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Abstract

This paper describes a framework for exploiting relatively
coarse motion information in the extraction of useable matres
from video sequences. While pulling a matte from a controlled
environment is a well understood problem, increasingly it
is desired to segment objects against more difficult, less
controlled backgrounds or environments. Further, most usable
methods for matting rely on the generation of keyframe
garbage mattes by users. The framework presented here
employs a Bayesian approach to combine global motion
estimates with image based information to automatically
create “pretty good” mattes, that are at least as good as
garbage martes and can then be refined by subsequent matting
algorithms introduced in previous studies. The underlying idea
is to separate each frame in the sequence into foreground and
background areas by expleiting global motion and wirkour the
need to generate a clean plate image beforehand. This work is
applied to the case of complex, natural background scenes. The
principal contribution is an approach for combining various
information sources to further reduce the effort required in
generating mattes in post-production.

Keywords: rotoscoping, matting and compositing, video
processing, motion estimation, Bayesian Inference.

1 Introduction

Pulling a matte from a film or video sequence is one of the
oldest exercises in film and television post-production. It is
used for direct manipulation of the position and nature of
objects/actors in scenes in order to create new sequences not
originally recorded. In the simplest case, the object is filmed
against a green or blue screen. Then, in post-production a
combination of detailed manual contour delineation and colour
based segmentation (i.e. all that is not blue or green is probably
object of interest) is used for creating a mask or matfe. The
mask is non-zero in the region of the object and zero otherwise,
it describes the opacity of an object pixel at each location in
the image. Thus a mask pixel setting of 1 indicates that that
pixel is completely visible as the object of interest, while a
mask pixel of ¢ indicates that the corresponding object pixel
is obscured or not available in some way. This mask or marte
can then be applied to mix the captured footage containing
the object of interest with footage recorded elsewhere. An
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excellent introduction and background to the Matting problem
can be found in [2].

As summarised in [2], traditional methods for pulling video
mattes are blue screen matting, rotoscoping and difference
matting. Blue screen matting or chroma keying relies on
capturing the foreground objects against a solid colour
background and subsequently pulling the foreground matte by
segmentation on the basis of colour. Rotoscoping relies on user
drawn editable curves (e.g. Splines) around the foreground
object of interest.  Snap-to-edge operations as found in
commercial packages like Adobe Photoshop, and introduced
in previous articles [12] are useful user complements here.
Difference matting relies on the generation of a scene
containing only background elements (e.g. recording without
actors). The image difference between this scene and a scene
subsequently recorded with actors is then exploited to generate
the matte. The matte here is therefore 1 when the difference is
large and 0 otherwise (for instance).

While chroma keying demands a controlled environment
for recording, rotoscoping can be achieved regardless of
the complexity of the background environment. Employing
tracking together with user assisted rotoscoping can greatly
improve the utility of contour based approaches. The main
limitation of rotoscoping is the inability to correctly express
image formation at the boundary between foreground and
background. Useable mattes should express the notion that
around the boundaries of objects the recorded light is a mixture
of the background and foreground elements [11]. Difference
matting and to some extent chroma keying suffer from the
probiem that in regions where foreground and background
colour are similar, user interaction is required to resolve the
matte.

In [3, 2], the authors proposed a combination of limited user
interaction followed by direct estimation of a non-binary alpha
matte. They articulate this information to resolve many of the
problems with previous methods. The underlying idea begins
with the user specifying what they term a trimap. This map
divides the scene into regions known to be background (matte
pixels set to 0), known to be foreground (matte pixels set to
1}, and unknown matte regions, They correctly exploit ihe
knowledge that the difficuity in pulling a very good and nseable
matte is the proper delineation of the mixing of light effect
at the object edge. Hence the restriction of interest to the
unknown matte region, by exploiting image information from
the surrounding known matte regions. Their method is also
able to exploit motion information to propagate mattes between
user defined and delineated keyframes. They give convincing
demonstrations of the matting of translucent material (smoke),
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traditionally a very difficult task.

What is notable in all previous work in the area is the implicit
acknowledgement that fully automated extraction of mattes for
all objects in an arbitrary complex scene is a difficult process.
All previous work has adopted the position already in place
in the post- production industry. That is, creation of the best
image compositing results tend to require a combination of
low-level image processing tools and user interaction, This is
simply because of the extremely wide variation in scene and
lighting complexity that can occur in practice. In the problem
of matting however, the generation of keyframe mattes or even
garbage martes remains an issue. Even with the automated
tools so far presented, users may need to generate keyframe
mattes every 10 frames and garbage mattes at each frame.
In addition, depending on the complexity of the background
information, the generation of the frimaps required in the work
of Chuang et al [3, 2] could require an accuracy that is better
than the generation of a garbage matte. We will call such a user
defined matte, good enough for further refinement as a prerry
good matte in the remainder of this paper. As a rule of thumb
for a PAL sized image, a prerty good matte would contain an
image edge to an accuracy of -£10 pixels, while for a garbage
matte the mask is only guaranteed to contain the main object
and its edge accuracy is so poor as to be irrelevant.

The novel contribution of this paper is to push forward
the technology for matting by exploiting moticn directly
in the generation of mattes without user interaction. The
goal is to reduce the frequency with which the user must
interact with the sequence to generate keyframes or garbage
mattes before beginning matte extraction. The idea is for the
automatically pretty good mattes to take the place of garbage
matte generation. In doing so, we introduce a framework that
combines both clean plate information and motion without
the need for explicit clean plate generation. Qur algorithm
for foreground/background segmentation is novel in that it
coherently treats spatial and temporal information in a unified
framework. Figure ! shows a typical Garbage Matte and a
Pretty Good matte. The pretty good matte generally hugs
contours more readily and functions as a better start for
subsequent matte processing (e.g. via Bayesian Matting). This
paper deliberately does not astempt to show results using green
screen controlled environments since that situation is well
covered by previous work {2]. The focus here is on bringing
more automation to the challenging task of pulling mattes
from natural scenes.

We begin by introducing in brief an interesting observation that
Justifies our simplified approach.

2 An observation

In many post-production matting activities we notice that there
are generally a limited number of objects that require excessive

Figure !: Lefi: Typical manually scribed Garbage Matte (in
red), Right: An automatically generated Pretty Good Matte (in
red)

care in matting. In general, the more objects that are of
interest, the less important it becomes to accurately delineate
each object. In other words, for real scene composition, when
two or less objects are of interest, it is likely that the director’s
goal is to focus the viewer on those objects €.g. a conversation
between two actors. Thus the correct manipulation of a
few objects, to ensure there are no artefacts, becomes very
important. When there are many objects, it is likely that the
spectacle of the objects as a unified clump is what is important
e.g. a crowd scene or a marching army. Thus all objects in the
scene become of interest and it is more important to delineate
them as a unified whole confrasted against another background,
than to define exactly each object.

This implies that rather than attempt to identify and delineate
each object in a scene, a generic foreground/background
segmentation process could be a reasonable tool for generating
initial guesses for mattes in each frame. When there are a
lTimited number of objects, each object is likely to be separable
(simply on the basis of position) in the foreground. Thus the
user can select objects as needed. While for many cbjects, the
foteground mask could be acceptable as a well defined blob
that covers all the objects in the scene.

3 Background: Segmentation

Image and video segmentation is a well traversed area [13].
The ultimate goal is to automatically identify semantically
conpected regions in an image. It is generally agreed that
motion in a video sequence is perhaps the most useful feature
that could be exploited for delineating an object from the rest
of the scene. The first work that exploited motion in this
way was presented by Adelson et al [15). The idea is to use
some motion estimation process to estimate motion between
two frames. Since all pixels within an object tend to move
roughly in the same way, the magnitude and direction of
this motion would indicate different objects. However within
an object, regions which do not contain textural information,
simply do not admit reliable motion information. Furthermore,
an articulated, non-rigid moving body (e.g a person) contains
many sub- sections (legs, arms) that do not move in exactly the
same fashion. To connect these regions into a single segment
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or mask, automatically it is necessary to incorporate further
information e.g. colour and texture. The bulk of modern
work in this area has been attempting to incorporate this further
information [14].

Rather than attempt to segment all objects and because of the
observation in the previous section, the generation of useable
pretty good mattes could be achieved by identifying just two
segments in the scene. One representing the background, and
another representing everything that is not background. The
advantage of this simplified approach is that articulated objects
can be identified as a single semantic object as long as it does
not overlap with other objects in the scene. But as is observed,
this could be of less importance in the post-production scenario
than in a surveillance scenario for instance.

The basic idea of Foreground/Background segmentation is
that the motion of the background can be reliably extracted
from a scene because of the large area that is experiencing that
motion. Subsequent processing is then used to assign pixels to
the background motion using some measure of fit. Irani et al
[6] appear to present the earliest workable attempt to segment
foreground and background regions, although for surveillance
rather than compositing. However, that technique dees not
explicitly acknowledge the spatial coherence of objects, nor
does it estimate occlusion and uncovering as the objects
move, It is based principally on thresholding the difference
between frames compensated for global motion only. In such
a circumstance, portions of the image frame that are wel}
explained from past frames by global motion have a low global
motion compensated frame difference while the remainder of
the image has a large global motion compensated difference. It
is likely that the areas of low motion difference are background
and those of high difference are foreground. However, in areas
of the background that are covered by an object in subsequent
or past frames, this difference is also high. Hence although
idea is workable, it is not sufficient for use in generating a
matie becaunse of the poor edge delineation properties.

3.1 Global Motion Estimation

The estimation of global motion is well established in many
different areas: Mosiaking [9], Retrieval: [10], Compression:
f4]. The idea is to estimate the motion that most of the image
pixels are undergoing due to a global effect like camera motion
for instance. A pixel at location x in frame n (I, (x)) uvndergoing
such motion may have arisen from a location in the previous
frame n — 1 which is shifted from the current location due
to some Affine transformation including zootn, rotation and
translation. Thus the image sequence model is as follows.

I(x)=1I_,{Ax+d) 4]

where A denotes a 2 x 2 matrix encoding the rotation and
zoom effect, while d isa two component vector describing
the horizontal and vertical translation component. Most of

the techniques (cited above) for estimation of the motion
parameters A and d use some form of weighted least squares.
The idea is to minimize the energy of the global displaced
frame difference E(x) defined as

E(x) = F[h(x) ~1,_(Ax+a)?

X

@

over the whole image with respect to the parameters A, d.
Since not all the pixels undergo this kind of motion, it is
necessary to discard those from consideration and various
strategies have been developed to do this. In this paper we
employ a strategy described in [7] for estimation of the global
motion parameters. In the subsequent sections we assume that
the future and next frames are compensated for global motion
denoted by £, ,, I_, respectively.

4 Exploiting Global Motion for Matting

To generate a pretty good matte, it is required to configure a
binary matte / such that the matte pixel /(x) is 1 when the site
X is in the region of definite object and 0 otherwise. Recall
that it is not the goal here to establish a non-binary alpha matte
at this stage. The binary matte will be refined in subsequent
processing to create the actual desired matte.

The basic idea is that pixels which obey the global motion
model will agree very well with pixels compensated for that
motion in subsequent frames, while others wili not. However
we must encode as well the notion that pixels at the boundary
between object and background occluding surfaces will violate
this constraint. Thus we introduce the notion that a background
pixel can exist in four states s =0,1,2,3. In state O the pixel
exists in both the future and previous frames while in states
1,2 the pixel is covered (occluded) by the object in the future
or previous frame respectively. State 3 corresponds to covering
in both future and past directions; an outlier state. The situation
can therefore be delineated as follows.

0,0 Background pixel, exists in past and next frames
0,1 Background pixel, covered in next frame

0,2 Background pixel, covered in previous frame
1,3 Foreground pixel

It may appear that / is a redundant variable but this is not so
and this will be addressed later on.

We wish to manipulate p(!,s)p, I}, |, 1}_;,L,S) to estimate the
variables I, s that delineate our pretty goad matte. L,S denote
the site configurations at the eight-connected neighbourhood.
Here the arguments for position are dropped as it is assumed
that we are dealing with a particular site X. Proceeding in a
Bayesian fashion,

PUssltndyyrs o5 L, 8) o plhe Ly 1y a1, 5)p(HL) P (s15)
3
To proceed we must define the likelihood p(f, 1,1, |L,5)
and priors p(!|L), p(s|S).
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4.1 The likelihood

The likelihood should constrain the label field to be 1 when
motion compensated differences are large in both the future
and past temporal directions. It arises directly from the global
motion model given previously as follows.

A3 #1,3)(1 - D)+ AY(s #2,3)(1 ~1)))

ol

-
texp—(B(s £ 0)+P(s ==3)Bl) &

where A ., A, are global motion compensated pixel differences
(using previously calcuiated motion estimates) defined by

Ay =I(x)—1,_ (A x+d,)
Ar=5(x) ~ 1, (Ax+d)) )

where A, ,d, are global motion estimates for the backward
image pair while the other estimates are for the forward image
pair.

In the likelihood the terms involving B are introduced to
suppress the assignment of / = 1,5 = 1,2 or s = 3 everywhere.
Without this constraint the posterior can be maximized simply
by setting the entire image space to be the object matte. This
formulation of the likelihood causes / = 1 and s = 1,2,3 when
the global motion compensated pixel differences are large.
Setting B = 2.7% gives a 99% confidence in the decision using
the likelihood alone. In practice, o2 is estimated adaptively
from A measurements over image blocks of size 64 x 64 using
a robust technique that rejects the maximum 10 % as outliers.

4.2 Priors

An important characteristic of the label field / and discontinuity
field s is the spatial coherence. In other words if several
neighbours of a site are set to / = 1 then one should expect
that the current site should also be set to 1. To inject this
information we use a well understood Gibbs Energy prior {8}
defined as follows.

pin=ep- (A ZAMA10))  ©

A

where v indexes the eight nearest neighbours of I, I{v) are
the values of those neighbours and (/ == I(v)) is 1 if the
condition is satisfied else it is 0. The prior probability is
maximized when each of the terms (I == /(v)) is minimized.
This implies that the prior encourages all sites in a local region
10 be configured with the same label. Hence it encourages
smoothness. A similar prior is used to encourage smoothness
in the discontinuity field 5. Replacing / with s in equation 6
gives this prior. A and A defines the strength of this smoothness
constraint. A = 2.0, 50.0 is used for the results that follow, and
A(v) is a circularly symmetric function that is 1/4/2 for the
four diagonal directions and 1 otherwise.

4.3 A practical solution

At each pixel site there are 4 possible solutions as defined in
equation 3. The simplest and most direct solution is to evaluate
pll,s|-} for each of these solutions and pick the best. This is
called the ICM algorithm {1] and yields a local optimum. We
find that this suboptimal method works well in practice. The
procedure minimizes the log posterior distribution (i.e. log of
equation 3) at each site in turn. This is equivalent to selecting
the (7, 5) combination that minimizes the following energy Ej.

E, = (A,zv"l(v)(l # l(v))) + (As;h(v)(s # s(v))) +
(A}(s;’: 1,3)(1 1)+ Ak(s #2,3)(1 —1)))

%

+exp—(Bls#0)+ B (M

Since the A terms can be pre-calculated the number of
operations at a site is dominated mostly by the spatial energy
calculation, requiring 16 operations. The total number of
operations at each site is therefore of the order of 20.

Several iterations over the image siles are necessary and a
checkerboard scan is useful to prevent efror propagation.
Tterations are stopped when there is no further change in the
estimated variables. This occurs typically after 20 iterations.

4.4 Using clean plate information without generating a
clean plate

If the motion of the foreground objects is too small, then there
is insufficient energy in A} or Aﬁ to differentiate between
foreground and background. However, across a longer
temporal delay, the motion would become significant. This
would boost the classification power of the A features. We
obsetve that by averaging A% and A} across several image pairs
separated by longer temporal windows, the same framework
as discussed above can be used to generate {. Thus a series
of measurements af A}, made by motion compensating frame
pairs [n,n+1]i[n,n+2i[n,n+3]..., are then averaged to
yield a A2 measurement with greater discrimination power.
There is no need to directly calculate these matches, since
they can be recursively established as the motion processing
progresses. That is the motion between frame pair [n,n + k]
can be established by cascading the transformations estimated
between pair fr,n+ 1+ 1,0 +2) [n+2 n+ 3} {k— LAL

A more careful examination of this procedure shows that in fact
this is almost the same kind of information that is being used
in the case of background differencing for matte estimation
[2]. By concatenating the difference information across several
frames, background image information from the future and past
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is being brought into use for the current frame matte estimation,
The crucial difference here is that there is no need to generate
a clean plate to exploit this information.

Typically, if information is used across large temporal
windows, the occluding and uncovered regions will be greater
than that between two frames. This would normally imply
some post-processing to extract the true extent of the current
image matte. However, the fact that ! collects together the
cases of s = 0,1,2 impties that it is still able to delineate the
foreground object pretty well.

4.5 Multiresolution and spatial coherence

Spatial coherence and algorithm speed is improved by a coarse
to fine refinement strategy. Following the work of Heitz and
Perez on multiscale MRF’s [5] successively coarser grids are
defined by grouping together pixels in cells of 2 x 2, 4 x 4,
8 x 8 and so on. Considering each cell as a macro-pixel allows
huge savings in computation for each multiresolution level.
The algorithm described above is therefore modified firstly to
recursively filter the A functions with a short separable filter
having taps of {1, 1]. This generates coarsened versions of A
measurements that are subjected to identical iterative processes
with each finer resolution using a starting point derived from
the resuit at the previous coarser Jevel. The computational
overhead in generating the levels is limited because it is the
A measurements that are filtered not the image itself. This
improves convergence dramatically and also assists in the
filling in of large regions.

To further encourage good spatial behaviour the image itself
is used to measure the reliability of A measurements. These
measurements are reliable only in regions of significant image
texture, and the image gradient is used as simple indication of
texture. Where image gradient is low, the A hyperparameter
is increased while it is decreased otherwise, A gamma like
expression is used to create this behaviour in A as follows.

10

=———+10
T+exp(g—g)

(8)

where g is the magnitude of the image gradient at a site, and g,
15 5.0.

4.6 Refinement with still image matting

As discussed previously, the work of [2] illustrated that a
Bayesian approach to matting yields very good non-binary
alpha-mattes for compositing. In that work, they exploited the
concept of the trimap to indicate regions of known foreground
¢ = 1, known background o = 0 and unknown matte values.
The idea is then to estimate the alpha values in the unknown
regions. In that work the trimaps had to be generated via user

specified keyframes, here these maps are created by exploiting
the pretry good mattes instead.

Having used global motion for matting above, it is possible
to generate a trimap directly by delineating regions in which
the segmentation is confident as foreground or background.
These regions are created by employing a kind of hysteresis
processing of the field 1.

Setting A, low (e.g. 2 used here) in equation 6 yields a
conservative detection of the foreground region. Setting A,
high (e.g. 50 used here) in equation 6 yields an ambitious
detection of the foreground region. Hence the inverse of this
detection i.e. [ == 0, vields a conservative detection of the
background region. These two processes together yield the
trimap required for Bayesian Matting. In practice an erosion
of the initial fields helps to guarantee conservatism.

The refinement process then continues as described in [2). In
summary, to generate an alpha value for a pixel in the unknown
region of the trimap, nearby clusters of known foreground
and background pixels are selected. The colour distributions
of these clusters are modelled by spatially varying sets of
Gaussians. A maximum likelihood criterion is then used to
simultaneously estimate the optimum opacity (alpha value),
un-multiplied foreground and un-multiplied background colour
of the current pixel.

5 Pictures and Discussion

Figures 2, 3, 4 show results from processing natural, complex
scenes with the algorithm discussed here. An example from
the entire processing chain is shown: the original data, the
automatically generated trimap using the Pretty Good Matte
concept, and finally the result of alpha-matte extraction using
Bayesian matting. The quality of the final matte is shown by
compositing the forground against a green background using
the estimate matte. The corresponding sequences are also
available as MPEG4 for reviewing.

The images displayed here are subsampled from the original
PAL resolution in order to reduce the size of the .pdf file.
The picture material is challenging both because of the camera
motion involved and the fact that they are all shot outdoors
in natural environments. In the illustration of trimaps, red
indicates confident foreground, green confident background
and the Bayesian matting process is used to extract the non-
binary alpha matte in the intervening region. All results were
generated using 3 frames of A averaging before and after the
current image.

Figure 2 shows two frames from a sequence in which a
motorcycle travels across a dune. The idea is to automatically
segment the bike from the natural scene. The trimaps generated
are very good and the resulting final (pulled) composite image
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using the non-binary matte generated is believable.

The examples in Figure 3 and 4 show non-rigid motion and
the result of interaction with other objects. These sequences
show heavy DV artefacting and are therefore difficult to
process reliably. in addition, the foreground object in both
cases comains similar intensity and colour information as
the background. It is therefore difficult to automatically
segment these sequences with colour alone. Nevertheless,
the results are useful. What is interesting is that although the
trimap appears to be well extracted, the high conservatism
of the known background matte portion causes some matting
confusion. Thus a bit of the background object is attached
to the foreground on the right of the face in figure 3. This
problem is exacerbated by the fact that the obscured person
also moves. Note that the algorithm presented here assumes
that all local motion is due to a desired object, hence this
behaviour is sensible and expected. Some user interaction is
needed to resolve this difficult situation of overlapping but
distinct objects.

Figure 4 shows that the pretty good matte is still better than
a garbage matte for delineating the woman, even when faced
with extreme problems due to articulated motion. The well
contrasted regions are well delineated, while those that have
ambiguous colour relationship with the background are not.
Shadows remain an issue as expected since they travel with the
object. This is better seen in the video example corresponding
to figure 2.

6 Final Comments

This paper has presented a tool for producing preity good
mattes automatically from an image sequence. The material
chosen for this work is demanding since it does not constitute
a controlled environment i.e. they are rot the result of green
or blue screen scenarios. The tool reduces the amount of
keyframing or user interaction needed to kick start previous
matting algorithms. There are two novel contributions. The
first is the introduction of the idea that rough segmentation
could be good enough to automate the garbage matte extraction
process. The second has been the introduction of a framework
for combining both spatial and temporal information in
generating trimaps and final mattes. Necessary extensions to
this work must involve incorporation of further image based
information like colour and locai motion. Resolving issues
regarding shadows and DV artefacting hold much petential for
future work.
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Figure 2: Left to right: Frames from original scene with natural background; The automatically generated Pretty Good matte
(red=confident background, green = confident foreground), wirhout the need for a garbage matte; The final composite frame
against a green background using non-binary alpha matting.

Figure 3: Left to right: Frames from original scene with natural background; The Pretfy Good matte ; The final composite
frame. Note that even though the pretty good interior (red) is well defined and corresponds well to the foreground object, the
conservative known background estimate causes matting confusion with the partially obscured person on the right hand side of
the image.
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Figure 4: Left to right: Frames from original scene with natural background; The Pretry Good matte ; The final composite frame.
The woman coniains many similar colours to the background therefore the extraction of a pretty good matte is difficult. The usual
problems due to shadows and periodic non-movement (where the foot touches the pavement) also yields problems in delineation,
Nevertheless the pretty good matte is still much more useful than the usual manual garbage matte.





