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Transcriptional regulator PRDM12 is essential for human pain perception 
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Pain perception has evolved as a warning mechanism to detect tissue damage 

and dangerous environments1,2. In humans, however, undesirable, excess or 

chronic pain is a common and major societal burden for which medical 

treatments are currently suboptimal3,4. New therapeutic options have recently 

emerged from the study of individuals with “congenital insensitivity to pain” 

(CIP)5,6. We report CIP in 11 families in whom we identified 10 different 

homozygous mutations in the PRDM12 gene (encoding PRDI-BF1 and RIZ 

homology domain-containing protein 12). PRDM proteins are a family of 

epigenetic regulators that control neural specification and neurogenesis7,8. We 

determined that PRDM12 is expressed in nociceptors and their progenitors and 

participates in sensory neuron development in Xenopus embryos. Moreover, 

CIP-associated mutants abrogate histone modification potential associated with 

wild type PRDM12. PRDM12 emerges as a key factor for orchestrating sensory 

neurogenesis and may hold promise as a novel pain therapeutics target9,10. 

 

We ascertained two families compatible with autosomal recessive CIP (Fig. 1a). 

Mutations in the known causative genes for CIP11,12 and clinically similar types of 

Hereditary Autonomic and Sensory Neuropathies (HSAN IV, V)13-15 were excluded. 

SNP-array-based autozygosity mapping in the consanguineous Family A revealed a 

single concordant 11.5 Mb homozygous region on chromosome 9q33.2-34.13 (Fig. 

1a). Since this large interval contained almost 150 genes (Supplementary Table 1) 

we performed exome sequencing on the index patient of Family A and the unrelated 

singleton CIP patient from Family B. While exome sequencing of Family A yielded no 

potentially pathogenic variant in genes located in the autozygous region on 

chromosome 9, we observed a homozygous missense mutation in one of these 

positional candidate genes, PRDM12, in Family B (Fig. 1a and Supplementary Fig. 

1). We then performed Sanger sequencing of PRDM12 in Family A and identified a 

homozygous tri-nucleotide expansion of alanine codons from 12 to 19 in the terminal 

exon (Fig. 1a and Supplementary Fig. 1). In an independent approach, exome 

sequencing on two unrelated singleton families with genetically unclassified CIP, 

Family C and Family D (Fig. 1b), identified PRDM12 as the only gene that carried 

different bi-allelic missense mutations in both affected individuals (Fig. 1b and 

Supplementary Fig. 1). Subsequently, we screened PRDM12 in 158 individuals with 

autosomal recessive or isolated unexplained CIP or HSAN. We found seven further 
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unrelated index patients with homozygous PRDM12 mutations. The majority of the 

variants were missense mutations, however, one multi-affected family (J) had an 18-

alanine repeat mutation, one singleton patient (Family E) carried a frame-shift 

mutation and another singleton case (Family K) had an obligatory splice-site mutation 

(Fig. 1c and Supplementary Fig. 1). This study was approved by the National 

Research Ethics Service, NRES Committee East of England - Cambridge Central, 

the Munich University Medical Research Ethics Committee and Medical University of 

Vienna Ethics Committee. Informed consent was obtained from all study subjects. 

 

PRDM12 is a 5-exon gene encoding a single protein isoform of 367 amino acids 

containing a PR domain (related to the SET methyltransferase domain), three zinc 

fingers and a C-terminal poly-alanine tract (Fig. 1c). The point mutations were spread 

throughout the gene, altered strictly conserved protein residues and were predicted 

to interfere with normal protein function (Supplementary Fig. 2, Supplementary 

Table 2 and Supplementary Note). In all eleven families the PRDM12 mutations 

segregated as expected for recessive disease alleles (Supplementary Fig. 1). None 

of the point mutations was present in public SNP databases (1000 Genomes, Exome 

Variant Server, dbSNP138), and in the in-house exome datasets of the Helmholtz 

Zentrum München and Cambridge Biomedical Research Campus. These resources 

altogether allow interrogation of exome data of >20,000 individuals. We suspected 

that the tri-nucleotide expansions to 18 and 19 alanine codons in two of our families 

are deleterious as other recessive and X-linked poly-alanine expansion diseases 

known in man clinically manifest when the number of repeats exceeds >1516,17. We 

found that the PRDM12 poly-alanine length was polymorphic in the general 

population with a maximum of 14 alanines (Fig. 1d and Supplementary Fig. 3). This 

confirms that the Family A and Family J results are exceptional. 

 

The phenotype in the eleven PRDM12 families was largely consistent. Patients were 

unable to feel acute or inflammatory pain from birth and could not identify noxious 

heat or cold. Consequently, infants and children suffered from painless mutilating 

tongue, perioral and finger lesions due to repeated self-biting and sustained multiple 

injuries as the result of repeated trauma and burns that often went unnoticed (Fig. 

2a, Supplementary Note and Supplementary Table 3). Corneal reflexes were 

absent which led to progressive corneal scarring. Patients suffered from repeated 
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infections of skin and occasionally of bones and joints. In severely affected 

individuals, bone deformities and neuropathic joints were complications seen later in 

life. Notably, large fibre sensory modalities (light touch, vibration, proprioception) 

were normal whenever tested. Sweating and tearing occurred but were substantially 

reduced. The patients had no further evidence of autonomic dysfunction and sense 

of smell and hearing were normal. One family (J) had a milder phenotype with facial 

scratching, diabetes-like foot ulcers, and intact corneal reflexes, sweating and 

tearing. Heterozygote carriers were all asymptomatic and had normal pain 

perception. We studied nerve biopsies of CIP patients, done for diagnostic purposes 

several years ago, to evaluate peripheral projections of nociceptive sensory neurons 

(small myelinated Aδ fibres, normally innervating 30% of nociceptors, and 

unmyelinated C fibres, normally innervating 70% of nociceptors18). We observed a 

severe loss of Aδ fibres in the sural nerves of two patients while large calibre axons 

for other sensory modalities were largely unaltered (Fig. 2b). Quantitative and 

qualitative changes of C fibres could not be reliably determined in the nerve biopsies 

(as no suitable samples for electron microscopy were available19). Results from skin 

biopsies of two CIP patients suggested that at least the peripheral terminals of C 

fibres are affected as we observed a complete absence of nerve fibres crossing the 

basement membrane to innervate the epidermis (normally representing the terminals 

of nociceptors and thermoceptors18) while the subepidermal neural plexus as well as 

autonomic innervation of sweat glands appeared reduced in density but were grossly 

normal in morphology (Fig. 2c and Supplementary Fig. 4). 

 

Our clinical and histological findings suggest that mutations in PRDM12 cause a 

specific defect during the development of sensory neurons that become nociceptors. 

We therefore explored the expression of PRDM12 during mouse embryogenesis and 

in human pain neurons generated from stem cells. In mice, Prdm12 expression starts 

around embryonic day 9.0 (E9.0) in the neural folds which give rise to neural crest 

cells (Fig. 3a). The neural crest is a transient, multipotent, migratory cell population 

that develops into various tissues, including sensory ganglia that contain nociceptor 

cell bodies20. Prdm12 is prominently expressed in sensory spinal ganglia (dorsal root 

ganglia, DRG) but not in sympathetic ganglia during the time when sensory neurons 

are born (E10.5-E13.5), mature and differentiate (E14.5-P14)21 (Fig. 3b and 

Supplementary Fig. 5a). In addition, we demonstrated Prdm12 is primarily 
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expressed by neurons rather than satellite glial cells or Schwann cells in the DRG 

(Supplementary Fig. 5b). To assess PRDM12 expression during nociceptor 

development in human we differentiated inducible pluripotent stem cells (iPSCs) into 

nociceptor-like neurons22,23. PRDM12 expression began to increase from day 7 

commensurate with neural crest specification. Expression thence increased by more 

than 1,000 fold and peaked at day 9 (Fig. 3c). We further examined the 

electrophysiological properties of these cells after neuronal maturation, and 

confirmed recording of nociceptor-specific tetrodotoxin-resistant sodium current 

(Supplementary Fig. 6a,b). In addition, human embryonic stem cells (hESCs)-

differentiated nociceptor-like neurons also showed a robust induction of PRDM12 

expression during differentiation (Supplementary Fig. 6c). We also examined 

PRDM12 expression in human adult tissues and found no expression in any of these 

tissues except DRG (Supplementary Fig. 7). Taken together these findings are in 

accord with an essential function for PRDM12 during nociceptor neurogenesis 

(although we note that limited expression of PRDM12 has been observed in mice 

brain and in mice and zebrafish spinal cord8,24). A role of PRDM12 in neural 

embryogenesis is further supported by the study of Xenopus Prdm12 morphants. The 

knockdown resulted in irregular distribution of marker genes of cranial sensory 

placodes25 at late tailbud stage (stage 28) (Fig. 3d, Supplementary Fig. 8) 

suggesting PRDM12 is a universal vertebrate regulator of sensory neurogenesis. 

 

We next investigated the consequences of CIP-associated mutations on PRDM12 

protein function. PRDM12 is a nuclear protein with a diffuse, lace-like pattern. The 

missense mutations neither affect subcellular localisation nor protein expression, 

however the poly-alanine expansion mutation formed discrete, concentrated foci in 

the nucleus and cytoplasm and resulted in reduced levels of overexpressed PRDM12 

in transfected cells (Fig. 4a and Supplementary Fig. 9a,b). Expression levels of the 

poly-alanine expansion mutant were recovered upon proteasome inhibition (Fig. 4a), 

suggesting that the expansion causes aggregation of PRDM12 and renders the 

protein less stable and more susceptible to proteolysis, reducing its biological 

availability within the nucleus. Similar observations have been reported in other 

human pathogenic poly-alanine expansions16,17. PRDM12 is a member of a family of 

transcriptional regulators that participate in the control of vertebrate 

neurogenesis7,8,24-29. Unlike other PRDM family members, PRDM12 lacks intrinsic 
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histone methyltransferase activity and recruits the methyltransferase G9a (EHMT2) to 

di-methylate histone H3 at position lysine 9 (H3K9me2)30. Histone modifications have 

emerged as critical epigenetic checkpoints during neurogenesis31-34 and aberrant 

epigenetic mechanisms and defects in neuronal development are associated in other 

human diseases35-38. Therefore, we next investigated the effect of PRDM12 

mutations on H3K9me2. Overexpression of wild type PRDM12 robustly increased 

H3K9me2 in Xenopus neurula stage embryos while none of the CIP-associated 

missense PRDM12 mutants had such an effect (Fig. 4b). Also both wild type human 

and mouse PRDM12 strongly induced H3K9me2 in Xenopus embryos, despite that 

the mammalian orthologues differ by ~15% of amino acids from the frog protein. This 

supports impaired histone methylation capacity as the mechanism of CIP-causing 

PRDM12 missense mutations (Supplementary Fig. 10). Mechanistically, we found 

that the p.His289Leu mutation significantly reduced binding to G9a, whereas the 

other mutants bound normally (Fig. 4c and Supplementary Fig. 9d). The putative 

structure of PRDM12 implies His289 is one of the residues coordinating the zinc ion 

of the second zinc finger (Fig. 4c), which is required for G9a association30. The 

mechanism through which other PRDM12 mutants interfere with H3K9 di-methylation 

remains to be determined (Supplementary Fig. 9). Mutations of Ile102 and Trp160 

that are located in the core of the PR domain (Fig. 4d) are likely to alter the domain’s 

structure. Arg168 and Glu172 contribute to the surface of the PR domain. Since PR 

domains represent protein interaction modules39-42, mutations affecting these 

residues may alter protein-binding capability of PRDM12-PR. 

 

PRDM12 is essential for pain sensing in humans as pathogenic mutations cause 

congenital painlessness. Our data imply that the pathological mechanism is a loss of 

control of histone modification during critical points in nociceptor genesis, possibly via 

G9a or related factors34. Increasingly the pathophysiology of chronic and neuropathic 

pain has focussed upon epigenetic changes in the peripheral and spinal cord 

nociceptive circuits9,10. The histone modifying activity of PRDM12 suggests the 

possibility of developing novel methods of pain relief through reprogramming 

overactive nociceptors into pain-free states. 
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Methods 

 

Methods and associated references are available in the online version of the paper. 
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Figure Legends 

 

Figure 1 Identification of mutations in PRDM12. (a) In Pakistani multiplex Family A, 

SNP-based autozygosity mapping of four individuals (filled red circles) pinpointed a 

single candidate region on chromosome 9q33.2-34.13 (represented by rs-numbers of 

flanking SNP markers and a red bar next to the chromosome 9 ideogram). While 

exome sequencing of the index patient from Family A (open blue circle) yielded 

inconclusive results, one gene in the candidate region, PRDM12, harboured a 

candidate homozygous mutation in singleton Family B (filled blue circle). (b) Exome 

sequencing of patients from two singleton CIP-families, Family C and Family D (filled 

blue circles). PRDM12 was the only gene containing serious variants excluded from 

all databases (DB) on both alleles (AR model) in both affected individuals (Shared). 

(c) Schematic representation of the PRDM12 protein and distribution of mutations. 

Amino acid numbering is shown below. PR: PR domain; ZF: zinc finger motif. (d) 

Distribution of PRDM12 poly-alanine tract lengths within the general population (176 

individuals). 

 

Figure 2 Phenotype of patients with PRDM12 mutations. (a) Mutilations of tongue 

and lips, corneal opacity, scaring and mutilations of distal phalanges. Patients P17 

and P18 (Family J) represent a milder phenotype with sequelae of facial scratching 

and diabetes-like foot ulcer. Consent to publish images of the individuals was 

obtained. (b) Sural nerve biopsy specimens revealing selective loss of small calibre 

myelinated axons. Total number of myelinated fibres per area (1/mm2) was 4,692 

(P6), 4,438 (P10) and 9,609 (healthy control). Semithin sections, toluidine blue 

staining; scale bars: 20 µm. (c) Skin biopsies stained with pan-neuronal marker 

PGP9.5, CGRP (labelling a subpopulation of nociceptive primary afferents) and VIP 

(autonomic nerve fibre marker). While ample intraepidermal nerve endings (red 
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arrowheads) were observed in the biopsy from a healthy donor, nerve fibres did not 

cross the dermal-epidermal border (red dotted line) in the patient’s biopsy. Dermal 

CGRP immunoreactive nerve fibres were almost absent. Sweat glands were 

innervated by VIP immunoreactive fibres but at reduced density. Scale bars: 50 µm 

(two upper rows); 20 µm (third row). 

 

Figure 3 A role for PRDM12 in sensory neuron development. (a) Whole-mount in situ 

hybridisation of mouse embryos revealed early expression of Prdm12 in neural folds 

at E9.0 (filled arrowhead) which coincided with the earliest stage of neural crest cell 

delamination and migration (open arrowhead). Strong expression was observed in 

DRG at E10.5 (arrowheads). In situ hybridisation in a transverse spinal cord cervical 

section at E10.5 showed prominent Prdm12 expression in DRG. (b) RT-PCR 

analysis confirmed Prdm12 mRNA expression throughout the whole period of DRG 

development and sensory neuron differentiation (E9.5-P14) and in mature DRG 

(P56). (c) IPSC-derived sensory neurons express PRDM12 during neural crest 

specification. The iPSC differentiation generated cells expressing canonical markers 

of sensory neurons. The pluripotency markers reduced as cells underwent 

differentiation. PRDM12 expression was found to peak during neural crest 

specification (days 8-9). The schematic diagram illustrates the stages of development 

during the sensory neuron differentiation process. (d) Knockdown of PRDM12 by 

specific morpholino (Prdm12 MO) in Xenopus embryos causes irregular staining for 

markers of cranial sensory placode development, Ath3, EBF3 and Islet1. Embryos 

injected with Control MO or Prdm12 MO were analyzed at late tailbud stage (stage 

28) by whole-mount in situ hybridisation, yellow arrowhead: profundal placode, green 

arrowhead: trigeminal placode. Normal gene expression domains of cranial placodes 

(colored outlines) in Xenopus laevis are shown in the schematic drawing above 

(lateral view, late tailbud stage, modified from25). The results were categorized and 

quantified (n > 46 alive embryos per condition). Statistical differences between 

Control MO- and Prdm12 MO-treated embryos are indicated: *** P < 0.001 (two-

sided Mann-Whitney U test). 

 

Figure 4 Functional characterisation of PRDM12 mutants. (a) Human HA-PRDM12 

poly-alanine expansion mutant protein showed lower expression levels in COS-7 

cells than the wild-type (quantified by normalising PRDM12 signals to α-tubulin and 
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GFP (transfection efficiency control)), and that was recovered upon MG132 treatment. 

The transfected mutant also formed aggregates in the nucleus and cytoplasm in 

HEK-293T cells. (b) Animal cap cells from Xenopus embryos were co-microinjected 

with Myc-Prdm12 (wild type and mutants), Wnt8 and Chordin mRNA and cultured 

until mid-neurula stage (stage 15). Wild-type PRDM12 induced robust di-methylation 

on H3K9 but CIP-associated missense mutants were functionless. (c) Myc-PRDM12 

and FLAG-G9a were expressed in COS-7 cells (Input) and immunoprecipitated using 

anti-Myc antibody (IP: Myc). Compared to wild type PRDM12, the p.His289Leu 

mutation interferes with the PRDM12-G9a interaction. PRDM12 ΔZF is an artificial 

mutant lacking zinc fingers and served as a control. For quantification, bound G9a 

was normalised to PRDM12 protein amount in the IP fraction and the G9a protein 

amount in the cell lysate. The structural model for the PRDM12 zinc finger domains 

suggested that His289 (orange) is one of the residues (cyan) that coordinate the zinc 

ion. (d) Mutation-altered residues Ile102 and Trp160 (orange) in the PRDM12-PR 

domain are located in the core of the protein where they make hydrophobic 

interactions with other residues, sidechains shown in cyan. Introduction of a polar 

side-chain (p.Ile102Asn) or a disulfide bond partner (p.Trp160Cys) into the 

hydrophobic core is expected to affect the structure of the PR domain. The graphs in 

(a), (b) and (c) represent mean values of n independent experiments (biological 

replicates), and error bars represent SD. Statistical differences between control (wild 

type) and PRDM12 mutants are indicated: ns, not significant; * P < 0.05; ** P < 0.01; 

*** P < 0.001 (Welch’s t-test). 
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