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1. Introduction

The Schradinger functional (SF) is a useful tool to solve renormalizgiohlems in lattice
gauge theories [1-4]. A drawback of the standard formulation of theoBWilson fermions [2]
consists in large bulk @] effects even in the massless limit. While these)®ffects can be can-
celled by the usual Sheikholeslami-Wohlert term and)@6unterterms to the composite fields [5,
6], it is surprising that these bulk @Y counterterms are required at all, given the fact that Wilson
fermions at zero mass enjoy the property of automata) @provement [7, 8]. The origin of this
problem is the explicit breaking of chiral symmetry by the standard SF boyedaditions for the
fermions. Rendering automatic &(improvement compatible with SF-like boundary conditions
has been shown to be possible for theories with even flavour numb&is /& attractive solution
are chirally rotated SF boundary conditions, which,Npe= 2 flavours take the form

Q-‘!-LII(X)‘XO:O:O: Q—L)U(X)’XO:T7 LI_I(X)©+’XO:0:O: Ll_l(x)é_|XO:T7 (1.1)

with Q1 = 2(1£iyys1®) and Pauli matrices22 acting in flavour space. The non-trivial flavour
structure implies thags Tt commutes with), and can be used to resurrect the argument of auto-
matic O@) improvement. Chirally rotated SF boundary conditions derive their namethe fact
that they arise from the standard SF boundary conditions by performmugp-@nomalous chiral
rotation of the flavour doublet fields,

Y — Ra)y, ¢y — YR(a), R(a) =expliayrs/2). (1.2)

The rotated fields satisfy boundary conditions involving the proje®ofe ) = % [1i Yoexp(i ygr3)] ,
which interpolate between the standard SF boundary conditRr{®)= P.) and the chirally ro-
tated ones in Eq. (1.1), 4& (11/2) = Q.. Since chiral rotations are symmetries of the massless
QCD bulk action, one may derive universality relations between correlatiations calculated at
different values ofx,

(Oly, ¢])s,) = (OR(—=1/2)Y, JR(—11/2) ) p, - (1.3)

Here we have indexed the correlation functions by the projectors @pgearthe boundary con-
ditions. On the lattice with Wilson quarks and the standard Wilson bulk actionexpects to
recover such universality relations between appropriately renormaiseelation functions in the
continuum limit. However, note that with Wilson quarks it is a nontrivial matter to impelet the
chirally rotated boundary conditions (1.1), as it requires the fine tuniagdirhension 3 boundary

difficult is it to implement the boundary conditions (1.1)? Second, giveh amdmplementation,

can we confirm relations following from universality, Eqg. (1.3)? And finalbyautomatic Of)
improvement indeed realised?

2. Lattice set-up

The lattice set-up is taken from [9], with the fermion part of the action,

.
St =a 22 P(x)(Zw + 3% +Mo) Y (X), (2.1)
Xo=0 X
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and the Wilson-Dirac operator:

—Up(X)P_ (x4 a0) + (K +iysT3P ) g(x), if xo=0,
aZwP(xX) = ¢ —Up(X)P_p(x+a0) + K(x) —Up(x—al) TP p(x—al), if0<xo<T, (2.2)
(K +iyT3P, ) (x) — Ug(x—al) TP, y(x— a0), forxo=T.

The time diagonal operatdt is defined by

3
Ky(x ( Z a0+ O —a Dka}> +csw a Z T Fuv () P(x). (2.3)

u,v=0

Finally, the counterterm action is specified by
SAN(X) = (36.0+8o1) (2t = 1)+ (ds— 1) aDs| (), (2.4)

where the operatdds should reduce t E:l WDk in the continuum limit [9]. With our conventions
the tree-level coefficients are given ) — 1 anddé =1/2. While we sets = é ) throughout,
the finite renormalisation constant must be determined non-perturbatively.

3. Definition of correlation functions

We need correlation functions for both the standard and the chirally rdd&idd the standard
SF we follow the conventions used in the literature [10] by defining
1 3

_ _} fif2 faofa _ - fifz fafy
fx(0) = =5 (X"2(0 3 >(Pi), ky (o) = 6k_1<Yk (X6, >(Pi). (3.1)

Here the fieldX® andY2 stand for the quark bilinear fields,
X = A07V07 S) P7 Yk = Ak7Vk7 Tk07-’|:k0' (32)

which are defined as usual, eAf:™ = s, YuYsWs,. We also use the boundary-to-boundary corre-
lators,

1/ 0t Jtof 13 fo fof
fi=—=(022%0-?" ki = — ﬁ’lzﬁZI . 3.3
1 2< 5 75 >(Pi)’ ! 6 < k Tk >(Pi) (33)

For the chirally rotated SF we define correlation functlons in the same wage Hie boundary
conditions distinguish up and down type flavours we keep track of theuitaagssignments by a
superscript to the correlation functions. In order to avoid diagrams wittodisected fermion
lines, we imagine a setup with 4 flavours, such that there are 2 up-typeiftagnd 2 down-type
flavours. This greatly increases the flexibility when performing a chiraltian, which can either
rotate two flavours of the same type or two flavours of different typedgevavoiding any Wick
contractions corresponding to diagrams with disconnected fermion linescarkelation functions
in the chirally rotated set-up are denoteddyyandly, as well agy; andly. Their definition is such
that universality implies the following relations from Eq. (1.3):

A= =—igy’,  fp=igl =g,  ky=I =il (3.4)
kr =il =149, =g =gl  k=1{"=11" (3.5)
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Figure 1: Left panel: varying; does not change the slopegif’(xo), which is proportional tanpcac. Right
panel: different tuning conditions fa; yield O(a) differences.

Here the flavour indices correspond to the quark bilinear operator beeged, and the conven-
tions for the quark boundary fields are taken from ref. [9]. All remajrdarrelation functions, such
asfy or g{‘,‘f are expected to vanish by parity and flavour symmetries (as defined in tigasdesSF
basis).

4. Numerical simulations and results

We have carried out a quenched simulation measuring the correlation fumésioboth the
standard SF and chirally rotated SF on the same gauge configurations mighing gauge bound-
ary fields. Both unimproved and non-perturbativelyadmproved Wilson quarks were used [11].
The chosen lattice sizes wefe/a)* with L/a = 8,12,16,24,32. The physical size of the lattice
was kept fixed in terms of Sommer’s scaie[12], L/ro = 1.436, using the parameterisation [13]
and the interpolation [14]. The critical masg, was set by requiring the PCAC mass to vanish in
the standard SF. The simulation code is a customized version of M. Lis@®RHMC code [15],
and the simulations were run on PC clusters and on a BlueGene/L system.

4.1 Tuning of z¢, boundary conditions

The tuning ofz; can be performed by requiring anyr!-odd quantity to vanish [9]. Ex-
amples for such quantities ag%“(xo), or gid(x). Fortunately, the tuning of the parametens
andz; is straightforward, as the respective tuning conditions are almost indepeaof each other
(cf. also [16]). Given the critical valum, of my, we have also checked that the differentzs
betweerg; values obtained from different conditions vanish with a fase as expected (cf. fig. 1).
Givenz;(go) one then expects that the boundary conditions (1.1) are correctly implaingnte
cutoff effects. To test this hypothesis we have reverted the projeCtors> Q¢ in the bound-
ary sources and indicate this change by a subscripttd the correlation functions. In the left
panel of fig. 2 one indeed observes that the effect is very small acreéakes towards zero. The
corresponding result for the standard SF is very similar and given inghepanel of fig. 2.
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Figure 3: Universality checks: we consider ratios which should apphounity in the continuum limit.

4.2 Universality relations

The universality relations (3.4),(3.5) are expected to hold betweenmettiaed correlation
functions. For instance one should then find that the ratios

[T/ vaD] < [mT/2/vE] L [T/ vE)] < [r2e] L @

approach unity in the continuum limit. As seen in fig. 3, this is well satisfied withiorer

4.3 Automatic O(a) improvement

Automatic bulk O&) improvement relies on the fact that the bulkapéffects are located in
wT1-0dd correlation functions. By projecting on tlyert-even correlators one thus gets rid of
the bulk Og) effects. Here we study thgt-odd correlators and verify that these vanish in the
continuum limit with a raté a, as can be seen in fig. 4 f§#/ (T /2). The corresponding standard
SF correlator is also shown and vanishes exactly after gauge aveiagepected due to parity
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Figure 4: Check of automatic @ improvement, cf. main text for details.

and flavour symmetries. Another example is the counterterm contribiitiofa/L) needed to
improve correlation functions of the axial current [6]. The result in thisecis shown in the right
panel of fig. 4. While the continuum limit vanishes in the chirally rotated SF, iti¢efiin the
standard SF. Hence its contribution to axial current correlators is @f)@ad O§), respectively,
thereby confirming the expectation from automati@nprovement.

4.4 Determination ofZ v

Having checked universality we may turn the tables and use universaligyaoaine a number
of finite renormalization constants which are usually determined from chisati\identities. For
instance, the continuum relations (3.4) imply tAaty can be determined by the ratios,

Zn =ig¥9(T/2) /g (T/2), 2y =g¥(T/2)/gi(T /2), (4.2)

Where\7p denotes the conserved vector current. The results in fig. 5 are sthpTiOa?) uncer-
tainty, which perfectly explains the discrepancy with the Ward identity restitesfd17].

5. Conclusions

We have presented a successful implementation of the chirally rotatediSgéitlinctional.
Universality could be confirmed by comparing with standard SF correlatiootions and auto-
matic O@) improvement has been verified. In the future, we expect this frametwoyield better
controlled continuum extrapolations for step-scaling funcitons. Furthermprovides new meth-
ods to determine finite renormalizaiton constants and) @provement coefficients for gauge
theories with Wilson-type fermions.
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