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Abstract

We consider 3-monopoles symmetric under inversion symmetry. We show that
the moduli space of these monopoles is an Atiyah-Hitchin submanifold of the 3-
monopole moduli space. This allows what is known about 2-monopole dynamics to
be translated into results about the dynamics of 3-monopoles. Using a numerical
ADHMN construction we compute the monopole energy density at various points on
two interesting geodesics. The first is a geodesic over the two-dimensional rounded
cone submanifold corresponding to right angle scattering and the second is a closed
geodesic for three orbiting monopoles.

∗This work was supported in part by the Nuffield Foundation
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1 Introduction

The moduli space of 2-monopoles, M2, is well understood. Its non-trivial structure is
contained in the totally geodesic submanifold of strongly centred 2-monopoles, M0

2 . M0
2

is the space of gauge inequivalent 2-monopoles with fixed centre of mass and fixed overall
phase. It is a hyper-Kähler 4-manifold and has an SO(3) action which permutes the almost
complex structures I, J and K. These properties allowed Atiyah and Hitchin to calculate
the metric on M0

2 [1] and M0
2 is now known as the Atiyah-Hitchin manifold.

Similarly, the non-trivial structure of the moduli space of 3-monopoles in contained
in the totally geodesic submanifold of strongly centred 3-monopoles M0

3 . M0
3 is also a

hyper-Kähler manifold with an SO(3) action. However, M3
0 is an 8-dimensional manifold

and these properties are not sufficient to calculate its metric, which still remains unknown.
Although we do not know how to compute this metric, we present a more modest result
in this paper by proving that there is a 4-dimensional submanifold whose metric is the
Atiyah-Hitchin one. This submanifold is the submanifold of strongly centred 3-monopoles
which are symmetric under the inversion

I : (x1, x2, x3) 7→ (−x1,−x2,−x3). (1.1)

This gives a group action on the moduli space commuting with the SO(3) action. We
consider the 4-dimensional fixed point set of I in the moduli space.

2 Monopoles

Here we are concerned with Bogomolny-Prasad-Sommerfield (BPS) monopoles. A BPS
monopole is a pair (A, Φ) where A is a 1-form on IR

3 with values in su(2) and Φ, the Higgs
field, is an su(2) valued function. They satisfy the Bogomolny equation

∇AΦ = ⋆FA, (2.1)

the finite energy condition ∫
|FA|2 < ∞ (2.2)

and the boundary condition
|Φ| r→∞−→ 1. (2.3)

The ⋆ is the Hodge star on IR
3 and ∇AΦ = dΦ + [A, Φ] is the covariant derivative of Φ.

An element g of the gauge group SU(2) acts by

(A, Φ) 7→ (gAg−1 − dgg−1, gΦg−1) (2.4)

and monopoles are considered equivalent if they are related by a gauge transformation.
The moduli space is the space of gauge inequivalent monopoles.
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It can be demonstrated [13] that the Higgs field of a monopole automatically satisfies
a stronger boundary condition than (2.3). In fact,

|Φ| = 1 − n

2r
+ O(r−2) (2.5)

where n is an integer topological charge so that the moduli space is divided up into topo-
logical sectors. We shall call a monopole configuration with charge n an n-monopole.
The 1-monopole is spherically symmetric and its moduli space is IR

3×S1, corresponding
to a position and internal phase. The phase can be gauge transformed to unity, but it
is convenient to consider it as a degree of freedom for the 1-monopole. The position of a
1-monopole is well defined and can be taken to be the position of the unique zero of the
Higgs field.

To precisely define the moduli space of n-monopoles we follow [9] and first define a
framed monopole [1]. We say a monopole (A, Φ) is framed if

lim
x3→∞

Φ(0, 0, x3) =

(
i 0
0 −i

)
. (2.6)

Every monopole can be gauge transformed into a framed one. We define a framed gauge
transformation as one for which

lim
x3→∞

g(0, 0, x3) = 1. (2.7)

The n-monopole moduli space Mn is now the quotient of the space of framed monopoles
by the space of framed gauge transformations.

It is more difficult to define the moduli space M0
n of strongly centred n-monopoles. To

do this precisely we must first discuss rational maps. We will discuss rational maps in the
next Section. Roughly the space of strongly centred n-monopoles is the submanifold of
Mn of monopoles with the centre of mass fixed at the origin and the overall internal phase
factor fixed at one. This manifold is (4n − 4)-dimensional. Over most of the manifold
the 4n − 4 coordinates can be understood as corresponding to the relative positions and
relative phases of n well-separated monopoles.

There is a natural metric on M0
n. It is derived from the L2-norm on the fields (A, Φ).

This space is known to be hyper-Kähler for all n. This means that there is a trio of complex
structures on M0

n satisfying the Hamilton relation IJ = K. The full moduli space Mn is
also hyper-Kähler and, in fact, there is an isometric splitting

M̃n = IR
3 × S1 × M0

n (2.8)

where M̃n is an n-fold covering of Mn.
The Bogomolny equation is time independent and its solutions are static solutions to

a Yang-Mills Higgs field theory in (3+1)-dimensions. The dynamics of monopoles in this
theory is of interest and the low energy dynamics can be approximated by geodesic flow
in the moduli space of BPS monopoles [14, 17].
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3 Spectral curves, Nahm data and rational maps

It is difficult to study monopoles directly by solving the Bogomolny equation (2.1) for the
fields A and Φ. However, there are powerful mathematical correspondences which allow
us to study monopoles indirectly. To be precise, there is a correspondence between n-
monopoles and the following [10, 15, 6]

A. Spectral curves.
A spectral curve is an algebraic curve S ⊂ T IP1 which has the form

ηn + ηn−1a1(ζ) + . . . + ηran−r(ζ) + . . . + ηan−1(ζ) + an(ζ) = 0 (3.1)

where, for 1 ≤ r ≤ n, ar(ζ) is a polynomial in ζ of degree not greater than 2r. Here ζ is
the inhomogeneous coordinate over IP1 the Riemann sphere, and (ζ, η) are the standard
local coordinates on T IP1 defined by (ζ, η) → η d

dζ
. It must be real, with respect to the

standard real structure on T IP1

τ : (ζ, η) 7→ (−1

ζ̄
,− η̄

ζ̄2
) (3.2)

and satisfy some non-singularity conditions [10].
The spectral curve of a 1-monopole positioned at (x1, x2, x3) is called a star. It is

η − (x1 + ix2) + 2x3ζ + (x1 − ix2)ζ
2 = 0. (3.3)

B. Nahm data.
Nahm data are anti-hermitian n×n matrices (T1, T2, T3) depending on a real parameter

s ∈ [0, 2] and satisfying the Nahm equation

dTi

ds
=

1

2
ǫijk[Tj , Tk]. (3.4)

The Ti(s) are regular for s ∈ (0, 2) and have simple poles at s = 0 and s = 2. The matrix
residues of (T1, T2, T3) at each pole form the irreducible n-dimensional representation of
su(2).

Nahm’s equations (3.4) are equivalent to a Lax pair. Hence, there is an associated
algebraic curve, which is, in fact, the spectral curve. Explicitly, the spectral curve may be
read off from the Nahm data as the equation

det(η + (T1 + iT2) − 2iT3ζ + (T1 − iT2)ζ
2) = 0. (3.5)

C. Based rational maps.
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A based rational map of degree n from IP1 into IP1 sending z = ∞ to z = 0 can be
given by

r(z) =
p(z)

q(z)
(3.6)

where q(z) is a monic polynomial in z of degree n and p(z) is a polynomial in z of degree
less than n, which has no factor in common with q(z). We let Rn denote the space of such
rational maps.

It was conjectured in [9] and proved by Bielawski [3], that for a rational map p(z)/q(z)
with well-separated poles β1, . . . , βn the corresponding monopole is approximately com-
posed of well-separated 1-monopoles with phases p(βi)/|p(βi)| located at the points (x1, x2, x3),
where x1+ix2 = βi and x3 = 1

2
log |p(βi)|. This approximation applies only when the values

of the numerator at the poles is small compared to the distance between the poles.
The rational map provides a convenient parameterization of the moduli space and with

it it is possible to define the moduli space of strongly centred monopoles precisely. A
monopole with rational map p(z)/q(z) is strongly centred if the roots of q(z) sum to zero
and the product of p(z) evaluated at each of the roots of q(z) is equal to unity. Thus, if
we label the roots of q(z) as β1, . . . , βn, as above, a monopole is strongly centred if

∑

i

βi = 0 (3.7)

∏

i

p(βi) = 1. (3.8)

The spectral curve of a strongly centred monopole has a1(ζ) = 0. The Nahm data of a
strongly centred monopole are traceless.

Further asymptotic information can be derived from the rational map. In [1] pp. 25-26,
it is argued that for monopoles strung out in well-separated clusters along, or nearly along,
the x3-axis, the first term in a large z expansion of the rational map r(z) will be e2x+iχ/zL

where L is the charge of the topmost cluster and x is its elevation above the plane.
It is possible to understand the action of the group O(3) on the spectral curves. The

group of improper and proper rotations O(3) has a natural action on the Riemann sphere.
This is just the natural action on the sphere in IR

3 written in terms of the inhomogeneous
coordinate. This lifts to an action on all of T IP1 and so gives an action on spectral curves.

It is also possible to understand the action of the rotation group on the Nahm data.
The strongly centred Nahm data are an IR

3⊗sl(n, C) valued function of s, which transform
under the rotation group SO(3) as

3 ⊗ sl(n) ∼= 3 ⊗ (2n − 1 ⊕ 2n − 3 ⊕ . . . ⊕ 3)
∼= (2n + 1 ⊕ 2n − 1 ⊕ 2n − 3) ⊕ . . . ⊕ (5 ⊕ 3 ⊕ 1). (3.9)

where r denotes the unique irreducible r-dimensional representation of su(2). Thus, for
example, for 3-monopoles the Nahm data transform as the representation

(7 ⊕ 5 ⊕ 3) ⊕ (5 ⊕ 3 ⊕ 1). (3.10)
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The construction of the rational map of a monopole requires a decomposition of space
as IR

3 ∼= IR×C and only those spatial rotations and reflections which respect this decom-
position act on the space of rational maps. This means that a rational map can be rotated
about the x3-axis and can be reflected in the x1x2-plane, but other O(3) transformations
are unknown.

4 Symmetric rational maps

We can easily calculate the action of I on the space of rational maps, Rn. From [9] the
action of the reflection1 in the x1x2-plane,

σ : (x1, x2, x3) 7→ (x1, x2,−x3), (4.1)

on Rn is

σ :
p(z)

q(z)
7→ σ(p)(z)

q(z)
(4.2)

where σ(p)(z) is the unique degree n − 1 polynomial such that

σ(p)(z)p(z) ≡ 1 mod q(z). (4.3)

If the roots, βi, of q(z) are distinct a useful alternative way of obtaining σ(p)(z) is to notice
that it is the unique polynomial of degree less than n such that

σ(p)(βi)p(βi) = 1 (4.4)

for all i.
The action of a rotation, Rotθ, about the x3-axis is also known,

Rotθ :
p(z)

q(z)
7→ p(λz)

λ−nq(λz)
λ = e−iθ. (4.5)

The factor of λ−n ensures that q(z) remains monic under the rotation and so guarantees
that the rotated rational map is strongly centred. We will be interested in Rotπ;

Rotπ :
p(z)

q(z)
7→ p(−z)

−q(−z)
. (4.6)

Since I = σ ◦ Rotπ we can act with inversion on an element of Rn. This allows us to
calculate the form of an inversion invariant element of R3. First we calculate the form of
the numerator, q(z), of such an element. The action of the reflection does not affect q(z).
This means that it must be invariant under Rotπ. Since Rotπ acts on q(z) by changing the

1In [9] (and some of our previous papers) this reflection is referred to as inversion, but in this paper we
follow the more standard notation and reserve the term inversion for the operation (1.1).
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sign of z and the overall sign q(z) = z(z2 − β2) for some β ∈ C. The candidate inversion
symmetric rational map is thus

r(z) =
az2 + bz + c

(z − β)z(z + β)
(4.7)

for complex a, b and c. From (4.3) and (4.6) this is inversion invariant iff

p(−z)p(z) ≡ 1 mod z3 − β2z (4.8)

or equivalently, by (4.4), we require

p(β)p(−β) = 1, (4.9)

p(0)2 = 1. (4.10)

The first strong-centring condition (3.7) is automatically satisfied by q(z). The second
strong-centring condition (3.8) is given by

p(β)p(0)p(−β) = 1. (4.11)

When combined with (4.9) and (4.10) this gives p(0) = 1 and thus c = 1. Explicitly
substituting p(z) into (4.9) gives the condition

b2 − a2β2 = 2a. (4.12)

This defines a surface in C3 of two complex dimensions corresponding to inversion symmet-
ric strongly centred 3-monopoles. The argument above assumes that the roots are distinct,
that is that β 6= 0. By using (4.3) it can be demonstrated that (4.12) applies in the β = 0
case as well. We denote the space of inversion symmetric, strongly centred rational maps
by RI .

RI =

{
az2 + bz + 1

z(z2 − β2)
: b2 − a2β2 = 2a

}
. (4.13)

We can find some particularly symmetric 1-parameter families of maps in RI . We
impose C2 symmetry around the x3-axis by requiring invariance under Rotπ : z 7→ −z.
This means that b = 0 and, hence, either a = 0 or a = −2/β2. The C2-symmetric rational
maps in RI are then

r1(z) =
1

z(z2 − β2)
(4.14)

r2(z) =
− 2

β2 z
2 + 1

z(z2 − β2)
(4.15)

where β ∈ C in r1 and β ∈ C× in r2. They correspond to monopoles symmetric under
inversion and rotation by π about the x3-axis. If we impose a further symmetry, that of
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reflection in the x1x3-plane, β2 is forced to be real and thus β either purely real or purely
imaginary.

In Section 3, we discussed how to relate the rational maps of well-separated monopoles
to the positions of those monopoles. In this spirit, we can examine the rational maps r1

and r2 for extreme values of β. In the case of r1, if β is large and real, it corresponds
to three monopoles along the x1-axis positioned at the origin and ±β. If β is zero, the
rational map corresponds to the 3-monopole axisymmetric about the x3-axis. If it is large
and imaginary, it corresponds to monopoles along the x2-axis positioned at the origin and
±iβ.

In the case of r2 there are two distinct geodesics, one with real β and the other with
imaginary β. If β is large and real, it corresponds to three monopoles along the x1-axis
positioned at the origin and ±β. For β small and real it corresponds to monopoles along
the x3-axis positioned at the origin and ± log

√
2

β2 . The imaginary β geodesic is similar

except the x2-axis replaces the x1-axis.
Of course it is possible to interpret these geodesics as corresponding to low energy

scattering events. They are events in which two monopoles approach a third monopole
positioned half way between them, instantaneously form a torus and then separate out
and move along a line at right angles to the one along which they previously moved.

5 Symmetric spectral curves

On T IP1 reflection is given by

σ : (ζ, η) 7→ (
1

ζ̄
,− η̄

ζ̄2
) (5.1)

and the rotation Rotπ by
Rotπ : (ζ, η) 7→ (−ζ,−η). (5.2)

Thus, since I = σ ◦ Rotπ,

I : (ζ, η) 7→ (−1

ζ̄
,

η̄

ζ̄2
). (5.3)

Reality requires a spectral curve to be invariant under τ , (3.2). Since I◦τ : (ζ, η) 7→ (ζ,−η)
a charge n spectral curve is inversion symmetric if all its terms are of even degree in η if n
is even and of odd degree if n is odd.

The spectral curve of an inversion symmetric 3-monopole must be of the general form

η3 + (c1 + c2ζ + rζ2 − c̄2ζ
3 + c̄1ζ

4)η = 0 (5.4)

where ci ∈ C and r ∈ IR. The values of the ci and r are constrained by the non-singularity
conditions satisfied by the spectral curves of monopoles. This spectral curve is almost
identical in form to the one presented by Hurtubise in [12]. It differs in the overall factor
of η. We follow Hurtubise in rotating the general spectral curve so that it is in the form

η3 + (a1 + a2ζ
2 + a1ζ

4)η = 0 (5.5)
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where ai ∈ IR. By choosing this standard orientation, we can observe the extra symmetries
automatically satisfied by inversion symmetric 3-monopoles. For a1 6= 0 the spectral curve
has a ZZ2 × ZZ2 symmetry corresponding to rotations of π about the three cartesian axes.
This means the inversion symmetric 3-monopole has a D2 symmetry. For a1 = 0 there
is a S1 × ZZ

2 symmetry. For the particular value of a2 determined by the non-singularity
conditions this is the spectral curve of the axisymmetric monopole.

The spectral curve (5.5) is symmetric under inversion, rotation of π about the x3-axis
and reflection in the x1x3-plane. It has the same symmetries as the rational maps r1(z)
and r2(z). This means that the non-singularity constraints satisfied by a1 and a2 restrict
them to, at most, 1-parameter families.

Even without considering the non-singularity conditions, we have learned a lot about
inversion symmetric monopoles by considering the spectral curve. The rational maps r1(z)
and r2(z) indicate that there are inversion symmetric 3-monopoles which are C2 and reflec-
tion symmetric. Because all inversion symmetric n = 3 spectral curves can be rotated to
the form (5.5), the spectral curve demonstrates that all inversion symmetric 3-monopoles
are D2-symmetric about some triplet of orthogonal axes. It is also true that all 2-monopoles
are D2-symmetric about some triplet of orthogonal axes.

6 Symmetric Nahm data

To find the 1-parameter family of values of a1 and a2 we rely on the Nahm data formulation
and construct D2 invariant Nahm data. The construction for Nahm data invariant under
a finite rotational symmetry group was introduced in [9] and is discussed in [11]. Nahm
data invariant under the D2 transformation is given by

T1(s) =
f1(s)

2




0
√

2i 0√
2i 0

√
2i

0
√

2i 0


 , T2(s) =

f2(s)

2




0
√

2 0

−
√

2 0
√

2

0 −
√

2 0


 ,

T3(s) =
f3(s)

2



−2i 0 0
0 0 0
0 0 2i


 . (6.1)

In the notation of (3.10) these invariant Nahm data correspond to the SO(3) invariant 1
and the SO(2) and D4 invariant vectors in 5.

Nahm’s equations for these data become

df1(s)

ds
= f2(s)f3(s) (6.2)

and its cyclic permutations. The corresponding spectral curve is

η3 +
(
(f 2

1 − f 2

2 ) + (2f 2

1 + 2f 2

2 − 4f 2

3 )ζ2 + (f 2

1 − f 2

2 )ζ4
)
η = 0 (6.3)
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and so we can identify the constants a1 = f 2
1 − f 2

2 and a2 = 2(f 2
1 + f 2

2 − 2f 2
3 ). Equation

(6.2) and its cyclic permutations are the Euler top equations, which are well known to be
solvable in terms of elliptic functions. We take the solution in the form given by Dancer
when examining symmetric Nahm data for SU(3) monopoles [5]

f1(s) = −Ddnk(Ds)

snk(Ds)
, f2(s) = − D

snk(Ds)
, f3(s) = −Dcnk(Ds)

snk(Ds)
. (6.4)

where D is a constant. The snk(s), cnk(s) and dnk(s) are, of course, Jacobi elliptic func-
tions. The parameter k is the modulus of the Jacobi elliptic functions and 0 ≤ k < 1.
Details of the Jacobi elliptic functions can be found in, for example, Whittaker and Wat-
son [21].

To determine D we require that the data satisfy the boundary condition given in section
3. We must examine the elliptic functions near s = 0 and s = 2. Near s = 0 we have
snk(Ds) ∼ Ds whereas cnk(0) = 1 and dnk(0) = 1. The functions f1(s), f2(s) and f3(s)
all have simple poles at s = 0 with residues −1. It is now easy to verify that the residue
matrices are an irreducible 3-dimensional representation of su(2). The functions have
another simple pole at Ds = 2K where K is the complete elliptic integral of the first kind
with modulus k. Again it is simple to check that the irreducible representation boundary
conditions are satisfied at this pole also. The functions are analytic for 0 < s < 2K/D. If
we set D = K, the data are valid Nahm data.

By substituting into the expressions for a1 and a2 and using the standard elliptic func-
tion identities sn2

k(u) + cn2
k(u) = 1 and k2sn2

k(u) + dn2

k(u) = 1, we obtain

a1 = −K2k2, a2 = −2K2(k2 − 2). (6.5)

The spectral curve (5.5) is now

η3 − K2
(
k2 + 2(k2 − 2)ζ2 + k2ζ4

)
η = 0. (6.6)

Using the standard formula [21]

K =
∫ 1

2
π

0

(1 − k2sin2φ)−
1

2 dφ (6.7)

gives that when k = 0, K = π/2 and so the spectral curve is

η3 + π2ζ2η = 0, (6.8)

which is the spectral curve of a 3-monopole symmetric about the x3-axis. As k → 1,
K → ∞ and the spectral curve is asymptotic to the product of stars

η(η − K(1 − ζ2))(η + K(1 − ζ2)) = 0. (6.9)

This describes three well-separated monopoles located at positions (±K, 0, 0) and (0, 0, 0).
We note that the Nahm data correspond to monopoles moving along the x1-axis. We have
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explicitly plotted surfaces of constant energy density for these monopoles and they are
discussed in Section 9.

Recently one of us has used an n-dimensional generalization of the D2-symmetric Nahm
data discussed in this Section to produce 1-parameter families of spectral curves with
interesting properties. Details may be found in [18].

The spectral curve (6.6) is very similar to the 2-monopole spectral curve derived by
Hurtubise [12]. The easiest way to derive this spectral curve is to consider 2-monopole
Nahm data. Since a 2-monopole is always D2-symmetric about some triplet of orthogonal
axes we choose an orientation and construct invariant Nahm data as above. They are given
by

T1(s) =
f1(s)

2

(
0 i
i 0

)
, T2(s) =

f2(s)

2

(
0 1
−1 0

)
, T3(s) =

f3(s)

2

(
−i 0
0 i

)
(6.10)

where the f1, f2, f3 are the same as those defined earlier. By (3.9), 2-monopole Nahm data
transforms under SO(3) as 5⊕3⊕1. As with the 3-monopole Nahm data the D2-symmetric
Nahm data correspond to the SO(3) invariant 1 and the SO(2) and D4 invariant vectors
in 5.

The 2-monopole spectral curve (3.5) is then

η2 − K2

4

(
k2 + 2(k2 − 2)ζ2 + k2ζ4

)
= 0, (6.11)

which is the one obtained by Hurtubise [12] using different methods. If this technology,
based on obtaining the spectral curve from Nahm data, had been available to Hurtubise
his task in [12] would have been simpler.

7 The metric

We have constructed a 4-dimensional submanifold of the 3-monopole moduli space. It is
the fixed set of the inversion action on the entire 3-monopole moduli space. The fixed point
set of a finite group action on a Riemannian manifold is always totally geodesic and so our
submanifold is a totally geodesic submanifold of M0

3 . Furthermore this inversion action
commutes with the action of SO(3) and so, since the entire 3-monopole moduli space is
SO(3) invariant, our restricted moduli space has an SO(3) invariant metric. In this section
we will show that this metric is the Atiyah-Hitchin metric.

We will do this by considering the metric on the space of Nahm data. It has been
proven by Nakajima [16] that the moduli space of Nahm data has the same metric as the
corresponding moduli space of monopoles. The moduli space of Nahm data is difficult to
define since it involves factoring the space of Nahm data by a set of SU(n) transformations.
It also requires the introduction of a fourth Nahm matrix, T0(s). In any Nahm data
calculation this is set to zero by one of the SU(n) transformations.
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The metric on Nahm data corresponding to a tangent Y = (Y0, Y1, Y2, Y3) is given by

‖Y0, Y1, Y2, Y3‖2 = −
∫

2

0

∑

i=0...3

tr(Y 2

i )ds. (7.1)

Thus, for example, to calculate the metric on the Nahm data for monopoles moving along
the x1-axis, we would first choose a separation parameter r which may be identified with
monopole distance when the monopoles are well-separated. We know, from above, that a
suitable choice would be r = kK. We define the tangent vectors

Yi =
dTi

dr
(7.2)

and the metric coefficient is then given by

g(r) = −
∫

2

0

∑

i=1..3

tr(Y 2

i ) ds. (7.3)

Note that in general the tangent vectors can only be defined by direct differentiation, as
in equation (7.2), if certain identities hold between the matrices defining the Nahm data,
which ensure that such tangent vectors are orthogonal to the gauge orbits (see [19] for
an example). However, since in the present case each Nahm matrix only involves a single
function, the orthogonality to gauge orbits is guaranteed (see appendix). By substituting
from (6.1) we find that

∑

i=1..3

tr(Y 2

i ) = −2



(

df1

dr

)2

+

(
df2

dr

)2

+

(
df3

dr

)2

 , (7.4)

which allows the metric to be calculated.
Using the rational map formulation a geodesic submanifold of M0

2 space has been con-
structed, namely, the space of inversion symmetric 3-monopoles. By constructing a geodesic
submanifold of the monopole moduli space a geodesic submanifold of the Nahm moduli
space has been constructed. The Nahm data on this submanifold is given along a radial
geodesic by (6.1) and, by SO(3) transformation, this geodesic generates the whole space
of inversion symmetric, strongly centred 3-monopole Nahm data. We know how the Nahm
data transforms under SO(3); it transforms like a vector in 5. Furthermore, we know the
Nahm data for a suitably oriented 2-monopole; it has been given above in (6.10). The
2-monopole Nahm data transform the same way under SO(3) as the inversion symmetric
3-monopole Nahm data. This means that the space of 2-monopole Nahm data is identical
to the space of 3-monopole Nahm data except the matrices appearing in the 2-monopole
case are the basis of 2 and in the 3-monopole case they are the basis of 3. Thus the two
spaces are identical apart from an overall factor.

This factor is easy to calculate. It is given by the ratio between the traces of the squares
of the matrices in the two cases. This factor is four. The metric for 3-monopoles is four
times that for 2-monopoles. Thus, for example, to calculate the 2-monopole metric along
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the same geodesic as in the 3-monopole case, tangents Yi can be calculated as before and
in this case

∑

i=1..3

tr(Y 2

i ) = −1

2



(

df1

dr

)2

+

(
df2

dr

)2

+

(
df3

dr

)2

 . (7.5)

Since the 2-monopole metric is Atiyah-Hitchin, so is the metric on the space of inversion
symmetric 3-monopoles, except that it is rescaled by a factor of four.

8 The asymptotic metric

Recently, Gibbons and Manton [8] have constructed an approximate metric for n well-
separated monopoles. It is instructive to construct this metric for 3-monopoles with in-
version symmetry. According to Gibbons and Manton, n-monopoles located at {ρi} with
phases {θi} have a metric

ds2 = gijdρi · dρj + g−1

ij (dθi + Wik · dρk)(dθj + Wjl · dρl) (8.1)

where · denotes the usual scalar product on IR
3 vectors, repeated indices are summed over

and

gjj = 1 −
∑

i6=j

1

ρij

(no sum over j) (8.2)

gij =
1

ρij

(i 6= j)

Wjj = −
∑

i6=j

wij (no sum over j)

Wij = wij (i 6= j),

ρij = ρi − ρj and ρij = |ρij|. The approximation is valid for ρij ≫ 1. The wij are Dirac
potentials and are defined by

curl wij = grad
1

ρij

(8.3)

where the curl and grad operators are taken with respect to the ith position coordinate ρi.
In the case of three monopoles that are symmetric under inversion symmetry ρ1 = ρ,

ρ2 = 0 and ρ3 = −ρ, and we write ρ = |ρ|. Furthermore we require dθ1 = dθ, dθ2 = 0 and
dθ3 = −dθ. Denoting w12 = w23 by w so that w13 = 1

2
w, we have

gij =
1

ρ




ρ − 3

2
1 1

2

1 ρ − 2 1
1

2
1 ρ − 3

2


 (8.4)

Wij =
1

2




−3w 2w w

2w −4w 2w

w 2w −3w



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so

ds2 = 4


1

2

(
1 − 2

ρ

)
dρ · dρ +

1

2

(
1 − 2

ρ

)−1

(−dθ + 2w · dρ)2


 . (8.5)

Up to the overall factor of four this is the asymptotic metric for two strongly centred
monopoles separated by a distance ρ. Note that in the 2-monopole case ρ is the separation
of the two monopoles; whereas in the 3-monopole case it is the distance from the monopole
at the origin to either of the other two monopoles.

9 Geodesic scattering

Since the metric on the moduli space of inversion-symmetric 3-monopoles is now known,
we can understand their low energy dynamics by studying geodesics. Their moduli space is
the Atiyah-Hitchin manifold which allows the known results about 2-monopole dynamics
[1, 7] to be translated into results about the dynamics of 3-monopoles.

We have already discussed the right angle scattering geodesics in terms of their rational
maps. From the point of view of the Atiyah-Hitchin submanifold such a scattering process
is associated with a geodesic which passes over the 2-dimensional rounded cone submanifold
[1]. Since we have the Nahm data for these monopoles, we can construct the monopole fields
along such a geodesic, using the numerical ADHMN construction we introduced previously
[11]. In Figure 1 we plot a surface of constant energy density for various times along the
geodesic (corresponding to the elliptic modulus parameter values k = 0.99, 0.90, 0.80, 0.00).
In Figure 1(a) we see three separated monopoles. As they approach, they deform and merge
to form a pretzel shape, Figure 1(b). It is interesting that the pretzel configuration closely
resembles the pretzel 3-skyrmion of Walet [20]. Moving along the geodesic, the monopole
becomes more ring-like, Figure 1(c). It instantaneously forms the torus, Figure 1(d), before
separating out again, through the same configurations, rotated through π/2, Figure 1(e-g).

There is a closed 2-monopole geodesic [2], corresponding to two orbiting monopoles, so
we can immediately conclude that a closed 3-monopole geodesic exists. Following [2], the
value of the elliptic modulus k for the rotating 3-monopole configuration is determined as
the root of the equation ∫ 1

2
π

0

2k2 sin2 φ − 1√
1 − k2 sin2 φ

dφ = 0 (9.1)

giving k ≈ 0.906.
In Figure 2 we plot a surface of constant energy density for this monopole. The

monopole has been rotated so that the axis of rotation (which is also shown) is in the
plane of the page. The monopole motion is a periodic orbit, rotating at constant angular
velocity about the shown axis, which is at an angle of approximately π/9 to the vertical [2].
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10 Conclusion

We have shown that the moduli space of inversion symmetric 3-monopoles is an Atiyah-
Hitchin submanifold of the 3-monopole moduli space. Using this result we have studied
some geodesics in the 3-monopole moduli space and examined the associated monopole
dynamics, including displaying energy density plots.

It is possible to apply inversion symmetry to n-monopoles for n > 3. However, the
resulting geodesic submanifold has more than four dimensions and so cannot be an Atiyah-
Hitchin submanifold. We have just learnt, however, that Bielawski [4] has succeeded in
finding geodesic Atiyah-Hitchin submanifolds of the n-monopole moduli space for each n.
These submanifolds correspond to n-monopoles with inversion symmetry and the individual
monopoles equally spaced along an axis. Bielawski derives his result by considering the
moment map construction.

One interesting property of these equally spaced monopoles is clear from the asymp-
totic metric discussion in Section 8. Inversion symmetry requires that ρ1 = ρ, ρ2 = 0 and
ρ3 = −ρ. It is then neccessary to fix dθ1 = dθ, dθ2 = 0 and dθ3 = −dθ in order to derive the
asymptotic 2-monopole metric. Similarly, for the asymptotic metric for n equally spaced
monopoles to be the same, up to a factor, as that for 2-monopoles the monopoles must be
given dθ’s proportional to their distance from the origin. Thus, Bielawski’s equally spaced
monopoles have electric charge proportional to their distance from the centre of mass.
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A Appendix: Tangent Vectors

In this brief appendix we show that the tangent vectors defined by direct differentiation
of the Nahm data are orthogonal to the gauge orbits, providing each Nahm matrix involves
only a single function.

Let G be the group of analytic SU(n)-valued functions g(s), for s ∈ [0, 2], which are the
identity at s = 0 and s = 2, and satisfy gt(2 − s) = g−1(s). Then gauge transformations
g ∈ G act on su(n)-valued Nahm data as

T0 → gT0g
−1 − dg

ds
g−1, Ti → gTig

−1 i = 1, 2, 3. (A1)

We work in the gauge T0 = 0, and define the tangent vectors Yi by direct differentiation
with respect to the geodesic parameter, r say, ie.

Yi =
dTi

dr
. (A2)

We want to show that these tangent vectors are orthogonal to the tangent vectors Wi of
the gauge orbits ie.

< Yi, Wi >= −
∫

2

0

∑

i=0..3

tr(YiWi) ds = 0. (A3)

To compute Wi we consider the infinitesimal gauge transformation given by

g = 1 + ǫA (A4)

for A ∈ su(n), and work to first order in ǫ. Since we have set Y0 = 0 then we need only
consider Wi for i = 1, 2, 3. These tangent vectors are given by

Wi = (gTig
−1 − Ti)/ǫ = [A, Ti]. (A5)

Thus

< Yi, Wi >= −
∫

2

0

∑

i=1..3

tr(
dTi

dr
[A, Ti]) ds. (A6)

Now we make use of the fact that each of the three Nahm matrices depends on a single
function ie

Ti = fiMi, i = 1, 2, 3 (A7)

where the Mi are constant matrices. Thus

< Yi, Wi >= −
∫

2

0

∑

i=1..3

1

2

df 2
i

dr
tr(MiAMi − MiMiA) ds = 0 (A8)

by the cyclic property of the trace. Thus the required result is proved.
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Figure Captions

Figure 1(a-g). A surface of constant energy density at increasing times. The corre-
sponding values of the elliptic modulus are (a) k = 0.99, (b) k = 0.90, (c) k = 0.80, (d)
k = 0.00, (e) k = 0.80, (f) k = 0.90, (g) k = 0.99.

Figure 2. A surface of constant energy density for the rotating 3-monopole, together
with the axis of rotation.

17



References

[1] M.F. Atiyah and N.J. Hitchin, ‘The geometry and dynamics of magnetic monopoles’,
Princeton University Press, 1988.

[2] L. Bates and R. Montgomery, ‘Closed geodesics on the space of stable monopoles’,
Commun. Math. Phys. 118, 635 (1988).

[3] R. Bielawski, ‘Monopoles, particles and rational functions’, Ann. Glob. Anal. Geom.
14 (to appear).

[4] R. Bielawski, ‘The existence of closed geodesics on the moduli space of k-monopoles’,
McMaster preprint, 1996.

[5] A.S. Dancer ‘Nahm’s equations and hyperkähler geometry’, Commun. Math. Phys.
158, 545-568 (1993).

[6] S.K. Donaldson, ‘Nahm’s equations and the classification of monopoles’, Commun.
Math. Phys. 96, 387 (1984).

[7] G.W. Gibbons and N.S. Manton, ‘Classical and quantum dynamics of BPS
monopoles’, Nucl. Phys. B274, 183 (1986).

[8] G.W. Gibbons and N.S. Manton, ‘The moduli space metric for well-separated BPS
monopoles’, Phys. Lett. B356, 32 (1995).

[9] N.J. Hitchin, N.S. Manton and M.K. Murray, ‘Symmetric monopoles’, Nonlinearity,
8, 661 (1995).

[10] N.J. Hitchin, ‘On the construction of monopoles’, Commun. Math. Phys. 89, 145
(1983).

[11] C.J. Houghton and P.M. Sutcliffe, ‘Tetrahedral and cubic monopoles’, Commun. Math.
Phys. 180, 343 (1996).

[12] J. Hurtubise, ‘SU(2) monopoles of charge 2’, Commun. Math. Phys. 92, 195 (1983).

[13] A. Jaffe and C. Taubes, ‘Vortices and monopoles’, Boston, Birkhäuser, 1980.
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