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Abstract – Nanotube-based sensors depend on significant conductivity changes induced by
doping. Predictions of which impurity/nanotube combination provides efficient sensor character-
istics are usually made on a case-by-case basis, following the study of how a particular nanotube
responds to the presence of a specific doping agent. With a multitude of possible combinations,
this so-called forward modeling approach is unable to address questions of general nature, like, for
instance, the necessary features the components must have to produce certain physical properties
on the device. Questions of this nature call for an inverse modeling scheme in which information
about the sensor components can be extracted from the knowledge of a few physical quantities
demanded for the device. Here we make use of a mathematically transparent formalism that works
in both the forward and the inverse directions. We argue that this method can provide general
guidelines on the absorption process and narrow the search for the ideal combination of tube and
doping agents required to produce efficient nanoscopic sensors.

Copyright c© EPLA, 2008

One remarkable feature of carbon nanotubes (NT)
is that their conductance is affected by the interaction
with certain foreign objects (FO). Atoms, molecules and
nanoparticles are some of the objects known to interact
strongly with NT, paving their way to being used as
nanoscopic sensors [1–4]. From the theoretical point of
view, the problem of which FO produces a good NT-based
sensor involves two separate studies: one addressing the
conditions under which the FO adheres to the NT, and
another investigating the effect that this interaction brings
to the electronic properties of the device.
The first stage of the calculation is usually performed

by ab initio evaluations providing the energetic cost of
doping a NT with a single FO. Such a study indicates
the binding energy between tube and FO, including the
most favourable location for adhesion and the amount
of charge exchanged between them. The second consists
of evaluating the conductance of the NT in the presence
of a finite concentration of objects. In this case, dealing
with a single doping agent is insufficient given that the
conductance is sensitive to how disordered the scatterers
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are. This requires averaging over a large number of
configurations, making the ab initio approach unsuitable
due to its large computational cost. To overcome this
limitation the latter stage of the calculation is usually done
by using less computationally intensive semi-empirical
Hamiltonians whose parameters are fitted to the electronic
structure of a singly doped NT [5,6].
It is unfortunate that both stages of the calculation

are performed separately and disconnectedly since the
lack of transparency involved in the numerical intrica-
cies of both stages conceals the general role played by
each part involved in the interaction. For a given set of
results, one can hardly distinguish the separate contribu-
tions coming from the NT and from the FO. Therefore,
it is very difficult to make general statements about the
interaction process between tube and doping agents and
predictions are on a case-by-case basis. In fact, NT doped
with several atomic impurities were surveyed and values
for their respective binding energies, equilibrium positions
and magnetic moments were reported [7]. Although over-
all trends can be identified in such studies, they are not
able to address questions of more general nature. For
instance, for a given doping agent, how will the reported
values depend on the NT features such as diameter and
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chirality? Or for a given tube, what characteristics are
required in the doping FO if they are to maximally affect
the NT conducting properties? These questions cannot
be answered by ad hoc strategies and require an inverse
modeling approach. Rather than calculating the effect that
a specific NT/FO pair will have on the physical properties
of the system, also known as forward modeling, the inverse
scheme consists of extracting information about the pair
components from the knowledge of certain physical quan-
tities. Such a scheme is essential for establishing general
guidelines on the search for ideal NT-based sensors.
It is the goal of this manuscript to present a method

capable of bridging the gap between the aforementioned
calculation stages so that we can establish a more trans-
parent way of studying the effect of doping on the physical
properties of NT. In particular, it is our aim to introduce a
scheme that allows one to identify separate contributions
from the distinct parts involved in the interaction and,
most importantly, to address some of the general questions
posed above through a simple inverse modeling technique.
We start by considering a situation in which a NT and

a FO are far apart. We focus on FO that are spatially
localized and whose electronic structures are described
by discrete energy levels. The system is described by a
Hamiltonian Ĥ0 = ĥNT+ ĥFO, where ĥNT and ĥFO corre-
spond to the individual Hamiltonians for the NT and
the FO, respectively. Represented by a π-band nearest-
neighbour tight-binding Hamiltonian, ĥNT is written as
ĥNT =

∑
j,j′ |j〉γ〈j′|, where |j〉 is a Hilbert-space vector

representing electronic states localized on the carbon atom
labeled by the index j. This integer labels the atomic posi-
tions of the carbon atoms and consequently whether they
are metallic or semi-conducting. The quantity γ = 2.66 eV
is the hopping integral for the carbon atoms of the pristine
tube, and is hereafter chosen to be our energy unit. The
electronic structure of the FO is represented by a single
energy level, i.e., ĥFO = |α〉εα〈α|, where |α〉 represents the
electronic state localized at the FO and associated with a
characteristic energy level εα. Despite the simplification,
characterizing the FO by a single energy level can still
describe the energy cost for extracting charge from it. We
define the energy εα as εα =W −UI, where UI is the ioniza-
tion potential of the FO andW is the work function of the
nanotube. This particular choice results from the fact that
some amount of charge transfer often occurs when the two
sub-systems are connected and which assumes that the
individual vacuum levels of tube and adatom are aligned.
The choice of ĥNT and ĥFO was primarily aimed at simpli-
fying the notation and brings no limitation to its applica-
bility. It is straightforward to generalize our method and
lift both orbital and spin degeneracies as well as include
more energy levels associated with the FO.
Both NT and FO have their individual electronic struc-

tures described by ĥNT and ĥFO but changes are expected
when they are no longer in isolation. In this case, correc-
tions to Ĥ0 should correspond to matrix elements spatially
localized within the vicinity of the contact between tube

and FO. We assume that the NT is efficient in screening
local charge variations and that only the on-site energies
of the carbon atoms nearest to the FO are to be affected,
although screening clouds of variable sizes can also be used
to account for imperfect screening. Likewise, the energy
level of the FO is also allowed to change as a result of the
proximity to the NT. Finally, the actual coupling between
the parts is modelled by an added off-diagonal matrix
element τ connecting the nearest sites on either side. In
summary, the coupling between NT and FO is represented
by the following perturbing potential:

V̂ = |0〉δ0〈0| + |α〉δα〈α| + |0〉τ〈α| + |α〉τ∗〈0| , (1)

where δ0 and δα are the corrections to the on-site energies
on the nearest carbon site (labeled j = 0) and to the FO’s
energy level, respectively. Equation (1) corresponds to the
situation in which a single carbon atom is the nearest
NT site to the FO. This is, for instance, the case for H
adatoms lying right above the nanotube atoms, which we
refer to as a type-I FO. It is straightforward to generalize
the expression above for when the FO lies closely to all
six carbon atoms comprising a hexagon of the nanotube
lattice. This is the case for several different adatoms
whose most favourable location is above the centre of the
nanotube hexagons [8], hereafter referred to as type II.
In what follows, for the sake of brevity, we present a set
of expressions for the type-I FO, knowing that it is very
simple to rewrite them for their type-II counterpart [9].
The knowledge of the perturbing potential V̂ fully

determines the impact that the interaction with the
FO has on the electronic structure of the system and
consequently how its physical properties are affected, one
of which is the conductance. This is most obviously done
by expressing how the change in the global electronic
density of states (DOS) depends on V̂ . This is defined
as ∆ρ= ρN/F− ρN− ρF, where ρN/F is the DOS for the
coupled system whereas ρN and ρF are the separate
DOS for the NT and the FO, respectively. Based on the
existence of special sum rules for the single-particle Green
functions (GF) in the presence of localized perturbations,
a tedious but straightforward derivation [10] leads to an
expression for ∆ρ that reads

∆ρ(E) =− 1
π
Im
d

dE
ln

{
[1−G0,0 δ0] [1−Gα,α δα]

×
[
1− G0,0 Gα,α |τ |2
(1−Gα,α δα) (1−G0,0 δ0)

]}
, (2)

where G0,0 is the unperturbed GF for electrons of energy
E at the relevant NT site and Gα,α is the GF localized at
the FO state |α〉. One obvious advantage of eq. (2) is that
it provides a transparent expression for the DOS change in
terms of parameters clearly and distinguishably associated
with the different parts of the system.
Most physical quantities depend directly on the DOS,

which makes the equation for ∆ρ(E) particularly useful
in providing information on how the properties of a NT

27004-p2



Electronic properties of nanotube-based sensors: An inverse modeling approach

are affected by the interaction with the FO. One such
quantity is the total energy, whose difference between the
coupled and uncoupled configurations gives the binding
energy ∆E . It is defined as ∆E = EN/F−EN−EF, where E
is the total energy and whose subscripts follow the same
convention as used for the DOS. In the framework of the
so-called tight-binding total-energy method, one can write
the total energy E of a system as the electronic structure
contribution added to a repulsive energy term [11], in
which the latter has been given a formal correspondence
with modern density functional theory [12]. This latter
contribution is easily accounted for by including it as a
small shift in the electronic on-site potential [11]. In this
way, the total energy can be written as a sum over the
eigenvalues of the Hamiltonian, which, in turn, allows us to
express the binding energy as a function of ∆ρ. It follows
from a simple integration of eq. (2) that

∆E = 1
π

EF∫
−∞
dE Im ln

{
[1−G0,0 δ0] [1−Gα,α δα]

×
[
1− G0,0 Gα,α |τ |2
(1−Gα,α δα) (1−G0,0 δ0)

]}
, (3)

where EF is the Fermi level of the NT. Another represen-
tative quantity that reflects the strength of the interaction
is the amount of charge exchanged between NT and FO.
In terms of the parameters of the perturbing potential V̂ ,
the charge variation ∆C on the FO is given by

∆C =− 1
π

EF∫
−∞
dE

× Im
{[
(Gα,α)−1− δα− G0,0 |τ |2

(1−G0,0 δ0)
]−1
−Gα,α

}
. (4)

Equations (3) and (4) are closed-form expressions that
relate the potential V̂ with the binding energy and charge
transfer, respectively, indicating that the knowledge of
the former defines the latter two quantities. Alternatively,
we can invert the equations so that the perturbation
parameters are obtained from the values of ∆E and ∆C.
When combined with the fact that the total charge must

be conserved, i.e.,
∫ EF
−∞ dE∆ρ(E) = 0, we have a set of

equations that can uniquely determine V̂ . In other words,
assuming that the binding energy and the charge transfer
of a single FO attached to a carbon NT are known, we
can derive the perturbing potential associated with this
interaction. In fact, this has already been demonstrated
by the authors for the case of adatoms [13] as FO. In that
instance, the parameters δ0, δα and τ were shown to be
obtainable from ab initio evaluations of ∆E and ∆C.
Besides determining V̂ , here we want to explore another

use for eqs. (3) and (4), namely, that they indicate the
existence of a correlation between the binding energy and
the charge transfer. For a given NT/FO pair, ∆E and

Fig. 1: ∆E/∆C graphs displaying the regions of allowed values
for the binding energy and charge transfer for (a) a H adatom
and (b) a Li adatom, both on a (6,6) NT. In plotting fig. 1, the
thick lines were obtained by selecting δ̄0 =W and δ̄0 = 2W on
panel (a) and δ̄0 = 0 and δ̄0 =W/12 on panel (b). τ̄ = 1.5 γ was
used for both panels. The black dots represent the respective
ab initio calculations.

∆C are not independent quantities but are constrained
by their respective expressions above. The actual relation-
ship between them depends on the specific values of the
parameters δ0 and τ , δα being determined by demand-
ing charge neutrality. If we were to choose those para-
meters arbitrarily, there is no guarantee that they would
provide realistic figures for the binding energy and for
the charge transfer. However, by varying the parameters
up to carefully selected maximum values δ̄0 and τ̄ , one
finds the corresponding range of possible values for both
∆E and ∆C. We assume that the hopping element can
vary as τ = 0, . . . , γ since, in general, this value cannot
exceed the carbon-carbon hopping parameter. Concern-
ing δ0 limits, we expect that the higher the local charge
variation on the carbon atom connected to the impurity,
the greater the correction to its energy level. We define a
lower limit to δ0 when τ = 0 and for the maximum value,
we assume that max{δ0}= 2×min{δ0}. While this may be
too broad a range, depending on the choice of δ̄0 and τ̄ ,
it highlights the relationship between those two quantities
and, more importantly, points to an even broader range of
incompatible combinations for binding energy and charge
transfer. This is illustrated for the case of adatoms on a
(6,6) armchair NT, in which the gray regions of fig. 1 are
shown as the likely ranges to contain the binding energies
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Table 1: List of FO with their values of εα, their respective types and the separately evaluated ab initio results for ∆E and
∆C. The values of binding energy and charge transfer for a given NT/FO pair are predicted to fall within the following ranges:
L−1(∆C)>∆E > U−1(∆C) and U(∆E)>∆C >L(∆E). The last column displays the DOS change for each FO. All results are
for a (6,6) armchair NT.

FO Type εα ∆E ∆C L−1(∆C) U−1(∆C) L(∆E) U(∆E) ∆ρ(EF)
ρ(EF)

H I −5.04 −1.03 −0.357 – – −0.491 −0.266 0.44
Xe I −4.49 0.07 −0.010 0.949 −0.163 −0.076 0.003 0.017
Ar II −5.84 0.03 −0.011 1.945 −0.493 −0.070 0.000 0.012
Li II −1.99 −0.30 −0.360 −0.134 −0.973 −0.693 1.095 1.86
Na II −1.90 −0.08 −0.170 −0.043 −0.972 −0.334 6.102 2.33
N2 II −5.77 −0.01 −0.011 1.901 −0.407 −0.038 0.031 0.097

and charge transfers associated with those particular
NT/FO pairs. The upper (lower) panel displays the results
for a H (Li) adatom, which is a type-I (type-II) FO. The
black dots, representing the corresponding ab initio evalu-
ations of both ∆E and ∆C, lie within the predicted range.
The gray regions of fig. 1, hereafter referred to as

∆C/∆E-diagrams, are delimited by lines whose equations
are described by ∆Cu = U(∆E) and ∆C� =L(∆E), where
the functions U(x) and L(x) describe the upper and lower
limit of the charge transfer, respectively. By knowing the
functions U and L one can easily determine the whole
range of possible values for ∆E and ∆C. Furthermore,
assuming either of the two quantities is known, possibly
by an isolated measurement, one can use the functions
L and U to predict the range of allowed values that the
other quantity may have. For instance, if only the charge
transfer ∆C is known for a given NT/FO pair, the range
of possible values for the corresponding binding energy
is delimited by L−1(∆C) and by U−1(∆C), where F−1 is
the inverse of function F . Likewise, if only the binding
energy ∆E is known, the corresponding charge transfer is
certain to fall within the range delimited by L(∆E) and
U(∆E). Both L and U are polynomial functions of ∆E
described by ∆C� =

∑
j �j (∆E)j and ∆Cu =

∑
j uj (∆E)j

for the lower and upper limit, respectively, and that for
the cases depicted in fig. 1 the non-zero coefficients �j
and uj are �0 =−0.28, �1 =−0.01, �2 = 5.00× 10−4, �3 =
2.00× 10−4, u0 =−0.45, u1 = 0.10, u2 = 0.14, u3 = 0.12 on
the upper panel and are �0 =−0.02, �1 = 2.43, �2 = 0.88,
�3 = 0.80, u0 = 7.78, u1 = 10.58, u2 = 5.30, u3 = 1.27 on the
lower panel.
The results of fig. 1 are only valid for the specific

NT/FO pairs considered, i.e., H and Li adatoms on
a (6,6) NT. A different pair will lead to a different
∆C/∆E-diagram but it is here that the mathematical
transparency of eqs. (3) and (4) becomes really useful.
Because both equations are given not only in terms of
the V̂ -parameters but also in terms of G0,0 and Gα,α,
which carry specific information about the NT and the
FO, respectively, changes in either component of the pair
will have a predictable effect on the relationship between
∆E and ∆C, and therefore on their corresponding diagram.

Put in another way, the functions L(∆E) and U(∆E)
are described by polynomial equations whose coefficients
depend on specific features of the NT/FO pair. By
determining how the coefficients depend on those features,
we can not only predict how the ∆C/∆E-diagram changes
but, more importantly, establish which features our pair
must have to meet specific requirements regarding their
binding energy and/or charge transfer.
To illustrate this point we assume the same NT as used

in fig. 1 but this time with a variable εα. Bearing in mind
our earlier definition, this corresponds to considering FO
with different ionization potentials. The εα-dependence of
the coefficients �j and uj indicates through the functions
L and U how the ∆C/∆E-diagram changes as different
FO are considered. More specifically, by determining the
coefficients �j(εα) and uj(εα), we are able to work out the
respective functions L(∆E) and U(∆E), thus predicting
the allowed range of values for their binding energy and
charge transfer. It is natural to compare the predicted
ranges with the actual values of binding energies and
charge transfers obtained by separately evaluated ab initio
calculations. In addition to the H and Li adatoms already
presented in fig. 1, a number of additional FO were
considered, among which a variety of other adatoms as
well as a few simple molecules. Table 1 shows those results
for ∆E and ∆C associated with all the listed NT/FO pairs.
It is remarkable that despite the simple description of the
electronic structure of the separate parts, all results lie
well within the predicted ranges.
At this point we are ready to answer some of the general

questions posed earlier regarding the type of FO necessary
to meet certain requirements. We can ask what features a
FO must have to produce a specific set of binding energy
∆E(0) and charge transfer ∆C(0). The answer to such an
inverse problem is now straightforward and follows from
the solution of ∆C(0) � U(∆E(0)) and ∆C(0) �L(∆E(0)),
which gives a range of possible values for εα. For instance,
if one is looking for a FO on a (6,6) NT for which
the binding energy is around ∆E(0) =−0.16 γ and for
∆C(0) =−0.10 e, our method suggests that good candi-
dates are type-II FO whose ionization potentials are in
the range −1.24 γ >UI >−2.36 γ. This range reduces the
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universe of possibilities one would have to try by the
forward modeling approach. The values of ∆E(0) and
∆C(0) listed above correspond to those found in the case
of a K adatom adsorbed to a (6,6) NT. Being a type-II
FO, the ionization potential UI =−1.63 γ naturally meets
the above requirements. Moreover, although we have
varied the parameter εα that characterizes the FO, we
could also change the parameters defining the NT. In
this case, either the diameter d or the chiral angle θ
of the NT host could be varied through the GF G0,0.
A similar analysis would follow, this time providing a
range of values for both d and θ that meets the specific
requirements of binding energy and charge transfer.
Finally, it is worth returning to the original goal of

bridging the gap between the aforementioned stages
involved in the calculations. Having written ∆ρ(EF),
∆E and ∆C under a common framework, these quanti-
ties are no longer evaluated in a disconnected fashion.
Equations (2), (3) and (4) are able to relate the DOS
change with the respective values of binding energy and
charge transfer. Listed as a percentage of the original
DOS, table 1 makes use of eq. (2) to express how ∆ρ(EF)
is affected by the presence of each FO, indicating Na as
the one causing the largest variation. Bearing in mind
that changes in the physical properties are intrinsically
associated with changes in the DOS, this procedure indi-
cates how effective a FO is in altering the NT transport
properties, which, in turn, determines how good a sensor
the NT/FO pair may turn out to be.
In summary, we have expressed the DOS variation

∆ρ(EF), the binding energy ∆E and the charge transfer
∆C that result from the interaction between a NT and a
FO. Written in terms of a set of undetermined perturba-
tion parameters, these expressions establish a constraint
between those quantities, in particular the latter two. By
varying the potential parameters up to carefully selected
maximum values we are able to find a range of permitted
values for both ∆E and ∆C. Separately evaluated ab initio

results for a number of FO lie within the predicted
ranges. Furthermore, the mathematical transparency of
our expressions allows us to distinguish the contribu-
tions coming from both parts involved in the interaction,
enabling us to trace how the predicted range of values
changes with variations of the NT/FO pair. This can be
used to solve the inverse problem of finding FO meeting
specific requirements on their binding energy and charge
transfer. Our simple general approach can be used to
provide guidelines in the search for ideal NT-based sensors.
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