
Adaptability in CORBA: The Mobile Proxy Approach

 * This work was undertaken as part of the MSc programme in networks and distributed systems at the Computer Science Department, University of
Dublin, Trinity College, 1998-99.

Benjamin Aziz∗
School of Computer Applications

Dublin City University
baziz@compapp.dcu.ie

Christian Jensen
Computer Science Department

University of Dublin, Trinity College
Christian.Jensen@cs.tcd.ie

Abstract

Adaptability is one of the most important challenges in
modern distributed systems. It may be defined as the ease
with which a software application satisfies the different
system constraints and the requirements of users and
other applications. Adaptability is needed because
distributed systems are inherently open, heterogeneous,
and dynamic environments integrating a wide range of
platforms, operating systems and applications from a
number of different sources.

In this paper, we propose to use mobile proxies to
provide adaptability in distributed applications integrated
using the CORBA technology. Downloading stubs and
skeletons at runtime allows the adaptation of either client
or server interfaces as well as the protocol linking the
two.

1. Introduction

The rapid advances in computer science have facilitated
the development of a wide range of distributed
technologies ranging from office-wide LANs to the
worldwide Internet. These technologies form a
sophisticated environment, in which changes take place
rapidly with new applications added, old ones removed or
upgraded, and new standards, protocols and data formats
emerging all the time. This situation creates the necessity
for adaptability among entities interacting in this
environment.

At a basic level, adaptability may be defined as the ease
with which a software application satisfies the different
system constraints and the requirements of users and
other software applications [6]. It describes the
adjustment of some entity to the needs and abilities of
other entities, thereby changing its state and/or behaviour
accordingly.

Adaptability can be a matter of survival where, unless
an entity adapts itself to some situation, it cannot continue
to exist and interact with other entities. In general, the
goal of adaptability is to reach some minimum acceptable
level of performance or functionality, known as the
Quality of Service (QoS) level [6]. Under any
circumstances, adaptability is desirable as it lengthens the
lifetime of an entity, offers flexibility, and generally,
saves effort, time, and resources.

In this paper, we propose a new mechanism called the
Mobile Proxy (MP) mechanism, based on the proxy
principle [23], as a means of achieving adaptability in
distributed applications integrated using the Common
Object Request Broker Architecture (CORBA)
technology [25].

A proxy is defined as a service representative that
resides at the client’s site. It provides an interface to the
service and takes care of the communication protocol
with that service. It also takes care of the marshalling of
data, the checking of the validity of calls, and any other
low-level processing, thereby making distribution
transparent to the client. Due to this transparency,
proxies are popular and have been adopted by many
distributed systems, including distributed objects
technologies [17].

In CORBA, the proxy appears as the stub, which is
linked statically to the client. The stub sends invocations
to the server object via the ORB, which will carry those
invocations to another, complementary piece of code
linked to the server and known as the skeleton.

The MP mechanism explores the possibility of
dynamically extending the functionality of the proxy
(stub), hence, specialising it to perform additional user-
defined functionalities. This situation results in the
existence of multiple adaptable proxies per service, each
carrying a different functionality. The relevant proxy is
then chosen according to the requirements of the client-

server interaction, where a client will be supplied with the
proxy that best suit these requirements.

As an example, the functionality can be data
compression, compressing all the incoming and outgoing
data at a strategy and speed aimed at improving the
overall communication performance. As we shall explain
later in the paper, compression may benefit a client
running on a slow wireless network (e.g. infrared
network) but could degrade the communication
performance for a client running on a fast backbone
network. Adaptability decision would then choose
between using or avoiding the compression functionality.

The MP mechanism relies on code mobility to support
dynamic adaptability through proxies downloaded at
runtime. Proxy mobility will keep clients as lightweight
as possible, since the many proxies will reside at the
service site(s). It also promotes the notion of proxy
freshness, where the technology used to implement the
adaptable proxies is guaranteed to be up to date.
Moreover, these proxies can be changed by the service
administrators without the need to inform or change the
clients that use that service. Such a costly change would
be inescapable in the case of statically linked proxies that
reside at the client sites.

We also introduce the notions of the Environmental
Object, which describes the different environments and
components, and the Environmental Repository, which
acts as a holder for these objects. We believe that these
notions are necessary for the adaptability process to be
efficient.

The Adaptable Proxies (APrx) system is a prototype
that implements the MP mechanism. The system is built
using Java [7] and offers a set of APIs for any Java
application integrated using CORBA. The evaluation of
the results obtained indicates the significance such a
system may have on the goal of adaptability.

The rest of this paper is structured as follows: Section 2
provides a review of possible application scenarios where
adaptability may be required. The MP mechanism is
discussed in Section 3. The APrx prototype is described
in Section 4 and an evaluation of this prototype is
presented in Section 5. Section 6 describes related work,
and finally, Section 7 provides our general conclusions
and discusses the prospects of future work.

2. Adaptability scenarios

In this section, we review some examples of scenarios
that reflect the need for adaptability and the employment
of proxies in achieving such adaptability.

2.1. Communication performance

Communication performance is an important area where
adaptability may be applied. The delay incurred in

exchanging messages and data between a client and
server can be expressed by the following equation:

D = Tp + Tx (1)
Where D is the communication delay (second), Tp is the
processing time (second), and Tx is the transmission time
(second).

As (1) indicates, communication delay consists of two
times: processing time (Tp) and transmission time (Tx).
Processing time refers to any pre-transmission and post-
reception processing that may be applied to the data
exchanged. Transmission time, on other hand, is simply
the time taken by that data while travelling on the
network.

The transmission time itself depends on two other
factors: the size of transmitted data and the network
speed:

Tx = S/V (2)
Where S is the data size (byte) and V is the network

speed (byte/second).
The size is an obvious factor affecting the transmission

time linearly. However, network speed is less obvious
depending on a number of other factors including, the
physical bandwidth of the network(s) traversed by the
data, the amount of traffic flowing, and the actual
distance travelled.

Consequently, the network speed factor is less
controllable (from an application’s point of view) than the
data size factor. So, from (1) and (2) one may conclude
that in order to improve the overall communication delay
D, the size of data S has to be reduced:

D = Tp + S/V (3)
Compression techniques (a pre-transmission process)

may be used to minimise the size of data prior to its
transmission. After its reception, the data would then be
decompressed (a post-reception process) to retrieve the
original information.

Ideally, if the compression (decompression) process did
not consume any time, i.e. Tp in (3) was 0; the minimum
communication delay would be reached at the smallest
size:

D(min) = Tx(min) = S(min)/V (4)
However, (4) is not realistic since the compression

(decompression) process consumes time, which
represents the processing time Tp. At this point, a trade
off begins to form as to whether apply compression,
hence minimise Tx, or just send the data directly without
compressing them and so, minimise Tp. The decision will
be driven towards optimising D and, as the results of
Section 5 have shown, such a decision will largely
depend, on the nature of data.

To better illustrate the scenario, assume a database
server that is queried by two clients. The first (Client1)
is running on a slow wireless network, whereas the
second (Client2) is running on a fast backbone network.
The server should supply the former with a compression-

proxy and the latter with a null-proxy (a proxy that
embodies no extra functionality). Figure 1 illustrates the
idea, where Π denotes compression and Ξ denotes
decompression (or vice versa, depending on the direction
of the transmitted data).

Figure 1. Communication performance
adaptability

Assuming there are no other processing times apart

from the compression/decompression time, and from (3),
we will reach (5) for the first and second clients
respectively as:

D1 = Tcompression + Tx

D2 = Tx (5)
In case no compression was employed, D1 would

become D2, which is only composed of the transmission
time Tx. Now, the size of data at which D1 starts getting
less than D2 is known as the breakeven point. Intuitively,
breakeven point is the point at which compression starts
improving D1 (D1<D2). Ideally, this point would be at 0
bytes. However, in reality it could be more than that,
depending, among other things, on the type of network
the client is running on. For example, in high-speed
networks, it can reach several hundred KB or even a few
MB.

2.2. Communication security

Adaptability is also desirable in the context of security.
Assume a server that is interacting with a client running
on (or separated by) a foreign network that cannot be
trusted. This will lead to the exposure of any
communicated data to all sorts of attacks aimed at
compromising the privacy, integrity, and authenticity of
that data. Therefore, appropriate measures are required

like, encryption, digital signatures (certificates), and
message digests to protect the data from such attacks.
The decision as to what functionality to employ depends,
in the first place, on the criticality of the transmitted data
and the required security properties.

For example, to preserve privacy, data will have to be
encrypted prior to its transmission using, either a public-
key protocol like RSA [20], or a secret-key protocol like
DES [14]. On the other hand, if privacy is not as
important an issue as the authenticity of data, digital
signatures using DSA [15] may be preferred to full
encryption.

Figure 2. Communication security adaptability

Figure 2 illustrates how a server may supply an

encryption-proxy to Client2 that is separated from the
server by an open network. On the other hand, no
security is required for data travelling within a LAN,
since the network is closed and consequently, assumed
trusted. Therefore, a null-proxy would be appropriate for
Client1. The ’Ε’ denotes encryption, whereas ’∆’ denotes
decryption (or vice versa, depending on the direction of
the transmitted data).

2.3. Other scenarios

In addition to communication performance and security,
adaptability can benefit other situations where the
requirements of the client/server interaction may include
the likes of group communication, caching, fault
tolerance, load balancing, and others. However, due to
shortage in space, we will only discuss the group
communication and caching scenarios.

Database Server

Client 1

Π

Proxy

D1 D2

Database

Ξ

Proxy

Client 2

Server

∆

Ε

Client1

Proxy

LAN Open
Network

Proxy

Client2

2.3.1. Group communication. So far, we have
considered the server as being composed of a single
process. This, however, may not always be the case. In
some applications, especially where fault-tolerance is
sought, the server could be a process group composed of
a number of member processes, one of which may be the
master process. To communicate with such a group, the
master process, normally, assumes the responsibility for
forwarding any requests and replies made on behalf of the
group.

Multicasting, however, is another way of
communicating with the group. A multicast-proxy could
be employed to, transparently, forward any messages sent
by the client to the intended recipients in the group, as in
Figure 3. Similarly, the proxy will manage any (possibly
duplicate) responses sent back from those members.

Figure 3. Group communication adaptability

2.3.2. Caching. We have already reviewed one case by
which performance can be improved, i.e., optimising the
communication delay.

Figure 4. Caching adaptability

Caching is another performance-enhancing method,

which is popular in Web proxies [12]. The caching-proxy
manipulates its local position at the client site and
attempts to satisfy any requests, if the requested data are

available locally. It is only when such data are not
available locally that the proxy will forward the request to
the server. This is shown in Figure 4. Caching is useful
only in situations where the freshness of data is not
crucial to the client.

3. The MP mechanism

Consider a client-server application integrated using the
CORBA technology. The server object is defined by a set
of one or more interfaces written in a special Interface
Definition Language (IDL) [18], which is defined by the
Object Management Group (OMG) as part of the
CORBA specification. These interfaces reflect the nature
of the service offered by that object and define a standard
method of interaction.

Before a client can avail of the service offered by a
particular server object, it first has to locate that object
using any of the services defined by CORBA (e.g.
Naming or Trader service). Alternatively, the client can
create an instance of a proxy object (the stub) either by
binding to the server or by using Object Reference
Strings.

The client may then start invoking methods identified in
the server’s interface. This is normally done in a static
manner, where the invocation is handled by the client
stub and delivered to the server skeleton via the Object
Request Broker (ORB). Alternatively, if the client does
not have knowledge of the server’s interface at compile, it
can query a special database known as the Interface
Repository and obtain information about the server’s
interface. It can then use the Dynamic Invocation
Interface (DII) component of the ORB to make
invocations on the server object.

CORBA also allows dynamic server programming
through the Dynamic Skeleton Interface (DSI) where
invocations are allowed on IDL interfaces for which no
server objects exist. These objects are implemented at
runtime by the server host.

It should be noted that the dynamic aspects of
CORBA applications, i.e. DII and DSI might allow for
some form of adaptability to be realised. However, the
nature of this adaptability is more of an interface-
adaptability than proxy-adaptability, which is what we
propose and will explain in due course.

In the Mobile Proxy (MP) mechanism, we introduce
three other entities to a CORBA application that we
believe are essential to the goal of adaptability. These are
the mobile proxy, the Environmental Object, and the
Environmental Repository.

3.1. The mobile proxy

Mobile proxies are essentially CORBA stubs.
However, they differ from the normal stubs in two

Server Group

Proxy

Client

Server

Client

Request Response

Proxy

aspects. First, they are mobile in the sense that clients do
not have the mobile proxy code that will be supplied at
runtime by the server. Second, they are specialised to
perform certain functionalities aimed at achieving
adaptability.

Mobility is necessary to maintain lightweight clients
and promote the idea of proxy freshness. This implies
that any changes applied to the internal implementation
(and not the advertised interface of the server) of these
proxies are not transmitted to clients until runtime.
Therefore, obviating the need for changing the clients
every time proxies are updated, something that has to be
done with statically linked proxies. However, mobility
has the potential drawback of compromising the security
of the system running the foreign code, and so, access
rights must be restricted by a security policy regarding the
execution of mobile code.

The specialisation of mobile proxies will be in the
context of the adaptability scenarios we already discussed
in last section. Each scenario requires the implementation
of extra functionalities to be embedded in or linked to a
specific proxy. These functionalities will then modify the
communication session according to the requirements of
that particular scenario. Such requirements are described
by the second entity: the Environmental Object.

3.2. The Environmental Object

An Environmental Object is a data structure that holds a
description of the different environments in which clients
and servers are running, the requirements of these clients
and servers, and any other runtime demands. They may
be described as a form of Meta Objects [13] that carry
information about (and at a higher level than) their
application.

An Environmental Object will hold necessary
information about its owner. Such information may
include the available bandwidth to the owner, the current
and home addresses of the owner, whether the owner is a
single or a group process, and whether the owner is
sensitive or not to the freshness of any data requested.
The amount of information an Environmental Object will
hold depends on the complexity of its owner and how
important the adaptability issue is to that owner. The
more information contained the better the description of
the environment and its needs, and consequently, a more
precise adaptability decision will be reached. This
decision is crucial because it will eventually determine
the success or failure of the whole adaptability goal.

3.3. The Environmental Repository

An Environmental Repository represents a special
database designed to hold the Environmental Objects of
the different server environments. The repository will

also hold bindings between the Environmental Objects
and the names of the servers to which they belong.
Additionally, it may be authorised by a server to hold the
library of mobile proxies that represent that server. All
this can be done through a registration process similar to
the one carried out for an Implementation Repository.

In addition to being a holder, an Environmental
Repository will also perform a decision-making process,
prior to the client/server interaction session, during which
it will compare the different client-server Environmental
Objects and produce a decision as to which mobile proxy
should be used in a particular scenario. This decision
may be the mobile proxy itself, in which case it will be
sent directly to the client.

A network may contain any number of Environmental
Repositories depending on the number of server objects
maintained by the ORB and the size of the network

3.4. The runtime dynamics

We will proceed to describe the working details of the
MP mechanism:

First, a client willing to adapt to the server will
commence by contacting the Environmental Repository
and sending it the name of the required server and the
Environmental Object of the client, as shown in step 1 of
Figure 5.

Figure 5. The client contacts the Environmental

Repository

The Environmental Repository then undergoes a

decision-making process (step 2) during which it may use
any techniques ranging from the simple if-then rules, to
Case-Based Reasoning (CBR). This process will
compare the different requirements of the client and the
server and of their environments (as represented by the
Environmental Objects) and reach a decision as to the
most suitable functionality (if any). The repository will
then send a mobile proxy (step 3) embodying that
functionality to the client or, alternatively, send the
address from which that proxy may be downloaded, if it

Client

Client
Environmental

Object

Mobile
Proxy

The Environmental
Repository in a

decision-making
process

1

2

3

is not available at the repository. The repository should
also be able to inform the server of the adaptability
decision so that the latter can employ the appropriate
functionality that complements the proxy’s functionality
(e.g. decompression versus compression).

After downloading the mobile proxy, the client can now
start making invocations on the server object. All the
data sent or received in the communication session may
now be modified according to the functionality of the
proxy. This is illustrated in Figure 6, where "MP" stands
for the mobile proxy and "F" for the complementary
functionality at the server.

Figure 6. The client invoking the server object

4. The Adaptable Proxies system (APrx)

The APrx system is an experimental implementation of
the MP mechanism built for Java applications that are
integrated with CORBA. In version 1.0 of the system,
JDK 1.1 was chosen as the language of implementation
and OrbixWeb v3.1c [16] as a sample ORB. The system
was implemented as part of the Mobile Proxies project
[2].

In general, the APrx system is divided into five logical
modules as shown in Figure 7 below. These modules are
(with respect to the numbers shown in the figure):
1. The client adapter
2. The server adapter
3. The ORB adapter
4. The proxy loader
5. The class loader

The five modules constitute the core of the APrx system
and together, encompass ten Java classes and one
interface.

The client adapter module is composed of two Java
classes that represent a front-end API to the client object
and that will initiate and end the adaptation process. It
provides methods for contacting the Environmental
Repository and supplying it with an Environmental
Object (as described in last section). The client adapter
can also inform the server of the adaptability decision
through a special method that sends to the server adapter,
an object containing the URL of the mobile proxy

downloaded by the client. This may be required in case
the Environmental Repository is unable to inform the
server of the adaptability decision. It also has the
advantage that knowledge will be distributed between the
server and its client, which constitutes a form of security.

Figure 7. The APrx system modules

For example, if the URL was changed maliciously on

its way to the client from the Environmental Repository
by a third entity, the server will immediately discover that
this URL is not part of its site or the Environmental
Repository’s site. It can then either inform the client or
terminate the communication session, where in both
cases, the client will not proceed with executing the
malicious code.

The server adapter, composed of three Java classes,
provides an API to the server object, which insures that
the functionality adopted by the client side is
complemented at the server. For example, if the client
opted for compressing all the transmitted data bytes, the
server should use decompression to reverse the effect of
the client functionality. The module is also responsible
for managing concurrency issues that can rise from
multiple clients attempting adaptability with the server at
the same time. The server adapter will keep the state of
every connection opened by a client and the current
functionality adopted by that client.

The ORB adapter module is composed of two Java
classes that are part of the client object, although it is
hidden from the latter. It provides methods that will
allow the ORB to inform the proxy loader of the point in
time when the client needs a proxy because a reference to
the server object has entered the client’s address space.
This is possibly due to the client binding to the server.

The proxy loader module will then initiate the
downloading of the mobile proxy code and any additional
code employed by that proxy. The module is composed
of a single Java class.

Client Host

Client Server Object

3

1

4

5

2

5

ORB

Server Host

Client Server

ORB

Skeleton
MP

F

Finally, The Class Loader module will download the
data bytes and maintain some form of security by
verifying the digital signatures associated with those
bytes. The module is composed of three Java classes and
is used by both the client and server objects.

The APrx system also defines a special interface that
has to be implemented by every mobile proxy in order for
that proxy to be identified as adaptable.

In version 1.0 of the system, the implementations of the
Environmental Object and Environmental Repository
were left out. We believe that these two entities demand
further research due to their complexity and significance.

4.2. The functionality tree

In addition to the core modules, the APrx system
defines a functionality tree, which imposes a structure on
the adaptable mobile proxies. This structure, illustrated
in Figure 8, defines the different levels by which these
proxies (and any other related code) may be classified.
The tree is divided into four levels: The default proxy
level, the mobile proxy level, the interceptor level, and
the processing level.

The default proxy level represents the default stub,
which is usually provided by any IDL compiler. The stub
does not contain any functionality apart from the normal
packing of data.

The mobile proxy level contains the adaptable mobile
proxies, which will be downloaded at runtime and will
override the default proxy. Any number of these proxies
may exist depending on the adaptability scenarios the
server is willing to support. In the case of OrbixWeb,
these will be the smart proxies [16].

Figure 8. The APrx functionality tree

The interceptor level contains any CORBA interceptors

[4] that may be employed by the mobile proxies. These
are used primarily to intercept and expose the data
entering or leaving the address space of a process and so,
allowing for low-level processing like compression and

encryption to be applied. These interceptors will most
probably be the transformers [16] of OrbixWeb, although
filters [16] are also possible. However, transformers are
preferred since they work at a lower level than filters,
and, therefore, can expose the communicated data bytes.

The final level, the processing level, defines any other
objects that might be needed by the previous two levels to
accomplish their expected role. For example, it might
include objects that perform Huffman encoding [21],
DES, or RSA encryption, and MD5 [19] message
digesting. The level is intended to be open in the sense
that it can expand vertically to include any number of
objects depending on the level of implementation
complexity.

4.3. Example

Let’s take the scenario of section 2.1 as an example of
how the APrx system may improve the communication
performance.

Consider again a client running on a slow wireless
network. We will assume that the client already has the
default stub code, although this is not necessary.

The first step will be for the client and server to create
instances of the client and server adapter objects and
invoke special methods that will render them ready to
adapt each other. A reference to the server object may
then enter the client’s address space in which case the
ORB will inform the client of this by invoking a special
method on the ORB adapter.

The client adapter will then proceed to contact the
Environmental Repository and supply it with its
Environmental Object. This object will include
information about how slow the client’s network is. The
Environmental Repository should reach a decision that
the most suitable proxy is the compression-proxy and
should inform the client adapter of the URL of this proxy.

The client adapter then will invoke the necessary
methods on the proxy and class loaders to download and
install that proxy and any transformers and processing
objects employed by it. The client adapter will also
contact the server adapter, if necessary, and inform it of
this decision. This will allow the server adapter to install
the necessary decompression transformer and related
processing code. The client can now start invoking
methods on the server object. All the communication will
go through the mobile proxy and associated transformers
and processing objects.

5. Evaluation

The evaluation of the APrx version 1.0 system was
carried out for the communication performance and
security adaptability scenarios.

Processing Level

Interceptor Level

Mobile Proxy Level

Default Proxy
Level

PDF files results

0

1

2

3

4

5

6

0 25 150 350 550 750 950 1750
File Size (KB)

D
 (

m
se

c)

Without Comp ression
With Comp ression

Breakeven point (187.5 KB)

Text files results

0

0.5

1

1.5

2

2.5

3

3.5

0 25 150 350 550 750 950 1750
File Size (KB)

D
 (

m
se

c)

Without Comp ression
With Comp ression

Breakeven point (93KB)

A test package was developed to measure the different
transmission and processing times of the APrx system in
both scenarios. The package represented a traditional file
transfer application where the client sends a file to the
server. Such an application is a good example where the
nature of the transmitted data affects the adaptability
decision. The design of the test application allows the
client to read a file from the local file system, send it to
the server object on another host, and receive an
acknowledgement. At the same time, the application will
register all the necessary transmission and processing
times as well as the size of data at different stages of the
application.

Tests were carried out on three types of data files
transmitted over a 10 Mbps LAN. These included image
files in the JPEG, PDF files, and text files.

In the communication performance test, compression
was used as a means of improving the overall
communication delay. The first set of files employed in
the test was the JPEG files. Results revealed that these
would not compress by more than 5%, which according
to equations (1) and (3) of section 2.1, meant that Tp
increased considerably without much reductions in S or
Tx, therefore, leading to an overall increase in D.
Adaptability in such a situation was to avoid compression
and transmit the JPEG file directly.

PDF files, on other hand, had a better compression ratio
ranging from 23% to 65%. The breakeven point was at
about 187.5 KB as shown in Figure 9. At that size
compression would benefit the overall communication
performance.

Figure 9. Performance results of the PDF files

Text files had an even better compression ratio reaching

over 90% in some cases, and so, a breakeven point of as
low as 93 KB was achieved as shown in Figure 10.

Figure 10. Performance results of the Text files

An analysis was performed to predict the breakeven

point for different network speeds. This analysis predicts
that slow networks will affect the overall communication
performances, where Tx is the dominant component, more
than those that have a fair ratio of Tx to Tp, or where Tp is
dominant (fast networks). Therefore, it is in the slow
networks that compression would be most useful, since
transmission time will reduce notably without much
increase in the processing time. On the other hand,
compression becomes infeasible for high-speed networks.

Table 1 shows how the breakeven point of the PDF files
would vary according to the type of network on which the
application is running.

Table 1. The breakeven point for different
networks (PDF files)

Network Speed
(Mbps)

Breakeven
point (KB)

GSM 0.0096 0
ISDN 0.128 0
Ethernet 10 187.5
Telesat Satellite 12 398
T3 and networks with
higher speeds

>45 Compression
not feasible

The second performance test was dedicated to

measuring the expense of three security techniques.
These included symmetric and asymmetric encryption
and digital signatures. In the case of encryption, the
transmitted file was encrypted before transmission and
decrypted at its destination. Whereas with digital
signatures, the file was signed and the signature attached
to the transmitted data. The signature was then verified at
the destination.

Security performance for the PDF files

0

20

40

60

80

100

120

0 25 150 350 550 750 950 1750

File Size (KB)

D
 (

m
se

c)

DES RSA DSA

As shown in Figure 11, asymmetric encryption using
RSA was the most expensive, followed by symmetric
encryption using DES, and finally, digital signing with
DSA. 256-bit keys were used in all three cases.

Figure 11. Performance results of security
adaptability for PDF files

It is worth noting that these tests were not meant to

improve the performance of the application but simply to
get an idea of such performance. However, security
techniques should be feasible in order for them to be
practical and employable.

6. Related Work

Adaptability has been a major concern for software
development recently and the following examples are but
a few that one can mention, although much work is still to
be done in this area if modern distributed systems are to
be characterized as adaptable.

The RAPP system [22] is a CORBA-based platform
aimed at improving the QoS level by inserting proxy
objects in the path of the transmitted data. However, The
system is tailored mainly to improve the quality of
service, as opposed to the more general adaptability of the
APrx system.

The Reliable Multicast proXy (RMX) [3] is another
system designed with the goal of adaptability in mind.
The RMX system proposes a heavyweight multicast
proxy placed on a separate host between a server and its
clients. The proxy has a complete knowledge of the state
of those clients (e.g. their respective bandwidths), will
modify any data transmitted from the server using certain
functionalities to adapt to the environments of those
clients (e.g. compressing the data for slow clients). The

system offers a wide range of functionalities that will
cater for different adaptability scenarios.

The possible advantages of adaptability by mobility are
evaluated by Ismail and Hagimont [8]. Their proposed
system, called the agent server, allows adaptability in a
pure Java environment. The agent server provides a
mechanism for clients to upload mobile agents to the
servers. These agents will adapt the server’s interface to
the operational needs of the client, thus allowing extra
functionality to be added to the server. This approach is
complementary to our adaptable mobile proxies.

The Jini technology [9] is probably the best known
example of adaptability through mobility. Servers
register a description of the services they offer with a
special lookup server along with a proxy that permits
clients to avail of that service. Clients will query the
lookup server to learn of available services and obtain the
relevant proxies, thereby allowing client/server
interaction to be adapted at runtime.

Adaptability in Jini is regarded as a form of interface-
adaptability. A client chooses a service (e.g. printer) and
a proxy with a suitable interface is given back to that
client. This is in contrast to our approach where a service
interface is constant but the implementation of the proxies
representing that service and carrying the same interface
are different.

Other related work includes the LEAD++ language
proposed by Amano and Watanabe [1], which is an object
oriented language that takes dynamic adaptability into
consideration and is based on a reflective model. Also
Kidston et al. [11] propose a proxy solution that will
improve the QoS level for communication between wired
and wireless environments. Adaptability is achieved by
allowing a wired environment with high QoS to meet the
lower QoS of a wireless environment.

Finally, Katz [10] looks at the issue of adaptation and
mobility in wireless information systems where the
awareness of the location and situation are taken as forms
of adaptability.

7. Future work

An important area where further research should be
directed is the area of Environmental Objects and
Environmental Repositories. Such research should
include the information that will be encoded in the
Environmental Objects and the technologies used in
building the Environmental Repository.

Another area would the cascading of different mobile
proxies in order to realise complex scenarios and enrich
the adaptability semantics.

8. Conclusion

The fact that modern distributed systems are composed
of a wide range of products meant that these systems
should offer mechanisms to allow different applications
to interact in a way that will satisfy certain application-
and environment-level requirements.

One such mechanism, proposed in this paper, is the MP
mechanism. The mechanism aims at providing
adaptability in the CORBA framework using mobile
proxies.

The MP mechanism also introduces the notions of
Environmental Objects, which describe the nature of the
application and its environment, and Environmental
Repositories, which act as holders of the Environmental
Objects. Appropriate support for these notions requires
further research.

The versatility of the MP mechanism is demonstrated
by the different adaptability scenarios that may benefit
from it. The mechanism is implemented by the APrx
prototype, which is an open, extensible system that
provides a standard set of APIs to Java applications
integrated using CORBA. The results of test applications
revealed the significance such a system may have on the
adaptability goal.

9. References

[1] N. Amano and T. Watanabe, "LEAD++: An Object-Oriented
Language Based on a Reflective Model for Dynamic Software
Adaptation", in Proceedings of the 31st International
Conference on Technology of Object-Oriented Language and
Systems (TOOLS Asia’99), December 1999, pp. 41-50.

[2] B. Aziz, "Mobile Proxies", MSc Dissertation, Technical
Report TCD-CS-1999-60, University of Dublin, Trinity College,
Dublin, Ireland, December 1999.

[3] Y. Chawathe, S. McCanne, S. Fink, and E. A. Brewer, "A
Proxy Architecture for Reliable Multicast in Heterogeneous
Environments", in Proceedings of ACM Multimedia’98, Bristol,
U.K., September 1998.

[4] CORBA/IIOP v2.3 Specification, the OMG, 1999, Chapter
21.

[5] Downing, T.B., Java RMI: Remote Method Invocation, IDG
Books Worldwide, Inc., Foster City CA, USA, 1998.

[6] Evans, M.W. and J. Marciniak, Software Quality Assurance
and Management, John Wiley & Sons, Inc., New York, 1987.

[7] Gosling, J., B. Joy, and G. Steele, The Java Language
Specification, Sun Microsystems, 1996.

[8] L. Ismail and D. Hagimont, "A performance evaluation of
the mobile agent paradigm", in Proceedings of the Conference
on Object-Oriented Programming, Systems, Languages, and

Applications (OOPSLA’99), Denver, CO USA, November 1999,
pp. 306-313.
[9] Jini™ architecture specification, Sun Microsystems, 1999.

[10] R.H. Katz, "Implementing Communication through
“Situation Awareness” Adaptation and Mobility in Wireless
Information Systems", IEEE Personal Communications
Magazine, Volume 1, Number 1, First Quarter 1994.

[11] D. Kidston, J. P. Black, and T. Kunz, "Transparent
Communication Management in Wireless Networks", in
Proceedings of the 7th Workshop on Hot Topics in Operating
Systems, Rio Rico, Arizona, USA, March 1999.

[12] Luotonen, A., Web Proxy Servers, Prentice Hall Computer
Books, 1997.

[13] P. Maes, "Computational Reflection", Ph.D. Thesis,
Technical Report 87-2, Artificial Intelligence Laboratory, Vrije
Universiteit, Brussel, 1987.

[14] National Bureau of Standards, "Federal Information
Processing Standard (FIPS) Publication 46: The Data
Encryption Standard", 1977.

[15] National Institute of Standards and Technology, "Federal
Information Processing Standard (FIPS) Publication 186:
Digital Signature Standard", 1994.

[16] OrbixWeb Reference Guide, IONA Technologies PLC,
1998.

[17] Orfali, R. and D. Harkey, The Essential Distributed Objects
Survival Guide, John Wiley, 1995.

[18] Pope, A., The CORBA Reference Guide: Understanding the
Common Object Request Broker Architecture, Addison-Wesley,
1998.

[19] R.L. Rivest "The MD5 Message Digest Algorithm", RFC
1321, MIT and RSA Data Security, Inc., April 1992.

[20] R.L. Rivest, A. Shamir, and L.M. Adleman, "A method for
obtaining digital signatures and public-key cryptosystems",
Communications of the ACM, vol. 21, 1978, pp. 120-26.

[21] Sayood, K., Introduction to Data Compression, Morgan
Kaufmann Publishers, 2000.

[22] J. Seitz, N. Davies, M. Ebner, A. Friday, "A CORBA-based
proxy architecture for mobile multimedia applications", in
Proceedings of the 2nd IFIP/IEEE International Conference on
Management of Multimedia Networks and Services (MMNS’98),
Versailles, France, November 1998.

[23] M. Shapiro, "Structure and Encapsulation in Distributed
Systems: the Proxy Principle", in Proceedings of the 6th
International Conference on Distributed Computing Systems,
Cambridge, Massachusetts, USA, May 1986, pp. 198-204.

