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In the last two decades, animal neurophysiology research has made great strides towards explaining how
the brain can enable adaptive action in the face of noisy sensory information. In particular, this work has
identified neural signals that perform the role of a ‘decision variable’ which integrates sensory informa-
tion in favor of a particular outcome up to an action-triggering threshold, consistent with long-standing
predictions from mathematical psychology. This has provoked an intensive search for similar neural pro-
cesses at work in the human brain. In this paper we review the progress that has been made in tracing the
dynamics of perceptual decision formation in humans using functional imaging and electrophysiology.
We highlight some of the limitations that non-invasive recording techniques place on our ability to make
definitive judgments regarding the role that specific signals play in decision making. Finally, we provide
an overview of our own work in this area which has focussed on two perceptual tasks – intensity change
detection and motion discrimination – performed under continuous-monitoring conditions, and
highlight the insights gained thus far. We show that through simple paradigm design features such as
avoiding sudden intensity transients at evidence onset, a neural instantiation of the theoretical decision
variable can be directly traced in the form of a centro-parietal positivity (CPP) in the standard event-
related potential (ERP). We recapitulate evidence for the domain-general nature of the CPP process, being
divorced from the sensory and motor requirements of the task, and re-plot data of both tasks highlighting
this aspect as well as its relationship to decision outcome and reaction time. We discuss the implications
of these findings for mechanistically principled research on normal and abnormal decision making in
humans.

� 2014 Elsevier Ltd. All rights reserved.
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1. Introduction

Exposing the mechanisms underpinning simple sensorimotor
transformations is critical to our understanding of how informa-
tion is processed by the brain in general, including at higher cogni-
tive levels (Shadlen and Kiani, 2013). Simple perceptual decisions
can generally be broken down into three main processing stages:
sensory encoding, decision formation and motor execution
(Sternberg, 1969). The intermediate, and arguably most enigmatic,
stage of decision formation has seen a significant escalation in
interest recently, owing to a line of monkey neurophysiology stud-
ies (Gold and Shadlen, 2007) that has provided strong empirical
support for a powerful theoretical framework based on sequential
sampling (Smith and Ratcliff, 2004). The core principle of sequen-
tial sampling models is that a ‘decision variable’ builds with the
integrated evidence in favor of a particular outcome and triggers
action upon reaching a threshold (Link and Heath, 1975; Smith
and Ratcliff, 2004; Usher and McClelland, 2001). This framework
is appealing because, over and above signal detection theory
(Green and Swets, 1966), it describes a neural computation
through which adaptive actions can be selected on the basis of
sensory information that, at any one moment in time, may be unre-
liable or weak. Moreover, it can comprehensively explain reaction
time as well as decision outcome probabilities on a variety of
different cognitive tasks (Ratcliff and McKoon, 2008). With this
theoretical framework as a strong guide, signals exhibiting build-
to-threshold dynamics have been found in several areas of the
monkey brain, including parietal (e.g. Roitman and Shadlen,
2002; Hanks et al., 2006), frontal (Hanes and Schall, 1996; Kim
and Shadlen, 1999) and subcortical (Ratcliff et al., 2007; Ding and
Gold, 2010) oculomotor areas. This work has paved the way for a
broad program of mechanistically principled research into how
neural decision signals are constructed and are adapted to account
for changing environmental contingencies (e.g. prior information,
value, speed pressure) and internal brain states (e.g. sensory noise,
attention). These investigations span multiple species, including
monkeys (Gold and Shadlen, 2007; Shadlen and Kiani, 2013),
rodents (Carandini and Churchland, 2013) and humans
(Heekeren et al., 2008), and employ a variety of techniques.
2. Neural decision signals: defining properties

One of the major goals of decision making research has been to
identify and dissociate ‘‘sensory evidence’’ and ‘‘decision variable’’
signals (Gold and Shadlen, 2007). These signals represent two fun-
damental ingredients of a powerful theoretical framework for
understanding the organization of decision making systems in
the brain. Each has critical characteristics by which it can be
strictly identified. At the sensory level, any given stimulus will eli-
cit a range of sensory signals of which several may be irrelevant to
the task at hand. The key defining characteristic that distinguishes
a bona fide sensory evidence signal from other sensory activity is
that it forms the input to the decision process (i.e. the evidence
accumulator). Co-variation of a signal with a relevant physical
stimulus variable (e.g. contrast, pitch, resemblance to a face), while
clearly a necessary condition, is not by itself sufficient to defini-
tively identify it as the input to the decision process; the signal
must further be shown to systematically influence reaction time
and/or choice independent from physical stimulus factors. This cri-
terion has been successfully met by signals isolated in non-human
primate neurophysiology work. For example, when monkeys per-
form a motion discrimination task, the firing rates of direction-
tuned neurons in the middle temporal area (MT) exhibit significant
levels of ‘‘choice probability,’’ i.e. they significantly predict a
monkey’s direction decisions, even when there is physically no
Please cite this article in press as: Kelly, S.P., O’Connell, R.G. The neural process
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net motion in any particular direction (Britten et al., 1996; Parker
and Newsome, 1998). Perhaps most compellingly, microstimula-
tion near sensory neurons tuned to one of the two alternative
directions induces a systematic bias in a monkey’s perceptual
reports in that very direction (e.g. Salzman et al., 1990).

Identifying a decision variable signal is equally challenging
because in theory, the decision variable represents the temporal
integral of the evidence and should therefore be highly correlated
with the evidence itself. This makes sense logically for the chain of
processing stages forging a decision, but means that signals repre-
senting the momentary encoding versus the temporally-extended
accumulation of sensory evidence can be difficult to disentangle,
especially when using neural measurements that lack fine-grained
temporal resolution. Through direct recordings in monkeys,
scientists have been able to isolate neuronal firing-rate signals that
exhibit the two cardinal properties that distinguish a decision
variable signal from sensory evidence: (1) a rate of buildup – as
opposed to momentary level – that scales with evidence strength
and (2) the triggering of action upon reaching a stereotyped
threshold level or bound (e.g. Roitman and Shadlen, 2002; Huk
and Shadlen, 2005; Churchland et al., 2008). While much of the
initial progress in establishing the neural dynamics underpinning
decision formation has been achieved through direct recordings
in animals, this work has sparked a considerable effort to probe
decision making in the human brain, which we review next.
3. Non-invasive assays of decision making in humans

A look over the decision neuroscience literature from the last
two decades provides an excellent illustration of the necessity for
and benefits of reciprocal interaction between studies of human
and animal subjects. Direct recordings in animals have enabled
the characterization of neural signal dynamics underpinning per-
ceptual decision making at a level of detail that is impossible with
non-invasive recording techniques. This intracranial work has
strongly influenced and guided investigations in humans, as pre-
dictions for noninvasive signals can be derived from the aggregate
behavior of neuronal populations involved in decision formation
(Heekeren et al., 2008), even when diverse response dynamics
are seen on the individual neuron level (Meister et al., 2013). At
the same time, noninvasive assays are informative in their own
unique ways; the global view of brain function that is offered by
electroencephalography (EEG), magnetoencephalography (MEG)
and functional magnetic resonance imaging (fMRI) makes it possi-
ble to study decision making at a systems level, to simultaneously
probe distinct levels of the sensorimotor hierarchy, and to examine
interactions with other systems that play a supporting role, such as
neuromodulatory and attention systems (e.g. de Gee et al., 2014;
Cheadle et al., 2014; Kelly and O’Connell, 2013). More practically,
studying decision making in humans is important because its neu-
ral underpinnings may differ between humans and over-trained
animals, because more elaborate decision making behaviors and
environmental contingencies can be examined more feasibly in
humans, and because in general, the advances made in primate
neurophysiology and theoretical neuroscience need to be bridged
to the basic study and diagnosis of psychiatric and neurological
disorders.

Human neurophysiological research on perceptual decision
making actually began in the 1960s, even before sequential sam-
pling models gained a wide foothold in the community. The
event-related potential (ERP) technique in particular, which offers
high temporal resolution, was recognized as holding promise in
isolating distinct processing stages intervening between stimulus
and response, and disentangling their individual contributions to
reaction time (RT; Woodworth, 1938; Hillyard and Kutas, 1983).
es underlying perceptual decision making in humans: Recent progress and
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One prominent component of the sensory-evoked ERP, the centro-
parietal ‘P300’ or ‘P3’, was specifically linked with making deci-
sions: it was found to be evoked exclusively by task-relevant
events requiring decisions (Sutton et al., 1965; Hillyard et al.,
1971; Rohrbaugh et al., 1974); it was larger for a given sensory
stimulus when detected than when missed (Hillyard et al., 1971;
Parasuraman and Beatty, 1980); and its timing varied closely with
RT (Ritter et al., 1972; Kutas et al., 1977; McCarthy and Donchin,
1981). These characteristics are in fact consistent with the theoret-
ical decision variable from a bounded accumulation process. How-
ever, a direct connection was not made with the sequential
sampling theories of decision making that were surfacing in math-
ematical psychology at that time (e.g. Link and Heath, 1975;
Ratcliff, 1978), and thus the dynamical properties central to the
function of a decision variable, such as evidence-dependent
buildup rate and a threshold-crossing relationship with reaction
time, went unexplored.

3.1. Functional imaging-based approaches

The more recent resurgence of interest in decision making in
humans has occurred alongside major methodological advances.
Most notably, functional magnetic resonance imaging (fMRI)
approaches have been developed, which afford the ability to local-
ize the discrete brain structures involved in decision making with
millimeter-level precision. fMRI provides a systems-level vantage
point over whole networks of active areas, and in this respect
can be seen to have a significant advantage over single-unit record-
ing techniques. Given their generality in human cognition, such
mapping of decision making processes is important to understand-
ing the functional organization of the brain more generally.

The initial fMRI studies that were based within the bounded
evidence-accumulation framework conducted simple contrasts
across stimulus categories in event-related designs (Josephs
et al., 1997) in order to narrow in on structures representing the
evidence, as distinct from those involved in decision formation
(e.g. Heekeren et al., 2004; Binder et al., 2004; Pleger et al.,
2006). Activations scaling with discrimination difficulty were seen
in sensory areas appropriate to the modality of the discrimination
in these studies. However, whether these signals definitively con-
stitute ‘‘sensory evidence’’ is uncertain because an influence on
the decision itself – as opposed to its correctness or difficulty –
was not demonstrated independently of physical stimulus factors.
Other imaging studies, which were primarily concerned with per-
ceptual choice-predictive activity in sensory cortices rather than
accumulation dynamics at higher levels, were able to identify true
sensory evidence signals according to this stricter definition by
examining perceptual error trials. For example, Ress and Heeger
(2003) examined simple contrast detection within the framework
of elementary signal detection theory, and demonstrated that near
threshold, V1, V2 and V3 activation was greater for false alarms
than misses, thereby correlating with the perceptual decision
reported by the observer while fully opposing the physical reality.
Similarly, activations in face-selective ventral occipital cortical
areas have been shown to be relatively elevated not just for cor-
rectly identified faces compared to incorrectly identified ones,
but also for stimuli of distinct categories that were misperceived
as faces (Summerfield et al., 2006; McKeeff and Tong, 2007). In line
with monkey neurophysiology studies (Britten et al., 1996),
Serences and Boynton (2007) showed that perceptual reports of
motion direction can be predicted from activation patterns in
hMT+, the human homologue of area MT, even for stimuli contain-
ing no net motion in any particular direction, again representing a
true sensory evidence signal that predicts perception indepen-
dently of the physical evidence itself. The latter study is particu-
larly significant for the current discussion, as it replicated
Please cite this article in press as: Kelly, S.P., O’Connell, R.G. The neural process
future directions. J. Physiol. (2014), http://dx.doi.org/10.1016/j.jphysparis.2014
previous work (Kamitani and Tong, 2006) in showing that a much
wider set of visual areas, including V1, V2, V3, V3a, V4 and the
intraparietal sulcus as well as hMT+, individually achieve robust
classification accuracies in multi-voxel pattern analyses (MVPA)
discriminating motion direction. Despite encoding significant
motion information for physically strong stimuli, none of these
areas could classify perceived direction in ambiguous displays at
anywhere near the level achieved with unambiguous motion,
except for area hMT+. This highlights the importance of distin-
guishing decoding operations from encoding in the definition of
sensory evidence – not all neural signals that appear to vary as a
function of task-relevant stimulus features are necessarily read
out by downstream systems controlling behavior (see also
Williams et al., 2007).

Decision variable signals have been sought even more inten-
sively, but are yet harder to identify using standard fMRI designs,
as low temporal resolution precludes the direct observation of crit-
ical dynamic aspects such as threshold-crossing effects. In lieu of
direct analyses of dynamics, comparisons across conditions based
on qualitative predictions regarding the decision process have
been conducted. Early fMRI studies relied on the assumption that
the amplitude of the BOLD response in a decision making region
should be greater for easy compared to hard discriminations
because more evidence is available on such trials (Heekeren
et al., 2004; 2006; Pleger et al., 2006). These studies have particu-
larly highlighted the role of the left dorsolateral prefrontal cortex
(DLPFC) which, unlike the effector-specific signals observed in
monkeys, is activated independent of the particular sensory or
motor requirements of the task (Heekeren et al., 2004; 2006;;
Pleger et al., 2006). However, the assumption that stronger evi-
dence – and hence steeper accumulation – leads to greater BOLD
activation is of uncertain validity, and the exact opposite predic-
tion has been employed by other investigators (Liu and Pleskac,
2011). The correct prediction critically depends on what the deci-
sion variable does once it has reached threshold – if it remains ele-
vated after reaching threshold until some fixed post-stimulus time,
then it would spend longer at a high level for earlier threshold
crossings and hence BOLD activation would be higher for stronger
evidence. In contrast, if the decision variable falls immediately to
baseline upon reaching threshold, then stronger evidence would
lead to shorter-duration ramps to threshold and hence smaller
BOLD activation (Liu and Pleskac, 2011). While LIP activity is
known to exhibit sustained elevation under conditions involving
a delay before responding (Shadlen and Newsome, 2001), the gen-
erality of this effect for decision variable signals housed outside of
LIP is unknown. Furthermore, it has been noted that even if
decision regions do activate in proportion with evidence strength,
similar relationships to task difficulty can be expected of other,
non-decision regions, such as those falling within the default-
mode network (Tosoni et al., 2008; Ho et al., 2009; Filimon et al.,
2013). Consequently, a number of studies have applied alternative
or additional criteria for classifying decision regions, such as earlier
onset latency for stronger evidence (Ho et al., 2009), greater activa-
tion for correct versus incorrect trials or covariation with reaction
time (Pleger et al., 2006; Binder et al., 2004), or significant effective
connectivity with putative evidence regions (Filimon et al., 2013).
Another innovative approach, designed to compensate for the poor
temporal resolution of MRI, has been to use tasks in which the sen-
sory evidence is gradually strengthened as the trial progresses and
then to identify regions whose BOLD response scales with the
evidence time course (Ploran et al., 2007; Ivanoff et al., 2008). As
perhaps could be expected given such a variety of methodological
approaches, there are broad inconsistencies in the literature in the
number and locations of areas implicated in decision formation.
For example, several of the more recent studies have failed to
observe any significant decision-relevant activation in the left
es underlying perceptual decision making in humans: Recent progress and
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DLPFC region initially identified by Heekeren et al. (2004), instead
implicating areas such as the posterior parietal cortex (Tosoni
et al., 2008), intraparietal sulcus (Kayser et al., 2010; Liu and
Pleskac, 2011), inferior frontal gyrus/sulcus (Filimon et al., 2013;
Liu and Pleskac, 2011) and insula (Ho et al., 2009; Liu and
Pleskac, 2011). A conclusive mapping of regions engaged in forging
a decision variable would require empirical validation of the
unique BOLD signal properties that they should exhibit. Methodo-
logical challenges notwithstanding, these fMRI studies have made
a valuable contribution to the field by highlighting candidate struc-
tures whose role in decision making is now being investigated
using complementary techniques (e.g. Philiastides et al., 2011).

A number of studies have sought to localize regions that specif-
ically contribute to top-down, strategic adjustments of decision
making behavior such as those required to emphasize speed versus
accuracy (Bogacz et al., 2010). Three closely timed studies (van
Veen et al., 2008; Ivanoff et al., 2008; Forstmann et al., 2008) used
cues to encourage subjects to be variously fast or accurate in the
upcoming perceptual decisions, and event-related analyses
revealed several regions exhibiting greater sustained activation
under speed emphasis than accuracy. While the studies differed
in the number of regions thus localized, most areas were associ-
ated with motor planning or preparation, and changes in the pre-
supplementary motor area (pre-SMA) and striatum were common
to all three. The sustained nature of the observed activation
changes has been interpreted as evidence that decision variables
may shift to higher starting points rather than terminate at lower
thresholds (Bogacz et al., 2010). However, caution is warranted
given that slow, sustained changes are naturally more detectable
than transient ones in the temporally broad BOLD response, and
because build-to-threshold dynamics cannot be directly observed
in these areas, it is difficult to say whether changes result from
adjustment of a decision formation process as opposed to the
encoding of abstract task instructions or more general task-set dif-
ferences such as alertness. The general problem of evoked signal
duration being confounded with signal amplitude in the BOLD
response has been noted as a particular concern in studying the
speed–accuracy tradeoff (van Veen et al., 2008; Bogacz et al.,
2010). Again, direct observations in monkeys are critical to guiding
the concrete predictions needed for fMRI experimental designs,
and at the same time, the comprehensive mapping afforded by
fMRI should guide the choice of homologous areas to record from
in monkeys. Establishing, for example, what happens to decision
variable signals in association and premotor areas after completion
of the decision will be critical for constructing the appropropriate
predictions and contrasts, and as we review later, this kind of infor-
mation can potentially come from human electrophysiology as
well.

A powerful general approach that is increasing in popularity is to
leverage principled quantitative models, such as the drift diffusion
model (DDM; Ratcliff, 1978; Bogacz et al., 2006) for two-choice dis-
crimination decisions, to constrain the search for neural activations
that play a role in the setting of important parameters for accumu-
lation, such as the boundary, starting-point or drift rate (Forstmann
et al., 2011; Turner et al., 2013). Such approaches not only borrow
from the theoretical decision signal characterizations of mathemat-
ical psychology, but also employ quantitative cognitive modeling
procedures developed in that field (e.g. Ratcliff and Tuerlinckx,
2002; Wagenmakers et al., 2007; Vandekerckhove and Tuerlinckx,
2008; Donkin et al., 2009). Forstmann et al. (2008) employed a
straightforward version of this approach, whereby a linear ballistic
accumulator (LBA; Brown and Heathcote, 2008) model was fit to
behavioral data on an individual basis to measure changes in
response caution (measured as the ratio between response criterion
and the highest possible start point) in a condition emphasizing
speed compared to one emphasizing accuracy, and this change in
Please cite this article in press as: Kelly, S.P., O’Connell, R.G. The neural process
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fitted criterion parameter correlated negatively across subjects
with the difference in activation in the striatum and pre-SMA.
Importantly, these correlations were only detectable for the LBA
parameter of response caution and not for simpler measures of
reaction time or accuracy considered individually, attesting to the
value of the model-based approach.

Model-based analyses are now being extended further such that
multiple decision model parameters are estimated on a single-trial
basis from behavioral data and subsequently used to form regres-
sors in general linear models of the fMRI data (van Maanen et al.,
2011), an approach that was championed by investigators of rein-
forcement learning and value-based action selection (e.g. Daw
et al., 2006; O’Doherty et al., 2007). These analysis approaches have
become increasingly integrative in their handling of behavioral
versus neural modeling, with recent hierarchical Bayesian model-
ing approaches allowing neural measures to be incorporated
directly into trial-by-trial behavioral fitting procedures (Turner
et al., 2013; Wiecki et al., 2013).

3.2. EEG/MEG-based approaches

Recent human neurophysiology (EEG and MEG) work has also
been conducted within the same decision making framework
based on sequential sampling of sensory evidence, and similar ana-
lytic approaches have also been applied. Despite having high tem-
poral resolution, EEG- or MEG-based approaches are limited by the
fact that temporally overlapping sensory, decision and motor sig-
nals – task-relevant or otherwise – overlap through global summa-
tion on the scalp and are thus hard to disentangle. This is especially
problematic in traditional ERP/EEG paradigms that use discrete,
sudden-onset stimuli since the time between sensation and action
is short and includes non-task-specific sensory onset responses.
Whereas blind source separation algorithms represent a popular
solution in many areas of cognitive neuroscience (Makeig et al.,
2004), the well-defined mechanistic framework of perceptual deci-
sion making has enabled the use of more task-specific, function-
ally-grounded data transformations. This is very well exemplified
in a line of EEG studies centered on face-car discrimination, which
employed a machine learning approach to derive a spatiotemporal
profile of activity that strongly discriminates between the relevant
stimulus categories (face versus car; Philiastides and Sajda, 2006)
and between different difficulty levels (manipulated by image
phase coherence; Philiastides et al., 2006). These authors identified
both an early (170 ms) and a late (300 ms) ERP component that
scaled monotonically between the extremes of an undistorted face
and an undistorted car (Philiastides and Sajda, 2006). Although
neither component was shown to predict decision outcome inde-
pendently of physical evidence as required by the stricter defini-
tion of sensory evidence, it was later shown that trial bins with
higher late component amplitudes within each stimulus coherence
level were associated with higher drift rates in a diffusion model fit
(Ratcliff et al., 2009). The latter study thus interpreted the late
component as ‘‘postsensory processing that ultimately provides
the decision-relevant evidence entering the diffusion decision
process.’’

As in neuroimaging work, a variety of other model-based
approaches have been applied to EEG/MEG data to identify neuro-
electric/neuromagnetic components that relate to stages of the
decision process. Van Vugt et al. (2012) extracted EEG signals bear-
ing the theoretical dynamical signatures of the decision variable by
constructing a set of stimulus-locked and response-locked regres-
sors in accordance with decision model predictions and applying
a general linear model in a similar way to event-related fMRI
designs. This analysis revealed spectral changes primarily in the
theta band as matching the dynamics of evidence accumulation.
A similar regressor-based analysis was employed by Wyart et al.
es underlying perceptual decision making in humans: Recent progress and
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(2012), but rather than using stereotyped temporal profiles (e.g.
ramp), these authors used regressors that distinguished between
incremental decision updating and basic sensory changes in visual
orientation across series of eight successive stimuli, in a task where
subjects judged whether cardinal versus diagonal orientations
dominated. They found that the weighting of each discrete stimu-
lus in the series as an input to the accumulation process fluctuated
in accordance with delta-band (1–3 Hz) oscillations. This is an
important observation because it implies the presence of addi-
tional neural processes that influence the read-out of sensory evi-
dence by the decision variable. Yet another model-based approach
is exemplified in the study of Hunt et al. (2012), who used a bio-
physically plausible attractor network model of the emergence of
a choice among competing action alternatives (Wang, 2002) to
identify and localize source-reconstructed MEG activity that
actively forges the choice, as distinct from that which merely cor-
relates with relative value. Though the choices in that study were
ultimately based on an integrated quantity of expected value
(incorporating visually indicated magnitude and probability), the
model process generalizes to, and indeed was originally rooted
in, decisions based on simple sensations.

3.3. Models and observations

The foregoing discussion illustrates a growing trend to closely
anchor noninvasive data analyses to principled quantitative mod-
els, an approach that is paramount to eventually achieving a con-
crete, mechanistic understanding of the processes by which
decisions are forged in the brain. This being said, it is important
to note that the usual caveats that have been continually acknowl-
edged in computational/theoretical neuroscience more generally
(Dayan and Abbott, 2001; O’Doherty et al., 2007; Heathcote et al.,
in press), apply to model-based cognitive neuroscience. Because
model-based analytic approaches rely on specific models and their
underlying assumptions, their validity is tied to that of the models,
and establishing the latter is a nuanced enterprise. Even within the
general class of sequential sampling models, a variety of mecha-
nisms have been proposed, and there is an ongoing tension
between parsimony (for economy of parameters) and comprehen-
siveness (for widely-achieved goodness of fit) among these alter-
natives (e.g. Reddi and Carpenter, 2000; Ratcliff, 2001, 2008;
Wagenmakers et al., 2004; Palmer et al., 2005; Wagenmakers
et al., 2007; Brown and Heathcote, 2008; Donkin et al., 2011;
Heathcote and Hayes, 2012). A cognitive model’s validity is typi-
cally assessed based on its ability to provide a good quantitative
account of behavioral data, but how unique the model is in provid-
ing as good a fit, and whether a model captures the reality of
underlying neural processes or remains an abstraction divorced
from this ground-truth, can be hard to clarify. In most model-based
analyses of noninvasive neural data, the data are essentially
viewed through the lens of the model, and strong assumptions
are implicitly imposed on the form, functional dependence and/
or interrelationship of the signals under study. Therefore, in con-
trast to animal neurophysiology, the signals themselves are not
directly observed in humans, and many core predictions of deci-
sion making models are assumed rather than tested.

An illustrative example is provided in recent work on the
speed–accuracy tradeoff (SAT). The DDM and other sequential
sampling models give elegant accounts of the SAT in terms of stra-
tegic shifting of decision boundaries (Ratcliff and Rouder, 1998;
Ratcliff and McKoon, 2008; mathematically equivalent to shifting
baselines in race models, see Bogacz et al., 2010). Modeling studies
indeed show that allowing only boundary separation, or an equiv-
alent distance-to-threshold parameter, to vary across speed/accu-
racy emphasis conditions provides a good quantitative fit to
behavioral data (e.g. Ratcliff and McKoon, 2008) and this principle
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has been exploited in model-based fMRI analyses that estimate
correlations between brain activations and model parameters
(Forstmann et al., 2008; van Maanen et al., 2011). However, it
remains to be determined what such correlations actually mean
– as O’Reilly and Mars (2011) have pointed out, the ‘‘latent’’ or
abstract parameters of cognitive models are invoked with the pri-
mary purpose of accounting for behavior, but it is not necessarily
the case that they reflect quantities or mechanisms that are
directly implemented in the brain. For example, a region whose
activation co-varies with a threshold parameter may relate to the
implementation of threshold adjustments in several possible ways:
by simply encoding it as an abstract task-relevant quantity; by
imposing a modulatory influence directly on the decision process;
by itself forging the decision variable and in doing so expressing
the adjustment; or through an indirect relationship involving sup-
porting processes that may happen to be either coextensive in time
or correlated in amplitude with the decision process.

Recently, intracranial single-unit recordings have provided a
more direct picture by examining how decision variable-encoding
neurons in the frontal eye fields (FEF) respond to varying levels of
speed pressure (Heitz and Schall, 2012). Contrary to the simple
boundary-lowering predicted by models like the DDM, the authors
observed that the level of neural activity reached at the decision
termination time actually increased with speed pressure, directly
opposite to the prediction of decreased decision threshold from
sequential sampling models. Moreover, these effects were accom-
panied by several additional adjustments, including a steeper
build-up rate of FEF neurons as well as lower-level changes in
the encoding of sensory evidence. Another recent study based on
recordings in LIP (Hanks et al., 2014) found evidence for not only
a shift in baseline activity but also a distinct evidence-independent
urgency signal that plays out dynamically during the decision pro-
cess. These findings serve to underline the fact that while behav-
ioral data can be comprehensively explained with minimalistic
computations, the neural implementation is likely far more com-
plex. They also highlight the fact that there is a growing bolus of
electrophysiological evidence that can and should be exploited in
fMRI analyses. At the same time, the findings in monkey studies
raise the important question of how parameter adjustments might
be made in humans who can receive explicit instructions on
speed–accuracy requirements through verbal instruction, and
whose decision process is adjusted in immediate response to
changing contingencies or instructions, rather than shaped
through extended conditioning.

The foregoing paints a somewhat uneasy picture of the situa-
tion concerning models, model-based analyses and direct observa-
tions. The very nature of noninvasive recording modalities
prevents direct observation in paradigms that invoke decisions of
the level of complexity associated with naturalistic human behav-
ior – which is one of the core motivating factors in doing human
research. But it is commonly overlooked that the degree to which
processes can be directly observed noninvasively does depend
inversely on the complexity of the task, and that certain very sim-
ple decisions, though perhaps not the most interesting in their own
right, can through their simplicity provide the means to observe
and test the elementary processes that form the core for a diverse
range of more complex behaviors.
4. Direct tracing of sensory evidence and decision signals

The success of studies using the random dot motion task of New-
some and colleagues (Newsome et al., 1989; Britten et al., 1992;
Shadlen et al., 1996) is a strong example of how very simple, com-
putationally tractable perceptual decisions can form a powerful
test-bed for investigating the root mechanisms of decision
es underlying perceptual decision making in humans: Recent progress and
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formation. Recent MEG work using versions of this task has demon-
strated that it is possible to observe build-up activity associated
with the formation of a decision relatively directly in humans, by
tracking the temporal evolution of noninvasively recorded signals
related to motor preparation (Donner et al., 2009; De Lange et al.,
2013). In a ground-breaking study of motion detection decisions
(Donner et al., 2009), it was found that the lateralization of beta-
band (12–36 Hz) activity over central scalp reflected the emerging
motor plan associated with a decision, and that it correlated with
the temporal integral of motion-induced gamma-band activity
localized to region MT on the basis of MRI (Donner et al., 2009).
De Lange et al. (2013) further demonstrated that pre-stimulus
fluctuations in the hemispheric lateralization of choice-selective
beta-band activity, whether spontaneous or evoked by informative
cues, predicted an observer’s eventual decision. The latter study
also showed that the rate of buildup of the beta lateralization signal
scaled with motion coherence when plotted as a function of time
leading up to the response.

In two recent studies, we used simple paradigm innovations to
enable parallel tracking of freely-evolving sensory evidence, deci-
sion variable and motor preparation signals (O’Connell et al.,
2012a; Kelly and O’Connell, 2013). Our general strategy to enable
such signal isolation was first and foremost to eliminate non-spe-
cific sensory responses typically elicited by sudden stimulus
onsets, by avoiding discontinuous intensity transients and instead
aligning evidence onset with a gradual or seamless transition in a
continuously ongoing stimulus. Second, following the logic of pre-
vious studies (Donner et al., 2009; De Lange et al., 2013; Forstmann
et al., 2008; Rinkenauer et al., 2004), we chose unimanual button
presses as the decision-reporting actions so that we could exploit
the well-characterized human neurophysiological signatures of
lateralized motor preparation reflected in the lateralized readiness
potential (LRP; see e.g. Coles et al., 1988) and spectral power
changes in the mu (8–12 Hz) and beta bands (approximately
15–30 Hz; e.g. Pfurtscheller and Lopes da silva, 1999).

We applied these design principles in both a gradual-change
detection task (O’Connell et al., 2012a) and a two-alternative
motion discrimination task (Kelly and O’Connell, 2013). In both
cases, we asked our subjects to perform the tasks under continuous
monitoring conditions, where seamless transitions into target peri-
ods containing evidence occurred intermittently once every 5–
13 s. This feature promotes long and variable reaction times by
increasing the influence of trial-to-trial fluctuations, and thus
Fig. 1. The centro-parietal positivity (‘‘CPP’’) exhibits the behavior of a theoretical ‘‘decis
predicting reaction time for detection of gradual targets. (A) During continuous viewin
sinusoidally-modulated sound (blue), a target, defined by a fixed, slow linear intensit
introduced. For both visual and auditory tasks, trials were sorted by RT and divided int
buildup (CPP) consistent with integration of the physical intensity change reflected in th
aligned (right) waveforms. Vertical dashed lines denote mean RT. (B) CPP in response
perturbation. These dynamics were also evident in motor-specific left-hemisphere beta
covert counting, the beta-band pattern was abolished in this case (latter effect not show
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enhances the ability to investigate the fluctuations themselves
(Kelly and O’Connell, 2013), as well as to definitively identify sig-
nals as sensory evidence and decision variable signals simply by
dividing trials by reaction time and decision outcome.
4.1. Continuous monitoring for gradual intensity changes

In the original version of our gradual-change detection task,
subjects continuously monitored an annular visual pattern that
flickered steadily at a fixed, relatively high frequency (20 or
21.25 Hz), indicating detection of intermittent, gradual, linear
drops in contrast via a right-hand button press (Fig. 1; O’Connell
et al., 2012a). The steady-state visual evoked potential (SSVEP;
e.g. Di Russo et al., 2007) elicited by the flicker should represent
the ‘‘sensory evidence’’ signal in this case, in that its amplitude
directly reflects contrast representation, the very variable that
the decision is based upon. Despite physically identical targets,
we observed systematic differences in SSVEP amplitude during tar-
gets as a function of reaction time, thus identifying the SSVEP as a
sensory evidence signal in the strictest sense described above (see
Section 2).

With the sensory evidence thus spectrally contained in a dis-
crete frequency, and motor preparation effectively cordoned-off
in lateralized motor-specific signatures, we were able to finely
trace the evolution of a relatively protracted decision process from
onset to commitment in the event-related potential. Specifically, a
centro-parietal positive potential (‘‘CPP’’) exhibited a gradual
build-up with a timecourse consistent with the temporal integral
of the evidence – i.e., well-described by a quadratic function as
compared to the linear evidence – and which built to an action-
triggering criterion in a way that precisely predicts the timing
and accuracy of decision reports (see Fig. 1a). As discussed above,
these are the critical properties that identify a decision variable
signal. Underlining its function as a dynamically-evolving accumu-
lator process, we were able to induce systematic perturbations in
its temporal trajectory mid-flight during decision formation by
briefly interrupting the linearly decreasing trajectory of contrast
during the target (Fig. 1b). Furthermore, when several target types
of varying detectability were interleaved, subjects sometimes
reported detection when in fact there was no physical evidence
present, and these false alarms were associated with a significant
build-up of the CPP (O’Connell et al., 2012a).
ion variable’’ in dynamically tracing cumulative visual and auditory evidence and in
g of a flickering pattern (red) or alternatively, continuous listening to an auditory
y reduction to an eventual obviously decreased level at 1.6 s, was intermittently
o three equal-sized bins. The centro-parietal ERP exhibited a gradual, accelerating
e sensory evidence signal, evident in both the stimulus-aligned (left) and response
to gradually increasing contrast-change evidence with and without a mid-flight

-band activity, but whereas the pattern persisted for the CPP under conditions of
n; see O’Connell et al., 2012a, from which these data have been re-plotted).
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Fig. 2. (A) Stimulus-locked CPP waveforms in response to coherent motion targets toward the left and right, exhibiting a gradual build-up whose rate is proportional to the
strength of coherent motion and which is invariant to the direction of motion. Misses (dashed) are clearly characterized by a failure of the decision signal to reach criterion.
There were sufficient trials only for analysis of misses at the lowest coherence. When viewed in a response-aligned average, the CPP terminates at a stereotyped level, as it
does in the contrast change task (Fig. 1; waveforms not shown here, but see Kelly and O’Connell, 2013). (B) Scalp topographies of the event-related amplitude between �150
and �50 ms relative to the manual response. The CPP clearly has an almost identical topography for the two directions of motion, although it is possible to see the smaller-
amplitude lateralized readiness potential more frontally, shifting in laterality depending on the motion direction and hence hand of responding. Replotted from the data of
Kelly and O’Connell (2013).
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4.2. Continuous monitoring for coherent motion

In a follow-up study we employed a continuous-monitoring
variant of the prototypical random dot motion discrimination task
(RDM; Newsome et al., 1989; Britten et al., 1992), in which observ-
ers watch a set of randomly moving dots within a circular aperture,
a subset of which coherently moves in one of two directions form-
ing the choice alternatives. A key advantage of this paradigm is
that sensory evidence can be finely manipulated by varying the
percentage of coherently moving dots (i.e. ‘‘coherence’’). In order
to achieve the same isolation of decision formation processes as
in the contrast-change detection task, we eliminated transient sen-
sory evoked potentials at evidence onset by introducing coherent
motion as a seamless transition from a preceding period of inco-
herent motion, rather than a sudden onset of coherently moving
dots. In this two-alternative task, subjects had to press a button
with their left hand upon detection of leftward motion, and with
the right hand for rightward motion, allowing readout of the direc-
tion of the decision in lateralized motor preparation signals. Again,
the CPP exhibited a build-to-threshold relationship to motion dis-
crimination decisions and crucially, its build-up rate increased as a
function of sensory evidence strength (see Fig. 2), thus establishing
another key defining property of the theoretical ‘decision variable’
of sequential sampling models. Further, as we had previously
shown for contrast change detection (O’Connell et al., 2012a),
missed targets that occurred reasonably often for the lowest coher-
ence level in this task were associated with a lower stimulus-
locked CPP amplitude (Fig. 2). This is consistent with the idea that
targets are missed when the decision variable fails to build all the
way to threshold.

4.3. Separate supramodal and effector-selective decision variable
signals

An intriguing aspect of the CPP is that it exhibits similar evi-
dence-dependent buildup dynamics irrespective of the motor
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requirements (button press versus counting), sensory evidence
modality (e.g. audition or vision, see Fig. 1a) or target defining fea-
ture (e.g. upward or downward intensity changes, and pitch
changes; and intensity change versus dot-motion discrimination;
see O’Connell et al., 2012a; Kelly and O’Connell, 2013). In other
words, it is fully supramodal. Empirical observations of build-to-
threshold decision signals in monkeys have been limited to pre-
motor structures, which initially led to a view that decisions are
made within an intentional framework where sensory evidence
is directly incorporated into an evolving motor plan (Gold and
Shadlen, 2007). How such a framework could support our general
ability to forge decisions in a flexible way, abstracted from the spe-
cific parameters of sensation and action, has drawn an increasing
theoretical focus, with many accounts positing that sensory evi-
dence can be represented at multiple levels of abstraction in the
brain (Cisek, 2012; Dehaene and Sigman, 2012; Freedman and
Assad, 2011; Bennur and Gold, 2011; Shadlen et al., 2008). Indeed,
fMRI studies have already highlighted specific brain regions that
are activated in a domain-general fashion during decision making
(Heekeren et al., 2008; Ho et al., 2009; Liu and Pleskac, 2011).
The CPP opens up the possibility to trace the finer dynamics of such
domain-general decision processes, and to access their critical
parameters (e.g. buildup rate and threshold) via simple neural sig-
nal measurements.

Alongside the CPP we found that hand movement-selective
motor preparation signals also exhibited many of the dynamical
properties of the theoretical decision variable. Specifically, left-
hemisphere beta-band activity decreased alongside the building
CPP during the intensity-change detection tasks, reaching a thresh-
old level immediately prior to response execution. Unsurprisingly
for an effector-selective preparatory process, the beta decrease
was abolished when there was no requirement to manually
respond. In our study of the RDM task, we also investigated the rel-
ative timing of evidence accumulation dynamics in effector-selec-
tive and supramodal decision signals. In place of beta-band activity
we analyzed the lateralized readiness potential (LRP) since it
es underlying perceptual decision making in humans: Recent progress and
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provides a read-out of limb selective motor preparation with iden-
tical temporal resolution to the CPP (Gratton et al., 1988; Eimer,
1998). We found that the buildup of accrued evidence at the
abstract level significantly leads the buildup at the motor prepara-
tory level (Kelly and O’Connell, 2013). These data offer a unique
insight into the temporal sequence of information processing dur-
ing decision formation, and suggest that decision variables residing
in effector-specific motor circuits such as those generating beta
changes and the LRP may be driven by a more central accumula-
tion process. A continuous flow of information from decision to
motor regions likely serves to enable faster sensorimotor transfor-
mations, as well as the adjustment or countermanding of ongoing
action (Selen et al., 2012).

Unlike the effector-specific motor preparation signals, the CPP
did not differ as a function of the direction of motion in the RDM
task. It rose over time with a positive polarity regardless of the
direction, and also showed the same scalp topography (see left
and right panels of Fig. 2). We hypothesize that supramodal accu-
mulator neurons that favor the distinct alternatives co-inhabit the
same region(s) in the brain and race against each other in the way
posited in accumulator models (Usher and McClelland, 2001;
Brown and Heathcote, 2008) and observed in LIP neurons
(Roitman and Shadlen, 2002). Though distinct populations are acti-
vated for each of the two decision alternatives, their projection on
the scalp would be identical because of this intermingled co-habi-
tation. Other possible explanations include that the CPP may
reflect the encoding of confidence rather than the decision variable
itself (Urai and Pfeffer, 2014). Thus, even the underlying cortical
signals generating the scalp-measured CPP may not hold any con-
tent regarding the impending decision outcome. However, the
threshold-crossing effect demonstrated in both the contrast-
change and dot motion tasks, where the CPP reaches a stereotyped
level for all evidence strengths and reaction time bins, would seem
inconsistent with this proposition since it is known that observers
do not tend to be equally confident of their decisions across speeds
and difficulty levels (Yeung and Summerfield, 2012). Further work
will be required to establish the intracranial origins of the CPP, per-
haps through the integration of simultaneous EEG and fMRI
recordings (see e.g., Philiastides and Sajda, 2007; O’Connell et al.,
2012b) or the combination of microelectrode recordings and elec-
trocorticography (see e.g. Whittingstall and Logothetis, 2009;
Cohen et al., 2009).

Taken together these data point the way to further human brain
experiments that can probe multiple levels of the sensorimotor
and decision architecture simultaneously, enabling interrelation-
ships among signals at these levels to be examined on a millisec-
ond time-scale. The ability to parse sensory, decision and motor
stages also holds great promise for clinical research. Decision mak-
ing deficits are seen in a range of psychiatric and neurological dis-
orders. Given that the deficits may manifest in very similar ways
(i.e. slower and more variable response times, diminished accu-
racy), a key challenge for researchers is to identify disease-specific
aetiological pathways by pinpointing the precise information pro-
cessing stages and computations that are impacted by specific
disorders.
5. The functional significance of the P300

An exciting additional aspect of the CPP is that it bears many
similarities to the classic P300 (alternatively labeled ‘P3’ or ‘P3b’)
component of the human ERP, including polarity, temporal coinci-
dence with response execution and contingency on task relevance,
and we showed that its topography and amplitude correlates with
that of the P300 across subjects (O’Connell et al., 2012a). The P300
has been the most intensively studied EEG signal across five
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decades, attracting huge interest due to its apparent ubiquity
across cognitive paradigms and its sensitivity to a diverse range
of clinical conditions including Alzheimer’s disease, dementia,
Parkinson’s disease, depression, attention-deficit hyperactivity
disorder, obsessive compulsive disorder and narcolepsy (Polich
and Criado, 2006; Rossini et al., 2007). Although early studies
established the sensitivity of P300 amplitude to factors such as
decision confidence (Squires et al., 1975) and peak latency to
stimulus evaluation time (Magliero et al., 1984), the mechanistic
nature of these links remained unclear and in the intervening
years, a consensus regarding the P300’s precise functional role in
decision making has not been reached. Current theories disagree
even on the question of whether the P300 emerges before or after
the decision process has been completed (Donchin and Coles,
1988; Kok, 2001; Nieuwenhuis et al., 2005; Verleger et al., 2005;
Polich, 2007). This uncertainty likely stems partly from the signal
overlap problem in typical discrete ERP paradigms, as well as the
classical view of each component as the culmination of a unitary
event (peak measurement) rather than as a dynamic process that
actively evolves from onset to peak.

If the CPP can be equated with the P300, then our findings point
to a mechanistic account of the P300’s role in decision formation.
Such a view also calls for a re-consideration of past findings per-
taining to the P300 and should guide future approaches to its mea-
surement. Traditionally the P300 has been measured in terms of
the latency and amplitude of its peak in a stimulus-aligned average
waveform. However, given that a decision variable signal should
under most circumstances be more tightly locked to the response
than to stimulus onset, stimulus-aligned peak amplitude and
latency will increase in inverse proportion to reaction time vari-
ability. In other words, as can be seen in Fig. 2, differences between
conditions or groups in stimulus-aligned P300 amplitude can arise
purely from differences in reaction time dispersion in the absence
of any change in threshold. This is an issue that only a few studies
have directly addressed (e.g. Poli et al., 2010; Saville et al., 2011;
Verleger et al., 2013). In addition, the problem of signal overlap
in discrete stimulus designs means that amplitude or latency dif-
ferences cannot be unambiguously attributed to changes in the
P300 process. Adopting paradigms that involve gradual evidence
changes may offer a solution to this problem for future studies.
Aside from potentially revealing the functional significance of the
P300, our results also highlight that measuring it solely in terms
of its stimulus-aligned peak amplitude and latency would provide
only part of the picture. We have shown that the P300 signal bears
a number of additional variable parameters that directly impact on
the timing and accuracy of decisions: (A) the latency of its onset
which marks the start of evidence accumulation, (B) its rate of rise,
indexing the rate of evidence accumulation, (C) its amplitude at
response execution, indexing the decision threshold and (D) its
peak latency on a single trial, indexing the time at which that
threshold is reached. The fact that each of these parameters can
be directly related to performance means that this recasting of
the P300 can contribute to a new and more precise understanding
of how clinical brain disorders and experimental manipulations
impact on decision making in humans.

The decision variable account of the P300 could also be infor-
mative in the ongoing investigation of the role of neuromodulatory
systems such as the Locus Coeruleus-Norepinephrine (LC-NE) sys-
tem in decision making. It has long been noted that the antecedent
conditions for eliciting phasic LC responses are highly similar to
those modulating the amplitude of two positive ERP components
occurring at approximately 300 ms following discrete stimuli
(e.g. Pineda et al., 1989; reviewed in Nieuwenhuis et al., 2005).
One of these components, the centro-parietal ‘‘P3b’’ equates to
the P300 we refer to above and thus may also equate to the CPP.
The other, ‘‘P3a,’’ is a more frontally distributed, earlier component
es underlying perceptual decision making in humans: Recent progress and
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elicited by salient oddball stimuli that are not necessarily task-rel-
evant but are novel. Although the CPP decision process bears a
clear relationship to only one of these two processes (it is absent
for irrelevant stimuli; O’Connell et al., 2012a), this link poses inter-
esting questions regarding the involvement of the LC-NE system,
whose importance for general attentional focus on tasks is well
known, in decision formation.
6. Summary and conclusions

In this review we have sought to highlight the many challenges
that researchers face when attempting to untangle the neural
mechanisms underpinning human decision making using non-
invasive recording techniques. A walk through the recent literature
reveals that through the combination of careful paradigm design
and the integration of data from multiple imaging modalities, sub-
stantial progress has already been made to overcome many of
these challenges and to close long-standing gaps between human
and animal research. Mathematical models have provided a vital
foundation for the field by generating hypotheses regarding the
mechanisms that are necessary for optimal decision making and
the parameter adjustments that are required to deal with changing
external and internal contingencies. However, much work is yet
required to establish the extent to which these models accurately
represent the underlying neural dynamics. A key lesson from
recent animal and human neurophysiology is that although behav-
ioral data can be comprehensively explained with minimalistic
computations including, for example, a single ‘‘decision variable’’
process, the practical implementation may be more complex and
distributed, with multiple neural signals interacting within and
across brain areas to play the role of the theoretical decision vari-
able, its inputs, its outputs and its modulators (Gold and Shadlen,
2007; Ding and Gold, 2013). This underlines the value in reciprocal
interactions between cognitive modeling and neural activity mea-
surements, as recently pointed out by some authors (Forstmann
et al., 2011). Neural waveforms measured in the context of para-
digms such as we have described can guide more specific, neurally
based specification of integrator mechanisms and evidence time-
courses compared to what is possible when dealing with the theo-
retical abstractions implicit in behavioral model fitting procedures.
The signals and techniques are now in place to enable experiments
that comprehensively probe the human brain’s perceptual decision
making network and that illuminate the precise site and nature of
influence of major factors such as prior information, speed/accu-
racy emphasis, value, attention, and practice.
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