An Object-Oriented Approach for Replication Management*

Yvon Gourhant!
Distributed System Group, Trinity College, Dublin 2, Ireland
e-mail: ygourhnt@dsg.cs.tcd.ie

April 22, 1992

1 Introduction

One of the main goals of the object-oriented approach is software reuse. Research in replication management
brings forward many algorithms that often need reinventing the wheel to progress. Our approach consists of
providing high-level building blocks for various replication protocols, each one paying only for the mechanisms
it uses. Our goal is to encourage reusability of distributed abstractions in replication management.

In this paper, we present BOAR, a library of replicated objects, based on the fragmented object model [10].
Fragmented objects extend the object programming paradigm to a distributed environment. A fragmented
object can be viewed from two perspectives. Abstractly (for its clients), it is a single distributed shared
object, providing to each client a strongly-typed interface and consequently distribution transparency. Con-
cretely (for the designer), it encapsulates a group of cooperating fragments (i.e., objects with a centralized
representation). These fragments cooperate by invoking the abstract interface of lower-level fragmented
objects, called connective objects. For instance, replicated objects use connective objects encapsulating
communication protocols (e.g., RPC, diffusion) and synchronization abstractions (e.g., locks, semaphores,
rendez-vous, token passing). Replicated objects are themselves used as connective objects by higher-level
fragmented objects, and recursively until application specific objects. FEach protocol layer uses only the
necessary mechanisms of the lower-level layer and only pays for the cost of them?!.

Each replicated object in BOAR implements a particular protocol ensuring specific policies of consistency,
replicated data management and failure handling. A number of benefits ensues from providing these building
blocks. Firstly, a high-level of reuse between different replicated object types simplifies their implementation
and encourages to implement new ones. Secondly, the designers of higher-level fragmented objects can
address critical replication issues such as fault-tolerance and availability, just by picking-up from the library
the types implementing the protocols that best suit theirs needs.

2 Structure of replicated objects

Internally, a replicated object is composed of replicas, replicating channels, and possibly a logging channel
and a storage object (as shown on figure 1). For each component, there are several class hierarchies, with a
high degree of reuse. We present these components, one per one, in this section.

2.1 Replicas

Each replica is itself composed of two objects, which the classes inherit from a common class defining
a common interface. This common class may be provided by a centralized library for traditional data

*Submitted to WMRD-II (Monterey, CA, November 12-13, 1992)

tThe preliminary of this work was done at INRIA. This work is currently implemented by the SOR project at INRIA, 78153
Rocquencourt, France.

1The cost of the mechanism for handling connective objects is light: two procedure calls plus parameter marshalling/un-
marshalling. This is automatically handled by the FOG compiler [6].

. |
replicating channel

logging channel

reliable storage object

| replicated object |

Node A Node B

Figure 1: Macroscopic structuring

structures such as lists, trees, collections.

The first object, called data object, contains a local copy of the data. The second, called interface object,
provides the interface of the replicated object to clients on this node. A client can not distinguish between
the interface object and the whole replicated object.

The object interface triggers client invocations to the data object or to the replicating channel and possi-
bly to the logging channel. It handles full or partial replication depending on the granularity and structure of
the data. So the replicating channel may be used either for sending data (e.g., for updating) or for replicating
operations (i.e. processing the same operation on each replica). This latter is essential for replicating effi-
ciently some data structures. Consider, for instance, adding a new host in a replicated host table structured
as a linked-list?. Moreover, such a data structure benefits of a semantic-based synchronization [12]. The
synchronization objects presented in the next section extend this model to a distributed environment.

2.2 Replicating channels

Replicated channel types offer a generic interface for replicating data and operations, and for enforcing
consistency between replicas. Well known consistency semantics are strong consistency, causal consistency
[9], weak consistency and release consistency [3]. All these consistency semantics are well suited to certain
classes of application. Each replicated channel implements also a particular protocol used to synchronize
replicas (e.g., update, invalidate). The class of data structure in use influences the form of protocol that is
appropriate. For instance, for a small data structure, i1t is more efficient to update than to use an invalidation
protocol.

Internally, a replicating channel uses two connective objects, to multicast data and to maintain consistency
between replicas.

First, a multicast channel provides multicast communications. Several multicast channels offer the same
interface but provide different qualities of service such as reliability and ordering (fifo, causal, atomic,
global[2]) at different costs.

Second, most used synchronization objects implement distributed locking and token passing. We provide
both implicit and explicit synchronization. The implicit case is attractive because the synchronization objects
are encapsulated by replicated objects, and theirs methods are automatically invoked when the enclosing
replicated object is invoked. The explicit case is potentially more efficient. For instance, it allows to process
several invocations locally and to update other replicas once at release time [3]. Implicit synchronization is
best suited to application-level objects while explicit synchronization is more suitable to connective objects.

This approach provides a high degree of flexibility. Different protocols may implement different buffering
policies. The class of a synchronization protocol is reused by the classes of protocols ensuring particular

2 A list is also a typical example of a class picking-up from a centralized library.

consistency semantics, as well. A replicated object just uses the abstract interface, common to different
interchangeable protocols. The choice of a particular protocol is made at creation time. This allows to
choose and replace easily replication protocols and consistency policies.

The multicast channels and the synchronization objects of the same enclosing replicated object use
themselves a common lower-level connective object for sending and receiving messages. Thus, messages are
multiplexed on the same transport protocol, which is tightly coupled with the operating system.

2.3 Logging channels

Some replicated objects use a logging channel for registering updates, for synchronization or fault-tolerance
purposes (“redo” past actions, correct possible faults, errors or loss of consistency). A logging channel is a
connective object, storing data at the end of a physical medium and able to recover data from an arbitrary
state3 [11].

Logging is the basic mechanism for both optimistic and pessimistic concurrency control mechanisms. Our
approach does not enforce a specific policy but allows each application to define its own. In particular, a
logging channel can be used for replaying operations, with an optimistic concurrency control algorithm [8].

A logging channel is characterized by its buffering policy, by multiplexing/de-multiplexing mechanisms,
and by the management of physical media. Each characteristic is embodied in a class hierarchy. A logging
channel is built using object composition [4]. A programmer can customize its own logging channel by
selecting and stacking appropriate objects.

A logging channel is itself a replicated object at a lower-level. The number of replicas and the storage-
media (primary or secondary storage) can be parametrized at creation time. The number of replicas can be
totally unrelated to the number of replicas of the enclosing object, depending on failure assumptions. New
replicas may of course be created in case of failure.

2.4 Reliable storage objects

Just as logging channels register updates, storage objects offer a generic interface for check-pointing data.
Internally, a reliable storage object uses a replicated object for storing objects on several nodes. Different
storage policies may be chosen (e.g., full or partial replication?).

On the other hand, the network partitioning problem may be solved by an approach based on object
semantics: e.g., knowledge of the number of the partners and possibly of partners themselves (a special tree
may provide particular semantics in case of partitioning [7]).

Moreover, the layering of fragmented objects allows global decisions to be taken in case of failure. For
instance, relations between different replicated objects contained in an enclosing object could be defined for
providing consistency without exchanging messages in case of network partitions [1].

Finally, one can notice that many protocols implementing reliable storage are variations of common
protocols such as: write all/read 1 protocol or Gifford’s quorum protocol [5]. Tt is of primary interest to
reuse code between different implementations (for example, quorum management, weight allocation, mutual
decision).

3 Conclusion

We have presented a library of replicated objects structured as fragmented objects, in order to facilitate quick
prototyping of algorithms. One benefit of the fragmented object model is that it enforces a clear separation
between mechanisms and policies.

Currently, BOAR contains mainly primitive fragmented objects, such as communication channels, syn-
chronization objects and logging channels. Different replicated objects and reliable storage objects are being
implemented. We strongly believe that this library is of primary interest for encouraging programmers to

3Object interfaces are omitted from the extended abstract due to space constraints.
4The data of a replicated object may be fragmented in several distinct partitions. Each partition may be stored independently
on one or several media, for availability and space-economy purposes.

reuse abstractions between distributed applications. It will progressively accumulate objects needed by a
large number of applications.

Our experience shows that this approach increases the problem of choosing the classes implementing the

particular characteristics associated with each problem. But research on this topic is also progressing.

Acknowledgements

The work presented here has been developed by the SOR project at INRIA. The author is grateful to Mesaac
Makpangou and Michel Ruffin for their participation in the design. I would like also to thank Mark Sheppard
and Hervé Soulard for their assistance with this paper.

References

(1]

[10]

[11]

[12]

Daniel Barbara and Hector Garcia-Molina. The case for controlled inconsistency in replicated data. In [EFE
Computer Society Technical Committee on Operating Systems and Application Fnvironments Newsletter, vol-
ume 4, pages 8—11. IEEE Computer Society, 1990.

Kenneth P. Birman and Thomas A. Joseph. Exploiting virtual synchrony in distributed systems. In Proceedings
of the 11th ACM Symposium on Operating Systems Principles, pages 123-138, Austin TX (USA), November
1987. ACM.

John B. Carter, John K. Bennett, and Willy Zwaenepoel. Implementation and performance of Munin. In
Proceedings of the 13th ACM Symposium on Operating Systems Principles, volume 25 of Operating Systems
Review, pages 152-164, Pacific - Grove CA (USA), October 1991.

Peter Druschel, Larry L. Peterson, and Norman C. Hutchinson. Lipto: A dynamically configurable object-
oriented kernel. In Newsletter of the IFEFE Computer Society Technical Commattee on Operating Systems and
Application Fnvironments, volume 5, pages 11-16. IEEE, 1991.

D. K. Gifford. Weighted voting for replicated data. In Proceedings of the 7th ACM Symposium on Operating
Systems Principles, pages 150-162, December 1979.

Yvon Gourhant and Marc Shapiro. FOG/C++: a fragmented-object generator. In C++ Conference, pages
63-74, San Francisco, CA (USA), April 1990. Usenix.

Andy Hisgen, Andrew Birrell, Jerian Chuck, Timothy Mann, Michael Schroeder, and Garret Swart. Granularity
and semantic level of replication in the Echo distributed system. In IFEE Computer Society Technical Committee
on Operating Systems and Application Environments Newsletter, volume 4, pages 30-32. IEEE, IEEE Computer
Society, 1990.

D. B. Johnson and W. Zwaenepoel. Output-driven distributed optimistic message logging and checkpointing.
Technical Report TR90-118, Dept. of Comp. Sc., Rice University, Houston, Texas (USA), May 1990.

Rivka Ladin, Barbara Liskov, and Liuba Shrira. Lazy replication: Exploiting the semantics of distributed
services. In IEFE Computer Society Technical Commuttee on Operating Systems and Application Environments,
volume 4, pages 4-7. IEEE, IEEE Computer Society, 1990.

Mesaac Makpangou, Yvon Gourhant, Jean-Pierre Le Narzul, and Marc Shapiro. Fragmented objects for dis-
tributed abstractions. In T. L. Casavant and M. Singhal, editors, Advances in Distributed Computing: Concepts
and Design. IEEE Computer Society Press, 1992. To appear.

Michel Ruffin. Kitlog: a generic logging service. In 11th Symp. on Reliable Dist. Systems., Houston (TX, USA),
October 1992. to appear.

P Schwartz and A. Spector. Synchronizing shared abstract types. In ACM Transactions on Computer Systems,
volume 2, pages 223-250, August 1984.

