A Split Poisson Process Model for the Occurrence
of Defects and Change Requests during User
Acceptance Testing

Kevin McDaid and Simon Wilson

Abstract—Software developed for a specific customer un-
der contract typically undergoes a period of testing by the
customer before acceptance. This is known as user accep-
tance testing and the process can reveal both defects in the
system and requests for changes to the product. This pa-
per uses nonhomogeneous Poisson processes to model a real
user acceptance data set from a recently developed system.
In particular a split Poisson process is shown to provide an
excellent fit to the data. The paper explains how this model
can be used to aid the allocation of resources through the
accurate prediction of occurrences both during the accep-
tance testing phase and before this activity begins. Fur-
thermore the paper proposes a decision theoretic solution
to help the customer decide how long to allow for this phase.
The method allows for the cost of defects occurring during
operation and the delayed introduction of the system. It
also allows for the difference in cost of implementation of
change requests during acceptance testing and during oper-
ation.

Index Terms—User acceptance testing. Software reliabil-
ity growth modelling. Split Poisson process. Decision The-
ory. Optimal software release. Bayesian methods. Utility.

I. INTRODUCTION

HE testing of modern software systems to remove re-

maining defects is a difficult and costly business. Un-
der the traditional Waterfall development methodology, it
begins with unit testing and progresses to integration test-
ing to ensure the separate components interface correctly.
It is usual to finish with a prolonged amount of system test-
ing where a combination of testing methods can be used.
These seek to remove remaining defects and to establish
that the system complies with the requirements for the
software.

In the case of a system developed for a single customer,
known as bespoke software, it is also standard to include a
final testing phase immediately before release, conducted
collaboratively by the customer and the developing orga-
nization, to ensure that the product complies with the re-
quirements from the customer’s perspective. This is known
as User acceptance Testing. A detailed description of this
activity can be found in [1] and [2]. This phase can reveal
defects or errors in the software. Unlike traditional system
testing, it can also reveal issues that are effectively addi-
tional to or changes to the requirements. These are known
as change requests and the developing organization would

Dr K. McDaid is with the Department of Computing and Mathe-
matics, Dundalk Institute of Technology, Co Louth, Ireland. Phone:
+353 429381760, e-mail: kevin.mcdaid@dkit.ie

Dr S. Wilson is with the Department of Statistics, Trinity College
Dublin, Ireland. Phone: 435316081759, e-mail: swilson@tcd.ie

normally charge the customer the cost of implementing
these changes to the system.

The best practice of Software Reliability Engineering,
as detailed in [3], has developed a range of probabilistic
models to predict the reliability of a system during oper-
ation using the occurrence time of defects during testing.
These are known as Software Reliability Growth models
(SRGM’s) and they have focussed almost exclusively on
defect data form the system testing phase. This paper
examines the application of a particular class of models,
known as nonhomogeneous Poisson processes, to defect
and change request data occurring during user acceptance
testing of a recently developed commercial bespoke dis-
tributed database system. Building on these models the
paper proposes a split Poisson process model to represent
the data.

In addition to predicting the achieved reliability of a soft-
ware system, test and project managers can use SRGM’s
to predict the number of defects that will occur over a
future time period. This can allow for more accurate re-
source allocation and possibly, depending on the exact re-
lease criteria used by the firm, support the decision when
to terminate the system testing phase of the lifecycle ([4],
[5])-

Of course, accurate predictions early in the testing pro-
cess are of most value to project and test managers. Un-
fortunately, during the initial stages of system testing the
amount of defect data available is limited and standard ap-
proaches to fitting SRGM’s, such as maximum likelihood
methods, can be problematic ([6], [7], [8]). This paper
addresses this problem in the context of user acceptance
testing using Bayesian methods that combine the limited
existing defect data with the expert opinion of key person-
nel. In this way improved estimates for the parameters of
the SRGM’s can be obtained, which in turn can lead to
better defect and change request occurrence predictions.

The traditional approach to software development re-
lies heavily on the system testing phase to ensure the re-
leased product is highly reliable. Experience has shown
that without substantial testing at this stage it is likely
that the product will most likely contain a large number
of faults with the potential to lead to regular failure dur-
ing operation. This in turn will result in high post-release
costs and a significant loss of consumer confidence. Thus,
it is important to allocate a significant amount of time to
the activity of system testing. However, it is also impor-
tant to avoid over testing the product. This can result
in a piece of software which, although very reliable, may

be overpriced and possibly obsolete. On the whole it is
crucial for the test manager to achieve a balance between
under testing and over testing. This is also an issue for
the customer organization who must decide how long to
allow for the user acceptance testing phase. In fact the de-
cision is more complicated in their case as they must also
allow for the difference between the cost of implementing
change requests before and after acceptance of delivery of
the product.

This optimal release decision is addressed in a funda-
mental way in Software Reliability Engineering. Within
this best practice it is well understood that the software
should be tested and repaired to achieve a necessary level
of reliability, and that valuable resources should not be
expended in an attempt to go beyond the predetermined
level. Similarly, this is also an issue for the customer receiv-
ing a bespoke solution as they must make a decision when
the product is reliable enough to accept delivery. This
research takes a broader view of the problem with the as-
sumption that the final decision should depend on a range
of factors including the cost of defects during operation,
the loss in competitiveness due to delayed acceptance, the
cost of involving personnel in testing, as well as the costs
of implementing changes before and after delivery of the
product.

Specifically, the work adopts a decision-theoretic ap-
proach that includes a decision strategy to determine the
stopping rule, a utility to describe the consequences to the
customer organization of accepting the product at each
time and a probability model to describe the occurrence of
defects and change request over time. The optimal time
to stop the user acceptance testing phase is that which
maximizes the expected utility.

This paper contributes to the existing knowledge base in
a number of ways. It develops and assesses, based on real
data, an original model for an under-researched problem,
namely the occurrence of defects and change requests dur-
ing user acceptance testing. It demonstrates its application
to prediction before and during the testing process through
the combination of defect data with expert knowledge. Fi-
nally, it develops an original utility function to support
the manager in the decision as to when to accept delivery
of the software. This is used to apply both a single and
multiple stage decision strategy.

The paper is summarized as follows. Section II intro-
duces the area of Software Reliability Engineering and ex-
plains briefly nonhomogeneous Poisson process models and
their application to defect data. The rationale for their use
with defect and change request data arising from user ac-
ceptance testing is also explained. A split Poisson process
models is developed and compared with independent Pois-
son process models for defects and change request. The
comparison is made on the basis of real data which is also
detailed in this section. Section III explains how to apply
the models to the prediction of occurrences. A Bayesian
model is developed to ensure that stable predictions can be
made throughout the user acceptance testing phase. The
quality of these predictions are assessed. The method used

to elicit expert opinion is also explained. Section IV devel-
ops a utility function to assess how long to allow for user
acceptance testing. A number of decision strategies are ex-
plained and applied to the real data. Section V concludes
the work with a short summary.

II. A PROBABILITY MODEL FOR OCCURRENCES
DURING USER ACCEPTANCE TESTING

This section introduces the data under examination and
introduces a number of nonhomogeneous Poisson processes
to model the occurrence of change request and defects.

A. User Acceptance Testing Data

The system under investigation was developed using a
V-model approach by a large software company for a gov-
ernment department. The on-line system, supported by
significant batch and database facilities, included a range
of functionality from basic detail capture to complex rule-
based calculations. Development required approximately
3,500 person days of effort over a period of eighteen months
involving 29 different personnel. A more detailed descrip-
tion is provided in [9] and [10].

The available data for the software system is taken from
the pre-release system testing and user acceptance testing
phases and the post-release operational phase. In this pa-
per we examine the occurrences over the user acceptance
testing period only. Before considering the application of
software reliability growth models we must establish a suit-
able unit of time. A difficulty arises here due to the lack
of information on the time spent by personnel testing the
system. The analysis in this paper uses calendar days as
the unit of time, with days where UAT testing did not
take place excluded from the analysis. While weekend and
Christmas periods were clear cases of inactivity, every ef-
fort, including examination of time sheets and discussions
with senior staff, has been made to exclude days when test-
ing activity did not take place.

The data gathered during the user acceptance testing
phase distinguishes between defects and change requests,
where change requests are user-suggested changes to the
system. Defects and change requests when taken together
are termed issues. Figure 1 shows a plot of the occurrence
of defects and change requests over time, where time is
the standardized time as described earlier. Note that in
the first 50% of the time (45 days) 72% of the issues were
found (237 out of 329). Also note that the data fails to
show any continuity between system and user-acceptance
testing. The rate of defect occurrence at the end of the
system testing phase is more than twice that at the start
of the user acceptance testing phase reflecting the different
testing strategies. In system testing, effort is focused on
the revelation of the highest possible number of failures
whereas in user acceptance testing the emphasis is on the
verification of the system through the application of real
inputs by potential users.

To finish this subsection we note that the user accep-
tance testing was conducted by the customer with the help
of the developers. This raises the question as to whether

McDaid: A SPLIT POISSON PROCESS MODEL FOR THE OCCURRENCE OF DEFECTS AND CHANGE REQUESTS 3

Defects

£ Change Requests

0 20 40 Time 60 80 100

Fig. 1. Cumulative occurrence of software defects and change re-
quests over time during the user acceptance testing phase.

Model
Goel-Okumoto
Yamada S-shaped
Weibell

Log-logistic

Mean Value Function, m(T)
a(l1—e=T)
a(l—(14bT)e"T)
a(l—eT")

bT)°
a <1£L(b%’)c)
TABLE I

MEAN VALUE FUNCTIONS FOR GOEL-OKUMOTO, S-SHAPED,
WEIBULL AND LOGLOGISTIC MODELS

the testing can be considered as statistical or based on a
more structured coverage approach. While there is little
information available on the exact inputs applied, the fact
that this testing was driven by the customer using real data
would indicate that the method may be closer to statistical
rather than a structured coverage-based approach. That
said, other research, [11], supports the use of the class of
models we consider in Section B for defect data arising
through testing strategies that involve the selection of in-
puts to maximize some measure of achieved coverage.

B. Nonhomogeneous Poisson Process Model

Numerous probabilistic models are available in SRE for
the purpose of reliability and defect occurrence prediction.
These models are usually classified as data-domain or time-
domain models, ([12] and [13]), with each category con-
taining several sub-categories. A widely accepted group
of these models are the class of non-homogeneous Pois-
son processes (NHPP) where the total number of defects
expected is finite. These were adopted from hardware reli-
ability models between the early 1970s and the mid 1990s.
Of these models four have achieved prominence, namely
the Goel and Okumoto [14] model and Yamada S-Shaped
model [15], each based on two parameters, and the three
parameter Weibull and Log-logistic models [11]. The mean
value functions for each of these is shown in Table I.

A relatively simple explanation of the Goel-Okumoto
model is possible through the mean value function pre-
sented, which gives the cumulative number of defects that
would be expected to occur before each time point, 7. For

the Goel-Okumoto model the mean value function has two
parameters (a and b). Typically, these are estimated from
the occurrence times of defects during testing. For this
form the average number of defects discovered by time T,
m(T), is of course increasing over time but the rate of in-
crease, representing the rate at which new defects come to
light, slows with the highest rate value at the beginning of
testing. The other models differ from the Goel-Okumoto
in shape as the rate of occurrence initially increases be-
fore then decreasing. For the Goel-Okumoto model the a
parameter represents the number of defects that would be
found were testing to continue at infinitum. The b parame-
ter represents the rate at which defects come to light. More
specifically, it gives (approximately) the proportion of the
remaining defects that would be discovered in a single unit
of testing.

The NHPP software reliability models contain many as-
sumptions, some of which are unrealistic, including the
instant and perfect repair of defects. However, in practice,
[16] is a good example, the models has been found to pro-
vide a good mechanism for modelling software failure data.
Estimation of the parameters of these models is normally
performed by maximizing the likelihood or density func-
tion which, in the case of ungrouped data, can be written
as

f(tlatQa---atn) = 67m(T)HA(ti)a (1)
1=1

where A(t) is the rate function found by differentiating the
mean value function and 7T is the time at which testing
is censored with n occurrences at tq,ts,...,t, before this
point.

In the case of the Goel-Okumoto model with parameters
a and b the specific form is

(ab)”e‘“(l_fw)e_bz?:l b (2)

The maximum likelihood value for the a parameter is
given by

n
1 — e 017

(3)

where the value for b is found by numerically solving the
following:

a =

(4)

However, as other authors have documented ([6] and
[17]), there can be significant issues with this approach.
Specifically, there are combinations of defect occurrence
values for which the maximum likelihood estimates for the
Goel-Okumoto model do not exist. This situation occurs
most often during the early stages of testing. However, a
further problem arises where, although the maximum like-
lihood estimates for the parameters can be derived, the
resulting values are unrealistic. This again predominantly
occurs early in testing and often yields very high values

for the a parameter in the case of the Goel-Okumoto and
the Yamada S-shaped model. We highlight this problem in
Section IIT through the real industry example. Note that
this drawback also applies to the Weibull and Log-logistic
models.

Importantly, the mean value functions for the NHPP
models discussed above can all be written in the form
a[C(t)] where a is the number of defects that may be discov-
ered were testing to continue at infinitum and C(t) can be
thought of as the percentage coverage achieved over time.
Tt is this structure that is used in [11] to argue that these
models are suitable for application in the case where the
defect data arises through testing that is coverage-based
rather than operational profile based. We now turn our
attention to the fitting of these models.

C. Independent Poisson Process Model

The simplest approach to modelling the occurrence of
defect and change request data would assume that the pro-
cesses were independent and fit nonhomogeneous Poisson
process models to the defect and change request data sep-
arately. We have fitted the four models to each of the se-
ries. The Goel-Okumoto, Weibull and Log-logistic models
result in very similar maximum likelihood values with the
S-shape model performing relatively poorly. Of these, the
Goel-Okumoto model requires one fewer parameters and
should thus be considered as the best choice to model each
of the defect and change request data sets. A formal calcu-
lation of the Akaike Information Criterion (AIC) supports
this conclusion. It is not surprising that the Goel-Okumoto
model is chosen given the shape of the curves. Figure 2
shows the data and the fitted Gole-Okumoto models. It is
clear that the model represents the actual data reasonably
well with some problems with the fit to the data during
the period from day 20 to 60.

Based on the maximum likelihood methods the model
values were found to be a=266 and b=0.017 for the defects
and a=143 and b=0.022 for the change requests. The rel-
ative values for the rate parameters indicate that the user
acceptance testing phase may be more successful at reveal-
ing change requests than revealing failures. The question
we next consider is whether a simpler model using three
rather than four parameters can be found to fit the data.

D. Split Poisson Process Model

Previously we fitted independent Poisson process models
to the defect and change request data. A closer examina-
tion of the user acceptance testing process may reveal clues
as to a potential alternative model. Within the process it
seems that when an issue arose it was later classified as a
defect or a change request. This would indicate an under-
lying process where the occurrences are separated into two
types. We assume a probability, 8, that the occurrences
are of type I (defects) and 1 — 6 that the occurrences are
of type II (change requests). If this value of does not
change over time then this is the case of a split Poisson
process. Suppose defects occur at times tq,ts,...,t, and
change requests at times si,...,s,, before censoring time

N

al

o
)

Defects

o
o
L

a1
o
L

o
o
L

Change Requests

Cumylative Issueg,

ul
o
L

o

0 20 40 Time 60 80 100

Fig. 2. Cumulative occurrence of software issues over time during the
user acceptance testing phase with fitted independent Goel-Okumoto
models.

T then the density function, f(ti,ts,..
given by

.7tn,817...78m), is

[(ab)”’Lme_a(l_ebe)e_b(Et+z S)] [0"(1—-0)", (5

which can also be written in the following form
[(gab)nefea(lfe_mﬂ)efb(Zt):| %

|:((1 _ H)Gb)mef(lfe)a(lfe_b’r)efb(z s):|) (6)

This shows that the occurrence of defects and change
requests can be treated as independent nonhomogeneous
Poisson processes with mean value functions given by
fa (1—e ") and (1—0)a (1 —e ") respectively. This
is a well-known result from Poisson process theory and im-
plies in this study that the occurrence of defects follows
a Goel-Okumoto model with parameters af and b, and
the occurrence of change requests follows an independent
(given model parameters) Goel-Okumoto model with pa-
rameters a(l — @) and b.

The structure of the density function in Equation 5 im-
plies that the maximum likelihood estimates for the a and
b parameters can be found using the solution presented in
Equations 3 and 4. The maximum likelihood estimates for
¢ is the proportion of defects in the data, namely . We
fit the split Poisson process model to the data and display
the result in Figure 3. The common rate parameter is esti-
mated as 0.0185 with the overall a parameters given by 406
with § = 0.63 yielding a values for the defects and change
requests given by 255 and 150 respectively. Crucially, the
AIC value for this model is 173.75 which is less than the
value of 174.76 for the four parameter Goel-Okumoto mod-
els presented earlier. This provides some indication that
the benefit of a reduced parameter model (three as op-
posed to four) outweighs the reduction in fit of the model.
Having established the model we will show shortly how it
can be use for prediction purposes.

McDaid: A SPLIT POISSON PROCESS MODEL FOR THE OCCURRENCE OF DEFECTS AND CHANGE REQUESTS 5

Defects

Change Requests

0 20 40 fime 60 80 100

Fig. 3. Cumulative occurrence of software issues over time with
fitted split Poisson process model.

As the mean value function for the four models presented
in Table I can be written as a[C(¢)] it is relatively straight-
forward to develop a split process in the case of each of
these models.

III. PREDICTION OF DEFECT AND CHANGE REQUEST
OCCURRENCE

The power of a model is in its potential to provide accu-
rate predictions for future occurrences. In this section we
examine how this can be achieved both before and after
the user acceptance testing phase.

A. Issues with Farly Prediction

As mentioned earlier, estimation of the parameters of
these models is normally performed using maximum likeli-
hood methods. It is well known ([6], [17]) that there can be
significant issues with this approach as there are combina-
tions of defect occurrence values for which the maximum
likelihood estimates for the Goel-Okumoto model do not
exist. A further problem arises where, although the max-
imum likelihood estimates for the parameters can be de-
rived, the resulting values are unrealistic. These difficulties
are most likely to occur early in testing and often result
in very high values for the a parameter. We illustrate this
process in Figure 4 where the split Poisson process model
is fitted based at the 20 and 30 percent time points us-
ing the data available up to that point. The figure shows
the poor performance of the predicted cumulative number
of defects and change requests following that point. Note
that it is not possible to fit the data using occurrences up
to the 10 % point.

A further criticism of the maximum likelihood approach
is the fact that it ignores the expert knowledge of key
project personnel accumulated over possibly years of in-
volvement with the industry and organization in question.
This knowledge should influence the selection of the pa-
rameters and should in particular protect against the selec-
tion of extreme values for the parameters. The approach
also suffers from the lack of a mechanism to predict the
occurrences prior to the commencement of testing, when
predictions are of most value to the firm. To counter both

Defects

Change requests
0 T T T T)
0 20 40 Time 60 80 100

Fig. 4.
likelihood

Prediction at 20 and 30 percent points using maximum

these drawbacks we next present a Bayesian version of the
split Poisson process model and apply it to the prediction
problem.

B. Bayesian Split Poisson Process Model

Assuming the split Poisson process model in the previ-
ous section, we adopt a Bayesian model by placing prior
distributions on the model parameters, a, b and 6. Inde-
pendent prior gamma distributions are placed on the a and
b parameters with a prior beta distribution placed on the
0 parameter. These assumptions are flexible and allow us
to incorporate a wide variety of prior knowledge.

Specifically, we assumes that the a is represented by a
prior gamma distribution with parameters 7 and A, b by a
prior gamma distribution with parameters a and p and 6
by a prior beta distribution with parameters w and p. The
choice of a prior gamma distribution is consistent with [18]
and [19]. Thus the prior structure is as follows

f(a,b,9|'r,)\,oz,u,w,p) = f(aab|7_a>‘aavﬂ)f(9‘w7p)

a” temraNT e lemrb ol D(w)D ()0« (1 — 0)P~L

T T T(a) T(w+p) (™

As the prior and density functions for the proportion pa-
rameter, and the Goel-Okumoto model parameters a and
b can be separated we can use available results to generate
prediction methods for the number of defects and change
requests based on the posterior distribution.

We next illustrate how to evaluate the number of defects
that would be expected to occur after 77 units of accep-
tance testing, assuming 7'(7 < T3) units of testing has al-
ready taken place resulting in n defects at times t1,ts,...,t,
and m change requests at si,...,s,. This is developed as

E(Np(T))|t,3,7,\, p,c,w, p)
= Ea,b79(E(ND|a,b,9))

= [E9(0)] [Eap(Np,cr(Th))]
= [Eg(@)] [Ea b(ae_le)}

)

= {/99f(9|w,p)} Uabf(a,b|£,§,7,A,u,a)(aele)dadb}

)

. w+n y
N wtpt+tn+m
1 > In+m+7+i+1)

(L+NY &l (LA (St + s+ p+ Ty +iT)wtmte |
(8)
where

Fin+m+71+7)
I+NI Qo+ s+p+jT)ntmtae’

—Z

and Np cr(Ty) represents the combined number of de-
fects and change requests occurring after time 77. The
prediction for the number of defects before testing begins
at which point only prior information is available can be
shown to be

B (i Amawn) = |22 () o)

The prediction for the number of change requests, corre-
sponding to Equation 8, has an identical second term with

the first term given by %. Note that the expansion

of the E,s(Np cr(T1)) term in Equation 8 follows from
work in [18]. The fact that the posterior distribution for
the proportion, 6, follows a beta distribution with param-
eters w+n and p+m is used to expand the Ey(6) term

C. Assessment of Predictions

We next apply the Bayesian split Poisson process model
to the data presented previously. We assume two separate
sets of prior values for the model parameters, one which
represents the situation where the expert opinion is very
close to the true values and the second where the prior
opinion yields estimates for a and b which are higher than
the ideal values and the prior values for the beta distribu-
tion represent a uniform distribution. The second set illus-
trates the situation where the expert provide poor, yet not
completely unrealistic, prior information. Table II shows
the two selected parameter sets. The mean and standard
deviation of the prior distributions are also presented as,
for comparison purposes, are the maximum likelihood esti-
mates based on all the available defect and change request
data.

The predictions for the remaining number of defects and
change requests based on the 20 and 30 percent points are
presented in Figure 5. These predictions, for both sets of
parameters, are a significant improvement on those pre-
sented in Figure 4.

D. S-Shape and other Models

We have, to this point, concentrated on the Goel-
Okumoto model for which a closed form for the prediction

Set 1 Set 2
T 400 60
A 1 0.1
Mean a 400 600
SD a 20 77
MLE a 406 406
« 20 3
1 1000 100
Mean b 0.02 0.03
SD b 0.0045 0.017
MLE b 0.0185 0.0185
w 6 1
0 4 1
Mean 6 0.6 0.5
SD 6 0.15 0.29
MLE 6 0.63 0.63

TABLE II

PRIOR PARAMETERS SELECTIONS COMPARED WITH MAXIMUM
LIKELIHOOD ESTIMATES

Set 2 20%

Set 2 30%
Defects

Set 120%

Set 1 30%

Set 2 20%

=3

Set 120,30
Set 230%

Cumgiative lgsues
8

Change Requests

o
=3

o

40 Time 60 80 100

Fig. 5. Predictions at 20 and 30 percent points using Bayesian split
Poisson process.

of the posterior expected number of occurrences is avail-
able. A similar prediction for the S-shaped model follows
from Equation 8 with the E, s(Np cr(11)) term given by

DD [(i +1)gli+ 1Ty —T) S h(ji+ 1,71 — T)}
520 [90:0)) 5., 0)|

)

(10)
where T7 > T and
(n+m+7+i—1)!
LX) (4 3 b+ 2o s o T 2mber

g(i,x) = (

and
(2n+2m+a+j—1)T7
M=)+ t+ Y s+ +iT)

For the other two models, namely the Weibull and the
Log-logistic models, the corresponding estimates must be

h(j,i,x) =

McDaid: A SPLIT POISSON PROCESS MODEL FOR THE OCCURRENCE OF DEFECTS AND CHANGE REQUESTS 7

obtained using Markov Chain Monte Carlo methods. Some
work in this area is available in [7] and [19]. We now look
at how the split Poisson process model can be used to help
the customer decide how long to allow for user acceptance
testing.

IV. How LONG TO ALLOW FOR USER ACCEPTANCE
TESTING

The decision as to how long the customer should allow
for user acceptance testing is not a well-researched one.
This contrasts with the extensive work done to help pro-
ducers of software decide when to terminate the system
testing phase and to release the product (see [5], [12] and
[20] for examples). In practice, many firms that employ
the best practice of Software Reliability Engineering tend
to base this release decision on either the achieved relia-
bility of the product or the estimated number of defects in
the system remaining to be discovered.

However, the state of the art approach, as developed in
[21], is to develop a utility function that gives the value to
the software firm of accepting the product at every possible
time point. This function would include terms that mea-
sure the number of defects remaining and the cost to the
firm of their discovery post acceptance. It would balance
this against the cost of continued testing and loss of busi-
ness opportunity in delaying the acceptance decision. In
this section we present an analogous method for the deci-
sion when to terminate the user acceptance testing phase.

In general the decision-theoretic approach includes a
testing plan to dictate the decision process, a utility to de-
scribe the consequences of accepting the product at each
time and a probability model to describe the occurrence of
defects and change requests over time. The optimal time
to test is that which maximizes the expected utility. De-
cision plans that describe the process and basis of release
decisions for software under development can take a vari-
ety of forms. The single-stage plan simply uses information
available prior to testing to determine the release time, re-
gardless of the number or pattern of occurrences during
testing. Singpurwalla [12], McDaid and Wilson [18] and
Okumoto and Goel [22] have investigated the solution for
this plan using a variety of models.

The most desirable testing plan is the sequential strat-
egy, in which the test failure data informs the decision pro-
cess on a continuous basis, to enable an infinite sequence of
decisions eventually culminating in a decision to terminate
testing. However, the solution is in most cases computa-
tionally intractable. Other testing plans that are more rea-
sonable and flexible have been developed in the literature.
van Dorp et al [20] introduced the one stage look-ahead
plan which, based on a fixed set of decision times, com-
pares the expected utility associated with stopping testing
immediately with the expected utility of proceeding to the
next decision time and then stopping. It is this decision
plan that is used later in Section C

However, this strategy suffers in that it fails to take ac-
count of the possible future decisions beyond the current
time point. McDaid and Wilson [18] conducts a study to

compare this plan with a number of other plans includ-
ing the single stage and the more flexible two-stage deci-
sion plan. Dalal and Mallows ([5] and [23]) first proposed
the sequential solution which they derived under certain
asymptotic assumptions. Chavez [4] proposed a decision
theoretic solution that allowed for the severity of defects.
Other related work can be found in [24], [25], [26] and [27].

A. Utility Function

The utility function describes the costs and benefits to
the software company of testing a software system to a
time T during user acceptance testing and then accepting
the product. A utility function of the following form is
proposed.

U(T,Np(T),Ncr(T),Ncr(T)) =

A—F(T)—CpNp(T)— CeriNer(T) — CopaNer(T)
(11)

where

o There is a value A representing the economic value of
receiving a perfect system requiring no changes and
thus removing the need for any user acceptance test-
ing.

e The cost of staff engaged in testing the program to
time T and the lost opportunity, in terms of lost ini-
tiative, of delayed acceptance of the product are ex-
pressed by a function F(T). A simple form for F(T)
would be linear,

F(T) = (S+R)T,
= fT

with S representing the staff cost and R the lost op-
portunity (possibly lost revenue) per unit of time.

e The cost of each defect found after the system is ac-
cepted in terms of inefficiencies is a constant Cp. The
actual cost of repairing these defects should be borne
by the developing organization, at least over the initial
period when most defects will come to light.

e The cost of implementing each change request found
during acceptance testing is a constant Co g1 .

e The cost of implementing each change request found
during operation is a constant C'cgo; typically, Cogrs
should be much larger that Cop; for the same reasons
as the cost of resolving defects found during operation
is substantially large than the cost of resolving defects
found during testing.

The proposed form for the utility function is similar to
that used by other authors ([4], [5] and [21]) when consid-
ering the problem of how long to allow for system testing.
Although utility is not equivalent to monetary profit, the
utility function could be interpreted as the benefit in fi-
nancial terms over the entire lifetime of the software, and,
given this, our approach would perhaps be more accurately
called a cost benefit analysis.

It is not difficult to adapt the above utility in a number
of ways. First, it is possible to incorporate a maximum
lifetime for the system and a time beyond which the de-
veloper will not be contractually required to fix defects. It
is also possible to restrict the number of change requests
that are implemented through a total allowable spend on
this activity or through a time point after which it is not
possible or feasible to make changes.

While the basic approach assumes that the occurrences
follow a Goel-Okumoto model during user acceptance test-
ing, the occurrences during operation can follow any model
provided that the total number of defects and change re-
quests discovered over time is consistent with the predicted
number (a in the case of the Goel-Okumoto model). How-
ever, to include the additional time parameters mentioned
in the previous paragraph it would be necessary to ex-
plicitly consider the pattern of defect and change request
occurrences during operation.

If it is believed that this pattern differs from the pattern
during user acceptance testing than this will have to be
allowed for. This may involve an adjustment of the rate
parameter of the Goel-Okumoto model or the adoption
of a different model and the use of expert opinion and
possibly defect and change request occurrences to provide
information on the parameters. In any case the framework
proposed can deal with these approaches.

With regard to the costs, the fixed Cp, Cor1 and Copre
values could be replaced by random quantities that allow
for the cost of defects and the implementation of change
requests to vary. In this case the mean of the distribution
for each of the costs would replace the fixed values. Also, a
term to allow for possible penalty clauses to be invoked in
the case of delivery of seriously unreliable product could be
added. The application of decision theoretic approaches to
determining the time to stop system testing in the presence
of penalty clauses is discussed in [28].

The probability models developed in Section IT assume
time to be execution or cpu time whereas, in the utility
function, calendar time is more reasonable for the oppor-
tunity loss term. If cpu time is a constant fraction of cal-
endar time then one can divide those parts of the utility
defined with calendar time by that fraction to transform
them to cpu time. We implicitly assume that this has been
accounted for in the assignment of utility parameter values.

The elicitation of the utility and model parameters is an
important issue in the practical application of the work.
McDaid and Wilson [18] describe a method to deduce val-
ues for the prior parameters of a similar model based on
the predicted number of occurrences supplied by an expert
along with a measure of the likely variance in the num-
ber. The utility parameters are directly associated with
financial costs and benefits of testing, and so it should be
possible for the customer to make reasonable estimates of
their values. It may be easier to fix arbitrarily one of the
costs, say Copri, to be 1 and then think of the other costs
in terms of multiples of this cost. For the value of f, one
may choose a time in the future (7" is a candidate) and
assess the cost X of testing and lost opportunity to that

point.

As an illustration, suppose that the customer is deciding
on the length of time to test a piece of software. First, it
assesses the utility parameters. Fixing Cor1 =1, it decides
that the cost of implementing change requests after release
is 10 times CcRr1, so Cors = 10, and that the cost to the
firm of each defect found is half Ceogry giving Cp = 0.5.
It concludes that the utility of the perfect software is A =
3000. Finally, for the value of f, it looks at the opportunity
and staff cost of testing to a time T’ = 20, and decides that
it is 200CcR1; thus f is 10. As regards the prior probability
we will use the two sets quoted already in Section II.C. It
is interesting to note that the accurate specification of the
prior and utility parameters will require the assistance of
the company developing the system.

We have described the probability model and profit func-
tion central to this work. The final component is the deci-
sion strategy which describes the structure of the decision
making mechanism in the context of when the decision is
taken and how much information is included in the deci-
sion making process. In this section we describe the single
and one stage look-ahead plans and apply each to the data
described earlier.

B. Single Stage Decision Method

A piece of software is to undergo user acceptance test-
ing for time 7" with the decision taken before testing com-
mences. When issues are encountered the associated de-
fect repairs and change requests are implemented imme-
diately. After testing for 7" units of time the software is
then accepted. Once accepted the program enters the ser-
vice phase where further defects and change requests are
discovered, each one contributing to a reduction in the util-
ity of the program to the customer company. This is the
case of single stage testing and the goal for the procuring
company is to pick an optimal value for T

Given knowledge of Np(T), Ncor(T) and Nog(T)
for all T, it would be a simple matter to determine
which time maximizes the utility of Equation 11. How-
ever, at the time that we must decide T, they are
not known, and so we must look to the expected util-
ity, E{U(T,Np(T), Ncr(T),Ncr(T))] where the expected
value is with respect to the prior parameters alone. This
can be expanded as follows:

A— T —CpE[Np(T)] - Com E[Ncr(T)] — Core E[Nor(T)]

TW n ¢
—A—fT—Cp—-— | —=
/ PMw+p) (/H‘T)

om0 [(N T (1
Aw+p) p+T Mw+p) \pu+T

The value of T' that maximizes this expression is

. or(wCp + p(Cona — Cont)) | =7 -
g ‘“K @+ p)) 1]' (12)

McDaid: A SPLIT POISSON PROCESS MODEL FOR THE OCCURRENCE OF DEFECTS AND CHANGE REQUESTS 9

1600 | Setl
1400 -

Set 2

40 Jjme 60 80 100

0 20

Fig. 6. Expected utility for the parameter values elicited in Section
IV.A

0 T T T T)

0 200 400 600 800 1000
Mean a

Fig. 7. Sensitivity of single stage optimal time to changes in mean

_T
ofa—)\

There are some intuitive properties of T%. First, it is a
function of the distribution of a through its mean, ¥, and
increases as the prior mean for a increases. It also increases
as a function of the difference in the costs of implementing
change requests before and after release Cora —Ccor1, and
decreases as the penalty cost and cost of testing f increases.

Finally, the value of T™ exceeds 0 when

at(wCp + p(Ccrz — Cori))
pA(w + p)

> f. (13)

In Figure 6 we plot the utility function for the utility
parameters and both sets of prior parameters specified in
Section IV.A. The optimal stopping times for Set 1 and
Set 2 are 56 and 71 days respectively.

In practice it is imperative to consider the optimal choice
of release time when the values of the parameters differ
from those initially selected. Since T™* takes a simple closed
form, the sensitivity of the solution to all prior and utility
parameters is straightforward. Figure 7 shows a plot of
the optimal release time for varying values of the prior
parameters for the rate a. The shape of the graph indicates
that there is a cutoff rate below which it is disadvantageous
to test and that the optimal time to test approaches 0 as
a approaching infinity.

C. Multi Stage Decision Method

Although relatively easy to solve, the single stage plan
is flawed, as the determination of T relies on prior in-
formation alone and there is no opportunity to modify the
testing time in the light of the test data. The ideal decision
strategy, as given by the Sequential Plan, would allow an
unlimited number of stages of testing, and would base the
decision on whether to release or test for a further stage on
all the information available up to that point. This means
that the derivation of the expected utility at a stage is
done with respect to the posterior distribution given the
data up to that point rather than the prior.

However, there are computational problems with such a
test. Allowing an unlimited sequence of stages means that
one cannot solve the decision problem, which requires one
to solve recursively from the last testing stage. Even if
one were to restrict testing to a reasonable finite number
of stages, the optimization is computationally extremely
demanding, involving a nested sequence of maximization
and expectations. That said, [5] and [26], have developed
sequential solutions for a simplified version of the Goel-
Okumoto model.

In practice it is not necessary to include an unlimited
sequence of stages as management will have a predefined
set of points at which the continue/stop testing decision
will be taken. In practice the times may well represent the
end of each calendar week during user acceptance testing.

D. One Stage Look-Ahead Plan

The application of the sequential strategy using estab-
lished reliability growth models has not, even for moder-
ate J, been possible to date. Instead, work ([20] and [29])
has concentrated on the One Stage Look-ahead Plan which
compares the utility of stopping the testing activity imme-
diately with the utility of stopping at the next stage in the
future. This model has the drawback that, when making a
decision, the only choices presented are to accept the sys-
tem immediately or to continue testing to the next time
point and then accept. The possibility of testing beyond
the next time point is ignored. Work in [18] has shown
that the sequential decision strategy cannot decide to ac-
cept before the one stage look-ahead strategy. Work by
the author under review suggests that the use of the one
stage look-ahead plan gives almost identical results to the
sequential test except where the prior expert information
is exact but highly inaccurate.

At the completion of each stage, the decision to accept or
continue testing is taken by comparing the expected utility
of accepting the software immediately with the expected
utility of testing to the next stage and then accepting the
program. The evaluation of each of these utilities is based
on all the information available to date, including the prior
expert information and the occurrence time for defects and
change requests. It is calculated by finding the expected
values of each of the terms on the right hand side of Equa-
tion 11 using the expression developed in Equation 8.

We now demonstrate the application of the strategy us-
ing the utility and prior data sets specified earlier. We

10

Decision Time Utility Now Utility Next Decision
0 1280 1378 Test
5 1158 1233 Test
10 1334 1405 Test
15 1478 1543 Test
20 1632 1674 Test
25 1629 1661 Test
30 1727 1747 Test
35 1646 1670 Test
40 1675 1691 Test
45 1721 1730 Test
50 1750 1752 Test
55 1778 1775 Stop
TABLE III

ONE STAGE LOOK-AHEAD DECISION PLAN FOR SET 1 PARAMETERS

Decision Time Utility Now Utility Next Decision
0 -150 188 Test
5 125 201 Test
10 432 512 Test
15 607 684 Test
20 894 944 Test
25 932 972 Test
30 1055 1085 Test
35 698 740 Test
40 802 836 Test
45 1022 1046 Test
50 1099 1116 Test
55 1336 1344 Test
60 1294 1301 Test
65 1456 1455 Stop
TABLE IV

ONE STAGE LOOK-AHEAD DECISION PLAN FOR SET 2 PARAMETERS

select decision time points at 0,5,...,100. Table III shows
the utility values calculated at each time point for the usual
utility parameters values and Set 1 of the prior parameter
values. The table shows that testing continues until 7' = 55
at which point the decision is to terminate the user accep-
tance testing phase as the utility of accepting the system
now (1778) exceeds the utility of testing until time 60 and
then accepting the system (1775). As expected, the ac-
ceptance time (55) matches the single stage estimate (56)
based on accurate prior information. For Set 2 table IV
shows that the decision to stop testing takes place at time
T = 65. This is earlier than the corresponding single stage
estimate of T'= 71 which illustrates that the occurrence
data (both defect and change request) serves to correct
the inaccuracy of the prior knowledge.

To this point Section IV has concentrated on the cus-
tomer and their goals in deciding when to terminate the
user acceptance testing phase. There are of course situa-
tions where the producing firm will determine the length of

the user acceptance testing period. The appropriate util-
ity function for them will differ from the one described in
that it will include a term to cover the cost of repairing
defects during and after release. It may well also include
terms (contributing positively to the utility) for the profit
associated with implementing change requests before and
after the user acceptance testing phase stops.

V. CONCLUSION

This work develops a relatively simple model for the oc-
currence of change requests and defects during the user
acceptance testing phase for a bespoke piece of software.
This can be of benefit to development firms in their efforts
to forecast the required resources to support the repair of
defects and the implementation of change requests. We
illustrate the issues with prediction using the model and
develop a Bayesian model to overcome these problems and
at the same time allow for the incorporation of expert opin-
ion. Similarly, the split nonhomogeneous Poisson process
model can also be of benefit to the customer organization
who can use it to predict the total cost and to decide how
long to conduct user acceptance testing before accepting
the product for operation. The work shows how this can
be done through a decision-theoretic solution using both a
single stage and a multiple stage decision plan.

VI. ACKNOWLEDGEMENTS

K. McDaid acknowledges the support of Dundalk Insti-
tute of Technology through its secondment programme.

REFERENCES

(1] B. Hetzel. The Complete Guide to Software Testing (second edi-
tion), Wiley, 1988.

[2] G.J. Myers. Software Reliability, Principles and Practices, Wiley,
1976.

(3] J.D. Musa. Software Reliability Engineering, McGraw-Hill, New
York, 1998.

[4] T.A. Chavez. Decision-Analytic Stopping Rule for Validation of
Commercial Software Systems. IEEE Transactions on Software
Engineering, 26: 907-918, 2000.

[5] S.R. Dalal and C.L. Mallows. When should one stop testing?
Journal of the American Statistical Association, 83: 872-879,
1988.

[6] S.A. Hossain and R.C. Dahiya. Estimating the parameters of a
non-homogeneous Poisson process for software reliability. IEEE
Transactions on Reliability, 42(4):604-612, 1993.

[7] L. Yin and K.S. Trivedi. Confidence Interval Estimation of
NHPP-Based Software Reliability Models. Proceedings of the
International Symposium on Software Reliability Engineering,
1999.

[8] M. Xie, G.Y. Hong and C. Wohlin. A Practical Method for the
Estimation of Software Reliability Growth in the Early Stage of
Testing. Proceedings of the International Symposium on Software
Reliability Engineering, 1997.

[9] H. Hoffmann and K. McDaid An Analysis of Failure Occurrence
Patterns during Testing and Operation Supplemental Proceed-
ings of the International Symposium on Software Reliability En-
gineering, 2004.

[10] H. Hoffmann and K. McDaid Using Software Reliability Growth
Models to Predict the Occurrence of Defects during Testing Pro-
ceedings of the International Conference on Software Develop-
ment, Iceland, May 2005.

[11] S. Gokhale and K. S. Trivedi. A Time/Structure Based Software
Reliability Model. Annals of Software Engineering , vol. 8, pp. 85-
121, 1999.

[12] N.D. Singpurwalla and S.P. Wilson. Statistical Methods in Soft-
ware Engineering. Springer, 1999.

McDaid: A SPLIT POISSON PROCESS MODEL FOR THE OCCURRENCE OF DEFECTS AND CHANGE REQUESTS

[13] N.D. Singpurwalla and S.P. Wilson. Software Reliability Model-
ing. International Statistical Review, 62 3:289-317, 1994.

[14] A.L. Goel and K. Okumoto. Time dependent error-detection
rate models for Software Reliability and Other performance Mea-
sures. IEEE Transactions on Software Engineering, R-29, pp206-
211, 1979.

[15] S. Yamada, M. Ohba and S. Osaki. S-shaped Reliability Growth
Modeling for Software Error Detection. IEEE Trans. on Reliabil-
ity, R-32, pp. 475-485, 1983.

[16] S. Gokhale. Analysis of Software Reliability and Performance,
Ph.D. thesis, Duke University, 1998.

[17] G. Knafl and J. Morgan. Solving ML equations for 2-parameter
poisson-process models for ungrouped software failure data. IEEE
Transactions on Reliability, 45(1):42-53, 1996.

[18] K. McDaid and S. Wilson. Deciding how long to test software.
Journal of the Royal Statistical Society, Series D, R-50. part 2:
117-134, 2001.

[19] L. Kuo and T.Y. Yang. Bayesian Computation for Nonhomoge-
neous Poisson Processes in Software Reliability. Journal of Amer-
ican Statistical Association, 91 434: 763-77, 1995.

[20] J.R. van Dorp, T.A. Mazzuchi and R. Soyer. Sequential infer-
ence and decision making for single mission systems develop-
ment. Journal of Statistical Planning and Inference, 64: 289-317,
1998.

[21] N.D. Singpurwalla. Determining an optimal time interval for
testing and debugging software. IEEE Transactions on Software
Engineering, 17: 313-319, 1991.

[22] K. Okumoto and and A.L. Goel. Optimum release time for soft-
ware systems, based on reliability and cost criteria. Journal Sys-
tems and Software, 1: 315-318, 1980.

[23] S.R. Dalal and C.L. Mallows. Some graphical aids for decid-
ing when to stop testing software. Journal on Selected Areas in
Communications, 8: 169-175, 1990.

[24] E.H. Forman and N.D. Singpurwalla. An empirical stopping
rule for debugging and testing computer software. Journal of the
American Statistical Association, 72: 750-757, 1977.

[25] P.J. Boland and H. Singh. Determining the Optimal Release
Time for Software Reliability in the Geometric Poisson Model.
International Jounral of Reliability, Quality and Safety Engineer-
ing, 9, 3, pp 201-213, 2002.

[26] K. McDaid. How Long to Test Software. PhD dissertation, Trin-
ity College Dublin, 1998.

[27] P. Randolph and M. Sahinoglu. A Stopping Rule for a Com-
pound Poisson Random Variable, Applied Stochastic Models and
Data Analysis., Vol. 11, 135-143, 1995

[28] K. McDaid. When to suffer the penalties for late delivery of
software. Proceedings of the European Forum on Software Mea-
surement, 2004.

[29] S. Zacks. Sequential procedures in software testing, In Recent
advances in life-testing and reliability, CRC Press, 1995.

