Modulatory mechanisms controlling the NLRP3
inflammasome in inflammation: recent developments

Haneklaus M, O'Neill LA, Coll RC, Modulatory mechanisms controlling the NLRP3
inflammasome in inflammation: recent developments., Current opinion in immunology, 25, (1),
2013, p40-45

The protein NLRP3 has emerged as a central regulator in the inflammatory
process, being implicated directly in hereditary cryopyrinopathies, and indirectly
in diseases such as gout, Type 2 diabetes and atherosclerosis. NLRP3 is an
important regulator of caspase-1, the enzyme that processes the immature form
of IL-1 into the active protein. The control of NLRP3 has therefore become a
focus of research with evidence for redox regulation, ubiquitination and
regulation by miRNA-223, kinases and calcium all emerging as controllers of
NLRP3. As our knowledge expands the prospect for precise pharmacological
targeting of NLRP3 will improve and could lead to substantial clinical utility.

Introduction

The pro-inflammatory cytokine IL-1f3 is the most studied of all cytokines because
of its central role in the inflammatory process. IL-1f3 has also been implicated in
many diseases, most recently in metabolic diseases such as gout, Type 2 diabetes
(T2D) and atherosclerosis [1]. One reason for the recent focus on these
particular diseases is the discovery of NLRP3, the key protein in the mechanism
by which IL-1f production is regulated in macrophages [2]. IL-1f is initially
made as a pro-form and is processed to the mature cytokine by caspase-1, which
occurs in a complex with NLRP3 and ASC in a multi-protein complex termed the
inflammasome [3]. The major function of NLRP3 is to sense phagocytosed
material, and relay the signal to caspase-1 [4]. Diseases such as gout, T2D and
atherosclerosis can be considered ‘particle diseases’ since there are roles for
insoluble particles in their pathogenesis. Specifically, gout involves crystals of
uric acid [5], T2D the amyloid protein Islet Amyloid Polypeptide [6] and
atherosclerosis cholesterol crystals [7]. All of these have been shown to be
phagocytosed by macrophages, activating NLRP3. NLRP3 has also been shown to
be mutated in human in familial fevers termed cryopyrinopathies [8], and this
discovery has allowed NLRP3 to move to centre stage as the key regulator of
caspase-1 and IL-1 in human and generate considerable interest from the
pharma sector [9e]. Attention has moved to the regulation of NLRP3, since
dysregulation can obviously be seen as a potential cause of disease pathogenesis.
Here we discuss recent insights into the modulation of NLRP3. Roles of reactive
oxygen species (ROS), control by microRNA (miRNA), ubiquitination,
phosphorylation and calcium are discussed. We also discuss the prospect of
targeting NLRP3 with small molecule inhibitors, which could hold great promise
clinically.

Redox regulation



A major recent area of interest has been the role of ROS in NLRP3 regulation but
there is much controversy here and precisely how ROS might regulate NLRP3 is
still unknown. An often-repeated finding is that antioxidants are potent
inhibitors of NLRP3-dependent IL-1[3 production, which prompted a great deal
of research on the role of ROS and oxidative stress in NLRP3 activation. Even
though an involvement of redox signalling is generally accepted, many
conflicting results have been reported. For example, ROS originating from the
NADPH oxidase complex were originally found to be important [10]. However,
macrophages from mice or humans with genetically defective NADPH oxidase
had normal NLRP3 activation [11 and 12]. Subsequently, mitochondrial ROS
were put forward as being essential for inflammasome activation, a finding that
is supported by the co-localization of NLRP3 inflammasomes with mitochondria
in the perinuclear space upon activation [13e].

Functionally, ROS were proposed to be exclusively involved in the ‘priming’ step
of NLRP3 activation. Initially, ROS induction by TLRs was shown to be required
for NFkB activation, which is the traditional priming signal and induces
transcription of NLRP3 and pro-IL-1(3 [14]. Recently, a novel priming mechanism
has been put forward, which results in the post-translational activation of NLRP3
by de-ubiquitination and also requires TLR-induced ROS, as described later
[15e¢]. Despite these findings, two redox-related factors have also been
suggested to be direct NLRP3-activating ligands. Firstly, thioredoxin-interacting
protein (TXNIP) has been shown to dissociate from thioredoxin (TRX) upon
oxidative stress, which allows it to directly bind to NLRP3 [16]. However, the
involvement of TXNIP in NLRP3 activation in BMDMs could not be confirmed in
other studies [6]. Secondly, Shimada et al. recently suggested oxidized
mitochondrial DNA as a NLRP3 ligand [ 17ee¢]. They find that upon
inflammasome activation or during apoptosis, dysfunctional mitochondria can
release oxidized DNA into the cytosol. In the presence of a priming stimulus, this
leads to IL-13 production. This also ties in the intrinsic apoptotic pathway with
inflammasome signalling, which share striking similarities at the level of the
mitochondria ( Figure 1).
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Current view of NLRP3 inflammasome activation. The initiating step in NLRP3
activation is a ‘priming’ signal (1) by pattern recognition receptors, most
commonly Toll-like receptors that activate transcription of NLRP3 and pro-IL-1f3
through NFkB. At the same time, NLRP3 is activated non-transcriptionally by de-
ubiquitination. NLRP3 levels can further be regulated by miR-223. Priming is
followed by NLRP3 activation (2), the molecular mechanism of which is not yet
fully understood. However, at least one of following three events is commonly
required: potassium efflux, cathepsin B release from lysosomes and ROS
production. Two direct ROS-related NLRP3 ligands have recently been proposed:
TXNIP released from the redox system and oxidized mitochondrial DNA.
Mitochondria and mitochondrial ROS seem to play an important role and can be
influenced by calcium signalling; whether potassium efflux and lysosomal
damage link into mitochondrial signalling as well is yet unknown. Autophagy
negatively impacts NLRP3 activation, potentially by removing ROS-producing
dysfunctional mitochondria. Furthermore, the second messenger cAMP can bind
directly to NLRP3 and inhibit its activation. Extracellular calcium decreases
cAMP through CASR signalling. Kinase signalling positively regulates NLRP3
activation through PKR that directly interacts with NLRP3, while Syk kinase
activity is required for NLRP3 activation in response to specific ligands such as C.
albicans. NLRP3 activation triggers the assembly of active inflammasome
complexes containing ASC and pro-caspase-1 (3). Endogenous and viral Pyrin-
only proteins (POPs) can interfere with inflammasome assembly, while GBP5
selectively promotes NLRP3 dependent ASC oligomerization. Inflammasome
formation results in the processing and activation of caspase-1 (4). Caspase-1



cleaves the pro-forms of IL-13 and IL-18, releasing the mature cytokines and also
induces cell death by pyroptosis.

Figure options

In contrast to oxidative stress, other reports surprisingly found that antioxidants
are also essential for inflammasome activation. Macrophages deficient in the
antioxidant enzyme SOD1, even though they have increased ROS, have decreased
inflammasome activity because of oxidation of redox-sensitive cysteine residues
on caspase-1 [18].

These seemingly contradictory findings might be reconciled by a more
integrated view of the redox system, where an oxidative insult is always
balanced by a cellular antioxidant response and vice versa. This is demonstrated
by the fact that TLR stimuli lead to a biphasic redox response, starting off with an
oxidative hit and followed by a rapid antioxidant response [19]. In addition, the
baseline activation level of the redox system determines the potential for IL-1f3
production through NLRP3 [20e]. In contrast to primary monocytes, monocytic
cell lines or cultured macrophages have a high baseline activation of the
antioxidant system, leading to a stunted IL-1f3 response to NLRP3 stimuli. This
highlights the fact that redox dependency is very much determined by the
system it is studied in.

The importance of redox signalling could also explain findings that inhibition of
autophagy increases IL-1f production by NLRP3 activators. Since dysfunctional
organelles, including mitochondria, are removed by autophagosomes, inhibition
of autophagy leads to an accumulation of ROS-producing mitochondria, which is
accompanied by increased release of mitochondrial DNA [21]. However,
autophagy is also involved in the removal of ubiquitinated inflammasomes [22]
and pro-IL-1f in activated cells [23].

Regulation of NLRP3 expression by miR-223

Induction of NLRP3 expression by TLR ligands is necessary for optimal
inflammasome activation, which is highlighted by the fact that constitutive
NLRP3 overexpression is sufficient to induce IL-1f3 secretion to NLRP3
inflammasome activators [14 and 15ee¢]. Clearly, regulation of NLRP3 levels
offers an interesting mechanism to alter the inflammatory potential of immune
cells and different cell functions could require a different threshold for NLRP3
activation. We and others recently identified miRNA-223 as a negative regulator
of NLRP3 [24ee and 25e¢]. Interestingly, miR-223 is involved in hematopoietic
differentiation and differentially expressed among myeloid cells [26]. Thus, it can
fine-tune NLRP3 in a cell type-dependent and differentiation status-dependent
manner in monocytes, macrophages, dendritic cells and especially granulocytes,
which have very high miR-223 expression. Of note, miR-223 deficient mice
exhibit phenotypes consistent with deregulated NLRP3, namely neutrophilia,



spontaneous lung inflammation and increased susceptibility to endotoxin
challenge [27].

Viral regulation of NLRP3

Increasing evidence also suggests that many viruses have evolved mechanisms
to dampen inflammasome signalling. Most mechanisms inhibit inflammasome
assembly, caspase-1 activation or cytokine neutralization [28]. For example,
KSHV ORF63 [29] and Measles virus V protein [30] can bind NLRP3 and prevent
its activation. Several poxviruses express viral POPs, which interfere with ASC
recruitment, such as shape fibroma virus gp013 [31] and myxoma virus M013
[32]. In addition to the endogenous miR-223, we also identified an EBV miRNA,
miR-BART15, that can inhibit NLRP3 through the same target site as miR-223
[24e¢]. We found that miR-BART15 can be transferred from infected B cells to
uninfected cells via exosomes. However, increasing evidence suggests that EBV
can also directly infect myeloid cells [33], where it could affect NLRP3 expression.
In general, dampening inflammasome signalling could be advantageous to
viruses in order to escape pyrogenic effects of IL-1(, cell-mediated immunity by
IL-18 and cell death of infected cells by pyroptosis.

Ubiquitination as a negative regulator of NLRP3

Inflammasome-mediated IL-1( production is a two-step process. A primary
signal must activate NFkB to initiate pro IL-13 mRNA synthesis followed by a
secondary signal that activates the inflammasome and IL-1(3 release [34]. For the
NLRP3 inflammasome it was demonstrated that a primary signal such as TLR
activation was also required to prime or ‘license’ NLRP3 itself. NLRP3 protein
expression levels were shown to be a limiting step in inflammasome activation
[14 and 35]. Two recent reports have demonstrated that LPS can rapidly prime
NLRP3 in a manner distinct from transcriptional induction. In macrophages
caspase-1 activation was shown to occur with simultaneous administration of
LPS and the NLRP3 activator ATP, thus bypassing the transcriptional induction
of NLRP3 that occurred after two hours of LPS stimulation [15ee and 36]. Juliana
et al. further demonstrated that NLRP3 was basally ubiquitinated and that LPS
stimulation reduces this ubiquitination in a manner that is dependent on
mitochondrial ROS generation and results in NLRP3 activation. Interestingly,
ATP could also induce de-ubiquitination of NLRP3 via a ROS-independent
mechanism suggesting there are two de-ubiquitinating enzymes that regulate
NLRP3 [ 15e¢]. Whether this mechanism is unique to LPS priming of NLRP3
remains to be examined.

A role for protein kinases in NLRP3 activation

The phosphorylation of NLRC4 on Ser533 mediated by PKC8 was recently shown
to be essential for functional NLRC4 inflammasome formation [37], the first time
that an activating covalent modification of any inflammasome has been reported.



Although phosphorylation of NLRP3 has not been directly demonstrated there is
evidence to support a role for kinase signalling in its regulation. A recent study
by Lu et al. has demonstrated that RNA-dependent protein kinase (PKR) is a
broad inflammasome regulator. Activation of NLRP3, NLRP1, NLRC4 and AIM2
induced PKR phosphorylation and PKR deficiency attenuated caspase-1
activation in response to activation of all of these inflammasomes. Co-
immunoprecipitation assays showed that PKR interacts with NLRP3 and
furthermore in a cell free system activated PKR together with NLRP3, ASC and
caspase-1 reconstituted a functional inflammasome [ 38e]. Previous work has
also demonstrated a role for Syk tyrosine kinase activity in the activation of
NLRP3 in response to a number of stimuli. Fungal infection by Candida albicans
[ 39] the Plasmodium metabolite hemozoin [ 40], Mycobacterium tuberculosis
infection [ 41] and carbon nanotubes [ 42] all activate NLRP3 and require Syk
activity for effective inflammasome activation.

Pyrin domain interactions

NLRP3 has a characteristic tri-domain structure consisting of a C-terminal
leucine rich repeat domain, a central nucleotide binding and oligomerization
(NACHT) domain and an N-terminal Pyrin domain (PYD) [43]. The PYD domain
of NLRP3 is crucial to its function as it interacts with the PYD domain of ASC,
which mediates the activation of caspase-1 [2]. Two PYD only proteins (POPs)
POP1 and POP2 that negatively regulate NLRP3 inflammasome activation in
humans have been described. POP1 (also known as ASC2, ASCI, ASCL and
PYDC1) binds to the PYD domain of ASC to which it is 64% identical and may
disrupt the interaction of ASC with other proteins such as NLRP3 [44]. POP2
shows closer homology to the PYD domains of NLRP proteins than that of ASC.
POP2 was shown to prevent the recruitment of ASC by NLRP3 [45]. A recent
study by Shenoy et al. identified guanylate binding protein 5 (GBP5) as a
selective regulator of the NLRP3 inflammasome. GBP5 interacts with the PYD
domain of NLRP3 and it was shown that tetramers of GBP5 promote ASC
oligomerization through NLRP3. Interestingly, GBP5 only played a role in NLRP3
activation in response live bacterial infection and soluble ligands such as ATP
and nigericin but not crystalline substances such as MSU and alum [ 46e¢]. The
crystal structure of the PYD of NLRP3 has been reported [ 47]. Interestingly, an
unexpected disulphide bond between Cys-8 and Cys-108 of the NLRP3 PYD was
identified. These Cys residues are evolutionarily conserved, suggesting that
redox modifications could influence the structure of NLRP3 PYD [ 47]. Further
structural studies should shed light on the conformational changes in NLRP3 and
the mechanism of its activation.

Calcium signalling

Intracellular Ca2+ store release was previously implicated in NLRP3 dependent

IL-1p secretion [48]. A report by Murakami et al. has shown that multiple NLRP3
activators induce Ca2+ signalling. Depletion of endoplasmic reticulum (ER) Ca2+
stores and inhibition of extracellular Ca2+ influx both attenuated ATP stimulated



NLRP3 activation. Furthermore, pharmacological inhibitors of key CaZ2+
signalling mediators such as phospholipase C attenuated IL-1f3 release.
Mechanistically, Ca2+ signalling was found to promote mitochondrial damage
and therefore NLRP3 activation [ 49ee]. More recently it has been demonstrated
that the calcium-sensing receptor (CASR) activates the NLRP3 inflammasome
through PLC signalling. In addition it was shown that activation of CASR by
extracellular CaZ+ results in the inhibition of adenylate cyclase and a reduction
in cyclic AMP (cAMP) levels. It was found that cAMP binds NLRP3 and negatively
regulates its activation [ 50ee].

Pharmacological manipulation of inflammasome activity

The current best treatments for inflammasome disorders target the main
product of inflammasome activity, IL-1 [51]. Anti-IL-1f biologicals such as the
recombinant IL-1 receptor antagonist Anakinra are clinically successful anti-IL-1
therapies [9¢]. Other strategies for treating IL-1 related disease such as
developing P2X7 receptor antagonists and caspase-1 inhibitors have also been
explored and tested in clinical trials [9¢ and 52].

Several previously characterized small-molecule inhibitors have more recently
also been shown to affect NLRP3 inflammasome function. Glyburide is a
sulfonylurea drug used in the treatment of T2D, where it acts by inhibiting
potassium channels in pancreatic 8 cells. Glyburide inhibits IL-13 production in
response to multiple NLRP3 stimuli but not NLRC4 or NLRP1 activation. The
inhibitory activity of glyburide was not dependent on potassium channels or
NLRP3 ATPase activity. Interestingly, glyburide did not inhibit temperature-
induced IL-1f release from monocytes of familial cold autoinflammatory
syndrome (FCAS) patients, suggesting it does not directly inhibit NLRP3 but
upstream signalling [53¢]. We have also found that a compound termed CRID3
can act on or close to NLRP3 and block IL-13 production [54].

Parthenolide is a sesquiterpene lactone that has multiple anti-inflammatory
properties. Separate to its effects on NFkB activation parthenolide has now also
been shown to inhibit caspase-1 and NLRP3. Parthenolide inhibited caspase-1
activation in response to NLRP3, NLRP1 and NLRC4 stimulation. The authors
suggest this is a result of alkylation of caspase-1 on a number of Cys residues.
Parthenolide also directly inhibits NLRP3 by inhibiting its ATPase activity that is
required for activation [55]. Bay 11-7082 is another NFxB inhibitor that was also
found to specifically inhibit NLRP3. Bay 11-7082 inhibits the ATPase activity of
NLRP3 suggesting that this may be the mechanism of inhibition [55].

Currently available inhibitors of inflammasome function have either not been
clinically successful or have multiple targets. The development of small molecule



inhibitors that directly target the NLRP3 inflammasome could provide a cheaper
and less invasive therapy for IL-1f3 and inflammasome-related diseases.

Conclusions

Our understanding of the precise biochemical control of the NLRP3
inflammasome is still sparse. We still have no clear mechanism for NLRP3
activation by ROS. However the recent insights into control by miR-223, viral
manipulation, role of protein kinases and calcium represent an excellent start in
the effort to understand how NLRP3 is controlled. Given the importance of
NLRP3 for inflammatory diseases, more information on its modulation will help
our understanding of NLRP3 in disease and its potential manipulation
therapeutically.
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