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Double Markov Random Fields and
Bayesian Image Segmentation

Dina E. Melas and Simon P. Wilson

Abstract—Markov random fields are used extensively in model-
based approaches to image segmentation and, under the Bayesian
paradigm, are implemented through Markov chain Monte Carlo
(MCMC) methods. In this paper, we describe a class of such models
(the double Markov random field) for images composed of several
textures, which we consider to be the natural hierarchical model
for such a task. We show how several of the Bayesian approaches in
the literature can be viewed as modifications of this model, made in
order to make MCMC implementation possible. From a simulation
study, conclusions are made concerning the performance of these
modified models.

Index Terms—Bayesian statistics, hierarchical model, image seg-
mentation, Markov random field, remote sensing.

I. INTRODUCTION

T HE MARKOV random field has been used in many model-
based solutions to image analysis problems, including that

of image segmentation. In image segmentation, a digital image
is to be divided into regions that are deemed to possess similar
local properties, which, here, are taken to be texture. Applica-
tions include

• land-use estimation from satellite images;
• computer-aided medical diagnosis;
• content-based image retrieval;
• image compression;
• recovery of shape information from an image.

We consider so-called supervised and semi-unsupervised
segmentation, where the number of texture classes in the image
is known but information about their properties is either known
or unknown, respectively. In a Bayesian approach, the goal is
to infer the posterior distribution of possible segmentations
and, where necessary, any unknown model parameters. This
approach is implemented through Markov chain Monte Carlo
(MCMC) methods, usually the Gibbs sampler. Although
computationally more expensive than many other approaches,
the MCMC approach has the advantage that the analysis
also yields, through the posterior distribution, information on
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uncertainty in the segmentation and properties of the texture
classes.

There are three objectives in this paper. The first is to describe
the general notion of a double Markov random field model for
images composed of regions of different texture. Our contention
is that this represents a natural model for the task of segmenta-
tion. Our second objective is to show that many of the Markov
random field models used for segmentation can be viewed as
adaptations of this model so that MCMC can be used. Five such
general adaptations are described. The final objective is to com-
pare, by a simulation study, the performance of these adapta-
tions. We conclude that one of the models seems to perform
better overall than the others, and this is applied to segment a
satellite image.

The paper is organized as follows. Section II defines the
double Markov random field and its application to Bayesian
image segmentation. Section III describes five modifications
to the model to enable segmentation by MCMC. Section IV
is a comparison of these modifications by a simulation study,
and Section V applies the most successful model to land-use
estimation from satellite radar images. Section VI completes
the paper with some concluding remarks.

II. DOUBLE MARKOV RANDOM FIELD

Consider a rectangular lattice of pixel sites. An image con-
sists of an array of grey values and labels , iden-
tifying the texture type present. We assume that there aretex-
tures in the image and that each texture, defined on all of, is
a Markov random field , parameterized by , with neigh-
borhood system having a set of cliques. The label process is
another Markov random field , parameterized by and with
neighborhood system represented by the set of cliques. All
the fields are independent, conditional on model parameters, and
their distributions have the following Gibbs representation:

(1)

(2)

where and are the clique potentials, and
and are the partition functions. The observed image is
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the collage , and the joint distribution for and
is

(3)

where and , denote and
restricted to .

In order to evaluate , it is necessary to iden-
tify the interaction structure of pixels that have missing neigh-
bors. This is generally intractable, leading to the use of various
boundary assumptions. The marginal distribution on the regions
is then approximated by the joint distribution of the sites in

conditioned on the assumed boundary values. One common
boundary approximation is the free boundary, where pixels on
the edges of the region have fewer neighbors than those in the in-
terior. Another possibility is a fixed boundary, where the missing
neighboring values of the pixels on the edges are replaced by
arbitrary fixed values. The often-used toroidal structure is not
applicable in this case because the sets of pixelsare not nec-
essarily rectangular. From (1), under a free boundary structure,
we would have

(4)

Equations (2)–(4) define the double Markov random field: a
phrase that was, to our knowledge, first used in [1]. Inference
is now based on the posterior density

(5)

in the semi-supervised case for a prior distributionor
in the supervised case. A best single

segmentation is then selected from the posterior distribution.
Two are considered in the literature: the maximuma posteriori
(MAP) , or the marginal posterior
mode . These are motivated
by decision theory; they are the segmentations that minimize
posterior expected loss, when the loss function is 0–1 (for
MAP) or the number of misclassified pixels (for MPM). The
former is found by stochastic maximization—usually simulated
annealing in tandem with Gibbs sampling (see [2]—and the
latter by Gibbs sampling of the posterior, and picking the most
frequently generated label at each site after convergence is
deemed to have occurred (see, for a recent example, [3]).

III. M ODIFYING THE DOUBLE MARKOV RANDOM FIELD

MODEL

Although (3) represents our ideal model, it cannot be readily
used because the partition functions cannot be com-
puted. Even if one were to approximate them, their dependence

on the labels would not usually have the convenient local in-
teraction structure introduced by the Markov property in the
label field model. This means that Gibbs sampling directly from
(5) is not possible. As a result, several computationally feasible
models have been proposed that are in the same spirit but allow
Gibbs sampling. In this section, we specify five such models.
They can be viewed as approximations to the general model of
(2)–(4) made to resolve two issues: dependence of the partition
functions on the labels and the assumed boundary structure be-
tween regions.

The first, which we call Model I, recovers the local interac-
tion structure on the labels by redefining the texture models to be
causal, thus creating partition functions of a simple form. The
other four modify (3) to define posterior full conditional dis-
tributions on that admit a Gibbs formulation. Model II uses
noncausal texture models, but the partition function is ignored.
In Models III–V, local noncausal texture models are combined
in order to simplify the dependence of the partition function on
the labels. These five models cover many of the Markov random
field approaches that have been proposed in the literature.

In Models I, III, IV, and V, we will see that the modifications
to the original double Markov random field have the effect of
introducing an external field to the prior model for the labels.
The effect in Model II is less clear, but it can be interpreted as
placing a prior on parameters that is proportional to the partition
functions. We also note that only in Model I does the full con-
ditional equation define a probability model; the others do not
give a consistent model and should be seen as an approximation
to the true full conditionals of the double Markov random field.

At the end of the section, we discuss an auxiliary variable ap-
proach that would directly sample the posterior from the double
Markov random field model but at a potentially large increase
in computation.

A. Model I: Causal Texture Model

The are modeled as causal Gaussian autoregressive (AR)
processes. Assume that sites inare labeled lexicographically.
Then

(6)

if
otherwise

(7)

for , where means and are neighbors,
means neighbors of clique type(vertically, horizon-

tally, or diagonally neighboring, etc.), is the standard devia-
tion in the texture, and the are independent standard Gaussian
errors. Condition imposes the causality. Fig. 1 shows a
realization of a causal AR process with the second-order neigh-
borhood system and a strong horizontal correlation, along with
the Gaussian Markov random field with the same parameters for
comparison. We see that the two are similar, but the MRF has a
better defined texture. Simulations with other parameter values
have supported this observation.

For segmentation, the outcome is that the posterior ofmain-
tains a local interaction structure and can be simulated with
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Fig. 1. Realization of a causal Gaussian AR process on the left, with a
realization of the Gaussian Markov random field having the same parameters
on the right.

MCMC. Under a first-order Potts model for, the log full con-
ditionals are, up to an additive constant

(8)

where if , and is 0 otherwise, is the number of
different clique types in the neighborhood system, and the types

and are the first-order doubleton cliques (horizon-
tally and vertically neighboring pairs). Although causal models
have computational advantages, the directionality implied in the
definition means that they have less discriminating power than a
Markov random field. However, in supervised segmentation, the
model will still perform well in many situations, as we demon-
strate later in Section IV. An early discussion of such causal
models is in [4]. This model is an example of a Markov mesh
model, further examples of which are in [5].

B. Model II: Ignore the Partition Function Term

Model II is defined by ignoring the partition function terms
in (4). Doing this, we obtain the model of [6], which is

used as a template model to divide an image into two regions.
Again, a Markov structure on the posterior ofis recovered.
When a Potts model is assumed forand Gaussian conditional
autoregressive (CAR) for the , that is, the follow the non-
causal AR model ,
where if , we obtain the following log full
conditional, up to an additive constant

(9)

We observe that this would be the posterior obtained from the
double Markov random field, were the priors on the parame-
ters to be proportional to the partition functions. However, there
seems no argument, other than computational convenience, why
one should specify such a prior.

C. Model III: Overlapping Window

Another possibility is to consider the grey levels to be com-
posed of a set of overlapping square windows of size

centered at, whose values are those of the corresponding
window in . Within each window, the texture is assumed,
and the windows are assumed independent given. This re-
duces (4) to

(10)

where the partition function is that over . In the case
of a CAR model with a toroidal boundary assumption,
would be the normalizing constant of an-dimensional mul-
tivariate normal, with mean and variance structure specified by

; see [7] for the form of the covariance matrix as a function of
. Thus, is a function of the determinant of a

matrix, and readily computable for small, although the com-
putational effort grows quickly with . In supervised segmen-
tation, we need compute these only once (one for each texture),
whereas in semi-unsupervised segmentation, they would have
to be recomputed at each MCMC iteration. This model is used
in [8]–[10], with windows of size 3 3; a similar model is pre-
sented in [11].

For Gaussian CAR texture models and a Potts model for the
labels, and with fixed boundary conditions, the log full condi-
tionals of the posterior of are, up to an additive constant

(11)

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on September 2, 2009 at 04:25 from IEEE Xplore.  Restrictions apply. 



360 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 2, FEBRUARY 2002

Unfortunately, calculation of for other MRF models can
still be a lengthy task, even for small, and is only practical
in supervised segmentation, where their calculation is only re-
quired once.

D. Model IV: Use the Pseudo-Likelihood

Model III is susceptible to considerable boundary effects at
the edges between different textures because a single texture
model is assumed in each window. This effect increases with in-
creasing window size. The minimum size of window that can be
considered without losing textural information is one that con-
tains the neighborhood of the central pixel. Model IV is then
defined to be Model III but where the window size is the neigh-
borhood of the central pixel. Thus

(12)

This model corresponds to using the pseudo-likelihood of the
double Markov random field model for the posterior distribu-
tion, as defined in [12]. The pseudo-likelihood has also been
used in a Bayesian approach in [13]. The boundary effect still
exists in that at the boundary this term is a function of some
grey levels that are from another texture. Under Gaussian CAR
texture models and a Potts model for the labels, the full condi-
tionals of the posterior of are

(13)

E. Model V: Pseudo-Likelihood, but Ignore Grey Levels from a
Different Texture

A modified version of (13) was used in [14], where only
neighboring grey levels corresponding to pixels with the same
label as pixel were included in the full conditional. Under
Gaussian CAR textures and an Ising model prior for the labels,
the full conditionals for the posterior of are

(14)

F. MCMC from the Double Markov Random Field

Since
, an MCMC scheme is then to sample the

on the complement of given , and then, sample
from the full conditional proportional to

. In the supervised case, this would allow for
the sampling from the double MRF posterior. For the Gaussian
MRF case, such conditional distributions on theare multi-
variate Gaussian and can be calculated (see [15] for an efficient
method). However, such an approach has its own problems. For
texture classes with only a few pixels assigned, one is faced
with simulating a realization of the texture across almost the
entire image conditional on this small sample. Although not
applied to image analysis, experience in [16] of simulation
of Gaussian Markov random fields showed that convergence
problems can easily arise. This would be particularly true in the
semi-unsupervised case, where parameters from classes with
only a few pixels assigned would not be well estimated. We do
not pursue this idea further here.

G. Estimation of Model Parameters

In a Gibbs sampling scheme to simulate from (5), in a semi-
unsupervised approach, we also require the full conditionals of
all model parameters, which are a function of the partition func-
tion. It is possible to approximate the partition function, but it
is computationally expensive; see [17] for an example using the
scheme of [18].

This approximation can only be practically evaluated for the
texture parameters of Model I, where the dependence on the
label parameter is from the partition function of the label model,
and therefore, the partition function does not need to be re-eval-
uated at each iteration of the sampler. In Models IV and V, we
can make an approximation to the full conditional by restricting
the dependence of the parameters to terms in (12). With uni-
form prior distributions over some suitable range on all texture
parameters, the full conditionals for are then proportional to
the pseudo-likelihood function

(15)

In the case of Gaussian CAR parameters, the range of allowable
values is determined in [19], and the full conditionals are given
in [20, App. 2].

In all cases, where a Potts model is assumed for the labels,
the full conditional of is not available. We either consider it
fixed or sample from the pseudo-likelihood of the model; this
latter case we call theadaptivealgorithm.

We note that the pseudo-likelihood estimate oftends to
overestimate its value in MPM segmentation, leaving it above
the “critical” temperature for the Ising model of . Since
values of above this value place most probability on segmen-
tations with large regions of one class, this implies the possi-
bility of oversmooth segmentations [21, ch. 5]. In MAP segmen-
tation, is confounded with the temperature parameter; there-
fore, its estimate is meaningless. Our experience here is that the
mean and variance parameters of the CAR model are estimated
well, whereas the correlation parameters may not be. It has also
been observed that this approach underestimates uncertainty in
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the full conditionals [22]. Thus, this approach cannot be recom-
mended if parameter estimates are the objective. However, we
are interested merely in differentiating between classes and that

be calibrated to permit a reasonable segmentation.

H. Implementation Issues

To estimate the MPM segmentation using any of the models,
one samples from the full conditional of the labels as specified;
then, in the semi-unsupervised case, one also samples parame-
ters; for Models IV and V, one can use (15). This is repeated until
“convergence” occurs, whereupon samples are stored for each
label. When “enough” have been collected, the most-often sam-
pled label at each pixel after convergence is said to be the class
at that point. The MAP segmentation is obtained using simu-
lated annealing; therefore, it requires in addition a sequence of
temperatures decreasing to 0, and at theth itera-
tion of the MCMC sampler, labels are sampled from the dis-
tribution proportional to
and parameters from that proportional to .
Once the temperature is near 0, the sampling stops, and the cur-
rent segmentation is taken to be the MAP. Several temperature
sequences can be considered, such as geometric ( ,
for ) or logarithmic ( ); theo-
retical discussion of the merits of these is found in [2].

We always initialize with a random segmentation, and on
average, this seems to work well. One can, of course, start from
an initial crude segmentation, but it is well documented that
these MCMC approaches are liable to remain in local posterior
maxima (see [23] for a simple example in the case of image
restoration); therefore, the segmentation is sensitive to the
starting conditions. For example, starting with a segmentation
where all pixels are in one class, our experience is, even for
the simple images to be analyzed in the next section, that the
algorithm may only move slowly from this state. Other MCMC
approaches to sampling labels, such as the Swendsen–Wang
algorithm, can improve this situation [24].

Another issue is the number of iterations. This depends on
image size, complexity, and the number of classes, and there
are clearly no absolute rules that one can follow. For MPM seg-
mentation, we require that the MCMC has reached equilibrium
before using the sampled labels to determine the MPM; mon-
itoring or the number of pixels assigned to each class is an
indicator of when the method has reached an equilibrium. In
general, we then again run the algorithm for as many iterations
as it took to reach equilibrium and use these to determine the
MPM segmentation. For the MAP segmentation, too few iter-
ations implies a quickly decreasing temperature and a risk of
being caught in a local maximum far from the global. Our ex-
perience is that 100 iterations is an absolute lower bound for
either MAP or MPM, and for most images, many more will
be needed. For example, for images of size 500500, seg-
mented into about five classes, 1000–2000 iterations are usu-
ally required for MPM segmentation. We emphasize that these
numbers are no substitute for monitoring and evaluation of the
algorithm for each image that is segmented.

Fig. 2. Label map and the 3 textured images to be used in the simulation study.

IV. SIMULATION EXPERIMENTS

In this section, we compare the five models with a simulation
study. We assume second-order Gaussian CAR models for the
textures and a Potts model for the labels, with the exception of
Model I, where the causal AR model is assumed, that is, (8),
(9), (11), (13), and (14) are the relevant full conditionals for

. Three different 128 128 images are used, as displayed
in Fig. 2. Each is composed of two textures according to the
true label map in the figure. Images 1 and 2 are realizations of
Gaussian CAR models, and image 3 is a composition of images
of leaves and grass. In image 1, the mean and variance of both
classes is the same, whereas in image 2, they are not.

Two sets of simulations are conducted, comprising a total of
49 experiments. The first set is supervised, with the main goal
of comparing the performance of the five models. Within each
set, there are various options we might select:

• model;
• image;
• window size in the case of Model III;
• whether to fix or sample it.

For the latter, we choose values ofaround and above the crit-
ical value of 0.88 to compare with the sampled values, which
were generally in the range 1.0–1.5 (see Fig. 3 for a typical trace
of sampled values of ). The true texture parameter values are
used for images 1 and 2 and the maximum likelihood estimates
for image 3 (see [12]). A uniform prior for on the range (0, 4)
is used, which gives support over critical temperature values.

In the semi-unsupervised case, we only consider Model IV.
This is because we conclude from the first set of experiments
that Models IV and V give better segmentations than Models I,
II, or III. Models II and III are also computationally more expen-
sive: Model II because the label full conditionals are determined
by the current label of each particular neighbor and cannot be
pre-computed for each sweep of all labels, as for Models IV
and V, and Model III because the computation of the partition
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Fig. 3. Sampled values of� for semi-unsupervised segmentation of Image 1
using Model IV.

functions on the window has to be redone at each iteration.
Model V then fails to give a good segmentation at all if one starts
at an initially random configuration of labels because many sites
would have few neighbors of the same label; therefore, the full
conditional of the texture parameters contains no information
from the data. In this set, therefore, we concentrate on the effect
of sampling on the segmentation. Eight different experiments
are run. Uniform priors are assumed for all CAR parameters:
over [0, 255] for , [0, 255 ] for , and over the allowable
range for the clique parameters.

For both supervised and semi-unsupervised experiments,
Gibbs sampling was used, with an initial burn-in of 100
iterations, and the MPM taken to be the most observed label at
each site on the next 100 iterations. This is a small number of
iterations, but it is adequate for such small and simple images;
see Fig. 3, which shows sampled values offor segmentation
of image 1 using Model IV, which converges after about
80 iterations. Note that the value of is considerably over
the “critical” temperature of the Ising model, at ,
supporting the observation that the pseudo-likelihood overes-
timates . The adequacy of the number of iterations was also
determined by pilot runs of 500 iterations. Each experiment
consisted of 100 separate segmentation runs. Since the MPM
is that segmentation that minimizes the expected number of
misclassified labels, we adopt as our performance measure
the number of misclassified labels in the MPM segmentation,
compared with the true label map in Fig. 2.

A. Supervised Segmentation

Table I lists each of the 41 experiments conducted under su-
pervised segmentation. In almost all comparable cases, the use
of Model IV or V gives better results than for Models II or III.
The performance of Model I can be good but is very sensitive
to the choice of , and further, it performs very badly whenis
sampled. Between Models IV and V, no strong conclusions can

TABLE I
MEDIAN AND INTERQUARTILE RANGE (IN PARENTHESES) OF MISCLASSIFIED

PIXEL PERCENTAGE INSUPERVISEDSEGMENTATION. WINDOW SIZE OF

MODEL III I S ALSO GIVEN

be made based on these results. However, the computational cost
of Model IV is considerably less since, in the label sampling step
at each pixel, terms in the full conditional probabilities [see (13)]
can be precomputed for each texture and stored in a look-up
table. Each run with Model IV took, on average, 18% of the
time of Model V. This contrast in computational cost allows us
to recommend the use Model IV, where this factor is important.
For Image 1, when Models IV and V are used, the adaptive ver-
sion of the algorithm can be contrasted with the case where the
label field parameter is fixed. The adaptive algorithm gives
results that are at least as good as the best choice of thevalue.
We conclude that, although the pseudo-likelihood does not es-
timate its value well, incorporating in the sampling process
gives a better segmentation on the average at a cost of a slight
increase in computation time. These results also emphasize the
sensitivity of these methods to the choice ofwhen it is fixed.

One can also see that images 2 and 3 were segmented more
successfully than image 1 (experiments 13–41). This is not sur-
prising, given that both classes in image 1 have the same mean
and variance, whereas in 2 and 3, they do not. Another inter-
esting result is that Model V performed better than Model IV in

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on September 2, 2009 at 04:25 from IEEE Xplore.  Restrictions apply. 



MELAS AND WILSON: DOUBLE MARKOV RANDOM FIELDS AND BAYESIAN IMAGE SEGMENTATION 363

TABLE II
MEDIAN AND INTERQUARTILE RANGE (IN PARENTHESES) OF THEPERCENTAGE

OF MISCLASSIFIEDPIXELS OVER 100 RUNS OF THESEMI-UNSUPERVISED

SEGMENTATION EXPERIMENTSWITH MODEL IV

Fig. 4. Results of Experiments 42 to 49. Boxplots of misclassified pixels under
Model IV with Image 1 over 100 segmentations with (a)� = 0:8, (b)� = 1:0,
(c) � = 1:1, (d) � = 1:3, (e)� = 1:5, and (f)� adaptive.

images 2 and 3 but worse in image 1. We believe that because the
classes in images 2 and 3 are so distinct, Model V has the advan-
tage over Model IV because it eliminates any boundary effects
by excluding pixels in the other class from the full conditional.
However, in image 1, the boundary effect is much less because
the classes have the same mean and variance. In this case, what
dominates is the greater uncertainty (in the sense that the full
conditional probability of each class is nearer 0.5) with Model
V than Model IV at boundaries because the full conditional is
not based on the full neighborhood. We therefore conclude that
Model V is preferable over Model IV when the classes have dis-
tinct means but not when classes are close in mean.

There is also considerable difference in the variability in per-
formance, as indicated by the interquartile range. This seems to
be mainly an image effect, with the most challenging (image 1)
showing the largest variability.

B. Semi-Unsupervised Segmentation

Table II lists each of the eight experiments conducted under
semi-unsupervised segmentation. For Image 1, the segmenta-
tion algorithm with fixed is compared with the adaptive ver-
sion, where the latter gives better results (experiments 42–47,
see also Fig. 4). Each run took, on average, only 2% longer for
the adaptive case than the fixedcase. Therefore, we conclude
that sampling improves the segmentation.

Fig. 5. Radar image of an agricultural region of Holland.

Fig. 6. MPM segmentation of the image in Fig. 5 into four classes.

When comparing the results of the adaptive segmentation al-
gorithm on the three images (experiments 47–49), it can be seen
that there is more variability in the results corresponding to the
image composed by natural textures, whereas the best results
are obtained with Image 2.

V. APPLICATION TO A SATELLITE IMAGE

As an illustration of the best performing model, we segment
a satellite image. The image in Fig. 5 is of an agricultural region
of Holland at a resolution of 10 m/pixel. The semi-unsupervised
MPM segmentation algorithm was applied to this image with
an adaptive . The algorithm was run for 1000 iterations, and
the results are based on the last 600 iterations. Fig. 6 displays
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Fig. 7. MPM segmentation of the image in Fig. 5 into five classes.

Fig. 8. Entropy of MPM segmentation of the image in Fig. 5 into four classes.

the results for an MPM segmentation into four classes. Fig. 7
then shows the MPM segmentation into five classes, based on
the same number of iterations. We see that the classes assigned
black and dark gray in Fig. 6 have remained but that the other
two classes have been split and divided out very differently into
three new classes in Fig. 7. The classification into five classes
certainly appears less tidy, but it has distinguished a new class
(assigned white) of lighter colored fields.

Some of the additional analyses available, in the four-class
case, from the MCMC are given in Figs. 8 and 9. Fig. 8 is the
entropy in marginal posterior distribution of each label, that is

Fig. 9. Estimates of the posterior density of (top) the mean intensity for class
2, which is colored dark gray in Fig. 6, and (bottom) the percentage of pixels in
class 2.

where is the proportion of times was sampled as class,
with lighter colors indicating higher entropy. This gives a mea-
sure of uncertainty in the class of each pixel, and we see that
class 2 (colored dark gray in the segmentation) has the lowest
uncertainty in general, and the highest uncertainty occurs at the
borders between regions.

By looking at the relative proportion of values sampled, esti-
mates of posterior distributions of parameters can be made. The
top of Fig. 9 is an estimate of the posterior distribution of the
mean of class 2. Similar plots can be made for all other model
parameters, although we recall that the pseudo-likelihood may
not be a good approximation for the posterior of correlation pa-
rameters. Having recorded at each iteration the number of pixels
in each class, we can construct the lower plot, which is an es-
timate of the posterior distribution of the percentage of pixels
that are in this class: something that might be of interest in ap-
plications to land-use estimation.

VI. CONCLUDING REMARKS

Any simulation study of the type we have described cannot
hope to address all the interesting issues and must restrict itself
in some way. In this study, we have concentrated on how the five
methods perform on simple images and on the value of adapting

using the pseudo-likelihood approximation. Other interesting
issues that we have not addressed include MPM versus MAP
segmentation, performance on larger images with more classes,
the effect of assuming different order neighborhoods for labels
and textures, and the performance of the MCMC method for the
true double Markov random field model.

According to our performance measure and considering the
computational complexity involved, Model IV showed the best
performance and, indeed, in semi-unsupervised segmentation,

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on September 2, 2009 at 04:25 from IEEE Xplore.  Restrictions apply. 



MELAS AND WILSON: DOUBLE MARKOV RANDOM FIELDS AND BAYESIAN IMAGE SEGMENTATION 365

is the only one that we have been able to implement satisfacto-
rily. Where classes have distinct means, Model V may be better
at the expense of greater computing time. We also conclude that
in general, sampling of from the pseudo-likelihood improves
the segmentation, in spite of the fact that it tends to be overesti-
mated.

Some future developments of these techniques include fully
unsupervised segmentation using Markov random field models,
where is unknown. This is possible under the Bayesian ap-
proach by MCMC if one uses reversible jump methods, but this
is at the expense of considerable additional computational effort
[25], [26]. The issue of what constitutes a reasonable prior for,
or what loss function is appropriate for such segmentation, still
needs to be addressed; this latter issue clearly depends on the ob-
jective of the segmentation. Indeed, development of techniques
that allow a wider range of loss functions to be used, other than
0–1 and number of misclassified pixels, would allow the method
to be specialized for particular applications. Some discussion of
possible alternative loss functions in image analysis more gen-
erally are given in [27] and [28]. Such developments will add
further computational costs to the approach, but we emphasize
that the power of the MCMC approach is not in its speed but in
the additional information on uncertainties in the segmentation
that can be obtained.
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