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Abstract—To improve their ability to find spectrum oppor-
tunities, intelligent secondary radios (SR) can learn from their
past observations and predict possible spectrum opportunities.
However, because of the diverse behavior of primary users
(PU) in different spectrum bands, spectrum holes exhibit di-
verse characteristics, which in turn affect the performance of
a learning algorithm. This paper studies the effect of the PU’s
activity on channel predictability. In particular, we introduce a
Markov process-based learning algorithm, and we investigate the
dependency of its spectrum decisions on the duty cycle (DC) and
on the complexity of each channel activity, for both synthetic and
real data. Our findings show that the probability of finding a free
channel among a group of considered channels strongly depends
on the DC and the complexity of the channel activity. Moreover,
it is possible to reduce the number of observed channels without
compromising the probability of finding a free channel, by only
considering the more informative channels.

I. INTRODUCTION

Opportunistic spectrum access may rely on a combination of
geolocation databases and spectrum sensing to detect spectrum
holes. In their search for spectrum holes, secondary radios
(SRs) can learn from their past observations on each channel to
predict the next channel state using intelligent learning meth-
ods. However, because of the diverse behavior of primary users
(PUs) in different spectrum bands, spectrum holes exhibit
different characteristics, which in turn affect the performance
of a learning algorithm [1], [2].

Different learning algorithms have been proposed in the
literature for radios to build a channel occupancy model. In
these works, the channel is either occupied by the PUs (busy)
or it is unoccupied (free). In [3], Clancy claims that a hidden
Markov model (HMM) can be a suitable method to model the
channel occupancy as a function of time. In [4], the authors
model each channel as a Poisson distribution, and use an
HMM to predict the availability of a channel. The HMM is
trained with the Baum-Welsh algorithm (BWA) [5], predicting
the presence of PUs to avoid transmission collisions. An SR
will occupy an idle channel until a PU becomes active in that
channel, then it will switch to another predicted idle channel.
Simulation results show that the probability of collision is
reduced compared to a random selection of channels to be
sensed by the SR. An artificial neural network is proposed in
[6] to predict the channel state for the next time slot. In [7],
the authors evaluate the performance of their proposed neural
network when the statistics of the channel are changing. We

propose a modified, less complex HMM in [8]. We compare
the prediction accuracy of our proposed method with that of
conventional HMM and illustrate that it achieves the same
prediction accuracy with much less computational complexity.

The aforementioned works test their proposed algorithms on
data which are generated based on some assumptions on the
probability distribution of the PU activity (synthetic data), and
none of them applies their algorithm on data that are collected
from actual sensing (real data).

There are some recent works which use real data in their
studies. In [9], authors conduct spectrum measurements in
Guangzhou city, and then approximate the prediction error
with the beta distribution. Kone et al. propose frequency
bundling in [10], where secondary devices build reliable
channels by combining multiple unreliable frequencies into
virtual frequency bundles. Their experiments on real data show
that bundling random channels together can provide sustained
periods of reliable transmission. In [1], [2], we present a
reinforcement learning-based method for spectrum opportunity
prediction. The learning algorithm is applied to real data and
the results are analyzed with respect to the duty cycle (DC)
of the channels and to the complexity of the PU’s activity.

In this work, we analyze the probability of finding a
free channel among a group of observed channels using the
Markov process-based learning algorithm we proposed in [8].
We test the algorithm on both synthetic and real data. In
particular, we analyze the prediction accuracy of the learning
method with respect to the characteristics of the spectrum
occupancy sequences, as we first proposed in [1]. Moreover,
we investigate the effect that the number of observed channels
has on the performance of the Markov process-based learning
algorithm. Our findings show that, if an SR is able to select
the channels with the best characteristics, reducing the number
of observed channels has little effect on the performance of
the learning algorithm.

II. SYSTEM MODEL AND LEARNING ALGORITHM

In this study, the spectrum under consideration is divided
into K channels and each PU, when it transmits, will occupy
at least one of the channels. The presence of a PU on a channel
is represented with a “1” and the absence of PUs with a “0”.
We assume that channel sensings are performed periodically
and the channel sensing is ideal, i.e., the effects of noise,



missed detection and false alarm errors are negligible. Each SR
uses a Markov process-based learning algorithm to learn the
occupancy model of each channel and predict the availability
of the channels for the next time slot.

Our Markov process-based learning algorithm has N states
and M possible observations, where S and O represent the sets
of possible states and observations, respectively. We denote
sequences of states by x, and we use y to indicate the sequence
of observations. Each element of x, denoted by z(¢) € S, Vt, is
the state at time ¢; each element of y, denoted by y(t) € O, Vt,
is the observation at time ¢

The transition probabilities between the states are stored in
an N x N matrix (A). The distribution of the observation
outcomes at each state is described by the respective column
vector of the N x M emission matrix B. We represent this
Markov process by A = {A, B, 7}, where 7 is the initial state
distribution.

We have previously compared the Markov-based learning
algorithm with conventional HMM in [8]. In that work, we
showed that the Markov-based learning algorithm and HMM
have similar performance in predicting the spectrum opportu-
nities. However, the computational complexity of our Markov-
based learning algorithm is much less than HMM. Thus, in this
work we only apply our learning algorithm.

A. Learning algorithm

We train the learning algorithm off-line over a training
sequence, which means that we find A for the training se-
quence. In this Markov process-based learning model, we do
not specify the number of states in advance. In other words,
the number of states (i.e. /V) in our model grows dynamically
as learning proceeds. In this system we have two possible
observations (M = 2). We observe a zero when we sense a
free channel, and we observe a one by sensing a busy channel.

The transitions between states depend on the length of the
string of consecutive zeros or ones observed. This means that
in our system each state represents a number of observed
consecutive zeros or ones. Positive states represent the number
of observed consecutive ones, and non-positive (negative and
zero) states represent the number of observed consecutive
zeros. At the beginning, the system can either be in state
zero or state one. Being in a positive state, the system moves
to the next higher state whenever a busy channel (one) is
observed, and it goes back to state zero whenever a free
channel (zero) is observed. On the other hand, when the system
is in a non-positive state, it moves to the next lower (negative)
state whenever a zero is observed and it moves to state one
whenever a one is observed. The system will expand itself
on the fly by adding new states as needed. Suppose that
the maximum number of negative and positive states in the
Markov chain, after the training, are ¢ and p, respectively.
Then, the set of states will be S = {s_4,...,50,...,5p}
which has the cardinality of N = ¢ 4+ p + 1. Fig. 1 shows
the Markov chain and its state transitions.

During the training phase, we create the Markov chain
using the training data set and based on the aforementioned

rules. Then, it is possible to count the number of times each
particular transition or output observation is applied in a set
of training data. As proven in [5], counting functions for the
output observations provide maximum likelihood estimates
for the desired model parameters. Therefore, elements of
transition and emission matrices will be computed by:
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where a; ; is the transition probability from s; to s;, and b; ; is
the probability of o; at s;. The counting functions f; ; and g; ;

simply count the number of transitions from state s; to state
s; and the number of observations o; at state s;, respectively.
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B. Prediction

During the training process, the transition and emission
probabilities over the observations can be easily calculated
by (1) and (2). As there are only two possible observations,
the Markov chain is designed in a way that only two states
are reachable from the current state. Moreover, the probability
of transition from the current state to either of the two states
is equal to the probability of observing either a zero or a
one. Thus, having the emission matrix (B) means having
the probability of the next state as well as the distribution
of observations. This property makes the states sequence
trackable. Therefore, at each time slot we know the probability
of each observation. As a result, we can predict the observation
by:

50 = {o pe(), 0D 2 p(a(®), 1) g

1 otherwise

where g(t) indicates the predicted observation for time ¢.

In case of an inaccurate prediction, the system will notice
the prediction error after observing y(t). Since z(t + 1)
only depends on the observation outcome rather than on the
predicted result, the system will move to the correct state and
errors will not propagate. Retraining the system is only needed
when the statistics of the behavior of PUs on the channel are
changing. To account for this, the system can be retrained
after a certain number of time slots or whenever the prediction
accuracy drops below a certain threshold.

IITI. IMPACT OF LZ AND DC ON THE PREDICTION
ACCURACY

In this section we analyze the performance of the proposed
Markov process-based learning algorithm with respect to the
characteristics of the spectrum occupancy sequences. As we
discussed in [1], a spectrum occupancy sequence can be
characterized in terms of the observed DC and the complexity
of the PU activity. In [1] and [2], we showed that the traffic
load, of which the DC is an estimation, is not sufficient to
characterize the performance of learning algorithms applied
to a dynamic channel selection problem. In particular, the
amount of structure in channel availability, i.e. the complexity
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of the PU activity, cannot be overlooked when analyzing the
prediction accuracy of learning-enhanced dynamic spectrum
access techiniques. In [1] and [2], we quantified the amount of
structure in a spectrum occupancy sequence using the Lempel-
Ziv complexity [11], which measures the rate of production
of new patterns in a binary sequence. The same measure of
complexity is used in this work.

To analyze the performance of the Markov process-based
learning algorithm, we modeled the K channels as inde-
pendent random variables. Each channel is the realization
of a 2—state first order Markov chain (MC). Therefore we
generated MCs with different values of stationary distribution
d = [do, 1], i.e. DC, and LZ complexity. For an ergodic
source the Lempel-Ziv complexity equals the entropy rate of
the source [12], which for a Markov chain X is given by:

h(X)=— Z dipijlog pij. 4)
ij

We considered 5 possible dj values in the range 0.5, ...,0.9.
For each of these values, we considered 5 transition probability
matrices, each corresponding to a different value of entropy
rate, thus obtaining 25 different transition probability matrices.
Finally the Markov process-based learning algorithm has been
applied to all the possible combinations of K = 3 channels
over the 25 possible transition matrices.

Fig. 2 shows the prediction accuracy obtained by the
Markov process-based learning algorithm as a function of the
average entropy rate and the probability p; of at least one free
channel existing, calculated as:

N
pr=1-]]6n: )
=1

where d; ; is the stationary distribution of the i*" channel, i.e.
the DC of the i channel.

Each point in the figure corresponds to one scenario, i.e. a
combination of 3 channels. For each instance, we run 102 inde-
pendent simulations. For each simulation, first the occupancy
model of each channel is computed using the Markov process-
based learning algorithm described in the previous section over
a training sequence of 10° time steps, then the resulting model
is evaluated over a sequence of 2 * 10* time steps. For each
simulation the prediction accuracy is computed according to

The Markov chain state transitions.
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Fig. 2. Prediction accuracy of the Markov process-based learning algorithm
as a function of the average LZ complexity and the probability of at least
one free channel existing. Each point represents a particular instance of the
Markov process-based learning algorithm applied to K = 3 channels. The

total number of possible combinations which we analyzed is (235) = 2300.

the number of times that a free channel was selected or all
the channels were correctly predicted as being busy over the
length of the trial.

Each point in Fig. 2 represents the average of the results
obtained for each of the 102 experiments. As expected, the
prediction accuracy increases with py. However, it can be
observed that the performance of the Markov process-based
learning algorithm is also strongly dependent on the com-
plexity of the channel activity. For a certain value of py, the
variation of the prediction accuracy is up to 30%. These results
are in accordance with our findings in [1] as to the importance
of considering how various degrees of complexity influence
the agent’s ability to learn and to exploit the spectrum holes.

In order to provide a better understanding of the Markov
process-based learning performance, Fig. 3 shows the proba-
bility of success (Psyc), 1.€. the probability of selecting a free
channel, corresponding to three configurations with respect
to the number of channels. To facilitate the comparison, the
three configurations refer to the same stationary distribution
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Fig. 3. Probability of success of the Markov process-based learning algorithm
as a function of the number of channels. Each curve refers to combinations
of different numbers of channels characterized by the same DC and different
values of entropy rate h. The grey curve on the top shows the probability of
at least one free channel existing, as a function of the number of channels.

d = [0.5,0.5]. In other words, for a given number of channels,
the three configurations refer to the same py, e.g. for K = 3
the corresponding py is 1 — 0.5% = 0.875. Furthermore, each
of the channels in a configuration is modeled with the same
Markov transition matrix.

In the first case (blue line in figure), the Markov transition
matrix is (-2 J:2) and the corresponding entropy rate is 1.0.
In the second case (red line in figure), the Markov transition
matrix is (J:592) and the corresponding entropy rate is
0.7219. In the third case (green line in figure), the Markov
transition matrix is (§:32 3-92) and the corresponding entropy
rate is 0.2864. For each scenario, we run 102 independent
simulations. Analogously to the results in Fig. 2, for each
simulation, we used a training sequence of 10% time steps
and an evaluation sequence of 2 * 10* time steps.

Despite referring to the same py for each number of chan-
nels, the Markov process-based learning performance is quite
different in the three cases. It should be noted that in the third
scenario, which corresponds to a highly predictable channel
usage, the probability of success of the Markov process-based
learning algorithm is close to py (grey line in figure). Clearly
the probability of success can never exactly match p; due
to the stochastic nature of the channel usage. However, the
more predictable, i.e. the less complex, the channel activity
is, the higher the probability of success is, independently on
the number of channels.

IV. REDUCING THE NUMBER OF OBSERVED CHANNELS

The results in Fig. 3 show that, as expected, the probability
of success of the Markov process-based learning algorithm
generally increases with the number of channels. It is in-
teresting to observe that the increment of the probability
of success P,,. decreases when the number of channels
increases, in accordance with our findings in [2]. In other

words, the performance improvement becomes negligible after
a certain point. Also, the increment of P;,. obtained by
increasing the number of observed channels decreases when
the complexity of the channel activity increases. Indeed, in
the case of highly unpredictable channels (blue line in Fig. 3),
increasing the number of observed channels does not result in
an improvement of the Pj,..

In light of the above results, it is important to investigate
not only how many channels an SR should observe, but also
how those channels should be selected in order to achieve a
high P, whilst keeping the number of observed channels
to a minimum. To this end, we analyze the effect of reduc-
ing the number of observed channels on Pk, , while also
considering the impact of selecting channels characterized by
different values of DC and LZ complexity. In Table I, we
consider 4 channels, where 2 channels are characterized by
DC = 0.6, one with medium complexity and one with low
complexity; the other 2 channels correspond to DC = 0.5,
one with high complexity and one with medium complexity.
The Ps,. of the Markov process-based learning algorithm is
0.74, when all 4 channels are used. Table I shows the P;,.
when we exclude one the channels, and we use the remaining
3 channels. The results show that removing the channel with
low complexity and higher DC yields the worst performance.
In other words, excluding the channel with a higher DC, i.e.
selecting a combination characterized by a higher py, does
not always correspond to a higher P;,.. The performance of
the Markov process-based learning algorithm when using 3
channels (and excluding the channel with the higher DC and
medium complexity) is very close to the probability of success
corresponding to the 4 channels. Moreover, we should also
note that py for the case of using 3 channels is lower than the
time that we use 4 channels.

TABLE 1
THE EFFECT OF REDUCING THE NUMBER OF CHANNELS UNDER
CONSIDERATION FROM 4 CHANNELS TO 3 ON Psyc AND pr- THE RESULTS

ON EACH COLUMN PRESENT Py e AND pf WHEN THE CORRESPONDING
CHANNEL IS NOT USED.

DC = 0.6 DC =0.5
Medium LZ | Low LZ | High LZ | Medium LZ
(0.81) (0.29) (1.0) (0.81)
Psuc 0.724 0.65 0.7 0.69
Py 0.85 0.85 0.82 0.82

In Fig. 4, we expand our experiment and consider 6
channels, where 3 channels are characterized by DC = 0.6
(low, medium and high complexity) and the other 3 channels
correspond to DC = 0.5 (low, medium and high complexity).
The star in the figure corresponds to the P,. of the Markov
process-based learning algorithm when all 6 channels are used.
The circles refer to P, when one of the channels is removed
and the remaining 5 channels are used. The squares correspond
to the Ps,. when 2 channels are excluded and the remaining
4 are used. It should be noted that if we exclude either
one of the two channels characterized by high complexity
(independently on the DC), the resulting Ps,. is quite close
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Fig. 4. The effect of reducing under consideration channels from 6 channels
to 5 and 4 on Psyc. The star, circles and squares represent the Pgyc using
6, 5 and 4 channels, respectively.

to the performance corresponding to 6 channels. In fact, the
difference in performance is less than 0.01. Although further
reducing the number of used channels overall yields a lower
Pgyc, excluding the 2 channels corresponding to DC=0.6 with
high and medium complexity, or the 2 channels with high
complexity, does not affect too much the performance of the
Markov process-based learning algorithm. The difference in
performance in these cases is less than 0.02.

As shown, the Pj,. strongly depends on the DC of the
channels and the complexity of the sequence. Therefore, to be
able to remove the less informative channels it is important to
know the LZ complexity in advance. The LZ complexity con-
verges to the entropy rate of a sequence if we compute it over
infinite samples. We conducted 10 independent simulations
and computed the LZ complexity values of binary sequences
generated according to four different channel transition matri-
ces. The LZ complexity of each sequence is computed using
the algorithm described in [13]. Table II presents the mean
of computed LZ complexities. Since all the variances are less
than 3% 1073, they are not presented in the table. As expected,
the table shows that the LZ complexity estimation improves as
the number of given samples increases. In fact, the difference
between the complexity estimation with 1000 samples and the
entropy rate computed according to (4) is just 0.06.

V. IMPACT ON REAL SPECTRUM DATA

In this section, we provide our analysis and simulation re-
sults over the Rheinisch-Westfalische Technische Hochschule
(RWTH) Aachen University data set [14]. In this data set the
power spectral density (PSD) is recorded across several bands.
In this work, we use the data collected over the 2.4-GHz ISM
and GSM 1800 bands. Moreover, we consider all the channels
with DCe [0.3,0.8].

In our simulations, we have applied the Markov process-
based learning algorithm to all combinations of K = 4
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Fig. 5. Probability of success (Psyc) of the Markov process-based learning

algorithm as a function of the average LZ complexity and the probability of
at least one free channel existing. Each point represents a particular instance
of the Markov process-based learning algorithm applied to K = 4 channels
of 2.4-GHz ISM band.

channels over the set of considered channels, and we have
computed the probability of finding a free channel (Ps,.). The
data set is recorded over 12 hours and it consists of 25000
samples. We train the Markov process-based algorithm over
the first 1000 data samples and test it over the remaining
24000 samples. At each time slot the algorithm either selects
the channel with the highest predicted probability of being
free, or predicts that all the channels are busy.

Fig. 5 and Fig. 6 present the P;,. as a function of LZ
complexity and py for the 2.4-GHz ISM and GSM 1800 bands,
respectively. Similar to synthetic data, in both Fig. 5 and Fig. 6
we observe a higher Pj,. when the LZ complexity and py
are respectively lower and higher. In the ISM band the py is
higher than for GSM 1800 and also the channel activity is less
complex (on average). Accordingly, the Markov process-based
learning algorithm is more successful in finding a free channel
among its four considered channels over the ISM band.

As mentioned, each point in both Fig. 5 and Fig. 6 rep-
resents the P;,. when 4 channels are considered. Here, we
have computed the Py, for all (g) combinations in order to
investigate the effect of excluding a channel. For the ISM band
data, the difference of the best 3 channels P;,. and the original
P, is lower than 10~2 for more than 55% of the points, and
for only about 7.8% of the points it is higher than 5%10~2. The
results of selecting 3 channels among the available 4 are even
better for the case of GSM data. For GSM data, the difference
of the best 3 channels P;,. and the original P;,. is lower
than 102 for more than 66% of the points, and only 2.7%
of the points have a P,,,. difference higher than 5 * 1072,
These results show that, similar to synthetic data, removing
the less informative channels will not significantly reduce the
probability of finding a free channel in real data.



TABLE I
ESTIMATED LZ COMPLEXITY OVER DIFFERENT SEQUENCE LENGTHS.

.. . Number of Samples
Channel Transition Matrix
1000 1500 2000 2500 3000 3500 4000 Entropy Rate (h)
(8:2 8:?) 1.0628 | 1.0535 | 1.0472 | 1.0437 | 1.0409 | 1.0389 | 1.0375 1.00
(8:@2 8:2?) 0.9938 | 0.9831 | 0.9794 | 0.9748 | 0.9722 | 0.9708 | 0.9687 0.9341
(8:;2 8??) 0.8626 | 0.8542 | 0.8502 | 0.8483 | 0.8447 | 0.8427 | 0.8417 0.8113
(8:?2 8:;?) 0.6485 | 0.6419 | 0.6376 | 0.6352 | 0.6328 | 0.6303 | 0.6303 0.6098
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VI. CONCLUSIONS AND FUTURE WORK

In this study we presented a Markov process-based learning
algorithm to predict the channel occupancy in an opportunistic
channel access scenario. We also investigated the dependency
of the prediction accuracy on the DC of a channel and on
the complexity of the channel occupancy model. Our findings
show that the predictability of a channel strongly depends
on its DC and LZ complexity. The results also showed
that not considering the channels with high LZ complexity
and/or DC does not strongly affect the probability of finding
a free channel, and therefore, by removing them from the
consideration list we can save time and energy.

Moreover, the LZ complexity can be approximated with a
limited number of samples. Therefore, we are investigating
the possibility of using the estimated LZ and DC in order
to allow an SR to focus its resources on a limited subset
of channels without compromising the performance of the
learning algorithm.
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