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Abstract

In this paper we aim to determine the baryon numbers at which the minimal

energy Skyrmion has icosahedral symmetry. By comparing polyhedra which arise as

minimal energy Skyrmions with the dual of polyhedra that minimize the energy of

Coulomb charges on a sphere, we are led to conjecture a sequence of magic baryon

numbers, B = 7, 17, 37, 67, 97, ... at which the minimal energy Skyrmion has icosa-

hedral symmetry and unusually low energy. We present evidence for this conjecture

by applying a simulated annealing algorithm to compute energy minimizing rational

maps for all degrees upto 40. Further evidence is provided by the explicit construc-

tion of icosahedrally symmetric rational maps of degrees 37, 47, 67 and 97. To

calculate these maps we introduce two new methods for computing rational maps

with Platonic symmetries.
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1 Introduction

Skyrmions are topological solitons in three space dimensions which are candidates for an
effective description of nuclei, with an identification between soliton and baryon numbers
[10]. Recently, the minimal energy Skyrmions for all baryon numbers 1 ≤ B ≤ 22 were
computed and their symmetries identified [3]. The baryon density of these Skyrmions is
localized around the vertices and edges of polyhedra, which are almost always trivalent, and
for B ≥ 7 are composed of 12 pentagons and 2B−14 hexagons, with only a few exceptions
(which can be understood by a symmetry enhancement principle). These Skyrmions have
discrete point group symmetries, including occasional Platonic symmetries. For B = 7
and B = 17 the minimal energy Skyrmion is particularly symmetric, having icosahedral
symmetry Yh, and the value of the energy is unusually low. However, there are other baryon
numbers at which icosahedral Skyrme fields exist, but the minimal energy Skyrmion has
less symmetry. This motivates the main question addressed in this paper, namely, what
are the magic baryon numbers at which the minimal energy Skyrmion has icosahedral
symmetry with a resulting unusually low energy?

To gain some insight into this problem we note that, as first observed in [2], there is
a close relationship between the polyhedra which arise as minimal energy Skyrmions and
the duals of polyhedra which occur in the problem of minimizing point Coulomb charges
on a sphere. This latter problem is often known as the Thomson problem, even though
he appears not to have posed it explicitly, and we shall use this nomenclature here. The
Thomson problem is well studied for upto 200 points on the sphere [9] and generically the n
points sit at the vertices of a combinatoric deltahedron. Taking the dual of a deltahedron
leads to a trivalent polyhedron, which is the class of polyhedra which generically arise
for Skyrmions. A Skyrmion polyhedron with baryon number B has 2B − 2 faces, so to
identify this with the dual of a Thomson polyhedron requires that we consider n = 2B − 2
Coulomb charges on the sphere. Let us denote by GB the symmetry of the minimal energy
Skyrmion with baryon number B and by HB the symmetry of the minimal energy Thomson
configuration of 2B − 2 points on the sphere. Extracting the information from references
[3] and [5] we obtain Table 1, in which we compare the symmetries of the minimal energy
configurations for each problem.

From Table 1 it is clear that although a variety of different Platonic, dihedral and
cyclic symmetry groups occur, there is a remarkable match for the two problems in 17
out of the 22 cases. Moreover, a closer inspection reveals that in these 17 cases not only
do the symmetry groups match, but the combinatorial types of the Skyrmion polyhedron
and the dual of the Thomson polyhedron are identical. The five examples that do not
coincide, B = 5, 9, 10, 19, 22 shows that the topography of the two energy functions is
slightly different and suggests that the same factors which determine the polyhedron (or
its dual) are important, but perhaps with slightly different weightings. For example, for
B = 9 and B = 10, which are not particularly low in energy, it is known that Skyrmion
configurations exist which have the symmetries required to match to those of the Thomson
problem, but that they have very slightly higher energy than the minimal energy Skyrmion.
The fact that there is so often an agreement for the two problems leads us to believe that,

2



B 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
GB O(3) D∞h Td Oh D2d D4d Yh D6d D4d D3 D3h Td O C2 T D2 Yh D2 D3 D6d Td D3

HB O(3) D∞h Td Oh D4d D4d Yh D6d T D4d D3h Td O C2 T D2 Yh D2 D2 D6d Td D5h

Table 1: The symmetry group GB of the minimal energy Skyrmion with baryon number B
and the symmetry group HB of the 2B − 2 points which minimize the Thomson problem.

in the cases where particularly symmetric low energy configurations arise, they will be the
minima in both problems. Thus, as a working hypothesis to test, we shall postulate that GB

is the icosahedral group only if HB is also the icosahedral group. Although the Thomson
problem is a difficult one to study numerically, it is certainly much easier than finding
minimal energy Skyrmions, so we can take advantage of the known numerical results.
Minimal energy configurations are currently available for upto 200 points, that is, B ≤ 101,
and of these the values B = 7, 17, 37, 62, 67, 97 are selected as magic numbers at which the
configuration has icosahedral symmetry and unusually low energy when compared to a
numerical fit of all 200 configurations [9]. As we describe later, the case B = 62 is rather
different from the others in the sequence, so we shall leave this example out for the moment.
We are thus led to conjecture that there is a sequence B = 7, 17, 37, 67, 97, ... at which the
minimal energy Skyrmion has icosahedral symmetry and unusually low energy. In the
rest of this paper we perform some investigations to test this conjecture, and hence the
connection between Skyrmions and the Thomson problem.

2 Minimizing Rational Maps

A static Skyrme field, U(x), is an SU(2) matrix defined throughout R
3 and satisfying

the boundary condition that U → 1 as |x| → ∞. This boundary condition implies a
compactification of space so that the Skyrme field becomes a mapping U : S3 7→ SU(2),
and so can be classified by an integer valued winding number

B =
1

24π2

∫

ǫijk Tr
(

∂iU U−1∂jU U−1∂kU U−1
)

d3x, (2.1)

which is a topological invariant. This winding number counts the number of solitons in
a given field configuration and is identified with baryon number in the application to
modelling nuclei.

The energy of a static Skyrme field is given by

E =
1

12π2

∫

Tr
(

−1

2

(

∂iU U−1
)2 − 1

16

[

∂iU U−1, ∂jU U−1
]2

)

d3x (2.2)

and for each integer B, the problem is to minimize this energy within the class of fields
with baryon number B in order to find the minimal energy Skyrmion. This problem has
been solved numerically for all B ≤ 22 [3] yielding the results presented in Table 1 for
the symmetries of the minimal energy Skyrmions. When we refer to the symmetry of a
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Skyrmion we do not mean that the Skyrme field itself is invariant under particular spatial
rotations, but rather that the effect of a spatial rotation can be undone by the application
of the global SO(3) symmetry of the Skyrme model, which acts through the conjugation
U 7→ OUO†, where O ∈ SU(2) is a constant matrix. In particular this means that the
baryon and energy densities (the integrands in (2.1) and (2.2)) are strictly invariant.

It is computationally prohibitive to apply the full numerical scheme to larger values
of B at the present time, but fortunately an approximation method has been developed
which provides very accurate results. This is the rational map ansatz [7], where a Skyrme
field with baryon number B is constructed from a degree B rational map between Riemann
spheres. Although this ansatz does not give exact solutions of the static Skyrme equations,
it produces approximations which have energies only a few percent above the numerically
computed solutions. Briefly, use spherical coordinates in R

3, so that a point x ∈ R
3 is given

by a pair (r, z), where r = |x| is the distance from the origin, and z is a Riemann sphere
coordinate giving the point on the unit two-sphere which intersects the half-line through the
origin and the point x. Now, let R(z) be a degree B rational map between Riemann spheres,
that is, R = p/q where p and q are polynomials in z such that max[deg(p), deg(q)] = B,
and p and q have no common factors. Given such a rational map the ansatz for the Skyrme
field is

U(r, z) = exp
[

if(r)

1 + |R|2
(

1 − |R|2 2R̄
2R |R|2 − 1

) ]

, (2.3)

where f(r) is a real profile function satisfying the boundary conditions f(0) = π and
f(∞) = 0, which is determined by minimization of the Skyrme energy of the field (2.3)
given a particular rational map R.

Substitution of the rational map ansatz (2.3) into the Skyrme energy functional results
in the following expression for the energy

E =
1

3π

∫
(

r2f ′2 + 2B(f ′2 + 1) sin2 f + I sin4 f

r2

)

dr , (2.4)

where I denotes the integral

I =
1

4π

∫
(

1 + |z|2
1 + |R|2

∣

∣

∣

∣

dR

dz

∣

∣

∣

∣

)4 2i dzdz̄

(1 + |z|2)2
. (2.5)

To minimize the energy (2.4) one first determines the rational map which minimizes I,
then given the minimum value of I it is a simple exercise to find the minimizing profile
function. Thus, within the rational map ansatz, the problem of finding the minimal energy
Skyrmion reduces to the simpler problem of calculating the rational map which minimizes
the function I.

The baryon density of the rational map R = p/q is proportional to the Wronskian

w(p, q) = p′q − q′p (2.6)

which has 2B − 2 roots, giving the points on the Riemann sphere for which the baryon
density vanishes along the corresponding half-lines through the origin. These 2B−2 points
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on the sphere give the face-centres of the Skyrmion polyhedron, or equivalently the vertices
of the dual polyhedron which is associated with the Thomson problem.

Using a simulated annealing algorithm the I minimizing rational maps for 1 ≤ B ≤ 22
have been computed [3] and found to be in good agreement with the results of full Skyrme
field minimization. Here we extend the simulated annealing computation to B ≤ 40, in an
attempt to determine particularly low energy magic numbers. In the Thomson problem
the magic numbers are determined by comparing the energy of minimal solutions with
the energy of a numerical fit to the data of all known minimal energy solutions - thereby
isolating cases where the energy is lower than the expected fit. In the problem of minimizing
rational maps it turns out that there is a more natural approach, due to the fact that a
useful lower bound exists. Using a simple inequality it is shown in [7] that I ≥ B2. It turns
out that examining the excess above this bound, by computing the quantity I/B2, is a
good diagnostic tool for highlighting low energy maps, and in particular is more useful than
simply calculating the energy of the associated Skyrme field. We illustrate this in Fig. 1
by plotting I/B2 for the results of our simulated annealing computations for 2 ≤ B ≤ 40.
There are clear dips at the magic numbers B = 7 and B = 17, corresponding to the already

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40B

I=B2

Figure 1: I/B2 for 2 ≤ B ≤ 40, as calculated by I minimizing simulated annealing com-
putations. Also shown are the values of I/B2 for the icosahedrally symmetric Skyrmions
with B = 47 (cross), B = 67 (square) and B = 97 (circle), discussed in the text.

5



known low energy icosahedral Skyrmions (see Table 1). There are also dips at B = 4 and
B = 13, where it is known that the Skyrmions also have Platonic symmetry, but this
time octahedral (see Table 1). However, there is one more major dip at B = 37, and
this is precisely the value predicted as the next magic number in the icosahedral sequence
suggested by comparison with the Thomson problem. This result, therefore, provides
strong support for our conjectured sequence, providing we can prove that this low energy
degree 37 map obtained from simulated annealing does indeed have icosahedral symmetry.
This will be discussed in the next section.

Note that the quantity I/B2 appears to be tending towards an asymptotic value of
around 1.28, apart from magic numbers where it drops to around 1.25. It would be inter-
esting to understand this approach to a relatively constant value, as well as its magnitude.

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

1.22

1.24

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40B

E=B

Figure 2: The energy per baryon E/B of the Skyrmions constructed from the minimizing
maps with 1 ≤ B ≤ 40. Also shown are the values of E/B for the icosahedrally symmetric
Skyrmions with B = 47 (cross), B = 67 (square) and B = 97 (circle), discussed in the
text.

In Fig. 2 we plot the energy per baryon E/B of the Skyrmions constructed from the
minimizing maps with 1 ≤ B ≤ 40. The dips at the magic numbers are clearly visible in
Fig. 2, reproducing the sequence displayed in Fig. 1. However, in this case the dips are
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superimposed upon a general decrease of E/B with increasing B, which is why we regard
the quantity I/B2 as a more useful diagnostic than E/B.

The radius of a Skyrmion produced from the rational map ansatz can be defined as
the radial value, r∗, at which the profile function is equal to π/2. In Fig. 3 we plot r2

∗ as a
function of B for 1 ≤ B ≤ 40. This clearly shows that the radius has a

√
B dependence,

and given that all these configurations are reasonably close to the Faddeev-Bogomolny
energy bound E ≥ |B|, this means that the energy grows like the square of the radius,
as expected for a shell-like structure. Note that at the magic numbers the radius of the
Skyrmion is slightly less than expected, presumably due to a more compact arrangement
of a particularly symmetric energy density.
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Figure 3: r2

∗, the squared radius of the Skyrmion, as a function of baryon number B.

3 Computing Icosahedral Maps

Recall that a Skyrmion is symmetric under a group G ⊂ SO(3), if a spatial rotation
g ∈ SO(3) can be compensated by an action of the global SO(3) symmetry. In terms of
the rational map approach a spatial rotation acts on the Riemann sphere coordinate z as
an SU(2) Möbius transformation. Similarly the global symmetry acts as on the Riemann
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sphere coordinate R of the target 2-sphere as an SU(2) Möbius transformation. Hence, a
map is G-symmetric if, for each g ∈ G, there exists a target space rotation Dg such that
R(g(z)) = Dg(R(z)). Since we are dealing with SU(2) transformations the set of target
space rotations will form a representation of the double group of G, but we shall continue
to call this G.

To determine the existence and compute particular symmetric rational maps is a matter
of classical group theory. We are concerned with degree B polynomials which form the
carrier space for B + 1, the (B + 1)-dimensional irreducible representation of SU(2). Now,
as a representation of SU(2) this is irreducible, but if we only consider the restriction to
a subgroup G, B + 1|G, this will in general be reducible. What we are interested in is the
irreducible decomposition of this representation and tables of these subductions can be
found, for example, in ref. [1].

The simplest case in which a G-symmetric degree B rational map exists is if

B + 1|G = E + ... (3.1)

where E denotes a two-dimensional representation. Here, and in the following, the dots
denote representations of dimension higher than those shown. In this case a basis for
E consists of two degree B polynomials which can be taken to be the numerator and
denominator of the rational map. A subtle point which needs to be addressed is that the
two basis polynomials may have a common root, in which case the resulting rational map
is degenerate and does not correspond to a genuine degree B map.

More complicated situations can arise, for example, if

B + 1|G = A1 + A2 + ... (3.2)

where A1 and A2 denote two one-dimensional representations, then a whole one-parameter
family of maps can be obtained by taking a constant multiple of the ratio of the two
polynomials which are a basis for A1 and A2 respectively. An m-parameter family of G-
symmetric maps can be constructed if the decomposition contains (m + 1) copies of a
two-dimensional representation, that is,

B + 1|G = (m + 1)E + ... (3.3)

where the m (complex) parameters correspond to the freedom in the choice of one copy of
E from (m + 1)E.

A detailed explanation of how to explicitly calculate any required symmetric map is
given in [7]. However, this approach involves computing appropriate projectors which are
matrices of size (B+1)×(B+1), and even with the use of symbolic computational packages
this procedure becomes cumbersome for the large values of B that we are interested in
here. In this section we therefore describe and apply two new, more convenient, methods
for calculating symmetric maps. We shall concentrate on the situation of relevance to this
paper, where G = Y, the icosahedral group, but the methods are applicable for any G.

Before we describe our new approaches we need to recall some facts about representa-
tions of the icosahedral group and Klein polynomials of the icosahedron. The icosahedral
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group Y has the trivial 1-dimensional representation A and two 2-dimensional represen-
tations, which we denote by E ′

1
and E ′

2
, with a prime denoting the fact that these are

representations of the double group of Y which are not representations of Y. There are also
three, four, five and six-dimensional representations, but we shall not need these here.

Klein polynomials are strictly invariant polynomials for the Platonic groups [8]. Since,

13|Y = A + ... (3.4)

this implies that there is degree 12 invariant polynomial. This is the Klein polynomial
given by

kv = z11 + 11z6 − z (3.5)

and although it appears to have degree 11, it should be thought of as having degree 12 with
one root at infinity. The roots of this polynomial, considered as points on the Riemann
sphere, are located at the vertices of a suitably oriented and scaled icosahedron. The same
construction, but using the face-centres and mid-points of the edges of the icosahedron, in
place of the vertices, produces the Klein polynomials

kf = z20 − 228z15 + 494z10 + 228z5 + 1 (3.6)

ke = z30 + 522z25 − 10005z20 − 10005z10 − 522z5 + 1 (3.7)

which are also Y -invariant, by construction.

3.1 Polarization

In this subsection we describe our polarization method for computing symmetric maps. It
has similar features to the polarization technique used to construct symmetric Nahm data
[6].

Suppose we wish to obtain the symmetric degree B map associated with the decompo-
sition

B + 1|Y = E + ... (3.8)

where E denotes one of the 2-dimensional representations. The above fact implies that

E ⊗ B + 1|Y = A + ... (3.9)

and, in our polarization method, the invariant polynomial corresponding to this 1-dimensional
representation is used to construct a basis for the E in (3.8).

It is convenient to work with homogeneous coordinates x, y on the Riemann sphere,
that is, z = x/y, so that a polynomial in z of degree B corresponds to a homogeneous
degree B polynomial in x and y.

Let (pL(x, y), qL(x, y)) be known degree L polynomials which form a basis for the repre-
sentation E and let k(x, y) be a degree B +L invariant polynomial which is a basis for the
1-dimensional representation in (3.9). Then, since the pair (∂y,−∂x) transform in the same
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way as the pair (x, y) under linear SU(2) transformations, this means that the polynomials
pB(x, y), qB(x, y) defined by

pB(x, y) = pL(∂y,−∂x)k(x, y), qB(x, y) = qL(∂y,−∂x)k(x, y) (3.10)

have degree B and are the required basis for the 2-dimensional representation occuring in
(3.8).

As an example of this scheme we now construct the icosahedrally symmetric degree 17
rational map, in an orientation that we shall require later. The relevant decomposition is

18|Y = E ′
2
+ ... (3.11)

so we first require a known Y -symmetric rational map that is a basis for the representation
E ′

2
. The simplest known example is the degree 7 map [7] (corresponding to the B = 7

Yh-symmetric minimal energy Skyrmion)

p7(x, y) = x7 − 7x5y2 − 7x2y5 − y7, q7(x, y) = x7 + 7x5y2 − 7x2y5 + y7. (3.12)

Hence we have B = 17 and L = 7, so now we require an invariant polynomial k(x, y) of
degree B + L = 24. This is easily found by using an appropriate combination of Klein
polynomials, in this case k(x, y) = k2

v(x, y) is the degree 24 invariant where kv(x, y) =
x11y +11x6y6−xy11 is the degree 12 Klein polynomial given earlier, when written in terms
of homogeneous coordinates. The formula (3.10) then produces

p17 = z17 + 17z15 + 119z12 − 187z10 + 187z7 + 119z5 + 17z2 − 1

q17 = z17 − 17z15 + 119z12 + 187z10 + 187z7 − 119z5 + 17z2 + 1 (3.13)

when written in terms of the inhomogeneous coordinate z. This map is equivalent, after
a change of spatial and internal orientation, to the Yh-symmetric map presented in [7]
that corresponds to the B = 17 Yh-symmetric minimal energy Skyrmion. In the following
subsection we shall require this map in the orientation presented in (3.13).

Although this method is much easier to implement than the projector algorithm, it
turns out that for the icosahedral maps we require in this paper there is yet another
approach, which is even more effecient.

3.2 Klein Leapfrog

From the previous section we already have two Y -symmetric rational maps, which are
R7 = p7/q7 and R17 = p17/q17. Here we describe how the other Y -symmetric maps that
we require can be obtained from these two by the simple multiplication of invariant Klein
polynomials. This way of obtaining higher degree invariant rational maps we refer to as
the Klein Leapfrog method.

Recall that we wish to determine whether the low energy I minimizing map of degree
37 that we found earlier is icosahedrally symmetric. The relevant decomposition is

38|Y = E ′
1
+ 2E ′

2
+ ... (3.14)
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Both the maps (p7, q7) and (p17, q17) are a basis for the representation E ′
2
, and the multi-

plication of these maps by any (integer power of a) Klein polynomial does not change the
transformation properties, since Klein polynomials are invariants. Thus, both (kep7, keq7)
and (kfp17, kfq17) are degree 37 Y -symmetric maps. Each map alone is not a valid degree
37 rational map, since the numerator and denominator contain common factors, but taken
together they form an acceptable basis for the 2E ′

2
in (3.14). Explicitly,

R37 =
p37

q37

=
kfp17 + ckep7

kfq17 + ckeq7

(3.15)

where c is a complex parameter. For c = 0 or c = ∞ the map is clearly degenerate,
having degree lower than 37, but for generic values of c the numerator and denominator
are coprime.

The Wronskian of this map must be strictly invariant, and indeed it is given by the
following combination of Klein polynomials

w(p37, q37) = k2

ekv(80c + 28c2) − k3

fkv(68 + 120c). (3.16)

The 72 roots of this polynomial give the face-centres of the Skyrmion polyhedron. Mini-
mizing the integral I over the one (complex) parameter family of maps (3.15) results in a
minimum at c = −0.829 + 0.545i, where I/B2 = 1.255. This is precisely the value found
by the minimization over all degree 37 maps, so we confirm that the I minimizing de-
gree 37 map, and hence the minimal energy B = 37 Skyrmion, has icosahedral symmetry.
Note that the symmetry group is only Y and not Yh since c is not real. A baryon density
isosurface plot for the associated Skyrmion is displayed in Fig. 4a.

The next magic number in our conjectured icosahedral list is B = 67. The application
of our simulated annealing scheme to extend the results presented in Fig. 1 to such a large
value of B would require unreasonable computing resources. We therefore make use of
the fact that the quantity I/B2 appears to approach an asymptotic value of around 1.28,
whereas for icosahedral magic numbers the value is closer to 1.25. Therefore we aim to
present evidence in support of our conjecture by finding an icosahedral map of degree 67
with I/B2 ≈ 1.25.

The relevant decomposition is

68|Y = 2E ′
1
+ 3E ′

2
+ ... (3.17)

so we require three degree 67 maps to form a basis for the second component in the above
decomposition. These are given by a Klein leapfrog as

(kekfp17, kekfq17), (k2

ep7, k
2

eq7), (k3

fp7, k
3

fq7). (3.18)

It might seem strange that (k5

vp7, k
5

vq7) is not included, but because 61|Y = 2A + ..., there
must be a linear relationship between k2

e , k3

f and k5

v. In fact, it is given by 1728k5

v = k2

e −k3

f ,
[8].
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Figure 4: Baryon density isosurface plots (to scale) for icosahedral Skyrmions with baryon
numbers a) B = 37, b) B = 47, c) B = 67, d) B = 97.

Minimizing over the two (complex) parameter family of maps

R67 =
kekfp17 + c1k

2

ep7 + c2k
3

fp7

kekfq17 + c1k2
eq7 + c2k

3

fq7

(3.19)

yields a minimum at c1 = −0.292− 0.816i, c2 = −0.491 + 1.008i, for which I/B2 = 1.250.
This value is plotted as the square in Fig. 1, and it is clearly consistent with being an
icosahedral magic number, as is the energy per baryon of the associated Skyrmion which
is plotted as the square in Fig. 2. A baryon density isosurface derived from the minimal
Y -symmetric map is displayed in Fig. 4c.

The next magic number on our list is B = 97. The required decomposition is

98|Y = 3E ′
1
+ 4E ′

2
+ ... (3.20)

so there is a three (complex) parameter family of Y -symmetric maps. Three of the required
basis maps are obtained by a Klein leapfrog of the three degree 67 basis maps given above,
through the multiplication by ke. The fourth basis map is a Klein leapfrog of (p17, q17)
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through the multiplication by k4

f . The full map is therefore

R97 =
k2

ekfp17 + c1k
3

ep7 + c2kek
3

fp7 + c3k
4

fp17

k2
ekfq17 + c1k3

eq7 + c2kek3

fq7 + c3k4

fq17

. (3.21)

A minimization over the three complex parameters yields a minimum for c1 = 0.705 +
0.699i, c2 = −0.554 − 1.701i, c3 = −0.967 + 0.930i, at which I/B2 = 1.248. This value is
plotted as the circle in Fig. 1, and again it is consistent with being the minimal degree 97
map, producing another icosahedral magic number at B = 97. A baryon density isosurface
of the Skyrmion derived from this minimal Y -symmetric map is displayed in Fig. 4d. The
energy per baryon of this Skyrmion is plotted as the circle in Fig. 2. Given that the rational
map ansatz tends to overestimate the energy by around one or two percent, then the true
energy per baryon of this Skyrmion must be very close to that of the hexagonal lattice [4],
which has E/B = 1.061.

Icosahedrally symmetric rational maps, and hence Skyrme fields, exists for many values
of B, but rarely are these symmetric configurations those of minimal energy. The simplest
example is the degree 11 rational map presented in [7]. For this map I/B2 = 3.84, which
is clearly very large, and indeed the associated B = 11 Skyrme field has larger energy than
11 well-separated single Skyrmions. This is not very surprising, given that the associated
polyhedron is an icosahedron - clearly violating the favourable trivalent property at all
vertices. However, in the Thomson problem there are more subtle examples, where there is
an icosahedrally symmetric configuration which has reasonably low energy, but not quite
as low as a less symmetric minimal energy solution. This situation occurs for the values
B = 22, 47, 82, ... [9]. We shall see if this situation is also mirrored in the Skyrmion problem,
by studying Y -symmetric rational maps of degree 47.

The required decomposition is

48|Y = E ′
1
+ 2E ′

2
+ ... (3.22)

and a basis for the 2E ′
2

is obtained by the Klein leapfrog of R17 by ke and the Klein leapfrog
of R7 by k2

f . Therefore, the one parameter family of Y -symmetric maps is

R47 =
kep17 + ck2

fp7

keq17 + ck2

fq7

. (3.23)

Minimizing over c yields a minimum when c is real (so the symmetry extends to Yh) and
takes the value c = −1.425, at which I/B2 = 1.314. This value is plotted as the cross
in Fig. 1, and it can be seen that, even though it is reasonably low, it is not consistent
with the general trend for minimal energy maps. The associated energy per baryon is
plotted as the cross in Fig. 2 and provides further evidence that this is not a minimal
energy Skyrmion. This suggests that the same phenomenon of non-minimal icosahedral
maps exists in both the Thomson and Skyrme problems, providing yet more evidence for
the similarity of these two systems. A baryon density isosurface is displayed in Fig. 4b
for the Yh-symmetric Skyrmion obtained from the above map with the minimal value of c.
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From this figure it can be seen that the Skyrmion polyhedron fits into the required class,
as a trivalent polyhedron with 12 pentagonal faces and the remaining faces hexagonal.
Therefore, the reason for it not to be the minimal energy Skyrmion must be subtle, and
probably involves the placement of the pentagons within the polyhedron, when compared
to a more favourable but less symmetric distribution.

Finally, we turn to the anomalous case of B = 62. In the Thomson problem there is an
icosahedral magic number at B = 62, but the relevant decomposition for rational maps is

63|Y = A + irreps of dimension greater than 2 (3.24)

so there is certainly no Y -symmetric degree 62 rational map, and probably no Y -symmetric
B = 62 Skyrmion either. The resolution of this problem is the fact that the polyhedron
associated with a Skyrmion is derived from the baryon density, and it is possible that the
baryon and energy density of a Skyrmion could have more symmetry than the Skyrme field
itself. In terms of the rational map ansatz this corresponds to an enhanced symmetry of
the Wronskian, not shared by the rational map.

Recall that the Wronskian is a polynomial of degree 2B−2, so to see if this is a possible
explanation for the case B = 62 we need to look for Y -invariant polynomials of degree 122.
The decomposition

123|Y = 2A + ... (3.25)

reveals that there are two invariants, and in fact they are given by kvkfk
3

e and kvk
4

fke.
Thus, to address this case we would need to find the family of degree 62 rational maps,
(p62, q62) so that the Wronskian takes the form

w(p62, q62) = kvkfke(c1k
2

e + c2k
3

f) (3.26)

where c1 and c2 are arbitrary complex constants. It is difficult to see how to explicitly
construct this family, given we do not know the symmetry of the rational map, but it would
be interesting if this could be done, to see whether a map with a Y -invariant Wronskian is
likely to be the minimal map. However, as far as our definition of icosahedral magic number
is concerned, the value B = 62 does not qualify because the map is not Y -symmetric.

The example of a non-minimal icosahedral B = 22 Thomson configuration, briefly
mentioned above, also appears to fall into the same class [4]. There are no Y -symmetric
degree 22 maps, but there is a degree 42 invariant, given by kvke, to which the Wronskian
of a degree 22 map could be proportional.

4 Conclusion

In this paper we have used a comparison between Skyrmion polyhedra and the duals of
Thomson polyhedra to predict a sequence of magic baryon numbers at which the Skyrmion
has icosahedral symmetry and unusually low energy. We have presented some evidence for
our conjecture, through the minimization of the most general rational maps for all degrees

14



upto 40, and by the explicit construction, using two new methods, of some high degree
rational maps with icosahedral symmetry.

Our methods could also be used to find other possible minimal energy rational maps
and Skyrme fields, with octahedral and tetrahedral symmetries. It is likely that these other
Platonic symmetries are more prevalent than icosahedral symmetry, and may account for
some of the less pronounced dips in Fig. 1.

Finally, a comparison between the Skyrme crystal and the Skyrme lattice [4] suggests
that for large enough baryon numbers the shell-like structure of Skyrmions may give way
to a crystal structure. However, even the order of magnitude of B at which this tran-
sition might take place is not known, so whether all the icosahedral Skyrmions we have
constructed will survive this possible transition remains an open question.
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