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Biholomorphic mappings and
Banach function modules

By 8. Dineen, M. Kiimek and R. M. Timoney at Dublin

In (12] the authors showed that il E is 3 Banachi space which does not contain ¢
then every bounded domain in £ is biholomarphically 5::..;9: to & fihite product cpm
jrrediivible domains (which afe unique up to permutation and biholomorphic equival-
ence for a convex bdlanced dorain). Tn thik article we continue this difection of resedreh
and consider domains in arbittary Banach spaces. We confine ourselves 1o the open unil
ball of a Banach space and ao:vna:g:c by a result of T&G and Upmeier [22]
hibolothoiphic efuivalente i§ the same as lineir isoinetric 554 ence. Thus we seek .M
niethied of expresting an arbitrary Banach spuce as a unique -prodiict of irreducible
Banach spaces ie as ¢g({E}ii) or as I ({E}.,) for some collection of irreducible
Bunacls spaces B i e [, This is not always the case. Te find E::Eu_rm in which it is true
we furt to the well developed theory of M-idedls, M-summaiids and {unction modulé
representation of Banach spaces. This theory is reasonably well suited to our purposes
since a Banach space is irreducible if and only if it has dily ttiviil M-$unitands and .a
fiunction module represediation of a Banach space may be nmmmawa ag u deconiposition
of the Banach space into tomponent spaces. On the other hand we note, the indexing
set is a compact space rather than a discreie set and so we do not have what we mighit
ordinarily consider a§ a product, the compoitent spaces indy not be irredicible dnd an
irreducible space may hdve more than one component space.

Tit Seclion 1 we récall Soms notions of irreductbility, We compare and ¢osirast
them with similar concepts which are also ditcusséd in the literatiig &.g -Banach
biindles and continiious products of Banach spaces. In Section 2 we obfdin a general
%mcgcm.:ez theorem ,,2. Banach spaces into atomic and nonatomic parts: “Using this.

result we oblain an irreducible product decowiposition of 4 Banach space X in ihe
?:cf:m cases:

 X=Y and ¥ has RNP(=the Radon-Nikodym Property),
iy X=Y"and v is an M-idea! in X,

(fi) X bas a l-unconditiongl finite dimensional decomposition.
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Moreover, our decomposition feads t0 a fairly transparent proof of the Friedmadn-
Russo decomposition of 4 JBW*-triple {18] aiid to a characterisation of preduals of
IBW*-triples having RNP [3], [7].

1i Section 3 we discuss bilivlomorplii automorphisms of the unit ball of a function
module and show that théy can be recovered from the biliolomorphic automorpliisms
of the compoient spaces and from the homeomorphisms of the compact indexing set.
We also shotv that ang Binach space X cdn be isometrically embedded as a wenk*-

-desisé mzvﬁﬁoa of i ?ﬁ?oa:ﬁ Y of irreducible dual Bapach spaces such that each

bikolomorphic automorphisin of the ball [of X is the restriction oﬁ a biholomorphic
Antomorphism of the uiit ball of ¥

§1. All Banach spuces we consider are over the coniplex numbers although 2
number 6f aiir résults aré easily seen to be true for real Banach spaces. We let L(E)
denote the set of all continuous liweai operators from the Banach space E into itself and
ALE] will denote the real subispace of Z(E) consisting of all hermilian. operators
{T € h(E) if and only if the rumerical raige of T is real).

The concepts of M-summand, function module etc. are primarily due to

Cunningham [§] atid have aléo been extensively developed by Alfsen and Effros [17: We
tefer to [5), unless otherwise indicated, for 41 unexplained defibitions.

Throughout the puper we shall investigate various properties of function rodiles.
There exist several notiops similar to that of u E:o:os module and related to the
problem of reduncibility of Banach spac &3 Thie concepts of a Bunmach space over a
topological space and that am a continuous product of a family of Banach spaces, have
Been introduced and stadied by Vigué [28]. Another sinilat concept is that of 2 bundle
of Bdnach spaces, The théory of bundles of Banach spaces is well developed and its
comprehensive exposition can be fouird [in {157 and [18] Alse in [1¥], thete is
detailéd atcount of the relativnship Hebwean. bundles of Banach spaces, sheaves and

Bamach C{X }modules. The élationship |between the oiher notions mentioned above
afid thal of 4 [unction module s explained in the next two Ecmoz:.osm.

.wn%oﬁmc: 1, G Let (E, S, p) be a bundle of Bangch spaces ovei & completély
regular hase spacé S with & cohtiniiolis Norat g on E, Then E is a Banach space over S
{which i$ réduced if the bundle

iy IF(E, S, P. q)isa Banach space| over a topelogical spaci then there IS a uiigué
coursest topology on E under which (B, Sip. @) 5 @ ‘Banich space over a ‘tapological space.
Undir this topolozy (E; S, p) is a bundle of Banach. spdces,. Ecé& o if 8,18 compact. the
ciiange of topology of E dofs not affect the space Q mmp:e: o\ .

Progf. (i} Follows from [15], Theorem 2.9.
os He:U—Eisa E?L section [of p then n.,as.:ncm@ of d;p, Q;E.w:nw;r.”: for

any &3>0 the sets : LR

TW. o H)={yeE:p(yjeV Ea Qc_. E%Aa
aré open. Hoftmann's congtruction (as des _n:_uom in mnn:o:m 5.3-3. 50 [I mu 16 @m uged
to show that {T(U, o; 8}y, is @ base for & iopology on E {which is bhviously conrser
than the original ofit) dnd :5» the .:Mor::o omoamcza on m are ncsrscoﬁ it 6 clear
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that p is continuous with respect to the new topology. Now we shall prove that 4 is alse
continuous in the new topology. Fix a point Xy & E and a positive number &. Tike a
local section ¢ such that x5 =0 {pix,}). Continuity of g ¢ _Evrom the existence of @
neighbourhood U of p(xy) such that U i contained ii the domain of ¢ and
lala(plxs)) —qlo (N < #2 for all s L. Therefore for all x e T(Y, | U, £/2) we have

1463) — g (xo)l £ 1969 — g (a (LM + e (o (p(xI)) ~ alo (pLxo))i
Zafx !q?@&.m faf2<e.

This completes the _:52 of the first statemient in {ii}. The seécond conclusion of (ii)

.mc:osmm:on:c?cg:pwroamqiﬁnamssm205&23»%&0085 ?nnm?uq.rooaﬁau
Corollary 4.3). .

(B 8. p,g)is a Bandch space over a topologicsl space, we shall dehote by ﬁ 9]
the Bandch space of all g-bounded global sections of p.

Proposition 2. Let (K, Qtrn % X) be a _function module such that fov every xie X
the mapping k — {x (k) 18 éontisiitons. Define

E= ) [R) % X

ek

pE- R Bk x X, =

q: B Ry, qlik} x X 15 ilie novin on X3,
TU, %= {yeE:p(y) e U and g(y—x{p() <8}

Jor e30, x e X and an opert set U < K. Then the sets m.z@ Xy B}y, Jorii d base foF v
topology on E under ‘which S K, p, @} becoviés d Benich space over a topological space.
Mordoyer, X =I"(p) ie. X is a comtinuons product of {Xhek-

Proof. By Theorem 3. 9 in {15], (E; K, p) is 2 bundle of Banach spaces such that
X = I(p). The base spacs of the bundle is compact, hence for each a & E, there is a local
section o of p such that :Hl pla) )} ([15], Theorem 2. 9). So, it is enough to prove that 4

is continubus; -and this can be dohe exactly as i the proof of the second part of
Proposition 1.

Remark: 1t is obvious that if {E. S,p, ¢} is a reduced Baiiach spact over a
topological space and § i compact thehi {S, (B).s. I(p)) is 2 fonction module.

Let K be & compact Hiusdorfl space and let X be a Banach space which is a

C{K)module (see [15], Definitions 7.1,-7. 18 or [187). We call X' rediiced if the c:@
SeC(K) with f- x=0 for each XX &5 f=0,

Prapasition 3 ([15], Corallary 7. 19, Theoresit 5.9)  Let K be a compact Hausdorff
space, Thei the following are equivalent for ¢ Bunach space X:

(i) X is a reduced locally C(K)-coivex C{K)-moduie (seé [15]; [18]).

(i) X is isometricully isoniorphic to the space of bounded sections of a reduced
bundie of Banach spaces with base space K. . i

(i) X has a fanction todule representativi dver K.
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Corollary 4. Léi X be a Banach space

(K, Xeex, X, b) arid Ky a compuet QSE&E.

i) X is a reduced locally €(Ko)-cony

continuous surjectton of K onte K.

(i) If X is a continuous product Q.\‘m

space 8, theii there i$ a continuois Sigjection fi

BS.
¥

{iiy 1 i B.is the wc:i:& Ea:&a&ﬁ space ea«z::ﬁ in :& EEQEE Juncii
representiition of X", then there Is d S::E: :m SH1; Kn E: of K E:a K

368.,. (i) Tollows ?S.a Proposition 3 [and _”uu_v jﬁ tem A H

AE it is easy to clieck that if X is 2 cont scozn o:&:np c‘.ﬁ w then .x, s a-
locally C{fiS)-convex C(f §}-module. Thits 3 follows ?eB 8 :

{ii) It is not difficuit {o check that X”

‘u,,.r,n follovwing fesult comipares vario
spaces. Z{X) denotes the céntralizer of X,

Proposition 5. Lét X be o Baiach spac usider the . wition
(@) Z{X"} is one-diniensional. . : B T

{b) X has ug voniiivial M-ideals.

(€} Z{X) is one-dimensional.”

(&) X cannot be represented as a fimetion.madile over - compact . set-cofitaiing
iivre thait diie poliit. .

(€) The trivial finction nodulé representation of X1 X X) with X=X} is
maiiniil. . e St Do
{f} X cannor be répresented as a continuous” product’ of Banach spaces over a base
space S with niore than one point. S .
{g) X camiot be represented o a continuous E.ma:..rx.&. Banach spaces over a
compat bdse space. Wwith. more than one vccﬁ. . . N .
% X does not contain npon-trivial K-»:::za:% ﬁ: %3 case we.say X is :?a?
cible) : .

Then (a) = (b) = @ & h& § :_.. = { ; X is a dual space
g: ). If X is reflexive, all 1§ conditions are &

Proof. [a) = (®). By [5], Propositign 5.2 X+ ,mﬁw only trivial A -sunmands.
Hence X has only trivial L-summands, which implies (b). .

(B} = [¢) by [S1 Proposition 5. i+ (iii)

{¢) == {d) = (&) by properties of the 1
(&) = S by. Corallary 4.

) = {p) and @ =5 :: are :,:._E

43 Joumal raztih, Hand 357
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For X a dual space () = (c). Indeed, if X is a dual space and (K (Xika e, X ¢} is

4 maximal function module tepresentiition 6 &, thed K is extremally disconnected {see

N

[5h Z.,P every M-sumimand in X is of the form X, = {x ¢ X : g(x){k) =D for all ke L}
when L is a closed and opgn subset of K. Hence (h) implies that X consists of a w:.@au
point. This yields {c}. . . .

.ze:_nlr A Banach space X i3 said vo be Swrongly irvediucible i it does not
n@:mE non-trivial M-ideals. It has been shown in [4] that a closed subspace of a JB*.
triple system is d IB*-ideal if and only if it is an M-ideal. Heiice (e above definition
agrees with that given by Vigué [29] in thie conilest of JB*-iriples: . ,
A Banach Space X s said to bé irreducibln in the sense of Vigué [39] if it caniiot
wa.a presented as 4 continubus product of a family of mote than one Banach §paces and
il the family of all biholomorphic atoniorphisms of the unii ball of ¢ bélaves 4s in

Theorem 48 in the last section of this paper.

Proposition 5§ and Theorem 48 yield the following

n‘c_,.czui 6. Strong WR&:Q.E:.Q implies irreducibility in the sense of Vigus. 1 1 dual
spaces :.g.w.mié:_@ in ihie sense of Vigué yields irreducibility, Al three concepls coincide
Jor reflexive spaces. m

Corollary 6 generalises. Proposition 2.9 and Theorem. 5.1 of [29],

o ,:5_”.@ exist Banach spaces which have one-dimensional cenfralizer but admit non-
Irivial M-ideals. Indeed, if # is an infinite dinensional Hilbert space. thien the compact
operators on H furnish a non-trivial M-ideal in the space B(H) of all bounded operators
on ..I and B(H} has one-dimensional centralizer. Consequentily there are Banach m?ﬁn/
which are irreducible in the sense of Vigué but not strongly irreducible. Also, there exist
irreducible Banach spuces which are not ifreducible in the sense of Vieus. A simiple
example is given by C{[0, 1. ’ R !

. Harris @d &mﬁam.,nm irredueibility ‘of J*-dlgebras: His ¢oncept of indecomposable
1 -m;mm.:m.s T L.,. p. wa,o.. is c:. safie as our notion of irreducible ?.Emiﬁw and a 1%
algebra is simple, [17], p. 347, in the terminology of Harris if and only if it contains no

M-ideals. Harris also discusses furthér types of irreducibility which are only relevant foi

spaces of operators and thus only o J¥lgebias (= special IB*triple systéms).

~ We now m.mnmam,vm briclly the basic definitions from fhe theory of bounded
Syniinetric domains and refer to [263; [27] for Turther details. ’

. Un:amc: q.hm w*‘:,.mm& m‘«..w.azlwuwu:ma_ywnmnmmeaasm@aE;noEE:e:m
triple product {>,-, } E* — E such that : .

) 0] {t s tis :zmﬁ v_.b the first variable, dntilinear in the second and symndetric
in the first and. third variables.

(i) ?\q.?mu.w.w,l {uv{xyel) = {{xyul ez}~ {if{oxy} 5} for all x,pzuieck
Uordan triple identity). ’ .

) if x[1ye LE) is defined by x[J vle)={xye} then 5 [ 7& hE
se I and ofe O 9 e [0, ). yig)={xye} then 2 [ 7&h(E) for all

) 1z 02 =izl for allf z& k.
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A deep result of Kaup- [20] says ths

R

¥, Benitoli %SES:_EQ:;&

t thére i§ a- one i0 one correspondence

between bounded symmetric domains and JB*-triple systems... - . : oo

For a domain 2 we let G{¢%) and E@.%mvau.:,m..wmcé of: all. bihalontorphic

mappings of # onto itsell and the (real) vectio
fields on @ respectively.

Proposition 8. [22]. (a) I E is'a Band
F of E such thai :

G(Bg) (0)= B F =B,

(b) E is d 3B*wile system if aind on

A subspace F of a IB*triple system is

r space of all complete holomorphic vectos

ok space theri thers exists d tlosed subspace

AXOX e VB

y i E= {(XO¥ V()

a JB*:idealiifl {xyz} e I wherever al least

olic of x, p,zeF. If F is a closed IB*-ideal then E/F is & ,.:w.fﬂ%_n systerp in the

canonical fashion:

Proposition 9. [4, _3 A closed subspace F of a JB*-iriple sysiem is a IB*.ideal if

and only if it is an M:ideal.

§ 2. in this section we establish a ge
in & vatiety of silmatiobs and which is
répresentation. :

Definition 10, An adniissible class, €,
(8) if Ee% and Fe? then E@, F
{b) if Ee® and E=F @, G _then F

Example 11. The following are exam

{#) # — the colleciion of all Banat

{(b) #* — the collection of all dual

{©) FF — the collection of all JB*

@) @+ — the collection of all

(FBW Ci FRBNDBT), :

© & — the collection of all Banac

in theiv maximal fonction module. represen

(fy # the collection of all B

ke K —lglx) b} i contintious, K and
representation (see [3]).

reral decomposition theorem whicli applies
based .on the muiximal function module

e

is o collection of Bandch spaces ‘such that
. «N,« . . . I .

e¥ E.E m... €%

ples of admissible classes:
h spaces,
Baniach spaces,

triple’ systénis,

IB*:triplé- systems' Which “iré "dual 'spaces

aiidich  spaces . such  that | the  mapping
o as in. the. maximal® function module

We have already seen that #* = ¢ ~2. 1f K denotes a compact set then C(K) e #.

If K is extremely disconnected but not hyp
ClKYeEnd but CK) ¢ &%,

erstonean, & g the classical Cantor set; then
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Definition 12. A collection of opératois ¢ is called admissible for any adissibi
4 s call ssibile for any "
class @ il the following hold: A man:mzzn

@ UT:E-~Fe@ Ec® and E
and an isometric ns.wamaam

= M @ M* then thére exists T, + M —' ‘Ge
PG I m:ar that the following &E.m?:: oc:::Eom

» G

*)

M@ M=FE — T, r _

_ (This Ss&:c.s, says essentially that an admissible collection of ojeritors is dosed
with respect to restriction to M-surnmaids.)

() US:E,—+E,€08, E €% and F, € @ {lien there exists F, such that
: A.ww Qw ¢ Nu_ @8 N.).- — m.m @S N.A‘Nv
(% ¥ —— S(+0

)]
belongs to €.

Hﬁ.::.mm 13, The weak*-continuous linéak luncticpals form an admijssible class; 1
suffices in (+) to take G=C, i= e and Ty the restriction to M. T (33) Jet Fy=1{0}.

Our fext example depends On the following leming. &, s denotes the &t of exir enie
points of the unit ball of £,

~ Leonma 14, If T is ait isometry of thie Baiidéh space E onto itself, | — ﬁ_MAw aid
M is a closed M-ideal in E then T(M)= M. . .

Progf. Since [I-T

=TT TS - T T <2 i suffies ¢
show T(M)< M. £l -7 it suffices fo

.rm_, T B — ' denole the adjoint of T Since M ig an M-idedl we hiive
E'= M@ (MY Let ex 2y + ey € . where € ¢ MO and g,¢ (MY We claim that
Q::z, ¢ or ¢ is zerd. If ilof we tan choose positive Teal fuinbérs such - that
l=Bllesll- Let §=min, ). Then, for |21, .
e &2+ A(Bine, — 8 el =Ii(1 + 28a) el + (1 — A5 ) e,]
=1+ A5%)e )+ (1 — 28 Billesll =1 + A {lley )l — Blle, ) £ 1
This is & contradiction and proves our claim. if ¢,

€ Byo a0d 8y € Gyt thét |

fley el =2.
Hence ' ;

wsm.ow?wﬁ.«m”:m and S‘H&«Tﬁfwn%ﬁwam ; i
Sinee M"&B* and (M°)eB* 1t follows that MY e M and T{(M? °
: M) e (MO,
Hence “T(M™) < M. Let J:E— E” derote the canonical embedding. Since
T(My=d " TY M) < J T o (B))
ST M A JE) =0 (M) = M. !
This complete¢ the proof. .
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+ Corelliry 18. If T is & Hérinition operal
TM)c= M.

Proof. Since T is Hermitian 2" i§ a
small [fe"" - J|{ <2 dnd Hehee ¢'T (M) M. ]
and xe M
T
gt -1

SOF .
L1
Since Ji ——— (%) (x}=
o f

_ww

) isometty’ for @7 €RIFor ¢ sulficiently
fence for ¢ sufficently small and non-zero

=iT(x} for all xe E; this 851&3 the mac_.

Esample 16, The Hérimitian operitors forin an, amazm&_n o_amm.

o If T:E—E is Hermitian and E=1
T{MYc M.

Let T, 1M — A be the restriction of T o
aitian if and: oaq ifits s:Bnﬂa& E:w@ is Yol e

and thie fact m;: an operdtor is Hi
see that T; is Hermitian. Let G=M and lef i
thén condition {#) of Definition 12 is sat
admissible.

Example 17. The Hermitian operator
adinissible class. So does the subcldss with

Example 18, Let £* cotisist of all w
from éXtréme points of the asit ball of 2 pred
&% 18 dn aduiissible class.

Leét x:E-> Ced* dnd suppose E=

M® 3@ Ers 09.0:;@ ~.) _E@:mm n?.ﬁ
”

M G&.am z_a Hahn- wm?_n: ﬁacgi

be -the nn:oEoE oadnm%:s of M in E
isfied and ﬂ_a SE:::..: ccnzﬁcz -are.

RS - . oy

§ .H hilu E: a:::j o0 _,c:d an
:E ﬁEA: :2. ﬁoaa myva :.

mmr*.nasrnsoﬁ ::m.&. _.._:n:c:,:f. urising
ial or whichi are identically zero. iw claim

MO, 3&, Phii awnn ?u v IA __, Flisa

prédual of £ such that xe &y then F =M, ®, M§ where

Mi={yel; $(¥) =

We have A~SCV«Z-\.\AA«?V,QZ>Q._” and (
where x =0 is trivial) we have, as in Lemma |
theri x; =0 vr %, =0. If x,=0 we take Ty=
and let Ty = x|y i Definition 12, This shot

mﬁzzmwm 19. An element, ¢ of & JB*-tri
X=M@,» then e=e, +ep where ¢ € M
[27] or Lemma 47) that ¢, is & tripotent in
set of all operators of ihe form emie where ¢

0 for all @nfw.

acv:(ﬁ\m?hx ?3 w:ﬁa xmn&. :_5 97@

urc :au x_ %:..

M .wza&w is
is 4 tripatent form an uas—_mm_iw 8:2.:0:.

Example 20. The subclass of operaiors edle {on the JB*-triples XJ with the
dimension of the I-eigerispace of ene at most # (for some fixed ) form an admissible
class. To see this, with the notation of Example 19, write ¢'=¢; -+ e, and notice that for

X=Xy ,*,kn
_”&N. €3, K.uﬁ & z\.,

{ @, M =X, e, & x}={¢, &, X} +.wa»wm~u %ot with {ef, e xJe M,




Dincen, Klimek and Tinioney, Bavach fiiction modules {

Dielinition 21, Let T: E—F be 4 continuous linear operator betwein the Bauach
épaces £ and F. Lel (B AX i X, g) denote the maximal functiod moédule representa-

:os of I T i& an atoinic aperatoir il T is riviiZero and there exists an isoluted point k in
K such ihat

plker(T) oMy ={xe X; x(k) =

We sefer to the point k as thie suppert of the atomic operator,

Notice thai if X lias only onc point (which is equivalent to {he SEErN«n Z(E)
being one dimensional} then all nonzero operators on E are atomic,

Also, it is €asily seen that if k; &4, then ir + M, =X and thog thit :_95 exisis
at most one & with the above property. I X is a dual space then the property is
equivalent to {he existence of 2 maximal M-summand contained in ker 7%

We now give a number of examples of dtomic operators.

Proposition 22, If X i§ a dual space with predual ¥ and. :A. A%Lﬁ & X.9) is the
maximal function module representation of X then the following are equisalent for ke K:
i} & is isolated it K,

—

(i) My is an M-sunbnand in X

i)y Ay s weal®-closed it X,
ivy M, is not weak*-dense in X,

(v} there exists a noivzere ye ¥ sich thai
() alker():={oeXixe X aid x())=0} 3 M,

{vi) {re Y:glker{y) =M} is a (non-zero) minimal L-stiimand i ¥,

Proof. () = (i) by [S], Corollary 4.10; (i) = (i} by [5, p. 114; (iti} = (v} by
{51, p 130 and {iv) = (v) by delinition; {vi) < N by [5]. p. 114 and :Eﬁiu_;% of M;.
S0 it is enougl to show (v) = (i),

Suppose thdt (#) is sitisfied by b and k. Lét {17, be the set of neighbourhoods of k
ordered by set inclusion. For each & chodst #, & C(K) such thit || sl ¢dk=1 and
support {(d)c V.

Let xq € X be chosen so that o(xg) (k) % 0. The net {$,00¢,)); is a bounded net in
X and hence contains 4 wedk*-converzent subnel. Lef w be a limit point of some such
subhet. Since (0(xo) lm?& {ly="0 for all 2 we have p~* ?ﬁm?cwh Y =xy(y) for alt
and hence g7 ) {p)=x{) 0. By (4 it follows Eﬂ: w{k) £ 0.

If k1 theii by [5], Corolfaty 5. 10, theie exists a clopen neighbouthood. of , 1
which does nol contain L The set W of all x € ¥ such that o(x) Q& Qforall k¥ ¢ v
an M-summand which cotitaing ¢, g(xg) for all « sufficiently large, By [51. p. 114, % is
wenk®-closed -and heétice w ¢ W, Hence w{l)=0 for all I+ k. By [31, Theorerii 5. 13, the
Emm%:& ke K- ihwik : is cortisuous and since k iy the only point at ﬁ._:cs w s
hoii-zero it Tollows that & tiost be isolated. This completes the praol
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Propesition 23.  Let X be the dual of @ a&:a: %z% Y.

i) 4 now-zero element of Y is an atomic dperator ‘o, X if dwd only if it i
cortained i a minimal L-swiiiand of Y. In %%:o:?x every extreme vo:; cx :a ::: ball
af ¥ is ai atomic gperator on X. :

(i} Suppose T:X — Z is a noi-zero |botind ,
yespect to the weak™*-topology on X and some mn.:ﬁhmeﬁ
Then T is atomic if and a:? if; for every d 85@&:5:
cither M @i M. I

Proof. ) Assume (hat 0 is contal
follows that [P 5 a maximal M-suoinay
QA ?«d»nm,k g} denote the maximal funct
P={xeZ;p(x)(k)=0all ke H} for some
extremally disconnected, minimality of H ii
isolated). We have c?ﬁ.C& Sl = My, v ?nr 5%:% mm;

i) &0 and y is atomic; (Her by Proposition 22 . is conlaingd.in. a1
summand. Finally, if ¢ € &, .then the intersection £ of all L= sunimards rc,;u_nim ¢ 18 ah
L-summatid [5], Theorem 1. 11 (i) Moréover E 1 is mintmal, ndeed, if Y=F®,G :ﬁm_
one can use the same reasopning as i Lenima 14 fo prove that éither ¢ e eforeed
This miéatis thdt sithér EeF or £ G and bence £ is Bmaau_.. .

i) By Corollary 4 10.in [§], it is clear that fant - etornic: operator ‘T mustrsalisly
e condition. For the converse; et Ky dencté tite Saimaam of all. ao?: wizﬂw m of
K satislving

@?mmﬁuwxmm. x (k) = o m__ f.:i,

Every such H is don-empty and the E»w:mﬁma:wom Fs G e f: have :F same
property. Thus, it follaws froim conipattngss of K ‘that K is non-enipty: Sinee K is
extremally disconnecied, the condition on T :sc:am thal® Ky ‘miist b @ siiigléton %ﬁ&
By weak*-continuity of T and Proposition| 22, T, Esﬁ wn an _var:ma wc:: ow 7

We now consider Hermijtian opetratoss.
Propisition 24, Lét (K, (X )yex- X, 0) be the maximal funetion moduile represento-

tion of X, T an isometry of X such thai [T+ TH<2. Theve exists for all k an iséinetry of
Xy, Ty such thut BRESRTRREE

W (0o T o™ ") (el

J.,

Jor Q: .

Prodf. For cach ke ,ﬂ and xjeX,
1% %ml X by Tutxd= Eﬂzé k).

@ T, is well n_nmna.a Uxye k n
hence by Lemma 14 o{Tx—~ ﬂb ] 5
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ﬁ&.:ﬁ.: £1. Since T B obtained by fuctoring out the kernél from  the
composition of an isometry aid a ¢guotient mapping it follows that each 7, i
continuoug linear Bm_u?mm and that [Tl & 1.

{© Tiisan zozﬁxw for all ke K. On applying the above no:.,:_azcm to T7 it
is easily seen that 7} is invertible and that T;™'={T""),. Hence 1T & 1. This, together
with (b), implies that 7, i an isométry. . . \

(d) {%) is valid. Let w.mx.A.Ev?mvﬂﬁw?gzﬁ Sirice

{o(Tx) k)= Tilo(x) (k) = (T{e(x))) (&) for all ke K {») holds.

This completes. the proof.

Proposition 25. If{K, Cmav»n? X, 0) is & taximal Junction ingdule representation of

X and T is a Hermitdan eperator on X then there exists for all ke K a m@:x:Sz
eperator on X, Ty, such :::

(+4) 0= Tog™ (clBier) = (T Oy :

Progf.  On applying Coroltary 15-and the method of the preceding lemma e can
define 7; such that (+«) holds. Once more we apply the method of Praposilion {4 and

a\m“ firid that {p = 7" g™ ) (Ko =(T7 (x(FN)ic x for all positive integers n. Hérics, for
all ¢,

oo ¢ 5 0™ ) ((xWear) = "™ (x Uik

Since 7 is.an isometry it follows that ¢ is dn Jsometry for all k and all 1. :n:no T is
Hermitian. This completes the pioof.

The Tollowing known proposition characterizes. En_é.:sa projeetions and Her-
mitian operators with one-ditmensional fange {ste for example Berkson [6])

Proposition 26, Let T:X =~ X be an operator.
@) If T is Hermitian then ker T T(X) = {0}.
L I x is@w (vhere B, F are closed miu@nn? of X) then the projection
E@ F 3 Fis Herniitian if and only if for each Ae Cp [3]=1 und X, e E®F
[P + Al =llx, + %l
Iin particutar all M~ and L-projections -are Hermitinn.,

{&) If dim{X)=1 and T is Hermitiaii theii X =ker THTX) and T is a real
seular multiple of the projection ker T @ T{X) — T{X).

Proof. {1} kawrnﬂb (X) then y=T(x) for some x e X and T2{x)=0. Since
T i Hermifian we have flxfl={x+ :ii__n~ Il =T Tl _ for all re R. Hence
p=T{x)=0.

Dineei, ~/\~:=cr n:m Timowe

{b) 1If T is the projection E@QF — F

(it)"
n!

e (%) +xp) = xp x5 4 M

=x;+fefx, forall¢

which yields (b).

{e) By (@), X=kerT® ﬁﬁ Take
e C\{D). Thus T™xp)=5"%, and Henci
mmm_;.— which implies that s& R\{b}
ker T @ TEX) = T{X) multiphied by s..

mu.c:w.:wnw 21, N\ P is a  Hermit
Xy +x, eker P @ P(X) :

mai i1, l, lxa])

" Progf. Use convexity of A— |lx, +
equal to |ix, +x,{l on the wait circle)

Ty + %2) =% x5 4 x5 (e — 1)

(]

xcaﬁﬁaﬁcw d_g ﬁ«cv w,é ::. some
n

fan then  for every

Propusifion 28. Let X = @n& and let T:X — X g a non-zero SE.SE. Let

(K. (Xiers X, 0) bé the niaximal fufciion

conditions are equivalent.

(a) T -commutes with Z
i ker T,

() T commudes with Z(X) and is afo

~{&) There exists an isvlated poiitt ky €
Jor everj' xe X

@+ T> 0™ (x) ()

Proof. First observe that T commutes with Z{X v.

there is an operdior Tp: X~ X such
Prop. 4. 7 (i) and Theorems 4. 14, 4. 16 ().

VS:N Q.Ri

rddule w.m.qwmmnin:n: of X. The following

0

“and. o:?. if-for nmar » e K

that (g T= g™ () EHN Gk (see 51,
Jet T=poToe @L Ivds clear that (b) and

{¢c) are équivalent and thai they imiply (a) (see [5], Corolt by 4310 16 (4) _uc_%. arguing

as in Proposition 23 g ‘we deduce that

there is .2 point ks e K. with Efﬂxmm@

Hetice T, =0 for k#kg. U y= T(x):=0 then X»avmuc but. plk) = 1 for m: k 3k, Stnde

X e @, the mapping k— {| (k)| 15 continu

us on N and’ thus ky must _ua isolated.

Oy f

Proposition 29, . If X & & S& XX a aif wm::ax SE ESS:% EQ Nﬁn )

diid Has pite dimeisional raige then T is atomic: RN

|

Proof. Let T and T, be as in the ?oom of ?oco&:g Nm m:F» H “w.o :E? Q:m.

¥, ye X aid k2 K such that y=T(x} and

such that ¢(kg)=1 and G(k)=10. Then T(dx)

nori-zere eleient . of the range of T. Hence
ﬁ?cw 1 and y{kg) %0 we have A=1. Thus
m»& ‘As X & &, the mapping k — _m\cQa_
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Corollary uc._. I Xe® ad T:X — X is 6 Hermitian operator iiih ‘one-diisien-
sional range then T is atomic.

.w...ﬂwﬁ..ww\me@mawmmmam_wmgﬁnasasama&: Nﬁé,usmm._a:nomwu:::wnEw
Proposition 28, .

xm:::.—ﬂ.. In view of Propuosition 28 it i5 clear that there: dre atomic’ operators
which do nof commute with the centralizer (a simple example is furnished by X =1
and T(z, w)=(z, 2)). : )

Corollary 38 If T is ani M- or L-projection with oe-tinensional remge then T is
atomic; .

,Ec_,cmm:c.: 32, .m.wm XesBw* and let e be a minimal tripvient i X (e eoe
has oie-diniensional eigenspace for the eigenvalue 1). Then etie js atonife.
. Progf. Since X is a dial Banach space, K€ R & We check that condition (a) of
namom_:ca 28 Tolds for ztie Il X =M &,, M* write =gy 4 ¢y, 00 & M, es8 M* as in
Exainple 20. ﬁﬁz.?n dey=e; and (éoe) e, =e,. Thus ¢; or ey is zero and the kértel
of eoe contains either M or M* By Proposition 25 etie commiiites with Z{X).

.: an opérator T' is atomic and belongs to the admisiible class @ we call T an
atomic @-operator. ‘

We now prove gut dscomposition theoiem.

. Theorem 33, Lot ¢ and © denote admissible clusses of spaces ‘aiid operators
respectively. Sippose §'= B NE. If X € theii theie éxists B, F; (X, Diai all belonging 16 ¢
dnd an isometry 1 E <5 p(EYEI™({X,},.,) such that ‘

() X=E@,F

@) £o({3 e < o(E), .
(ill) each X; is irreducible (in fact Z(X) it vhe=diniensional) and admits a nonzzery
(hence atemic) C-operator,

{iv) F does tiot adwit an atoniic G-operator.
. Maoreover, if X ¢ g% und w is a predual m_\. X then there exist Banach subspaces of
Y; E,, .ﬁ. and (¥}, such that (EY=E, (F}) =F, Y=X. Y; does not contain any non
irivial L-sunummands and

0 Y=1I"({¥}e®, F,

O eE)=1"({X}ie ).

. Progf.  Let (K, (X}iex. X, ¢} denote the maximal fuiiction module representalion
of X. : .

. We shall assume K contains more than.one point as Gtherivise the ilicorem i
trivial,
Let I={ke K3 an atomic G-opetator T; on X with elker(T)) > M) |

Iis a set of mmc_ma@ points of K and hetice K,i=T i clopéi, Let Ky=KNK,. Thes
K; is also clopen, 1ot E={xsX; 0, =0 and F={xe X:p(v),, =0} By [5]
ﬂEd:E.w 410, X =E®, F and sifice % is an admissible clags, £ and F belong to %.

Dineen, Kiinek and T
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w) e 'the maximal Tunetion

module representativns of £ nd F fespectively. Suppose F adwits an aloniic @-operator
T:F —+ Gy, Since @ is an admissible clags there exists a Banach space G, such ihat the

-

mapping T: EQ, F— Gy ©5G,, T(x,

= T{y) belongs to €. If K, consists of a singlé

point k, then k; is an isolated point of K and ker(T)= M, Heénce i this case T is an

atomic ¢-operator..

If K, contdins mare than_oiie poir
such that kee(T)= My F. Sinte K, i

ker(Ty= M,,. Hence in this cage T is dlso an atomic

By our definition of [ this would

t then there exists. an isolated point of K3, ki;
tlopen ky Is dlso an isolated point of K and
@-operatar: ~ -~ T

WE‘E%. that k, .m;.w.rm first case apd ky in the

secorid case. would belong lo 1 and heéngé to K, . This, is. 4, contiadiction and hence P
ddes nol admit an atomic @-operator. Tliis proves {iv). ’

Sinée we:are dealing: with 4 miiximal funétion module tepresentation it is clear

that cach X, is irteducible (in fact Z(X,)

) is one-dimeénsional). Since &' is an admissible

class and g(X) =X, @,, M, for all i'e ! there exists fof each i€ 4 Banach space Z;, dn

isometric émbedding 0, of Z; into {he i

following diagram cominuics
X,

e~ 1

—

X

Since Ti0 and Tlp-1q=0 it follo

dinierisionial it follows that T; i§ an @-o
Now tonsidér the mapping

_ B

X —3

@ is linear and since I is dense i K

= ()
and & have that @ is-an isometry ont

By the definition of a fuiiction mod
then there exists x € X such that

. T

ange of T; W, )

d T X~ Z; such that the

perator. [This proveg. (i) :

ws that T). is ‘non-zero. ‘Sincé Z(X) is one

62%@:&3
0 W - -

-otherwise: <.

- Using (+) tnd (%) and the fact that B(E) is complete it Ew._?,\m..ﬁrm.f@ holds. .
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. i

For the remainder of the proof we supposé that X is a dual space with predual Y.
By [5], Propositions 5.6 and 5.7, if B ={ve ¥;x()=0 for all % & F} aid
Fy={ye¥;x(y)=0 for all xeE} then (£,)=X/ES<E F)=X/F0=F and
Y= Nw.w @m Mu» N '

For iel we have X=X, @, M,

Let
Y= {ye Vi x(1)=0 forall xe o™ (M} and Z;={ye ¥; x(3)=0 forall x &g '(X,)}.

N an .Mwnm:._.ﬂmvmkm Zy=0 (M) and V@ Z,=Y forall i. We now show that
the mipping & is surjéctive.
Let x=(xxer € 17 ({Xi] e 1). For each fidite subset J of 7 we use (%) to rEuE
x;, € X such that
s §x ke,
X (k)=<..
olx) () 0 otherwise,

This implies that [Jx;]) = fle (x| =sup ffxll S lx}l. We order the finite subséts of T by set
e 5 - . . e . © P : ;

ificlusion. "S_m: @b.ﬂ.._m,m bounded net in' X and hence contains a o(X; ¥) convergent
subnet. Let w be a litnit point of soine such convergent subnet. Since x, & E for all J
.ﬁ.& L is a weak*-closed M-summand it follows that we E. Let ko be a fixed point in K.
Then {(xp—xgz)y is weak*convérgent if (x,), is weak*-convergent, * Sincé

follows thal p{w—xy.) (ko) =0. Hence p(v) (ky) = Bxieg) tho) =i,

o Since kg was arbilriry it follows that @ (W)= {x)., and heace @ is su
Hence we bave proved {vi), )

B0 ) (k) =0 for all J which confain k, and since 0~ (M) s venk*-losed it

cfive:

To compleie the proof it suffices to show ‘
o= { B m
1t F,,u,.:» I} is a finite subset of 7 and z,€ %, for j=1,.. 5 then |
‘, ol |5 ol £ e
Hence 1#, ”ﬂ;,_:.xrﬁw is 4 closed subspace of ¥, ;
Now

Wic{ye ¥yx(3)=0 for all x& X such that p(%) & M, for all i el} w
={yeEi; x(3)=0for all xe F}=E,.
Suppose I'({¥}.q.) Ey . Then.thicre exists a nori-zero x € B sitch ihai x(i#,) =0, Siice

X oaawmcﬁm;mmhmcn_:rﬁmﬁéeluo. m,ugoazﬁnwﬁwma ye ¥, such that x(§)=+0.
This is a contradiclion and completes the proof. ‘ f

We shall write the spaces E and F oceuiring iit Theorem 33 as Ay and Nj.and call
them the dtomic dnd donatomic ¢ subspace of X respectivély. \
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We now rehirn to outr original question i.e. when caii We wiite i Buanach $pace as

a product of irreducible Banuch spaces? We gee immedialsly, either by inspectioir of the
function module constriiction or by coosidering the admissible class of. operators
cousisting of all linear operators; that any dudl Banach space X can be writlén «§
~.&$Xmﬁ;@2ﬁa T

whiere edchi X, is an irreducible weak*-closed _o
closed and contains no minimal M-ideals a
\ t Q., M\mw (231

where each Y; contains no nob-trivial L8
sumnmands, ¥/ =X; and Z'=N. :
Heneé we are interested in Eezz@m_nm. situations’ and admissi
operators ¢ such that Np= {0}. This motivates. the following -géfinition. .
Definition 34 If X is 2 Banach spacc{and & is an admjssible. clasy of operitars

then @ is X-detertaining i . L Co
{7} {ker{T); Tan atomit operator with domadin X. an

The follawing is easily proved. Lo .

Proposition 35. If X e R3¢ aind ¢ | X determining then Ng={0}. "

it is well kriown ([9)) thar tlie closed unit batlof 4 .mmu.:wn_.ﬁwmmn.a.35 RNP is the
closed convex hull of iis extreme poinis .and hence the following is_immediate from

Theorem 33

ey white each X
[ P (0 Y} ) whiere

Example 36: If a Banach space X ha
has RNP dnd containd no nof-trivial L-sur
each ¥ is an ieducible dual Bapach space

Exdmple 37. If X i$ & Banach spacg the is. isometrically isomorphic to a
weak*-dense subspace of I”({X/},.)) where edach X;'is irfiducible and & dval Bahach -
spuce. ) i Y. : S

Proof: Let I°({X}:e} @ N denote fiie amacgvc ilion of X7 arising Trom. the
extreme. poinis of By.. . T .

Let % be the class of &ll fisite ,, dire
M, @, Ms ®L

with M, an M-surriiand of X°. Let ¢ bé tf

[CTNE S [ ,«ME& TMy

with ¢ edy. or ¢=0, LEj<n Let.J: ¥ 15 X* deno ;
xe X and §(xj=0 for.all $ & &y then x. and hence J 3 3 Hengé Pl-ambeds X us
i closed subspace of I™({X};. ), where P s the ‘M-projection of X7 with kernel N.
PJ(X) s weak*=dense in I°({X;};.,) sirice P is weak*-cottintous and 7.X is wedk*-

deisé i X7 Sificé |Ixl|=sup{j¢p{x)l; ¢ & %L_ and for-each ¢ & &y we can find el with
Mickerd, it follows thdt PJ is ap fsometry. - < 00t e o :
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Example 38. 10X i 4 IBW*-triple then X & 1((X},.J ® N where each X, is an
irréducible JBW*-triple which admits a minimal tripoteiit aiid where N doés not admit
a minimal tripotent. To sée this take @ to be the class of operators ee with e g

miitimal tripotent or zeto (§ee Example 20 arid v:ﬁcm_:c: 32). This example i§ part of
& much- stronger result du¢ to Friedman and Rusgo [13].

Remarks. Let X be a :ﬁﬁ-:ﬁ:. with predusl Y. By a result of Friedman aiid
Russo [131, Propositigis 4, theré is a one-lo-one corresponderice betiveer “atoms” of ¥
(i.c. extreme points of B,) and midimal tripofents of X. If £ 5 an alom of ¥, the
inimal :._cc:u: ¢ assoviated wilh f satisfies (/)= 1. Thig mmplies that the déconipo-
sition of X in Example 38 s in faet, Ea::ra to thé decomposition ?ﬁ::mn frons the
extremi¢ points of By. To sée this let (¥, (Xi.c. £ o) denote the maximal, function
module representation of X. By Proposition 23 all exireme points of By are aiomic, m. e
is a minimal tripotent, ecie is atomic by ?‘omom_:o: 32 0f Eruﬂirwlmc&v (k&
isolated} then mlmﬁ e &!FDS (¢) must satisfy ple} (k) =0 for ali & s kg (see 13@0-
sitions 32 and 25). 1T f is the corresponding extreme point of the unit ball o_. Y then
e{ /)0 implies that g(ker ) must confain My, (for thie same &)

I we use m.fzuﬁ_s 37, the fact that the second ddal of a JB*. Emu_m is. again a JB*.
iriple [10}: [11] and the relationship between extreme points of the predual and
minimal tripotenis ?.mm we see thdl dny um*w:%_n system can be embedded in #in [*
product of irceducible JBW*-triples each of which admiis miiimal tripotent ([14]).

Now Horn ﬁmw_ has classified all irreducible JBW* -triplés Which ddmit minimal
tripotents and using the above examples and this elassifi cation we get .EE&EE%

{0) The Gelfand-Niimark theoreri for IB*-triples ([147).
() The dassification of preduals of JBW*-triples having RNP ([3). 7))

Fiidlly we ostdablish iniquencss of the decomposition (4 more genéral résuli. is
given in §3).

Proposition 39.  If X 2|« Qk Jie ) PG ¥} o) wheie each X,.and Y; 18 irreducible
{isometrically) then {=|J| and there exists a bijective S%E:m gid s u:% that

Xz Yogy

Proof. If G P X}y = 12 Yjes) is an {sometric Goaa:&:mﬁ then % maps
minimal M-sununands onto minimal M-summaride. Henee ¥is 3 a unique j, q.:y siich
that ${X )= Y,y This coinpletes the prool _

Using éxainple 37 we find another situation in whith & Banseh space can “more
or less” be written as a produét of irredicible domains.

Proposition 40. If X is air M-idedl in X" then X lna@k& o1) Where each X,
containg only tiivial M-ideals and X7 is irreidincible and, moreover, X ﬂ;b:%‘:w.n 1)

Proaf. Let CA (Ziwss h ¢} be the maximal function modiile representation of
X" let J:X — XY be the tandnical embedding d4nd let I' denote the set oflisolated
points in K. By [5], p. 86; we can idenfify J(X) with {K,(X, )1 S X, ¢) where each X is

i

an M-ideal in Z; and, morgover, JX is a C{K}-module.

Dineeir, Kiimek and “int

By Exaniple 37 and the m (K}-mad

.:&n».: and @{z)=0 for all ze Z such t

fience ¢ =0. Hente T=K, Z&I™{Z)i/).
Zo Y such that k:lt :.w.mz ::a the A

(=) S Qu%&? Ko (i

.\z.én QEE that X, = {0} for all »m K\l S

and heh0e X;. Let @i ?Q&xn x) =i {x
all ie! it Tollows by (+) that ?lo This

kel

By thé ipper semicontinuity -of the 3

Since 1 is disctete, J X seq{] %.: ) and he
easily follows that X7 =2, Since Z; is irt
and by [16], Theorem 4. 1, only contaifis
the unigue minimal M-ideal h X7 for u:

. Rewarks  Proposition 40 could alsc
fashion by using Example 36 and [24], 7
ideal i X théi X’ has RNP,

mﬁi_acnt qwu: I XM
X segil). : :

Proof. In m:u case the X)’s are
immediately,

Definition 42. By 4. ohe-unconditiongl

of 4 Banach space X we mean # sequence| ]
{:e. PiPy=0if i) projections bin X satis

() VxeX,

pd
=3 P,
e

(i) ifxeX and|

"%y, then.

Reniarks. ‘Notice ihat the projectic

i sequence {P,}7.; of mutually c:r.cmesm
ISUEDD #f and only if
iy X is the closéd linear span. of
Lenwia 43. Let P he d Heéririan
projection on X, Then-PQ is a Hermitlan|p
PQ=QP).

{
Proposition 36(B)) ard heérice Pl <1 (Corollaty 3
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ule ?owﬁ?. WE $66 E.: kr.sﬁ Tor (» T
hat. ‘NQQ c _,2, m_ kel :yg &2 X)= < () and

& for »: T\Q(v muxs m_: e ANLN. c ?w
i5 ncnamma:e: and Shows un, o En ill

"_.. E?an, :::. Joi 9&&.

w..%&" .a:@.m\,

result - follows

w,
Y, AiPpxe
IEE RN

ns P, in a1

_ m::m Ezr ZSS;E: Ec_mn:o:m on Xisa

U P, ,_._
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Progf.  Since Q is an M-projection, ¢ & Z {
(see Proposition 25 and the begiuning of the p
26(b), it is clear that the restriction

) (the centralizer) and thus Pg = op
roof of Proposition 28). From Proposition

Plogy= %.@._.c..rdm 0X)— PO(X)

5 a Hermitian projéction. Again using Proposition 26(b) it s easy to see that o
- Heimitiar projection K: M — M os an M-summand M of X Bives rise to a Mernmitiug
projection & on X by taking R=R on M and & =0 on the complementiry Ar.
stimmand M to M. Tiking R to b the restriction of P@ 1o QX =M yields

R=pg,

Lemma 44. Lét ¥ be a dual Banack Space (or move generally X « EnG) and P be
a non-zero finite rank Hermiitions projection o X, Théx P is g Sividte s PPy P,
of iimdually orthogonad itomic Herniitiah projéctions,

Proof. Let (K, (X,); e X, 0) denote the makimal function module représéntation
of X. We replace P by the equivalent Hermitian projection Psppg-t and prove the
result for P. By Proposition 25 thére are Hermitian operators Py: X, — X, $0 that

Pt = (Pt (B x

Let §={k eK:Py %ow..@m claim fitst of all that § hds at most v = rank (P) elements.

I 8 has i=N4+1 or more elements, we ean find & partition
K=K, UK,u-- UK, Of K intd »n disjoint clopen subsets with K;n§ non-ewipty for
Igjgn LetQ K s X be the muliiplication & tator by the chadicteristic function of
Ky, Clearly @, is an M-projection: Now '

-

P=FQi+Pg,+- 1Py,

and (by Lemma 43) Pi=PQ; is a Hermitian projection (1 £j<n). Also Py, Pao Py

Ate mutually orthogonal and (because of the definition of § and thai of a function

muodule) each P; is nonszero. Thus the rank of P must be at least #, 4 tonifadiction.
Mooy §={s;, 55,....5,} (by repeatin

. 2 the preceding arguimetits) #eé can wrife P
as 4 sum Py Pyt g Poof commuting

fon-zera Hermitian projecticns -satislying-
Px) ()= Yids, Ve ¥

Sinee X e 4, it follows that each of thi boints 5; must be isolated in ¥ and Uhus each P;

Lemma 45. If @ Bahack space X hus a L.

. , UFDD, then it has o ‘1-UFDD
PPy, Py, sith Py an atomic (Hermitian Jinite rap

k) Brojection i X* Jor each j= 4.

Dinéen, Klinmek and .”?,:

Frgof: Suppose Py, Py,... is any 1

# Hermitian finite rank projection on
Pi=Q+
.& n=n(j} mutually orthogonal atomic K

Nu,m.x Q

, and the range of P i§ the tangé of Py

mg..mmkm,..:v - wu.v,.m,.%\:v ».ll N&Taﬂvﬂ k. e

A

ermitign_ projections. Cleatly .

=05=0;Pj.-

Notice thai, if we consider X as confained X ,_,En: the reéstriclion o.m .&‘. to- X is

Thus: = e ST

s e » . ".....",,..,, . .,«.,,.(.. .. R ..f
S Let Ry denote the restriction of @ to X. By Pioposition 26{b), each Ry is'4 Hermitian

ctioii on” X ] ; T ist adrsumivof muttially : oftliogonal
projection. on’ X and Pj=Rj; + Ry -1 +Ry, . 05 i Sumsof mutua N 08
Mnmwnmmmsw with P;R k._,ﬂwm..!z xuw FGWNM = H{j)). Thif last identity and :.umv. orthogon-
i 3 == b S J e
ality of the projections Py, Ps,... implics lorthogonality of Ry and Ry, if ) I

Clearly the ranges of the Ry hase the
thus the Ry (in any order} give a 1-UFD

Finally RY=Q; (and is thérefors ato

continous on X and M-projections on X” are we
of tie proof of Lemma 44 shows that :,_m O are Weak” cont
continuots and agrees With Qy on X, it F:c,.e.m Uhvat R = mm.

samic Tinear span as the ranges of QE P; and

ek To see this, observe that P is weak*-
ak*-fo weak*-continuous, A ‘review
ak*-coritinuous: Since RY i weak®-

Theotem 46:  Suppisse a Banach space X ,m?.u a:1-UEDD. Then X-is a cotntable Co

stmt oG {{ X4 .
Z{X}]) one-dithensional.

3 of irredicible Banueh spaces X, edch of which have @ 1-UFDD and have

Proof. By Lemma 45 X has a 1-UEDD Py, Py Py,... such that P is atomic for

Let .
I={ke Kk is the

LA ~ N "
each j. Let (K; (¥rex, Y. g} denole the maximal function module representation ol X”.

»

We claim first that [ s dense in K. Notice that the closure I.of I. in K w m_omww
{since I consists of isolated points) and thus yields an' M ncaunmmzc .yzi: m.,« M

where

iu?mxfEQEWﬁlwf 1

If ¢ is the M-projection of X* onto M
the support of PYis 4 point ielt we have
MA(¥)).

7 Joiur fir Ma

vl

o N 1 2
hen we hiave (Lemma 42) QP =P/'Q. Since

QP¢=0and the range of P! is contained in
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Now X ?&Fs we oosmanﬂ as cm:F Contdined in X"} is the closed _Sm,: spun 2
ihe subspaces. v (X)= wﬁk ) which are each contained in M~ Thus X Mt w_: M1

weak*-closed aoa [5] p-114) and X is weak*-dedse in X" I K ¢
M=0 and T=K, as claimed: Pllos hat :

. ﬁ&:oéamﬂ:m X; (for i€ 1) to be the closed litiear &pan of these Pi(X) m
thé Siiport of i pan of those Pi(X) such that

..Zann.o that, since each { ¢7 is isolated,

{xe X" p(x) {i} =0} !

z ati M-summand of v Fand fis compleméntary M-summand can be paturally. idéntified
with ¥; {sée the definition of 4 finetion modulé), Let ¢; be the M-projection of X onto
Y. As :w the above proof that I'=K, e ¢an show cr: it P has m:vno: i, then
at ,.,Qw =0), @, P¥=P¥ and Pi(X" e T Similarily, if i is ot ,Em.mc@.vo..w of P,

0 Pf=0.

: We now claim {hat X, =
Xnpy

et

nY, and that ¥, can be natitaily identified wiih

As we have just observed, mlv: = P if thie su il
ave | , pport of PY is i. Hence the range of
” 0, contains PY(X*)= P, (X)) For alt m:o: ~ m:_ow X is defined & be _“_5 closed span of m_m
w;o_, P CG én must E:& ﬂnm_cn:.v Y. mdc%aﬂai_u. XieXn ¥

Si P y o . o .
Since Q.1 G =0 if the support of P is not i, we have Q; QV:QQHm:ﬁ.ﬁgﬂkm

for all j. It follows ihat Q,(X)€ X,c X. Hence 0iX)=XnY,cX, Consequently
_ . =XAY.

If we now wse the facts that the M-projection 0, i§ a.cmmr*-&muw»-oo:mzco.:m, X i

euktedinice ” - ;
weak*-dense in X7 oixiex, .ﬂ.ﬁ and Y, s weak*-closed we see  ilial

m%ﬁ =X¥NnY=X,is sﬁ.;*-go:mr in ¥,=0,{X" Hence Ew dauble.dual of X; cin be
haturally ientified with ¥,. This proves the sccond claim.

Zsﬁ it is easy {o check, since 5 ¢ O are mutually orthogonal M- ~projections, thal
&Y, for 1€rgh .Sa iy, Ipy:..; 7, are distinet eléments of- I, then

Wiy b iy oy = max fl ] :
Consequently if x; € X, = ¥, A X ive have :

e, + Xy oo, fl = max I, ).

i

From this and the fact that the Xi(i € 1) have dense span in X; it [ollows mumw_w that

X=e5({ X o). ‘

m,m:.‘.p:m X" =Y, hag dne-dimensional ceniralizer since i is Jsolated ia ﬁ This
implies frreducibility of the X; (Proposition 55,

is a JBW*-factor (see [197]) for each n. This

Dineen, Klimek and Tima

Reimack. () 1 we u.._.v..a.. Theorein 4
that X must be a ¢, sum of JB*-triples X, |

with 1-UFDD in [2].

(i) The conclusion (With obvibu§ B
valid if we assumed only that X has on
(instead of finite dimengional) subspaces. Th
spaces are M-{inite (i.e: have finite dimensic

§3. Tu this section we deséribe m,m
unit ball of 2 Banach space by miedns of i ,v mwna m.c?ﬁ HAilse
?::owgnocn _uc_w:ca_& on ¥ we let 4 a. :2 rm uﬁonr:nm waBmEn A _59:. form
ie A% x,..., % = A(x) for all x& s X. I Al

. At =5 LA

It 24 pe ViBg, X a Banach space
mapping

where ?&nmiw in :F Egr.
beloiigs to V{By) : é [

Leitintd 47, If M is d clo$ed M-ideal i
all me M and.all xe X.

Remark. This result is g:ﬁ&.ﬁm i
jdeals and. thie JB*ideals coincide ({47

X. Let

Proof. We first  suppose that | M5 Mesuiiniahd |
E=£,+Cie M e, MY By the Kaup-Stagho Hoca:.mn:o: c::zim _e: _dmu_

<

oy
:--I

o Pely € :mi and

| -

whate n, and 7, dehole :ﬁ canopical va_naco:m Q .w anto. N mE_ < r R%nm_;iw:%
w_BEn examination of the definition m__cém Ei : : B

1
£
.{.
1
=
;l
¥
P
3
%,
3
]
3

aind hence by the uniqueness of comple 7
constant termt we hdve 7, ey & fp Pgy 5 Py ce il X & i Eaa Ez ity zug EE
(M) M. By (5 Be(M, _§f< . : . ,

:—1

U xy, %, m._.,w. and ¥, ir :m: ’

© Palxy, x~.+.wmvﬂ:
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‘Now

Felxre va) =5 [pglng 4 ya)p Pelx) —palya)l .

K'Jl L

v'w
,,-,

1 o
=3 7 Paley) 4 ity pal 35) — 7y palxi)—m, pel 9a)] =0 :
: 1
and hence by - e i e ey . :
sitiminnd. ¥ (#4) E?:y .:&n. M. This nozi&? thé prool, When M is an M-

LM is an M-ideal in X then M® is an M-Summand in X”. Hence, by the above,
FAMO®, X"y MO0

wheré we also denote by fi the ’ \
s extension of f. to X". Si Ps v
MO~ TX =M this noEﬁEnm the prool. P e P X)X and
The main resuli of this section is tie foltowing

Theorem 48; Lot S be da com
2 . pletely. regular topulogical space und ler {3
.~ Mﬂ.\.n:g of Banach spdces indexed by ilie points of S, Let X .be a tlosed ﬁémwwm,w vmews
{3 biesh I X 15 0 Cy{S)snodiile siich that for each X € X the mapping § — (3] &

Qs:u« 'm.mz:OwaN:m:Q:,m A-xw w.ﬁ: GQQN s the :ﬂﬁ~uv=u x ¥ x{8} is Surjective then t G_NQS «..«
8 m 5 g N_@\.

{1) For edch V& V(By) aid cach se§ there exists V, e V(By) such that

V) E = Vi), x € B

(2) For each s in the «.@ﬁwn:& coinponeir of e identiii i !
. ¥ R conmecteéd companent of the identity of G{(By . oo
§ € 8 there exists O, G(By) such that ¥ of G(By) and for each

>

1) ()= 0ux(). x & By

In order to prove (his theorem we néed the following auxilisry resuli.

Lemma 49, Ler §, T& Jeess X be as in the theovein. If Sy S thei

M= {x e X :x(s)=0}

is an M-ideal in X. )
v i

Progf. We muy proceed as in the 5F

prool of Proposition 13, 6 in [15]. 1t is r:c:m:
10 nﬁnx .:Sm. M, has the 3-ball property (see [S]. [15]). Lét B; dénote the opén ball in
X X with centre y; and radivg &5, j=1,2, 3 and et x & By DwNJmu. Suppose x; & M, LB
or j=1,2,3, Takc a positive nnmber & such z;; £<g— :Exﬁ? — ¥ : z« u _zm

J=1,2,3. Defiie U={s&S:xis)fi<e/2, j=1,2,3} and choose J & C(S [0, 1]) mza:

... complete Folomorphic vector field. on By, V=&

compenent of ilie identity and G all the isom

fisp)=0 and F1S\U=1. We dlaiii - that
ye M,, and [[f(8) x(s) -y, =

squality

£ %08 =, ST 2 (6) = wloll+ (L~ ()

?ma completes the prook

hy the method used in Proposition-25. Hente we

If % pe X and x(s)=yp(s) then x—ye M, ¢

f
7, 18 well defined and

P ()= (),

5@3.:5_&9 Moreover,

& u81 ﬂv SE = ¥ (#{t)
“Honce ¥, € V{(By,) and. this completes the proof

of the identity in G(By) is manan,:aa by thé map

nc_w:os:mm By the first pact of the proofl ¥ =(V;
exp V={exp Vs Ay composition of eléments
of this kind. We let ; dénote :_c ,‘.,.ncavoami

I X is 'a Banach space- then _Qﬁwb Gy
theorem combined with [3], Carollary 4. 17 imy

Corollary 49. If Qﬁ. (Xidkers x, E is the »
ili¢ Banach spate X and & G(By) :Ez there
euch k there ex :S E G(By,) aid an isometry:

2 () (Bl =, (€

1f v is contained bi the connected component of

75 Joupisat 18 Mattemiati, Baad 357

Rineew, Klimek and Timaney, Baritch fusiction ‘modiiles

(EENT K _:mm,Q s c ‘then- _é the. :E:m_n ’

Proof of Theorem 48. We_have V=il 14 v” i
Fpee V(B) In view of Lermia 49, the ?a::& «mﬁ&mmmﬂ

{eot) Pel) — P} =200 X — 9}

%, €X, and xe X i§ chiosen so thit x(5) =X, the

It is obvious that ¥, is a holomorphic vector field. If ¢ is an integral curve.to ¥ w ih
itial point x then for each 5§ deline . {t)= iz :Z. ie R Ovﬁo:&« m&.r Q: ¢ 18

:mm meamujia. ZcF :r:

S (s gy~ (L =S ) (e~ 84 %73

nidy dgsume’ M = +Eh
and :S:m M\Q.EF:A ﬁ ,:E aw ::n?

(9= _.ﬁ\é.«_.@._,

of z& :SH aosnwcﬁoc oﬂ mﬁ :Fc_r_:,

To prove the second wwn we can use the fact :»Ndu that :o ncssﬁnaa noinossz

u.:mm of tlie* form 5;5 where V'is

£ 4-pi, and. pe 54 chomgrc:ﬁ
oo s for any such: vector: field.and, lience
of G(By) which have Ahis _,c:u is. again
of the %30338 ao_swoﬁ:o: P

Qo 5_63 Go nr:aam :6 oobznn_&
efries of. kaw.‘_.v. Arn?monn :.a .&9&
hlies he following ¢ :

545:; H;:n:cz Eaaiq z:: SE_S:Q: of
exisis xexaszséa.ﬁz m a\ K and for
wy 1 Xy X _xx ,Eg that

(3 Am .,.6 Q,E
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Remark. 10 (E 8, p, q) is 2 Bandch space ovét 4 topological space then X = =T {n
galisfies the assumptions of Theorem 48, Hence Theorem 48 can be viewed as 4
generalisation of [28), Théoréme 1. 8. ;

Thevrem 50.  If X is @ Banach spaee then X inay be isoiner ically einbedded as o
weak*-dense m:a&:..% of E=I"{{X;}:.i) where ench X, is an irveducible dual space, Sich
that every y e G(By) extends fo un elenwnt of G(3,).

Proof. Bvery & G(By) exiends lo G{(By») by Dineen [10], {1 a Use Tx&:v? 37
togethet with Corollary 49 and the fact that & must map isolated points to istlated
points.
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