higher MOS rating compared to FastPitch WaveNet (Y). In a complementary study,

we had shown that FastPitch selectively disrupts the micro-prosodic characteristics in voiceless

fricatives. A potential explanation is that in FastPitch, an average F0 value is predicted for the

entire duration of the phoneme, and is set to 0 in unvoiced regions. The interpolation must

cause the raising at onset to be normalized with the steady-state regions of the vowel, as well
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as the offset. On the other hand, Tacotron2, with its auto-regressive nature predicts F0 based

on previous samples, and retains the necessary microprosodic variation.

Non-autoregressive architectures like FastPitch are faster, and parallelizable, and offer to

overcome several shortcomings in auto-regressive TTS (Łańcucki, 2021). For example, tighter

constraints on phoneme length and duration (Ren et al., 2020) have contributed to previously

reported problems like word repetitions or omissions (Ping et al., 2017). Moreover, greater

control has been achieved in synthesizing expressive speech (Lee et al., 2021), especially in low-

resource languages (Shah et al., 2021). The recourse is not limited to TTS, but is widespread

in sequential data generation like machine translation and video captioning (Xiao et al., 2023;

Yang et al., 2021). These rapid developments point to a compelling demand for parallelizable

architectures. However, claims of parity between the two architectures must be revisited,

based on our findings. Not only was FastPitch perceived more machine-like, it was also

more sensitive to segmental distortion. To complement its development, we recommend that

greater attention is paid to quality evaluation of non-autoregressive architectures.

5.4.3 Demographic variables
Older adults in our participant pool judged most stimuli to be human-like. Despite the

imbalance in the dataset, the effect is consistent in most groups. These results are in line with

declining sensitivity with age (Lin et al., 2013; Jerger et al., 1995; Huang and Tang, 2010). But

a balanced study on age-related effects will inform many groups, especially those using AI

devices for elderly support. We did not see consistent effects of prior exposure to TTS devices.

As positive effects of exposure have been reported for tasks like word-recognition (Schwab

et al., 1985), we had expected daily users to be the best performing group. However, we also

observed that the effects of exposure are difficult to evaluate with self-report. More specific

tests are needed.

Most conspicuously, we found a consistent effect of male listeners providing more accurate re-

sponses in human-machine detection. Since this trend was not limited to groups with a higher

number of male participants younger age category, or those more exposed to TTS devices, we

can eliminate a data-driven bias. Feminine features such as higher pitch and dispersion (Puts

et al., 2011; Apicella and Feinberg, 2009) have been reported to appear more appealing to male

participants. A possible explanation is that male participants could have higher engagement

with the speaker of our experiments, and hence observed more fine-grained differences in

its human-likeness. Other evidence comes from phonetics and hearing mechanisms which

are particular to gender. Systematic studies on sex-based influences on hearing have shown

differences in male and female hearing patterns (McFadden, 2014). Female participants have

more sensitive hearing acuities (Chung et al., 1983; Stelmachowicz et al., 1989), that is slower

to decline than their male counterparts (Pearson et al., 1995). Male participants on the other
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hand, report more robust perception in noise and sub-optimal listening conditions (Neff et al.,

1996). Specific evidence from phonemic category perception identifies that male participants

reduce VOT distinction between stop consonants, and consequently rely on F0 as a cue for

voicing (Yu, 2022). This reliance is further reinforced, if the speaker is rated attractive, trust-

worthy or confident. In other words, male participants have greater experience of exploiting

the F0 for contrastive information. Extrapolating from these studies, we speculate that male

participants may be using the prosodic information more efficiently, to detect human-machine

likeness in our stimuli. But more experiments are needed to investigate sex-based influences

on the perception of synthetic speech. Care must be taken to closely monitor educational

background, exposure to music and hearing sensitivity and other interacting factors that may

bias their results.

5.4.4 Future implications
The perceptual significance of deviating obstruents in WaveNet systems has implications for

multiple fields. First, it may motivate TTS engineers to focus on segmental attributes of a

system, or even perform a post-processing of their audio. For example, (Fujimoto et al., 2018)

demonstrate that the use of WaveNet vocoders with distinct periodic/aperiodic decomposi-

tion, scores higher naturalness. From a TTS evaluation perspective, the test methodology

presented may offer a more fine-grained insight into localizing the source and perceptual

significance of distortion, compared to traditional, MOS-based listening tests. Finally, if

segmental characteristics of sonorants are indeed indistinguishable from human speech, then

analysis of synthetically produced sonorants may generalize well to human speech. This could

accelerate research in phonetics, because of the reduced reliance on speech data collection. It

must be noted, however, that more variance can be seen in participant responses for synthetic

speech. A potential reason is the imbalance between short and long utterances. This is a

limitation of the dataset, as naturally occurring corpora do not contain utterances that are

neatly balanced for obstruent/sonorant-richness, unless specially designed. In future work, it

will be useful to redesign these experiments, with equal numbers of long and short stimuli,

which are not “cut-outs" from running speech.
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6 | Conclusion

6.1 Summary
In this thesis, we have studied segmental evaluation in Text-to-Speech synthesizers. Cur-

rent practices in TTS evaluation are dominated by a listening test, where participants are

requested to score the quality of speech on an ordered scale. This approach has received

active criticism, because it does not provide any insight leading to system improvement. Our

aim has been to develop a set of diagnostic frameworks that can identify specific weaknesses

of TTS synthesizers. Our approaches incorporate perspectives from speech and behavioural

sciences, for the frameworks of acoustic analysis and subjective evaluation respectively. These

frameworks are particularly designed to evaluate the human-likeness of the voice generated

by TTS synthesizers. The human and TTS voice data is provided by the original Blizzard 2013

challenge, and its recent extension to neural TTS. The human voice belongs to a female voice

actor, who is a native speaker of American English. All TTS voices are generated with this

voice as training data.

One of the first goals of this thesis was to disambiguate the concept of naturalness, which

is a widely tested attribute in TTS synthesizers. A clear definition of this concept is seldom

provided, and the response relies on the users’ own interpretation of the term. We describe

how naturalness is a multi-faceted perceptual attribute in TTS voices, and is driven equally

by its appropriateness to various contexts. In targeted applications of TTS, naturalness is

closely linked with human-likeness. For example, a full human-like functionality of the voice is

required to support patients of various speech impairments. We identify that human-likeness

is a desirable attribute in TTS synthesizers. Specifying such a goal further complemented the

diagnostic nature of our proposed designs. First, because we could analyze the signal directly

in comparison to the human voice. This means that we maintained the acoustic-phonetic

features of the human voice as the constant, standard reference, and compared the same

features in TTS voices against this reference. The deviation from the features of human

voice became the comparative metric for evaluating TTS synthesizers. Then, in the proposed

subjective evaluation, we could ask an unambiguous question Does this sound like a human

or machine?
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In Chapter 3, we introduce the Dive Into Divisions approach for segmental evaluation of TTS

synthesizers. A segment is defined as a phoneme boundary, and segmentation of corpora is

achieved through forced alignment. Obstruent consonants, especially stops and affricates,

require a further step of sub-phonemic segmentation. After the boundaries are determined,

a set of contrastive features are extracted from these segments of phonemes. Contrastive

features are those acoustic-phonetic features which are responsible for meaningful differences

in the categorical perception of speech sounds. For example, we hear the difference between

/p/ and /b/, because of the difference in the duration of the voicing onset time. Similarly,

formant features vary to characterise different vowel shapes. Contrastive features provide a

characteristic representation of phonemes, and have been well-documented through several

decades of phonetics research. Therefore, for every segment (vowels and obstruent conso-

nants), we extract a set of contrastive features relevant to its category. Then, we compare

them between the human voice and every TTS voice of the Blizzard Challenge 2013 dataset.

Important diagnostic trends are revealed, which point to the TTS generation technique. For

example, we find that vowels produced by HMM synthesizers are tightly clustered around

their mean values. This can be traced back to the statistical averaging technique, where

instances of vowels are produced using a limited set of model parameters in HMM synthesis.

In other words, the acoustics inform us of the articulation mechanism, as in a classic phonetics

project. Another important finding of this approach is that voiceless regions of obstruent

consonants produced by WaveNet and WaveGAN vocoders, deviate strongly from the human

voice. At this stage, a complete explanation is not clear. However, it can be confirmed that a

feature-wise comparison between human and machine voices can lead to diagnostic insights

about a global articulation failure, i.e, aperiodic regions in neural TTS.

The next challenge was to identify whether this distortion is perceivable to human listeners.

None of the existing designs of subjective evaluation are suitable for testing distortion, because

they depend on eliciting user response on complete utterances. The prosodic support, the

contextual expectations and the repetitive nature of the task could distract the listener from

identifying the segmental distortion in the signal. Therefore, we designed the Long Arms

framework, where participants are presented with stimuli of varying lengths. In accordance

with the Weber-Fechner law, which states that human perception is inherently logarithmic, our

stimuli are also designed as logarithmic variants of stimulus lengths. This means that, stimuli

of 2, 4, 8, 16 and 32 syllables are presented to our listeners in random order. Moreover, stimuli

rich in obstruents (obstruent-rich) are compared with those poor in obstruents (sonorant-

rich) to target sensitivity to obstruent distortion. Participants are asked: Does this sound

like a human or machine? for every stimulus, and their responses are captured in a 2-

AFC task. An analysis of these responses using a logistic regression model reveals indeed,

that segmental distortion is perceivable as greater machine-likeness in WaveNet stimuli.

This further underscores the importance of segmental analysis, and designs inspired from
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behavioural sciences for TTS evaluation.

6.1.1 Context
The original contributions in this thesis have been enabled by several key advancements in

multiple disciplines. First, parallel data was available from the Blizzard 2013 Challenge in the

human and TTS voices. This greatly reduced the speaker and lexical variation in the corpus,

allowing us to focus on differences within the signal alone. It also provided a 300-hour training

data, ensuring its extension neural TTS. This allowed our analytical work to be situated within

the contemporary progress in TTS. Additionally, the cross-combination of autoregressive and

non-autoregressive architectures provided several grounds for systematic feature comparison.

Next, we draw inspiration from the active progress in the fields of corpus phonetics. There

are several tools available for forced alignment, segmentation and feature analysis of large

scale corpora. Their accompanying tutorials are also often provided. This enabled us to

automate the acoustic analysis, and helped to overcome reliance on manual annotations.

This helped greatly to bridge the gap between speech science and technology. Thirdly, an

up-to-date and comprehensive compilation of obstruent features provided the groundwork

for acoustic-phonetic analysis. We encourage future researchers of fundamental phonetics to

visualize the usefulness of their findings in TTS evaluation. Finally, the most critical catalyst

to this research is the growing faith in phonetics and speech science within TTS evaluation,

and speech technology in general. This has enabled cross-disciplinary research in our own

lab, and was further bolstered through a long collaboration with KTH, Sweden. This inclusion

has been the most powerful contributor to work in this thesis.

6.1.2 Limitations
The present work is dependent on the availability of the parallel data, with the same lexical

content available in the human and TTS voices. At this stage, we do not know the results

of an investigation which does not have identical lexical content. Further complexities can

arise if the source speaker does not match the target TTS generated voice, as is often the

case in voice cloning, or low-resource adaptation of training data. At this stage, this thesis

does not provide methods for speaker and content normalisation. This is a problem, because

if deviation is observed in some acoustic-phonetic features, we cannot determine whether

this is a distortion or a consequence of speaker differences. A second limitation appears

with inadequate computational tools, especially for sub-phonemic boundary detection. As

discussed in Section 3.2.3.2, the peak corresponding to the burst had to be estimated, by

manually examining 20% of the obstruent spectrogram. This step involves intervention by

a phonetics graduate, and is still sensitive to variations. Even after this, some instances
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were not properly demarcated, and had to be discarded. This is further exacerbated in

postvocalic (VC) contexts. It is therefore very important that tools like AutoVOT, and DrVOT

which automatically detect these sub-phonemic boundaries are rigorously developed for TTS

evaluation. Finally, all of our stimuli for the perception tests were created using the existing

utterances in the Blizzard 2013 test corpus. Therefore, a proper separation between obstruent-

rich and sonorant-rich stimuli was constrained by their availability in the corpus. For example,

both voiced and unvoiced obstruents were collapsed as a single class opposing sonorants,

while the original finding of distortion was limited to voiceless regions only. Although we

ascertained that the voiced obstruents were weighted lower than voiceless ones, a clearer

separation would yield more robust results.

6.2 Future work

6.2.1 Scaling: segments, speakers and languages
The present work concerns itself with one female speaker. The analysis is limited to English,

and only obstruent consonants and their neighbouring vowels are evaluated. Scaling this

design to incorporate other segments, multiple speakers, and other languages is important to

ascertain that the effects we observe are robust across several conditions. First, the articulation

of nasal consonants depends on the individual shapes of sinus cavities. This means that nasal

consonants and their contextual vowels retain speaker-sensitive information. Therefore, they

hold particular relevance in applications of TTS like voice cloning, speaker anonymization and

spoofing. In the present work, we used obstruent consonants to examine how TTS synthesizers

handle very specific acoustic consequences, such as short term transience, aperiodicity etc,

which were not possible to study in other phonological classes. Similarly, the nasals and liquids

are produced through a coupling mechanism with the pharyngeal and the side chambers

respectively. This mechanism introduces unique consequences like additional formants,

antiresonances and wider bandwidths (Zsiga, 2013; Stevens, 2000). Therefore, evaluating these

phonological classes through their acoustic-phonetic can aid in further diagnosis of neural

TTS synthesizers.

6.2.2 Development as a no-reference metric
This thesis presents a feature-by-feature comparison of each TTS voice directly with the

human voice. Drawing from Section 2.4.2.2, this approach bears resemblance with the full-

reference metrics like PESQ, POLQA and ViSQOL. However, several TTS voices are created

using pre-trained models where a direct comparison with the source speaker is not possible.
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To overcome this issue, we suggest the following approach: create a model-based reference,

and estimate deviation from the model parameters. A stepwise description is as follows:

• Download a large-scale, multi-speaker dataset such as LibriTTS, FoR

• Identify phonemic and sub-phonemic boundaries, and extract acoustic-phonetic features

as described in Chapters 3 and 4.

• For every feature in every phoneme (e.g. spectral tilt of /f/ ) create a speaker independent

probability distribution, but control for demographics like gender, accent and age.

• Examine the ranges and central tendencies of each feature, and evaluate them against

existing literature. Remove aberrant speakers.

• Create a TTS corpus of comparable distribution. Segment and extract features, and cast

them into a phoneme-wise distribution.

• Compare the reference, i.e, the speaker-independent human speech model with the

equivalent feature model of the desired TTS voice. This comparison can be quantified

using metrics like KL Divergence etc.

6.2.3 Using segmental distortion as a loss function
The present thesis is limited to an analysis of segments, but does not use that information to

improve the TTS synthesizer. If distortion is expressed as a continuous, differentiable function

then it can be introduced into the loss function of the TTS synthesizer. Then, reducing

the KL divergence will optimize the output of the TTS, so that segmental distortion is also

minimized.

6.2.4 Using LLMs as stimuli creators
As discussed before, we could not completely balance our stimuli to evaluate the effects of

distortion of specific segments. Even naturally occurring, large corpora of English may not

have a concentration of segments that we wish to evaluate. However, using Large Language

Models like ChatGPT and Bard can alleviate some creative design. We requested ChatGPT to

create a dialogue between a user and a voice based agent Alexa, such that Alexa’s responses

are full of sonorant consonants. Here was the response.

• User: Alexa, What’s the latest news update?

• Alexa: Currently, there’s noteworthy news about a new technology, revealing new

and remarkable advancements.

Conversely, when asked for an obstruent-rich utterances, we received:
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• User: Alexa, what’s the latest news update?

• Alexa: Presently, there’s significant news surrounding a breakthrough in sustainable

technology, fostering the future of key industries with pioneering developments.

This approach can help us analyze segmental distortion in TTS within a conversational setting.

Although it took a few attempts, the use of LLMs can augment the sentence generation, which

would be quite laborious for a human writer.

6.2.5 Recipe for using segmental evaluation as an evalua-
tion framework

The pipeline for segmental evaluation can be used for an acoustic as well as a perceptual

evaluation of synthesized audio. A following set of steps are presented, where it can be used

as a for-reference (ground-truth available) method:-

• Run the Dive into Divisions approach for an acoustic-phonetic feedback during the

speech synthesis stage.

• Identify locations of distortion, and conduct a targeted improvement using knowledge

based features.

• Re-evaluate the features of the synthesized voices. Locate distortions.

• State clear objectives for subjective evaluation, using specific use-cases for naturalness.

• Conduct subjective evaluation in multiple contextual and conversational settings.

6.3 Final remark
This PhD work shows how features of the small, segmental units of speech can be used to

evaluate Text-to-Speech synthesizers. In particular, we focus on the human-likeness aspect

of the multi-faceted naturalness. We discuss that human-likeness remains a desirable and

important target of TTS synthesis, and caters to a range of diverse applications. Then, we

describe the extraction and analysis feature which draws inspiration from standard techniques

in phonetics. We identify the sites where non-neural and neural TTS synthesizers show

statistically significant deviations from the human voice. Each TTS voice is compared directly

with the human voice, which is always maintained as the reference. Then, we design a

subjective evaluation framework which is inspired from the techniques in psychophysics, and

is suitable to perceptually evaluate distorted segments. We show that segmental distortion

is perceivable as increased machine-likeness even in modern, neural TTS. We hope that this
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PhD work helps to recognize the contribution of phoneticians and cognitive scientists, and

encourage them to conduct their research with TTS evaluation as another goal.
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