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ABSTRACT
High efficiency video coding has made it possible to stream video
over bandwidth constrained communication networks. Depending
on bit rate requirements, a video encoder sacrifices some image de-
tails which can then introduce visual artefacts. Due to aggressive
encoding a contouring staircase artefact called banding can be ob-
served in image regions with very low texture. This paper presents
a solution for removing banding artefacts using image filtering and
dithering techniques. A new banding index (BI) metric is also pre-
sented for quantitatively measuring the amount of banding in an im-
age. Using this BI metric, we assess how much banding YouTube
video encoding introduces in a video test dataset. There is a de-
banding filter in ffmpeg called gradfun. We compare the results
of our debanding technique with those of gradfun on the YouTube
test dataset.

Categories and Subject Descriptors
I.4.3 [Image Processing and Computer Vision]: Enhancement

General Terms
debanding,online video,encoding artefacts

Keywords
debanding,ffmpeg,enhancement,filtering,segmentation,dithering

1. INTRODUCTION
Streaming video over a communication network requires that the

data rate does not exceed the available bandwidth. On the internet,
the bandwidth available to the typical user is usually not sufficient
for delivering high bit rate video. Hence, the source material is en-
coded to produce a lower bit rate version for streaming. YouTube
for example, uses H.264 and VP9 codecs for video content encod-
ing. There may be offline constraints such as disk storage capacity
which determine that all source content must be encoded at a cer-
tain bit rate to minimise disk usage. Video encoding in these sce-
narios is lossy, so there is a reduction in video quality with respect
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to the source. The bottom left image in Fig. 1 shows a frame from
a sequence (SP111) that was uploaded to YouTube. The bottom
center image is the YouTube encoded version of this source frame.
Also, these pictures are shown in the corresponding row above with
some contrast enhancement. There are obvious degradations in the
YouTube frame. Some of the textured details on the gray wall is
lost (see top row). This is a typical sacrifice in quality the encoder
makes in order to meet the bit rate constraint. On image surfaces
with relatively slow changing gradients such as this wall, the en-
coder will create a staircase artefact as shown in Fig. 1 top center.
Here, the contours formed by pixels with the same intensity level
is what is referred to as banding. Details of the staircase effect are
shown in Fig. 2 for a 1D slice of the image.

The aim of this work is to remove this banding artefact that arises
from video encoding.

Importance of Debanding. Although encoded video may con-
tain banding artefacts, they may not be observed by the content
viewer. The size and quality of the viewing display are major
factors here. Also the distance to the display and the amount of
ambient light in the viewing environment are significant factors as
well. However, with the ever improving quality of displays (such
as Retina displays by Apple) in portable devices, the chances of
observing banding artefacts are increasing. The viewer is usually
positioned close to the display which also increases the odds.

For online premium video on demand services such as Netflix,
iTunes and Google Play, video quality and bandwidth preservation
are important issues. The consumer of these services indirectly
correlates video quality with quality of service. Obvious artefacts
such as banding would point toward poor video quality. Therefore,
giving the viewer the illusion of a better quality video through de-
banding can maintain brand reputation. The debanding process can
take place after decoding on the client side, so there is no extra
demand for bandwidth.

Related Work. Some prior debanding solutions exist. They are
implemented either as post-processes (ffmpeg has a debanding
plugin called gradfun) or as in-loop[7] processes integrated to the
back of the decoder (Yoo et al. [9], Jin et al. [6] and Choy et al. [4]).
The proposed treatments usually follow a three step approach. The
first step is to detect regions of banding. Since banding is most
visible on smooth gradients, they usually look for low-textured re-
gions of the picture. The next step is to undo the quantization and
restore the original aspects of the image. This is done by applying
a smoothing process to the degraded picture and thus removing the
banding discontinuities. Finally, in order to match the screen bit
depth, quantization needs to be reapplied. However, this time, a
dithering process is used, which adds a noise pattern to create the
illusion of a smooth gradient (Bhagavathy et al. [3], Yoo et al. [9]).

Unfortunately the existing approaches are limited, either by the



Figure 1: Frame 100 from the Artbeats SP111 sequence. Bottom row: The original (left), YouTube (middle), and debanded (right)
versions of this frame. Top row: Contrast enhancement of the corresponding frames in the bottom row.
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Figure 2: Top row: A zoom on the wall in sequence SP111. The pixel intensities along the green (left), black (center) and cyan (right)
lines are plotted for the original, YouTube and debanded frames respectively. Bottom row: The left graph is the YouTube (black)
and original (green) plots of pixel intensities. The right graph is the YouTube (black) and debanded plots of intensities.



level of quantization they can deal with, or by the picture qual-
ity they can achieve. For instance, the debanding plugin in the
ffmpeg software is only suitable for very mild cases of banding
as its performance degrades very quickly with the quantization lev-
els. The restoration can blur the original video, which then looses
its details and crispness. Other solutions such as Jin et al [6] are
fast but incomplete as they leave a significant amount of blocking
artefacts. Also this work makes assumptions specific to the de-
coder (H.264/AVC in this case). It is however common practice
to transcode a video with several different codecs along a pipeline.
Some of these transcoding steps may be unknown, especially for
public user generated content. Therefore a generic debanding solu-
tion is required that does not need information about prior encoding
steps.

Contributions. The first contribution of this paper is to propose
a post-processing debanding method which is 1) able to scale with
the quantization level, ie. which is able to work with both heavily
compressed and high quality videos, 2) conservative, i.e. produce
very little artefact of its own, such as over smoothing the entire pic-
ture and 3) temporally consistent to avoid any flickering artefacts.

The second contribution of this paper is a technique to detect
and report whether a sequence contains banding artefacts. For the
debanding stage to exist in a video processing pipeline, there must
be metrics to indicate when debanding is required. If no banding is
detected the sequence passes through unaltered. We present a new
banding index (BI) metric in section 2 for quantifying the amount
of banding artefacts in an image.

Organisation of the paper. Our banding metric is presented in
section 2 and the debanding algorithm in section 3. The perfor-
mance of the debanding algorithm is quantitatively evaluated and
compared against gradfun in section 4.

2. BANDING INDEX
Human identification of banding artefacts is a difficult task. Not

only is this a subjective process, but there is a strong dependence
on display quality and size, and environmental conditions. Prior
to this work there has not been any published objective metrics for
assessing banding in natural images. The metric presented here is
called banding index (BI). The BI metric has a strong correlation
to the visual perception of banding. Similar to SSIM[8] used for
assessing image quality, the BI metric is between 0 and 1. For an
image with no banding artefacts BI = 1.

Banding is usually observed in image regions with very smooth
or uniform regions. The gray wall in Fig. 2 and the blue sky in
Fig. 4 are typical examples. The third row of Fig. 4 shows a seg-
mentation of the colours for the frames in the row above. Here a
segment/block is a group of connected pixels with the same RGB
colour. A random colour indicates each block. It may be observed
that the YouTube segmentation (center) contains relatively large
blocks in the sky, compared to the original (left) and debanded
(right) segmentations. The block size is defined as the number of
pixels in each segment/block. The distribution of these block sizes
in shown the bottom row of fig 4.

The distribution of the block sizes (Fig. 4) provides an indication
of the presence of banding artefacts. Therefore the banding index
(BI) is based on this observation. For a pixel x we define b(x) as
the pixel banding index, which is given as,

b(x) =
1

1+ e−λ/Ω(x) (1)

Where Ω(x) is the size of the block that contains pixel x and λ is a
constant. Fig. 3 shows a plot of the pixel banding index b(x) versus
the block size Ω(x), where the constant λ = 61.1. The constant
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Figure 3: Plot of pixel banding index b(x) versus block size
Ω(x) for the constant λ = 61.1.

λ = 61.1 is chosen so the function b(x) starts rolling off towards 0
when Ω(x) = 10 (10 pixels). From the distribution of block sizes
for images with out banding, it is observed that the majority of the
block are smaller than 10 pixels.

The banding index (BI) is defined using the pixel index b(x) from
Eq. 1 for an image with N pixels,

BI =
1
N ∑

x
b(x) (2)

Based on experimental results, generally BI < 0.9 indicates the
presence of banding. The first two rows in Fig. 4 show an example
sequence (SP136) and the corresponding BI metrics. The left col-
umn shows the original frame with BI = 0.999, which means there
is no banding. The YouTube version of this frame is in the center
and has BI = 0.834, indicating the presence of banding. Here the
banding can be seen in the sky. Finally, the debanded version is on
the right with BI = 0.996. This suggests that a significant amount
of the banding artefacts in the sky have been removed.

3. BANDING REMOVAL
Similarly to previous works, our debanding algorithm starts by

finding the regions in the frame which suffers from banding arte-
facts, then applies some filtering correction to these regions to smooth
out the bands, and finishes off with a dithering step.

3.1 Detection Mask
The first step is thus to isolate the problematic areas. A bi-

nary mask for identifying banding regions can be derived from the
colour image segmentation obtained in the banding index evalua-
tion. We mark as non-banding region the blocks that have less than
10 pixels in size. Isolated small segments that are not adjacent to
any other small segment are discarded and marked as banding.

The top two rows of Fig. 5 shows examples of two frames with
the corresponding banding detection in the bottom row. In the de-
tection masks the blue regions indicate where banding artefacts are
located. Just correcting the banding regions means that most of the
original image is preserved. The entire image does not have to be
processed in some cases requiring minimal computational effort.
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Figure 4: Top row: The contrast enhanced versions of the frames in the second row. Second row: The original (left), YouTube
(center) and debanded (right) images for frame 188 from the SP136 sequence. Third row: The segmentations of the colours for
the images above. Each segment/block is indicated with a random colour. Bottom row: The distributions of the block sizes for the
corresponding segmentations above. There is a relatively wider spread in the distribution for the YouTube block sizes in the center
(black), compared to the original (green) and debanded (cyan) distributions.



Figure 5: Top row: Contrast enhanced versions of the images in the second row. Second row: Example frames from sequences
SP126 (left) and SP109 (right) with significant and minimal banding respectively. Third row: The colour segmentations for the
corresponding frames above. Bottom row: The banding detection masks obtained from the segmentations in the row above.



The example frame on the right of Fig. 5 would be a case where
minimal correction is required (see detection mask in bottom row).

3.2 Smoothing
With the regions of banding identified in the detection mask, the

next step is to smooth out the banded regions to restore the original
intensity gradients.

Consider a particular segment/block of the colour segmented im-
age. All the pixels x in the block have similar colour I. The first
observation is that for each of these pixels, the original, unbanded,
colour Î(x) cannot differ from the observed pixel colour I by more
than some distance, i.e. ‖Î(x)− I‖< T . The threshold T is defined
by the quantization process.

The second observation is that within a segment, the colour is
probably bounded by the colours of the neighbouring segments.
For instance, if we consider the case of a single neighbouring seg-
ment (A) with colour Ia, then it is likely that the original unbanded
colours lie in between both colours I and Ia:

Î(x) = w(x)I+(1−w(x))Ia , 0≤ w(x)≤ 1 (3)

This is simply generalized for more than one neighbour as follows,

Î(x) = ∑k wk(x)Ik

∑k wk(x)
, wk(x)> 0 (4)

The problem is now to suitably define the weights wk.
To achieve some smoothness across segments, we propose to de-

sign the weights as a function of the distance from the position x to
a particular neighbouring segment k. In other words, we want wk
to get bigger as x gets closer to segment k. This distance is denoted
as d(x,k) and is simply the distance of the nearest pixel in segment
k to pixel x (see Fig. 6).

We also assume that segments with large size Ωk should have
more influence than smaller segments. Combining all these ideas
together, we propose the following definition for the weights,

wk(x) =

2
[

1− 1
1+d(x,k)−Ωk/Ω0

]
if‖I− Ik‖< T

0 otherwise
(5)

where Ω0 denotes the size of segment containing x. These weights
are thus designed so that wk → 0 as d(x,k)→ ∞. Also the term
Ωk/Ω0 ensures that small blocks of pixels maintain most of their
original colour when they are surrounded by very large blocks. This
is a way of preserving the small details from the source image.

For computational considerations, we argue that we do not need
to include all neighbouring segments in the computations. It has
been observed in real images that each segment usually has a max-
imum of two neighbouring segments. We have thus limited our-
selves to the nearest two segments for which ‖I− Ik‖< T .

In our experiments, we found that T = 20 for colours in the 0:255
range was a good default.

3.3 Dithering
The final correction step involves adding local texture to the

smoothed image regions using a dithering technique. From the
smoothing step, the image Î obtained has floating point precision.
However, the final debanded images are often only 8-bits per chan-
nel. Going from floating point to 8-bit precision can reintroduce
banding artefacts. Therefore, dithering[1, 2, 5] is a commonly used
technique for compensating for this lost in precision. The final
colour for pixel x is given as If(x) below,

If(x) = Î(x)+η(x)

 1
1
1

 (6)
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Figure 6: Distances d(x, .) for pixel x to neighbouring seg-
ments/blocks A, B, C and D.
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Where ϒ is the dithering kernel, and η(x) = ϒ(x mod 4,y mod 4),
for the pixel coordinates x = (x,y). Each colour channel in If(x) is
rounded off to the nearest 8-bit value.

Only the pixels in the banding regions are smoothed and dithered.

4. EVALUATION
The aim of this work is to improve on the quality of the result

obtained from the gradfun debanding filter in ffmpeg. To dis-
tinguish between our debanding result and that of gradfun we will
refer to our technique as deband. The gradfun filter is an imple-
mentation of a box blur spatial filtering technique. Gradfun also
does dithering of the final image to compensate for the 8-bits per
channel precision of ffmpeg.

4.1 Visual Comparison
Some of the differences in performance between gradfun and de-

band are visually obvious. Fig. 7 shows the debanding results for
both techniques on images from the Memphis and House of Cards
sequences. The source images are in the left column, while the re-
sults for gradfun and deband are in the center and right columns
respectively. The images in the first and third rows are contrast en-
hanced versions of the second and fourth rows respectively. These
enhancements help to show the banding artefacts more clearly. For
the Memphis result in the top two rows of Fig.7, gradfun (center)
removes most of the banding artefact from the source on the left.
However, there are still some subtle bands remaining. A very ob-
vious visual artefact in the results produced by gradfun is a halo
around edges. Observe the edges of the horse and the roof in center
image, second row of Fig. 7. Our deband (right column) technique
does not produce the edge halo artefact. Deband removes all the
banding artefacts for the Memphis sequence while preserving the
edge details.



Figure 7: Left column: Frames from the Memphis (1280×720) and House of Cards (1920×1080) sequences. Center column: The
result of gradfun technique. Right column: The result of our deband technique. Contrast enhanced images are in the odd rows.

The House of Cards sequence in the bottom row of Fig. 7 con-
tains more challenging banding artefacts. The banding contours
are relatively larger here (left column) compared to the Memphis
sequence. Gradfun fails to remove the bands in the House of Cards
sequence. See the center image in third row for the contrast en-
hanced gradfun result. It may be observed that the edge details are
very blurred compared to our deband result on the right. Our de-
band result in the right column shows that all the banding artefacts
are completely removed and we again preserve all the edge details.
Note that the stars in the blue sky are quite sharp.

4.2 YouTube Experiment
To perform an objective quantitative analysis between the re-

sults of deband and gradfun, we uploaded 36 high quality video
sequences to YouTube. We obtained the YouTube encoded versions
of these videos, which are then debanded using gradfun and our
deband technique. The high quality version of each sequence is
referred to as the original in subsequent discussions.

The 36 test sequences (PAL resolution, 720×576) are from the
Artbeats video collection, which is available online at,
artbeats.com/collections/362-Sports-1

There is a total of 18827 frames from all 36 sequences, which
are called SP101, SP102, ..., SP136. Fig. 8 shows frames from
the SP101, SP101, SP112, SP122 and SP110 sequences. The first
and second columns contain the original and YouTube images re-
spectively. It may be observed that there is visible banding in the
YouTube images for the top three sequences. Again contrast en-
hancements are provided in rows one, three, five and seven for
viewing the banding artefacts.

We use our banding index (BI) metric presented in section 2 to
measure how much banding is introduced into a sequence by the
YouTube encoding process. Also using the BI metric, we measure
how much banding is removed by gradfun and deband. All mea-
surements are made with respect to the YouTube versions of the test
sequences. The BI for a sequence is the mean BI over all the frames



Figure 8: Four sequences from the Artbeats video collection. From the top, the sequences are SP101, SP112, SP122 and SP110
respectively. The first, second, third and fourth columns shows images for the original, YouTube, gradfun and deband sequences
respectively. The contrast enhanced images are shown in the odd rows.



Table 1: Comparison of original, deband and gradfun sequences with respect to the corresponding YouTube sequences.

SP* Frames Original Deband Gradfun SP* Frames Original Deband Gradfun

SSIMo ∆BIo SSIMd ∆BId SSIMg ∆BIg SSIMo ∆BIo SSIMd ∆BId SSIMg ∆BIg
101 615 0.94 6.6 0.98 6.4 0.96 3.7 119 379 0.95 0.8 0.98 0.9 0.97 0.5
102 300 0.95 5.5 0.98 5.4 0.96 3.5 120 365 0.96 11.0 0.98 15.0 0.97 9.0
103 324 0.93 1.0 0.97 1.0 0.95 -0.6 121 496 0.97 13.0 0.99 18.0 0.99 9.0
104 149 0.94 0.9 0.97 0.8 0.94 -0.4 122 560 0.96 4.9 0.98 11.0 0.98 5.0
105 719 0.92 1.9 0.98 1.9 0.95 0.7 123 425 0.92 2.3 0.98 2.3 0.95 1.2
106 900 0.92 1.8 0.98 1.8 0.95 0.5 124 665 0.97 1.0 0.99 1.0 0.97 0.9
107 459 0.96 1.9 0.99 1.9 0.97 1.6 125 850 0.97 4.1 0.98 4.7 0.97 3.9
108 288 0.95 5.4 0.98 5.9 0.97 4.0 126 600 0.98 8.3 0.99 8.4 0.98 5.4
109 200 0.90 1.3 0.97 1.2 0.94 0.3 127 345 0.95 3.0 0.98 3.2 0.97 2.3
110 351 0.91 0.1 0.97 0.1 0.93 -0.2 128 651 0.96 0.2 0.99 0.5 0.95 0.5
111 1011 0.96 12.0 0.98 11.0 0.97 5.5 129 696 0.95 0.1 0.99 0.4 0.95 0.4
112 611 0.96 30.0 0.99 29.0 0.98 15.0 130 224 0.94 3.6 0.98 3.6 0.95 2.4
113 282 0.94 8.7 0.98 8.7 0.97 5.4 131 240 0.92 2.6 0.98 3.1 0.95 2.3
114 398 0.97 29.0 0.99 29.0 0.98 12.0 132 1211 0.92 0.7 0.99 0.7 0.96 0.6
115 267 0.94 1.4 0.98 2.2 0.96 1.5 133 574 0.92 6.6 0.98 7.2 0.97 4.2
116 641 0.95 3.4 0.98 3.5 0.97 2.6 134 475 0.90 1.0 0.99 1.1 0.96 0.8
117 406 0.95 3.0 0.98 3.2 0.97 2.4 135 1000 0.98 14.0 0.99 14.0 0.97 11.0
118 450 0.94 0.9 0.98 0.9 0.96 0.5 136 700 0.97 17.0 0.99 17.0 0.98 12.0

All 18827 0.95 5.8 0.98 6.3 0.96 3.6

in that sequence. The percentage change in the banding index ∆BI
is defined as,

∆BIv =

(
BIv−BIy

BIy

)
×100% (7)

Where BIy is the banding index of the a YouTube sequence, and
v ∈ {o,d,g} for the corresponding original, deband and gradfun
versions of this sequence.

We also measure the change in picture quality using the popu-
lar SSIM metric[8]. The quantities SSIMo, SSIMd and SSIMg are
defined as the similarity of the original, deband and gradfun se-
quences with respect to the YouTube version.

4.2.1 Results
Table 1 summaries the results for the 36 test sequences. Se-

quence SP112 had the most banding artefacts due to YouTube en-
coding. Frames from this sequence are shown in rows three and
four (from top) of Fig. 8. The enhanced YouTube image in the
third row, second column shows that there is significant banding
in the blue sky behind the baseball pitcher. The majority of the
frame is occupied by the background sky, which is a prime candi-
date for having banding artefacts. Hence a banding index change
∆BIo = 30% is a justified result. Our deband technique removed
the majority of the banding for this sequence. This is supported by
the corresponding visual result in the fourth column of Fig. 8, as
well as a ∆BId = 29% value. The corresponding banding change
for gradfun is ∆BIg = 25%. The visual result for gradfun (third
column) has the edge halo artefact discussed earlier for the Mem-
phis sequence. This artefact also exist in the results for the SP101
sequence in the top two rows.

Sequence SP110 with a banding change ∆BIo = 0.1% in table 1
has the least banding artefact due to YouTube encoding. The bot-
tom two rows of Fig. 8 shows images from this sequence. The
contrast enhanced images are in the second row from the bottom.
The original frame in the first column shows that this sequence is
highly textured. The majority of the frame is occupied by grass and
soil. Hence, there is enough local variations in the intensity here to

prevent banding artefacts. The gradfun version of this sequence in
the third column is very blurred. This is not the case for our deband
result in the fourth column. The blurring of SP110 by gradfun in-
troduces some slight banding artefacts, which is supported by the
banding change ∆BIg =−0.2% value. We again see blurred results
by gradfun for the SP122 sequence in rows five and six in Fig. 8.

According to the last row of table 1, our deband technique made
an overall improvement in the banding index of 6.3% compared to
3.6% by gradfun. Also deband made less changes to the YouTube
images as suggested by a mean SSIMd = 0.98 compared to gradfun
with a value SSIMg = 0.96. This means that we preserve more of
the source image. The amount of banding introduced by YouTube
encoding was overall ∆BIo = 5.8%. This was roughly the amount
removed by deband ∆BId = 6.3%. Some of the original sequences
contained some banding artefacts which accounts for the difference
in the amount introduced versus removed. Eventhough, the origi-
nal videos were encoded at a high bit rate, the encoding process
unavoidablely introduced some banding artefact.

5. CONCLUSION
We presented a technique for removing banding artefacts from

video sequences. This quality of the result produced by our de-
band technique is a significant improvement over the current de-
banding solution (gradfun) in ffmpeg. Unlike gradfun, our deband
technique does not create any visible visual artefacts in the final
restoration. We also introduced a new banding index (BI) metric for
assessing the amount of banding in an image. Using this BI metric,
we were able to quantify the amount of banding the Youtube encod-
ing process introduced into a test video dataset. The performance
of our proposed deband technique outperformed gradfun in terms
of the amount of banding it was able to remove from the YouTube
video dataset.

The current implementation of our deband technique on average
processes 1.5 frames per second for HD (1920×1080) sequences.
This is written as an unoptimised ffmpeg filter running on a single
thread with all image processing operations being performed with



floating point precision. For future work we can improve the per-
formance of our filter be doing a multithreaded implementation and
reducing the number of floating point operations.
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