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Contact-induced spin polarization in carbon nanotubes

Mauro S. Ferreira and Stefano Sanvito
Physics Department, Trinity College, Dublin 2, Ireland
~Received 27 June 2003; published 16 January 2004!

Motivated by the possibility of combining spintronics with molecular structures, we investigate the condi-
tions for the appearance of spin polarization in low-dimensional tubular systems by contacting them to a
magnetic substrate. We derive a set of general expressions describing the charge transfer between the tube and
the substrate and the relative energy costs. The mean-field solution of the general expressions provides an
insightful formula for the induced spin polarization. Using a tight-binding model for the electronic structure we
are able to estimate the magnitude and the stability of the induced moment. This indicates that a significant
magnetic moment in carbon nanotubes can be observed.

DOI: 10.1103/PhysRevB.69.035407 PACS number~s!: 61.46.1w, 68.65.La
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I. INTRODUCTION

Over the last decade there has been an explosive incr
of activity in two key areas of material science: spintron
and molecular electronics. Spintronics is based on the us
the spin degrees of freedom as well as the electronic ch
for a number of applications.1 The field has expanded sig
nificantly since the discovery of the giant magnetoresista
effect in magnetic multilayers2 and has been the main drivin
force leading to the development of the present generatio
magnetic storage devices.

Although the field has already demonstrated part of
potential, it is worth noting that most of the proposed app
cations simply translate well known concepts of conve
tional electronics into spin systems. The typical devices
made with molecular-beam-epitaxy growth, and lithograp
techniques; a bottom-up approach to spintronics devices
scarcely been explored. In this respect molecular electro
provides the opposite approach.3 Here the basic idea is to us
molecular systems for electronic applications and conv
tional electronic devices such as transistors,4 negative differ-
ential resistors,5 and rectifiers6 have already been produce
at the molecular level.

A few experiments have attempted to combine spintron
with molecular devices. In their pioneering experime7

Tsukagoshi and co-workers demonstrated that theI -V curve
of a carbon nanotube sandwiched between two Co cont
presents hysteresis when a magnetic field is applied. S
spin-valve behavior indicates spin injection into the nanotu
with a spin diffusion length~the average distance that a
electron travels before flipping its spin direction! of the order
of 100 nm. This makes carbon nanotubes very attractive
spintronics applications. Other carbon structures are cap
of accommodating net spin polarization and Coeyet al.have
shown evidence for a strong induced magnetic polariza
at room temperature in a graphite system with embed
ferromagnetic nanoclusters.8

From these experiments it emerges that, on the one h
spins can propagate in carbon materials almost without
ping their direction, and on the other that the proximity w
magnetic materials can induce spin polarization in graph
based systems. Although more controlled experiments
synthetic nanostructures are needed, we believe that
0163-1829/2004/69~3!/035407~6!/$22.50 69 0354
se

of
ge

e

of

s
-
-
re
c
as
cs

-

s

cts
ch
e

or
le

n
d

nd
-

-
n
he

implementation of spin physics in carbon systems is poss
and it will be crucial for the development of smaller an
more sophisticated magnetotransport devices.

Motivated by the idea of combining spintronics with m
lecular structures, we investigate the conditions for which
induced spin polarization appears in a low-dimensional tu
lar molecule contacted to a magnetic material. Although c
bon nanotubes are the immediate motivation for this wo
our formalism is rather general and can be applied to
cylindrical structure.

This paper is organized as follows. In the following se
tion, we derive a general expression for the charge tran
that occurs when a tubular molecule is side contacted
metallic substrate. A complementary expression for
contact-induced total energy change is also presented.
set of expressions determines not only how the charg
redistributed when the tubular molecule is contacted to
substrate but also provides information about the stability
the transfer process. The expressions derived in Sec. I
not present any explicit spin dependence. In Sec. III we g
eralize them to include the spin asymmetry of magnetic s
strates and we demonstrate that a net magnetic momen
be induced in the tubular molecule. An estimation of t
magnitude of the induced magnetic moment and of its sta
ity is then given.

II. CONTACT-INDUCED CHARGE TRANSFER
AND ENERGY GAIN

In order to investigate how a magnetic contact affects
spin polarization of a nanotube, we start by calculating
change in the electronic structure of a tubular molecule s
contacted to a substrate. We model the contact by introd
ing an electronic coupling between the tube and the subs
that accounts for the possible charge transfer between
two materials. The interaction is assumed to be only betw
the two lines of atoms, one on the tube and one on the s
strate, that are in closest proximity. Spin-dependent cha
transfer is likely to arise due to the spin asymmetry of t
magnetic substrate, thus leading to a net induced spin po
ization.

The spin-dependent density of states is the relevant qu
tity to calculate and provides the necessary informat
©2004 The American Physical Society07-1
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about whether or not the contact leads to a net polarizatio
the nanostructure. We start by making no assumptions
garding the specific models describing the electronic str
ture of the system. In this way, we express the spin-polari
density of states in terms of single-particle Green functio
matrix elements that can be calculated by different te
niques based on model Hamiltonians. Such a mod
independent treatment emphasizes the generality of ou
sults and leads to a set of closed-form expressions
provide a general method to investigate charge transfer
tween contacting materials.

We consider infinitely long tubes of diameterd, which can
be thought of as two-dimensional finite-width strip
wrapped around in cylindrical shape. We also assume thN
atoms are placed along the circumference. The tubular
tem shows translational symmetry along the longitudinal
rection. Therefore, the electronic states along this direc
are well described by a reciprocal-space wave vector
runs within the one-dimensional Brillouin zone. Since t
translational symmetry is broken by the line of atoms co
tacting the substrate, it is convenient to use real space c
dinates along the circumferential direction. In this way, el
tronic states are identified by the pair of indices (j ,k), where
k corresponds to the wave vector along the longitudinal
rection andj labels theN lines of atoms on the tube surfac
Since the substrate also has translational symmetry along
axial direction of the tube, the electronic states of the s
strate can be labeled by the same pair of indices.

In terms of the single-particle Green function, the to
density of statesr(E) is written as

r~E!5S 2
1

p D Im(
k

(
j

Gj , j~E,k!, ~1!

whereGj , j (E,k) is the Green function of an electron wit
energyE moving on linej with wave vectork. The sum over
j accounts for all the atomic lines of the tube and the s
strate.

It is convenient to define another Green function asso
ated with the disconnected system, that is, the isolated
strate and tube. In this case, the translational symmetry a
the circumferential direction is reestablished and the e
tronic states on the tube are usually described by a set of
wave vectors; the longitudinal component running contin
ously over the one-dimensional Brillouin zone and a fin
set of quantized wave vectors induced by the cylindri
boundary conditions. Likewise, the in-plane translatio
symmetry is also restored for the substrate. However, to
consistent with the notation in terms of the indices (j ,k), we
label the Green function of the disconnected system
Gj , j 8(E,k) describing electronic propagation between linej
and j 8. To distinguish between atomic lines on the tube a
on the substrate, we label the former by integersj <0 and the
latter by j >1. It is clear thatGj , j 8 vanishes ifj and j 8 refer
to lines on different subsystems.

The effect of the contact on the total density of states
be calculated by summing up the corresponding chang
the Green function over all possible lines, i.e.,( jDGj , j ,
where DGj , j5Gj , j2Gj , j gives the variation of the Gree
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function evaluated at linej. Consistently with our notation
we define linesj 50 andj 51 as those atomic lines connec
ing the tube with the substrate, respectively. Therefore,
matrix elements ofDGj , j are

DGj , j5Gj ,0 t ~12G1,1t† G0,0t !21 G1,1t† G0,j ~2!

and

DGj , j5Gj ,1 t† ~12G0,0t G1,1t†!21 G0,0t G1,j , ~3!

for lines on the tube (j <0) and on the substrate (j >0),
respectively. In the equations above, we have introduced
parametert describing the coupling between the tube and
substrate. This quantity plays the role of a tight-binding-li
energy-independent electronic hopping between the rele
overlapping orbitals on either side. The Green functio
above are energy- andk-dependent matrices, whose indic
may refer to orbital and spin degrees of freedom.

We defineDr(E)5r(E)2r0(E) as the density of state
change between the disconnected (r0) and the side-
contacted system (r). According to Eq.~1!, the variation of
the total density of states is given by

Dr~E!5S 2
1

p D Im Tr(
k

(
j

DGj , j~E,k!, ~4!

where the trace accounts for possible internal degree
freedom such as spin and orbital indices. By combining
cyclic property of the trace with the definition of Green fun
tions, we can writeDr(E) as

Dr~E!52S 1

p D Im Tr(
k

~12G0,0tG1,1t
†!21

3FdG0,0

dE
t G1,1t†1G0,0t

dG1,1

dE
t†G , ~5!

or in a further simplified form

Dr~E!52S 1

p D Im(
k

d

dE
ln det~12G0,0t G1,1t

†!. ~6!

Equation~6! writes Dr(E) in terms of the Green function
matrix elements for the disconnected system (G) plus the
coupling parameterst andt† between the tube and substrat
More specifically, it only depends on the diagonal eleme
G0,0 and G1,1, namely, those where the connection tak
place. Equation~6! is therefore a convenient expression
calculate the effect of the coupling since it provides the
quired change in the density of states without the need
evaluating the electronic structure for the connected and
connected systems separately. This is equivalent to
Lloyd’s formula9 describing the variation of density of state
due to a diagonal perturbation, a very useful method to tr
substitutional impurities. This method has also been use
the study of magnetic coupling between impurities in met
lic systems.10 The fundamental difference in the case pr
sented here is that the perturbation has an off-diagonal f
representing the contact between the two structures. I
7-2
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worth highlighting that the expression above involves no
proximation and is exact for arbitrary values of the para
eterst and t†.

From the variation in the total density of states, we c
derive the change in the number of electronsDN ~at zero
temperature!. This is obtained by integratingDr up to the
Fermi levelEF , i.e.,

DN~EF!52S 1

p D(
k

Im ln det@12G0,0~EF! t G1,1~EF! t†#.

~7!

In the equation above, the relevant matrix elements
evaluated at the Fermi level. SinceDr(E) is the variation of
the total density of states, its integral gives the change
number of particles in the closed system. This is of cours
conserved quantity and the equationDN(EF)50 allows us
to calculate the value of the Fermi level.

Another quantity derivable from the change in the dens
of states is the effect of the contact on the total electro
energy. This is a fundamental quantity whose value de
mines whether or not the perturbation in the electronic str
ture is energetically favorable. It is defined as

DE5E
2`

EF
dE EDr~E!. ~8!

From the expression forDr(E) in Eq. ~6! we have that

DE5S 1

p D (
k
E

2`

EF
dE Im ln det~12G0,0t G1,1t†!. ~9!

If DE,0, the changes in the electronic structure predic
by Eqs.~6!, ~7!, and~9! are possible when the energy gain
sufficient to overcome the energy costs involved in the tr
sition.

The changesDr, DN, andDE describe the effect of the
contact on the density of states, number of particles, and
energy of the entire system, i.e., the tube and the substrat
order to investigate possible contact-induced spin polar
tions, one must look at similar changes on the separate p
In other words, instead of evaluating the total density
states summed over all possible sites in the structure,
must distinguish between the changes in the tube and in
substrate. Bearing in mind that global charge neutrality
imposed by Eq.~7!, any modification in the total number o
particles on the tube must be compensated by the co
sponding change on the substrate. Therefore, to calculat
charge transfer between the tube and substrate it is suffic
to evaluate the variation of number of particles on either p
We choose to focus on the tube and calculate the chang
density of states summed over all atomic lines of the tu
Analogously to the derivation presented above, the chang
the density of states (r t) on the tube is given by

Dr t~E!5S 1

p D Im Tr(
k

~12G1,1t† G0,0t !21
dG0,0

dE
t G1,1t†.

~10!
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The charge transfer to the tube (DNt) is the integral of the
above expression and is written as

DNt~E!5S 1

p D Im Tr(
k
E

2`

EF
dE ~12G1,1t† G0,0t !21

3
dG0,0

dE
t G1,1t†. ~11!

Equations~9! and~11! are the fundamental results of th
work. The first tells us whether or not the charge transfe
energetically favorable, and the second the amount of ch
exchanged between the tube and the substrate. These fo
closed system of equations written in terms of the Gre
functions of the disconnected system and the coupling
rameters. It is important to stress that although the comp
ity involved in evaluating the expressions forDNt and DE
depends on the choice of the Hamiltonian used to desc
the electronic structure of the system, the validity of Eqs.~9!
and ~11! does not. This means that our expressions can
equally used with simple model Hamiltonians or with a fu
realistic description of the electronic structure.

Equation~10! for Dr t is not as concise as its counterpa
Eq. ~6! but it can be further simplified by expanding it t
second order int. This approximation is valid in the limit of
weak coupling, which is satisfied in the case of carbon na
tubes sitting on top of transition metals. In fact, rece
density-functional-theory calculations of graphite on a@001#
cobalt surface suggest a value for the coupling paramete
t5W/30, whereW is the width of the graphitep band.11

This value has been estimated using the general tight-bin
scaling law12 for the pds hopping parameter between th
C pz and the Codz2 orbitals. Furthermore, when the su
overk is eliminated andDr t(E) is integrated up to the Ferm
level, DNt(EF) becomes

DNt~EF!5TrE
2`

EF
dEFr0~E!

dV1~E!

dE
1r1~E!

dV0~E!

dE G ,
~12!

wherer0(E) andr1(E) are the density of states on the tub
and on the substrate, respectively.Vm(E)5t Re@Gm,m#t† (m
50,1) plays the role of an energy-dependent electronic
tential. V1(E) is the potential felt by the tube due to th
substrate andV0(E) is the analogous potential felt by th
substrate and produced by the tube. It is worth noting that
potentialsV0(E) and V1(E) depend on the real part of th
Green functionsG0,0 andG1,1, respectively. These two quan
tities are directly obtainable from electronic structure calc
lations for the disconnected system. A similar second-or
expansion of Eq.~9! also simplifies the formula for the en
ergy changeDE, which now reads as

DE5Tr E
2`

EF
dE@r0~E!V1~E!1r1~E!V0~E!#. ~13!

Although Eqs.~12! and ~13! represent a more concis
version of their respective counterparts, Eqs.~11! and ~9!,
they are still in integral forms. These can be further simp
fied by replacingVm(E) with its mean valuêVm(E)&. This
approximation gives rise to the following two expressions
7-3
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DNt~EF!5Tr$r0~EF!@V1~EF!2^V1&#

1r1~EF!@V0~EF!2^V0&#% ~14!

and

DE5Tr$N0~EF!^V1&1N1~EF!^V0&%. ~15!

In this form, the expressions for the charge transfer and
respective energy gain are written in terms of the density
states for both the tube and the substrate, and the poten
V0(EF) andV1(EF), all evaluated at the Fermi level. The
also depend on the total number of electronsN0 andN1.

In calculating the averagêV0&(^V1&), the integration
limits are not in the range@2`,EF# as in Eqs.~12! and~13!
but start from the bottom of the electronic bandr1 (r0). The
upper integration limit is common to both cases and is giv
by the Fermi levelEF . It is clear from Eq.~14! that the sign
of DNt(EF) is fully determined by the potentialsV0 andV1.
The side-contacted nanotube will then be electron-~hole-!
doped for positive~negative! values of DNt(EF). This
means that the balance between^Vm& and Vm(EF) deter-
mines the type of charge transfer between the structures
have checked the results obtained by the mean-field e
tions against those predicted by Eqs.~11! and ~9!, and we
find both a qualitative agreement and values of the sa
order of magnitude.

III. MAGNETIC SUBSTRATES

The expressions presented in the preceding section
play no explicit dependence of the electronic structure on
spin degree of freedom. However, when a magnetic subs
is considered, the spin symmetry is broken. In this case
expressions derived in the preceding section are still v
since an explicit spin dependence can be added to both
Green functions and the coupling parameter, without loss
generality. Although general noncollinear spin Hamiltonia
can be considered, we restrict our analysis to collinear s
in the two-spin fluid model. Within this model all the qua
tities are diagonal in the spin subspace and the only varia
with the spin-degenerate case is that the expressions fo
charge transfer and the energy gain are different for the
spin subbands. Therefore any induced magnetizationM on
the tube results from the spin imbalance of the charge tra
fer, M5(DNt

↑2DNt
↓) mB , whereDNt

s is the charge transfe
for a spins and mB is the Bohr magneton. When the su
strate is magnetic the charge transfer for the majority-s
subband is different from that of the minority, leading to
net induced magnetic moment on the tube.

It is worth recalling that Eqs.~12! and ~13! are comple-
mentary and that charge will be transferred only if the c
responding energy gain is sufficient to outweigh the ene
costs. In the two-spin fluid model we have to calculate
energetics of the charge transfer process for each spin d
tion. Only when the energy gain is favorable for both sp
does the quantity (DNt

↑2DNt
↓)mB describe the induced mo

ment. In other words, if the energy gain for one spin dire
tion is not sufficient to surpass the energy costs, the co
sponding charge transfer will not take place and
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↑2DNt

↓)mB will be meaningless. As-
suming that both transitions are energetically favorable
can make use of Eq.~12! to write the induced momentM as

M5mB Tr E
2`

EF
dEH r0~E!

d

dE
@V1

↑~E!2V1
↓~E!#

1@r1
↑~E!2r1

↓~E!#
dV0~E!

dE J , ~16!

where the spin polarizations is now explicitly included in
the quantities describing the substrate. Bearing in mind
the spin bands are split by the exchange integralD and ne-
glecting possible hybridization effects, we can approximat
correlate the majority- and minority-spin bands byV1

↓(E)
5V1

↑(E2D) and r1
↓(E)5r1

↑(E2D). A further simplifica-
tion can be made by expanding the substrate quantitie
powers ofD. In this case, the induced magnetization b
comes

M52mB D Tr E
2`

EF
dEH r0~E!

d2V1
↑~E!

dE2 1
dr1

↑~E!

dE

dV0~E!

dE
J .

~17!

Both equations~16! and~17! give the induced magnetic mo
ment in terms of quantities that are directly obtainable fro
electronic structure calculations and provide valuable exp
sions to determine the contact-induced spin polarizatio
Whereas the latter is valid for magnetic substrates wh
spin bands are not significantly split, the former gives a g
eral expression for the induced moment with no limitatio
about the electronic structure parameters.

In order to test whether or not the magnetic contact c
induce spin polarization on the tube we must determine
order of magnitude of the charge transfer for a given s
band. This can be done within a simplified model that co
tains the fundamental features of the electronic structure
both the nanotube and the substrate. The single-band t
binding model is known to reproduce well the band struct
of both graphite and nanotubes of somewhat large diame
The electronic hopping within the tube is described by
parameterg52.5 eV and is hereafter used as our ene
unit. Likewise, thed band of magnetic transition metals ca
be described within the same model by an appropriate ch
of band width and total number of electrons. Figure 1 sho
the density of statesr0 and r1 as well as the potentialsV0
andV1 for a typical case. We have chosen an armchair na
tube withN512 atoms per ring. The substrate is modeled
a semi-infinite cubic slab whose electronic structure para
eters lead to a band that is 5-eV wide~typical of transition
metals! and that is centered at an arbitrary positione1
50.75g. The Fermi level is fixed atEF50 and is repre-
sented in the figure by a vertical line. For this choice
parameters, the calculated results are a charge transfe
DNt5223102 electrons/mm with the respective energ
gain ofDE526.531022 eV per unit cell. It is worth recall-
ing that the present calculations are for zero temperat
although the finite-temperature regime can in principle
accounted for by including the Fermi functions in the int
7-4
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CONTACT-INDUCED SPIN POLARIZATION IN CARBON . . . PHYSICAL REVIEW B69, 035407 ~2004!
grands of the expressions above. The negative sign ofDNt
indicates that for this particular band alignment, electro
flow from the nanotube onto the substrate.

The specific values ofDNt and DE depend on the par
ticular alignment of the electronic bands of the tube and
substrate. We investigate different possibilities by chang
the on-site potentiale1 of the substrate atoms. This corr
sponds to shifting the band center along the nanotube en
spectrum. In Fig. 2 we show the changesDNt andDE as a
function of e1 for two different tube diameters. Since th
Fermi energy is kept atEF50, a shift in the electronic band
of the substrate also affects the total number of electronsN1
on the substrate. The figure shows that the charge tran
DNt can change sign, indicating that the tube can be do
either with electrons or with holes. However, despite diff

FIG. 1. Density of statesr0 andr1 and potentialsV0 andV1 for
a typical case: a~3,3! carbon nanotube~solid line! attached to a
semi-infinite cubic slab~dashed line!. The electronic structure pa
rameters for the slab lead to a band that is 5 eV wide and cent
at e150.75g. The Fermi level is fixed atEF50 ~vertical line!.

FIG. 2. Charge transfer (DNt) and the respective energy ga
per unit cell (DE) for different band alignments. The parametere1

corresponds to the center of the substrate band. Solid and da
lines refer to~3,3! and ~8,8! armchair nanotubes, respectively.
03540
s

e
g

gy

fer
d

-

ences in sign, the magnitude of the charge transferuDNtu
does not change substantially and reaches values up
3102 electrons/mm. The fact that the charge transfer b
tween the tube and the substrate can change sign depen
on the band alignment, has important consequences on
induced magnetic moment. In fact, if the band splitting of t
substrate is such that the charge transfer for the majority-
subband has opposite sign to that of the minority-spin ba
the spin balance on the nanotube is not only broken
maximized. In this case electrons of opposite spins flow
opposite directions~for instance, majority spins will flow
from the substrate into the tube, and minority from the tu
into the substrate!. The picture shows that this is the ca
when the Fermi level lies close to opposite edges of
ferromagnetic spin bands. Half metals seem to satisfy
requirement and therefore are potential candidates for ind
ing large spin imbalance in nanotubes. In other words, m
netic substrates made of half metals are predicted to be
best materials to induce a magnetic moment in a nanotu
Considering the results of Fig. 2 as a reference, we estim
that the maximum value of induced magnetization isM
51021mB per unit cell, a magnitude that is experimenta
detectable. The stability of this induced moment can also
estimated by the energy gainDE, which is in the order of
1021 eV, as shown in Fig. 2. Induced moments in tubes
increasingly large diameters are less stable andDE must
saturate toward the value associated with a nanotube de
ited on a graphite substrate. Furthermore, we note that
lattice relaxation13 induced by the charge transfer as well
the charging energy due to the low capacitance of car
nanotubes14 must be considered when calculating the to
energy costs of the electronic transition. Although these t
factors are influential on whether the transfer process
comes energetically favorable, they are at least one orde
magnitude below the energy gain obtained by the chang
the electronic structure. In fact, the typical value for t
quantum capacitance15 ~per unit cell! of a nanotube isC
50.35 e/V. For the parameters used in Fig. 1, this leads
charging energyEc50.0025 eV, which is still substantially
smaller that the energy gain ofDE50.065 eV calculated
here.

Finally, we wish to briefly comment on the similaritie
between our contact-induced spin polarization effect and
problem of spin-injection from metallic systems. Where
the latter is a nonequilibrium transport effect, the former
the result of charge and spin rearrangement toward the e
librium configuration between the magnetic and nonm
netic materials. In other words, while in the spin-injectio
problem the electrons must travel long distances to be pro
by a detector, this is not the case for the contact-indu
spin-polarization. The two phenomena can indeed be
dressed by a common formalism but a complete compar
would require a reformulation of our method in terms
transport quantities, which is beyond the scope of the pre
paper.

IV. CONCLUSIONS

In summary, we have presented a model that describes
charge transfer of a carbon nanotube in contact to a subst
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Closed-form expressions in terms of Green functions g
the charge transfer and the respective energy gain assoc
with the transition. We have subsequently shown that w
the substrate is magnetic the spin imbalance of the sur
may lead to an induced spin polarization in the nanotu
Within a simple model that reproduces the basic feature
the electronic structures of both nanotubes and transi
metal surfaces, we were able to estimate the magnitude
the stability of the induced moment. This indicates tha
measurable magnetic moment can be induced in car
nanotubes when contacted to magnetic substrates. Fin
S.
.
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n
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lly,

we have demonstrated that half metals are the best ca
dates for inducing a sizable magnetic moment in carb
nanotubes.
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