
An Object�Oriented Approach for Replication Management�

Yvon Gourhanty

Distributed System Group� Trinity College� Dublin �� Ireland

e�mail� ygourhnt�dsg�cs�tcd�ie

April ��� ����

� Introduction

One of the main goals of the object�oriented approach is software reuse� Research in replication management
brings forward many algorithms that often need reinventing the wheel to progress� Our approach consists of
providing high�level building blocks for various replication protocols� each one paying only for the mechanisms
it uses� Our goal is to encourage reusability of distributed abstractions in replication management�

In this paper� we present BOAR� a library of replicated objects� based on the fragmented object model �����
Fragmented objects extend the object programming paradigm to a distributed environment� A fragmented
object can be viewed from two perspectives� Abstractly 	for its clients
� it is a single distributed shared
object� providing to each client a strongly�typed interface and consequently distribution transparency� Con�
cretely 	for the designer
� it encapsulates a group of cooperating fragments 	i�e�� objects with a centralized
representation
� These fragments cooperate by invoking the abstract interface of lower�level fragmented
objects� called connective objects� For instance� replicated objects use connective objects encapsulating
communication protocols 	e�g�� RPC� di�usion
 and synchronization abstractions 	e�g�� locks� semaphores�
rendez�vous� token passing
� Replicated objects are themselves used as connective objects by higher�level
fragmented objects� and recursively until application speci�c objects� Each protocol layer uses only the
necessary mechanisms of the lower�level layer and only pays for the cost of them��

Each replicated object in BOAR implements a particular protocol ensuring speci�c policies of consistency�
replicated data management and failure handling� A number of bene�ts ensues from providing these building
blocks� Firstly� a high�level of reuse between di�erent replicated object types simpli�es their implementation
and encourages to implement new ones� Secondly� the designers of higher�level fragmented objects can
address critical replication issues such as fault�tolerance and availability� just by picking�up from the library
the types implementing the protocols that best suit theirs needs�

� Structure of replicated objects

Internally� a replicated object is composed of replicas� replicating channels� and possibly a logging channel

and a storage object 	as shown on �gure �
� For each component� there are several class hierarchies� with a
high degree of reuse� We present these components� one per one� in this section�

��� Replicas

Each replica is itself composed of two objects� which the classes inherit from a common class de�ning
a common interface� This common class may be provided by a centralized library for traditional data

�Submitted to WMRD�II �Monterey� CA� November ������ ����	
yThe preliminary of this work was done at INRIA
 This work is currently implemented by the SOR project at INRIA� ���
�

Rocquencourt� France

�The cost of the mechanism for handling connective objects is light� two procedure calls plus parameter marshalling�un�

marshalling
 This is automatically handled by the FOG compiler ���


�



replicated object client3

client2

reliable storage object

logging channel
object

interface

object
data

object
data

object
interface

Node BNode A

replica

replicating channel

object
client

Figure �
 Macroscopic structuring

structures such as lists� trees� collections�
The �rst object� called data object� contains a local copy of the data� The second� called interface object�

provides the interface of the replicated object to clients on this node� A client can not distinguish between
the interface object and the whole replicated object�

The object interface triggers client invocations to the data object or to the replicating channel and possi�
bly to the logging channel� It handles full or partial replication depending on the granularity and structure of
the data� So the replicating channel may be used either for sending data 	e�g�� for updating
 or for replicating
operations 	i�e� processing the same operation on each replica
� This latter is essential for replicating e��
ciently some data structures� Consider� for instance� adding a new host in a replicated host table structured
as a linked�list�� Moreover� such a data structure bene�ts of a semantic�based synchronization ����� The
synchronization objects presented in the next section extend this model to a distributed environment�

��� Replicating channels

Replicated channel types o�er a generic interface for replicating data and operations� and for enforcing
consistency between replicas� Well known consistency semantics are strong consistency� causal consistency
���� weak consistency and release consistency ���� All these consistency semantics are well suited to certain
classes of application� Each replicated channel implements also a particular protocol used to synchronize
replicas 	e�g�� update� invalidate
� The class of data structure in use in�uences the form of protocol that is
appropriate� For instance� for a small data structure� it is more e�cient to update than to use an invalidation
protocol�

Internally� a replicating channel uses two connective objects� to multicast data and to maintain consistency
between replicas�

First� a multicast channel provides multicast communications� Several multicast channels o�er the same
interface but provide di�erent qualities of service such as reliability and ordering 	�fo� causal� atomic�
global���
 at di�erent costs�

Second� most used synchronization objects implement distributed locking and token passing� We provide
both implicit and explicit synchronization� The implicit case is attractive because the synchronization objects
are encapsulated by replicated objects� and theirs methods are automatically invoked when the enclosing
replicated object is invoked� The explicit case is potentially more e�cient� For instance� it allows to process
several invocations locally and to update other replicas once at release time ���� Implicit synchronization is
best suited to application�level objects while explicit synchronization is more suitable to connective objects�

This approach provides a high degree of �exibility� Di�erent protocols may implement di�erent bu�ering
policies� The class of a synchronization protocol is reused by the classes of protocols ensuring particular

�A list is also a typical example of a class picking�up from a centralized library


�



consistency semantics� as well� A replicated object just uses the abstract interface� common to di�erent
interchangeable protocols� The choice of a particular protocol is made at creation time� This allows to
choose and replace easily replication protocols and consistency policies�

The multicast channels and the synchronization objects of the same enclosing replicated object use
themselves a common lower�level connective object for sending and receiving messages� Thus� messages are
multiplexed on the same transport protocol� which is tightly coupled with the operating system�

��� Logging channels

Some replicated objects use a logging channel for registering updates� for synchronization or fault�tolerance
purposes 	�redo� past actions� correct possible faults� errors or loss of consistency
� A logging channel is a
connective object� storing data at the end of a physical medium and able to recover data from an arbitrary
state� �����

Logging is the basic mechanism for both optimistic and pessimistic concurrency control mechanisms� Our
approach does not enforce a speci�c policy but allows each application to de�ne its own� In particular� a
logging channel can be used for replaying operations� with an optimistic concurrency control algorithm ����

A logging channel is characterized by its bu�ering policy� by multiplexing�de�multiplexing mechanisms�
and by the management of physical media� Each characteristic is embodied in a class hierarchy� A logging
channel is built using object composition ���� A programmer can customize its own logging channel by
selecting and stacking appropriate objects�

A logging channel is itself a replicated object at a lower�level� The number of replicas and the storage�
media 	primary or secondary storage
 can be parametrized at creation time� The number of replicas can be
totally unrelated to the number of replicas of the enclosing object� depending on failure assumptions� New
replicas may of course be created in case of failure�

��� Reliable storage objects

Just as logging channels register updates� storage objects o�er a generic interface for check�pointing data�
Internally� a reliable storage object uses a replicated object for storing objects on several nodes� Di�erent
storage policies may be chosen 	e�g�� full or partial replication�
�

On the other hand� the network partitioning problem may be solved by an approach based on object
semantics
 e�g�� knowledge of the number of the partners and possibly of partners themselves 	a special tree
may provide particular semantics in case of partitioning ���
�

Moreover� the layering of fragmented objects allows global decisions to be taken in case of failure� For
instance� relations between di�erent replicated objects contained in an enclosing object could be de�ned for
providing consistency without exchanging messages in case of network partitions ����

Finally� one can notice that many protocols implementing reliable storage are variations of common
protocols such as
 write all�read � protocol or Gi�ord�s quorum protocol ���� It is of primary interest to
reuse code between di�erent implementations 	for example� quorum management� weight allocation� mutual
decision
�

� Conclusion

We have presented a library of replicated objects structured as fragmented objects� in order to facilitate quick
prototyping of algorithms� One bene�t of the fragmented object model is that it enforces a clear separation
between mechanisms and policies�

Currently� BOAR contains mainly primitive fragmented objects� such as communication channels� syn�
chronization objects and logging channels� Di�erent replicated objects and reliable storage objects are being
implemented� We strongly believe that this library is of primary interest for encouraging programmers to

�Object interfaces are omitted from the extended abstract due to space constraints

�The data of a replicated objectmay be fragmented in several distinct partitions
 Each partitionmay be stored independently

on one or several media� for availability and space�economy purposes


�



reuse abstractions between distributed applications� It will progressively accumulate objects needed by a
large number of applications�

Our experience shows that this approach increases the problem of choosing the classes implementing the
particular characteristics associated with each problem� But research on this topic is also progressing�

Acknowledgements

The work presented here has been developed by the SOR project at INRIA� The author is grateful to Mesaac
Makpangou and Michel Ru�n for their participation in the design� I would like also to thank Mark Sheppard
and Herv�e Soulard for their assistance with this paper�

References

��� Daniel Barbar	a and Hector Garcia�Molina� The case for controlled inconsistency in replicated data� In IEEE

Computer Society Technical Committee on Operating Systems and Application Environments Newsletter
 vol�
ume �
 pages �
��� IEEE Computer Society
 �����

��� Kenneth P� Birman and Thomas A� Joseph� Exploiting virtual synchrony in distributed systems� In Proceedings

of the ��th ACM Symposium on Operating Systems Principles
 pages ���
���
 Austin TX �USA�
 November
����� ACM�

��� John B� Carter
 John K� Bennett
 and Willy Zwaenepoel� Implementation and performance of Munin� In
Proceedings of the ��th ACM Symposium on Operating Systems Principles
 volume �� of Operating Systems

Review
 pages ���
���
 Paci�c � Grove CA �USA�
 October �����

��� Peter Druschel
 Larry L� Peterson
 and Norman C� Hutchinson� Lipto� A dynamically con�gurable object�
oriented kernel� In Newsletter of the IEEE Computer Society Technical Committee on Operating Systems and

Application Environments
 volume �
 pages ��
��� IEEE
 �����

��� D� K� Gi�ord� Weighted voting for replicated data� In Proceedings of the �th ACM Symposium on Operating

Systems Principles
 pages ���
���
 December �����

��� Yvon Gourhant and Marc Shapiro� FOG�C��� a fragmented�object generator� In C�� Conference
 pages
��
��
 San Francisco
 CA �USA�
 April ����� Usenix�

��� Andy Hisgen
 Andrew Birrell
 Jerian Chuck
 Timothy Mann
 Michael Schroeder
 and Garret Swart� Granularity
and semantic level of replication in the Echo distributed system� In IEEE Computer Society Technical Committee

on Operating Systems and Application Environments Newsletter
 volume �
 pages ��
��� IEEE
 IEEE Computer
Society
 �����

��� D� B� Johnson and W� Zwaenepoel� Output�driven distributed optimistic message logging and checkpointing�
Technical Report TR������
 Dept� of Comp� Sc�
 Rice University
 Houston
 Texas �USA�
 May �����

��� Rivka Ladin
 Barbara Liskov
 and Liuba Shrira� Lazy replication� Exploiting the semantics of distributed
services� In IEEE Computer Society Technical Committee on Operating Systems and Application Environments

volume �
 pages �
�� IEEE
 IEEE Computer Society
 �����

���� Mesaac Makpangou
 Yvon Gourhant
 Jean�Pierre Le Narzul
 and Marc Shapiro� Fragmented objects for dis�
tributed abstractions� In T� L� Casavant and M� Singhal
 editors
 Advances in Distributed Computing� Concepts

and Design� IEEE Computer Society Press
 ����� To appear�

���� Michel Ru�n� Kitlog� a generic logging service� In ��th Symp� on Reliable Dist� Systems�
 Houston �TX
 USA�

October ����� to appear�

���� P Schwartz and A� Spector� Synchronizing shared abstract types� In ACM Transactions on Computer Systems

volume �
 pages ���
���
 August �����

�


