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Abstract

Hamiltonian lattice gauge models based on the assignment of the Heisenberg

double of a Lie group to each link of the lattice are constructed in arbitrary space-

time dimensions. It is shown that the corresponding generalization of the gauge-

invariant Wilson line observables requires to attach to each vertex of the line a

vertex operator which goes to the unity in the continuum limit.

1 Introduction

In a recent paper [1] I have considered Hamiltonian lattice Yang-Mills theory, based on the
assignment of the Heisenberg double of a Lie group to each link of the lattice, in (1+1)-
and (2+1)-dimensions. In the present paper having in mind possible applications of the
construction to Chern-Simons models and gravity I discuss an analogous formulation of
lattice gauge models on an arbitrary lattice or graph. In the case of the regular hyper-
cubic space lattice the gauge models proposed are lattice-regularized Yang-Mills models
in (d+1)-dimensions.

As is well known there are two possible ways of lattice regularization of gauge theo-
ries. In the approach of Wilson [2] one considers Euclidean formulation of a model and
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discretizes all space-time, thus replacing the model by some statistical mechanics model.
In the Hamiltonian approach of Kogut and Susskind [3] one considers a model in the
Minkowskian space-time and introduces only space lattice remaining the time direction
continuous. Then one places on each link of the lattice the cotangent bundle of a Lie
group and on each vertex lattice Gauss-law constraints which are first-class constraints
and generate gauge transformations and finally one finds a gauge-invariant lattice Hamil-
tonian. Thus in the Hamiltonian formulation the Yang-Mills theory is replaced by some
classical mechanics model with first-class constraints, the phase space of the model being
the direct product of the cotangent bundle over all links of the lattice:

∏
links T ∗G.

However one could ask oneself whether it is possible to place on each link another
phase space and on each vertex other Gauss-law constraints and to get another lattice
model which can be reduced to the continuous one in the continuum limit. In [1] I have
shown that such a possibility does exist and is based on a phase space which is called
the Heisenberg double D

γ
+ of a Lie group and is one of the basic objects in the theory

of Poisson-Lie groups [4, 5]. Only (1+1)- and (2+1)-dimensional Yang-Mills models were
considered in the paper. In the present paper a generalization of the consideration to the
Yang-Mills theory in any space-time dimension is found.

The plan of the paper is as follows. In the second section we remind some simple
results from the theory of the Heisenberg double and introduce the notations used in
the paper. In the third section we formulate a classical mechanics lattice gauge model
with first-class constraints on arbitrary lattice or graph, the phase space of the model
being the direct product of the Heisenberg double over all links:

∏
links D

γ
+. Then we

show that in the case of the regular hyper-cubic space lattice in d-dimensions the model
constructed is lattice-regularized (d+1)-dimensional Yang-Mills theory. In Conclusion we
discuss unsolved problems and perspectives.

2 Heisenberg double

In this section we remind some simple results from the theory of the Heisenberg double and
fix notations. More detailed discussion of the subject can be found in refs.[4, 5, 6, 7, 8, 9].

Let G be a matrix algebraic group and D = G × G. For definiteness we consider
the case of the SL(N) group. Almost all elements (x, y) ∈ D can be presented in two
equivalent forms as follows

(x, y) = (U, U)−1(L+, L−) = (U−1L+, U−1L−)

= (L̃+, L̃−)−1(Ũ , Ũ) = (L̃−1

+ Ũ , L̃−1

−
Ũ) (2.1)

where U, Ũ ∈ G, the matrices L+, L̃+ and L−, L̃− are upper- and lower-triangular, their
diagonal parts l+, l̃+ and l−, l̃− being inverse to each other: l+l− = l̃+l̃− = 1.

Let all of the matrices be in the fundamental representation V of the group G (N ×N

matrices for the SL(N) group). Then the algebra of functions on the group D is generated
by the matrix elements xij and yij. The matrices L± and U or L̃± and Ũ can be considered
as almost everywhere regular functions of x and y. Therefore, the matrix elements L±ij

and Uij (or L̃±ij and Ũij) define another system of generators of the algebra FunD. We
define the Poisson structure on the group D in terms of the generators L± and U as
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follows [7, 8]
{U1, U2} = γ[r±, U1U2] (2.2)

{L1

+, L2

+} = γ[r±, L1

+L2

+]

{L1

−
, L2

−
} = γ[r±, L1

−
L2

−
]

{L1

+, L2

−
} = γ[r+, L1

+L2

−
] (2.3)

{L1

+, U2} = γr+L1

+U2

{L1

−
, U2} = γr−L1

−
U2 (2.4)

Here γ is an arbitrary complex parameter, r± are classical r-matrices which satisfy the
classical Yang-Baxter equation and the following relations

[r12, r13] + [r12, r23] + [r13, r23] = 0 (2.5)

r− = −Pr+P, r+ − r− = C (2.6)

where P is a permutation in the tensor product V ⊗ V (Pa ⊗ b = b ⊗ a) and the matrix
C is the tensor Casimir operator of the Lie algebra of the group G. For the SL(N) group
the solution of eqs.(2.5-2.6) looks as follows

r+ =
N−1∑

i=1

hi ⊗ hi + 2
N∑

i<j

eij ⊗ eji

= −
1

N
I +

N∑

i=1

eii ⊗ eii + 2
N∑

i<j

eij ⊗ eji (2.7)

where (eij)kl = δikδjl and hi form an orthonomal basis of the Cartan subalgebra of the

SL(N) group:
√

i(i + 1)hi =
∑i

k=1 ekk − iei+1,i+1.

In eqs.(2.2-2.6) we use the standard notations from the theory of quantum groups [10, 11]:
for any matrix A acting in some space V one can construct two matrices A1 = A ⊗ id

and A2 = id ⊗ A acting in the space V ⊗ V , and for any matrix r =
∑

a r1(a) ⊗ r2(a)
acting in the space V ⊗ V one can construct matrices r12 =

∑
a r1(a) ⊗ r2(a) ⊗ id, r13 =∑

a r1(a) ⊗ id ⊗ r2(a) and r23 =
∑

a id ⊗ r1(a) ⊗ r2(a) acting in the space V ⊗ V ⊗ V .
The group D endowed with the Poisson structure (2.2-2.4) is called the Heisenberg

double D
γ
+ of the group G. It is not difficult to show that the matrices L̃± and Ũ have

the same Poisson structure (2.2-2.4) and we shall need the Poisson brackets of L±, U and
L̃±, Ũ [12]

{L1

α, L̃2

β} = 0 for any α, β = +,−

{L̃1

±
, U2} = −γL̃1

±
U2r±

{L1

±
, Ũ2} = −γL1

±
Ũ2r±

{U1, Ũ2} = 0 (2.8)

The cotangent bundle of the group G can be considered as a limiting case of the Heisenberg
double . Namely, in the limit γ → 0 and L± → 1 + γE± the Poisson structure of the
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Heisenberg double coincides with the canonical Poisson structure of the cotangent bundle
T ∗G.

Up to now we considered the Heisenberg double of a complex Lie group. One can
single out some real forms by means of the following (anti)-involutions:
1. SU(N) form for imaginary γ

U∗ = U−1, L∗

+ = L−1

−
, L∗

−
= L−1

+ (2.9)

2. SU(N) form for real γ [13, 12]

U∗ = Ũ , L∗

+ = L−, L∗

−
= L+ (2.10)

3. SL(N) form for real γ

U∗ = U, L∗

+ = L+, L∗

−
= L− (2.11)

It can be easily checked that these (anti)-involutions are compatible with the Poisson
structure (2.2-2.4).

3 Hamiltonian lattice Yang-Mills theory

In this section we consider Hamiltonian lattice gauge models based on the assignment of
the Heisenberg double to each link of the lattice. We begin with the case of an arbitrary
graph (regular hyper-cubic lattice, triangulation of a surface, the Bruhat-Tits tree, sim-
plicial complexes and so on) which is described by a set of vertices and a set of links.
Each link is thought of as either a path connecting two vertices v1 and v2 or a closed path
with a marked vertex (tadpole). Two vertices can be connected by any finite number of
links. Such a graph is certainly just an arbitrary connected Feynman diagram.

Let us now consider some vicinity of a vertex v which does not contain other vertices
and closed paths. Let us denote the paths which go from the vertex v by l1(v),...,lNv

(v).
We call such a path as a vertex path. Nv is a common number of the paths and if there
is no closed path for the vertex v then Nv coincides with the number of links going from
v to some other vertices of the lattice. With each vertex path li(v) one associates a field
taking values in the Heisenberg double D

γ
+. This field is described by matrices U(li(v)),

L+(li(v)) and L−(li(v)) with the Poisson structure (2.2-2.4) and fields corresponding to
different paths have vanishing Poisson brackets.

Let us now attach to the vertex v the following Gauss-law constraints [1]

G±(v) = L±(l1(v))L±(l2(v)) · · ·L±(lNv
(v)) = 1 (3.12)

One can easily check that these constraints have the following Poisson brackets

{G1

+(v), G2

+(v)} = γ[r±, G1

+(v)G2

+(v)]

{G1

−
(v), G2

−
(v)} = γ[r±, G1

−
(v)G2

−
(v)]

{G1

+(v), G2

−
(v)} = γ[r+, G1

+(v)G2

−
(v)] (3.13)

We see that these Poisson brackets vanish on the constraints surface G± = 1 and therefore
they are first-class constraints. Thus one can consider gauge transformations which are
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generated by these constraints. Namely, for any function X of the matrices U(li(v)),
L±(li(v)) an infinitesimal gauge transformation looks as follows

δX = {X, tr (G+(v)ξ+(v) + G−(v)ξ−(v))} (3.14)

where ξ± are gauge parameters which do not depend on U and L±.
Using the Poisson brackets (2.4) for U and L± one can easily verify that these constraints
generate left gauge transformations of the field U

U(li(v)) → g(li(v))U(li(v)) (3.15)

Let us note that g(li(v)) depends not only on the vertex v but on the vertex path li(v)
and the fields L± as well. But the gauge transformations for different vertex paths are
certainly not independent.

A remarkable feature of these constraints is that they form the same quadratic Poisson
algebra as the matrices L± do. In the limit γ → 0, L± → 1 + γE± one gets the following
Gauss-law constraints

C±(v) =
Nv∑

i=1

E±(li(v)) = 0 (3.16)

which form the Lie algebra and were used by Kogut and Suskind [3] (more exactly they
used the constraints C(v) = C+(v)−C−(v)). Thus the usual lattice gauge theory can be
thought of as a particular case of the models under consideration.

Let us remark that the choice of the constraints G±(v) is not unique. One can use
any constraint of the form

G±(v, σ) = L±(lσ1
(v))L±(lσ2

(v)) · · ·L±(lσNv
(v)) = 1 (3.17)

where σ ∈ Symm(Nv) is some permutation of 1,2,...,Nv.
These constraints form the same Poisson algebra (3.13) and in the limit γ → 0 coincide
with C±(v). However at finite γ only that constraints, which differ from each other by a
cyclic permutation, are equivalent. Thus with each vertex one can in principle associate
(Nv − 1)! nonequivalent constraints.

Repeating the same procedure for all of the vertices one gets the phase space which is
the direct product of the Heisenberg double over all of the vertex paths and a set of the
Gauss-law constraints attached to the vertices. The Gauss-law constraints corresponding
to different vertices have vanishing Poisson brackets. Taking into account that for each
link there are two vertex paths one sees that one has placed on each link two different
Heisenberg doubles. However one can impose on the fields attached to one link the
following constraints

U−1(1)L±(1) = L−1

±
(2)U(2) (3.18)

Comparing eq.(3.18) with eq.(2.1) one concludes that the fields U(1), L±(1) and U(2),
L±(2) are just different coordinates on the same Heisenberg double. Thus the phase space
of the model is the direct product of the Heisenberg double over all links:

∏
links D

γ
+.

To the moment we have described the phase space of the model and imposed the
Gauss-law constraints . The next problem is to find gauge-invariant functions on the phase
space and to form from them a Hamiltonian. The simplest gauge-invariant functions can
be obtained using a well-known theorem from the theory of Poisson-Lie groups [4, 5, 8]
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which states that generators of the ring of the Casimir functions of the Poisson algebra
(2.3) have the following form

hk = tr (L+L−1

−
)k = trLk (3.19)

Due to the fact that the Gauss-law constraints (3.12) depend only on L± these functions
are gauge-invariant. The functions (3.19) are not the only ones gauge-invariant. Just as
in the case of the usual lattice gauge theory one can construct Wilson line observables.
So let us consider a loop with is formed by the oriented links l1, l2, ..., ln. Each oriented
link which goes from a vertex v to a vertex u (it may be the same vertex) can be denoted
by two vertex paths as follows

l(v, u) = li(v)lj(u) (3.20)

where i and j are the numbers of the vertex paths (we have numbered all vertex paths).
Thus the loop is described by 2n vertex paths as follows

l1, l2, ..., ln = li1(v1)lj2(v2), li2(v2)lj3(v3), ..., lin(vn)lj1(v1) (3.21)

i.e. we denote the link lα going from vα to vα+1 as liα(vα)ljα+1
(vα+1) and iα, jα =

1, 2, ..., Nvα
.

In the usual lattice gauge theory the gauge-invariant Wilson line observable corresponding
to the loop is of the form

W (l1 · · · ln) = trU(li1(v1))U(li2(v2)) · · ·U(lin(vn)) (3.22)

We are looking for a similar expression for the Wilson line observable which coincides
with (3.22) in the limit γ → 0. It appears that to get a corresponding generalization one
should attach to every vertex vα some vertex operator V (vα, jα, iα) which depends on the
vertex paths liα(vα) and ljα

(vα). Then the gauge-invariant Wilson line observable for a
loop without tadpoles looks as follows

W (l1 · · · ln) = trU(i1)V (j2, i2)U(i2)V (j3, i3) · · ·U(in)V (j1, i1) (3.23)

where we use short notations
U(liα(vα)) = U(iα)

V (vα, jα, iα) = V (jα, iα)

The choice of the vertex operator V (j, i) is not unique. The simplest vertex operators
have the form

V (j, i) =






Lǫj+1
(j + 1) · · ·Lǫi−1

(i − 1) if j < i − 1
1 if j = i − 1

L−1
µj

(j) · · ·L−1
µi

(i) if j ≥ i
(3.24)

where ǫk, µl = ±.
To prove eq.(3.23) it is enough to show that the combination

U(lk(u))V (v, j, i)U(li(v)) = Ũ(lj(v))V (v, j, i)U(li(v)) (3.25)

is gauge-invariant under the transformations generated by the constraints G±(v). It is not
difficult to do by using formulas (2.2-2.4, 2.8) for the Poisson brackets of U , Ũ and L±. A
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Hamiltonian of the model can be now written as some combination of the gauge-invariant
functions (3.19) and (3.23).

Thus we have described the phase space, the constraints and gauge-invariant observ-
ables which can be used as Hamiltonians of the models and now we are passing to a
particular model on the regular hyper-cubic space lattice. We shall show that this model
is the lattice-regularized Yang-Mills theory.

So let us consider the regular hyper-cubic space lattice in d-dimensions. In this case
an arbitrary vertex of the lattice can be denoted by a vector n = (n1, ..., nd) with integers
ni. We choose some orientation of the lattice and denote the orthonormal lattice vectors
which define the orientation as ei, i = 1, ..., d and introduce the notation e−i = −ei. With
each link one can associate a positive link (n, ei) and a negative link (n + ei,−ei). The
vertex paths of the vertex n are therefore oriented links (n, eα), α = ±1, ...,±d. We place
on each vertex path (n, eα) (or oriented link) the Heisenberg double which is described
by the fields U(n, α), L±(n, α). Due to eq.(3.18) we have the following relations

U(n + ei,−i) = Ũ(n, i)

L±(n + ei,−i) = L̃±(n, i) (3.26)

Let us note that in the limit γ → 0, L± → 1 + γE± one gets the usual equations
U(l−1) = U−1(l) and E(l−1) = −U−1(l)E(l)U(l) for any oriented link l.

There are (2d − 1)! nonequivalent choices of the constraints (3.12). In the paper we
use the following Gauss-law constraints

G±(n) = L±(n,−1)L±(n, 1)L±(n,−2)L±(n, 2) · · ·L±(n,−d)L±(n, d)

= L̃±(n − e1, 1)L±(n, 1) · · ·L±(n− ed, d)L±(n, d) = 1 (3.27)

We see from this expression that it is natural to introduce the notation G±(n, i) =
L±(n,−i)L±(n, i). One can easily verify that the (anti)-involutions (2.9) and (2.11) are
compatible with the constraints. A Hamiltonian of the model can be written in the
following form (which is certainly not unique)

H =
e2

2γ2
a2−d

∑

links

tr (L2(l) − 1) +
ad−4

2e2

∑

plaqettes

(W (2) + W ∗(2)) (3.28)

where the summation is taken over all positive and negative links and over all plaqettes, e

is the coupling constant and a is the lattice length. The Wilson term W (2) is determined
by eqs.(3.22,3.24) and is equal to

W (2ij) = trU(n; i)V (n + ei;−i, j)U(n + ei; j)V (n + ei + ej;−j,−i)

U(n + ei + ej;−i)V (n + ej; i,−j)U(n + ej;−j)V (n; j, i) (3.29)

This formula can be simplified if one uses the following equation expressing U(n+ ei;−i)
through U(n; i), L±(n, i) and L̃±(n, i)

U(n + ei;−i) = L̃±(n, i)U−1(n, i)L±(n, i) = L±(n + ei;−i)U−1(n, i)L±(n, i) (3.30)

Using this equation and eq.(3.24) for the vertex operators one gets for W (2)

W (2ij) = tr U(n; i)Vij(n + ei)U(n + ei; j)Vji(n + ei + ej)

U−1(n + ej ; i)Vij(n + ej)U
−1(n; j)Vji(n) (3.31)
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where

Vij(n) =






Lǫi
(n, i)Gǫi+1

(n, i + 1) · · ·Gǫj−1
(n, j − 1)Lǫj

(n,−j) if i < j

1 if i = j

(Lµj
(n, j)Gµj+1

(n, j + 1) · · ·Gµi−1
(n, i − 1)Lµi

(n,−i))−1 if i > j

(3.32)

Let us mention that the Wilson line observable corresponding to an arbitrary loop formed
by oriented links l1, l2, ..., ln has the same form

W (l1l2...ln) = trU(l1)Vl1l2U(l2)Vl2l3 · · ·U(ln)Vlnl1 (3.33)

where one should take U(l) = U(n; i) for any positive link l = (n, ei) and U(l−1) =
U−1(n, i) for any negative link l−1 = (n + ei,−ei) and the vertex operator Vlklk+1

is given
by eq.(3.32). Let us stress that in eq.(3.33) one has to use U−1(n, i) for any negative link
but not Ũ(n, i).
One can choose for example the positive sign for all of ǫk and negative sign for all of µl.
Then the vertex operator Vij(n) has the following transformation law with respect to the
anti-involution (2.9) which singles out the SU(N) real form

V ∗

ij(n) = Vji(n) (3.34)

The formula (3.34) ensures that the Wilson line observable W (l1l2...ln) is complex- con-
jugated to W (lnln−1...l1).

Now taking into account that in the limit γ → 0, L± → 1+γE± the vertex operator Vij

goes to the unity one recovers the Gauss-law constraints and the Hamiltonian of the usual
lattice gauge theory [3]. Thus we have shown that in the case of the regular hyper-cubic
space lattice the model proposed is just a lattice-regularized Yang-Mills theory.

4 Conclusion

In this paper we considered the Hamiltonian formulation of classical gauge models on an
arbitrary lattice. In this formulation we placed on each link the Heisenberg double of
a Lie group and attached Gauss-law constraints to each vertex of the lattice. We have
shown that the models on the regular hyper-cubic lattices correspond to lattice-regularized
Yang-Mills theory. We discussed only the case of the pure Yang-Mills theory. It would be
very interesting to include fermions to this construction. It seems to be plausible that a
proper description of fermions would lead to a lattice version of the Faddeev-Shatashvili-
Mickelsson 2-cocycle [14, 15, 16].

Another interesting problem is to classify all integrable lattice gauge models, i.e. to
find all corresponding graphs and Hamiltonians.

We considered only classical theory and the next and most important problem is to
quantize the models. There is no problem in quantizing the Poisson structure of the
Heisenberg double. One just gets the quantized algebra of functions on the Heisenberg
double [7, 8, 12] which includes as subalgebras the algebra of functions on the quantum
group Funq(G) and the quantized universal enveloping algebra Uq(G), where G is the Lie
algebra of the group G. The classical r-matrices r± are to be replaced by the R-matrices
R±(q) = 1 + ih̄γr± + · · ·, where q = eih̄γ . Thus a real γ corresponds to q lying on the
unit circle of the complex plane and an imaginary γ corresponds to a real q. It is of
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no problem to check that in quantum theory the Gauss-law constraints are first-class
constraints and commute with the quantum Wilson line observables and therefore with
the quantum Hamiltonian. Let us note that q has a nonpolynomial dependence on the
Planck constant h̄ and thus already ”tree” correlation functions of the models will have
a nonpolynomial dependence on h̄ as well. It seems to be an indication that correlation
functions of the models correspond to a summation over infinitely-many number of the
usual Feynman diagrams. It is not excluded that the parameter γ plays the role of an
infrared cut-off. Due to the fact that there is the additional parameter γ for the models
one may expect that these models have more rich phase structure than the usual lattice
gauge theory.

Let us finally notice that q-deformed lattice gauge theory was considered in refs.[17,
18, 19, 20] in connection with the Chern-Simons theory.
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