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Abstract 
 

Adaptability is one of the most important challenges in 
modern distributed systems.  It may be defined as the ease 
with which a software application satisfies the different 
system constraints and the requirements of users and 
other applications.  Adaptability is needed because 
distributed systems are inherently open, heterogeneous, 
and dynamic environments integrating a wide range of 
platforms, operating systems and applications from a 
number of different sources. 

In this paper, we propose to use mobile proxies to 
provide adaptability in distributed applications integrated 
using the CORBA technology.  Downloading stubs and 
skeletons at runtime allows the adaptation of either client 
or server interfaces as well as the protocol linking the 
two. 
 
 
1. Introduction 
 

The rapid advances in computer science have facilitated 
the development of a wide range of distributed 
technologies ranging from office-wide LANs to the 
worldwide Internet.  These technologies form a 
sophisticated environment, in which changes take place 
rapidly with new applications added, old ones removed or 
upgraded, and new standards, protocols and data formats 
emerging all the time.  This situation creates the necessity 
for adaptability among entities interacting in this 
environment. 

At a basic level, adaptability may be defined as the ease 
with which a software application satisfies the different 
system constraints and the requirements of users and 
other software applications [6].  It describes the 
adjustment of some entity to the needs and abilities of 
other entities, thereby changing its state and/or behaviour 
accordingly. 

Adaptability can be a matter of survival where, unless 
an entity adapts itself to some situation, it cannot continue 
to exist and interact with other entities.  In general, the 
goal of adaptability is to reach some minimum acceptable 
level of performance or functionality, known as the 
Quality of Service (QoS) level [6].  Under any 
circumstances, adaptability is desirable as it lengthens the 
lifetime of an entity, offers flexibility, and generally, 
saves effort, time, and resources. 

In this paper, we propose a new mechanism called the 
Mobile Proxy (MP) mechanism, based on the proxy 
principle [23], as a means of achieving adaptability in 
distributed applications integrated using the Common 
Object Request Broker Architecture (CORBA) 
technology [25]. 

A proxy is defined as a service representative that 
resides at the client’s site.  It provides an interface to the 
service and takes care of the communication protocol 
with that service. It also takes care of the marshalling of 
data, the checking of the validity of calls, and any other 
low-level processing, thereby making distribution 
transparent to the client.  Due to this transparency, 
proxies are popular and have been adopted by many 
distributed systems, including distributed objects 
technologies [17]. 

In CORBA, the proxy appears as the stub, which is 
linked statically to the client.  The stub sends invocations 
to the server object via the ORB, which will carry those 
invocations to another, complementary piece of code 
linked to the server and known as the skeleton. 

The MP mechanism explores the possibility of 
dynamically extending the functionality of the proxy 
(stub), hence, specialising it to perform additional user-
defined functionalities.  This situation results in the 
existence of multiple adaptable proxies per service, each 
carrying a different functionality.  The relevant proxy is 
then chosen according to the requirements of the client-



 

server interaction, where a client will be supplied with the 
proxy that best suit these requirements. 

As an example, the functionality can be data 
compression, compressing all the incoming and outgoing 
data at a strategy and speed aimed at improving the 
overall communication performance.  As we shall explain 
later in the paper, compression may benefit a client 
running on a slow wireless network (e.g. infrared 
network) but could degrade the communication 
performance for a client running on a fast backbone 
network.  Adaptability decision would then choose 
between using or avoiding the compression functionality. 

The MP mechanism relies on code mobility to support 
dynamic adaptability through proxies downloaded at 
runtime.  Proxy mobility will keep clients as lightweight 
as possible, since the many proxies will reside at the 
service site(s).  It also promotes the notion of proxy 
freshness, where the technology used to implement the 
adaptable proxies is guaranteed to be up to date.  
Moreover, these proxies can be changed by the service 
administrators without the need to inform or change the 
clients that use that service.  Such a costly change would 
be inescapable in the case of statically linked proxies that 
reside at the client sites. 

We also introduce the notions of the Environmental 
Object, which describes the different environments and 
components, and the Environmental Repository, which 
acts as a holder for these objects.  We believe that these 
notions are necessary for the adaptability process to be 
efficient. 

The Adaptable Proxies (APrx) system is a prototype 
that implements the MP mechanism.  The system is built 
using Java [7] and offers a set of APIs for any Java 
application integrated using CORBA.  The evaluation of 
the results obtained indicates the significance such a 
system may have on the goal of adaptability. 

The rest of this paper is structured as follows: Section 2 
provides a review of possible application scenarios where 
adaptability may be required.  The MP mechanism is 
discussed in Section 3.  The APrx prototype is described 
in Section 4 and an evaluation of this prototype is 
presented in Section 5.  Section 6 describes related work, 
and finally, Section 7 provides our general conclusions 
and discusses the prospects of future work. 
 
2. Adaptability scenarios 
 

In this section, we review some examples of scenarios 
that reflect the need for adaptability and the employment 
of proxies in achieving such adaptability. 
 
2.1. Communication performance 
 

Communication performance is an important area where 
adaptability may be applied.  The delay incurred in 

exchanging messages and data between a client and 
server can be expressed by the following equation: 

D = Tp + Tx     (1) 
Where D is the communication delay (second), Tp is the 
processing time (second), and Tx is the transmission time 
(second). 

As (1) indicates, communication delay consists of two 
times: processing time (Tp) and transmission time (Tx).  
Processing time refers to any pre-transmission and post-
reception processing that may be applied to the data 
exchanged.  Transmission time, on other hand, is simply 
the time taken by that data while travelling on the 
network. 

The transmission time itself depends on two other 
factors: the size of transmitted data and the network 
speed: 

Tx = S/V     (2) 
Where S is the data size (byte) and V is the network 

speed (byte/second). 
The size is an obvious factor affecting the transmission 

time linearly. However, network speed is less obvious 
depending on a number of other factors including, the 
physical bandwidth of the network(s) traversed by the 
data, the amount of traffic flowing, and the actual 
distance travelled. 

Consequently, the network speed factor is less 
controllable (from an application’s point of view) than the 
data size factor.  So, from (1) and (2) one may conclude 
that in order to improve the overall communication delay 
D, the size of data S has to be reduced: 

D = Tp + S/V     (3) 
Compression techniques (a pre-transmission process) 

may be used to minimise the size of data prior to its 
transmission.  After its reception, the data would then be 
decompressed (a post-reception process) to retrieve the 
original information. 

Ideally, if the compression (decompression) process did 
not consume any time, i.e. Tp in (3) was 0; the minimum 
communication delay would be reached at the smallest 
size: 

D(min) = Tx(min) = S(min)/V    (4) 
However, (4) is not realistic since the compression 

(decompression) process consumes time, which 
represents the processing time Tp.  At this point, a trade 
off begins to form as to whether apply compression, 
hence minimise Tx, or just send the data directly without 
compressing them and so, minimise Tp.  The decision will 
be driven towards optimising D and, as the results of 
Section 5 have shown, such a decision will largely 
depend, on the nature of data. 

To better illustrate the scenario, assume a database 
server that is queried by two clients.   The first (Client1) 
is running on a slow wireless network, whereas the 
second (Client2) is running on a fast backbone network.  
The server should supply the former with a compression-



 

proxy and the latter with a null-proxy (a proxy that 
embodies no extra functionality).  Figure 1 illustrates the 
idea, where Π denotes compression and Ξ denotes 
decompression (or vice versa, depending on the direction 
of the transmitted data). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Communication performance 
adaptability 

 
Assuming there are no other processing times apart 

from the compression/decompression time, and from (3), 
we will reach (5) for the first and second clients 
respectively as: 

D1 = Tcompression + Tx 

D2 = Tx     (5) 
In case no compression was employed, D1 would 

become D2, which is only composed of the transmission 
time Tx.  Now, the size of data at which D1 starts getting 
less than D2 is known as the breakeven point.  Intuitively, 
breakeven point is the point at which compression starts 
improving D1 (D1<D2).  Ideally, this point would be at 0 
bytes.  However, in reality it could be more than that, 
depending, among other things, on the type of network 
the client is running on.  For example, in high-speed 
networks, it can reach several hundred KB or even a few 
MB. 
 
2.2. Communication security 
 

Adaptability is also desirable in the context of security.  
Assume a server that is interacting with a client running 
on (or separated by) a foreign network that cannot be 
trusted.  This will lead to the exposure of any 
communicated data to all sorts of attacks aimed at 
compromising the privacy, integrity, and authenticity of 
that data.  Therefore, appropriate measures are required 

like, encryption, digital signatures (certificates), and 
message digests to protect the data from such attacks.  
The decision as to what functionality to employ depends, 
in the first place, on the criticality of the transmitted data 
and the required security properties. 

For example, to preserve privacy, data will have to be 
encrypted prior to its transmission using, either a public-
key protocol like RSA [20], or a secret-key protocol like 
DES [14].  On the other hand, if privacy is not as 
important an issue as the authenticity of data, digital 
signatures using DSA [15] may be preferred to full 
encryption. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Communication security adaptability 
 
Figure 2 illustrates how a server may supply an 

encryption-proxy to Client2 that is separated from the 
server by an open network.  On the other hand, no 
security is required for data travelling within a LAN, 
since the network is closed and consequently, assumed 
trusted.  Therefore, a null-proxy would be appropriate for 
Client1.  The ’Ε’ denotes encryption, whereas ’∆’ denotes 
decryption (or vice versa, depending on the direction of 
the transmitted data). 
 
2.3. Other scenarios 
 

In addition to communication performance and security, 
adaptability can benefit other situations where the 
requirements of the client/server interaction may include 
the likes of group communication, caching, fault 
tolerance, load balancing, and others.  However, due to 
shortage in space, we will only discuss the group 
communication and caching scenarios. 
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2.3.1. Group communication.  So far, we have 
considered the server as being composed of a single 
process.  This, however, may not always be the case.  In 
some applications, especially where fault-tolerance is 
sought, the server could be a process group composed of 
a number of member processes, one of which may be the 
master process.  To communicate with such a group, the 
master process, normally, assumes the responsibility for 
forwarding any requests and replies made on behalf of the 
group. 

Multicasting, however, is another way of 
communicating with the group.  A multicast-proxy could 
be employed to, transparently, forward any messages sent 
by the client to the intended recipients in the group, as in 
Figure 3.  Similarly, the proxy will manage any (possibly 
duplicate) responses sent back from those members. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Group communication adaptability 
 
2.3.2. Caching.  We have already reviewed one case by 
which performance can be improved, i.e., optimising the 
communication delay. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Caching adaptability 
 
Caching is another performance-enhancing method, 

which is popular in Web proxies [12].  The caching-proxy 
manipulates its local position at the client site and 
attempts to satisfy any requests, if the requested data are 

available locally.  It is only when such data are not 
available locally that the proxy will forward the request to 
the server.  This is shown in Figure 4.  Caching is useful 
only in situations where the freshness of data is not 
crucial to the client. 
 
3. The MP mechanism 
 

Consider a client-server application integrated using the 
CORBA technology.  The server object is defined by a set 
of one or more interfaces written in a special Interface 
Definition Language (IDL) [18], which is defined by the 
Object Management Group (OMG) as part of the 
CORBA specification.  These interfaces reflect the nature 
of the service offered by that object and define a standard 
method of interaction. 

Before a client can avail of the service offered by a 
particular server object, it first has to locate that object 
using any of the services defined by CORBA (e.g. 
Naming or Trader service).  Alternatively, the client can 
create an instance of a proxy object (the stub) either by 
binding to the server or by using Object Reference 
Strings. 

The client may then start invoking methods identified in 
the server’s interface.  This is normally done in a static 
manner, where the invocation is handled by the client 
stub and delivered to the server skeleton via the Object 
Request Broker (ORB).  Alternatively, if the client does 
not have knowledge of the server’s interface at compile, it 
can query a special database known as the Interface 
Repository and obtain information about the server’s 
interface.  It can then use the Dynamic Invocation 
Interface (DII) component of the ORB to make 
invocations on the server object. 

CORBA also allows dynamic server programming 
through the Dynamic Skeleton Interface (DSI) where 
invocations are allowed on IDL interfaces for which no 
server objects exist.  These objects are implemented at 
runtime by the server host. 

It should be noted that the dynamic aspects of 
CORBA applications, i.e. DII and DSI might allow for 
some form of adaptability to be realised.  However, the 
nature of this adaptability is more of an interface-
adaptability than proxy-adaptability, which is what we 
propose and will explain in due course. 

In the Mobile Proxy (MP) mechanism, we introduce 
three other entities to a CORBA application that we 
believe are essential to the goal of adaptability.  These are 
the mobile proxy, the Environmental Object, and the 
Environmental Repository. 
 
3.1. The mobile proxy 
 

Mobile proxies are essentially CORBA stubs.  
However, they differ from the normal stubs in two 
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aspects.  First, they are mobile in the sense that clients do 
not have the mobile proxy code that will be supplied at 
runtime by the server.  Second, they are specialised to 
perform certain functionalities aimed at achieving 
adaptability. 

Mobility is necessary to maintain lightweight clients 
and promote the idea of proxy freshness.  This implies 
that any changes applied to the internal implementation 
(and not the advertised interface of the server) of these 
proxies are not transmitted to clients until runtime.  
Therefore, obviating the need for changing the clients 
every time proxies are updated, something that has to be 
done with statically linked proxies.  However, mobility 
has the potential drawback of compromising the security 
of the system running the foreign code, and so, access 
rights must be restricted by a security policy regarding the 
execution of mobile code. 

The specialisation of mobile proxies will be in the 
context of the adaptability scenarios we already discussed 
in last section.  Each scenario requires the implementation 
of extra functionalities to be embedded in or linked to a 
specific proxy.  These functionalities will then modify the 
communication session according to the requirements of 
that particular scenario.  Such requirements are described 
by the second entity: the Environmental Object. 
 
3.2. The Environmental Object 
 

An Environmental Object is a data structure that holds a 
description of the different environments in which clients 
and servers are running, the requirements of these clients 
and servers, and any other runtime demands.  They may 
be described as a form of Meta Objects [13] that carry 
information about (and at a higher level than) their 
application. 

An Environmental Object will hold necessary 
information about its owner.  Such information may 
include the available bandwidth to the owner, the current 
and home addresses of the owner, whether the owner is a 
single or a group process, and whether the owner is 
sensitive or not to the freshness of any data requested.  
The amount of information an Environmental Object will 
hold depends on the complexity of its owner and how 
important the adaptability issue is to that owner.  The 
more information contained the better the description of 
the environment and its needs, and consequently, a more 
precise adaptability decision will be reached.  This 
decision is crucial because it will eventually determine 
the success or failure of the whole adaptability goal. 
 
3.3. The Environmental Repository 
 

An Environmental Repository represents a special 
database designed to hold the Environmental Objects of 
the different server environments.  The repository will 

also hold bindings between the Environmental Objects 
and the names of the servers to which they belong.  
Additionally, it may be authorised by a server to hold the 
library of mobile proxies that represent that server.  All 
this can be done through a registration process similar to 
the one carried out for an Implementation Repository. 

In addition to being a holder, an Environmental 
Repository will also perform a decision-making process, 
prior to the client/server interaction session, during which 
it will compare the different client-server Environmental 
Objects and produce a decision as to which mobile proxy 
should be used in a particular scenario.  This decision 
may be the mobile proxy itself, in which case it will be 
sent directly to the client. 

A network may contain any number of Environmental 
Repositories depending on the number of server objects 
maintained by the ORB and the size of the network 
 
3.4. The runtime dynamics 
 

We will proceed to describe the working details of the 
MP mechanism: 

First, a client willing to adapt to the server will 
commence by contacting the Environmental Repository 
and sending it the name of the required server and the 
Environmental Object of the client, as shown in step 1 of 
Figure 5. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. The client contacts the Environmental 

Repository 
 
The Environmental Repository then undergoes a 

decision-making process (step 2) during which it may use 
any techniques ranging from the simple if-then rules, to 
Case-Based Reasoning (CBR).  This process will 
compare the different requirements of the client and the 
server and of their environments (as represented by the 
Environmental Objects) and reach a decision as to the 
most suitable functionality (if any).  The repository will 
then send a mobile proxy (step 3) embodying that 
functionality to the client or, alternatively, send the 
address from which that proxy may be downloaded, if it 
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is not available at the repository.  The repository should 
also be able to inform the server of the adaptability 
decision so that the latter can employ the appropriate 
functionality that complements the proxy’s functionality 
(e.g. decompression versus compression). 

After downloading the mobile proxy, the client can now 
start making invocations on the server object.  All the 
data sent or received in the communication session may 
now be modified according to the functionality of the 
proxy.  This is illustrated in Figure 6, where "MP" stands 
for the mobile proxy and "F" for the complementary 
functionality at the server. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. The client invoking the server object 
 
4. The Adaptable Proxies system (APrx) 
 

The APrx system is an experimental implementation of 
the MP mechanism built for Java applications that are 
integrated with CORBA.  In version 1.0 of the system, 
JDK 1.1 was chosen as the language of implementation 
and OrbixWeb v3.1c [16] as a sample ORB.  The system 
was implemented as part of the Mobile Proxies project 
[2]. 

In general, the APrx system is divided into five logical 
modules as shown in Figure 7 below.  These modules are 
(with respect to the numbers shown in the figure): 
1. The client adapter 
2. The server adapter 
3. The ORB adapter 
4. The proxy loader 
5. The class loader 

The five modules constitute the core of the APrx system 
and together, encompass ten Java classes and one 
interface. 

The client adapter module is composed of two Java 
classes that represent a front-end API to the client object 
and that will initiate and end the adaptation process.  It 
provides methods for contacting the Environmental 
Repository and supplying it with an Environmental 
Object (as described in last section).  The client adapter 
can also inform the server of the adaptability decision 
through a special method that sends to the server adapter, 
an object containing the URL of the mobile proxy 

downloaded by the client.  This may be required in case 
the Environmental Repository is unable to inform the 
server of the adaptability decision.  It also has the 
advantage that knowledge will be distributed between the 
server and its client, which constitutes a form of security. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. The APrx system modules 
 
For example, if the URL was changed maliciously on 

its way to the client from the Environmental Repository 
by a third entity, the server will immediately discover that 
this URL is not part of its site or the Environmental 
Repository’s site.  It can then either inform the client or 
terminate the communication session, where in both 
cases, the client will not proceed with executing the 
malicious code. 

The server adapter, composed of three Java classes, 
provides an API to the server object, which insures that 
the functionality adopted by the client side is 
complemented at the server.  For example, if the client 
opted for compressing all the transmitted data bytes, the 
server should use decompression to reverse the effect of 
the client functionality.  The module is also responsible 
for managing concurrency issues that can rise from 
multiple clients attempting adaptability with the server at 
the same time.  The server adapter will keep the state of 
every connection opened by a client and the current 
functionality adopted by that client. 

The ORB adapter module is composed of two Java 
classes that are part of the client object, although it is 
hidden from the latter.  It provides methods that will 
allow the ORB to inform the proxy loader of the point in 
time when the client needs a proxy because a reference to 
the server object has entered the client’s address space.  
This is possibly due to the client binding to the server. 

The proxy loader module will then initiate the 
downloading of the mobile proxy code and any additional 
code employed by that proxy.  The module is composed 
of a single Java class. 
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Finally, The Class Loader module will download the 
data bytes and maintain some form of security by 
verifying the digital signatures associated with those 
bytes.  The module is composed of three Java classes and 
is used by both the client and server objects. 

The APrx system also defines a special interface that 
has to be implemented by every mobile proxy in order for 
that proxy to be identified as adaptable. 

In version 1.0 of the system, the implementations of the 
Environmental Object and Environmental Repository 
were left out.  We believe that these two entities demand 
further research due to their complexity and significance. 

 
4.2. The functionality tree 
 

In addition to the core modules, the APrx system 
defines a functionality tree, which imposes a structure on 
the adaptable mobile proxies.  This structure, illustrated 
in Figure 8, defines the different levels by which these 
proxies (and any other related code) may be classified.  
The tree is divided into four levels: The default proxy 
level, the mobile proxy level, the interceptor level, and 
the processing level. 

The default proxy level represents the default stub, 
which is usually provided by any IDL compiler.  The stub 
does not contain any functionality apart from the normal 
packing of data. 

The mobile proxy level contains the adaptable mobile 
proxies, which will be downloaded at runtime and will 
override the default proxy.  Any number of these proxies 
may exist depending on the adaptability scenarios the 
server is willing to support.  In the case of OrbixWeb, 
these will be the smart proxies [16]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. The APrx functionality tree 
 
The interceptor level contains any CORBA interceptors 

[4] that may be employed by the mobile proxies.  These 
are used primarily to intercept and expose the data 
entering or leaving the address space of a process and so, 
allowing for low-level processing like compression and 

encryption to be applied.  These interceptors will most 
probably be the transformers [16] of OrbixWeb, although 
filters [16] are also possible.  However, transformers are 
preferred since they work at a lower level than filters, 
and, therefore, can expose the communicated data bytes. 

The final level, the processing level, defines any other 
objects that might be needed by the previous two levels to 
accomplish their expected role.  For example, it might 
include objects that perform Huffman encoding [21], 
DES, or RSA encryption, and MD5 [19] message 
digesting.  The level is intended to be open in the sense 
that it can expand vertically to include any number of 
objects depending on the level of implementation 
complexity. 
 
4.3. Example 
 

Let’s take the scenario of section 2.1 as an example of 
how the APrx system may improve the communication 
performance. 

Consider again a client running on a slow wireless 
network.  We will assume that the client already has the 
default stub code, although this is not necessary. 

The first step will be for the client and server to create 
instances of the client and server adapter objects and 
invoke special methods that will render them ready to 
adapt each other.  A reference to the server object may 
then enter the client’s address space in which case the 
ORB will inform the client of this by invoking a special 
method on the ORB adapter. 

The client adapter will then proceed to contact the 
Environmental Repository and supply it with its 
Environmental Object.  This object will include 
information about how slow the client’s network is.  The 
Environmental Repository should reach a decision that 
the most suitable proxy is the compression-proxy and 
should inform the client adapter of the URL of this proxy. 

The client adapter then will invoke the necessary 
methods on the proxy and class loaders to download and 
install that proxy and any transformers and processing 
objects employed by it.  The client adapter will also 
contact the server adapter, if necessary, and inform it of 
this decision. This will allow the server adapter to install 
the necessary decompression transformer and related 
processing code.  The client can now start invoking 
methods on the server object.  All the communication will 
go through the mobile proxy and associated transformers 
and processing objects. 
 
5. Evaluation 
 

The evaluation of the APrx version 1.0 system was 
carried out for the communication performance and 
security adaptability scenarios. 
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A test package was developed to measure the different 
transmission and processing times of the APrx system in 
both scenarios.  The package represented a traditional file 
transfer application where the client sends a file to the 
server.  Such an application is a good example where the 
nature of the transmitted data affects the adaptability 
decision.  The design of the test application allows the 
client to read a file from the local file system, send it to 
the server object on another host, and receive an 
acknowledgement.  At the same time, the application will 
register all the necessary transmission and processing 
times as well as the size of data at different stages of the 
application. 

Tests were carried out on three types of data files 
transmitted over a 10 Mbps LAN.  These included image 
files in the JPEG, PDF files, and text files. 

In the communication performance test, compression 
was used as a means of improving the overall 
communication delay.  The first set of files employed in 
the test was the JPEG files.  Results revealed that these 
would not compress by more than 5%, which according 
to equations (1) and (3) of section 2.1, meant that Tp 
increased considerably without much reductions in S or 
Tx, therefore, leading to an overall increase in D.  
Adaptability in such a situation was to avoid compression 
and transmit the JPEG file directly. 

PDF files, on other hand, had a better compression ratio 
ranging from 23% to 65%.  The breakeven point was at 
about 187.5 KB as shown in Figure 9.  At that size 
compression would benefit the overall communication 
performance. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 9. Performance results of the PDF files 
 
Text files had an even better compression ratio reaching 

over 90% in some cases, and so, a breakeven point of as 
low as 93 KB was achieved as shown in Figure 10. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10. Performance results of the Text files 
 
An analysis was performed to predict the breakeven 

point for different network speeds. This analysis predicts 
that slow networks will affect the overall communication 
performances, where Tx is the dominant component, more 
than those that have a fair ratio of Tx to Tp, or where Tp is 
dominant (fast networks).  Therefore, it is in the slow 
networks that compression would be most useful, since 
transmission time will reduce notably without much 
increase in the processing time.  On the other hand, 
compression becomes infeasible for high-speed networks. 

Table 1 shows how the breakeven point of the PDF files 
would vary according to the type of network on which the 
application is running. 
 

Table 1. The breakeven point for different 
networks (PDF files) 

Network Speed 
(Mbps) 

Breakeven 
point (KB) 

GSM 0.0096 0 
ISDN 0.128 0 
Ethernet 10 187.5 
Telesat Satellite 12 398 
T3 and networks with 
higher speeds 

>45 Compression 
not feasible 

 
The second performance test was dedicated to 

measuring the expense of three security techniques.  
These included symmetric and asymmetric encryption 
and digital signatures.  In the case of encryption, the 
transmitted file was encrypted before transmission and 
decrypted at its destination.  Whereas with digital 
signatures, the file was signed and the signature attached 
to the transmitted data.  The signature was then verified at 
the destination. 



 

Security performance for the PDF files
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As shown in Figure 11, asymmetric encryption using 
RSA was the most expensive, followed by symmetric 
encryption using DES, and finally, digital signing with 
DSA.  256-bit keys were used in all three cases. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11. Performance results of security 
adaptability for PDF files 

 
It is worth noting that these tests were not meant to 

improve the performance of the application but simply to 
get an idea of such performance.  However, security 
techniques should be feasible in order for them to be 
practical and employable. 
 
6. Related Work 
 

Adaptability has been a major concern for software 
development recently and the following examples are but 
a few that one can mention, although much work is still to 
be done in this area if modern distributed systems are to 
be characterized as adaptable. 

The RAPP system [22] is a CORBA-based platform 
aimed at improving the QoS level by inserting proxy 
objects in the path of the transmitted data.  However, The 
system is tailored mainly to improve the quality of 
service, as opposed to the more general adaptability of the 
APrx system. 

The Reliable Multicast proXy (RMX) [3] is another 
system designed with the goal of adaptability in mind.  
The RMX system proposes a heavyweight multicast 
proxy placed on a separate host between a server and its 
clients.  The proxy has a complete knowledge of the state 
of those clients (e.g. their respective bandwidths), will 
modify any data transmitted from the server using certain 
functionalities to adapt to the environments of those 
clients (e.g. compressing the data for slow clients).  The 

system offers a wide range of functionalities that will 
cater for different adaptability scenarios. 

The possible advantages of adaptability by mobility are 
evaluated by Ismail and Hagimont [8].  Their proposed 
system, called the agent server, allows adaptability in a 
pure Java environment.  The agent server provides a 
mechanism for clients to upload mobile agents to the 
servers.  These agents will adapt the server’s interface to 
the operational needs of the client, thus allowing extra 
functionality to be added to the server. This approach is 
complementary to our adaptable mobile proxies. 

The Jini technology [9] is probably the best known 
example of adaptability through mobility.  Servers 
register a description of the services they offer with a 
special lookup server along with a proxy that permits 
clients to avail of that service.  Clients will query the 
lookup server to learn of available services and obtain the 
relevant proxies, thereby allowing client/server 
interaction to be adapted at runtime. 

Adaptability in Jini is regarded as a form of interface-
adaptability.  A client chooses a service (e.g. printer) and 
a proxy with a suitable interface is given back to that 
client.  This is in contrast to our approach where a service 
interface is constant but the implementation of the proxies 
representing that service and carrying the same interface 
are different. 

Other related work includes the LEAD++ language 
proposed by Amano and Watanabe [1], which is an object 
oriented language that takes dynamic adaptability into 
consideration and is based on a reflective model.  Also 
Kidston et al. [11] propose a proxy solution that will 
improve the QoS level for communication between wired 
and wireless environments.  Adaptability is achieved by 
allowing a wired environment with high QoS to meet the 
lower QoS of a wireless environment. 

Finally, Katz [10] looks at the issue of adaptation and 
mobility in wireless information systems where the 
awareness of the location and situation are taken as forms 
of adaptability. 
 
7. Future work 
 

An important area where further research should be 
directed is the area of Environmental Objects and 
Environmental Repositories.  Such research should 
include the information that will be encoded in the 
Environmental Objects and the technologies used in 
building the Environmental Repository. 

Another area would the cascading of different mobile 
proxies in order to realise complex scenarios and enrich 
the adaptability semantics. 

 
 
 
 



 

8. Conclusion 
 

The fact that modern distributed systems are composed 
of a wide range of products meant that these systems 
should offer mechanisms to allow different applications 
to interact in a way that will satisfy certain application- 
and environment-level requirements. 

One such mechanism, proposed in this paper, is the MP 
mechanism.  The mechanism aims at providing 
adaptability in the CORBA framework using mobile 
proxies. 

The MP mechanism also introduces the notions of 
Environmental Objects, which describe the nature of the 
application and its environment, and Environmental 
Repositories, which act as holders of the Environmental 
Objects.  Appropriate support for these notions requires 
further research. 

The versatility of the MP mechanism is demonstrated 
by the different adaptability scenarios that may benefit 
from it.  The mechanism is implemented by the APrx 
prototype, which is an open, extensible system that 
provides a standard set of APIs to Java applications 
integrated using CORBA.  The results of test applications 
revealed the significance such a system may have on the 
adaptability goal. 
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