
Decision-Theoretic Approaches to Display Strategies in Content

Based Image Retrieval

Georgios Stefanou Simon P. Wilson

Abstract

In this report we continue development of a Bayesian CBIR system by considering the issue of
an image display strategy. This is a decision problem and so within the Bayesian paradigm is to
be solved by decision theory. We show how different display strategies may be quantified by an
appropriate utility function, and compare different optimisation strategies. Examples are given.

1 Introduction

In previous work we have described our extensions to the Bayesian content based image retrieval (CBIR)
system PicHunter of [1]. In this short report we discuss how the Bayesian paradigm may be extended to
another aspect of the relevance feedback process, namely the decision as to which images to display at
each iteration. This is a decision problem, and as such it is to be solved within the Bayesian paradigm
by the methods of decision theory.

This report is organised as follows. In Section 2 we describe the Bayesian learning algorithm for
CBIR. In Section 3 we describe the decision theory solution to the display strategy problem. Section 4
concludes with some examples.

2 A Brief Description of a Bayesian CBIR system

Our approach is an extension of [1]. We consider a database of images I = {T1, . . . , TN}. The objective
is to determine the “target” image T ∈ I that the user requires. T could be a specific known image in
the database or more generally that image in I which best satisfies the user’s subjective search criteria.
The determination of T is accomplished by displaying a set of ND images from I, from which the user
picks one that best satisfies what is being looked for. The system uses this information to select another
image set, from which the user picks one, and so on. We define Di ⊆ I to be the set of displayed images
at the ith iteration of this process, and Ai ∈ Di to be the image picked, also known as the user action.
We define Ht = {D1, A1, D2, A2, . . . , Dt, At} to be the history of displayed images and user actions up
to the tth iteration.

The learning algorithm is based around the user model for the probability of which image a user
picks from Dk:

P (Ak |Dk, T = Ti, σ, F) =
exp (−dF (Ak, Ti)/σ)∑

Tj∈Dk
exp (−dF (Tj , Ti)/σ)

, (1)

where σ is a precision parameter and dF is a normalised distance measure in the set of image features
F . In this case we have 3 sets of features: global colour, texture and segmentation features, so F ∈
{GC, TX, SG}.

The unknowns are T , the precision parameter σ and the feature set F . Given Ht, our knowledge

1

about these unknowns is given by the posterior distribution:

P (T, σ, F |Ht) ∝
(

t∏
k=1

P (Ak |Dk, T, σ, F)

)
P (T)P (σ)P (F), (2)

where P (T), P (σ) and P (F) are prior distributions that we assume are uniform: P (T = Ti) = N−1, i =
1, . . . , N , P (σ) = 1, 0 ≤ σ ≤ 1 and P (F) = 1/3, F ∈ {GC,TX,SG}.

Of interest in this report is the marginal posterior distribution of T :

P (T = Ti |Ht) =
∫ 1

0

∑
F∈{GC,TX,SG}

P (Ti, σ, F |Ht), i = 1, . . . , N. (3)

3 Deciding the Next Display Set Dt+1

The question that this report addresses is the following. Based on P (T = Ti |Ht), which set of images
Dt+1 should be displayed next? This is a decision problem — we must decide which subset of I of size
ND to display — and within the Bayesian paradigm, such problems are solved by decision theory.

We define a utility U(D, T) that is the “worth” of picking the set D to display when the target
image is T . Since T is unknown, we compute for each possible D the expected utility with respect to
P (T = Ti |Ht):

U(D) =
N∑

i=1

U(D, Ti)P (T = Ti |Ht). (4)

The optimal set to display is that D which maximises expected utility:

Dt+1 = arg max
D⊆I

|D|=ND

U(D). (5)

3.1 The Most Probable Display Scheme

The most obvious display scheme is to display those ND images with the highest posterior probability.
We observe that if we define

UI(D, T) =
{

1, if T ∈ D,
0, otherwise,

then
UI(D) =

∑
Ti∈D

P (T = Ti |Ht)

which is clearly maximised by those images with highest probability. We call this the indicator utility.

3.2 Other Display Strategies

A property of the most probable display scheme is that it tends to quickly display images in a small
region of the feature space, clustered about the user actions, and ignores all images outside it. While
this may be ultimately what is needed during a query, it may be more worthwhile to display images
that maximise information to the system, at least in the early stages of the query process. We propose
2 utilities to model this idea.

2

3.2.1 Variance Utility

We display a set of images that are widely dispersed in feature space. We can use the variance of the
distances between images in D and T to define a measure of dispersion, thus

UV (D, T) =
1

ND − 1

∑
Ti∈D

(d(Ti, T)− d)2,

where d(Ti, T) is a normalised distance measure in feature space and

d =
∑

Ti∈D

d(Ti, T)/ND

is the mean distance of images in D to T .

3.2.2 Entropy Utility

A measure of information is the reduction in entropy in the distribution of T by selecting a particular
display set. So we can define a utility based on the negative expected entropy of the posterior of T from
picking an image in D, expectation over the images in D:

UE(D, T) = −
∑

Aj∈D

E(Aj , D)P (Aj |D, T), (6)

where

E(Aj , D) = −
N∑

i=1

P (T = Ti |Aj , D) log(P (T = Ti |Aj , D))

is the entropy of the posterior distribution of T given that Aj is picked from D (following Equations 2
and 3) and

P (Aj |D, T) =
exp (−d(Aj , T)/σ)∑

Tj∈D exp (−d(Tj , T)/σ)

is the likelihood term as in Equation 1 but using the distance measure d over the entire feature space
and σ is the posterior mean of σ.

3.3 Optimisation Methods

Because U(D) is separable in each element of D, the optimal D for the indicator utility can be easily
computed. This is not the case if one moves to using the variance or entropy utilities. Evaluation of
the expected utility for all possible D is not an option as the number is large i.e. for N = 1000 and
ND = 6 we have about 1.37 × 1015 possible subsets. For these, we have to resort to methods that are
not guaranteed to find the optimal. We propose two Monte Carlo optimisation schemes.

3.3.1 Random Generation

We randomly generate without replacement K subsets D1, . . . , DK . Then we let

Dt+1 = arg
K

max
k=1

U(Dk). (7)

Each element of a set D can be simulated from any distribution on I; obvious choices are the uniform
and P (T |Ht). In this paper we choose the latter.

3

3.3.2 Simulated Annealing

For simulated annealing, we define a “neighbour” of a subset D to be another subset with one different
image. A simulated annealing algorithm then runs as follows:

1. Define an initial temperature T0, a final temperature Tmin and a cooling schedule T1, T2,
Randomly generate without replacement a set D0, using P (T |Ht). Let k = 0.

2. While Tk > Tmin

• k = k + 1.

• Select at random one image in Dk−1 and replace with another image in I −Dk−1, randomly
generated according to P (T |Ht). Call this new set Dnew.

• With probability min{1, exp((U(Dnew) − U(Dk−1))/Tk)}, let Dk = Dnew else Dk = Dk−1.

3. Dt+1 = Dk.

Initial and final temperatures were decided on by using the methods of [2] and [3]. We looked at several
different cooling schedules, and found that inverse linear (Tk = a/(1 + bk)) performed best. The choice
of P (T |Ht) to generate D0 and Dnew can be changed, to for example the uniform, but we found that
the method was not particularly sensitive to this choice. Finally, our definition of neighbour can be
made more or less strict, by for example allowing two changes for Dnew or, conversely, only favouring
replacement of one image in Dnew that is close in feature space to that image replaced. However we
found that our choice was a compromise between a too small and too large change that offered a good
accept rate.

Finally we note that computation time is limited in a live implementation of either optimisation
scheme, so typically we can compute only a small number of expected utilities.

4 Examples

As an illustration of the method, we have a simulated database of only N = 15 images, each with
only 2 features, for which queries are implemented by displaying ND = 3 images. This is clearly an
unrealistically small example but it has the advantages of allowing us to display what happens in feature
space and, since there are only 455 possible subsets of size 3, to compute the exact optimal subset under
all 3 utilities and compare with the results obtained by random sampling and simulation.

Figure 1 shows an example of the system where one image A1 is picked from an initial display set
D1, and the resulting choice of D2 according to the 3 utilities. Upper left of the figure are the 15 images
in feature space with D1 = {T2, T3, T5} highlighted. Image 3 is selected. We then see that, under UI ,
we have D2 = {T3, T8, T12}, that is images close to that selected. For UV we have D2 = {T6, T7, T13}
and for UE we have D2 = {T7, T13, T14}, that is images that are widely separated in feature space are
chosen. To explore the effectiveness of the optimisation methods, we repeated this experiment 1000
times, computing the optimal D2 according to the random generation method and simulated annealing.
For the random subset generation, we simulated K = 100 subsets. For the simulation annealing we used
an inverse linear cooling schedule Tk = a/(1+bk) with a and b chosen so that the final temperature was
reached in 100 iterations, thus both methods took the same time to compute. The results are compared
with the exact calculation in Table 1 and we see that both non-exact methods are sub-optimal, but
nevertheless do manage on average to find subsets with expected utility close to the optimal. Random
generation appears to do slightly better than simulated annealing.

Finally, we move to the BAL database. In this case we cannot enumerate all possible subsets and so
D2 under the variance and entropy utilities is computed by the two optimisation schemes only. Table 2
compares the optimisation methods over 10 runs for an example from this database where D1 consists
of 6 images; note that we only have the exact result for the indicator utility. From the results for the

4

FEATURE 1

F
E

A
T

U
R

E
 2

1

2

3

4

5

6

7

8

9

10

11

12

13

14 15
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

FEATURE 1

F
E

A
T

U
R

E
 2

INDICATOR UTILITY

1

2

3

4

5

6

7

8

9

10

11

12

13

14 15

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

FEATURE 1

F
E

A
T

U
R

E
 2

VARIANCE UTILITY

1

2

3

4

5

6

7

8

9

10

11

12

13

14 15

FEATURE 1

F
E

A
T

U
R

E
 2

ENTROPY UTILITY

1

2

3

4

5

6

7

8

9

10

11

12

13

14 15

Figure 1: Feature space plots for the selection of D2 for a simple database of 15 images given D1 =
{T2, T3, T5} and A1 = T3. Images in D2 are highlighted by *.

Utility Exact Computation Random Generation Simulated Annealing
over all subsets of 100 subsets 100 iterations

Indicator 0.2643 0.2624 0.2591
Variance 0.2299 0.2264 0.2246
Entropy -2.6869 -2.6879 -2.6883

Table 1: The average of the expected utility for D2 over 1000 runs for the 3 utility functions and three
computation methods. All runs use the example of Figure 1.

5

Utility Exact Computation Random Generation Simulated Annealing
over all subsets of 100 subsets 100 iterations

Indicator 0.0157 0.0106 0.0100
Variance — 0.7767 0.7583
Entropy — -6.9642 -6.9647

Table 2: The average of the expected utility for D2 over 10 runs for the 3 utility functions and three
computation methods using the BAL database.

indicator utility it appears that both optimisation methods can be significantly sub-optimal. From all
3 utilities it appears that random generation performs better than simulated annealing.

5 Conclusion

We have described a decision-theoretic approach to the problem of display set strategy in content-based
image retrieval systems. The notion of utility is, we believe, a useful and intuitive way to quantify
display strategy objectives. One is free to define any utility function at all, as long as computational
issues can be successfully addressed.

It remains to say that the two new utilities that we have proposed — variance and entropy —
are primarily of use in the early stages of a query, when the objective is to learn as much as possible
about the user’s target. Ultimately, one will want to resort to a utility that displays images close to the
target, such as the indicator. An obvious way to do this is to consider a utility that is a convex weighted
combination of the indicator utility with one of the other two, with the weight on the indicator utility
increasing to 1 with the iteration, for example at the tth display set:

U(D, T) = αtUI(D, T) + (1 − αt)UE(D, T),

with 0 ≤ αt ≤ 1 and αt → 1, and the entropy utility normalised from that in Equation 6 so that it lies
in [0, 1] like UI(D, T). This is the subject of current work.

References

[1] I. J. Cox, M. L. Miller, T. P. Minka, T. V. Papathomas, and P. N. Yianilos. The Bayesian im-
age retrieval system, PicHunter: theory, implementation and psychophysical experiments. IEEE
Transactions on Image Processing, 9:20–37, 2000.

[2] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science,
220:671–680, 1983.

[3] M. Lundy and A. Mees. Convergence of an annealing algorithm. Mathematical Programming,
34:111–124, 1986.

6

