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Abstract

It it known that to get the usual Hamiltonian formulation of lattice Yang-Mills
theory in the temporal gauge Ag = 0 one should place on every link the cotangent
bundle of a Lie group. The cotangent bundle may be considered as a limiting case of
a so called Heisenberg double of a Lie group which is one of the basic objects in the
theory of Lie-Poisson and quantum groups. It is shown in the paper that there is
a generalization of the usual Hamiltonian formulation to the case of the Heisenberg
double .

1 Introduction

Lattice regularization of gauge theories is at present the only known nonperturbative
regularization. There are two possible ways of discretization of the theories. In the
approach of Wilson [fl] one consideres Euclidean formulation of gauge theories and dis-
cretizes all space-time, thus replacing the theory by some statistical mechanics model. In
the approach of Kogut and Susskind [B] one consideres gauge theories in the Minkowskian
space-time and in the first-order (Hamiltonian) formulation and discretizes only the space
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directions remaining the time variable continuous. In this case the Yang-Mills theory is
replaced by some classical mechanics model with constraints. Passing from the continuous
Yang-Mills theory to a lattice model one replaces the infinite dimensional phase space of
the Yang-Mills theory by the finite dimensional phase space of the lattice model. Thus
although the first approach is more suitable for practical calculations, the second one
seems to be more appropriate for the study of different nonequivalent representations of
the infinite dimensional Heisenberg algebra of the canonical variables of the Yang-Mills
theory.

In their paper [P Kogut and Susskind considered from the very beginning quantum
theory of lattice Yang-Mills model in the temporal gauge Ag = 0. However it appeares to
be useful to begin with the gauge-invariant formulation of the classical lattice Yang-Mills
theory and then to quantize it in some gauge (for example in the temporal gauge). In the
present paper we consider such a formulation of the Yang-Mills theory and as an example
of a useful application present a very simple solution of the (141)-dimensional Yang-Mills
theory on a cylinder. To get this formulation, which seems to be known, one should place
on every link the cotangent bundle of a Lie group. Thus the phase space of this lattice
gauge theory is the direct product of the cotangent bundles over all links. The cotangent
bundle can be considered as a limiting case of a so called Heisenberg double D7 of a Lie
group which is one of the basic objects in the theory of Lie-Poisson and quantum groups
B, @ B B, [ In the last section of this paper we show that there is a generalization of
the usual Hamiltonian formulation of lattice gauge theory to the case of the Heisenberg
double . We consider the (1+1)- and (241)-dimensional SL(N,C) Yang-Mills theory
and show that one can single out the real forms SU(N) and SL(N, R) by imposing the
corresponding involutions of the Heisenberg double . The lattice theory obtained has two
parameters a and v and coincides with the continuous Yang-Mills theory in the continuum
limit a — 0, 7/a — const. At the end of the paper we make some remarks on quantization
of this lattice gauge theory.

2 Lattice Yang-Mills theory and cotangent bundle

In this section we remind some known results concerning the Hamiltonian formulation of
the lattice (d+1)-dimensional Yang-Mills theory described by the following action

1
= /dm trF2, (2.1)

Here F), = 0,A, — 0, A, +[A,, Ay and A, = AS A is a gauge field with values in the Lie
algebra g of a simple Lie group G, A* are generators of the Lie algebra with the following
relations

tr MO = —2p7 (AT AN = fobene (2.2)

where 7% is the Killing tensor of the group G.
The action (B.)) can be rewritten in the first-order formulation as follows
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S = —% /dtdx tr (s

where 7,7 = 1, ..., d are space indices.



It is obvious from eq.(R.3) that E; and A; are canonically-conjugated momenta and coor-
dinates with the standard Poisson structure

{Af(x), B} (y)} = nab0356 (x — ¥), (2.4)
H = —% /dx tr (%Ef + iFj-) (2.5)

is the Hamiltonian of the system, Ag is a Lagrange multiplier and
G = &EZ —|— [AZ, EZ] == Ga)\a (26)
are the Gauss-law constraints forming the gauge algebra

{G"(x),G"(y)} = [ G (x)d(x — ), (2.7)

Thus the classical Yang-Mills action describes a system with first-class constraints and an
infinitely-dimensional phase space which can be presented as [[ (g X ¢)x = ITx(T79)x-
Eqgs.(B4) and (R.7) can be rewritten in the following form which will be used in the
paper
(EL(x), A2(y)} = Coyo(x—y), (2.5)

{G'(x),G*(y)} = %[Gl(X) —G(y), Clo(x —y), (2.9)

In egs.(R.§) and (R.9) we use the standard notions from the theory of quantum groups [{:
for any matrix A acting in some space V one can construct two matrices A! = A®id and
A? = id ® A acting in the space V ® V, and matrix C' is the tensor Casimir operator of
the Lie algebra: C' = —n,3\ @ AP, For the case of the SL(2) algebra C' = Y3 _, 0 ® 09,
where ¢ are Pauli matrices.

Let us now introduce the regular hyper-cubic space lattice. An arbitrary vertex of the
lattice is denoted by a vector n = (ng,...,ng) with integers n;, the orthonormal lattice
vectors are denoted e;, ¢ = 1,...,d and an arbitrary link is denoted by a vector n and
a lattice vector e;: (n,e;) or (n,i). To get a gauge-invariant lattice Yang-Mills theory,
we place on each vertex an algebra-valued Lagrange multiplier Ap(n) and on each link
(n,e;) a group-valued field U(n;i) and an algebra-valued field F(n;i). Then the lattice
Yang-Mills action which is invariant with respect to the following gauge transformations

Um;i) — g ' (m)U(n;i)g(n+e)
E(m;i) — g '(n)E(n;i)g(n)

Aom) — g7 () Ao(m)g(m) + 9 () P22, (2,10
can be written as follows
St = — %tr > (B i)dUE;; D10, i) — %2a2_dE2(n, )
+ Zn: AOIE;I) ZZ: (E(n;i) — U™ (n — e;;9)E(n — e;1)U(n — e;;1))]
— % > (W(D)+ WD) (2.11)
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Here W(O) is the usual Wilson term
W(O) = trU(n;5)U(n +e; j) U H(n +e;;1)U "' (n; 5) (2.12)
In the continuum limit

a— 0, Ap(n) — Ao(an)
E(n;i) — a’'E;(an)
U(n;i) — 14 aA;(an), (2.13)
the action (.T1]) reduces to the action (B.3).

The kinetic term in eq.(R.11]) defines the Poisson structure for the fields U(n;¢) and
E(n;i)

{U(n;4), U (m; )} :(i
{E'(n:i), B*(m; )} = 5[E1(n;i) — E*(m; ), C0;j0nm
{E'(n:4), U*(m; j)} = CU*(m; j)0,0nm (2.14)

This Poisson structure being ultralocal coincides on every link with the canonical Poisson
structure of the cotangent bundle of the group G: T*G. Thus the phase space of the
regularized model is the direct product of T*G over all links: [ e,)(17G)(n, ).

Using egs.(B-I9) one can easily calculate the Poisson bracket of the Gauss-law con-
straints

G(n) = Z (E(n;i) — U Y(n—e;i)E(n—e;i)U(n —e;i))

)

{G'(n),G*(m)} = %[Gl(n) — G*(m), Cloum (2.15)

One can see from eqgs.(.14) and (R.13) that the field E(n;4) should be identified with
the right-invariant momentum generating left gauge transformations of the field U(n; 1)
and the field F(n;4) = U~ (n; i) E(n;i)U(n; 1) should be identified with the left-invariant
momentum generating right gauge transformations of the field U(n;i). It is not difficult
to check that E(n;i) and F(n;i) have the vanishing Poisson bracket. Let us note that in
the continuum limit (B.13) the Poisson structure (R.14) reduces to eq.(R.§). Now imposing
the temporal gauge Ay = 0 and quantizing the Poisson structure (.14) one gets the model
considered by Kogut and Suskind [J].

As an application of this gauge-invariant formulation let us consider quantization of
the (141)-dimensional Yang-Mills theory on a cylinder. In this case the lattice action
(B-I1) can be rewritten as follows

Su= = (3 (B () ) 1)~ a2 (o)
+ Ag(n)(E(n) —U Y n—1)En—1)U(n — 1)) (2.16)

Due to the gauge invariance of the action one can impose the gauge condition
Un)=1, n#N; UN)=U (2.17)
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Then one can easily solve the Gauss-law constraints G(n) = 0 for n > 2 and get the

following solution
E(n)=F for any n (2.18)

Inserting this solution to the first constraint G(1) = E(1)—U"'E(N)U one gets a residual
constraint G = E — U1 EU which generates the residual gauge transformations

U—g'Ug, E—g'Eg (2.19)
Finally the action (P.If]) takes the form

Stat = —% tr [E%U‘l — >TRE? + Ao(E — U'EU)) (2.20)
where R = aN /27 is the radius of the circle.

It is worthwhile to note that the resulting action (R.20), firstly obtained in ref.[§ by
a different method, does not depend on the lattice length a and thus is the exact action
describing partially-reduced Yang-Mills theory.

This gauge-invariant Hamiltonian formulation of the lattice Yang-Mills theory was
based on the cotangent bundle of the group G. One could ask oneself whether it is possible
to put on each link another phase space and on each vertex another first-class Gauss-law
constraints and to get another lattice theory which in the continuum limit reduces to the
continuous one. In the next section we show that such a possibility does exist and is based
on a phase space which is called the Heisenberg double of a Lie group and is one of the
basic objects in the theory of Poisson-Lie and quantum groups.

3 Heisenberg double and lattice Yang-Mills theory

In this section we present some simple results on the theory of the Heisenberg double which

will be used later. More detailed discussion of the subject can be found in refs.[d, [, f] -
Let G be a matrix algebraic group and D = G x GG. For definiteness we consider the

case of the SL(N) group. Almost all elements (z,y) € D can be presented as follows

(z,y) = (U, U)(Ly, L), (3.21)
where U € G, the matrices L, and L_ are upper- and lower-triangular, their diagonal
parts [, and [_ being inverse to each other: [, [_ = 1.

Let all of the matrices be in the exact matrix representation p, V' of the group G.
Then the algebra of functions on the group D is generated by the matrix elements x;; and
yij. The matrices Ly and U can be considered as almost everywhere regular functions of
x and y. Therefore, the matrix elements L;; and U;; define another system of generators
of the algebra FunD. We define the Poisson structure on the group D in terms of the
generators Ly and U as follows [[]

{U, U} = [rs, U'U?) (3.22)

{LL, L3} = 7[ry, L L7]
{L1, L7} = 4frs, L1 L]
{LL, L*} =[ry, LY L] (3.23)
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{L},U*} = yr LLU?
(L', U?} = yr_LLU? (3.24)

Here ~ is an arbitrary complex parameter, r. are classical r-matrices which satisfy the
classical Yang-Baxter equation and the following relations

r_=—Pr,P (3.25)

ry —r_=C (3.26)

where P is a permutation in the tensor product V ® V (Pa® b =b® a). For example in
the case of the SL(2) group

0 0
2

[N

Ty = (3.27)

0

[N

S O ONim

0
0

- O O O

The group D endowed with the Poisson structure (B.23-B.24) is called the Heisenberg
double D7 of the group G. To understand the relation of the Heisenberg double D] to
the cotangent bundle of the group G it is convinient to use the matrix L = L, L~ [IT].
The Poisson brackets for L and U can be written as follows

1 p2y _ plg2 172 7l 72 _ 72 71
—{L' — 4 L 2 —
1{L L*y=L"Lr_+r L' L*—Lr_L*—L°r. L
~
1
—{UY L*}y =r_U'L? - LPr, U (3.28)
v
If one consideres now the limit v — 0 and L — 1+ vFE, Ly — 1+ vFEL one gets
the canonical Poisson structure of the cotangent bundle 7*G (see eq.(2.14)). Thus one

can see that L is an analog of the right-invariant momentum and one can introduce the
left-invariant momentum L by the following equation

L=U"LU (3.29)
The matrix L can be decomposed into the product of upper- and lower-triangular matrices
L=L7'L_ (3.30)

where as before [, 1_ = 1.
The matrices L+ and Ly are related to each other by means of the following equations

ULy =L7'U (3.31)

One can easily check that the matrices Ly, U have the Poisson brackets (B.23-5.24) and
we shall need the Poisson brackets of Ly, U and Ly, U

{La,Lg} = 0 for any o,B =+, —

{LL,U%} = —yLiU%r.
{L1, 0% = —L 0%
(UL, U?} = 0 (3.32)



Up to now we considered the Heisenberg double of a complex Lie group. For physical
applications one should single out some real form. If « is imaginary (y* = —7) one can
single out the SU(N) form by means of the standard anti-involution

vr=v"', L*=L7', L*=L" (3.33)

It is well-known that for real v the SU(N) anti-involution U* = U~! is not compatible
with the Poisson structure (B.23). However as was pointed out in ref.[[1], [ the matrix
U can be used to define an anti-involution on the Heisenberg double . Namely, taking
into account that U — U~ in the limit v — 0 one defines the anti-involution as follows

Ur=U, L,=L., L' =L, (3.34)

The Heisenberg double of the SL(N) group with this anti-involution reduces in the limit
v — 0 to T*SU(N). It can be easily checked that this anti-involution is compatible with
the Poisson structures (B.23-B.24) and (B.39). Let us notice that for real 4 the involution
which singles out the SL(N, R) form looks as usual

Us=U, L' =1L, L' =L_ (3.35)

Now we are ready to discuss a lattice gauge theory based on the Heisenberg double .
So we place on every link (n,e;) a field taking values in the Heisenberg double DJ. Thus
the phase space of the model is the direct product of D7 over all links: ] e,) D1 (n,1).
We suppose that the parameter v goes to zero in the continuum limit a — 0. To de-
fine a lattice gauge theory one should find lattice Gauss-law constraints and a lattice
Hamiltonian which coincide with the Gauss-law constraints and the Hamiltonian of the
continuous theory in the continuum limit. As was mentioned above the cotangent bundle
T*G may be considered as a limiting case of the Heisenberg double when v — 0. By
this reason one could look for such lattice Gauss-law constraints which can be reduced
to the lattice constraints (2.19) in the limit 7 — 0, a being constant. The form of the
constraints depends on the space dimension and, so we begin with the simplest case of
(141)-dimensional Yang-Mills theory on a cylinder.

In this case the constraints (2.13) look as follows

G(n) = E(n) — B(n —1) =0 (3.36)

One could try to generalize the constraints G(n) by replacing E(n) on L(n) and E(n)
on E(n) This replacement does work in the classical theory, i.e. the corresponding
constraints G(n) = L(n) — L(n — 1) are first-class constraints. However one can show
that quantization violates this property of the constraints. To get a proper modification

it seems to be necessary to decompose G(n) as follows
G(n)=Gi(n) — G_(n) (3.37)

where G (n) = Ey(n)—FEL(n) are upper- and lower-triangular matrices and their diagonal
parts g (n) satisfy the following equation: g, (n)+ g_(n) = 0.
Then the required modification (which seems to be the only possible) is of the form

Gi(n)=Li(n—1)Li(n) =1 (3.38)



One can easily calculate the Poisson brackets of the constraints G+ (n)

{GL(n), G (m)} = lre, GL(n)GZL ()]
{GL(n), GZ(m)} = 7lrs, GL ()G (M)
{GL(n), GZ(m)} = 7lrs, GL ()G (m)]0nm (3.39)

We see that these Poisson brackets vanish on the constraints surface G4 (n) = 1 and there-
fore these constraints are first-class constraints. A remarkable feature of these constraints
is that they form not a Lie-Poisson algebra but the same quadratic Poisson algebra as the
matrices Ly do. In the limit v — 0, L+ — 1 +~vF,, Li —1— yEi one recovers the old
Gauss-law constraints (B.30).

To complete the construction of the lattice theory one should find a lattice Hamilto-
nian. As is well-known from the theory of Poisson-Lie groups [, I, [ generators of the
ring of the Casimir functions of the Poisson algebra (B.23) have the following form

hj = tr L” (3.40)

It is clear that these functions are invariant with respect to the gauge transformations
which are generated by the constraints (B.3§). In principle one can choose any combination
of these functions as a Hamiltonian of the theory

a N [e'e)
— Z > e(tr(LF(n) — 1)) (3.41)
72 n=1k=—oo

Then in the limit v — 0 one gets the Hamiltonian

o0

H= aﬁj tr E*(n) > %ckk2 (3.42)

k=—o00

which coincides up to a constant with the Hamiltonian used in the previous section.
However there is a special choice of the Hamiltonian which leads on the quantum level
to a natural generalization of dynamics of the symmetric top

H ~ tr(log L) (3.43)

This Hamiltonian was implicitly used in ref.[[7] .

The functions (B.4() are not the only ones gauge-invariant. Just as in the case of
the usual lattice gauge theory one can construct Wilson line observables. For the (1+1)-
dimensional model the simplest observables look as follows

Wiy = tr(LM(MUQ)L=(2)U(2) - -- L™ (N)U(N))
Wiigy = tr(UN(N)L*™(N)UTHN = 1)L (N —1)---U " (1)L" (1)) (3.44)
where L = L, L=" and ky,-- -, ky are integers.

It is not difficult to show that the involutions (B.-33HB.37) are compatible with the Gauss-
law constraints (3.3§).
Thus we have constructed the (1+41)-dimensional gauge-invariant lattice Yang-Mills

theory based on the assignment of the Heisenberg double to every link and now we pass



to the (2+1)-dimensional case. The usual lattice Gauss-law constraints (B.15) look in this
case as follows

Gi(nl,ng) = Ei(nl,n2; 1) + Ei(nl,m; 2) — Ei(nl — 1,72,2; 1) — Ei(nl,ng — 1; 2) (345)

where just as for the two-dimensional case we decompose G into upper- and lower-
triangular matrices.

There are (at least) six nonequivalent modifications of the constraints (B.49). In this
paper we use the following constraints

Gi(nl,ng) = Ei(nl — 1,712; 1)E:|:(7’L1,7”L2 — 1; 2)Li(n1,n2; l)Li(nl, Noj 2) =1 (346)

These constraints form the same Poisson algebra as for the two-dimensional case with the
only change n — n = (ny,n2) in eq.(B:39). Let us notice that the product of matrices
Ly, Ly is taken in the clock-wise order (starting from Ly(n; — 1,7m5;1)). Namely due
to this choice of the constraints (B.4q) the following expressions generalizing the Wilson

term (R.12)

Wini+1,n,) =

tr (GEH(ny + 1,n2)U (1, n; 1)U (ny, no; 2)U (0, ny 4+ 1; 1)U (ny 4 1,193 2))

W' (i +1,n,) =

tr (Ga(ny + 1,n) U (ng + 1,n9; 2) U™ (nq, np + 1; 1)U (g, n9; 2) U™ (11, 093 2))
(3.47)

are gauge-invariant.
Let us mention that one can find a similar generalization of an arbitrary Wilson line
observable but the corresponding formula depends on the local form of the Wilson line
and will not be discussed in the paper.

These Wilson terms can be used to write down a gauge-invariant Hamiltonian

H = H(L) + 2;762 i S (W (ne,n) + W (ni,na)) (3.48)

ni,n2
The first term in eq.(B-48) depends only on Ly and coincides with 3, ; tr E?(n, i) in the
limit v — 0 (see the discussion of the two-dimensional model).

This completes the construction of the (2+1)-dimensional lattice Yang-Mills theory.
For imaginary 7 one can impose the anti-involution (B.33) to get the real form SU(N).
However for real v the anti-involution (B.34) is not compatible with the Gauss-law con-
straints and thus we can get only the real form SL(N, R). Let us notice that in these
cases the Hamiltonian is real.

4 Discussion

In this paper we considered the gauge-invariant Hamiltonian formulation of classical lattice
Yang-Mills theory in (141) and (2+1) dimensions. In this formulation we placed on every
link the Heisenberg double of a Lie group. It is clear that the construction presented can
be generalized to the case of the (d+1)-dimensional SL(N) Yang-Mills model [L3] .



For the (141)-dimensional model it appeares to be possible to make the limit a — 0,
~ being constant. The theory obtained in such a way seems to be related to Poisson-o-
models recently introduced in ref.[[4] . It would be interesting to clarify this relation.

We have not written down the Lagrangians which correspond to these lattice gauge
models. In principle one can do it by using some expressions for the symplectic form of
the Heisenberg double which were found in ref.[d].

We considered only classical theory and it would be of great interest to quantize the
models. There is no problem in quantizing the Poisson structure of the Heisenberg double.
One just gets the quantized algebra of functions on the Heisenberg double which was
introduced in ref.[[3] . The classical r-matrices 71 are to be replaced by the R-matrices
Ri(q) = 1+ ihyry + -+, where ¢ = ™. Thus a real v corresponds to ¢ lying on the
unit circle of the complex plane and an imaginary v corresponds to a real ¢. It is not
difficult to verify that in quantum theory the Gauss-law constraints [3.38] and [3.46] are
first-class constraints and commute with the quantum Hamiltonians [3.41] and [3.48] if
these Hamiltonians are finite polynomials of L and L=!. It seems that the case of ¢ being
a root of unity, ¢ = 1, is the most interesting one. However the present formulation
permits to single out only SL(N, R) real form for such a ¢. It is an interesting problem to
find a similar formulation for the SU(N) case. Let us finally notice that g-deformed lattice
gauge theory was considered in refs.[[d, [, [[§, [[9] in connection with the Chern-Simons
theory.

Due to the fact that there are two arbitrary parameters a and 7 in the theory one
may expect that the theory has more rich phase structure than the usual lattice gauge
models. We hope to consider these problems in forthcoming publications.
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