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Abstract

This thesis is concerned with the problem of tracking active speakers using audio and video

data. Particular focus is placed on the task of tracking the current active speaker in a lecture

room environment using multiple cameras and multiple microphones. A database of lecture

recordings corresponding to this scenario from the European Integrated Project, Computers in

the Human Interaction Loop (CHIL) is used to support work presented throughout the thesis.

Within the lecture room environment, the problem of extracting reliable audio and video

based features for detecting people is explored. In the audio domain, the use of time-delay

estimates from multiple pairs of microphones is examined for localising active speakers. Fun-

damental limitations on localisation accuracy using this approach are also discussed. In the

video domain, background modelling, face detection and skin colour detection are considered

as candidate features for the visual detection of people. A new skin colour model is introduced

which models for the non-linear dependence of skin-tone on luminance and is shown be effective

in modelling skin colour under low illumination. Following the evaluation of audio and video

features for locating people, a review of existing techniques which aim to fuse audio and video

information for tracking is presented.

This thesis makes two critical analyses in relation to the joint audio-video based localisation

problem. The first analysis examines the expected accuracy of audio-based localisation using

multiple microphones and video-based localisation using multiple cameras. Within this analy-

sis, the theory of estimating localisation uncertainty for both localisation techniques is unified

under a common framework. Using this, single modality localisation is compared to localisation

through different audio-video based fusion strategies. The different fusion strategies evaluated

are the fusion of audio and video location estimates in the positional domain, the audio domain

and the video domain. For each of these fusion methods, it is found that little is to be gained in

terms of localisation accuracy through a fusion based approach, in comparison to the accuracy

of single modality video-based localisation.

The second critical analysis made in this thesis evaluates the localisation performance of

a configuration of microphone arrays in a lecture room. Theoretical bounds on the accuracy

of time-delay estimates obtained using the microphone arrays are employed in this analysis.

A theoretical bound on the accuracy of localising an active speaker is developed to include

important aspects influencing localisation performance such as, the signal-to-reverberant ratio

and the speaker and microphone directionality characteristics. It is argued that the sub-optimal

placement of microphone arrays results in poor localisation performance. The configuration

of microphone arrays in the CHIL lecture room is taken as an example case to demonstrate

this point. A novel algorithm is proposed which uses simulated annealing to automatically

determine the optimal placement of microphone arrays to minimise localisation uncertainty.

The effectiveness and practicality of the proposed algorithm is shown for a number of example
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scenarios which consider minimising localisation uncertainty over user defined presenter and

audience areas.

Finally, in this thesis a new joint audio-video based algorithm is introduced for tracking the

current active speaker in a multi-camera and multi-microphone lecture recording. This algorithm

differs from traditional approaches to combining audio and video for tracking in that audio and

video based location estimates are not fused in a statistical sense. Instead speakers are detected

using video data alone and this information is used to guide an audio-based localisation system

which tracks the active speaker. The previous analyses examining localisation accuracy and

microphone array performance are used to motivate this approach. The algorithm is proposed as

part of a complete system entitled Voxel-based Viterbi Active Speaker Tracking (V-VAST) which

reduces a multi-view recording of a lecture to a composite single view presentation consisting

of a user defined main view and an automatically inserted view of the current active speaker.

The algorithm operates offline and is proposed as a post-production tool for creating a suitable

lecture video for presentation over the Internet in eLearning applications or for the purpose of

archiving. The tracking accuracy and performance of V-VAST in obtaining a suitable view of

the current active speaker is demonstrated on the lecture recordings of the CHIL database.
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1
Introduction

Continuing advancements in technologies for transmitting multimedia over the Internet, opens a

gateway for universities to expand their campus beyond its physical limits and to start offering

educational content online. Recently, universities have begun to try and avail themselves of

this new opportunity, which is changing the landscape of traditional education. New methods

of teaching through this medium are evolving to meet the growing demands of students who

desire greater flexibility in education. This has seen the emergence of web-based course content

focused towards supplementing normal face-to-face lectures or facilitating distance education and

on-demand learning. This represents a new avenue in education popularly known as eLearning.

Within eLearning, two predominant categories exist: synchronous and asynchronous. Syn-

chronous eLearning refers to the live presentation of educational content such as the streaming

of multimedia to a remote user. The aim is to provide the user with an equivalent learning

experience to that of the in-class participant such as, for instance, the opportunity to interact

and ask questions. For many universities the ultimate goal in their eLearning ambitions is to

enable students to attend lectures remotely using the Internet in a synchronous manner. How-

ever, few have the infrastructure to support this and network technologies have still not reached

sufficient bandwidth capabilities to communicate all the necessary audio, video and additional

multimedia.

In contrast to synchronous eLearning, asynchronous eLearning is concerned with the pre-

sentation of educational resources in an offline manner where the material is not viewed live,

but on-demand. Recording lectures and providing them online for asynchronous viewing is a

more realistic option for universities at present in comparison to the synchronous alternative,

1



2 Introduction

since it is possible now through existing technology. Presently, many universities offer recorded

lectures online through partnerships with Apple iTunes U [11] or Google’s youtube EDU [67].

In addition to this, some universities even maintain their own video-on-demand servers supply-

ing recorded lectures such as, Princeton University’s WebMedia [149], University Cambridge’s

CamTv [28], Massachusetts Institute of Technology’s OpenCourseWare [127] and University

California Berkley’s WebCast [185]. As an asset to students for learning, the ability to access

recordings of lectures is highly valued since it augments the learning experience and can im-

prove student performance [81, 158]. It is not surprising therefore, that the demand for such

asynchronous online lecture content is ever increasing [142].

Recording lectures and making them available online requires a significant amount of ef-

fort and commitment on a university’s behalf. Commercially available systems exist such as,

Panopto’s CourseCast [145], Sonic Foundary’s MediaSuite [173], Echo360’s EchoSystem [49] and

Tegrity Campus [181] which enable lectures to be captured automatically without the need for

any technical expertise. Some universities have even developed their own systems for lecture

capture such as the eClass system used by Georgia Institute of Technology [81]. In general,

these systems require the presenter to remain within the field of view of a fixed camera re-

stricting their movements to a small area. Student opinions have shown that restricting the

presenter’s movements can significantly reduce the perceived classroom experience [130]. One

commercially available system which places less constraints on a presenter’s movements is Au-

toauditorium [112]. This is a purely vision based system for tracking the presenter over a large

area. The system however is specifically designed for tracking the presenter and does not suf-

ficiently address the task of tracking audience interactions. This is a current limitation since

interaction from an audience is a significant element of many lecture presentations. The ulti-

mate goal in the production of video lectures for viewing offline, is to convey exactly that of the

in-classroom experience. In-class participants have the freedom to visually follow conversational

interactions. If this aspect of a lecture is not conveyed in a recording, the offline viewer’s learn-

ing experience is reduced in comparison to that of the in-class participant. Furthermore, it is

the opinion of professional video producers that lecture recordings which visually capture both

the audience and the presenter offer a more enjoyable viewing experience than recordings which

simply capture the actions of the presenter [150].

In most cases, the only alternative for universities to adequately capture all the necessary

elements of a lecture without restricting the presenter’s movements, is to employ a manual

camera operator. Professional lecture capturing is expensive and for most universities it is an

unrealistic option. Usually, an amateur camera operator is responsible for capturing the lecture

which can often result in poor camera operation resulting in poor lecture recordings. This is

unacceptable, since the quality of the recorded lecture, in particular, how well the presenter is

framed, influences how well it is accepted by students [119]. In addition to this, the use of a

human camera operator can hinder the learning experience of in-class participants where given

the option, some means of automated capture is preferred since it is less distracting [122].
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What is needed therefore, is an intelligent unobtrusive system for automatically capturing

all aspects of a lecture. By unobtrusive it is meant that the system does not influence how the

lecture should be conducted in order for the capture to be successful. The lecture should be

able to proceed under normal circumstances and not be affected in any way by the capturing

system. Clearly an important component of such a system is the ability to track the position of

the current active speaker. This is important because it is normally the case that the focus of

communication in a lecture is at the position of the current active speaker.

In recent times, more intelligent automated lecture capturing systems have begun to emerge

for automatically capturing lectures such as Microsoft’s lecture capture system [27]. This system

represents one of the most sophisticated automated lecture capturing systems in use. This

particular tracking algorithm relies on data from two cameras and a microphone array. One

camera is focused on the presenter and the visual data from this camera is used specifically for the

tasks of tracking the presenter and appropriately capturing the presenter’s actions. The second

camera which the system employs is assigned to the task of visually capturing the audience

members. Individual audience members are located when they ask questions by using the audio

data captured at the microphone array. Only the audio data is used to locate audience members

who are speaking and this information is used to direct the audience camera to the person who is

speaking. As will be highlighted in this thesis, accurate and reliable audio-based localisation can

be notoriously difficult to achieve in lecture room environments. A system which relies on audio

data only to locate speakers is likely to be unreliable. The designers of the Microsoft lecture

capturing system acknowledge this and highlight this point as a significant limiting factor in their

system’s ability to accurately and consistently capture questions from audience members [27].

Recently however, researchers have begun to examine combining audio and video based

measurements for tracking. The basic idea in this approach is that both audio and video can be

used to complement each other when applied to tracking and improved reliability and accuracy

can be achieved. This thesis is concerned with the combined use of audio and video for tracking.

More specifically, this thesis is concerned with using both audio and video for tracking the

current active speaker in a lecture room environment. The motivation for this work is the

development of automated systems for capturing lectures and creating lecture recordings suitable

for presentation over the Internet in eLearning applications for the purpose of archiving.

1.1 CHIL Database

The scenario which is considered is that of tracking the current active speaker in a lecture

which has been passively recorded using multiple cameras and multiple microphones. A suit-

able database of lecture recordings made under these conditions called the Computers in the

Human Interaction Loop (CHIL) 2005 evaluation database is considered throughout this thesis.

These recordings were made during the CHIL project [30], which was an Integrated Project (IP

506909) jointly coordinated by Universität Karlsruhe and the Fraunhofer Institute IITB under
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the European Commission’s Sixth Framework Programme. It began in 2004 with the objective

to “create environments in which computers serve humans who focus on interacting with other

humans as opposed to having to attend to and being preoccupied with the machines themselves”.

The main focus in this project was towards the office and lecture room scenario. Over

the course of the project until it ended in 2007 several evaluations were conducted to examine

various technologies in a broad range of tasks including audio-based and video-based tracking;

joint audio-video based tracking; speech and person recognition; gesture recognition; automated

transcription; activity detection and audio-visual Scene Analysis. These evaluations began with

the first evaluation campaign in 2004 and each year after until 2007. For each evaluation

a specific evaluation package of annotated audio and video recordings complete with specific

metrics and ground truth for each concerned task were created. These packages have recently

become available through the European Language Resources Association [50].

Relevant to the lecture scenario of interest to this work is the 2005 evaluation package. Within

this package is a set of multi-channel audio and multi-camera video recordings of five seminars

made at ISL, Universität Karlsruhe in November 2004. The multi-channel audio data consists

of various different 44.1kHz recordings including a 64-channel microphone array; 4 T-shaped

microphone arrays of 4 microphones each; 5 single table-top microphones and a close-talking

microphone. The video data consists of 15fps recordings from 4 cameras positioned in each of

the four corners of the seminar room. A sample of the four camera views of a seminar recording

and an illustration of the sensor layout within the CHIL lecture room is shown in figure 1.1.

1.2 Thesis Outline

The following outlines the structure of the thesis,

Chapter 2: Joint Audio-visual Active Speaker Tracking

A review of audio and visual features useful for tracking active speakers is presented in chapter

2. In the audio domain, features arising from the capture of a speech source signal by multiple

microphones are described. It is examined how these can be used in localising a speech source.

The challenges faced in a lecture room environment such as room reverberations and fundamental

limitations in achieving accurate and reliable localisation are discussed.

In relation to the video data, some suitable simple features for detecting active speakers in

a lecture room environment are presented. In particular, skin colour modelling is examined for

use in detecting faces. A new skin colour model is introduced which demonstrates improved skin

detection by modelling the non-linear dependence of skin tone on illumination.
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(a) Sample frame from camera 1 (b) Sample frame from camera 2

(c) Sample frame from camera 3 (d) Sample frame from camera 4
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(e) The setup of the four cameras and four T-shaped micro-
phone arrays of the CHIL room.

Figure 1.1: Sample frame from the sequence seminar 2004 11 11 C segment1 of the CHIL 2005
evaluation package and also an illustration of the layout of the 4 T-shaped microphone arrays
and 4 cameras within the room.
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Chapter 3: Audio and Video Features for Active Speaker Localisation

In this chapter, a Bayesian framework for active speaker tracking using audio data is established.

Audio-based tracking filters are reviewed in reference to the presented probabilistic framework.

Consideration is given to persistent problems in tracking such as motion modelling and the chal-

lenge in choosing suitable models for motion. It is shown how the presented tracking framework

can be easily extended to include video information. Existing joint audio-video based active

speaker tracking techniques are explored within this framework and common strategies for the

fusion of audio and video information are described.

Chapter 4: Analysis of Audio-Visual Source Localisation Accuracy

This chapter compares the performance of audio-based localisation using multiple microphones

and video-based localisation using multiple cameras in a typical lecture room. Also examined

is the accuracy of localisation through the fusion of the estimates from both modalities. In the

evaluation, the task examined is that of localising an audio-visual source along a 3D track.

Within this chapter, the theory of uncertainty propagation for estimating the localisation

accuracy through multiple cameras and multiple microphones is unified under a common frame-

work. It is through the use of this theory that the comparative analysis of localisation accuracy

is made. It is shown that audio contributes little in terms of accuracy when fused with video

for localisation.

Chapter 5: Optimal Microphone Placement

This chapter explores the effect of microphone array positions on the expected accuracy of

audio-based localisation. A simulated annealing based algorithm is introduced for automat-

ically optimising the positions of the microphone arrays. The analysis is presented from a

theoretical viewpoint. The work draws on existing mathematical theory defining lower bounds

on localisation accuracy in a reverberant environment. These bounds are further developed to

include important aspects which influence localisation performance such as the relative angles

between the speakers and the microphones. The CHIL lecture room is examined for a hypo-

thetical lecture scenario and the expected localisation accuracy for the given microphone array

setup is examined. Using this example, the usefulness of the proposed algorithm for optimising

the microphone array positions is shown.

Chapter 6: Voxel-based Viterbi Active Speaker Tracking V-VAST

This chapter presents a new audio-video based algorithm for tracking the current active speaker

in a multi-view recording of a lecture. The algorithm is proposed as part of a system called Voxel-

based Viterbi Active Speaker Tracking (V-VAST) which creates a composite single view video

sequence of a multi-view lecture recording. The composite view video sequences created, consists
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of a user defined main view and an automatically segmented view of the current active speaker.

V-VAST operates off-line as a post production step applied to multi-view lecture recordings.

In visually segmenting the active speaker from the multiple views available, V-VAST aims to

extract the best view of the active speaker which is defined as the view in which their face is most

visible. The algorithm is extensively tested on multi-view lecture recordings from the CHIL 2005

evaluation database demonstrating consistently accurate and reliable tracking performance.

Chapter 7: Discussion & Conclusion

The final chapter of the thesis provides a summary of the main results and discusses their

relevance and significance. Future work and future directions for audio-visual active speaker

tracking are also suggested to the reader.

1.3 Contributions

The contributions offered by the work in this thesis are summarised in the following.

• A new skin colour model is presented which models for the non-linear dependence of skin-

tone on luminance.

• The analysis of localisation uncertainty in multi-camera and multi-microphone systems is

unified under a single framework

• A simulated annealing algorithm is introduced for determining the optimal positions of

multiple microphone arrays for minimising localisation uncertainty.

• A new audio-video based active speaker tracking algorithm called V-VAST is proposed for

generating a composite view video sequence from a multi-view lecture recording.

1.3.1 Publications

Some of the above works and others arising from this thesis have appeared in the following

publications.

[39] D. Kelly, F. Boland. Motion Model Selection in Tracking Humans. Irish Signals and

Systems Confonerence (ISSC), pages 363-368, 2006.

[40] D. Kelly, F. Pitié, A. Kokaram, F. Boland. A Comparative Error Analysis of Audio-

Visual Source Localization. In Workshop on Multi-camera, Multi-modal Sensor Fusion

Algorithms and Applications M2SFA2) in conjunction with 10th European Conference on

Computer Vision (ECCV), 2008.
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[41] D. Kelly, F. Boland, Optimal Microphone Placement for Active Speaker Localization. In

8th IMA International Conference on Mathematics in Signal Processing, Cirencester, Eng-

land, UK, Dec. 16th-18th 2008.



2
Audio and Video Features for Active Speaker

Localisation

In this chapter, a review is presented of different audio and video based features which can

be used for localising active speakers. The first section of this chapter examines audio-based

features. In the audio domain, the specific use of multiple microphones for localising active

speakers is examined. Numerous features arise from the capture of a speech source by multiple

spatially separated microphones, which can be used to locate the source. An overview of these

features is presented and how they can be used in localising active speakers is described. Also

discussed, are aspects of the lecture room environment such as its acoustic properties which

fundamentally limit the accuracy and usefulness of these localisation methods.

The second section of this chapter is dedicated to the analysis of visual features for detecting

people using cameras. The multi-camera localisation problem is considered. In addition to the

difficulties presented by the multi-camera scenario, the challenges of detecting people reliably

in lecture rooms are explored. A new skin colour model is introduced for use in detecting face

regions within a scene which is employed later in the V-VAST tracking algorithm introduced in

chapter 6.

This chapter also acts as background to chapter 3 which analyses the combination of audio

and video features for tracking. It is not the aim of presented material in this chapter to be

exhaustive. Instead, it focuses on introducing the localisation problem, basic terminology and

feature extraction techniques which will be referred to in later chapters.

9
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2.1 Audio Features

Humans like many animals in nature posses the innate ability to locate sound sources in three-

dimensional space. This is achieved through binaural hearing whereby spatial information is

extracted from the sound source received at the two ears. This task is performed with relative

ease, often in very noisy environments and even in the absence of sight. In many applications;

particularly those which aim to interact with or serve people, the ultimate goal is to fully

replicate the binaural hearing ability observed in nature. Research efforts over several decades

have been dedicated to examining how such spatial information can be extracted from audio

signals using multiple microphones.

Up until now this has not been achieved, as many aspects of how humans achieve binaural

localisation remain unknown. What is presently known however, is that in locating acoustic

sources, humans rely on at least two spatial cues. These cues arise due to the spatial separation

of the ears causing sounds to be received at the ears, at different points in time. This results in

a relative time delay between the two received sounds known as the interaural time difference.

The second cue which humans use which is also due to the spatial separation of the ears, is the

relative difference in the intensity of the sound received by each ear. This cue is known as the

interaural intensity difference or interaural level difference.

Using two spatially separated microphones, one can aim to localise an acoustic source by

extracting similar spatial cues from a source signal received by the microphones. The micro-

phones can be used to indicate the sound intensity observed at their positions in a room. Both

this cue and the relative time delay between the received signals can be used to indicate the

direction of the source to the microphones. Indeed, this analysis is not restricted to just two mi-

crophones but multiple pairs of microphones and arrays of microphones can be used in achieving

the localisation task.

In the following sections, the use of multiple microphones for audio-based localisation is

described. It is examined how the time-delays between multiple microphones and the differences

in sound intensity observed by multiple microphones can be used to localise acoustic sources.

The presentation will focus in parts on the general problem of localising acoustic sources. Of

course, in this thesis the acoustic source will correspond to an active speaker. Where describing

an active speaker simply as an acoustic source is too general, specific problems relating to active

speaker localisation will be addressed.

Room Acoustics

When a person speaks, their vocal tract vibrates, which introduces a sound wave into the

surrounding medium. The rate at which this vibrating energy is converted into sound energy is

defined by the sound power P (Watts). We are intuitively familiar with the concept of loudness

in relation to sound sources. Loudness however is subjective, based on perception and is not

directly measurable by microphones. Although not a measurable quantity, what is perceived
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as loudness is related to the sound power P produced by the source. A 10W sound source for

instance, will produce a sound which will be perceived as louder than a 1W sound source.

Sound Intensity

The perceived loudness of a sound is not only dependent on P but also the distance to the source.

A sound source that is heard close to its source appears louder to a listener than the same sound

heard from far away. The measurable quantity which relates loudness to the distance from the

source is the sound intensity. The intensity of a sound at a particular point within a room is

determined by the sound power P and also by effective area over which P is dispensed. If an

omni-directional source is assumed; that is, one which propagates sound waves equally in every

direction, then P is dispersed over a spherical region. The area of this spherical region is equal

to 4�r2 where r is the distance of the sound source to the point where the sound intensity is to

be measured. It is important to note that sound intensity is a vector quantity. It is common

for sound intensity to be measured perpendicular to the effective spherical area of P . This

convention is also maintained in this thesis when referring to sound intensity and is denoted as

the one-sided (one-direction) sound intensity. By this, the sound intensity Id at a distance r

from a source is defined as [73, Chapter 5], [4, Chapter 6],

Id =
P

4�r2
(2.1)

This states that the observed sound intensity is inversely related to the distance to the source

(r) squared. This is known as the inverse square law of sound propagation.

2.1.1 Propagation of Sound in Rooms

Once a sound is introduced into a room it propagates as a wave, which in a normal room will

travel at a speed of 343ms−1. As a wave, it is subject to all forms of wave distorting phenomena

such as refraction, diffraction, interference and reflection. The actual room environment; its

contents and structure, will dictate whether all or only some of these distortions are observed.

Such factors will also dictate the extent of these distortions. In the lecture room environment

concerned in this thesis, the presence of people, desks, chairs and structures such as walls mean

that all the mentioned wave distortions are likely to be observed. As a result, the sound observed

by a microphone at any point in the room will be different to that of the emitted sound.

Reverberation

Of the mentioned environmental distortions of a sound wave, the most detrimental to the lo-

calisation task is that due to reflections. These reflections represent echoed sound waves which

build up over time and slowly decay once the source sound stops emitting. This phenomenon is

known as reverberation. The rate of decay of the reverberant sound is dependent on how well
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or poorly surfaces within a room can absorb sound energy. Highly reflective surfaces within a

room lead to a highly reverberant environment. The consequence of multiple reflected sound

waves corresponding to the source is that it is difficult to discern the true sound wave from that

of its reflections. Effectively, reverberation results in multiple “virtual” source locations from

which the true source localisation must be determined.

A Model of Sound Propagation

It is common practice to apply a systems based approach to model the distorting effects of a

room on an emitted sound wave. In this approach, the room is modelled as a system with an

input corresponding to the sound source and an output corresponding to the distorted sound

wave. In relation to the acquisition of a sound wave by a microphone, we will consider the

output of the system model as that observed by a microphone placed within the room.

A complete system model should reflect all of the relevant factors which influence the prop-

agation of a sound wave from the source to the microphone. In addition to the distortion

enforced on the signal by the acoustic room environment, other issues affect the signal received

by the microphone. A speaker does not typically adhere to the omnidirectional sound source

model [89,93,189]. In general, the intensity of the direct path (i.e. path between the source and

the microphone) will be dependent on the angular orientation of the speaker to the microphone.

For example, the observed sound intensity in front of a speaker will be greater than that observed

behind the speaker. The property of the source which defines this is the source directionality

characteristic of the speaker. In a similar manner, the direct path intensity is further attenuated

due to the reception directionality characteristics of the microphone.

To simplify a system based analysis of sound propagation, the room is typically considered

to be a Linear Time Invariant (LTI) system. For the cases of interest in this thesis such an

assumption is likely to always be violated. This is so, because the acoustic conditions in a

classroom or seminar room are always changing due to the movement of people and possibly

objects within the room. Any invariant assumption on a speaker’s directionality characteristics

will also be violated, since people continuously move their head while speaking. Over a suitably

short duration however this assumption can be applied with reasonable confidence.

By modelling a room as a LTI system, the propagation of a sound wave from a position

x = [x, y, z] to its acquisition by a microphone positioned at m = [mx,my,mz] can be com-

pletely described by a room impulse response ℎ(t). Since the acoustic conditions of a room vary

considerable over the space of the room, the impulse response ℎ(t) is highly dependent on both x

and m. Using a LTI room model, the source signal s(t) as received by a microphone at position

m can be approximated as,

x(t) = ℎ(t) ∗ s(t) + n(t) (2.2)

where n(t) is the additive noise observed on the microphone signal. This noise term n(t) is

included to account for microphone channel noise and any ambient noise of the room such as
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air-conditioning fans, paper shuffling etc. This noise is generally assumed to be uncorrelated

with the source signal s(t). To facilitate later analysis, the microphone signal x(t) can be equally

represented in the frequency domain by,

X(!) = H(!)S(!) +N(!) (2.3)

where X(!), H(!), S(!) and N(!) are the frequency domains representations of x(t), ℎ(t), s(t)

and n(t) respectively.

In this thesis, a simplification of the impulse response is assumed. It is considered as con-

sisting of a direct path component ℎd(t) and a reverberant component ℎr(t) such that,

ℎ(t) = ℎd(t) + ℎr(t). (2.4)

The received microphone signal then becomes,

x(t) = [ℎd(t) + ℎr(t)] ∗ s(t) + n(t). (2.5)

This assumption is in common use in the literature [42,177].

Characterising Room Reverberation

Since reverberation can greatly affect audio-based source localisation it is useful to derive some

insight as to the expected contribution of the direct path and reverberant components in the

microphone signals. We can make this analysis by placing some simplifying assumptions on

the acoustic conditions of a typical room. The first assumption is that the sound in a room

propagates in all directions with equal magnitude and equal probability such that the net sound

intensity at a point is zero. Recall that sound intensity is a vector. Therefore under this first

assumption the sound intensity is effectively balanced equally in every direction such that the

net sound intensity is zero. This implies a diffuse sound field assumption on the room. The

second assumption made is that the total sound energy content of a room is conserved and is

equal to the energy due to the sound source minus that absorbed by the reflecting surfaces.

The most popular microphones in use today measure sound pressure, which under the above

assumptions can be defined as p ∝
√
I. It is also worth noting that the consequence of this

definition also means that p ∝ 1
r ; establishing the inverse distance law for sound pressure.

Examining the sound intensity due to reverberation and the direct path component can be used

to determine their contribution to the microphone signals. The sound intensity due to the direct

path has already been defined in equation 2.1. Under the diffuse sound field assumption, the

one-sided sound intensity due to the reverberant field is determined as [4, Chapter 6]

Ir =
4P

Rc
, (2.6)
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where Rc = �A
(1−�) is know as the room constant, A is the total surface area of the room’s walls

and 0 ≤ � ≤ 1 is the mean absorption coefficient over this area. Here, the room constant Rc can

be thought of as a measure of the room’s ability to absorb sound. An important observation

in relation to equation 2.6 is that for constant P , the one-sided sound intensity is constant and

independent of the distance r to the source.

Signal-to-Reverberant Ratio

Another useful measure used to estimate the “amount” of reverberation present in a microphone

signal is the Signal-to-Reverberant Ratio (SRR) ratio. This is simply the ratio of Id in equation

2.1 to Ir in equation 2.6 which gives,

SRR =
Rc

16�r2
(2.7)

=
A�

16�r2(1− �)
. (2.8)

This indicates that under the diffuse sound field assumption, the distance to the source r is the

only varying factor in the observed SRR.

Critical Distance

Since audio-based localisation performance increases if the reverberant content of the microphone

signals can be reduced, it is useful to know at what distance from the source r does Id = Ir

or equivalently SRR=1. The distance dc at which this occurs is known as the critical distance.

By equating equation 2.1 to equation 2.6 and solving for r, the critical distance is obtained

as [4, Chapter 6],

dc =

√
Rc
16�

. (2.9)

If it is desired to obtain a signal such that the direct path component is most dominant in

comparison to the reverberant content, then the microphone must be placed at a distance less

than dc to the source.

Reverberation Time

The Reverberation Time (RT60) is the most commonly quoted measure in characterising the

acoustic conditions of a room. Under the assumption of an exponential decay of reverberant

sound energy, it defines the time taken for the reverberant sound energy of the room to decrease

by 60dB. Originally determined through empirical analysis by Sabine, the RT60 is defined

as [4, Chapter 6] [73, Chapter 5],

RT60 = 0.161
V

A�
, (2.10)
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where V denotes the volume of the room. As a measure to characterise a room as reverberant or

not, the RT60 is effective. However, it is not as useful as the SRR in estimating the reverberant

content of a microphone signal since it does not consider the direct path component or the

distance to the source r.

2.1.2 Microphone Array Signal Processing

To introduce the signal model which will be maintained in describing microphone array tech-

niques, consider again the model defined in equation 2.5. At this point, the nature of the direct

path sound propagation to a microphone indexed by m can be introduced as,

ℎdm(t) =
a

rm
�(t− �m) (2.11)

where a
rm

is the attenuation factor (recall p ∝ 1
r ) and a is a scalar constant dependent on

the propagation medium and measurement units employed. The time value �m = rm
c is the

source-to-microphone propagation time. The model of equation 2.5 can now be redefined as,

xm(t) = [
a

rm
�(t− �m) + ℎrm(t)] ∗ s(t) + nm(t) (2.12)

=
a

rm
s(t− �m) + ℎrm(t) ∗ s(t) + nm(t). (2.13)

It is common practice in microphone array signal processing to define the observed microphone

signals relative to some reference microphone, such as for instance, the microphone indexed by

m = 0. Adopting this convention, the observed signal at the mth microphone can be defined

as ym(t) = xm(t + �0) where �0 is the propagation time to the 0th microphone. The observed

signal ym(t) then becomes,

ym(t) =
a

rm
s(t+ �0 − �m) + ℎrm(t+ �0) ∗ s(t+ �0) + nm(t+ �0). (2.14)

To simplify notation, the reverberant signal component is absorbed into the noise component

n(t) to define a new noise component as,

nmm(t) = ℎrm(t+ �0) ∗ s(t+ �0) + nm(t+ �0), (2.15)

such that the complete signal model is finally expressed as,

ym(t) =
a

rm
s(t− �0m) + nmm(t) (2.16)

where �0m = �m − �0 is the relative time delay between the 0th and mth microphones. It can

be seen from this that the microphone signals can be represented as the direct path component

with a noise term corresponding to the reverberations and any ambient noise. It is clear that
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the microphone signals contain scaled and shifted versions of the original source signal s(t), with

the time shifts under the established model being defined relative to the 0th microphone.

Frequency Domain Representation

It is useful at this point to introduce a frequency domain representation for a source signal

received by an array of microphones which is referred to in later analysis. In the frequency

domain equation 2.16 becomes,

Ym(!) =
a

rm
exp−j!�0m S(!) +Nmm(!). (2.17)

A vector of the signals observed at an array of M microphones can be defined as,

Y(!) = [Y0(!), .., Ym(!), .., YM (!)]T (2.18)

Nm = [Nm0(!), .., Nmm(!), .., NmM (!)]T , (2.19)

to give a vector of observed microphone signals as,

Y(!) = S(!)[
a

r0
, ..,

a

rm
exp−j!�0m, ..,

a

rM
exp−j!�0(M)]

T + Nm (2.20)

Y(!) = S(!)D(!) + Nm. (2.21)

The vector D(!) is known as the steering vector or propagation vector. Usually the scaling

factors in the steering vector are chosen such that its norm is unity.

Spatio-Spectral Correlation Matrix

Again, to facilitate later discussion in this thesis, a commonly used measurement in array based

applications, known as the spatio-spectral correlation matrix is defined as,

RY Y (!) = E[Y(!)YH(!)] (2.22)

= ∣S(!)∣2D(!)D(!)H + RNmNm(!) (2.23)

where RNmNm is the noise spectral matrix and H denotes the conjugate transpose. The use of

the spatio-spectral matrix is later re-examined in chapter 3 in the review of joint audio-video

based tracking methods.

Signal Coherence

An aspect of microphone array signals which will be seen to greatly influence the accuracy of

localisation is that of signal coherence. Two signals are said to be coherent if they are delayed

and attenuated versions of each other [72]. In a noiseless anechoic environment therefore, signals



2.1. Audio Features 17

received by multiple spatially separated microphones are perfectly coherent. The existence of

noise and reverberation act in reducing signal coherence. It will seen in later analysis that

signal coherence places a lower limit on the accuracy of localisation. It is therefore an important

similarity measure between microphone signals used for localisation and is defined as [20],


ymyn =
Gymyn(!)√

Gymyn(!)Gymyn(!)
(2.24)

where Gymyn(!) is the cross-power spectrum of ym(t) and yn(t). A common measure of coherence

is the magnitude coherence squared ∣
ymyn ∣2 which is bounded by zero and unity [56].

2.1.3 Time-delay based Localisation

Time-delay based localisation using multiple microphones represents an indirect approach to

the localisation problem. Firstly, the relative time-delays between the microphone signals of

equation 2.16 are estimated. Secondly, these time-delays are then used to infer the sound source

position.

In order for Time Delay Estimate (TDE)-based localisation to be possible it is necessary

to define the manner by which a 3D source position x = [x, y, z]T relates to an observed time

delay. Since the speed of sound c is known and given two microphone positions mm and mn,

the expected time-delay observed by the pair of microphones due to a source at x can be

approximated as,

�mn =
fs
c

(∣mm − x∣ − ∣mn − x∣) (2.25)

where fs is the sampling frequency. Including the sampling frequency in the definition means

that time-delays are quoted in units of audio samples rather than seconds. The ℝ3 → ℝ mapping

defined by equation 2.25 is referred to as the time-delay measurement function in this thesis.

An illustration of the time-delay �mn arising from two microphones is illustrated in figure 2.1a.

For a given time-delay �mn, the source position x is constrained in 3D space to a hyperboloid

of two sheets with focal points corresponding to the microphone positions mm and mn. Several

techniques have been proposed for estimating the source position as the approximate intersec-

tion of multiple hyperboloids corresponding to TDEs at multiple pairs of microphones [199].

Such approaches for TDE-based localisation can be complex, since finding the intersection is a

nonlinear problem [192].

Furthermore, the hyperboloid defined by a TDE at a pair of microphones is sensitive to

slight changes in the estimated time-delay. As a result, the position estimate derived from the

intersection of hyperboloids is normally equally sensitive to slight estimation errors. To address

this issue, the localisation problem can be formulated as the solution to a set of intersecting

spheres where the spheres are centred at the microphone locations [70]. This is popularly known

in the literature as the spherical intersection method for source localisation.

A formulation of the localisation problem similar to that of spherical intersection solves for
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the source position by considering it as residing at the centre of concentric spheres defined by

the source and microphone positions [7]. This concept is illustrated in figure 2.2a for the 2D case

of concentric circles, however, it is easily formulated for application to the 3D case of concentric

spheres.

It is possible also, to approach the localisation task by simplifying the wave front model.

When the distance between the source and the microphones is large relative to the distance

between the microphones, the source is said to be in the far-field. In cases where this condition

can be ascertained, the sound wave impinging on a pair of microphones can be assumed to

be planar. In this case, a directional angle to the source relative to the microphones can be

approximated using a TDE. This is shown in figure 2.1b where under the far field assumption,

the DOA of the source sound wave is approximated as

�nm = cos−1

(
�mnc

fsdmn

)
, (2.26)

where dmn denotes the distance between the microphones. This is referred to in this thesis as

the DOA measurement function.

Localisation using the DOA method in the absence of TDE uncertainty is straightforward.

The source location is simply determined as the intersection of bearing lines defined through

knowledge of the microphone positions mm and mn and the DOA angles to a set of microphone

pairs. In the presence of TDE uncertainty however, these bearing lines are unlikely to intersect

at a single point. To account for such a situation, the closest intersecting points of all bearing line

pair combinations can be determined and the source position estimate obtained as a weighted

average of these points [113]. This localization strategy for the 2D case is illustrated in figure

2.2b. Extending this method to the 3D localisation problem is straightforward.

2.1.3.1 Time Delay Estimation

In order to employ TDE-based localisation it is necessary to estimate the relative time delay

between multiple microphone pairs by some means. This thesis considers cross-correlation based

time-delay estimation techniques which are the most straightforward and by far the most com-

monly used in speaker tracking applications. The reader is referred to [85] and references therein

for a review of existing time-delay estimation techniques.

In an attempt to reduce the effects of reverberation and noise on the source signal received

at the microphones, it is normal practice to apply a pre-filter to the microphone outputs. If a

pre-filter ℎfm(t) is applied to the microphone signal ym(t) then the processed microphone output

is given by,

zm(t) = ℎfm(t) ∗ ym(t). (2.27)

Under this assumed signal model, the cross-correlation of zm(t) and zn(t) can be used to estimate

the relative time delay �mn between the two microphone signals. The cross-correlation function
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�0m − �0n
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dmn

(a) Time-delay �mn = �0m − �0n between mi-
crophones mm and mn corresponding to a
spherical wave-front model.

mm mn

x

�0m − �0n

rm

rn

�mn

dmn

(b) DOA �mn between microphones mm and
mn corresponding to the source position x.
The DOA is defined by the time-delay �mn =
�0m− �0n under the planar wave-front model.

Figure 2.1: Illustration of the relative time delay and Direction Of Arrival (DOA) at a pair of
microphones.

is defined as,

Rzmzn(�) = E[zm(t)zn(t− �)] (2.28)

where E[⋅] denotes the expectation operator. The cross-correlation function attains a maximum

at the relative time-shift between zm(t) and zn(t) where the correlation between the two signals

is greatest. The time-delay can therefore be estimated as,

�̂mn = arg max
�

Rzmzn(�). (2.29)

For two microphone signals zm and zn which are uncorrupted by noise or reverberation, the

maximum of equation 2.29 is expected to occur at the true time delay �mn = �0m − �0n. In real

environments however, since reverberation can act to create multiple “virtual” acoustic sources

within a room, multiple peaks can be observed in the cross-correlation function. It can happen

that, when the distorting effects of reverberation are significant, the maximum peak may not

correspond to the true source position [12]. In such circumstances, the TDE obtained through

equation 2.29 will be erroneous. It is common in the time-delay estimation literature to refer to

such TDEs as anomalous. This terminology will be used throughout this thesis however it should

be noted that this is equivalent to the term outlier used in the general estimation literature.
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�34

�56

(a) The source is located at the centre of a set of
concentric circles where a single microphone is
located on the circumference of a each circle [7].

m1

m2

m3

m4

m5

m6

x = w1x1 + w2
x2 + w3x3

�12

�34

�56

x1

x2

x3

(b) When the bearing lines to multiple micro-
phone pairs do not intersect at a unique point,
multiple possible source locations are obtained. In
this example, the bearing lines defined by the an-
gles �12, �34, �56 intersect at locations x1, x2 and
x3. When this occurs, a weighted sum of x1, x2

and x3 can be used to estimate the true location
i.e. x = w1x1+w2x2+w3x3. The weights w1, w2

and w3 are determined based on the probabilities
of the TDEs used to estimate the DOA bearings
�12, �34, �56 [125].

Figure 2.2: Time-delay and DOA localisation techniques.

Generalised Cross-Correlation

Using the Wiener-Khintchine theorem, the cross correlation function of equation 2.28 can also

be represented as,

Rzmzn(�) = ℱ−1{E[Zm(!)Z∗n(!)]} (2.30)

where ℱ−1{⋅} is the inverse Fourier transform and the asterisk ∗ denotes the complex conjugate.

In terms of the applied pre-filters as in equation 2.27, the cross-correlation function is,

Rzmzn(�) =

∫ ∞

−∞
Hfm(!)H∗fn(!)Gymyn(!)ej!�d! (2.31)

=

∫ ∞

−∞
Ψ(!)Gymyn(!)ej!�d! (2.32)

where Gymyn(!) is the cross-power spectrum of the unfiltered microphone signals ym(t) and

yn(t) and Ψ(!) = Hfm(!)H∗fn(!) is the combined frequency domain weighting equivalent of

the time domain prefilters ℎfm(t) and ℎfn(t). This is the Generalised Cross Correlation (GCC)

formulation of the time-delay estimation problem. It is common to define the frequency domain
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weighting functions Ψ(!); also known as processors, rather than time domain pre-filters. For

the case where Ψ(!) = 1, this corresponds directly to cross-correlation without pre-filtering.

Various frequency domain weighting functions exist for use with GCC, such as the Maximum

Likelihood (ML) weighting [20],

ΨML(!) =
1

∣Gymyn(!)∣
∣
mn∣2

[1− ∣
mn∣2]
. (2.33)

As can be seen from this, the ML processor acts to accentuate the signals at frequencies where

the signal coherence is highest. This model is built on an anechoic (free space) sound propagation

model with uncorrelated noise on the received signals. Therefore, the effects of a reverberant

environment on ML time-delay estimation, tends to reduce its accuracy and reliability consid-

erably [12]. As a result it is not generally suitable in its basic form for speaker localisation in

real room environments.

A more suitable processor which has found extensive use in TDE-based speaker localisation

is the Phase Transform (PHAT) weighting [20],

ΨPHAT (!) =
1

∣Gymyn(!)∣ . (2.34)

The effect of this filter is to assign an equal weighting to the signals at each frequency. As

a result, the correlation function obtained is determined using the phase information of the

signals only. Since each frequency band is equally weighted however, errors are accentuated in

frequency bands where the signal power is low [20]. Despite this, there is a strong theoretical

basis [26,177] supporting the use of the PHAT weighting above other processors in reverberant

environments which is supported by empirical analysis [86]. Although the PHAT weighting is

useful to counteract the effects of reverberation, it is not without its limitations and shows poor

performance in low reverberant and low noise environments [88, Chapter 5].

As previously stated, the Generalized Cross-Correlation with Phase Transform (GCC-PHAT)

weighting does not attempt to account for the presence of noise. To address this Wang et al. [75]

proposed a modified form of the PHAT processor to be applied as,

ΨMOD
PHAT (!) =

1


∣Gymyn(!)∣+ (1− 
)∣Nm(!)∣2 (2.35)

where 0 ≤ 
 ≤ 1 is a weighting which is equivalent in its definition to the SRR. One difficulty

in GCC weighting functions defined for background noise is that an estimate of the noise must

be made. Typically, an estimate of background noise is made during periods when the source is

not active.

Additional frequency domain processors have been proposed specifically for speech source

localisation. Brandstein et al. [113] define a pitch-based frequency domain weighting processor.

The premise in their approach is that distinctly periodic portions of the received signal spectrum
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indicate signal content which is largely unaffected by reverberation or noise. Their weighting

aims to increase the contribution of such signal content in the correlation estimate and decrease

that which deviates from this assumption. They employ a harmonic speech model and measure

the deviation of the received microphone signals from this model to weight the signal content.

The proposed weighting is defined as,

Ψs =
(1−max[em,i, en,i])

�

∣Gymyn(!)∣ (2.36)

where em,i and en,i are the normalised errors between the ith harmonic of the microphone signals

m and n respectively, in relation to that defined by the harmonic speech model. The variable �

is a heuristically determined parameter and in the range � = [1, 2]. Comparing, equation 2.34

and equation 2.36 it can be seen that Ψs is effectively a weighted version of the PHAT processor,

therefore it can observe similarly poor performance when the Signal to Noise Ratio (SNR) is

low.

2.1.3.2 Fundamental Limitations on Time Delay Estimation

There is a fundamental limitation on the performance of time-delay estimation. The effect of

the source signal properties which influence this performance limit can be characterised by the

Cramér-Rao Lower Bound (CRLB). This performance measure defines a lower limit on the

achievable variance of any unbiased TDE [6] and defines the uncertainty on the TDE locally

about the true time-delay.

Assuming that the signal and noise spectra are constant for −2�B ≤ ! ≤ 2�B where B is

the signal bandwidth, then the CRLB on the variance of a time-delay estimate is given by [6,56],

�2
CRLB =

[
2T

∫ 2�B

0
!2

(
SNR2

1 + 2SNR

)
d!

]−1

(2.37)

=
3

8�2

(1 + 2SNR)

SNR2

1

B3T
. (2.38)

It is clear that the assumption of constant signal power is unrealistic in speech applications.

In the absence of a more specific treatment of the speech localisation problem in the available

literature however, some insight into the expected performance of time-delay estimation can still

be gained under this assumption.

The key observations in equation 2.38 are that the minimal achievable variance is affected

by the SNR, signal bandwidth B and the length of the observation window T . In particular,
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these are related to the variance of a TDE in the following manner,

�2
CRLB ∝

1

SNR2
(2.39a)

�2
CRLB ∝

1

B3
(2.39b)

�2
CRLB ∝

1

T
(2.39c)

Therefore, in designing a time-delay estimator, increasing any of these quantities improves the

accuracy of TDEs. In speech applications it is clear that the bandwidthB is not under the control

of the designer and is typically 3kHz (400Hz−3400kHz). The SNR however, generally decreases

as the source-to-microphone distances increases. Therefore, ensuring that the microphones are

close to the source can increase the SNR and improve TDE accuracy. Also, increasing the time

analysis window T will act to improve the accuracy of TDEs. It is often the case however that T

is dictated by the required measurement update rate. In tracking, typically the highest update

rate is desired restricting T to small values. A high update rate is therefore employed at the

cost of reduced TDE accuracy.

The CRLB, does not completely reflect the true nature of time-delay estimation perfor-

mance as it incorporates noise analysis only and does not consider the effects of reverberation.

As the SNR decreases, a thresholding effect is observed whereby the accuracy of a TDE diverges

from that estimated by the CRLB. This is a result of the wrong peak in the cross-correlation

function of equation 2.29 being selected as that corresponding to the true time-delay estimate.

This type of error arising due to anomalous TDEs is known as a “large” error in time-delay

estimation problems and is not modelled by the CRLB. The CRLB only describes uncertainty

locally about the true time-delay which is often referred to as a “small” error in the estima-

tion problem. Considerable efforts have been made to theoretically model the performance of

time-delay estimation in the presence of both large and small errors. Chapter 5 continues this

discussion where these theoretical models are used in examining the localisation performance of

a configuration of microphone arrays in a lecture room.

Improving the Reliability of Time Delay Estimates (TDEs)

Since reverberation can have such a significant effect on the accuracy and performance of TDE-

based localisation, it can be useful to establish some measure of TDE reliability.

The most basic reliability measure is based on the energy of the microphone signals. Typi-

cally, high signal energy will indicate the presence of a speech source. Only determining TDE

over frames of significant energy can therefore yield more accurate estimates. More sophisti-

cated approaches aim to directly classify the signal and speech or non-speech by learning the

characteristic features of speech signals [44].

Additional strategies for improving the reliability of TDEs have been proposed based on the

precedence effect. The precedence effect is also know as the law of the first wave-front and is a
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psyhcoacoustical phenomenon observed in humans where localisation is only performed on the

direct sound wave. Employing the precedence effect in time-delay estimation requires firstly

determining the onset of the direct sound wave in the microphone signals. Once this onset is

determined, time-delay estimation is only applied over a short period at the detected onset [33].

By only considering a short period about the onset, time-delay estimation is not performed

on the later arriving reverberations over which TDEs are less reliable. Additional techniques

have examined modelling the precedence effect for localisation by learning the association of the

spectral content of the microphone signals to that of localisation precision [108].

The value of the maximum peak in the GCC function and the ratio of the first and second

largest peak can also be used to estimate TDE reliability. Typically, the value of the maxi-

mum peak has a direct relation to the likelihood of it corresponding to a true sound source.

Furthermore, the ratio of this peak value to that of the second largest peaks can also indicate

its significance and therefore is reliability. Analysis of both these reliability criteria, has been

shown to yield equivalent performance to that obtained by modelling the precedence effect [33].

Determining reliable TDEs can also be considered as an outlier estimation problem through

some temporal based statistical analysis. Given a number of short temporal windows it is

possible to build a histogram of the TDEs from which the true TDE can be determined as

in [139]. Such an approach can be particularly useful in speech applications where the source

signal is not always continuous but possibly intermittent.

2.1.4 Localisation through Sound Intensity Differences

Given the definition of sound intensity in 2.1, it can be seen that it contains information relating

to the distance to the source r. If P is known, the distance to the sound source from a particular

point could be determined simply by measuring the sound intensity at that point. In speaker

localisation problems, P is never known and not easily estimated. Furthermore, the inverse

square law is a simple model of sound propagation and is not always adhered to, particularly if

the omni-directional source model is violated.

In applications where the assumption of omni-directional sound propagation is valid, then

a measure of the energy of the microphone signals can be used to localise an acoustic source.

Consider an estimate of the energy of the mth microphone signal in equation 2.16 obtained as,

Em =
a

r2
i

∫ T

0
s2
i (t− �0m)dt+

∫ T

0
n2
mm(t)dt (2.40)

= Es +

∫ T

0
n2
mm(t)dt, (2.41)

where Es is the source signal energy. It is assumed that the time analysis window T is sufficiently

large such that the time-delay �0m does not affect the signal energy estimates. Assuming for a

pair of microphones indexed by m and n, that
∫ T

0 (n2
mm(t) − n2

mn(t))dt is a zero mean random
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Figure 2.3: Localisation using interaural level differences.

variable, the following relationship between microphone signal energies can be defined as [172],

Em
En

=
r2
n

r2
m

(2.42)

This relationship constrains the position of the sound source to a surface in 3D space as illus-

trated in figure 2.3. The intersection of the 3D surfaces defined by multiple pairs of microphones

using this relation can then be used in localising the position of the source.

The successful use of interaural level differences for localisation requires the direct measure-

ment of the source signal energy using multiple microphones. If the microphone signals are

distorted due to reverberation or noise, this is generally not possible. As a result, techniques

which use interaural level differences for localisation have found little use in real room environ-

ments. Furthermore, the assumption of an omnidirectional source is generally too restricting for

the speaker localisation task.

2.1.5 Steered Response Power based Localisation

Steered Response Power based localisation methods search a number of hypothesised speaker

locations for the position corresponding to the maximum received power at the microphones. For

each location under examination, a steering vector is defined to steer an array of microphones

to that position. A measure of the total received power from that position can then be used to

clarify as to whether or not the position corresponds to an active speaker.

Given the observed vector of signals in equation 2.21, we can aim to recover the source signal

S(w) through determining the steering vector D(!) and apply it to the observation vector Y(!)
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as,

DH(!)Y(!) = DH(!)S(!)D(!) + DH(!)Nm(!) (2.43)

= S(!) + DH(!)Nm(!) (2.44)

The operation on the observation vector Y(!) in equation 2.43 can be thought of as time aligning

the microphone output signals and determining their weighted sum. This is known as the delay

and sum beamformer. The success of the delay-and-sum beamformer relies on the source signals

to sum coherently and the noise and reverberant signal components to sum incoherently.

Since the steering vector is dependent on the source position x the beamformer can be steered

to any hypothesised position. Using the audio-based measurement function of equation 2.25 the

expected time delay corresponding to a hypothesised source position x can be determined. These

expected time-delays can then be used to define a steering vector D̂(!,x). Through this it is

possible to examine the total signal power received from the direction of x as,

PSRP (x)

∫ ∞

−∞
∣D̂H(!,x)Y(!)∣2d!. (2.45)

This can be used for localisation where multiple hypothesised locations are examined in terms

of their steered response power and the location at which this yields a maximum is taken to be

the source position. Such localisation methods are regarded as Steered Response Power (SRP)

based localisation techniques. They determine an estimate of the source localisation as,

x̂ = argmax
x

∫ ∞

−∞
∣D̂H(!,x)Y(!)∣2d!. (2.46)

One criticism of Steered Response Power (SRP)-based localisation techniques is that if the

localisation search space is large then these techniques can be computationally demanding.

Steer Response Power - Phase Transform (SRP-PHAT)

The SRP for a hypothesised location can be equivalently represented in terms of the GCC

functions arising from every pair of microphones. It can be shown that the relation in equation

2.46 is equivalently defined as [88, Chapter 6],

x̂ = argmax
x

[
2M∑

m=0

2M∑

n=0

Rzmzn(�mn)

]
. (2.47)

where �mn is the expected time delay at microphones m and n due to the source at position

x. When the GCC function is obtained using the PHAT processor of equation 2.34, then this

process of localisation is known both as the Steer Response Power - Phase Transform (SRP-

PHAT) [87] and the Global Coherence Field (GCF) [123]. These localisation techniques simply
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require evaluating the GCC-PHAT function for each microphone pair at the theoretical time

delay corresponding to x and then summing the result over all microphone pairs. Since SRP-

PHAT based localisation techniques employ the PHAT processor, they benefit form its robust

performance in reverberant environments.

2.2 Video Features

In its simplest form, the problem of detecting a person in a video sequence reduces to a binary

classification problem whereby image pixels are determined as either foreground corresponding

to the person, or background corresponding to everything else in the scene. In the same way the

use of multiple microphones for audio-based localisation is inspired by the binaural localisation

ability of humans, video-based person detection techniques also aim to extract features which

humans use in visually locating people.

Many low-level visual features are in common use for detecting people in video sequences

such as, the motion observed in a scene, colour information and edge details. Such low level

visual information alone however, is often not sufficient for the accurate detection of people.

Models of high level visual features such as faces can be developed for detecting people using

low-level visual features.

In this section, the extraction of suitable video-based features for the detection of people

are briefly examined. In particular, the multi-camera environment and the challenges which it

presents to the detection problem are analysed. Background modelling for foreground detection

and existing techniques for face detection are introduced. In relation to face detection, focus

is directed on the problem of modelling skin colour. A new model of skin colour is introduced

which aims to adequately account for the non-linear dependence of skin tone on illumination.

Also examined in this section, is the relationship between a 3D point and its projection onto

the image plane of a camera. This introduces the measurement function for cameras which will

be used in later chapters of this thesis that consider the problem of localisation using multiple

cameras.

Challenges in the Lecture/Seminar Room Environment

The lecture room represents a challenging visual tracking environment. Many issues exist which

make the detection of people difficult, such as, varying illumination; visual clutter and the

presence of multiple people. In relation to the multi-view tracking problem considered in this

thesis, three significant problems are highlighted.

• Varying Illumination: Both the temporal and spatial variation of illumination can

be problematic to many visual trackers. Although temporal variation in illumination

can be observed in typical lecture room environments, it does not represent the most

difficult problem since lighting conditions often remain consistent. However, there can be
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significant variation in illumination spatially. This situation generally arises naturally in

lecture room environments, whereby lighting is deliberately focused on a presenter. Also,

it is often the case that lighting is lowered over an audience area so as to improve the

visual contrast of projector displays. Spatially varying illumination can be problematic

in the detection of people since it distorts edge-based visual features. Additionally, edges

not arising from features of interest are introduced at the gradients between regions under

different illumination.

Shadows arising due to people or objects within the scene can also contribute to the spatial

variation in illumination. Shadows make the problem of detecting people within a scene

challenging since it is often difficult to discern a shadow from a person. Not only do shadows

typically maintain the silhouetted shape of a person, but they also undergo the same motion

as that of the person creating the shadow. Moving people create shadows which can also

introduce local temporal variations in illumination within the room. Problems due to

varying illumination can be accentuated in the multi-view problem since each view can

observe the same position under different illumination due to their different viewpoints.

• Static Foreground: It is likely to be the case that the presenter will continuously move

throughout a presentation. In this work however it is desired to not only detect a presenter

but every person within the room, since every person is a potential active speaker. The

difficulty in this is that whereas motion may provide a simple cue for detecting the position

of a moving presenter, it is not guaranteed to be as effective in detecting other people in

the scene such as audience members. This is because audience members typically undergo

little motion and are effectively static. Therefore, they represent static foreground regions

which must be accounted for and other features besides motion must be used for detection.

• Low Resolution: It is likely in a multi-view scenario where a relatively small number

of cameras is used that people will be positioned far away from some of the cameras.

As a result, they will only occupy small regions within the image plane resulting in a

low resolution capture of the person. This does not favour the extraction of high-level

visual features such as faces, since in low resolution, the edge details of facial features are

effectively lost. This is worsened in cases where the captured data is also compressed.

An example of a challenging scenario for the detection of faces which typically occurs in

the considered database of CHIL lectures is illustrated in figure 2.4. From this it is seen

that in some cases, little detail of facial features remain due to low resolution capture and

compression.

Since there are multiple views, there may be certain exceptions where the person is cap-

tured at a higher resolution by another camera. This however, is not always guaranteed.

Furthermore, at least two camera views are required to infer the 3D position of detected

people. Observing a high resolution capture of people in two views is unlikely under the
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(a) (b)

Figure 2.4: Example of difficult face detection problems in the lecture recordings of the CHIL
database. The low resolution capture of people who are not close to the camera combined with
JPEG compression of the video frames act in removing considerable face detail making the task
of face detection challenging.

given multi-camera scenario. Therefore, the extraction of high-level visual features are

likely to fail or at least be unreliable for detecting all visible faces.

• Dissimilar Views: The problem of dissimilar views is specific to the multi-view problem

and corresponds to the situation where a single object is observed at different orientations

due to the different camera viewpoints. Therefore, the reliable detection of a person in

multiple views must address the problem of a person appearing differently in each view.

This has significant implications on the face detection problem since a face observed by

multiple cameras is captured at different poses. This is discussed further later in this

chapter, where the face detection task is described.

2.2.1 Background Modelling

The most common approach to the problem of foreground detection is to employ background

models based on the observed frames. Pixels which deviate significantly from the assumed

model are simply regarded as foreground within the scene. The use of a threshold is common

in discerning such a deviation where the foreground is determined as satisfying the following,

∣It − B̂t∣ > bt, (2.48)

where It denotes the pixel intensities of the current frame, B̂t are the estimated background

pixel intensities and bt is the chosen threshold value. This approach is known as background

subtraction and a recent review of existing techniques may be found in [147].
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The background model B̂t and threshold bt can be preset to the specific tracking task. It

is reasonable to assume that an unoccupied view of a lecture room can be obtained for each

camera. Subtracting this background model from that of an occupied scene could be used to

detect newly introduced people and objects. The determination of a time varying background

model B̂t and also time varying threshold bt which are updated periodically however, is more

desirable. The periodical update of the background model and threshold is preferred since they

can be adjusted to account for changes in the background, varying illumination and also to

compensate for any camera noise. Without such adaptation, errors in the background model

would accumulate over time.

It is important in this approach however that adaptation is applied to background pixels

only. This is necessary so as to avoid the background model adapting to the detected fore-

ground. The consequence of updating a background model at foreground locations is that

stationary foreground regions eventually become part of the background. This would be partic-

ularly problematic in relation to static foreground regions undergoing little motion, such as the

audience. The use of an appropriate binary mask which differentiates between foreground and

background is often applied at the update stage so as to avoid updating on foreground pixels

and is applied through,

B̂t = F B̂t−1 + (F − 1)B̂t (2.49)

where F = 1 indicates foreground and F = 0 indicates background. This translates to only

updating the background model B̂t given that the pixel corresponds to that of background.

Since the binary mask F is derived from B̂t by equation 2.48, errors in the background model

B̂t are often reciprocated through the binary mask.

Temporal Median Filter

A temporal median filter can be used to model the background pixels. In this approach the

background is assumed to be accurately described as the median of its previous n pixel values.

Thus, the model of the background at time t is determined as,

B̂t = median
[
It−(n+1), It−(n+2), ..., It

]
. (2.50)

One disadvantage of this method is that a buffer of the previous n frames must be stored in

order to evaluate the median at time t. Typical applications only consider evaluating the median

over some subset of the previous n frames [153].

Running Gaussian Average

Another proposed technique for modelling background pixels is to use a running Gaussian av-

erage [25]. This approach proposes to model each pixel location independently. The pixel value

at time t is assumed to fit a Gaussian probability density function (pdf) where the estimated



2.2. Video Features 31

background pixel is assumed to be B̂t = �t where �t is the mean of the pdf and is determined

by,

�t = �tIt + (1− �t)�t−1, (2.51)

where �t is an appropriate weight between the current frame It and the previous mean �t−1 with

�t determined emprically. The variance �2
t may be preset or determined in a similar manner to

that of equation 2.51. Commonly, the threshold is set to bt = 1.96�2
t defining the 95 percentile

confidence interval for the background pixel value.

The use of a single Gaussian distribution in modelling the intensity of a background pixel is

most useful in situations where the observed pixel intensity adheres to a uni-modal distribution.

The uni-modal nature of a Gaussian distribution is inappropriate for modelling distributions of a

multi-modal nature. Many factors can cause background pixel intensities to exhibit multi-modal

behaviour. Commonly observed scenarios include occlusions and sudden changes in illumination.

A single Gaussian statistical model does not fully capture multi-modal behaviours such as these.

A more appropriate Gaussian-based approach to modelling multi-modal pixel intensities is to

use a Gaussian mixture model [22].

Eigenbackground

An eigenbackground approach to modelling the background determines a suitable model of the

background through principal component analysis (PCA) [134]. A training dataset of n frames

is used during a learning phase where the mean background �0 is determined from the n frames

together with its covariance matrix ΣB. Eigenvalue decomposition of the covariance matrix

through L = ΦΣBΦT results in Φ, a matrix of the eigenvectors of ΣB and L, a diagonal matrix

of their corresponding eigenvalues. Classification of foreground proceeds as follows. Given the

current frame It, it is first projected into the eigenvector space through I
′
t = ΦT

m(It − �0) where

Φm is the matrix of the m most significant eigenvectors of Φ. The inverse projection is then

determined by B̂t = ΦmIt +�0. Finally, foreground is detected using the thresholding approach

shown in equation 2.48. The premise in this approach is that static background regions are well

described by such an eigenspace model whereas moving regions within the frame are not. The

consequence of this is that moving objects do not appear in the background model.

Temporal Differencing

Temporal differencing can be applied to frames within a frame sequence to determine moving

people. This approach assumes that a person is continuously moving and also that the motion

between frames is sufficient to indicate the foreground region corresponding to the person. This

approach is equivalent to assuming the estimated background B̂t is simply the previous frame i.e.

B̂t = It−1. The threshold bt of equation 2.48 in this case corresponds to the temporal difference

between frames. The only assumption which this technique makes regarding the background is

that its pixel values are temporally stationary. A temporal differencing approach using three
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(a) Sample Frame (b) Temporal Median
Filter Background Esti-
mate

(c) Running Gaussian
Average Background Es-
timate

(d) Eigenbackground Es-
timate (n=5)

(e) Temporal Differenc-
ing bt = 15

(f) Temporal Median
bt = 30

(g) Running Gaussian
Average bt = 15

(h) Eigenbackground
n = 5 bt = 76

Figure 2.5: Example of the performance of various background estimation techniques on a video
sequence from the AV16.3 database [59]. Shown in this figure is the estimated background of
the sample frame in (a) using; (b) a temporal median filter where the median is taken from the
previous 100 frames subsampled by a factor of 5 (i.e. n = 20); (c) a running Gaussian average
and (e) the eigenbackground approach (n = 5). The detected foreground using background sub-
traction using temporal differencing, the temporal median filter, the running Gaussian average
and eigenbackground techniques are illustrated in (e), (f), (g) and (h) respectively. These exam-
ples highlight some of the challenges in foreground detection through background modelling such
as the presence of shadows. This is particularly evident in the foreground detected through the
temporal median filter in (f). Additional problems occur where the foreground is a similar colour
to that of the background which results in large unconnected regions in the detected foreground.
This is most evident in the foreground detected by the running Gaussian average and eigenback-
ground in (g) and (h) respectively. Also, the detected foreground using temporal differencing in
(e) is seen to result in large unconnected foreground regions.

successive frames for foreground detection is presented in [196].

An example of the described techniques for background estimation is presented in figure

2.5. From this it is seen that each of the described techniques are effective for background

estimation. In the example some of the difficulties which can arise in the detection of people

using background subtraction are described.

2.2.2 Face Detection

Faces are high level visual features which are obvious candidates for localising people. Due to

the importance of face detection in many vision-based applications such as surveillance, Human

Computer Interaction (HCI), facial expression analysis, visual recognition and people tracking,
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it has received considerable attention in the signal processing research domain. In the following

sections, existing methods for detecting faces in video are examined. This analysis is not aimed

toward an exhaustive or comprehensive review. Instead, existing vision-based methods for face

detection are examined for their suitability for locating and tracking speakers in the lecture room

environment considered. For recent and comprehensive reviews of face detection, the reader is

referred to those by Yang et al. [110] and Hjeml̊as et al. [47].

Several decades of visual face detection research, has seen the evolution of five main categories

of face detectors. These classes correspond to knowledge-based ; template matching ; feature

invariant ; and appearance-based techniques [110]. These are briefly discussed in the following.

Knowledge-based Methods

Knowledge-based techniques for face detection are based on simple detection rules which en-

code a priori knowledge of face characteristics and visual features. The a priori information

used, generally consists of simple descriptive features representing human intuition as to what

constitutes a face. Typical descriptive information can relate to the expected number of facial

features such as eyes, nose and mouth; their relative positions on a face; in addition to their

symmetry. Generally, existing knowledge-based methods for face detection apply a top-down de-

tection strategy where a likely face location is first determined, then local features are extracted

and evaluated against the established detection rules. Typically, such techniques analyse only

the gray-scale intensity characteristics of faces at different image resolutions [21]. The basic

premise of such approaches is that the macroscopic features of faces are adequately captured

at very low resolution. Face regions in low resolution images often simply appear as uniform

intensity regions. This feature can be used to indicate likely face positions. The detection pro-

cess then implements a coarse to fine detection scheme usually employing pyramid images. The

initialised face regions are used to inform the detection of higher level facial features, such as

the eyebrows/eyes, nostrils/nose and mouth at higher resolutions.

The challenge in rule-based face detection is to define a set of rules which are flexible enough

to be equally applicable to non-frontal faces, varying facial expressions and to be robust in the

presence of beards/mustaches as well as glasses. This is not straightforward since the assumption

of symmetry or the expected number of visible facial features changes under head rotations. For

instance, the number of visible eyes varies between frontal and profile face views. In addition

to this, sufficiently high resolution is required to detect such local facial features. As a result,

the successful application of rule-based techniques to face detection is largely constrained to

problems with frontal faces captured at sufficiently high resolution enabling the detection of high-

level facial features. Furthermore, due to the specific use of image intensities only, illumination

changes both spatially and temporally can distort the grey-scale facial features making them

undetectable.
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Template Matching

Template matching is one of the simplest and earliest techniques for locating known patterns

in images. As a result it is also representative of some of the earliest approaches to the face

detection problem. Using a predefined face template, such techniques aim to identify face

regions in an image by direct comparison with the defined template. Elliptical templates are

popularly employed and compared to detected edges or silhouettes within an image for head

detection. Usually the comparison between an image region and a template is made through

some correlation based similarity measure.

Early template matching systems for face detection considered adaptable shape-based tem-

plates built on curves defining a face’s outline [186]. Such primitive shape models however are

never likely to be sufficient to distinguish faces from other objects in complex backgrounds such

as observed in a typical lecture room. The use of multiple shaped-based templates for individual

facial features such as eyes, nose and mouth can be combined with the outline shape of a face to

define more complex face models [78]. Such detailed models have greater potential to discrimi-

nate against false-positives which may arise in complex backgrounds containing face-like shaped

objects. Once again however such detailed face models require the detection of high-level facial

features which is only possible if the face is captured at sufficiently high resolution.

A criticism of template based approaches is that they can not effectively account for variations

in pose, scale or shape. This is so, since it is difficult to incorporate such variability into a single

template. Although the use of templates are still important in the visual detection of faces,

current approaches use more informed strategies for defining face templates. Most current

template-based face detectors use information from sets of training face and non-face images to

develop a template. The aim in these approaches is to define a template which is supported by

this example data in some statistical sense. Although still employing template-based analysis,

theses techniques are classed among appearance-based methods.

Appearance-based Methods

Appearance-based techniques attempt to learn an appropriate face model or template using sets

of face and non-face example data. Generally, these techniques employ statistical based analysis

and machine learning to achieve this.

The appearance-based approach of eigenfaces aims to determine a suitable model of a face

using Principal Component Analysis (PCA) [126]. A set of training face images are used during a

learning phase to attain a set of representative features which characterises the variation between

face images. The method of analysis is identical to that applied in the case of eigenbackground

modelling as in section 2.2.1 the only difference being that the PCA is applied to example faces

in comparison to example background data.

More complex appearance-based face detectors built on machine learning techniques such as

neural networks [74] and support vector machines [48] have been employed to detect faces by
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learning to recognise representative visual face features. In general, eigenfaces, neural networks,

or support-vectors machines are trained for detecting fixed-pose (usually frontal) faces and in

general can only handle fixed-pose (usually frontal) face detection. They can be applied to the

multi-pose face detection problem through the use of multiple trained detectors. For instance,

a neural-network can be trained on example data of faces at different poses and applied in turn

to an image for detecting multi-pose faces. In contrast, the pose estimation problem can be

considered separately to the face detection task. The approach of [68, Chapter 5] employs a

neural network trained on various face pose examples for pose estimation. This information is

then used in selecting the neural network trained on detecting faces at the estimated pose. A

disadvantage of such an approach is that in general, a considerable amount of training is required

to achieve accurate detection rates at a sufficient number of different poses.

By far the most popular and extensively used appearance-based face detector is that proposed

by Viola and Jones [143]. They define a robust real-time face detector which uses a cascade

of Haar-like feature based classifiers. In their approach they use a set of horizontal, vertical

and diagonal filters in extracting image features at different scales. An optimal cascade of

classifiers based on extracted image features is then learned from example grey-scale face and

non-face images. The resulting face detector operates by identifying likely face regions in an

image using simple and efficient classifiers. More complex classifiers are applied only to these

regions for verification as face locations. Applying the classifiers in a cascade of low to high

complexity enables non-face regions to be quickly rejected allowing high level classification to be

concentrated on likely face regions only. The result of this is that classification is easily achieved

in real-time. Similar to the previously described appearance-based face detection methods,

applying the Viola and Jones algorithm to the problem of multi-pose face detection requires

training an individual detector for each considered pose [144].

Feature Invariant Techniques

Feature invariant approaches examine the bottom-up face detection problem where firstly local

facial features such as eyes, nose and mouth are detected. Secondly, the geometry, structure

and relative positions of these features are used to infer the presence of a face. In general, the

detection of local facial features requires some model of the feature to be defined. For instance,

edge detail or corners can be used to build an appropriate model. This can be difficult in many

cases since such features are likely to be distorted due to image noise. Previous discussion has

highlighted current challenges in detecting faces in images such as varying pose, low resolution

and illumination changes. Feature-based face detection aims to extract visual facial features

which are invariant under such conditions and use these in locating faces.

The approach in [104] examines six facial features corresponding to the eyebrows, eyes, nose

and mouth. Such features at low resolution appear as dark blobs in contrast to the light back-

ground of the face. Once detected, the edge structure locally about these features is examined
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to build a feature vector of details such as edge length and edge intensity. The invariance of

the technique to illumination changes relies on the assumed invariance of edge detection under

such conditions. The extracted features are statisically compared with the learned distribution

of feature vectors obtained from training data. In an effort to incorporate a level of invariance

to pose, combinations of four features among the six concerned are examined to account for the

possible occlusion of facial features.

The success of face detection techniques which rely on the extraction of local facial features

requires that edge information and gradient information is present in the image. Low resolution

and illumination changes will dictate whether this is possible. In low resolution images much of

this detail is not retained as was seen in the examples presented in figure 2.4. Colour information

when available however, is relatively unaffected by resolution. It can therefore be used for

locating likely face regions when high-level facial features cannot be resolved. As a result,

the development of skin colour models for detection of skin regions has attracted considerable

attention among researchers for face detection. In this thesis, a skin colour model is considered

for detecting likely face regions. In the following section the task of skin colour modelling is

described and a new skin colour model is introduced.

2.2.3 Skin Colour Modelling

The most common approach to the modelling of skin colour is to transform the RGB space to

some chrominance colour space so as to decouple skin colour into independent chrominance and

luminance components. Usually the luminance information is discarded and only the distribution

of skin colour is modelled in chromatic colour spaces using a single Gaussian [111] or mixture-

of-Gaussians [165]; the latter being the preferred approach [179]. The motivation in this is that

a skin colour model can be developed which is invariant to changes in illumination. Further

motivation arises due to the observation that the distribution of different skin colour types

occupy a dense compact region within chromatic colour spaces [102]. Therefore, in chromatic

colour spaces the variation between the colour of different skin types is reduced which makes it

easier to form a general skin colour model which encompasses the various different skin types.

A considerable amount of effort has been dedicated to the analysis of the most appropriate

color space for use in the skin colour modelling task. The argument for and against the use of

different colour spaces generally focuses on how well regions of skin colour are separated from

regions corresponding to non-skin colours. Improvement in the separation of the two colour

classes, for example, has been attributed to the use of the normalised r-g and HSV colour spaces

in comparison to the RGB colour space [79]. There is significant evidence to suggest that

chromatic colour spaces do improve skin colour detection in comparison to detection methods

using the RGB colour space [79,187].

The significance of the chosen colour space in this observation however has been discounted

[2, 115]. In this thesis, the view of Albiol et al. [2] is maintained in that a transformation to a
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different colour space does not increase the separation between skin and non-skin colour classes.

It is viewed that, it is simply the case that existing statistical modelling techniques such as the

single Gaussian and mixture-of-Gaussians are more appropriate for modelling skin in chromatic

colour spaces than in the RGB colour space. Therefore, it is not the separation between the two

classes which is increased through a transformation to chromatic colour spaces, but the ease by

which the two classes can be separated in the transformed colour space using standard statistical

models. This is not suggesting that the results of improved colour detection in chromatic colour

spaces are incorrect, only a reinterpretation of the results in that they can not be regarded in

isolation to their employed skin colour model. This is a subtle distinction. It is an important

one however, as it proposes that skin and non-skin colour classes can be as equally discriminated

in the RGB colour space. It simply suggests that a more complex model of the distribution of

skin colour is required to achieve this when the RGB colour space is used. In this section, skin

colour is modelled in the RGB colour space.

One criticism of existing chrominance colour spaces is that they do not adequately account

for the non-linear dependence of skin colour on the luminance component [156]. This nonlinear

dependence can be observed in figure 2.6 where a sample of ≈ 5 million skin colour pixels

captured under varying illumination in the RGB colour space is shown. The sample data in this

figure is taken from PICS, The Psychological Image Collection at Stirling [146].

Hsu et al. [156] proposed a colour transformation in the YCbCr colour space to remove the

non-linear dependence of skin colour on luminance. They considered the chroma Cb and Cr

as functions of luminance Y and fitted piecewise linear boundaries to the skin colour cluster

in the YCbCr colour space. In the following section a much simpler technique for modelling

the non-linear dependence of skin tone on luminance than that proposed by Hsu et al. [156] is

defined. The proposed skin colour model is shown to adequately capture the variation of skin

tone under varying illumination. Unlike Hsu et al. this model is defined directly in the RGB

colour space and requires the estimation of fewer model parameters.

Estimating the Nonlinear Relation between RGB Skin Colour and Luminance

It is attempted in this section to fit a 3D curve to the sample RGB skin colour data in figure

2.6 so as to establish the non-linear relation of RGB skin colour to that of luminance. The

luminance component of colour in RGB space is commonly defined as,

Y = 0.3R+ 0.59G+ 0.11B. (2.52)

A 3D curve in RGB space can be parameterised in terms of the luminance component Y as,

⎡
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B

RG

Figure 2.6: Sample of skin colour pixels in RGB space captured under varying illumination
obtained from the PICS, The Psychological Image Collection at Stirling [146].

where the following constraints
∑

j
1
3qij = 1, ∀i are enforced on the coefficients to ensure that the

curve endpoints are constrained to [0, 0, 0]T and [1, 1, 1]T . The need to constrain the endpoints

of the curve to [0, 0, 0]T and [1, 1, 1]T is to ensure that the 3D curve spans the full luminance

range [0, 1] i.e. to ensure that Y = 0 for R = G = B = 0 and Y = 1 for R = G = B = 1. It is

important to note that order of the polynomial in Y as defined by equation 2.53 was chosen in

this analysis purely on the basis that it provided the best visual fitting to the sample RGB skin

colour data.

The result of fitting the curve of equation 2.53 to the sample RGB data through minimising

the sum of the squared error between the sample RGB data and the parameterised curve is

shown in figure 2.7a. Points along this curve correspond to a least squares estimate of skin

colour in RGB space for varying luminance. Also seen in figure 2.7 is the estimated 3D curve in

various different chrominance colour spaces such as the normalised R-G colour space in figure

2.7b, the yCbCr colour space in figure 2.7d and the HSV colour space in figure 2.7c. It can

be seen from these that although the sample skin colour is distributed over compact and dense

regions in each, the nonlinear variation of skin colour with luminance is still evident.

Modelling the Skin Colour by Two Polynomial Projections in RGB Colour Space

Although the estimated 3D curve obtained in the previous section could be used directly as a

model of skin colour, it was found that the constraint that the end-points of the curve reside

at [0, 0, 0]T and [1, 1, 1]T , does not accurately reflect that observed in the sample skin data.

Estimating both the curve coefficients and the end-points simultaneously is not straightforward.

Although the end-points could be manually initialised this is undesirable. Instead, an alterna-

tive method is used which effectively estimates the best 3D curve in RGB space by two 2D

projections. This is achieved by projecting the sample data of figure 2.6 onto the RG and RB

planes and then fitting a polynomial to each of these to model the non-linear correlation between
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(a) The estimated 3D curve (blue) of equation 2.53 with
coefficients [q11, q12, q13, q21, q22, q23, q31, q32, q33] =
[−4.87, 5.98, 1.89, 1.75,−2.31, 3.56, 3.90,−3.91, 3.01]
fitted to the sample RGB skin colour data. Also show
are the projections of the 3D plot onto the RB and
GB planes.

(b) Sample skin colour data in normalised R-G colour
space including the transformed 3D curve.

(c) Sample skin colour data in HSV colour space in-
cluding the transformed 3D curve.

(d) Sample skin colour data in yCbCr colour space in-
cluding the transformed 3D curve.

Figure 2.7: Non-linear dependence of skin tone on luminance in different colour spaces

the channels. More formally, two polynomials fG(R) and fB(R) are defined as,

G = fG(R) = anR
n + an−1R

n−1 + ...+ a1R+ a0, (2.54a)

B = fB(R) = bnR
n + bn−1R

n−1 + ...+ b1R+ b0. (2.54b)

which model the G and B colour components of a skin pixel in relation to its R component. For

both fG(R) and fB(R) a polynomial of order three with coefficients a = [1.77,−2.92, 2.07,−0.23]

and b = [1.90,−3.23, 2.34,−0.18] was found to best fit the sample skin data. These cubic

polynomials are shown in figure 2.8a and figure 2.8b.
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R

G

(a) RG plane and the cubic polynomial fG(R) (blue)
with coefficients a = [1.90,−3.23, 2.34,−0.18].

B

R

(b) RB plane and the cucbic polynomial fB(R) (blue)
with coefficients b = [1.77,−2.92, 2.07,−0.23].

Figure 2.8: Estimating the correlation between the R, G and B components of skin colour by
two polynomials.

The classification of a pixel p in an image I where I(p) = [R,G,B] as skin or non-skin

proceeds in a deterministic manner based on two conditions. The first condition is that the

polynomial relations of equation 2.54 are satisfied as follows,

C1(p) = (∣G− fG(R)∣ < t0) ∩ (∣B − fB(R)∣ < t1) (2.55)

where typical values for the thresholds t0 and t1 are 0.06 and 0.08 respectively.

In addition to this, a condition on the dominance of the R component in skin colour is

incorporated into the detection process. The usefulness of this colour cue has been previously

reported [83,180] and is defined by,

C2(p) = (R/G > �) ∩ (R/B > �). (2.56)

where � > 1. A typical value for � is 1.1.

Overall, the conditions defined in equation 2.55 and equation 2.56 define a deterministic

pixel wise approximation of skin colour regions. Therefore, a skin colour mask for an image I

may be defined at each pixel location p as,

S(p) =

{
1 C1 = true, C2 = true

0 Otherwise.
(2.57)

In the following analysis, the sample frame in figure 2.9a is used to compare the proposed

skin colour detection algorithm against two existing techniques. The two existing techniques

examined are the skin detection algorithm of Hsu et al. [156] and that proposed by Jones et

al. [120]. These methods are chosen for comparison since they both aim to accurately detect
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skin colour under varying illumination. The following discussion aims to highlight the main

advantages of the proposed skin colour detection technique above these other approaches.

Figure 2.9a shows an example frame of a lecture recording from the CHIL database and the

3D scatter plot of the RGB values for this frame are shown in figure 2.9b. This sample frame

is used in the following discussion to describe a typical scenario where the proposed algorithm

results in improved skin colour detection beyond that of the existing detection techniques of Hsu

et al. and Jones et al.

The method of Hsu et al. [156] as previously described, utilises the YCbCr colour space and

defines a model specifying a volume in this colour space which represents skin colour. This

volume incorporates the distortion of skin colour due to changes in illumination. The success of

Hsu’s method for modelling skin colour under varying illumination relies on a colour balancing

pre-process. The colour balancing procedure proceeds as follows. Firstly, a set of pixels q

representing the top 5% of the luminance range is identified. Secondly, if the number of pixels

in q is greater than 100 then a colour balancing operation is applied. The colour balancing

operation linearly scales the colour value of each pixel in the image such that the average grey-

scale value of the pixels in q corresponds to white in the employed colour space. This colour

balancing operation is a key component in the success of the skin colour detection method of

Hsu et al. This reliance on a colour balancing operation has been highlighted as a significant

limiting factor in Hsu’s algorithm. In particular it has been shown that colour balancing can

actually reduce the ability of Hsu’s algorithm to accurately detect skin regions [15]. One of

the advantages of the proposed skin colour detection algorithm is that it does not rely on any

pre-processing or colour correcting operations. It is therefore not limited in this regard when

compared to Hsu’s approach.

Jones et al. [120] approach the problem of modelling skin colour under varying illumination

in a different manner. They aim to model the statistical distribution of skin colour and non-skin

colours in the RGB colour space using Gaussian mixture models. The statistical colour models

are trained on approximately 3 million images acquired from the world-wide-web (WWW). Since

they approach skin colour modelling in the RGB colour space they do not make any assumption

on the dependence of skin colour on luminance. As a result, their statistical skin colour model is

flexible enough to capture any dependence of skin colour on luminance, including any non-linear

relation. By using a Gaussian Mixture Model (GMM) to model skin colour, the method of Jones

et al. effectively identifies clusters of skin colour which exist in the training data. One possible

criticism of their approach is that they do not restrict the GMM in any way to ensure that the

statistical model represents skin colour spanning the full luminance range. A possible failure

arising from this is that if the training data only represents skin colour captured at discrete levels

of illumination then the modes of the GMM will tend to only occupy these regions. Essentially,

if the training data does not contain significant samples captured at low levels of illumination

then they will not be adequately represented in the statistical model. Furthermore, the fitting of

a GMM requires the pre-definition of a specific number of clusters. This can result in skin colour
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only being adequately modelled at discrete levels of illumination. The proposed skin detection

technique however does not have such a restriction and models skin colour continuously over the

full range of illumination. Also, since the proposed model is deterministic it avoids problems

where insufficient training data is available to statistically model skin colour at all possible levels

of illumination.

Figure 2.10 presents a comparison between the proposed skin colour detection technique and

that proposed by Hsu et al. [156] and Jones et al. [120]. The skin colour mask estimated with

the proposed skin colour detection technique on the sample frame of figure 2.9a is presented

in figure 2.10a. Figure 2.10b shows the results of skin detection on the same frame using the

skin detection algorithm as proposed by Hsu et al [156] and figure 2.10c shows the result of skin

detection using the technique of Jones et al. [120]. In each case the skin masks have been cleaned

using equivalent open, close and hole filling morphological operations. From these figures it can

be seen that both the proposed skin detection technique and the method of Hsu outperform the

technique of Jones et al. for detecting skin colour under low illumination.

Overall, the proposed skin detection technique can be seen to perform similarly to the method

of Hsu. However, Hsu’s method appears to perform poorly at classifying non-skin regions under

high illumination. This can be seen in figure 2.10b where significant wall regions about the

presenter in the scene are incorrectly classified as skin.

The need to adequately model skin colour at low levels of illumination can be further sup-

ported by a direct comparison between the proposed detection technique and that of Jones et

al. The estimated skin colour pixels of the sample frame using the proposed method in RGB

space are shown in figure 2.10d. Shown in figure 2.10e is the region of the skin colour pixels

estimated by the new approach which are classified as non-skin by the method of Jones et al.

This demonstrates that the proposed detection method correctly classifies a greater number of

skin colour pixels under low illumination than that of Jones et al. Motivated by these results,

the presented skin colour detector is employed later in chapter 6 in an active speaker tracking

application.

2.2.4 Camera Measurement Function

This section introduces the mathematical formulation of the projection of 3D points onto the

image plane which will serve as analysis in later chapters. Extensive treatment of the presented

material and also additional details which are not covered here can be found in the textbooks

of O. Faugeras [138] and Hartley et al. [154].

2.2.4.1 The Pinhole Camera Model

The pinhole camera model is a simple model which describes image formation by central projec-

tion. By central projection in this context, it is meant that a point x ∈ ℝ3 in space is mapped

onto a point p ∈ ℝ2 in the image plane such that p and x form a straight line through a point
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(a) Sample frame from the CHIL database.

R

G

B

(b) Scatter plot of sample frame (a) in the RGB colour
space.

Figure 2.9: Sample frame from the CHIL database together with a scatter plot of the frame’s
pixels in the RGB colour space

C ∈ ℝ3. An illustration of this relation is presented in figure 2.11. In this model the point C

is known as the camera centre and defines the point through which all object to image rays are

projected. The perpendicular distance between the image plane and the camera centre is known

as the focal length and is denoted f . A basic pinhole camera model is therefore completely

described by both C and f .

In essence, what the pinhole camera model represents is a set of well defined geometrical

relationships in 3D space between object points and their corresponding imaged points on the

image plane. Using this, a ℝ3 7→ ℝ2 central projection mapping can be defined which relates an

object point x to its corresponding imaged point p. This mapping can be defined as follows.

Consider the point p = [px, py]
T obtained by the projection of a 3D point x = [x, y, z]T onto

the image plane using the pinhole camera model defined by {C, f}. This corresponds to the

scenario as depicted in figure 2.11. Using the relation of similar triangles it can be seen that
px
f = x

z and
py
f = y

z . Through this, the image point p is determined as,

[
px

py

]
=

[
f xz
f yz

]
. (2.58)

The ℝ3 7→ ℝ2 central projection mapping for an arbitrary point x = [x, y, z] therefore is defined

as, ⎡
⎢⎣
x

y

z

⎤
⎥⎦ 7→

[
f xz
f yz

]
. (2.59)

Until now we have examined the projection of 3D points to their 2D images in Euclidean
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(a) Extracted skin regions (Proposed Method) (b) Extracted skin regions (Hsu et al. [156])

(c) Extracted skin regions (Jones et al. [120])

R

G

B

(d) Detected skin pixels using the proposed skin colour
model which accounts for the non-linear dependence of
skin tone on luminance.

R

G

B

(e) Colour region in the RGB colour space classified
as skin by the proposed method but as non-skin by the
method of Jones et al. [120].

Figure 2.10: Comparison of the proposed skin colour detection technique to that of Hsu et al. [156]
and Jones et al. [120]
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Figure 2.11: The pinhole camera model defined by the focal length f and the camera centre C.
The projection of a 3D point onto the image plane can be defined using the relation of similar
triangles.

space. There are concepts in multi-view geometry however which Euclidean geometry can not

adequately describe. For instance, consider the case of an image point as z → 0, i.e. [f x0 , f
y
0 ].

This is an infinite point which is not defined in Euclidean space. Situations such as this motivate

the need for a different geometric space in which such points can be represented. The approach

in multi-view geometry is to extend the image plane from a Euclidean space ℝ2 to a projective

space ℙ2 which enables the representation of such infinite points.

2.2.4.2 Projective Space and Homogeneous Coordinates

To introduce the concept of the projective space ℙ2 we can consider again the scenario illustrated

in figure 2.11, but instead consider the image point p as the point of intersection of the 3D line

from C to x with that of the image plane. In examining this problem it can be assumed without

loss of generality that the camera centre lies at the origin i.e. C = [0, 0, 0]T . In addition to this,

the z axis is redefined as w = z
f . This simply corresponds to a scaled z axis and enforces that

the image plane irrespective of f is always the plane defined by w = 1.

An intuitive way of thinking of the projective space ℙ2 is that of consisting of the set of rays

in ℝ3 which project through the camera centre. Consider now, the parameterized form of the

3D line through the image point p as [69, pp. 158-159],

⎡
⎢⎣
px

py

1

⎤
⎥⎦ =

⎡
⎢⎣
kp
′
x

kp
′
y

kw

⎤
⎥⎦ (2.60)
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Figure 2.12: Parameterized form of the 3D line through the point on the image plane [px, py, 1]
and the camera centre C. Each [p

′
x, p

′
y, w] for k ∕= 0 defines a unique 3D line through the C.

which is illustrated in figure 2.12. For k ∕= 0 the point [kp
′
x, kp

′
y, kw] in equation 2.60 defines

a unique 3D ray through C. In this way, the point [kp
′
x, kp

′
y, kw] can be seen to represent a

unique point in ℙ2. Solving for k = 1
w , an equivalent representation of the 3D coordinate of the

image point is defined in terms of w as,

⎡
⎢⎣
px

py

1

⎤
⎥⎦ =

1

w

⎡
⎢⎣
p
′
x

p
′
y

w

⎤
⎥⎦ . (2.61)

The significance of equation 2.61 is that an image point can be represented by an ordered triple

of real numbers [p
′
x, p

′
y, w] in ℙ2 knowing that the point on the image plane can be recovered by

dividing by w i.e. p = [pxw ,
py
w ]. The point [p

′
x, p

′
y, w] is said to be the homogeneous coordinate of

the point [px, py]. In particular, given equation 2.60 any point [kp
′
x, kp

′
y, kw] for k ∕= 0 is equally

a homogeneous coordinate of [p
′
x, p

′
y]. It is from this that the term homogeneous arises. From

this it can be seen that infinite points in Euclidean space simply correspond to the points in ℙ2

with homogeneous coordinate where w = 0. At this point, the notation p̃ is introduced to refer

specifically to the homogeneous representation of the a non-homogeneous point p.

2.2.4.3 The Calibration Matrix

The benefit of using homogeneous coordinates is that the ℝ3 7→ ℝ2 mapping as defined in

equation 2.59 which is non-linear in z can be defined as a linear ℝ3 7→ ℙ2 mapping. Using
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homogeneous coordinates the mapping in 2.59 is redefined as,

⎡
⎢⎣
p
′
x

p
′
y

w

⎤
⎥⎦ =

⎡
⎢⎣
f 0 0

0 f 0

0 0 1

⎤
⎥⎦

⎡
⎢⎣
x

y

z

⎤
⎥⎦ (2.62)

= Kx. (2.63)

The matrix K is known as the calibration matrix. In this formulation K represents the simplest

case of a pinhole camera which assumes that the image coordinates are equally scaled in both

the x and y axes. In general, this is not the case and the number of pixels per unit area mx on

the x axis is often different to the number of pixels per unit area my on the y axis. In addition

to this, the origin of pixel measurements is often not the centre of the image plane [cx, cy] but

at a point [x0, y0], known as the principal point. To account for this, image measurements are

translated with respect to the principal point and scaled appropriately by the factors mx and

my on each axis. This is defined in the calibration matrix by,

K = [mx,my, 1]

⎡
⎢⎣
f 0 cx

0 f cy

0 0 1

⎤
⎥⎦ (2.64)

=

⎡
⎢⎣
mxf 0 mxcx

0 myf mycy

0 0 1

⎤
⎥⎦ (2.65)

=

⎡
⎢⎣
�x 0 x0

0 �y y0

0 0 1

⎤
⎥⎦ (2.66)

In the most general case, the calibration matrix is defined as,

K =

⎡
⎢⎣
�x s x0

0 �y y0

0 0 1

⎤
⎥⎦ (2.67)

where the skew parameter s is introduced to account for the case of non-rectangular pixels.

2.2.4.4 The Camera Projection Matrix

In examining the pinhole camera model it was assumed that the camera centre corresponded to

the origin. Typically, 3D points will exist in some other world coordinate space and not that of

the camera’s coordinate system. This is not an issue since 3D points can easily be translated

and rotated through into the coordinate space of the camera before projection onto the image
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plane. The image point therefore becomes

p̂ = KR(x−C), (2.68)

where R is a 3D rotation matrix representing the rotation between the world coordinate space

and the coordinate space of the camera. A problem does arise however in that the ℝ3 7→ ℙ2

mapping of equation 2.68 is now non-linear. Similar to the manner in which image points can be

represented by homogeneous coordinates, x can be defined in ℙ3 with homogeneous coordinates

x̃ = [x, y, z, 1]. Using this representation the non-linear ℝ3 7→ ℙ2 mapping of equation 2.68 can

be redefined as a linear ℙ3 7→ ℙ2 mapping through

p̃ = KR[I3×3∣ −C]x̃, (2.69)

where I3×3 is a 3×3 identity matrix. The camera centre C, rotation matrix R and the calibration

matrix K can be encompassed in a single 3 × 4 matrix P called the camera projection matrix

such that

p̃ = Px̃. (2.70)

Given a point x and camera matrix P therefore, the homogeneous coordinate of the image point

p is first obtained by equation 2.70 as,

⎡
⎢⎣
p
′
x

p
′
y

w

⎤
⎥⎦ =

⎡
⎢⎣
a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

⎤
⎥⎦

⎡
⎢⎢⎢⎢⎣

x

y

z

1

⎤
⎥⎥⎥⎥⎦
, (2.71)

where auv is the (u, v) entry in P. Secondly the non-homogeneous coorindate of the image point

p̃ is obtained by dividing by w as in 2.61 to give,

⎡
⎣

p
′
x
w
p
′
y

w

⎤
⎦ =

⎡
⎢⎣

a11x+a12y+a13z+a14
a31x+a32y+a33z+a34

a21x+a22y+a23z+a24
a31x+a32y+a33z+a34

⎤
⎥⎦ . (2.72)

This is referred to as the camera measurement function in this thesis and its formulation in

equation 2.72 is later employed in the analysis of localisation accuracy presented in chapter 4.

2.3 Final Comments

This chapter has introduced the various theory in the extraction of audio and video based

features for localising active speakers. The use of audio information obtained from multiple

microphones for use in localisation was described. It was seen that both time-delays estimates
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at multiple microphones pairs, energy measurements and steered-response power can all be used

to localise active speakers. The general issues relating to the acoustic environment which audio-

based localisation techniques must contend with such as reverberation were discussed. Also,

measures to characterise the level of reverberation in a room were presented.

Those techniques which employ time-delay estimation were seen to be fundamentally limited

in terms of their accuracy by the source signal bandwidth, time-analysis window and SNR. It

was also seen that two components of error exist in the time-delay estimation problem such as

“small” errors which describe uncertainty locally about the true time-delay and “large” errors

corresponding to anomalous TDEs. Introduced in this section was the time-delay measurement

function defining the relationship between a speech source position to that of a time-delay ob-

served at a pair of microphones. Also, the DOA measurement function was defined, establishing

the relationship between a given speech source position and the DOA at a pair of microphones.

In addition to the overview of multi-channel audio-based features, various techniques for the

detection of people in video sequences were considered, such as, background modelling and face

detection. Feature-based face detection through skin colour modelling was proposed as the most

applicable to the multi-view scenario where faces are observed at various poses and often at low

resolution. A new skin colour model was introduced which was seen to demonstrate the ability

to detect skin colour under low illumination. Finally, the camera measurement function was

introduced describing how a 3D point is projected onto the image place of a camera.
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3
Joint Audio-visual Active Speaker Tracking

Combining audio and video features for tracking active speakers is a relatively new concept in

the signal processing research community. It is clear that under ideal conditions it is possible

to do this using microphone array techniques alone. Early approaches, attempted to track

active speakers using the multi-channel audio-based features presented in section 2.1. As was

detailed in the presentation, the necessary conditions for this to be possible are never realised.

In the early development of audio-based localisation techniques, issues such as the reverberation

phenomenon coupled with the challenge of discerning a speech source from among noise sources

were quickly identified as significant barriers. Although considerable advances have been made

over several decades [72], these issues still remain significant barriers. Researchers continue in

their efforts to improve audio-based localisation performance and advancements are continuously

being reported. Regardless of this, it is unlikely that solely audio-based active speaker tracking

systems will ever meet a satisfactory level of performance for use in everyday applications. Even

in favourable acoustic environments, their performance is inherently limited. This is the case

because a person can only be located using such techniques when actively speaking.

Consequently, a strong inclination now exists in the research community towards the use

of video with audio for tracking active speakers. This offers the potential to greatly improve

tracking performance since it is not affected by reverberation which can cause audio-based

localisation to fail and can be used to estimate a person’s position when not actively speaking.

Many basic visual features exist such as those discussed in section 2.2 that can be used to affirm

likely speaker positions within a scene. However, video alone can not fully address the problem of

detecting speaker activity. Visual information such as lip movements can indicate likely speech

51
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activity, but the dominant information relating to such is contained within the audio data. At a

very basic level, video can be used to indicate likely speaker positions and guide an audio-based

tracking system for determining speech activity.

At a more sophisticated level, if every potential speaker could be detected using video data,

the active speaker tracking task reduces to that of determining which of the known speakers in

the scene is currently active. Determining the position of an active speaker from a small set

of hypothesised positions is a much more approachable task than blind localisation using audio

information alone. Nishiguchi et al. [170] use this approach in localising speaking students in

a lecture room scenario. A set of known seated student positions are continuously monitored

for occupancy through motion detection using temporal differencing on the video data. A

histogram type analysis of TDEs built over occupied speakers positions is then used to evaluate

which student is speaking.

Similar systems have been proposed for guiding beamforming based localisation techniques.

As was previously stated in section 2.1 both the SRP-PHAT and the use of a delay-and-sum

beamformer can be computationally expensive to implement if the space to be searched for an

active speaker is large. Reducing the search space to a small number of hypothesised locations

using video data makes them much more tractable. This strategy is a popular approach in HCI

and desktop video-conferencing systems. The work of Bub et al. [183] presents a beamformer

which is steered towards a speaker located using skin colour, motion and face-shape based visual

cues. Similar video based methods for steering beamformers are described in [13,14,116]. Also,

the use of face detection is made in [80] to reduce the SRP-PHAT search space in speaker

localisation which in turn is used to steer a beamformer.

Unfortunately, video-based tracking is not without its own challenges. Illumination changes,

occlusions and low lighting conditions are just some of the problems which currently make

the accurate detection of people in video difficult. It is the nature of both audio and video as

sensing modalities however that they tend to fail independently. Therefore, in the same way that

video-based localisation can be used to compensate for the limitations of audio-based tracking;

audio-based tracking can be used to compensate video.

Audio can also facilitate video localisation in cases where a video-based estimate is not

possible. This can occur where the speaker is not in the camera’s field of view. The alternative

solution in a purely video-based approach would be to complete an exhaustive visual search

of the tracking space which can be computationally prohibitive. Audio guided systems for

visual speaker localisation have been proposed for automated video-conferencing applications

[23,24,61,62] and HCI systems [19]. In these speaker tracking systems audio-based localisation

is used to define a rough estimate of a speaker’s position which is then refined using video data.

Audio-guided and video-guided speaker localisation systems however, do not fully utilise

the complementary nature of both the audio and video modalities. In particular, they do not

consider how audio and video should be combined when location estimates from both modalities

are available. If the tracking problem can be modelled with accuracy, then fusing multiple
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measurements from different sensors can result in an overall improved positional estimate [188].

Whether such strategies can be applied using audio and video sensors for tracking people is a

question which has recently interested the signal processing research community. In this chapter

the tracking techniques which facilitate the incorporation of both audio and video for tracking

active speakers are explored.

Aiming to cover all the relevant video-based and audio-based tracking literature relating

to active speaker tracking would be impractical. It is felt that existing literature provides

sufficient treatment in relation to video-based tracking [10,90,92]. For this reason, this chapter

introduces the active speaker tracking problem initially from an audio-based perspective and

useful tracking techniques for this problem are presented. The joint audio-video based problem

is examined afterwards by considering how audio-based tracking methods can be extended to

include visual information. In this regard, the review follows the trend observed in the research

community in recent years towards active speaker tracking; from purely audio-based tracking,

to a joint audio-visual perspective.

3.1 Bayesian State Sequence Estimation

Many speaker localisation and tracking tasks can be stated as problems of estimating a hidden

state xk over some time duration k = 0, ..,K based on a set of observations y0:K = {y0, ..,yK}.
In the context of the work described in this thesis, we can consider xk ∈ ℝp as the hidden state

of an active speaker, such as for instance, the speaker’s position in 3D space (p = 3). However,

the general definition of xk as a p-dimensional vector is considered to be applicable to cases

where xk may relate to other hidden states of interest such as perhaps, the time-delay relating

to an active speaker in the audio-domain (p = 1).

Applying a Bayesian analysis to the state estimation problem, xk can be considered as a

random variable. The task can then be defined as that of estimating the sequence of states x0:K

for times k = 0, ..,K from the sequence of observations y0:K . From a Bayesian perspective, this

translates to the problem of determining the posterior distribution p(x0:K ∣y0:K). Using Bayes’

rule the posterior distribution is defined as [5],

p(x0:K ∣y0:K) =
p(y0:K ∣x0:K)p(x0:K)∫

p(y0:K ∣x0:K)p(x0:K)dx0:K
. (3.1)

Since the posterior distribution is completely defined by both p(y0:K ∣x0:K) and p(x0:K) the

relation in equation 3.1 can be re-written,

p(x0:K ∣y0:K) ∝ p(y0:K ∣x0:K)p(x0:K). (3.2)

The presented analysis refers to two specific scenarios in relation to the state estimation

problem. The first is the online estimation problem where the posterior of equation 3.1 is
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estimated incrementally at each time-step k based on the available observations y0:k. This

problem can also be referred to as a filtering problem where estimating p(xk∣y0:k) is of interest.

The second scenario corresponds to the off-line case where xk is determined at each time step k

using the complete set of observations y0:K . This is often referred to as the smoothing estimation

problem which addresses the issue of determining the distribution p(xk∣y0:K).

Since both p(xk∣y0:k) and p(xk∣y0:K) are marginals of the posterior distribution in equation

3.1, in simple estimation problems they can be determined by integrating over the nuisance

states. In most practical estimation problems, this requires complex high dimensional integrals

making their estimation intractable [5]. Therefore, practical applications of Bayesian techniques

to state estimation problems often require prior assumptions and approximate models of both

the state xk and measurements yk so as to restrict the form of p(x0:K ∣y0:K).

To this end, in state sequence estimation problems it is common to assume a Markovian

representation of xk and model the evolution of the state as,

xk = Tk(xk−1, ..,xk−r,vk). (3.3)

where the function Tk is known as the process model and vk defines the process noise reflecting

uncertainty in the model. In addition to this, it is common to define the relationship between

the state xk and its observation yk. This can be defined through a measurement model as,

yk = Hk(xk,wk) (3.4)

where Hk defines the measurement function and wk is the noise observed on the observations.

3.1.1 Recursive Bayesian Filter

The recursive Bayesian filter addresses the online estimation problem and enables a recursive

determination of p(xk∣y0:k). This filter arises by modelling xk as a first order Markov process.

This corresponds to cases where the process model of equation 3.3 is defined for r = 1. Under

this assumption, equation 3.3 and equation 3.4 define two important relations in the definition

of the recursive Bayesian filter. These are,

p(xk∣x0:k−1) = p(xk∣xk−1), (3.5)

which asserts the dependence of xk on xk−1 only and

p(yk∣x0:k) = p(yk∣xk), (3.6)

which defines the current observation yk as dependent only on the current state xk. The prob-

ability density function (pdf ) p(xk∣xk−1) is known as the state transition pdf and defines the

evolution of the state from time-step k − 1 to k. In the specific case of tracking the posi-
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tional state of an active speaker, the state transition density defines the dynamical model of the

speaker’s motion. The pdf p(yk∣xk) defines a probabilistic model of the measurement process

and is known as the measurement likelihood function. Given this, p(xk∣y0:k) can be determined

recursively at each time instance in a two-step predict and update operation given by [54],

Predict : p(xk∣y0:k−1) =

∫
p(xk∣xk−1)p(xk−1∣y0:k−1)dxk−1 (3.7a)

Update : p(xk∣y0:k) ∝ p(yk∣xk)p(xk∣y0:k−1). (3.7b)

Again, in most cases where the dimensionality or degrees of freedom of xk is large, the integral of

in the prediction step is intractable. There are however certain cases where the recursive Bayesian

filter can be directly applied such as the case where the state is constrained to a Gaussian linear

state space and both the process noise vk and measurement noise wk are uncorrelated and drawn

from Gaussian distributions. Under these assumptions, the posterior p(xk∣y0:k) is Gaussian for

all times k and the state can be estimated using the Kalman Filter (KF) [194, Chapter 5]. The

KF is described in the following section however for a more detailed treatment the reader is

referred to the tutorial by Welch et al. [65].

3.1.2 The Kalman Filter (KF)

The Kalman Filter (KF) can be applied to estimating xk in cases where both vk and wk are

zero-mean uncorrelated Gaussian random processes and the process model Tk in equation 3.3

and measurement model Hk in equation 3.4 are linear functions. In this case xk and yk are

defined by,

xk = Akxk−1 + vk (3.8a)

yk = Gkxk + wk (3.8b)

where Ak is the state transition matrix and Gk is the measurement matrix. Under these

assumptions the predict and update recursion of equation 3.7 becomes,

Predict: p(xk∣y0:k−1) = N (xk; x̂k∣k−1,Pk∣k−1) (3.9a)

Update: p(xk∣y0:k) = N (xk; x̂k∣k,Pk∣k) (3.9b)

where x̂k∣k−1 and Pk∣k−1 are the a priori state estimate and state error covariance respectively

and x̂k∣k and Pk∣k are their corresponding a posteriori estimates. The notation N (x;�, �2)

refers to a normal distribution over x with mean � and covariance �2. The KF is heavily reliant

on the fact that the state estimate x̂k−1∣k−1 and error covariance matrix Pk−1∣k−1 are linearly

transformable [164]. That is, x̂k−1∣k−1 can be propagated through the linear process model by

Akx̂k−1∣k−1 and the error covariance Pk−1∣k−1 by AkPk−1∣k−1A
T
k . Through this the prediction
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equations are defined as [194],

x̂k∣k−1 = Akx̂k−1∣k−1 (3.10a)

Pk∣k−1 = AkPk−1∣k−1A
T
k + Qk (3.10b)

where Qk is the covariance of the process noise vk. The complete algorithm defines the set of

update equations as [194],

�k = yk −Gkx̂k∣k−1 (3.11a)

Sk = GkPk∣k−1G
T
k + Rk (3.11b)

Kk = Pk∣k−1G
T
k S−1

k . (3.11c)

x̂k∣k = x̂k∣k−1 + Kk�k (3.11d)

Pk∣k = (I−KkGk)Pk∣k−1 (3.11e)

where �k is known as the innovation sequence which is the difference between the observation

and its prediction, Sk is the covariance of the innovation sequence, Kk is the Kalman gain and

Rk is the covariance of the measurement noise wk.

The Motion Modelling Problem

There is a prevalent concern in using the KF for positional tracking which warrants much dis-

cussion. This relates to that of choosing suitable models for motion. In relation to the Bayesian

formulation this translates to defining the state transition probability density p(xk∣xk−1) to most

appropriately model the dynamical evolution of the state xk.

Many suitable linear motion models for use with the KF exist, such as the Constant Position

(CP), Constant Acceleration (CA) and Constant Velocity (CV) motion models as presented in

Table 3.1 [190]. When the problem is that of tracking people, it can be particularly difficult

to assign the observed motion to any one of these models. In any typical tracking scenario, a

person will transgress over many different states of motion. With the KF this is of particular

concern since in its standard form it is restricted to linear state evolution models. It is important

to know therefore from the set of possible linear motion models that the correct model is being

used.

Divergence in the Kalman Filter

Under optimal tracking conditions, the innovations sequence of equation 3.11a can be shown

to be white and orthogonal [194, Chapter 5]. As a consequence of this, any modelling inaccu-

racies propagate in the innovation sequence indicating divergence in KFs. Divergence in the

Kalman filter occurs as either true divergence, where the errors become unbounded, or apparent

divergence where finite degradations are observed in the filtered state estimates [55]. Inaccurate
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motion modelling results in apparent divergence where the state does not evolve according to

the assumed state model of equation 3.8a but rather to some true linear process

x̃k+1 = Ãkx̃k + ṽk (3.12)

such that the true measurements become,

ỹk+1 = Gkx̃k + w̃k. (3.13)

It can be seen from equation 3.11a that where equation 3.12 represents the true state model,

the innovation sequence does not represent the true innovation. Instead, the innovation in the

case of inaccurate motion modelling can be obtained by replacing yk+1 in equation 3.11a by

ỹk+1. The actual innovation therefore is [148],

�̃k+1 = ỹk+1 −Gk+1x̂k+1∣k. (3.14)

By substituting this expression for the true innovation into equation 3.11d, the true error in the

state estimate becomes,

ek+1∣k+1 = x̃k+1 − x̂k+1∣k+1, (3.15)

which is found, after some manipulation to be [39],

ek+1∣k+1 = �k+1Akek∣k + �k+1ΔAkx̃k + �k+1ṽk −Kk+1wk (3.16)

where �k+1 = [I−Kk+1Gk+1] and ΔAk = Ãk − Ak. In expanding equation 3.14, it can be

seen that all modelling errors manifest in the innovation sequence i.e.

�̃k+1 = Gk+1Akek∣k + Gk+1ΔAkx̃k + Gk+1ṽk + wk+1. (3.17)

Computer Simulated Tracking Problem

The class of motion models as in table 3.1 are considered in this section. These different models

are considered in estimating the evolution of a state vector xk = [xk, ẋk, ẍk] where xk, ẋk and ẍk

denote 1D position, velocity and acceleration components. In relation to equation 3.17, it can

be seen that if E [wk] is zero mean then the error due to an inaccurate motion model propagates

in the expected value of the innovation sequence through ΔAk and vk. In this simulated case,

GkE [vk] is the change in acceleration over the time step T . Over periods of constant acceleration

therefore, GkE [vk] = 0 and the expected value of the innovation sequence in the simulated case
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Model CP CV CA

Ak

⎡
⎣

1 0 0
0 0 0
0 0 0

⎤
⎦
⎡
⎣

1 T 0
0 1 0
0 0 0

⎤
⎦
⎡
⎣

1 T T
2

2

0 1 T
0 0 1

⎤
⎦

Gk

⎡
⎣

1 0 0
0 0 0
0 0 0

⎤
⎦
⎡
⎣

1 0 0
0 0 0
0 0 0

⎤
⎦

⎡
⎣

1 0 0
0 0 0
0 0 0

⎤
⎦

Table 3.1: Transition matrices for a constant position model CP, constant velocity model CV
and constant acceleration model CA.

becomes,

E [�̃k+1] = Gk+1AkE
[
ek∣k

]
+ Gk+1ΔAkx̃k + Gk+1E [vk] (3.18)

= Gk+1[AkE[ek∣k] + ΔAkxk + E[vk]].

The following examines E [�k] in tracking the simulated motion using the CP, CV and CA

models where the actual motion observed is CA.

• Using the CP Motion Model, ΔAk =

⎡
⎢⎣

0 T T
2

2

0 1 T

0 0 1

⎤
⎥⎦

E [�̃k+1] = E
[
ek∣k

]
+ T ẋk +

T

2

2

ẍk (3.19)

• Using the CV Motion Model, ΔAk =

⎡
⎢⎣

0 0 T
2

2

0 0 T

0 0 1

⎤
⎥⎦

E [�̃k+1] = E
[
ek∣k

]
+
T

2

2

ẍk (3.20)

• Using the CA Motion Model, ΔAk =

⎡
⎢⎣

0 0 0

0 0 0

0 0 0

⎤
⎥⎦

E [�̃k+1] = E
[
ek∣k

]
(3.21)

It can be seen from equation 3.19 that using a CP motion model over periods of constant

acceleration (ẍ constant), the expected value of the innovation sequence increases linearly. Equa-

tion 3.20 reveals that a CV motion model results in an offset in the expected value of the in-
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Figure 3.1: Innovation sequences resulting in tracking the observed motion in (a). The result-
ing innovation sequence using the CP, CV, CA motion models are shown in (b), (c) and (d)
respectively. The simulated motion is that of a person starting at an initial stationary position
at k = 0 and accelerating from k = 30 to k = 60, maintaining a constant velocity (5m/s) from
k = 60 to k = 90 and then decelerating back to a stationary position at k = 120. (T = 0.25s).

novation sequence. As the CA motion model estimates all states of the simulated motion it

is the optimal model and it is seen in equation 3.21 to be zero mean. Similarly, over periods

of constant velocity (ẋ constant) both the CV and CA motion models are zero mean and an

offset is observed in E [�k] where the CP model is used. This theoretical analysis is shown to

correspond directly to the observed innovation sequence in a simulated tracking example as pre-

sented in figure 3.1. In this example the simulated tracking problem is that of a person starting

from an initial stationary position to a state of constant velocity and then decelerating back to

a stationary position.

It is seen therefore that continually monitoring the statistical properties of the innovation

sequence is critical for detecting modelling errors and necessary to ensure accurate performance.

This is the basis of many existing methods of divergence detection and control in Kalman

filters [51]. The present analysis shows that divergence trends in the innovation sequence can be

used in determining the most suitable linear motion model for a set of available linear models.
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3.1.3 Kalman Filters for Audio-based Tracking

Since localisation estimates obtained using audio data can be noisy, the KF provides a simple,

effective and easily implementable tool for the filtering of the positional estimates. In its standard

form it can not be directly used in the case of a nonlinear measurement function as is the case in

time-delay estimation and direction-of-arrival tracking. It can be used if the measurements are

assumed to be an audio-based positional estimate obtained through some closed form estimate

using TDEs or otherwise. In this case it can be used for the spatial filtering of location estimates

[34].

The KF does not perform optimally if the assumption of linear motion is violated or if an

incorrect motion model is used. A basic analysis of the innovation can be used to monitor

performance and provide some insight into choosing the best model. Adaptive motion models

are therefore essential to ensure accurate tracking. Extending the KF to the case of adaptive

multiple motion models as in [35], is straightforward.

In many cases the assumption of linear motion however is too restrictive. In this case variants

of the KF such as the Extended Kalman Filter (EKF), Iterated Extended Kalman Filter (IEKF)

and Unscented Kalman Filter (UKF) exist which can address this. Each of these can handle

cases where either/both the process function Tk or measurement function Hk is non-linear.

As was seen in section 2.1.3.1 the time-delay measurement function of equation 2.25 and DOA

measurement function of equation 2.26 are non-linear. Variants of the KF which can account

for this are of particular interest in audio-based tracking.

Extended Kalman Filter (EKF)

In many cases of a nonlinear process function Tk or measurement function Hk, a local linearisa-

tion of the functions may be sufficient. This is the approach of the EKF. In the case where both

of the functions in Tk and Hk are nonlinear the extended Kalman filter linearises both functions

such that ∇Tk = ∂Tk
∂xk−1

∣x̂k−1∣k−1
and ∇Hk = ∂Hk

∂xk
∣x̂k∣k−1

replace Ak and Gk respectively in equa-

tion 3.11. This equates to a first order linearisation of the functions Tk at the previous state

estimate x̂k−1∣k−1 and a first order linearisation of Hk at the a priori state estimate x̂k−1∣k. The

EKF however is not restricted to a first order linearisation and where a higher order estimate

is necessary it may be extended to the second order case [193]. The EKF through linearising

the non-linear measurement function has enabled the simplicity of the KF to be applied to the

direction of arrival audio-based tracking problem [136].

Iterated Extended Kalman Filter (IEKF)

The Iterated Extended Kalman Filter (IEKF) is a variant of the EKF which is aimed at improv-

ing the state estimate by re-iterating the update stage of the EKF. The EKF determines the

partial derivative of the measurement function Hk = ∂Hk
∂xk
∣x̂k∣k−1

at the a priori state estimate

x̂k∣k−1. After the update step of the EKF however, an improved posterior state estimate x̂k∣k is
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available. The IEKF re-evaluates the derivative of the measurement function at this new esti-

mate x̂k∣k i.e. Hk = ∂Hk
∂xk
∣x̂k∣k and the update filtering step is repeated. Since at each successive

update a better posterior state estimate is expected, the IEKF repeats this process for a fixed

number of iterations or until no further improvement is observed. This iterative process of the

IEKF reduces the error introduced by linearising the measurement function. The extension of

the EKF to an IEKF is trivial and has been proposed for TDE-based tracking in preference to

the basic EKF [184].

Unscented Kalman Filter (UKF)

The Unscented Kalman Filter (UKF) [167] is also a variant of the EKF which can handle

nonlinear process and measurement functions. It achieves this not by linearisation but by

propagating the state and error covariance using the unscented transform. The basic strategy of

the unscented transform is to deterministically define a set of points X ik−1∣k−1, i = [0, .., 2p] known

as sigma points with associated weights W i
k−1∣k−1. These points are chosen to appropriately

estimate the state x̂k−1∣k−1 and error covariance Pk−1∣k−1 through,

x̂k−1∣k−1 =

2p∑

i

W i
k−1∣k−1X ik−1∣k−1 (3.22a)

Pk−1∣k−1 =

2p∑

i

W i
k−1∣k−1[X ik−1∣k−1 − x̂k−1∣k−1][X ik−1∣k−1 − x̂k−1∣k−1]T . (3.22b)

Once defined, the prediction stage consists of propagating the sigma points through the process

function to determine the set of transformed sigma points X ik∣k−1 = Tk(X ik−1∣k−1). Then by

applying equation 3.22 to the set of transformed points, the a priori state estimate x̂k∣k−1 and

error covariance Pk∣k−1 are determined in the prediction step. The update procedure is the

same as that of the standard KF however the unscented transform is also used at this step in

propagating x̂k∣k−1 and Pk∣k−1 through the nonlinear measurement function where necessary.

In comparison to the linearisation approach of the EKF, Julier et al. show the unscented

transform to be more accurate than linearisation in cases where function is highly non-linear

[164]. Additionally, they claim that the unscented transform has significant computational

benefits over that of the standard EKF. The application of the UKF to audio-based tracking

has been reported in [161] where they compare the use of the UKF to that of the EKF. They

concluded in their analysis that the UKF only marginally outperforms the EKF and with almost

equivalent computational burden.

3.1.4 The Particle Filter

The Particle Filter (PF) is a sequential Monte Carlo method for estimating the posterior

p(xk∣y0:k). This is achieved by assuming the p(yk∣xk) to be sufficiently well approximated
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by a finite number Ns of support points xik, i = 1, ..., Ns. These points are associated with

weights wik such that an approximation of p(yk∣xk) can be obtained through [160],

p(xk∣y0:k) ≈
Ns∑

i=1

wik�(xk − xik) (3.23)

The weights are determined by the process of importance sampling and are recursively estimated

through [160],

wik ∝ wik−1

p(yk∣xik)p(xik∣xik−1)

q(xik∣xik−1,y0:k)
(3.24)

where q(xik∣xik−1,y0:k) is known as the importance density or proposal density. Ideally it is

desired for the samples xik to be distributed according to the posterior. Since it is the posterior

which is being estimated, it is typically not possible to draw samples from it directly. It is the

proposal by which the samples xik are initially drawn and should be chosen to closely approximate

p(xk∣y0:k). A proposal density which poorly approximates the posterior will result in a lot of the

samples xik having small weights and not accurately representing the true posterior distribution.

A scalar measure Ñeff = 1/
∑Ns

i=1(wik)
2 known as the effective sample size can be used as a

measure of the effectiveness of particles in estimating the distribution.

It is common in tracking to assign the proposal distribution as equal to the prior p(xk∣xk−1)

and form what is known as the bootstrap filter [132]. The bootstrap filter is implemented in the

same predict and update process as the previously discussed recursive filter given by,

Predict : Perturb the particles according to the process model

xik∣k−1 = Tk(x
i
k,vk).

Update : Determine the particle likelihoods p(yk∣xik) and

associated weights according to equation 3.24 with (3.25a)

q(xik∣xik−1,y0:k) = p(xk∣xk−1) i.e. wik = wik−1p(yk∣xik).

The bootstrap filter can suffer from a phenomenon known as degeneracy where after a short

number of iterations the effective sample size reduces and the weights of all particles but one is

zero. Up until the adaptation of this filter as proposed by Gordon et al. the use of the bootstrap

was constrained to few applications. Gordon et al. in their work suggested resampling the

particles after the update stage and resetting the particle weights to 1
Ns

. This removes particles

which do not contribute (small weights) to the estimate of p(xk∣y0:k) and results in increasing

the effective sample size Neff . It is known as the Sequential Importance Sampling (SIS) particle

filter and is the most popular particle filtering method. Although resampling the particles at each

time-step can counteract degeneracy, it can lead to a scenario where particles with large weights

are resampled repeatedly reducing particle diversity. This is another failure characteristic of the

particle filter known as sample impoverishment.
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One notable problem using the p(xk∣xk−1) as the proposal density with the SIS particle

filter is that it is not conditioned on the current observation yk. This means that particles

can be propagated to regions away from the current observation which can lead to sample

impoverishment. The auxiliary SIS particle filter is a variant of the basic algorithm to address

this. It aims to sample from a proposal density q(xik, i∣yk) where i refers to the index of the

particle at the previous time step k − 1. The proposal distribution ensures that particles close

to the current observation are assigned large weights in the resampling step.

Since particle filtering methods attempt to approximate probability densities by a set of

samples, no restrictions are placed on the form of posterior p(xk∣y0:k), likelihood p(yk∣xk) or

state transition density p(xk∣xk−1). Thus, the PF is not restricted to estimate states confined

to a linear Gaussian state space as with the standard KF. It can be used therefore in the

case of nonlinear motion models and nonlinear measurement functions. In addition to this it is

much more straightforward to implemented than the EKF, IEKF or UKF since it only requires

maintaining the particles and their associated weights.

The ability of the PF to model complex likelihood functions is especially useful in the audio-

based tracking problem. Both in the beamforming and time-delay audio-based tracking problem

the likelihood function can have multiple modes. The multiple modes corresponding to multiple

likely speaker positions can arise due to the presence of multiple speakers or because of the

reverberation phenomenon. Enabling the modelling of such through complex likelihood functions

makes the particle filter a powerful technique for tracking in the presence of reverberation [45].

A variety of likelihood functions have been proposed using the GCC for TDE-based tracking

using an Auxiliary PF [100], and also for beamforming [32]. Further discussion in relation to

these is delayed at this point since they are examined in the later analysis of the fusion problem.

3.1.5 Grid-based Approximation

An alternate means to particle filtering is to approximate the posterior through grid-based

methods. Intuitively, this corresponds to the case where xik in equation 3.23 does not define a

set of random particles but rather a grid of points in the state space. What distinguishes this

technique from that of particle filtering is that the grid points are defined deterministically.

The complexity of the posterior distribution generally dictates the resolution of the most

effective approximating grid. Typically, if the posterior is complex with many multiple modes a

high grid-resolution is required. As such, it is often too restrictive for many tracking problems.

In the offline tracking problem, if a grid-based estimate of the posterior p(xk∣y0:k) is available

then a MAP estimate

xMAP
0:K = arg max

x0:K

p(x0:K ∣y0:K), (3.26)

of the state sequence x0:K can be obtained using the Viterbi algorithm [57].

It is a consequence of discrete-time sampling the source signal in audio-based tracking that

without some form of interpolation, the TDEs are constrained to discrete values. If the concerned
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estimation problem defines the state of interest xk as the true time-delay in the audio-domain

then it can be addressed through grid-based methods.

Tung et al. [178] recognised the inherently discrete nature of TDEs enforced by the discrete

time-delay estimation problem. They apply the Viterbi algorithm to obtaining a MAP estimate

of the true time delay over a set of observations. Due to the offline manner of this approach it is

only useful when offline methods can be used. The Viterbi algorithm however can also be used

over windowed observations in a delayed tracking scheme.

The success of the Viterbi algorithm for tracking relies on determining accurate grid-based

estimates of the posterior distribution. Later in chapter 6 a joint audio-video based active

speaker tracking algorithm is introduced which uses the Viterbi algorithm. Video information

is used by the tracking technique to obtain a grid-based estimate of the posterior distribution.

Audio-based information is then used to determine the position of the active speaker from the

grid-based estimate of the posterior.

3.2 Combining Audio and Video Observations for Tracking

At this point in the review after examining various approaches to audio-based tracking we in-

troduce a sequence of video-based observations z0:k of the state sequence x0:k. We consider

therefore the task of estimating the state based on the combined set of audio and video observa-

tions {y0:k, z0:k}. If the video-based measurements z0:k are assumed to be defined by a similar

model to that of equation 3.4 then the likelihood function for the joint audio-video tracking

problem becomes p(yk, zk∣xk).
Much of the existing work in handling the joint audio-video based likelihood function relies

on the independent measurement assumption. This assumption states that both the audio and

video measurements are independent of one another and only depend on the current state. In

terms of the likelihood function this translates to

p(yk, zk∣xk) = p(yk∣xk)p(zk∣xk). (3.27)

Little evidence arises to argue against such an assumption since the only common dependence

between the observations under the assumed observation models is the current state. Therefore if

the observation models can be justified, the independent measurement assumption is reasonable.

3.2.1 Simple Average

The most intuitive method of combining multi-modal measurements under the independent

measurement assumption is to firstly obtain two individual state estimates x̂Ak and x̂Vk using

the audio and video data respectively. Then, a global state estimate can be obtained as the
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weighted average of the two estimates as,

x̂k =
∑

n=[A,V ]

wnx̂
n
k . (3.28)

where wn are weights associated with the single modality estimates. An important question

arises in considering such an approach. It is difficult in practice to define the most appropriate

weights wn. Ideally, these should relate in some manner to the reliability and accuracy of

the estimates x̂nk . In such a fusion scheme unreliable state estimates should be given a zero

weighting and state estimates which are reliable should be weighted to reflect their level of

accuracy. Ineffective weights can result in a single state estimate skewing the fused estimate.

It is unlikely that practical fusion applications exist where appropriate weighting can be

employed through a simple scalar weighting scheme. In general, it is rather ad-hoc in its approach

and cannot be regarded as optimal in a statistical sense. Given the lack of statistical information

relating to the accuracy and reliability of the state estimates x̂nk however, the simple average

approach does provide an easily implementable approach to fusion despite its limitations.

As previously stated though, the simple average approach is only reasonable in cases where

the state estimates are deemed reliable and similarly close to the true state. The simple average

is employed under these condition by Bernardin et al. [103]. In their proposed audio-video

based tracker they consider three states of operation. These correspond to that where; a reliable

audio-based estimate exists but no video estimate; a reliable video-based estimate exists but no

audio-based estimate and the case where both audio and video-based estimates are reliable. In

their system both audio and video based measurements are regarded as reliable if their relative

error is less than 0.5m. Where both audio and video are deemed reliable their system employs

the simple averaging strategy to fusing both estimates where each modality is weighted equally.

Despite the criticisms which arise in relation to the simple averaging approach, their results

show that it can be effective in achieving accurate results. However, its overall performance is

critically dependent on the ability to accurately classify the single modality estimates as reliable

or unreliable.

3.2.2 Audio-video Fusion using Kalman Filters

If the KF modelling assumptions as outlined in section 3.1.2 can be assumed to apply to the

state xk and observations yk and zk, then the KF can be used to fuse audio and video based

observations. Under the assumption of independent measurements implied by equation 3.27 it

provides a convenient structure for the fusion of multi-modal estimates. Also, unlike the simple

averaging scheme, the KF enables statistical information to be incorporated into the fusion

problem. Uncertainty in either modality can be reflected by increasing the corresponding level

of the measurement noise.

A basic application of the KF to the multi-modal measurement estimation problem can be



66 Joint Audio-visual Active Speaker Tracking

T
ru
e
S
ta
te

x
k Video

Sensor

Audio
Sensor

zk

yk

KF
x̂k∣k

(a)

T
ru
e
S
ta
te

x
k Video

Sensor

Audio
Sensor

KF

EKF F
u
si
on

C
en
tr
e

zk

yk

x̂V
k∣k

x̂A
k∣k

x̂k∣k

(b) (From Strobel et al. [136])

Figure 3.2: Centralised (a) and Decentralised (b) Joint Kalman Filters (KFs). The centralised
KF is not implementable due to the non-linear audio-based measurement function. The decen-
tralised KF enables the incorporation of local KFs. The first local KF determines a video-based
posterior state estimate and the second local EKF determines an audio-based posterior state
estimate. A fusion centre then fuses both local state estimates into a global state estimate.

taken through a centralised approach. A centralised approach to fusing multiple measurements

using the KF is achieved by simply augmenting the observation vector yk in equation 3.8b

to include the additional video based measurement and define a new measurement vector as

[yk, zk]
T . The basic concept of the centralised KF is illustrated in 3.2a.

The use of a centralised KF is not possible in audio-video based tracking problems where the

audio and video sensors provide measurements in different coordinate spaces. For example, if the

state xk is defined as a position in the image plane, then since the video based observations are

also made in this space, the measurement function can be defined as a simple linear model. In

contrast however, the audio measurements are not made directly in the image plane but possibly

as angles of azimuth and elevation represented in polar coordinates relative to the image plane.

To address such issues Strobel et al. [136] have proposed the decentralised KF.

The decentralised approach implements two KFs locally for each modality to determine

two single modality posterior state estimates x̂Ak∣k and x̂Vk∣k using the audio and video data

respectively. A standard centralised KF is then used to determine a combined a posteriori state

estimate x̂k∣k from both x̂Ak∣k and x̂Vk∣k. This decentralised approach is illustrated in figure 3.2b.

So long as the initial conditions of the state and the prior information are the same for each
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local KF x̂k∣k and Pk∣k are obtained by,

x̂k∣k = Pk∣k

⎛
⎝P−1

k∣k−1x̂k∣k−1 +
∑

n=[A,V ]

[
(Pn

k∣k)
−1x̂nk∣k − (Pn

k∣k−1)−1x̂nk∣k−1

]
⎞
⎠ (3.29a)

P−1
k∣k = P−1

k∣k−1 +
∑

n=[A,V ]

[
(Pn

k∣k)
−1x̂nk∣k − (Pn

k∣k−1)−1x̂nk∣k−1

]
. (3.29b)

where PA and PV are the state error covariances corresponding to the audio and video based

local state estimates respectively. Equation 3.29 represents the operation of the fusion centre

component in figure 3.2b. Implementation of this fusion strategy therefore simply requires that

each local KF communicates their local a priori and a posteriori estimate of both the state and

state error covariances.

The block structure of the decentralised KF means that it is not restricted to just a single

video-based and single audio-based estimate. Its decentralised structure means that it can be

used to combine multiple local state estimates from both audio and video sensors and can

be extended to include multiple motion models [64]. The only requirement is that the all

measurements must be synchronised [135]. This requirement for synchronous measurements is a

restriction for speaker tracking applications since audio-based measurements are only available

when the speaker is active which is unlikely to be at the same rate as the video measurements.

Synchronising the audio and video measurements temporally before the filter update stage is

the normal approach in addressing this issue [1].

Besides the benefit of handling combinations of linear and non-linear measurement func-

tions the decentralised KF in general exhibits the additional benefit of faster convergence than

a conventional KF [18]. This is the case, due to its ability to process multiple sensor data

simultaneously.

Since being popularised by Strobel et al. many other uses for the dencentralised KF have

been reported for speaker tracking [1,9,133]. Katsarakis et al. [133] in their work describe the use

of the decentralized KF filter for combining 3D positional measurements from multiple cameras

and multiple microphone arrays. Their use of the decentralised structure also incorporates a

weighting to each local state estimate before the global state estimate is obtained to reflect the

relative confidence in both modalities. The details of suitable weights however is not elaborated

upon. A similar implementation of their algorithm is made in [9] as the main tracking component

in a multi-modal person identification system. Abad et al. [1] also employ the decentralised KF

for speaker tracking to combine location estimates obtained through the SRP-PHAT algorithm

in the audio-domain and voxel-based estimates from multiple cameras in the video domain.
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Incremental Update based Approach

The decentralized KF requires a state estimate to be determined by local single modality KFs.

This requires the state to be completely observable by each modality measurement function.

Gehrig et al. [174] have proposed an alternative to the decentralised KF which is based on

the incremental update method of Welch et al. [66]. In this work a KF algorithm is described

which enables the state estimate to be incrementally updated by incomplete observations. For

example, a 2D pixel measurement or 1D TDE relating to the 3D position of an active speaker,

each represent incomplete measurements since neither fully observes the three dimensions of the

state. Gehrig et al. highlight that such incomplete information can be still used to estimate

the state. In their approach the state is fully observed by multiple incomplete observations

which are used to estimate the state incrementally. They demonstrate this in their approach

and successfully apply this strategy to incrementally estimate the 3D position of an active

speaker using TDEs from multiple microphones and detected faces from multiple cameras. One

significant advantage of this method is that it enables asynchronous measurement updates. This

is of significant advantage in the case of active speaker tracking since audio-based measurements

are not always available at the same time as video-based measurements and only when the

speaker is active. Essentially, the incremental update approach enables the state estimate to be

refined as the measurements become available.

3.2.3 Audio-video Fusion using Particle Filters

The PF has a distinct advantage over the KF since it does not strictly require the likelihood

function to be defined as Gaussian. As a result much more complex likelihood functions can be

defined. In turn, this enables more complex low level audio and video features to be incorporated

into the tracking problem. This is achieved through the definition of an audio-based likelihood

and a video-based likelihood function. Given these definitions fusion can be applied in the

Bayesian tracking framework in a straightforward manner. This is presented in the following

sections. First however, some examples of audio-based and video-based likelihood functions

which exist in the current literature are examined.

Audio-based Likelihood Functions

Consider the case of a set of m = 1, .., Nmic microphone pairs from which we wish to define an

audio-based likelihood function p(yk∣xk) where the measurements yk are a set of TDEs. The

expected time-delay at the mth microphone pair for the state xk can be obtained using the time-

delay measurement function � om = g(xk) as in equation 2.25. This can be used to define a vector

of expected time delays corresponding to xk as � o = [� o1 , .., �
o
Nmic

]T . A vector �̂ = [�̂1, .., �̂Nmic ]
T

of measured time-delays can be obtained at each microphone pair using the GCC function. The

measured time delays could also be determined through a beamforming technique to estimate

the time-delay corresponding to the maximum received signal power at the microphones.
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Given this, the most simplistic approach to defining an audio-based likelihood function is to

assume a Gaussian error distribution on the measured time-delays [43, 197]. Through this the

likelihood can be defined as,

p(yk∣xk) = N (� o; �̂ ,Σ�̂ ) (3.30)

where Σ�̂ is the covariance matrix of the measured time-delays. Although the Gaussian error

distribution is in common use [43, 197], it has the limitation of only considering a single TDE

at each microphone pair. It does not provide a strategy to model the occurrence of anomalous

TDEs.

A more sophisticated audio-based likelihood function can be defined which can incorporate a

multiple peak analysis of the GCC function. Through the GCC function of the mth microphone

pair a total of Np peaks {�̂1
m, .., �̂

Np
m } can be identified corresponding to likely speaker positions.

This is advantageous since as revealed in previous discussions, multiple peaks can arise and the

most significant peak does not always correspond to the true source position. In addition to

this, it can occur that no single peak can be identified as the most likely estimate of the true

time-delay. Vermaak et al. [100] propose an audio-based likelihood function which considers

multiple TDEs [100,101]. They define an audio-based likelihood over multiple hypotheses which

consider each peak as either corresponding to the true source position or clutter. A likelihood

function for the mth microphone pair in their work is proposed as,

pm(yk∣xk) ∝
Np∑

j=1

qjN (� o; �̂ j , �2
� j ) + q0 (3.31)

where q0 is the predefined probability of a TDE relating to clutter, qj is the probability of

the jth peak corresponding to the true speaker position and �2
� j

the variance of the TDE

at the jth peak. The complete likelihood over all microphone pairs is simply obtained using

the independent measurement assumption, as the product of the individual likelihoods at each

microphone pair.

It is necessary for the chosen value of q0 to reflect the reliability of a time-delay estimator in

a given room environment. This is difficult since experimental evidence suggests that q0 varies

with the source position [121]. Typically, if a speaker is positioned close to a wall within a room,

this can increase the probability of an anomalous estimate indicating a higher value of q0 than

for other regions within the room. Implementing such environment information in defining q0 is

not straightforward. In their experimental analysis they assume all qj to be equal and evaluate

q0 empirically. Overall this is seen to be sufficient to achieve robust tracking performance in a

reverberant environment. Alternative strategies for choosing values for qj can be through some

reliability measure such as those discussed in section 2.1.3.2.

A more straightforward formulation of an audio-based likelihood can be made using the GCC

function directly. An audio-based likelihood function formed directly from the GCC is given
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as [31,105,106,159],

pm(yk∣xk) ∝ max[R(� o), q0]l (3.32)

where R(�0) is the GCC function and l ∈ ℝ+. The max operation with positive q0 is to account

for cases where the cross-correlation function is negative since such a scenario would not lead to

a valid probability distribution. One issue with the definition of equation 3.32 is that due to the

presence of multiple sharp peaks in the GCC function, sharp peaks are present in the likelihood

function. This is not ideal for particle filter methods which are susceptible to the degeneracy

problem under such conditions. The l term in equation 3.32 is used to emphasis significant peaks

and reduce the overall contribution of smaller peaks in the GCC function. Effectively, it operates

to smooth the likelihood function making it more suitable for recursive particle filtering [31].

The flexibility of the PF means that there is little restriction in defining an audio-based likeli-

hood function and definitions are not confined to those formed using the GCC function. Checka

et al. [128] propose an audio-based likelihood function in the frequency domain through mod-

elling the spatio-temporal covariance matrix at a speaker’s location. They address the multiple

speaker tracking scenario and extend the positional speaker state xk to include a binary speech

activity bit s. Similar to the definition of the spatio-spectral covariance matrix as presented in

section 2.1.2 they define the spatio-spectral covariance matrix at xk as,

Rsj (!) = sjD(!)D(!)H (3.33)

where D(!) is the steering vector corresponding to xk. This model effectively is an estimate

of the spatio-spectral received due to the jth speaker with speech activity defined by sj . Their

model of the spatio-spectral covariance matrix for a microphone array given over all speaker

positions is established as,

R(!) = Rb(!) +
∑

j

Rsj + �I (3.34)

where Rb(!) is an empirically measured spatio-spectral covariance matrix due to background

noise sources and � is a tuning parameter which is also measured empirically. Using their

specified model of the microphone array’s spatio-spectral matrix, an audio-based likelihood is

formed by relating the model R(!) to the measured spatio-spectral matrix.

To apply this, they obtain an N! point Short Time Fourier Transform (STFT) for each

microphone signal and define a vector w(!) for each of the available microphone pairs. The

likelihood is then defined by,

p(yk∣xk) =

N!∏

n=1

N (w(n); 0,R(n)). (3.35)

The benefit of the likelihood defined by Checka et al. is that it can incorporate information

relating to multiple speakers and also their state of speech activity. Building the spatio-spectral
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covariance model however is not straightforward and requires considerable empirical analysis.

It therefore lacks the simplicity of the previously discussed likelihood functions simply based on

the GCC function.

Video-based Likelihood Functions

With the video based measurement function f(⋅) as defined in equation 2.72 the 3D position

xk of a speaker can be located in the image plane as p = f(xk). Once a hypothesised speaker

position xk is located in the image plane, the likelihood of that position can be defined in terms

of image features such as those described in section 2.2. Typical features include foreground

regions obtained through background subtraction, detected skin colour regions, detected faces

or edges can all be used. The most simple approach in building a video-based likelihood is to

identify an image region corresponding to a potential speaker using high level image features

such as a head or face. This analysis can applied to each of j = 1, .., Ncam cameras to identify

the pixel locations p̂j of the speaker in the jth view. A vector of pixel locations can then be

set across all views as p̂ = [p̂1, .., p̂Ncam ]T . In an identical manner to the simple audio-based

likelihood, a simple video-based likelihood can be defined assuming a Gaussian error distribution

on the pixel measurements p̂ as [43],

p(zk∣xk) = N (p; p̂,Σp̂). (3.36)

where Σp̂ is the covariance of the pixel-based measurements.

Shape The PF offers the freedom to define video-based likelihood based on multiple image

features. In particular hypothesised speaker positions (particles) do not need to be strictly point

estimates. Instead, each particle can be associated with a body model such as a cylinder or a

more complex model. The projection of this model then using the video-based measurement

function f(⋅), gives this model’s representation in the image plane. Using this model, more com-

plex likelihood functions based on the model’s correspondence to the image data can be defined.

This is the approach of Nickel et al. [106] and used also in [159] and [105]. Their approach

performs adaptive background subtraction on multiple camera views in order to determine fore-

ground regions corresponding to a moving speaker. They define a simple cuboid body model in

3D space and estimate the projected body shape into multiple views. This is applied for each

particle in 3D space. The likelihood of each hypothesised particle is then defined as the total

proportion of the projected body shape that is occupied by detected foreground. An illustration

of this model for two sample camera views of figure 3.3a and figure 3.3b is presented in figure

3.3c.

Faces In addition to this foreground based likelihood, Nickel et al. [106] also define a likelihood

function to weight particles using a face detector. Once the pixel location of a particle is
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(a) Sample left image (b) Sample right image

(c) Simple cuboid body model of [106] in 3D space and projected into two views.
The video based likelihood is defined to weight particles based on the amount of
foreground contained within the bounds of the projected body model in the image
plane.

hh

ht

hl

(d) Cylinder type model proposed by [151] shown in 3D space and projected into
two views. A video-based likelihood is formed based on the similarity between
the projected body shape in the image plane to that of detected edge regions.
Also established in the model are histogram based colour models of the head hmℎ ,
torso hmt and legs hml of the body. A colour-based likelihood is defined which
weights particles based on the similarity between the histograms hmℎ , hmt hml to
their respective measurements hℎ, ht hl. The similarity measure used is the
Bhattacharyya similarity measure.

Figure 3.3: Illustrated example of different body shape models for particle filters. The example
frames are taken from the 2005 CHIL Evaluation Package [171].
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determined within the view of the camera the Viola and Jones [143] face detection algorithm

is applied to a specified region about the projected particle’s location. Restricting the search

region to a small area about the projected particle location helps to reduce the computational

demands of the algorithm. Each particle is then weighted in proportion to the overlapping area

of the particle’s face region with that of other positively labelled face regions belonging to the

other particles.

Contours It is also possible to incorporate contour information into the video-based likeli-

hood. Brunelli et al. [151] utilise a similar body model to that of Nickel et al. but use contour

information rather than detected foreground to measure how well it corresponds to the image

data. They use a better fitting cylindrical type body model in contrast to the cuboid model that

Nickel et al. use. An example of the body model used is shown in figure 3.3d. To incorporate

contour information into a likelihood function they compare the correspondence of the projected

body shape in the image plane to detected edge regions in the image. The method used for edge

detection re-enforces the standard Sobel edge detector with edge information obtained by tem-

poral frame differencing. Through this, the particles are weighted in proportion to the sum of

Euclidean distances between the detected edge regions in the image and that of the projected

edge structure of the body model in the image plane. The use of contour information is popular

in joint audio-video tracking systems and has been used for elliptical head shape [195] and head

and shoulder [101] contour models for speaker tracking.

Colour In addition to analysing contours, Brunelli et al. [151] build a likelihood function based

on colour analysis. To achieve this they divided the assumed body model into three regions

corresponding to the speaker’s head, torso and leg regions. Their tracking system implements

an automatic acquisition procedure to obtain a colour histogram model for each body region.

Using these colour models they define a colour likelihood which weights particles based on the

similarity between the histogram models and colour histogram measurements from the projected

body region in multiple camera views . The similarity measure which they use in measuring the

closeness of the measured histograms to the measured data is the Bhattacharyya distance. The

Bhattacharyya distance provides a convenient similarity measure for colour based histograms

and a simple means for matching colour histograms and is the basis of colour histogram analysis

in many active speaker tracking systems [103,114,195,197].

Combining Measurements from Different Modalities

Given the definition of the audio and video based likelihood functions, the Bayesian formulation

of the tracking problem provides a direct approach to fusing the audio and video information.

Re-examining the Bayesian tracking problem with the likelihood data defined by equation 3.27,
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the posterior p(xk∣yk, zk) becomes,

p(xk∣yk, zk) ∝ p(yk∣xk)p(zk∣xk)p(xk∣xk−1). (3.37)

Here, the audio and video based information fusion is achieved by pooling the likelihoods which

is known in the estimation literature as the independent likelihood pool [94, Chapter2], [96,

Chapter 4]. This is the most dominant method of fusing audio and video information in speaker

tracking systems. The majority of the state-of-the art speaker tracking systems use this fusion

strategy [36–38,43,101,114,128,129,151,195,197].

A number of important characteristics of this strategy are evident. Firstly, in contrast to

the previously encountered fusion techniques, the independent likelihood approach does not

require the specification of any weighting between the different modalities. This information is

completely defined in the likelihood models.

Linear Opinion Pool

An alternative to the independent likelihood model for particle filters is known as the Linear

Opinion Pool [96, Chapter 4]. Following along similar lines to that of the simple weighted

average, this strategy implements a weighted sum of the single modality posteriors p(xk∣yk) and

p(xk∣zk) as,

p(xk∣yk, zk) ∝ �p(xk∣yk) + (� − 1)p(xk∣zk) (3.38)

where � defines the relative weight between the single modality audio and video based posterior

estimates. If it is assumed that the same initial conditions and prior on the state xk is maintained

for each single modality estimate, then it can be seen that,

p(xk∣yk, zk) ∝ [�p(yk∣xk) + (1− �)p(zk∣xk)] p(xk∣xk−1). (3.39)

Therefore, the linear opinion pool in this case can be implemented by a weighted sum of the single

modality likelihood functions. This approach has recently found application in the audio-video

tracking literature [105,106,140,141].

Similar to the criticisms of the simple weighted average fusion scheme this method of in-

formation fusion suffers from a lack of strong conditions for choosing the weights for the audio

�A = � and video �V = (1− �) data . As a result, in its application to joint audio-video based

tracking, the weights are often restricted to empirically defined measures. In both Nickel et

al. [106] and Stiefelhagen et al. [159] a variable weight is defined as �A = mo
Nmic

(0.6) where m0 is

the number of TDEs meeting a defined reliability measure. A different strategy is implemented

in [105] where the weighting is defined as �A = (�2
Ax

+ �2
Ay

)−
1
2 where �2

Ax
and �2

Ay
are the vari-

ances of localisation in the x and y axes respectively. The video-based weight �V is obtained in

a similar fashion. This is preferable to a fixed empirical measure since it aims to make the best

use of the available statistical information in relation to the observed measurement uncertainty.



3.3. Final Comments 75

The fusion of audio and video as proposed by Aarabi et al. [140, 141] although not directly

formulated in the manner of equation 3.38, can be considered as a linear opinion pool approach.

They also take an empirical strategy in establishing the weights �i and define the weighting by

�V = (1−�A) with �A = 0.05. Both proposed joint audio video based systems stress an affinity

for video-based localisation above that of audio which is reflected in the weightings.

3.3 Final Comments

This chapter presented the problem of audio-based active speaker tracking in a Bayesian state

estimation framework. Online state estimation techniques such as Kalman filtering, variants

of the KF which can handle nonlinearities and the PF were examined. Also, the offline state

estimation problem using a grid-based approach was considered.

In the analysis, the problem of motion modelling was introduced in relation to the KF.

It was shown that ensuring optimal tracking is difficult because the problem of choosing the

most appropriate motion model is difficult. Sub-optimal tracking will persist if poor motion

models are used. Such inaccurate prior information can significantly affect the utility of multiple

measurements in improving tracking accuracy and reliability.

Various key requirements of tracking filters for audio-based tracking were identified such

as the need for them to handle the non-linear time-delay and DOA measurement functions.

Therefore the EKF, IEKF, UKF and PF were all presented as important tools for audio-based

tracking. Of these, the PF was deemed to be most useful since it enables the incorporation of

multiple time-delay measurements in the tracking problem.

The latter analysis in the review, focused on the fusion problem and how existing audio-based

tracking filters can be extended to include video-information. The decentralised KF and various

fusion strategies using PFs were examined. The particle filter was seen to offer considerable

flexibility to encompass both low-level audio and video based features for tracking.

Two prominent strategies for fusing audio and video information were identified in relation

to PFs. These were the linear opinion pool requiring a scalar weighting for each modality and

the independent likelihood pool which did not require such a weighting scheme.
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4
Analysis of Audio-Visual Source Localisation

Accuracy1

Known techniques for fusing audio and video based location estimates were examined in chapter

3. In general, these techniques show improved localisation performance beyond that possible

through the use of either audio or video data alone. This result is mainly due to the complemen-

tary nature of the audio and video modalities. Since audio and video tend to fail independently,

it is reasonable to expect an overall improvement in tracking reliability by combining both

modalities.

Reliability however, is not the only aspect of tracking performance which is of interest. The

accuracy of localisation is also important. It is necessary at this point to place a distinction

between reliability and accuracy in the measure of localisation performance. In this chapter,

the term accuracy is used to refer specifically to the measure of how close a location estimate is

to the true location. The term reliability is used to refer to the consistency by which accurate

localisation is achieved.

There is conflicting evidence in the literature that improved tracking accuracy is achieved

through a joint audio-video based approach. Specifically, Strobel et al. report improved tracking

reliability, but note no clear improvement in accuracy beyond the best available single-modality

positional estimate [136]. Furthermore, literature shows evidence of a fusion-based approach

1Results from this chapter have been published in: Damien Kelly, François Pitié, Anil Kokaram and Frank
Boland. A Comparative Error Analysis of Audio-Visual Source Localization. Workshop on Multi-camera Multi-
modal Sensor Fusion Algorithms and Applications (M2SFA2) in conjunction with 10th European Conference on
Computer Vision 2008 (ECCV 2008) [41]

77
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actually under performing single modality tracking [133]. Results such as these, indicate that

there are issues relating to the performance of fusion-based systems which are currently not fully

understood.

The general approach in evaluating the performance of joint audio-video trackers, is to

determine the tracking performance against some ground truth (eg. [128, 133, 136]). Tracking

performance however is not only dependent on the accuracy of audio and video-based position

estimates but also on the employed motion model. Thus a well chosen motion model can result

in undue credit being attributed to a multi-modal approach in improving tracking accuracy.

Furthermore, this measure of performance can only give an indication of the expected accu-

racy of the resulting fused track. It cannot be used to determine how well a system is performing

in relation to its best possible performance with known uncertainties and motion model. Cur-

rently, little effort has been made in the literature to evaluate the expected performance of joint

audio-video based tracking systems. This means that such systems are being proposed without

any theoretical basis on which to measure and evaluate their performance.

It is informative to examine the performance of a joint audio-video based tracking system by

examining the localisation accuracy in each domain individually. In this way the contribution

of both audio and video in improving localisation accuracy through a fused estimate can be

determined. Current literature proposes techniques for predicting the 3D error associated with

localisation using multiple cameras [60] and multiple microphones [17]. The incorporation of

such theory in the analysis of joint audio-video based tracking to date has not been adequately

investigated. This chapter addresses this issue by unifying the theory of estimating localisation

uncertainty through multiple cameras and multiple microphones under a single framework. This

is then used to gain some insight into what might degrade the performance of joint audio-video

based fusion.

In this work, a framework based on covariance mapping theory is used to estimate localisation

uncertainty. This mapping theory is used to determine the 3D localisation error associated with

audio-based localisation using TDEs from multiple microphones and video-based localisation

through triangulation using multiple cameras. Given this, a direct comparison is made between

the localisation accuracy of both modalities in terms of their ability to provide accurate location

estimates of a moving audio-visual source.

Covariance mapping is also used to determine a representation of uncertainty on the time

delay estimates in the video domain and similarly to determine a representation for uncertainty

on pixel measurements in the audio domain. Effectively, audio and video localisation uncertainty

is examined in the positional domain, the audio domain and also the video domain. Maximum

likelihood data fusion is applied in these three domains and a resulting 3D fused localisation

estimate is obtained in each case. The effectiveness of these fusion strategies is examined from

a theoretical basis and their ability to provide accurate location estimates of a moving source is

evaluated. In addition to this, the different fusion strategies are compared to that of a simple

audio-video switch-based localisation approach where the location estimate is derived from the
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best available single modality location estimates.

In order to make this analysis tractable, the general assumption of Gaussian observation

noise is made on the TDEs in the audio domain and also on the pixel measurements obtained

from each camera in the video domain.

4.1 Uncertainty Mapping

In this analysis we examine the 3D position x ∈ ℝ3 of an audio-visual source observed indirectly

by pixel measurements p = f(x) in the video domain and time delay estimates � = g(x) in

the audio domain. Using these measurements we wish to map their respective covariances Σp

and Σ� into positional space in order to estimate the associated covariance ΣV
p of a video-based

location estimate xV and the covariance ΣA
� of an audio-based location estimate xA. Also of

interest in this analysis is the fused ML audio-video based location estimate and its associated

covariance. In the positional domain the fused estimate can be obtained as [71],

xPos = ΣPos
x ((ΣA

x )−1xA + (ΣV
x )−1xV ). (4.1)

where

ΣPos
x = ((ΣA

x )−1 + (ΣV
x )−1)−1, (4.2)

is the associated covariance of the estimate.

Fusion in this application can also be considered in two additional domains, the audio domain

corresponding to time delays and the video domain corresponding to pixel measurements. In

order to examine fusion in these other domains, it is necessary to transform both audio and video

measurements and associated uncertainty to equivalent levels of representation. For instance,

for fusion in the video domain an equivalent representation of audio-based measurements and

uncertainty must be determined in the image plane. Similarly, for fusion in the audio domain,

video-based localisation measurements and uncertainty must be transformed to an equivalent

representation in the audio domain.

Transforming audio and video measurements to equivalent levels of representation in this

context is straightforward and is achieved using the measurement functions f(⋅) and g(⋅). For

example, the equivalent representation of an audio-based location estimate xA in the video

domain is simply obtained as pA = f(xA). Similarly, the equivalent representation of a video-

based location estimate xV in the audio domain is obtained as �V = g(xV ).

In order to fuse both audio and video measurements in different domains however it is not

only necessary to transform measurements between domains but also their associated covari-

ances. Therefore, in the video domain, in addition to the covariance of pixel measurements Σp,

the covariance ΣA
p of pA needs to be determined. Likewise, in addition to the covariance of time

delay estimates Σ� , the covariance ΣV
� of �V must be determined in the audio domain. Given

this, it is then possible to fuse the audio and video measurements in either the audio or video
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domain as in equation 4.2 and equation 4.1.

The resulting covariance of the fused estimates can then be mapped from each domain into

positional space. This enables the covariance ΣV id
x of 3D localisation through fusion in the video

domain and the covariance ΣAud
x of 3D localisation through fusion in the audio domain to be

evaluated.

In summary, the following location estimates with their associate covariances are considered,

� ,Σ� : Audio-based measurement (TDEs).

p,Σp: Video-based measurement (Pixels).

xA,ΣA
x : Audio-based 3D location estimate.

xV ,ΣV
x : Video-based 3D location estimate.

�V ,ΣV
� : Video-based location estimate transformed into the audio domain of time-delays.

pA,ΣA
p : Audio-based location estimate transformed into the video domain of pixels.

xV id,ΣV id
x : 3D location estimate through fusion in the video domain.

xAud,ΣAud
x : 3D location estimate through fusion in the audio domain.

xPos,ΣPos
x : 3D location estimate through fusion in the positional domain.

4.1.1 Linear Approximation Mapping

The mapping of covariances between the positional domain, audio domain and video domain can

be achieved through a first order Taylor series expansion of the audio and video measurements

functions and their inverses. Here the process of mapping the covariance Σx of the source

position x to obtain a corresponding measure of pixel uncertainty Σp in the video domain is

presented. Consider the position x ∈ ℝ3 as a random variable of Gaussian distribution, mean

E[x] and covariance Σx. A pixel-based observation by Ncam cameras of this position results

in a random vector p ∈ ℝ2×Ncam where p = f(x). If the measurement function f(x) has a

continuous first order derivative then a first order Taylor series expansion of f(x) enables the

mean and covariance of p to be approximated [166]. The mean of p is approximated by

E[p] ≈ f(E[x]), (4.3)

and its covariance Σp by,

Σp =
∂f(E[x])

∂x
Σx

∂f(E[x])

∂x

T

(4.4)

where E[⋅] is used to denote the expectation operator. The transformation of uncertainty in this

manner by a first order Taylor series expansion of the measurement function follows directly the
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theory of the EKF [194] as in section 3.1.3. This assumption will be later explored and validated

in section 4.4.1.

The inverse mapping of (4.4) is difficult to obtain in cases where the inverse measurement

function x = f−1(p) can not be explicitly defined. This occurs in cases where the inverse relation

between p and x is instead implicitly defined by

F (p,x) = p− f(x) (4.5)

and only an estimate xV of the position can be determined. In practice the estimate xV is

usually defined in a least squares sense [169, chapter 14] as that which minimises the criterion

function

C(p,x) = ∣F (p,x)∣2. (4.6)

Here, the notation ∣ ⋅ ∣ is used to denote the Euclidean norm. In this scenario the first order

derivative of the inverse measurement function can be approximated using the implicit functions

theorem [138, chapter 5]. This is found to be,

∂f−1(E[p])

∂p
≈ −

(
∂F

∂x

)† ∂F
∂p

(4.7)

where † is used to denote the pseudo inverse.

Using the relations defined in both equation 4.4 and equation 4.7, measurement uncertainty

can be mapped between the positional, audio and video domains. The mappings under consid-

eration are illustrated in figure 4.1.

4.2 Audio-based Measurement Function

The audio measurement function as defined in equation 2.25 can be used to define a vector of time

delays � associated with the 3D point x. This function is completely described by the positions

of the microphones, the sampling frequency and the speed of sound. Let mij = [Xij , Yij , Zij ]
T ,

j = [1, 2] denote the positions of the microphones of the itℎ microphone pair configuration and

� = [�1, .., �i, ..., �Nmic ]
T be the vector of time-delay estimates for Nmic microphone pairs. For the

itℎ microphone pair, the expected time delay �i given the source position x may be determined

by expanding equation 2.25 to obtain,

�i =

(
fs
c

)
[((Xi1 − x)2 + (Yi1 − y)2 + (Zi1 − z)2)

1
2

− ((Xi2 − x)2 + (Yi2 − y)2 + (Zi2 − z)2)
1
2 ]

= gi(x). (4.8)
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p = f(x) � = g(x)

x

p �

Positional Domain

Video Domain Audio Domain

(a) Audio and video measurement functions.

                     

∂f−1(p̄)
∂p

Σp
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∂�

ΣV
x ΣA

x
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(b) Mapping audio and video uncertainty into 3D
space. Here ΣVx represents the covariance of a
video-based location estimate and ΣAx denotes the
covariance of an audio-based location estimate.
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(c) Mapping video uncertainty into the audio do-
main. The covariance of a video based 3D location
estimate in the audio domain is denoted ΣV� .
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(d) Mapping audio uncertainty into the video do-
main. The covariance of an audio based 3D loca-
tion estimate in the video domain is denoted ΣAp .

Figure 4.1: The mapping of uncertainty between the audio, video and positional domains through
a first order Taylor series expansion of the measurement functions and their inverses. The video
measurement function is denoted f(x) and the audio measurement function is denoted g(x). The
corresponding inverse measurement functions are denoted f−1(x̄) and g−1(�̄) respectively. For
clarity in this figure the following notational simplifications are made x̄ = E[x], p̄ = E[p] and
�̄ = E[� ].
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In this analysis the sampling frequency used is fs = 48kHz and the speed of sound is approx-

imated by c = 343ms−1. The time delays referred to therefore are in units of audio samples.

Using equation 4.8 and equation 4.4, 3D positional uncertainty can be propagated into the

domain of time-delay estimates.

Given equation 4.8 a set of implicit functions can be defined, one for each microphone pair

as

Gi(� i,x) = � i − gi(x), (4.9)

for which xA is the 3D location estimate which minimises the criterion function,

Cg(� ,x) =

Nmic∑

i

Gi(� i,x)2. (4.10)

Both equation 4.9 and equation 4.7 enable the uncertainty on time delay estimates to be propa-

gated into the 3D positional domain. In predicting the error region associated with a time-delay

based location estimate the relation defined in equation 4.7 has not previously been stated in

the literature. As a result, more complex approximate derivations have been proposed [17]. For

this reason a complete derivation of equation 4.7 relevant to microphones arrays is presented in

appendix A.

4.3 Video-based Measurement Function

The video measurement function relates the 3D point x to a vector of pixel measurements

p = [p1, ..,pi, ..,pNcam ]T , where pi = [pxi , pyi ]
T is the 2D pixel measurement corresponding to

the itℎ camera view. This function is dependent on the camera matrices of the multi-camera

views and their associated distortion parameters. Assuming that the distortion characteristics

are known and distortion therefore can be corrected, the projection of a 3D point to the itℎ

image plane from equation 2.72, is described by [60],

pi =

⎡
⎢⎢⎣

ai11x+ai12y+ai13z+a
i
14

ai31x+ai32y+ai33z+a
i
34

ai21x+ai22y+ai23z+a
i
24

ai31x+ai32y+ai33z+a
i
34

⎤
⎥⎥⎦ (4.11)

= fi(x) (4.12)

where aiuv is the (u, v) entry in the camera matrix corresponding to the itℎ camera view. This is

the non-homogeneous form of the projection of the point x on to the image plane. The camera

matrix’s complete form is described in equation 2.72. Using equation 4.11 and equation 4.4, 3D

positional uncertainty can be propagated into the video domain.
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Generally, x is determined as the point xV which satisfies the implicit function,

Fi(pi,x) =

[
x(pi31pxi − ai11) + y(ai32pxi − ai12) + z(ai33pxi − ai13) + ai14

x(ai31pyi − ai21) + y(ai32pyi − ai22) + z(ai33pyi − ai23) + ai24

]
(4.13)

such that some criterion function,

Cf (p,xV ) =

N∑

i

∣Fi(pi,xV )∣2 (4.14)

is minimised. Using equation 4.13 and equation 4.7 enables uncertainty on pixel measurements

to be propagated into the 3D positional domain.

4.4 Configuration of Experimental Audio-Video Localisation

System

In order to examine 3D audio and visual localisation accuracy, multiple video cameras and

multiple microphones were used to record an audio-visual source moving along a 3D path. In

the analysis, three 720 × 576 resolution video cameras and six microphones were used. The

recordings were conducted in a small lecture room with dimensions [5.33m, 6.98m, 2.45m] and a

reverberation time (RT60) of approximately 0.5s. The six microphones were arranged into two

3-element arrays. The array geometry used was that of a vertical equilateral triangle (dubbed

the “triad array” in [88]) with the spacing between the microphones set to 0.34m. The cameras

were positioned within the room so as to create the largest possible 3D space visible to all

cameras. Within this space a track was configured for an audio-visual source to follow. The

complete room setup and track of the audio-visual target is illustrated in figure 4.2.

The audio-visual source consisted of a speaker fitted with an LED. In order to maximise

the visibility of the target source, the room was darkened and the LED was located in each

camera view through intensity thresholding followed by blob extraction/connected component

analysis [152, chapter 9]. The centre of mass of the blob was then taken as the target’s pixel

location in the frame. The video data was recorded at a frame rate of 25fps and a single

3D location estimate was determined for each frame. The total duration of the recording was

2594 frames or approximately 2min 53sec. The 3D location estimate was determined by linear

triangulation using the target’s pixel location estimate in each camera view [154, chapter 12].

The estimate obtained satisfied the criterion function defined in equation 4.14. This required

calibrating the cameras within the space of the room which is described in the latter parts of

this section.

To maximise the accuracy of TDEs at the microphones, Gaussian white noise was output

through the target’s speaker. Gaussian white noise was chosen on the basis of equation 2.38,

where the CRLB on the variance of a TDE is seen to be �2
CRLB ∝ 1

B3 , with B being the source
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(a) The experimental setup of three cameras and
microphones {m1, ..,m6}. The track of the audio-
visual source is shown in green.
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(d) Source path in the xz plane

Figure 4.2: Experimental setup used in the evaluation of audio-visual source localisation. Addi-
tional details on the video cameras and microphones, as well as their positions within the room
can be found in Appendix B. Also presented in Appendix B is a retrospective note which considers
the optimality of the chosen configuration of microphones in the experimental setup.

signal bandwidth. An audio sampling frequency of 48kHz was used and TDEs were obtained

using GCC-PHAT [20] from 40ms (25fps ) audio data frames. Parabolic interpolation [58] was

used in obtaining the TDEs, hence not constraining the estimates to integer values. The audio

and video recordings were temporally synchronised using a clapper board and the 40ms audio

frames were centred in relation to corresponding video frames. An audio-based 3D location

estimate was determined at each video frame. Recursive least squares using the Levenberg-

Marquardt algorithm and the criterion function of equation 4.10 was used to obtain 3D location

estimates using the TDEs. It should be noted that all possible configurations of microphone

pairs in each triad-array were used in determining TDEs, however, TDEs corresponding to

inter-array microphone pairs were not incorporated into the location estimate.

After the placement of the three video cameras they were fully calibrated within the space
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of the room using a set of 74 point correspondences from known 3D points. The 3D positions of

the points were measured manually using a measuring tape, a square and a level using a single

wall as a datum plane. The set of 74 known 3D point were divided into a training set of 37

points and a test set also consisting of 37 points. The training set was used to estimate both

the intrinsic and extrinsic parameters of each camera and the test set was used to determine

the expected accuracy of reconstructed 3D points. The set of training and test points in each

view is shown in figure 4.3 together with the estimated 3D reconstruction of the points using

the three fully calibrated cameras. The overall reconstruction error over the training set was

found to be 5mm and over the test set it was found to be 13mm. This level of reconstruction

accuracy was found to be comparable to the accuracy of 12mm obtained in [109, chapter 4]

which utilised a similar number of 3D calibration points. It is important to emphasise that in

the experiment, the set of test points occupied the same two planes as the set of training points.

For this reason, the quoted level of localisation accuracy for the set of test points does not truly

reflect the expected level of accuracy at locations not lying on two surfaces used for calibration.

A more detailed description of the calibration process used is presented is appendix D.

Given both the audio-based and video-based tracking results, further calibration procedures

were applied so as to optimise the relative calibration between the audio and video tracking

spaces. This was found to be of critical importance so as to ensure no bias existed between

audio-based location estimate to that of video-based location estimates. In effect, the relative

calibration process determined the positions of the microphones within the coordinate space of

the cameras and refined the initial manual measurement of the microphone positions.

Sufficient reconstruction accuracy was achieved from multi-view visual reconstruction such

that any error in localisation relative to audio based localisation was deemed negligible. The

visually reconstructed track therefore was taken as the true track’s 3D position. Gaussian noise

was added synthetically to pixel measurements to simulate noisy visual localisation. Through

this, the covariance Σp was controlled in the evaluation. In the audio-domain the variance of

TDEs at each microphone pair was measured empirically using a running variance estimate. The

TDEs were assumed to be statistically independent. The covariance Σ� therefore was formed as

a diagonal matrix with the diagonal components being the empirically measured TDE variances.

4.4.1 Validity of First Order Error Propagation

Of particular concern in the application of the error propagation techniques presented in sec-

tion 4.1.1 is the validity of using a first order Taylor series expansion. In cases where the local

linearity assumption is violated, linearisation can introduce errors. To address this concern, the

linear mapping techniques described in section 4.1.1 for estimating measurement covariances are

compared to that of the Unscented Transform (UT) which can provide a higher order approxi-

mation. The violation of a linear approximation therefore should arise in discrepancies between

the linear mapping techniques and the UT. In addition to this both estimation techniques are
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(a) Camera View 1 with point correspondence p (blue). (b) Camera View 2 with point correspondence p
′

(blue).

(c) Camera View 3 with point correspondence p
′′

(blue).
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(d) Reconstructed training points (blue) and test points
(green) using the three cameras.

Figure 4.3: The 37 point correspondences {p ↔ p
′ ↔ p

′′} (blue) in the three camera views
used to calibrate the cameras within the 3D space of the room. The point correspondence shown
in green are test points used in testing the accuracy of reconstructed 3D points. In this figure,
the clutter within the room has been blurred so as to highlight the positions of the image point
correspondences.

compared in relation to Monte Carlo based approximation.

4.4.2 Comparison with the Unscented Transform

The Unscented Transform (UT) was briefly introduced in section 3.1.3 as an alternative approach

to linearisation for determining the mean and covariance of a random variable that undergoes a

nonlinear transformation [167]. It was described in section 3.1.3 how a set of sigma points Xi,
i = 1, .., p, with associated weights Wi can be used to adequately approximate the probability
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distribution of a random variable. The set of sigma points of the UT are chosen deterministically.

In this respect the UT differs from a Monte Carlo approximation where sample points are

determined randomly and the true estimate is only obtained asymptotically as the number of

samples approaches infinity [118]. The sigma points therefore represent a minimal approximation

of the random variable’s statistics. The effect of the nonlinear transformation on the random

variable is estimated by applying the non-linear transformation to the set of sigma points. The

a posteriori statistics of the transform random variable are then estimated using the set of

transformed sigma points.

In the following the UT is examined in more detail where it is applied to the problem of

propagating uncertainty in the audio-video based localisation system. To examine the use of

the UT in this regard, we will consider again the problem in section 4.1.1 of estimating the

covariance Σp of a pixel-based observation p of the 3D point x, with associated covariance Σx.

The set of sigma points are determined through the following [164],

X0 = E[x] (4.15a)

W0 =
�

(p+ �)
(4.15b)

Xi = E[x] + (
√

(p+ �)Σx)i (4.15c)

Wi =
1

2(p+ �)
(4.15d)

Xi+p = E[x]− (
√

(p+ �)Σx)i (4.15e)

Wi+p =
1

2(p+ �)
(4.15f)

where � ∈ ℝ, p is the dimension of x (which in this example is p = 3) and (
√

(p+ �)Σx)i is the

itℎ row of the matrix square root of (p+ �)Σx. In this definition, it is assumed that the square

root of a symmetric matrix B is defined as A such that B = ATA. The set of sigma points as

defined in equation 4.15 is a symmetric set of 3D points which lie on the
√

(p+ �) contour of

the covariance Σx. In the case of Σx being a diagonal covariance matrix, the sigma points lie on

the principal axes of the error ellipsoid of x. The sigma points Xi are then propagated through

the video-based measurement function f(⋅) by,

Yi = f(Xi). (4.16)

Given the transformed sigma points Yi therefore, the expected value is determined using the

weights Wi as,

E[Yi] =

2p∑

i=0

WiYi (4.17)
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and associated covariance by,

ΣYi =

2p∑

i=0

Wi [Yi − E[Yi]] [Yi − E[Yi]]T . (4.18)

In this way an approximation of both E[p] and Σp is obtained as,

E[p] ≈ E[Yi], (4.19)

Σp ≈ ΣYi . (4.20)

In the case of W0 = 0 the UT enables the covariance to be estimated to the same order

of accuracy as a first order linearisation approach (i.e. EKF) [166]. For the case of a Gaussian

random variable x, it has been shown that in choosing (p+�) = 3 the UT determines an estimate

correct up to the third order [167, Appendix I].

Shown in figure 4.4a are the results of 1000 Monte Carlo simulations for localisation at 12

positions denoted {A,B, .., L} in the room from noisy time-delay estimates. Also shown in this

figure are the predicted 95 percentile error regions for each position as determined by linear

covariance mapping and the UT. The variance of time-delay estimates in the simulations was

set to 1 audio sample in each case.

The first observation in these results is that both linear covariance mapping and UT produce

similar uncertainty estimates with no significant difference at any of the 12 positions. This can

further be seen in Table 4.1a where the principal components of the covariance estimates for

the three different estimation techniques are quoted for positions {C,F, I, L}. In relation to the

Monte Carlo estimate of localisation uncertainty, both techniques underestimate localisation

uncertainty at positions with relatively high uncertainty such as at position C and overestimate

uncertainty at positions with relatively low localisation uncertainty such as at position I.

Figure 4.4b presents the above analysis for the case of video-based localisation using noisy

pixel measurements. In the simulations the variance of pixel measurements was set to 5 pixels2

in both x and y image axes for each of the 12 positions within the room. Again in this case both

the UT and linear covariance mapping result in similar uncertainty estimates. For the positions

{C,F, I, L}, the principal components of the estimates from Table 4.1b are seen to be identical.

In relation to the covariance estimates obtained using Monte Carlo simulation however, both

the UT and linear covariance mapping tend to result in overestimating localisation uncertainty.

To illustrate the relative scale of the associated error for both audio-based and video-based

locaisation, the 3D error ellipsoids are shown in relation to the positions of the sensors within

the room in figure 4.4e.

Shown in figure 4.4c are the audio based localisation estimates mapped into the image plane

with the predicted 95 percentile error ellipses. In this example, the principal components of the

positions {C,F, I, L} are shown in Table 4.1c. For this particular case, the UT is seen to provide
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more accurate estimates than the linear covariance mapping approach. This is most significant

for position I.

Finally, in figure 4.4d,the result of mapping the video based location estimates to time de-

lays in the audio domain is shown. Also shown are the predicted error bars representing the 95

percentile error regions associated with the mapped time delays. The estimated principal com-

ponents from Table 4.1d using the UT, linear covariance mapping and Monte Carlo simulation

in this case are seen to be identical for the positions {C,F, I, L}.
In summary, the simulation shows that linear covariance mapping, performs equally as well

as the UT. This suggests that under the assumption of Gaussian noise, first order linearisation

is sufficient for the propagation of uncertainty in the considered audio-video based system.
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(a) Audio-based localisation error in the xy-plane. (b) Video-based localisation error in the xy-plane.

(c) Audio-based localisation error mapped into the
image plane of camera C2.

(d) Video-based localisation error mapped to time
delay domain of microphone pair {m1−m2} where
the error bars are offset for clarity.
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(e) 3D Error ellipsoids for audio (green) and video
(red) based localisation.

Point
Position

x (mm) y (mm) z (mm)

A 1700 4000 1500
B 1700 4750 1500
C 1700 5500 1500
D 1700 6250 1500
E 2500 4000 1500
F 2500 4750 1500
G 2500 5500 1500
H 2500 6250 1500
I 3300 4000 1500
J 3300 4750 1500
K 3300 5500 1500
L 3300 6250 1500

(f) 3D Position of each test point in the room

Figure 4.4: Validating first order error propagation in the configuration of six microphones
{m1,m2, ..,m6} and three cameras {C1, C2, C3} using linear uncertainty mapping, the UT and
Monte Carlo simulation. Localisation error is examined for twelve positions denoted {A,B, ..L}
within the room. The 95 percentile error region is illustrated in each case.
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Pos.

Standard Deviation of the

Principal Components

of the Covariance Estimates

(mm)

L MC UT

C

1st 161.9

2nd 12.2

3rd 11.0

1st 170.0

2nd 12.5

3rd 11.4

1st 164.1

2nd 12.2

3rd 11.1

F

1st 53.8

2nd 22.8

3rd 19.2

1st 52.9

2nd 23.3

3rd 20.1

1st 53.8

2nd 20.1

3rd 19.2

I

1st 57.9

2nd 50.7

3rd 22.7

1st 57.4

2nd 49.2

3rd 22.5

1st 58.2

2nd 50.8

3rd 22.7

L

1st 50.3

2nd 29.7

3rd 16.9

1st 52.1

2nd 30.9

3rd 16.4

1st 50.4

2nd 29.7

3rd 16.9

(a) Audio-based 3D localisation error.

Pos.

Standard Deviation of the

Principal Components

of the Covariance Estimates

(mm)

L MC UT

C

1st 43.7

2nd 7.6

3rd 7.4

1st 42.9

2nd 7.5

3rd 7.1

1st 43.7

2nd 7.6

3rd 7.4

F

1st 32.1

2nd 6.7

3rd 6.4

1st 30.7

2nd 6.9

3rd 6.3

1st 32.1

2nd 6.7

3rd 6.4

I

1st 22.8

2nd 5.6

3rd 5.4

1st 22.4

2nd 5.7

3rd 5.2

1st 22.8

2nd 5.6

3rd 5.4

L

1st 51.6

2nd 8.5

3rd 8.0

1st 52.4

2nd 8.5

3rd 7.7

1st 51.6

2nd 8.5

3rd 8.0

(b) Video-based 3D localisation error.

Pos.

Standard Deviation of the

Principal Components

of the Covariance Estimates

(pixels)

L MC UT

C
1st 26.3

2nd 2.0

1st 27.5

2nd 2.0

1st 26.5

2nd 2.0

F
1st 9.7

2nd 3.9

1st 9.6

2nd 3.9

1st 9.7

2nd 3.8

I
1st 12.9

2nd 7.8

1st 12.3

2nd 5.3

1st 12.6

2nd 5.3

L
1st 7.0

2nd 3.5

1st 7.1

2nd 2.8

1st 6.8

2nd 2.7

(c) Audio based 3D localisation propagated into the

image plane.

Pos.

Standard Deviation of the

Principal Components

of the Covariance Estimates

(audio samples)

L MC UT

C 1st 2.8 1st 2.8 1st 2.8

F 1st 0.8 1st 0.8 1st 0.8

I 1st 0.3 1st 0.3 1st 0.3

L 1st 0.9 1st 0.9 1st 0.9

(d) Video-based localisation propagated into audio

domain (time-delays).

Table 4.1: The standard deviation of the principal components of the covariance estimates for

the labelled positions in the simulation example illustrated in figure 4.4. The abbreviations L,

MC and UT are use for Linearisation, Monte Carlo Simulation and Unscented Transform

respectively. These terms are used to refer to the technique by which the covariance estimate

was obtained. Also, 1st, 2nd and 3rd are used to label the first, second and third principal

components of the covariance estimate respectively
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4.5 Comparative Error Analysis and Discussion

In this section, both audio-based and video-based localisation are examined in determining

location estimates for the scenario of a moving audio-visual source as described in section 4.4.

Also evaluated is the fused audio-video based estimate using equation 4.1 and equation 4.2 for

the different cases of fusion applied in the audio domain, the video domain and the positional

domain.

Using the covariance mapping techniques presented in section 4.1.1 and given the covariance

of time delay estimates, the error associated with audio-based localisation can be determined.

Similarly, given the covariance of pixel based measurements, the error associated with video-

based localisation can be determined. Through this, for the given audio-visual localisation

system, the uncertainty of the various localisation approaches can be evaluated.

Shown in figure 4.5a are the predicted 95 percentile error ellipsoids for points along the path

of the audio-visual source. The error ellipsoids are determined for the case of pixel measurements

with variance equal to 5 pixels2 in both the x and y image axes respectively and TDEs with

variances determined empirically by a running variance estimate. From this, it can be seen

that in each case of both audio-based and video-based localisation, the error associated with a

location estimate is non-uniform in space. Also, the orientation of the error regions is dependent

on the configuration of the sensors. Since the error ellipsoids are not uniform in space, direct

comparison of audio-based and video-based localisation uncertainty cannot be made. The trace,

denoted tr(⋅), of the covariance matrix defining the error ellipsoids is therefore chosen as a

performance measure for the accuracy of localisation.

Presented in figure 4.5b is a table quoting this measure of accuracy for both audio-based

and video-based location estimates at the numbered points along the track as shown in figure

4.5a. Also included in the table are the expected values of 3D localisation accuracy for the three

different fusion strategies. From this, it can be seen that, as expected, the accuracy of the fused

audio-video based location estimate is greater than either audio-based or video-based localisation

alone. It is clear however that the fused estimate shows a greater improvement on audio-

based localisation than that of video-based localisation. This highlights the greater contribution

of video measurements in the fused estimates in comparison to that of audio measurements.

Furthermore it is seen that, of the fusion strategies examined, the best localisation estimate

is obtained through fusion in the positional domain with the worst localisation accuracy being

observed for fusion in the video domain. In particular, in the case of fusion in the video domain,

there is little improvement in accuracy beyond video-based localisation. This suggests that in

the image plane the contribution of audio data in improving localisation accuracy is small.

Again, using the trace of the localisation covariance matrix as a measure of accuracy, audio-

based localisation is compared to simulated video-based localisation in figure 4.6a. In this figure,

the percentage of frames where audio-based localisation was found to be more accurate than

video-based localisation for varying pixel measurement noise is shown. From this it is seen
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(a) xy plane view of the 95 percentile error ellipsoids
over the track length.

Location 1 2 3 4

tr(ΣA
x ) (cm2) 178 717 328 639

tr(ΣV
x ) (cm2) 29 21 17 14

tr(ΣAud
x ) (cm2) 2 17 13 9

tr(ΣV id
x ) (cm2) 18 20 16 13

tr(ΣPos
x ) (cm2) 2 1 2 7

(b)

Figure 4.5: The 95 percentile error ellipsoids for audio-based localisation (red) and video-based
localisation (green) over the track length are shown in (a). Shown in (b) is the trace of the
covariance matrices corresponding to the numbered error ellipsoids in (a).

that even with a pixel measurement noise of 20 pixel2 the percentage of frames where audio

localisation is more accurate over the track duration is less than 40%. Although this is the case,

for pixel measurement noise with variance 1 pixel2, audio-based localisation was found to be

more accurate for 5% of the track duration. This reveals significant variation in audio-based

localisation accuracy over a typical track duration.

Figure 4.6b further examines the predicted performance of the different fusion strategies in

localising the target for the case of varying pixel uncertainty. Presented in this figure is the per-

centage of frames over the track duration where the minimum localisation accuracy is achieved

by each fusion strategy. This analysis is based on the predicted covariances associated with the

obtained location estimates. The results are shown for both cases of estimating the covariances

using linearisation and the UT. Figure 4.6b indicates therefore, that fusion in the positional

domain provides the most accurate location estimate regardless of the pixel measurement un-

certainty. The figure also indicates that, irrespective of the variance of pixel measurements, at

no point along the track does fusion in the video domain provide the most accurate location

estimate. One contributing factor, in the result that positional domain fusion is best, is the

configuration of the sensors. Examining figure 4.5a again, it can be seen that for audio-based
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(a) Percentage of frames where audio based local-
isation was found to be more accurate than video-
based localization for pixel measurements with in-
creasing variance.

(b) Percentage of frames where the trace of the
estimated covariance is minimum for each fusion
strategy.

Figure 4.6: Comparison of audio-visual source localisation and various fusion based localisation
strategies.

localisation, uncertainty is greatest along the x-axis and least along the y-axis whereas in the

case of video-based uncertainty the opposite is true.

Until now the analysis has been confined to examining localisation accuracy based on es-

timates of the covariance associated with the different location estimates. In figure 4.7 the

accuracy of the actual location estimates are examined against the ground truth track data. In

each of the presented figures, the results are shown for the fused location estimates obtained

using covariance estimates by linearisation and the UT.

In figure 4.7a the Mean Absolute Error (MAE) 2 of localisation over the track duration is

shown for the different fusion strategies. It can be seen from this that the results correspond to

the previous theoretical analysis and the best localisation accuracy is obtained through fusion in

the positional domain with the least accurate fusion strategy being fusion in the video domain.

This result however, is only observed for pixel measurement uncertainty greater than 5 pixels2.

Figure 4.7b shows the MAE of audio-based and video-based localisation in relation to the

results of the various fusion-based approaches. This figure shows that even with pixel measure-

ment uncertainty of 20 pixels2 a fused estimate greatly improves upon the results of audio-based

localisation and to a lesser extent, video-based localisation. One unexpected result occurs for

pixel measurement uncertainty below 5 pixels2 where the MAE for the fusion approaches are

seen to be greater than that of video-based localisation. The reason for the transition at the

value of 5 pixel5 is attributed to a possible bias still existing between audio-based and video-

based location estimates despite the relative calibration of the tracking spaces as described in

2 [191] highlights the ambiguous use of the term “absolute error” in relation to vectors and recommends instead
“Euclidean error”. In this thesis the term “absolute error” is adhered to, however, to avoid misinterpretation the
term “absolute error” when referred to is equivalent to the “Euclidean error”.
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(a) Mean absolute error for the different fusion
strategies using both covariance estimation by lin-
earisation and the unscented transform.

(b) The plot of (a) with the mean absolute er-
ror for audio-based and video-based localisation in-
cluded.

(c) The plot of (a) with the mean absolute error
for the simple audio-video based switching strategy
included.

(d) The maximum error over the track duration
for increasing pixel measurement uncertainty.

Figure 4.7: Comparison of audio-based, video-based and fusion-based localisation performance.

section 4.4. This highlights the need for more accurate means of relative calibration between

audio and video sensors in the implementation of audio-visual fusion systems. In the absence

of more accurate calibration techniques than those employed in this analysis, at a level of pixel

measurement uncertainty below 5 pixels2, fusing audio-based measurements with video-based

measurements is not worthwhile.

The use of audio-video based fusion is seen to improve upon the accuracy of single modality

localisation. This however does not give any indication as to whether the fused estimate improves

localisation accuracy beyond the best available sequence of single modality location estimates.

For instance, consider the hypothetical scenario where the best single modality location estimate

is known at each frame and that a simple switch strategy is employed to choose the most accurate

estimate. Such a strategy determines the optimum sequence of single modality location estimates
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over the track duration. Since the true track location is known in this analysis, the simple audio-

video based switching strategy can be examined. This can be used to evaluate fusion-based

localisation approaches since they should outperform the simple switching strategy. The MAE

of the simple switch-based joint audio-video approach in localising the moving source is shown

in figure 4.7c. For comparison, the MAE for the various fusion strategies is also included. From

this it can be seen that the accuracy of the simple switching-based approach is only achieved

by fusion in the positional domain at relatively large values of pixel uncertainty in the region of

15 pixels2 to 20 pixels2.

An interesting observation is made when the different fusion strategies are examined in

relation to the maximum observed error over the track duration. From figure 4.7d it is seen

that for all values of pixel measurement uncertainty, the largest observed error occurs in the

localisation results corresponding to positional domain fusion and is significantly larger than

that observed for audio domain fusion or video domain fusion. This result is in contrast to

the previous observation that the best overall localisation accuracy over the track duration is

obtained through positional domain fusion. This suggests that large localisation errors occur

in the positional domain fusion approach, but the frequency of these errors is low enough such

that the overall performance is not greatly affected.

The reason for this result can be deduced from a closer examination of the x, y and z

localisation results in figure 4.8 where the various localisation approaches are examined. This

figure includes; figure 4.8a showing audio-based localisation; figure 4.8b showing video-based

localisation; figure 4.8c showing localisation resulting from fusion in the positional domain;

figure 4.8d showing localisation resulting from fusion in the video domain and figure 4.8e showing

localisation resulting from fusion in the audio domain.

In examining figure 4.8a it is seen that large errors are observed over the track duration for

audio-based localisation. These large errors are due to errors on the TDEs which are propagated

from the audio measurement domain into the 3D location estimates. Even small errors in TDEs

can introduce significant localisation errors. In a similar manner, noisy pixels measurements can

introduce significant localisation errors when propagated from the video measurement domain

into 3D positional space. This can be seen from the noisy video-based localisation estimates of

figure 4.8b.

When audio and video based location estimates are fused in the positional domain, large

errors in either of the two location estimates will result in a large error in the overall fused

estimate. From figure 4.8a it can be seen that there are many instances over the track duration

where audio-based localisation accuracy is low. This means that when a poor video-based

location estimate occurs, there is a high probability that it will be fused with a poor audio-

based location estimate. When such situations arise, the error in the resulting fused location

estimate is large. This phenomenon is evident in the large localisation errors seen in the results

of positional domain fusion as shown figure 4.8c.

To apply fusion in the video domain the audio-based location estimates are simply propagated
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into the image plane of the cameras. This projection does not reduced the errors in the audio-

based location estimates. As a result, some large errors are also apparent in the localisation

results of video domain fusion as can be seen in figure 4.8d.

It is interesting to note that the localisation results are significantly smoother when fusion

is applied in the audio domain as can be seen in figure 4.8e. The reason for this observation is

that when fusion is applied in the audio domain, the more reliable video measurements act to

reduce the large errors on the TDEs before the 3D location estimate is determined. Reducing

the error on each individual TDE significantly reduces the total error observed when all TDEs

are combined into a 3D location estimate. In the other fusion approaches considered, such as

positional domain fusion and video domain fusion, the errors arising from the audio data are

seen to be most dominant. The results presented here suggest that applying fusion in the audio

domain has the greatest effect on reducing the localisation errors arising from uncertainty on

the TDEs. This means that fusion in the audio-domain results in smoother localisation over the

track duration than either of the two other fusion approaches considered. However, when the

uncertainty on the TDEs is low, fusion in the audio-domain results in less accurate localisation

when compare to localisation through positional domain fusion or fusion in the video-domain.

4.6 Final Comments

The use of error propagation was presented in this paper as a useful means of evaluating the

performance of a joint audio-video based localisation system. Through comparative studies

with the UT and Monte Carlo simulation, first order error propagation was shown to adequately

map audio and video measurement uncertainty across the positional, video and audio tracking

domains. In the comparison of audio-based and video-based localisation accuracy, video-based

localisation was found to outperform that of audio-based localisation in terms of accuracy and

consistency. Maximum likelihood fusion of location estimates in the audio domain, video domain

and positional domain was examined. In general, the appropriateness of each fusion strategy is

dependent on the configuration of the sensors. For the examined configuration of sensors in this

analysis, the best 3D localisation accuracy was found to be achieved where fusion is applied in

the positional domain. Audio was found to contribute little in terms of localisation accuracy

when fusion is applied in the video domain.

In addition to this, the performance of the three different ML fusion-based techniques was

found to be poor when compared to the simple audio-video based switching localisation ap-

proach. In particular the use of fusion was only found to approach the localisation performance

of the simple switch-based approach for relatively large pixel measurement uncertainty.

In contrast to the best overall tracking performance being obtained through fusion in the

positional domain, the largest observed error was also found to occur through this fusion-based

approach. Fusing video measurements with audio measurements in the audio domain was found

to reduce the uncertainty on the TDEs. Applying fusion at the level of the TDEs resulted in a
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smoother sequence of location estimates but they were found to be less accurate.
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(a)

(b)

(c)

(d)

(e)

Figure 4.8: The x, y and z localisation results of (a) audio-based tracking, (b) video-based
tracking, (c) fusion in the positional domain, (d) fusion in the video domain and (e) fusion in
the audio domain.



5
Optimal Microphone Placement1

There is a need in joint audio-video based systems for a practical means for determining the

optimal placement of microphone arrays within a room for Time Delay Estimate (TDE) based

localisation. In the context of audio-based localisation this is important since it improves the

accuracy of location estimates. In relation to joint audio-video based systems such as that

evaluated in chapter 4 however, the need to optimise the placement of arrays becomes more

pronounced. This is seen from examining the fused location estimate of equation 4.1 where

reducing the audio-based localisation uncertainty can be seen to improve the contribution of the

audio modality in the joint estimate.

Earlier approaches to optimal sensor placement considered the performance of sensors which

are constrained to specific geometries such as linear sensor arrays [29, 117] and also circular

arrays [162]. Now such array geometries are in common usage and a new problem has recently

arisen to determine where multiple such arrays should be placed within a room to minimise

localisation uncertainty.

In the sensor placement literature, some relevent work exists such as that by Abel [98] and

more recently by Zhang [76] and Yang et al. [16]. However, each of these works only consider the

single source case. This does not address the problem at hand since the most useful applications

of microphone arrays is to the multiple source case.

Literature which focuses on optimal sensor placement for the multi-source case does exist

1Results from this chapter have been published in: Damien Kelly, Frank Boland. Optimal Microphone Place-
ment for Active Speaker Localization in 8th IMA International Conference on Mathematics in Signal Processing.
Dec. 16th-18th, 2008, Cirencester, UK. [40]

101
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[46, 95, 137]. None of these treatments of the problem incorporate satisfactory models of TDE

uncertainty where the errors on the TDEs are assumed to be equal and independent of the

sensor positions. This assumption neglects the fact that the positions of the sensors in relation

to the source affect aspects such as the SNR which has a direct influence on the accuracy of the

TDEs [6]. Furthermore, the specific problem of speaker localisation is not addressed in these

works.

To the best knowledge of the author, the work of Brandstein et al. [17] is the only explicit

treatment of the topic of optimal microphone array placement for speaker localisation. They

derive the localisation error for a given array geometry and model the variance of TDEs as a

function of the distance from the speaker to the microphones and also of the speaker/microphone

directionality characteristics. Given this definition of localisation error, they determine the

optimal microphone array configuration in a conference room setting from a small set of possible

configurations. No algorithm for automatically determining an optimal configuration however

is given.

In this chapter it is aimed to extend on the work in [17] to determine the optimal placement

of microphone arrays within a room so as to minimise the localisation uncertainty over an

audience area. Drawing from the work of Gustafsson et al. [175] a more appropriate model of

TDE uncertainty in a reverberant room is employed and a simulated annealing algorithm is

proposed for automatically determining an optimal configuration of microphone arrays.

Problem Statement

For a defined set of speaker positions x = {x1, ..,xi, ..,xNs} within a room, the task is to

determine the optimal placement of k = 1, ...,K microphone arrays such that the localisation

error at each speaker position is minimised. Each microphone array consists of a known but

unrestricted array geometry and number of microphones. This information is assumed to be

encompassed in a set of microphone positions

Mo
k = {mo

k1, ..,m
o
kj , ..m

o
kNmic

} (5.1)

centred about the origin, where mo
kj = [Xkj , Ykj , Zkj ]

T is the position of the jth microphone

and Nmic is the total number of microphones in the array. An example of the form of mo
k for an

inverted T-shaped microphone array is presented in figure 5.1a. With this knowledge defining

the relative positions of microphones within the array, the placement of the array within the

room can be completely described by

ℳk = {Ck,Ok}, (5.2)

where Ck is the array’s centre and Ok = [�k, �k,  k] is a vector of orientation angles. The

orientation angles �k, �k and  k denote angles of pan, tilt and roll respectively. An illustrated
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mo
k1 = [−200, 0,−100]T mo

k2 = [0, 0,−100]T mo
k3 = [200, 0,−100]T

mo
k4 = [0, 0, 200]T

[0, 0, 0]T

(a)

�k

�k

 k

x

y

z

Ck

(b)

Figure 5.1: An example of an inverted T-shaped microphone array defined by mo
k =

{[−200, 0,−100]T , [0, 0,−100]T , [200, 0,−100]T , [0, 0, 200]T } is shown in (a). In (b) the parame-
terisation of microphone positions in the array by a centre position Ck and orientation vector
Ok = [�k, �k,  k] is illustrated.

example of this parameterisation for the inverted T-shaped microphone array of figure 5.1a

is shown in figure 5.1b. For any value of the parameters Ck and Ok, the positions of the

microphones of the kth array are defined by,

mkj = R�R�R mo
kj + Ck, (5.3)

where

R� =

⎡
⎢⎣

cos � − sin � 0

sin � cos � 0

0 0 1

⎤
⎥⎦ , (5.4)

R� =

⎡
⎢⎣

cos� 0 − sin�

0 1 0

sin� 0 cos�

⎤
⎥⎦ , (5.5)

R =

⎡
⎢⎣

0 cos − sin 

0 sin cos 

1 0 0

⎤
⎥⎦ (5.6)

are rotation matrices corresponding to the orientation vector Ok.

The localisation problem for a speech source at position xi requires determining TDEs from
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a speech signal received by the complete set of microphone arrays

ℳ = {ℳ1, ..,ℳk, ..,ℳK}. (5.7)

A single array ℳk yields a vector of TDEs

� ik = [�i1, .., �iNk
�
], (5.8)

where Nk denotes the total number of microphone pair combinations comprising ℳk. For

instance, the inverted T-shaped microphone array described in figure 5.1a yields Nk =
(
Nmic

2

)
=(

4
2

)
= 6. Therefore, the total number of microphone pairs for an array configuration ℳ is,

Np =

K∑

k=1

Nk. (5.9)

From the Np pairs of microphones an Np × 1 vector of time-delays,

� i = [� i1, .., � ij , ..� iNp ]
T (5.10)

is obtained from which the speaker position is to be estimated.

It should be noted that the location estimate is assumed to be determined using TDEs arising

from inner-array microphone pairs only. The formulation of the problem does not consider TDEs

arising from inter-array microphone pair configurations. The problem is constrained in this

manner since in general, localisation systems utilising correlation-based time-delay estimation

and distributed microphone arrays, follow this practice. This arises due to the dependence

of correlation-based time-delay estimation on signal coherence which defines the Cramér-Rao

Lower Bound (CRLB) on the variance of the TDEs [20, 56]. The concept of signal coherence

defining the minimal achievable variance of a TDE was introduced in section 2.1.3.2 where it

was seen that improving signal coherency improves the performance of time-delay estimation.

As a result, array geometries employed in speaker localisation commonly ensure that the spacing

between microphones is small since this is known to improve signal coherency [157]. Thus, only

using inner-array microphone pair combinations, which are known to be closely spaced, improves

both the likelihood of high signal coherence and the likelihood of obtaining accurate and reliable

TDEs.

Given this formulation of the problem, the approach described in this chapter for optimising

a given microphone array configuration ℳ can be summarised in the following:

• A model of the uncertainty of TDEs � i is defined as a function of the speaker position xi

and the positions of the microphones. Also included in this model are the effects of the

directivity characteristics of both the source and the microphones.

• The analysis of chapter 4 is employed to determine the covariance Σxi of a least squares
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estimate x̂i of the speaker positioned at location xi using the vector of TDEs � i.

• An objective function is defined based on Σxi over all speaker positions i = 1, .., Ns.

• Finally, a Simulated Annealing (SA) algorithm is proposed to determine the microphone

array configuration ℳ which minimises the objective function.

5.1 Estimating the Localisation Performance of a Microphone

Array Configuration

In section 4.2 it was seen that an estimate of TDE-based localisation uncertainty can be made

by mapping the covariance of the TDEs into positional space. This technique can be utilised

again in this analysis to determine the localisation uncertainty for the set of speaker positions

x.

Using the audio-based time-delay measurement function g(⋅) of equation 4.8 and covariance

mapping theory presented in section 4.2, the localisation uncertainty of a least squares estimate

x̂i of the speaker position xi can be determined. The least squares estimate is that which

satisfies the criterion function of equation 4.10. Using the microphone positions defined for an

array configuration ℳ, the covariance Σxi of the location estimate is obtained as

Σxi =
∂g−1(E[� i])

∂� i
Σ� i

∂g(E[� i])

∂� i

T

. (5.11)

In this way, a set of localisation covariance matrices ℒ = {Σx1 , ..,Σxi ..,ΣxNs , } corresponding to

the array configurationℳ can be associated with the set of speaker positions {x1, ..,xi, ..,xNs}.

5.1.1 Univariate Measures of Localisation Uncertainty

In essence, the set of covariance matrices ℒ define the localisation performance of the array

configuration ℳ. It is necessary however to transform ℒ into a single measure of performance

which are to be optimised. This is a multivariate data reduction problem. The first task is

to reduce the covariances Σxi to univariate measures of uncertainty. Secondly, these measures

of localisation uncertainty must be combined in an appropriate manner to define an objective

function over all speaker positions x which is to be optimised.

In regard to Σxi , one can consider two possible univariate measures of localisation uncer-

tainty. These are, the trace of Σxi

tr(Σxi) = �2
x + �2

y + �2
z , (5.12)

representing the total variance and the determinant of Σxi

∣Σxi ∣ = �2
x�

2
y�

2
z , (5.13)
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defining a measure of generalized variance, where �2
x, �2

y and �2
z are the diagonal elements of

Σxi defining the variance along the x, y and z axes respectively [155, Chapter 1]. In relation

to the error ellipsoid defined by Σx, the tr(Σxi) can be thought of as the sum of the length of

the ellipsoid’s principal axes. Therefore, it is directly related to the total size of the error region

associated with the location estimate xi. Likewise, the ∣Σxi ∣ is related to the size of the error

region since it is directly proportional to the error ellipsoid’s volume [198].

Some remarks in relation to the usefulness of the tr(Σxi) and the ∣Σxi ∣ as univariate measures

of uncertainty are appropriate. It is clear from equation 5.12 and equation 5.13 that both

the tr(Σxi) and the ∣Σxi ∣ neglect the covariance terms. As a consequence, both are principal

invariants of the covariance matrix Σxi [107]. This means that, under similarity transformations

of Σxi (eg. rotation), tr(Σxi) and ∣Σxi ∣ are invariant. A geometrical interpretation of this is

that both tr(Σxi) and ∣Σxi ∣ are invariant to the orientation of the error ellipsoid defined by Σxi .

As a result, using equation 5.12 and equation 5.13 as overall measures of uncertainty can fail to

distinguish between different covariance measures. Since the aim in optimising microphone array

positions in this analysis is to reduce the overall uncertainty irrespective of the orientation of

the error ellipsoids, this is not of major concern. It must be considered however if alternatively,

the task is that of minimising localisation uncertainty along particular axes. Such a scenario

may arise for example in applications where high localisation accuracy is required in the x− y
plane but less critical along the z axis.

An additional issue with the use of the ∣Σxi ∣ as a measure of localisation uncertainty is that it

can be particularly misleading. Consider an error ellipsoid where �2
x is close to zero but �2

y >> 0

and �2
z >> 0. This corresponds to the case where localisation uncertainty is close to zero along

the x axis but large in both the y and z axes. In this case due to �2
x being close to zero, ∣Σxi ∣

is small which does not reflect the true uncertainty evidenced by the large values of �2
y and

�2
z [131]. In this way minimising ∣Σxi ∣ can result in only minimising uncertainty along one axis.

5.1.2 The Objective Function

It was seen in the previous section that both equation 5.12 and equation 5.13 can be used

as a quantitative measure of the size of the error region associated with a location estimate.

This section examines the problem of combining these measures of uncertainty over all speaker

positions xi, i = 1, .., Ns in establishing the objective function to be minimised.

A key aim of the proposed optimisation approach is not only to determine the microphone

array configuration which minimises localisation uncertainty, but also that which results in the

even distribution of uncertainty over all speaker positions. This is so as to avoid determining

an optimal microphone array configuration which yields high localisation accuracy over only a

subset of the total speaker locations. There are certain circumstances where such a solution

may be desirable such as in the case where the minimisation of localisation uncertainty is to be

prioritised over a particular subset of speaker positions. In the proposed minimisation approach
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however it is desired to incorporate this facility through a prior weighting of speaker positions

rather than as an artefact of the minimisation process.

In regard to minimising the overall uncertainty while ensuring that it is evenly distributed

over all speaker positions, four objective functions are considered. These are,

ℰ1(ℒ) =

Ns∑

i=1

witr(Σxi), (5.14a)

ℰ2(ℒ) =

Ns∑

i=1

wi
√
tr(Σxi), (5.14b)

ℰ3(ℒ) =

Ns∑

i=1

wi∣Σxi ∣, (5.14c)

ℰ4(ℒ) =

Ns∑

i=1

witr(Σxi)
2 (5.14d)

where wi is a priority weighting on the itℎ speaker position, with 0 ≤ wi ≤ 1 and
∑

iwi = 1.

Equation 5.14a, equation 5.14b and equation 5.14c have previsouly been used as cost functions

in the sensor placement literature by, Neering et al. [95], Brandstein et al. [17] and Erdinc et

al. [137] respectively. The cost function of equation 5.14d is proposed in this work to address

the issue of ensuring the even distribution of the the total uncertainty over all speaker positions.

It is shown in the following, by means of an example, that this is not achieved through the

use of either equation 5.14a, equation 5.14b or equation 5.14c. Although the 3D positioning of

microphone arrays is of concern in this work, the example presented considers only the 2D case

for illustrative purposes.

Consider the two-dimensional case of a microphone array configuration yielding a solution

consisting of a set of localisation covariance matrices ℒ1 = {Σx1 ,Σx2} with Σx1 = diag(a, b) and

Σx2 = diag(a, c) where diag(a, b) is diagonal matrix formed by elements a and b. For this case,

the cost functions of equation 5.14 are determined as,

ℰ1(ℒ1) = 2a+ b+ c (5.15a)

ℰ2(ℒ1) = (2a+ b+ c+ 2(a2 + ab+ ac+ bc)
1
2 )

1
2 (5.15b)

ℰ3(ℒ1) = ab+ ac (5.15c)

ℰ4(ℒ1) = (a+ b)2 + (a+ c)2 (5.15d)

Consider now a second microphone array configuration yielding the solution resulting in the

set of localisation covariance matrices ℒ2 = {Σx1 ,Σx2} where Σx1 = Σx2 = diag(a+a
2 , c+d2 ).

Essentially, the solution ℒ2 is formed from ℒ1 by averaging the localisation uncertainty along

both the x and y axes. The error ellipses for an example case of ℒ1 and ℒ2 are illustrated in figure

5.2a and figure 5.2b respectively. From this it can be seen that both ℒ1 and ℒ2 correspond to
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(a) 95 percentile error ellipses of ℒ1 (b) 95 percentile error ellipses of ℒ2

Figure 5.2: In this example the localisation covariance matrices are ℒ1 =
{diag(1, 2), diag(1, 0.1)} and ℒ2 = {diag(1, 1.05), diag(1, 1.05)} in units of cm2. The re-
sulting cost functions from equation 5.14 for the solution corresponding to ℒ1 as illustrated
in (a) are ℰ1(ℒ1) = 4.1cm2, ℰ2(ℒ1) = 2.78cm2, ℰ3(ℒ1) = 2.1cm4 and ℰ4(ℒ1) = 10.21cm4.
The evaluated cost functions for the solution of ℒ2 as shown in (b) are ℰ1(ℒ2) = 4.1cm2,
ℰ2(ℒ2) = 2.86cm2, ℰ3(ℒ2) = 2.1cm4 and ℰ4(ℒ2) = 8.40cm4. From this it can be seen that
ℰ1(ℒ1) = ℰ1(ℒ2), ℰ2(ℒ1) < ℰ2(ℒ2), ℰ3(ℒ1) = ℰ3(ℒ2) and ℰ4(ℒ1) > ℰ4(ℒ2) therefore only the
cost functions of ℰ2 of equation 5.14b and ℰ4 of equation 5.14d assign different costs to each
solution. The use of the cost function ℰ4, corresponding to the sum of the squared trace of the
covariance matrices, assigns the lower cost to solution ℒ2 where the uncertainty is more evenly
distributed over both positions.

very different localisation error distributions. Despite this however, the resulting cost functions

of equation 5.14 for ℒ2 are found to be,

ℰ1(ℒ2) = 2a+ b+ c (5.16a)

ℰ2(ℒ2) = (2a+ b+ c+ 2(a2 + ab+ ac+ bc+
1

4
(b− c)2)

1
2 )

1
2 (5.16b)

ℰ3(ℒ2) = ab+ ac (5.16c)

ℰ4(ℒ2) = (a+ b)2 + (a+ c)2 − 1

2
(b− c)2 (5.16d)

From this it can be seen that ℰ1(ℒ1) = ℰ1(ℒ2) and ℰ3(ℒ1) = ℰ3(ℒ2). Therefore the objective

functions of ℰ1 in equation 5.14a and ℰ3 in equation 5.14c do not distinguish between the two

solutions. Careful observation of equation 5.15 and equation 5.16 reveals that since a,b,c ≥ 0

then ℰ2(ℒ1) < ℰ2(ℒ2) and ℰ4(ℒ1) > ℰ4(ℒ2). From this, the cost function ℰ2 in equation 5.14b

is seen to assign a lower cost to the solution corresponding to ℒ1. Only the cost function ℰ2 in

equation 5.14d assigns a lower cost to the solution ℒ2 where the total localisation uncertainty

is evenly distributed over the speaker positions.
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5.2 Modelling Uncertainty on the Time-delay Estimates

Determining the localisation covariance at each speaker position through equation 5.11 requires

defining the uncertainty on the TDEs � i. The CRLB as a bound on the minimum achievable

variance of an unbiased TDE was introduced in section 2.1.3.2. This bound was seen to be

inversely dependent on the SNR. The accuracy of the TDEs is therefore directly determined by

issues affecting the SNR such as the microphone-to-speaker distances and also by the directivity

characteristics of both the speakers and the microphones. By adequately modelling for the

effects of such on the SNR, the uncertainty of TDEs can be estimated using the CRLB. As

was previously state in section 2.1.3.2 the CRLB only models “small” errors in the time-delay

estimation problem and does not describe “large” errors due to anomalous TDEs.

This work employs the model of TDE uncertainty as proposed by Gustafsson et al. which

more accurately models uncertainty in the time-delay estimation problem than that of the

CRLB [175–177]. The model of Gustafsson et al. specifically examines the problem of time-delay

estimation in reverberant environments and is based on the Correlator Performance Estimate

(CPE) as proposed by Ianniello [97]. In the following, the CPE of Ianneillo is introduced and

the use of its extended form as proposed by Gustafsson et al. for reverberant environments is

motivated.

5.2.1 The Correlator Performance Estimate (CPE)

Ianniello proposed the CPE to address the shortcomings of the CRLB in describing the large

error effects on the time-delay estimation problem. Essentially, the CPE is derived by considering

two time-delay estimators. The first is affected by small errors and provides an unbiased TDE

which achieves the CRLB with variance �2
CRLB. The second is affected by large errors and

determines the TDE as a random sample from a continuous uniform distribution in the range

[−�max, �max]. This corresponds to the case where the received signals are corrupted by noise

to the extent that they contain no useful information as to the true time-delay. In the lack of

any a priori knowledge of the true time-delay, all TDEs in the range [−�max, �max] are assumed

equally likely. The variance of such a TDE is simply equal to the variance of a continuous

random variable in the range [−�max, �max] given by, [�max−(−�max)]2

12 = �2max
3 [63, Chapter 2].

Using this, the CPE defines the variance of a TDE made in the presence of both small and large

errors as

�2
ij = (1− Pr[�])�2

CRLB + Pr[�]
�2
max

3
, (5.17)

where Pr[�] is the probability of an anomalous estimate.

The CPE can be thought of as describing three regions of operation for an unbiased correlation-

based time-delay estimator. The first region corresponds to that where Pr[�] = 0. This is known

as the asymptotic region (small error region) where the estimator achieves the CRLB asymp-

totically with increasing SNR. In cases where Pr[�] = 1 corresponding to scenarios of low SNR,
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Figure 5.3: Three regions of operation for an unbiased TDE estimator as defined by the CPE.

the received signal contains no useful information about the true time-delay and its estimate

is restricted to a priori knowledge. In this region the variance of the unbiased estimate (Mean

Square Error (MSE)) is maximum. This is known as the maximum MSE region (large error

region). Between these two regions of operation for the case 1 > Pr[�] > 0 the estimator is

said to operate in the ambiguity region. Within this region the performance of the time-delay

estimator is seen to diverge from that predicted by the CRLB and is affected by large errors due

to anomalies. The three regions of operation for an unbiased time delay estimator in relation to

the SNR are illustrated in figure 5.3.

In proposing the CPE, Ianniello also gives a theoretical definition of the Pr[�]. This definition

considers the cross-correlation function Rzmzn(�) of equation 2.28 as consisting of M independent

values vm, m = 0, ..,M − 1 corresponding to the time delays �m. Only one of the time-delays

�m is assumed to correspond to the true time-delay. In the case of a band-limited source signal

s(t) with cross power spectrum Gss(!) = 1 for −2�B ≤ ! ≤ 2�B, points 1
2B apart in Rzmzn(�)

are uncorrelated [99, Chapter 8]. Therefore, the cross-correlation function Rx1x2(�) defined in

the range [−�max, �max] contains M = 2�max(2B) = 4B�max independent values.

If the true time-delay corresponds to the value v0 then the event of an anomalous TDE is

defined as [97],

� = vm > v0 for at least one vm m ∕= 0. (5.18)

More simply stated, this event can be thought of as the case where any other peak in the cross

correlation function is greater than that of the peak at the true time-delay. By this definition

of the event �, the probability of an anomaly is determined as,

Pr[�] = 1−
∫ +∞

−∞
p(v0)

[∫ v0

−∞
p(vm)dvm

]M−1

dv0 (5.19)

where p(v0) and p(vm) are the probability density functions of the peaks v0 and vm of the cross-
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correlation function respectively. In Ianniello’s formulation, both p(v0) and p(vm) are defined

as Gaussian with,

p(�0) ∼ N
(

1,
1

2BT

[
2 +

1

SNR
+

1

SNR2

])
(5.20a)

p(�m) ∼ N
(

0,
1

2BT

[
1 +

1

SNR
+

1

SNR2

])
(5.20b)

where SNR is the signal-to-noise ratio and T is the observation interval over which the cross-

correlation function Rzmzn(�) is determined. In Equation 5.20 both p(v0) and p(vm) are defined

for the case where the cross-correlation function is normalised so that the value of the maximum

peak is equal to one. Due to the form of equation 5.19, a value for Pr[�] can only be determined

numerically 2.

Gustafsson et al. extend the CPE to model the performance of time-delay estimation in the

presence of room reverberation for the discrete time case [175–177]. They examine a noiseless

scenario and assume the only distortion of the source signal s(t) is due to the effects of rever-

beration. In essence, reverberation is considered as a noise source and in their analysis the SNR

is replaced by the Signal-to-Reverberant Ratio (SRR) as defined in equation 2.8.

The CRLB in the case of room reverberation �2
CRLB,rev is obtained by substituting the SNR

in equation 2.37 with the SRR and replacing the integral with a summation for the discrete time

case. The SRR assumes that the reverberant acoustic energy within the room is constant and

not dependent on the relative source-to-microphone distance. Although a simplistic model of

reverberant conditions, experimental evidence would suggest that this is a reasonable assumption

[42, Chapter 2]. The implications of this assumption in the definition of Pr[�] is to neglect the

effect of early reflections and assume that the probability of an anomaly is constant irrespective

of the location of the source and microphones within the room. Experimental evidence suggests

that this assumption is likely to be invalid at positions close to walls within the room due to

strong earlier reflections [121].

Gustafsson et al. in their work, also redefine the probability densities p(v0) and p(vm) as,

p(v0) ∼ N
(

1,
�(RT60)

2B

[
2

SRR
+

1

SRR2

])
(5.21a)

p(vm) ∼ N
(

0,
�(RT60)

2B

[
2

SRR
+

1

SRR2

])
(5.21b)

where �(RT60) is the coherence bandwidth. The coherence bandwidth corresponds to the range

of frequencies over which the reverberant components of the signals received at a pair of mi-

crophones are correlated. Effectively, reverberation is seen to reduce the number of observed

uncorrelated points in the cross-correlation function by 1
�(RT60) . In Gustafsson’s proposal, the co-

2The MATLAB function quadgk [182] which implements the Gauss-Konrod quadrature formula for numerical
integration is used to evaluate Pr[�] of equation 5.19 in the results of this chapter.
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Figure 5.4: In (a) TDE variance as predicted by the �2
CRLB,rev (red) and CPE (blue) of Gustafs-

son et al. [177] is shown. This plot presents the variance of determining a cross-correlation
based TDE �̂ resulting from a 300Hz − 5kHz band-passed white noise source placed directly in
front (i.e. �̂ = 0) of a pair of microphones with spacing 0.4m. The variance is plotted for
varying distance from the source to the microphone pair. The environment considered is a sim-
ulated room of the same size as the CHIL room with reverberation time RT60 = 0.4s. Figure
(b) shows the probability of anomaly Pr[�] (blue) in the estimate �̂ determined using equation
5.19 and the cross-correlation peak model of equation 5.21. The Pr[�] obtained through simu-
lating the conditions of the CHIL room using the image method [82] is shown in (green). The
Pr[�] in the simulated environment was determined by 250 Monte Carlo simulations where the
microphone pair and source configuration was randomly placed within the simulated room. The
critical distance for the room model from equation 2.9 is also shown in red.

herence bandwidth is defined in an ad-hoc manner as �(RT60) = 10
RT60

, but is seen to correspond

closely to statistical based analysis of reverberant rooms [124].

In modelling the uncertainty of the TDEs in this optimisation problem, the CPE is used as a

measure of TDE uncertainty. Using this model of uncertainty, the TDE covariance is defined as

Σ� i = diag(�2
i1, .., �

2
ij , ..�

2
iNp) where the variances �2

ij are determined using equation 5.17 where

both �2
CRLB and Pr[�] are that proposed by Gustafsson et al. [175–177]. An evaluation of this

CPE for a simulated CHIL room with a reverberation time RT60 = 0.4s is presented in figure

5.4. The simulated CHIL room is also considered in the latter analysis of this chapter examining

the results of the proposed optimisation algorithm.

5.2.2 Speaker and Microphone Directivity Characteristics

As well as employing a detailed model of TDE uncertainty, this analysis aims to also incorporate

the effects of the speaker and microphone directivity characteristics into the uncertainty model.

To achieve this it is proposed to redefine the SRR in equation 2.8 as dependent on the speaker-

to-microphone and microphone-to-speaker angles. This is achieved by scaling the SRR such that
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equation 2.8 becomes,

SRR = D2
j (�(j,xi), �(j,xi))D

2
xi(�(xi,j), �(xi,j))

A�
16�r2(1− �)

, (5.22)

where Dj(�(j,xi), �(j,xi)) is the reception amplitude due to the angle of azimuth �(j,xi) and angle of

elevation �(j,xi) of the speaker relative to the jth microphone pair. Similarly, Dxi(�(xi,j), �(xi,j))

is the speaker source amplitude due to the angles of azimuth �(xi,j) and elevation �(xi,j) of the

jth microphone pair relative to the speaker position xi. It should be noted that it is assumed in

equation 5.22 that the source and microphone directivity characteristics have no effect on the

reverberant acoustic energy present in the room. Modelling the effects of such is beyond the

scope of this analysis. It is assumed therefore that the effect of the speaker and microphone

directivity characteristics is only observed in the direct path component of the microphone

outputs.

The described framework is flexible to the incorporation of any speaker and microphone

directivity characteristics. In the following analysis however the microphones are modelled as

cardioid receivers where the received signal amplitude is described by,

Dm(�(mkj ,xi), �(mkj ,xi)) =
1

2
(1 + cos �(mkj ,xi) cos�(mkj ,xi)). (5.23)

Modelling the directivity characteristics of a speaker is significantly more challenging since

the directivity characteristics of the mouth is known to be frequency dependent and also depen-

dent on speech dynamics [89, 93, 189]. There is little evidence in existing literature to suggest

the most suitable model for the directivity characteristics of a speaker. Previous research [3]

has employed the cardioid pattern of equation 5.23 to model the directivity characteristics of

speakers and in the absence of a more appropriate model the cardioid pattern is also employed

in this work. The speaker source signal amplitude is therefore defined as,

DS(�(xi,mkj), �(xi,mkj)) =
1

2
(1 + cos �(xi,mkj) cos�(xi,mkj)). (5.24)

It should be noted that experimental evidence would suggest that modelling speakers as cardioid

emitters is only reasonable within the ±30∘ range but outside of this it is overly conservative [89,

93, 189]. The imposed model will therefore be expected to result in microphone array positions

directly in front of speakers to be favoured more so than other locations about the speaker.

Although in general this is desirable, it may be more restrictive than is necessary.

5.3 A Simulated Annealing based Approach

Optimising a configuration of microphone arrays ℳ through minimising the objective function

of equation 5.14d represents a complex optimisation problem. Typically, the objective function

will contain many local minima as well as multiple global minima. Multiple global minima
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can be seen to exist by considering the interchange of microphone arrays of a given optimal

configuration. The presence of multiple global minima however does not introduce difficulties

into the optimisation problem since they correspond to equivalent optimal microphone array

configurations.

The existence of local minima however, is detrimental to standard gradient based optimi-

sation approaches. As a result for complex objective functions such as in this problem, one

is generally confined to stochastic optimisation techniques such as, Simulated Annealing (SA),

simultaneous perturbation stochastic approximation, random search or genetic algorithms [84].

In this work, a simulated annealing algorithm based on the classic SA technique of Kirk-

patrick et al. [168] is described for optimising a microphone array configuration. Simulated

annealing as an optimisation technique is inspired by the process of annealing in metallurgy.

Annealing is a thermal process whereby a material is heated to a high temperature (“melted”)

and slowly cooled. Atoms of a heated material on cooling will naturally tend towards lower en-

ergy states. Therefore, after a process of slow cooling the material attains a lower energy atomic

structure. Simulated annealing aims to emulate this process to optimise a set of parameters in

minimising some defined objective function. In relation to the annealing problem in metallurgy

the value of the objective function is analogous to the energy of the material and the value of

the parameters to its atomic structure.

In the implementation of the simulated annealing algorithm, the array parameters Ck and

Ok are assumed to be discrete. Specifically, the array centre Ck is assumed to be constrained to

a grid ℤc of feasible user defined positions within the room. Similarly, the orientation angle is

assumed to be constrained to a discrete set ℤo of orientation angles. In the proceeding analysis

the ℤc is assumed to have a resolution of 0.1m in each dimension and the ℤo is defined for

orientation angles of pan, tilt and roll in the range [0∘, 360∘] each with a resolution of 2∘.

5.3.1 Basic Simulated Annealing Algorithm

A basic application of simulated annealing to the problem of optimising a microphone array

configurationℳcurr with corresponding localisation covariance matrices ℒcurr can be described

as follows. Firstly a temperature Θ is defined and the parameters of ℳcurr are then perturbed

relative to Θ to determine a new configurationℳnew with localisation covariance matrices ℒnew.

The values of the objective function for both configurations are then compared. If the value of

the objective function corresponding to the new configuration is less than that corresponding to

the current configuration (i.e. ℰ4(ℒnew) < ℰ4(ℒcurr)) thenℳnew is accepted and replacesℳcurr.

Otherwise, acceptance of ℳnew is probabilistic and only accepted with probability equal to,

exp

(
−ℰ4(ℒnew)− ℰ4(ℒnew)

cbΘ

)
, (5.25)
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known as the Metropolis criterion. The value cb is known as the Boltzmann constant but can

be incorporated into the temperature definition by redefining Θ as Θ = cbΘ. Accepting new

configurations where ℰ4(ℒnew) > ℰ4(ℒcurr) in a probabilistic manner, enables the algorithm to

“escape” local minima. It is seen from equation 5.25 that this is most likely to occur with

high probability where ℰ4(ℒnew) − ℰ4(ℒcurr) is small or the temperature Θ is relatively large.

The above procedure is repeated until a state of equilibrium is reached where no more new

configurations are accepted, or after a defined number of evaluations. The algorithm then

proceeds iteratively by reducing the temperature Θ and repeating the above process. The

manner in which the temperature is reduced at each iteration is termed the cooling schedule. A

simple and commonly used cooling schedule is to assign the value Θ = 0.95Θ to the temperature

at each iteration.

5.3.2 Proposed Simulated Annealing Algorithm

The proposed simulated annealing algorithm introduces two adaptations to the basic algorithm

described above. The first adaptation occurs in the generation of new microphone configurations

at each temperature. Rather than perturb all the parameters of the configurationℳcurr at the

same time, it is proposed instead to perturb the parameters of each microphone arrayℳcurr
k one

at a time. This is implemented by firstly generating a new centre position Ccurr
k forℳcurr

k while

holding all other arrays in the configuration ℳcurr constant. With the centre position of the

array ℳk fixed the array orientation Ocurr
k is perturbed Nang times with each defining a new

array configuration. This strategy for determining new array configurations is then repeated

in a cyclic manner for each array k = 1, ..,K in ℳcurr. A single realisation of this process is

referred to as an array cycle.

In addition to this, the proposed algorithm also incorporates a means for determining when

a state of equilibrium has been entered. This is achieved by introducing a variable Nacc which

records the number of acceptances occurring over the Nang new configurations evaluated over

an array cycle. A variable Neq is also used to record the number of consecutive array cycles not

yielding any accepted new configurations. The algorithm defines the optimisation process as

being in a state of equilibrium at the current temperature if Neq equals some user defined value

Nstop. At this point, the algorithm progresses to the next temperature defined by the cooling

schedule. By setting Nstop therefore, the algorithm can be tuned as to how long the optimisation

process remains at a given temperature. This also acts to speed up the optimisation process by

exiting the current temperature if it is yielding no accepted new configurations.

An overview of the complete algorithm is presented in Algorithm 1. No claim is made as

to the convergence of the proposed algorithm to a global optimum since this would require an

unfeasible exhaustive search of all possible combinations. The proposed algorithm is seen to tend

towards a solution which is seen to be “more” optimal than the initial array configuration. As is

common with stochastic optimisation approaches the level of optimality of a particular solution



116 Optimal Microphone Placement

is determined on the amount of computation time which can be assigned to the optimisation

process.

5.4 Results

In this section the simulated annealing algorithm presented in Algorithm 1 is applied to the

problem of optimising a configuration ℳ of K = 4 microphone arrays within a room. The

criterion for optimisation is that the localisation error is to be minimised over an audience area

and a presenter area defined by the set of speaker positions x. The microphone array geometry

considered for each array in ℳ is that of the inverted T-shape array as illustrated in figure

5.1a. The simulated room model considered is the CHIL room as described in section 1.1 with

a reverberation time of RT60 = 0.4s. This corresponds to the same room model examined in

figure 5.4b.

The first example presented, describes the case where both the audience and presenter areas

are defined by a set of symmetric points within the room such as illustrated in figure 5.5a. This

example is used to represent a typical lecture or presentation scenario where each point in the

audience area represents an audience member and each point of the presenter area represents

a potential location for the presenter. In addition to this, the problem is defined for the case

where the presenter is assumed to be facing the audience. Therefore, both the presenter and

audience areas face in opposite directions. This is can be seen in figure 5.5a where the cardioid

directivity pattern for each speaker position is illustrated.

Shown in figure 5.5b is the assumed initial configuration for ℳ with the microphone arrays

positioned approximately at the top centre location of each wall in the room as in the CHIL

room. The first observation in this figure is that the localisation uncertainty is significantly large

resulting in the overlapping of the uncertainty regions. This would suggest that localisation

accuracy using such a configuration would be poor. It also suggests that due to the overlapping

uncertainty regions, associating any location estimate with a particular speaker position would

be difficult.

In figure 5.5c the result of the proposed algorithm for optimising the microphone array

configuration over the audience area only is shown. This corresponds to the case where the

priority weights wi in equation 5.14d are set to zero over the presenter area. In optimising

the array configuration in the described example, the arrays are constrained to the walls and

ceiling. From figure 5.5c it is seen that the algorithm determines a configuration which improves

significantly upon the initial configuration. The optimised configuration reduces the overall

localisation uncertainty such that there is no overlap between uncertainty regions. Once again it

is stated that, beyond an unfeasible exhaustive search of all possible configurations, it is difficult

to confirm the configuration obtained by the proposed algorithm as optimal. There are some

aspects of the obtained solution however which are encouraging. Firstly, the symmetric nature

of the returned configuration given the symmetric profile of the audience area, suggests the most



5.4. Results 117

Simulated Annealing Algorithm for Optimising Microphone Array Positions

Input

Microphone array configuration ℳ
Initialisation

Determine ℒ = {Σxi , ..ΣxNs , ..} using equation 5.11
Θ = 1015, Θ0 = 10−3, Nang = 10, Nacc = 0, Neq = 0, Nstop = 3
ℳcurr =ℳ, ℒcurr = ℒ, ℳnew =ℳ, ℒnew = ℒ, ℳopt =ℳ, ℒopt = ℒ

Recursion

1: while Θ > Θ0 do
2: while Neq ∕= Nstop do
3: for k = 1 : K do
4: Generate Ck by perturbing the centre of ℳcurr

k proportional to Θ
5: for i = 1 : Nang do
6: Generate Ok by perturbing orientation of ℳcurr

k proportional to Θ
7: Update ℳnew

k with ℳnew
k = {Ck,Ok}

8: Determine ℒnew using ℳnew

9: if ℰ4(ℒnew) < ℰ4(ℒcurr) then
10: ℳcurr =ℳnew, ℒcurr = ℒnew
11: Nacc = Nacc + 1
12: else
13: P = exp

(
−ℰ4(ℒnew)−ℰ4(ℒcurr)

Θ

)

14: Draw random variable q ∼ U(0, 1)
15: if P > q then
16: ℳcurr =ℳnew, ℒcurr = ℒnew
17: Nacc = Nacc + 1
18: end if
19: end if
20: if ℰ4(ℒcurr) < ℰ4(ℒopt) then
21: ℳopt =ℳcurr, ℒopt = ℒcurr
22: end if
23: end for
24: if Nacc = 0 then
25: Neq = Neq + 1
26: else
27: Neq = 0
28: end if
29: end for
30: end while
31: Θ = 0.95Θ
32: end while
33: return ℳopt

Algorithm 1: Simulated annealing algorithm for optimising a microphone array configuration
ℳ.
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(a) Symmetric audience (green) and presenter (red)
areas facing in opposite directions. The audience is
assumed seated at a height of 1.1m and the presen-
ter is assumed standing at a height of 1.7m. The
cardioid directivity patterns are shown in black.
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(b) Initial microphone array configuration with lo-
calisation error ellipsoids shown in green over the
audience and presenter areas.
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(c) Microphone array configuration optimised over
the audience area only with localisation error ellip-
soids shown in green.
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(d) Microphone array configuration optimised over
both the audience and presenter areas with localisa-
tion error ellipsoids shown in green.

Figure 5.5: Optimising the configuration of 4 inverted T-shaped microphone arrays for symmetric
audience and presenter areas facing in opposite directions. In this example the array centres are
constrained to the boundaries of the room (i.e. walls, floor and ceiling). The localisation error
ellipsoids illustrated, correspond to the 95 percentile error regions determined using the CPE
uncertainty model of equation 5.17 with Pr[�] = 0.
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intuitive optimal configuration. In addition to this the microphones are all positioned in front

of the audience area indicating the effects of including the directionality characteristics into the

optimisation problem.

For the case of optimising over both the audience and presenter areas, the optimal configura-

tion obtained, is presented in figure 5.5d. It is seen from this that although the obtained optimal

configuration reduces the localisation uncertainty compared to the initial configuration, some

of the uncertainty regions overlap. If the configuration determined by the proposed algorithm

is assumed to be optimal, then this would suggest that the use of K = 4 microphone arrays

is insufficient for the described localisation problem. Also, an interesting observation in the

returned optimal configuration is that all microphone arrays are positioned on the ceiling and

not on the walls. This can be attributed to the dependence of the employed TDE uncertainty

model on the microphone-to-speaker distances. Positioning the arrays on the ceiling can be seen

to reduce the average microphone-to-speaker distance and therefore reduces the overall TDE

uncertainty.

The second scenario examined, is identical to the previous example but considers a non-

symmetric audience area. This corresponds to a more realistic situation where the audience

members are less constrained to a formal audience layout. The presenter area considered is

also non-symmetric but the region within which the presenter is expected to move is smaller

than that considered previously. This also corresponds to a more common scenario where the

presenter remains within a relatively small area situated close to a laptop or podium for instance.

Both non-symmetric audience and presenter areas are illustrated in figure 5.6a.

Again as expected, the initial microphone array configuration shown in figure 5.6b is seen to

result in poor localisation accuracy. The optimal configuration obtained for localising the audi-

ence only for this problem is presented in figure 5.6c. This result is in close correspondence with

that of figure 5.5c and a loose symmetry in the configuration of microphone arrays is observed.

Shown in figure 5.6d is the obtained configuration by optimising over both the audience and

lecturer areas. Once again considerable improvement upon the initial configuration of figure 5.6b

is observed. In addition to this it is interesting that the returned optimal configuration is that

which distributes microphone array over both the audience and presenter areas in proportions

representing their relative sizes (i.e. three arrays over the audience area and a single array over

the presenter area).

The final example considers the case of non-symmetric audience and presenter areas as in

the previous example. In this case however, the arrays are constrained to the walls and also,

additional user defined regions within the room. This example is used to show the practical

use of the algorithm to optimise an array configuration for user defined constraints. This has

practical uses since it enables the user to exclude regions where microphone arrays are not to

be placed, such as in places which would obstruct the presenter or obscure the audience’s view

of the presenter.

A typical scenario is described and illustrated in figure 5.7a where the grid of feasible locations
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(a) Non-symmetric audience (green) and presenter
(red) areas facing in opposite directions. The audi-
ence is assumed seated at a height of 1.1m and the
presenter is assumed standing at a height of 1.7m.
The cardioid directivity patterns are shown in black.
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(b) Initial microphone array configuration with 95
percentile localisation error ellipsoids shown in green
over the audience and presenter areas.
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(c) Microphone array configuration optimised over
the audience area only with localisation error ellip-
soids shown in green.
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(d) Microphone array configuration optimised over
both the audience and presenter areas with localisa-
tion error ellipsoids shown in green.

Figure 5.6: Optimising the configuration of 4 inverted T-shaped microphone arrays for the case of
non-symmetric audience and presenter regions facing in opposite direction. In this example the
centre of the arrays are constrained to the room boundaries (i.e. walls, floor and ceiling). The
localisation error ellipsoids illustrated correspond to the 95 percentile error region determined
using the CPE uncertainty model of equation 5.17 with Pr[�] = 0.
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(a) The optimisation problem as described in figure
5.6a with the microphone array centres constrained
to a larger user defined region in the room shown by
the light blue dots.

7000600050004000300020001000   0

   0

1000

2000

3000

4000

5000

3

41
2

(b) View of the xy plane showing the localisation
error ellipsoids (green) resulting from the optimised
array configuration.
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(c) View of the xz plane showing the localisation er-
ror ellipsoids (green) resulting from the optimised ar-
ray configuration.
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(d) View of the yz plane showing the localisation
error ellipsoids (green) resulting from the optimised
array configuration.

Figure 5.7: Optimising the configuration of 4 inverted T-shaped microphone arrays within user
specified regions for localisation over non-symmetric audience and presenter regions. The local-
isation error ellipsoids illustrated correspond to the 95 percentile error region determined using
the CPE uncertainty model of equation 5.17 with Pr[�] = 0.

ℤc is defined for locations on the walls and for regions within the room about the audience and

presenter areas. In this example the locations on the ceiling are not contained in ℤc. The

resulting optimal array configuration showing uncertainty regions in the xy plane, xz plane

and yz plane is shown in figure 5.7b, figure 5.7c, figure 5.7d respectively. Once again the

algorithm performs well under the more complex constraints. Furthermore, it is interesting in

this example with ceiling locations in ℤc excluded, that the microphone arrays tend towards an

even distribution along each axis. This can be clearly seen in figure 5.7c, figure 5.7d where two

microphone arrays are positioned above the speaker positions and two below.
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5.5 Final Comments

In this chapter the general problem of optimising the placement of microphone arrays was ex-

amined. This analysis was based on a theoretical model of TDE uncertainty which accounted

for the effects of reverberation. The directivity characteristics of both the speaker and micro-

phones were also incorporated into this model of uncertainty. Using this complete model of TDE

uncertainty, a simulated annealing algorithm was proposed which determines an optimal micro-

phone array configuration. This algorithm enables microphone array positions to be optimised

automatically within a set of feasible user defined regions.

The results of this chapter also suggest that for each set of possible audience and presenter

locations in a lecture room, there is a unique optimal microphone array configuration. Therefore,

if the positions of the presenter and audience members are not constrained, a fixed microphone

configuration in a lecture room is likely to be sub-optimal. This is one possible explanation for

the poor performance of joint audio-video based tracking algorithms which have been reported

using data recorded in the CHIL room [133]. This chapter highlights that if a microphone array

configuration is not optimal, then poor audio-based localisation is likely. The previous chapter

highlighted that when poor audio-based localisation exists it can greatly limit the effectiveness of

joint audio-video fusion based tracking. This suggests that any successfully application of joint

audio-video based fusion in the CHIL room would be difficult and severely restricted by the

quality of the audio data. This supports the use of some other method of combining audio and

video for tracking and is used to motivate the manner in which audio and video are combined

in the speaker tracking algorithm described in chapter 6.



6
Voxel-based Viterbi Active Speaker Tracking V-VAST

In this chapter, a new algorithm entitled Voxel-based Viterbi Active Speaker Tracking (V-VAST)

is introduced for tracking the current active speaker in a multi-microphone and multi-camera

recording of a lecture. The particular lecture room environment considered is that of the CHIL

lecture room described in section 1.1. The tracking algorithm relies on both video data from

multiple camera views and audio data from multiple microphone arrays to infer the 3D position

of the active speaker over the duration of the captured presentation. The tracking of active

speakers is performed off-line and is proposed as a post-production step to visually segment

the head region of the active speaker within the scene. The algorithm composes a composite

view video sequence of the lecture, consisting of a user defined main view and an inserted view

of the active speaker. The segmented view of the active speaker is automatically determined

by V-VAST. The focus of this work is towards the automated editing of a multi-view lecture

recording into a single view video sequence for presentation over the Internet as in asynchronous

eLearning applications or for the purpose of archiving.

V-VAST differs from the traditional joint audio-video based active speaker tracking systems

as reviewed in chapter 2. Unlike these, V-VAST does not fuse audio and video location estimates

in a statistical sense. Drawing on the evaluation of localisation accuracy in chapter 4, it is argued

that the statistical fusion of audio and video based location estimates does not greatly improve

localisation accuracy beyond that of video-based localisation. This is due to the poor reliability

and accuracy of audio-based localisation. Furthermore, it is argued that audio-based localisation

in the CHIL lecture room is likely to be poor since the analysis outlined in chapter 5 revealed

that the positions of the microphone arrays within the lecture room are sub-optimal. Taking

123
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this into consideration, V-VAST proposes to use the video-data to detect likely head positions

of speakers and to use this to guide an audio-based system for tracking the active speaker.

The complete V-VAST system is outlined in the block diagram of figure 6.1a. At each

time instance over the duration of the lecture, a set of candidate speaker positions is obtained

using the multi-camera video data. In extracting candidate speaker positions, V-VAST applies

a voxel-based scene analysis to the 3D space of the lecture room. In a top-down manner, each

voxel represents a hypothesised speaker position which is confirmed or rejected based on skin

colour masks obtained in each camera view. The skin colour masks are obtained using the new

skin colour model proposed in section 2.2.3. The result of the voxel-based analysis is a 3D

foreground denoting possible speaker occupancy in the lecture room. From this 3D foreground,

individual regions are determined through a 3D connected component analysis. A 2D connected

component analysis on each skin mask enables individual connected 3D foreground regions to

be associated with connected skin colour regions in each view. The approach taken in detecting

head locations is to define an ellipsoidal head model and to fit the ellipsoid not only to the 3D

foreground but also to its corresponding skin region in each view. Placing such strong constraints

on the fitting process enables V-VAST to determine head positions to a high degree of accuracy.

Given the detected head positions, a measure of speaker activity is then determined at each

candidate position using TDEs from multiple microphones. This corresponds to the 3D active

speaker localisation block within the system. Exploiting the offline nature of the tracking task,

V-VAST uses both past and future audio measurements to improve tracking reliability. This is

achieved by examining speaker activity over a window of three time steps centred at the current

time instance. By modelling for speaker activity, this allows a prior to be introduced which

assigns a high probability to speaker positions that correspond to significant speaker activity over

the analysis window. This formulation enforces smoothness on the estimated speaker activity

path and penalises transitions to positions where speaker activity is temporally insignificant.

Using the detected head positions and associated measure of speech activity, speaker activity

path tracking is performed using the Viterbi algorithm [57]. This determines a MAP estimate

of the current speaker through the set of candidate speaker head positions over the duration

of the recorded lecture. The use of the Viterbi algorithm is inspired by its recent application

to MAP estimation problems using Particle Filters [163] and multi-object tracking in video

sequences [53].

In applying the Viterbi algorithm for tracking, two different motion priors are examined in

this chapter for use with V-VAST. The first focuses on the single speaker tracking task and is

modelled simply as a Gaussian white noise process. In order to account for both active speaker

motion and active speaker switches however, a second motion prior is examined. The second

motion prior only enforces a Gaussian prior on the motion locally about the current active

speaker position and a uniform prior density at all other positions.

The final stages implemented by V-VAST relate to the visual segmentation of the active

speaker from the available camera views. Using both the detected head regions and estimated
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speaker activity path, a visual segmentation process extracts the active speaker from each view

in which they are visible. V-VAST addresses the best view selection problem and automatically

chooses the best view of the current active speaker by determining in which view the speaker’s

face is most visible. Finally, the segmented view of the active speaker is inserted into a user

defined main view to create a single composite view video sequence. Some sample composite

view video frames for a CHIL lecture recording created by V-VAST are shown in figure 6.1b.

The CHIL lecture recordings are also used in evaluating the performance of the algorithm later

in the chapter.

Problem Statement

The task is to determine the position of the current active speaker within the 3D space of the

room. The multi-speaker case is not considered. Given that the nature of lecture presentations

is to follow a single track of communication, few occurrences of simultaneous multi-party speech

are observed. Furthermore, when multi-party speech is observed, it is only at brief overlaps

occurring at the transitions in conversational exchanges. The following outlines the probabilistic

framework for determining a MAP estimate of the path of speaker activity.

6.1 Probabilistic Framework

Let xk ∈ ℝ3 denote a speaker position at some time k. Associated with the speaker position xk

is a binary label sk(xk) ∈ [0, 1] indicating speaker activity, where sk(xk) = 1 labels xk as active

and sk(xk) = 0 labels xk as inactive. Speaker activity for xk is examined using this label over

a window of three time steps centred at time k and combined into a vector,

sk = [sk−1(xk), sk(xk), sk+1(xk)]. (6.1)

Any speaker position xk therefore, can be in one of eight possible states. For instance, if a

speaker at position xk is currently speaking; was speaking at the previous time step k − 1; and

will be speaking at time k+ 1, then for this position sk = [1, 1, 1]. For clarity, the eight possible

states for speaker positions are denoted by [s0, s1, ..., s7] as is shown in table 6.1.

From Ncam camera views, a set of video frame data ℐk = {I1, .., INcam} is obtained at each

time instance k. Also at time k from Mk microphone pairs, a set of TDEs yk = {y1
k, ..y

m
k .., y

Mk
k }

is obtained where ymk ∈ ℝ for m = 1, ..,Mk. Given the complete set of video-based observations

ℐ0:K , where K is the duration of the sequence and audio-based observations y0:K , we wish to

estimate the posterior distribution p(x0:K , s0:K ∣ℐ0:K ,y0:K). This represents our joint belief in

the speaker position xk and speaker activity state sk over the duration of the sequence based on

the complete set of audio and video based observations. In this derivation the path of speaker

activity is defined as the joint MAP estimate of both xk and sk which is determined from the
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(a) Block diagram of V-VAST, an algorithm for tracking the active speaker in a multi-
camera, multi-microphone recording of a lecture. The system outputs a composite view video
sequence consisting of a user defined main view and an automatically segmented view of
the current active speaker. The blocks encased in the dotted blue line are described in this
chapter.

Frame 86 Frame  144 Frame  148 Frame 182

Available Camera Views Available Camera Views Available Camera Views

Out
  of
Shot

Available Camera Views

Lecturer Speaking Lecturer Speaking Lecturer SpeakingAudience Member Speaking

Selected Best Camera View

(b) Sample composite view video sequence output by V-VAST. The top row shows sample
composite view video frames of a CHIL lecture recording created by V-VAST. The second
row shows the current active speaker segmented in each available camera view. The best
view selected by V-VAST is highlighted with an orange border. In this particular example,
in frame 86, 144 and 182 the presenter is the active speaker however, in frame 148 an
audience member asks a question and becomes the active speaker.

Figure 6.1: Block diagram of the Voxel-based Viterbi Active Speaker Tracking (V-VAST) algo-
rithm and sample output composite view video sequence.
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Speaker Activity State Labels

sk = s0 = [0, 0, 0] sk = s4 = [1, 0, 0]

sk = s1 = [0, 0, 1] sk = s5 = [1, 0, 1]

sk = s2 = [0, 1, 0] sk = s6 = [1, 1, 0]

sk = s3 = [0, 1, 1] sk = s7 = [1, 1, 1]

Table 6.1: The 8 possible speaker activity states sk(xk) = [sk−1, sk, sk+1] for speaker position xk.

posterior distribution as,

[xMAP
0:K , sMAP

0:K ] = arg max
x0:K ,s0:K

p(x0:K , s0:K ∣ℐ0:K ,y0:K) (6.2)

If the position of the active speaker xk is assumed to be a Markov process of order 1, i.e.

p(xk∣x0:k−1, sk) = p(xk∣xk−1, sk), (6.3)

then the posterior distribution at a single time instance k can be obtained in using Bayes’ law.

The full Bayesian expression for this estimation problem is

p(xk, sk∣ℐ0:K ,y0:K ,xk−1) =
p(ℐ0:K ,y0:K ∣xk, sk)p(xk∣xk−1, sk)

p(ℐ0:K ,y0:k)
. (6.4)

Since the denominator of equation 6.4 does not depend explicitly on the parameters of interest

xk and sk it is sufficient to express this relation as a proportionality by,

p(xk, sk∣ℐ0:K ,y0:K ,xk−1) ∝ p(ℐ0:K ,y0:K ∣xk, sk)p(xk∣xk−1, sk). (6.5)

V-VAST only considers the current video measurements ℐk and only audio-based measurements

yk−1:k+1 at any time step k. The posterior is therefore simplified to,

p(xk, sk∣ℐk,yk−1:k+1,xk−1) ∝ p(ℐk,yk−1:k+1∣xk, sk)p(xk∣xk−1, sk). (6.6)

6.1.1 Audio-based and Video-based Likelihood Functions

In this derivation it is assumed that given xk, the audio-based observations yk−1:k+1 and video

observations ℐk are independent. The importance of this assumption among existing joint audio-

video trackers was examined in section 3.2. It is sensible to assume independent measurements

since the only common dependence between the audio and video measurements is the speaker

position xk. Through this, the likelihood function of equation 6.6 then becomes,

p(ℐk,yk−1:k+1∣xk, sk) = p(ℐk∣xk)p(yk−1:k+1∣xk, sk) (6.7)
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which expresses the likelihood as a product of an audio-based likelihood p(yk−1:k+1∣xk, sk) and

a video-based likelihood p(ℐk∣xk). These are designed next.

6.1.1.1 Audio-based Likelihood

The audio-based likelihood relates the speaker position xk and speech activity state sk to the

TDEs measured at each of the microphone pairs. In this section the likelihood model is first

defined for a single microphone pair yielding a single TDE and later for the complete likelihood

over all microphone pairs.

For the mth microphone pair the audio-based likelihood function is defined as follows,

p(ymk−1:k+1∣xk, sk) ∝
2∏

j=0

exp

(
(gm(xk)− ymk−1+j)

2

2�2
gm(xk)

sk(j) +
�2

2�2
gm(xk)

(1− sk(j))

)
(6.8)

where gm(⋅) is the time delay measurement function for the mth microphone pair and gm(xk)

is the expected time delay associated with the position xk. The variance �2
gm(xk) is the esti-

mated variance of a time delay estimate associated with the position xk obtained through the

covariance mapping technique described in section 4.1.1. The parameter � in this likelihood is

� = 2.76�gm(xk) which relates to the 99 percentile region for a Gaussian distribution. The nota-

tion sk(j) is introduced to indicate the jth element of the speaker activity state vector as defined

in equation 6.1. In essence, the likelihood of equation 6.8 can be thought of as the likelihood

of xk being the current active speaker position evaluated for each of the eight possible speaker

activity states of sk. An example illustrating the form which the likelihood takes is illustrated

in figure 6.2.

The problem of combining multiple measurement data in estimation problems encompasses

many complex tasks from defining a meaningful manner in which the information can be fused,

to determining useful observations from possible anomalous 1 estimates. The common data

fusion strategy in problems relating to tracking, is to make the assumption that the likelihoods

are independent. Hence the likelihood is a product of individual likelihood densities. To apply

such an approach to the problem presented here, the TDEs observed at each pair of microphones

are assumed to be independent such that,

p(yk−1:k+1∣xk, sk) =

Mk∏

m

p(ymk−1:k+1∣xk, sk). (6.9)

One problem which can arise through this approach is that, due to the product across all

observations, a single anomalous TDE can result in an overall likelihood expression which does

not reflect the majority of the observations. This can be seen by a simple example.

Consider the hypothetical example of three TDEs, y1
k−1:k+1, y2

k−1:k+1, y3
k−1:k+1 where due to

1The term “anomolous TDE” is more commonly used than “TDE outlier” in the time-delay estimation liter-
ature however they have equal meaning.
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Figure 6.2: Example of the audio-based likelihood for a single microphone pair determined over
a window of three time-steps. The likelihood of the TDE measurement given the speaker position
xk at time k−1 is shown in (a). (b) shows the TDE measurement likelihood at time k and (c) is
the TDE measurement likelihood at time k + 1. The overall likelihood evaluated at each speaker
activity state sk is presented in (d). The given case illustrates the scenario of a speaker position
with speaker activity state sk = s5 from table 6.1 which can be seen from (d) to yield a maximum
in the likelihood p(yk−1:k+1∣xk, s).

some anomaly the TDE y3
k−1:k+1 is erroneous. For a single speaker position xk = a where the

speaker activity state is known to be sk = s7, the three likelihood functions are found to be,

p(y1
k−1:k+1∣xk = a, sk) = [0.0668, 0.0662, 0.0668, 0.0669, 0.0667, 0.0665, 0.0668, 0.5333] (6.10a)

p(y2
k−1:k+1∣xk = a, sk) = [0.0780, 0.0775, 0.0759, 0.0765, 0.0780, 0.0750, 0.0770, 0.4621] (6.10b)

p(y3
k−1:k+1∣xk = a, sk) = [0.1200, 0.1223, 0.2568, 0.1255, 0.1245, 0.1266, 0.1241, 0.0002] . (6.10c)

An examination of the MAP estimate of the speaker activity state at microphone pairs 1, 2 and
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3 yields sk = s7, sk = s7 and sk = s2 respectively. If the independent likelihood model is applied

in the described case, the overall likelihood function is determined as,

p(yk−1:k+1∣xk = a, sk) = p(y1
k−1:k+1∣xk = a, sk)p(y

2
k−1:k+1∣xk = a, sk)p(y

3
k−1:k+1∣xk = a, sk)

(6.11)

= [0.0006, 0.0006, 0.0013, 0.0006, 0.0006, 0.0006, 0.0006, 0.0001]. (6.12)

The independent likelihood therefore indicates that the speaker activity state is sk = s2 which

contradicts the majority of the sensor observations. This occurs since measurements in the inde-

pendent likelihood model are assumed to be equally reliable and a single erroneous measurement

can result in a likelihood function which does not reflect that of the majority of microphone pairs.

In order to account for anomalous TDEs, it is necessary to only select a subset Mk ⊆
{1, ...,Mk} of the observations which meet some measure of reliability. In this new definition

the likelihood over all microphone pairs becomes,

p(yk−1:k+1∣xk, sk) =
∏

m∈Mk

p(ymk−1:k+1∣xk, sk) (6.13)

The problem of determining the reliability of TDEs however is not straightforward.

6.1.1.2 Approximate Robust Likelihood

Strategies for defining the reliability of TDEs were reviewed in section 2.1.3.2. Simple mea-

sures of the strength of the correlation peak [33] can be effective in identifying reliable TDEs

but there is no definitive reliability measure at present. In an attempt to address the task

of combining the individual likelihood functions of equation 6.8, an approximate likelihood is

proposed which is robust in the presence of anomalous TDEs and reflects the number of mi-

crophone pair observations which are in agreement. This is achieved by determining a MAP

estimate of the speaker activity state sk for xk at each microphone pair and then defining a

histogram over all microphones pairs to represent the overall likelihood. The histogram defines

a function ℎk(sk,xk) = cM where cM is the number of microphone pairs whose MAP estimate

of speaker activity is sk. In order for the histogram to be a valid approximation of the overall

likelihood function it must be normalised. For the example of equation 6.10, using this method

to approximate the likelihood results in,

pℎ(yk−1:k+1∣xk, sk) = [0, 0, 0.333, 0, 0, 0, 0, 0.667]. (6.14)

where the notation pℎ is used to denote this new form of the likelihood probability density. From

this it can be seen that the approximate likelihood reflects the observations of the three TDEs

more accurately than the independent likelihood model of equation 6.12 showing robustness to

erroneous TDEs.
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6.1.1.3 Video-based Likelihood

A set of head positions zk = z1
k, .., z

i
k, ..z

Nk
k , zik ∈ ℝ3 are determined in the space of the room by

pre-processing the multi-view video data ℐ. The details of this pre-process are discussed later

in section 6.2. The video likelihood given zk can be considered as a set of delta functions of

equal height, one at each estimated head position in zk. This creates a grid based estimate of

the likelihood distribution of 6.7 as

p(ℐk,yk−1:k+1∣xk, sk) ∝
Nk∑

i=1

�(zik − xk)pℎ(yk−1:k+1∣xk, sk) (6.15)

Estimated active speaker positions are therefore constrained to that of video-based estimates

of head positions. Hence, the posterior distribution of equation 6.6 becomes,

p(xk, sk∣yk−1:k+1) ∝
Nk∑

i=1

�(zik − xk)pℎ(yk−1:k+1∣xk, sk)p(xk∣xk−1, sk). (6.16)

Equivalently, this formulation reduces the continuous state space of speaker positions xk to

a set of discrete positions xk = {x1
k, ..,x

i
k..,x

Nk
k }. In this case, the viterbi algorithm can be used

to determine the MAP sequence of joint estimates [xMAP
1:k , sMAP

1:k ] as defined in equation 6.2.

This is discussed later in section 6.3.

6.1.2 Priors

In order to account for both the movement of speakers and also to enable the changing of speaker

activity between speaker positions, both a motion prior and speaker activity prior is introduced.

This follows from the reasonable assumption that xk and sk are independent so that the prior

density p(xk∣xk−1, sk) in equation 6.6 becomes,

p(xk∣xk−1, sk) = p(xk∣xk−1)p(xk∣sk). (6.17)

6.1.2.1 Motion Model

Modelling states of motion such as constant velocity, constant acceleration and constant position

is straightforward. People however, are not constrained to any particular motion and therefore

appropriately modelling their motion in tracking applications is challenging. Over a tracking

sequence, it is typical to observe a person progress through multiple different states of motion. As

described in section 3.1.2, inaccurate motion modelling can cause tracking divergence resulting

in poor performance. Usually, in people tracking applications, motion is typically modelled as

a Gaussian-Markov random process and the motion prior is defined as,

p(xk∣xk−1) ∝ exp(−1

2
(xk − xk−1)

′
Σ−1(xk − xk−1)). (6.18)
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Figure 6.3: Example of the motion prior of equation 6.19 for the 1D case with xk−1 = 0 and
Σ = 1 for � = 1, � = 1.2, � = 2 and � = 5.

Since it is desired to track switches in speaker activity, a Gaussian prior is inappropriate since

the assumption that the next active speaker location is close to the current active speaker position

does not apply. This is because switches in speaker activity are not dictated by proximity. A

different speaker position at any point in the room may become the current active speaker at

the next time step.

In order to address the speaker switching scenario, another prior motion model is considered.

This prior can be considered as a piecewise probability density consisting of Gaussian and

uniform density components. The piecewise density is constructed such that within a defined

region close to the previous speaker location xk−1 the current speaker location xk has a Gaussian

distribution whereas outside of this region xk is uniformly distributed within the space of the

room. More formally this can be defined as,

p(xk, ∣xk−1) ∝
{

exp(−d
2) d < �2

�

exp(−�2

2�) d ≥ �2

�

(6.19a)

where d = (xk − xk−1)
′
(�Σ)−1(xk − xk−1) (6.19b)

and � = 3.37 relates to the 99 percentile region to the 3D covariance matrix Σ. In this definition

the weight � is introduced which is used to vary the weighting between the uniform and Gaussian

density components. A typical value for � is 1. An example of the prior of 6.19 in the 1D case

and the effects of the weight � is illustrated in figure 6.3.
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6.1.2.2 Speaker Activity Prior

A prior on the speaker position given the speaker activity state sk is also incorporated into the

estimation problem. The purpose of this prior is to assign a high probability to speaker positions

where speaker activity is observed to be temporally significant. This prior reflects the intuition

that speaker positions with speaker activity states sk = {s3, s5, s6, s7} should be assigned a

higher probability of being the current active speaker than positions with speaker activity states

sk = {s0, s1, s2, s4}. Therefore, the speaker activity prior causes V-VAST to favour speaker

positions which have been actively speaking for greater than or equal to two time-instances over

a three time-step window.

The prior is configured as follows,

p(xk, ∣sk) ∝ exp(−
(1− sk(0))− 
(1− sk(1))− 
(1− sk(2))) (6.20)

where 
 = 1, although it can be varied to increase the weighting of the prior. The aim of this

prior is to make the algorithm insensitive to speaker positions or possible noise sources which

are not observed as significantly active.

6.1.2.3 Choosing an Appropriate Time-step Duration

The choice of the time step duration over which the V-VAST is applied is critical since it

determines the temporal length of the window used to analyse speaker activity. Too small a

time step would result in the algorithm being sensitive to brief speech utterances and all benefits

in using the window to enforce smoothness on the estimated speaker activity path would be lost.

Ideally, the time step should be chosen to reflect some measure of temporal significance in relation

to speech activity. Previous research has reported the minimal vocalisation in a multiple person

conversation as ≈ 1.64 seconds [91]. In order to reflect this a time step of duration of 1 second

is chosen.

Although this time step may be suitable for the tracking of speaker activity, such a large

time step is often not suitable in motion tracking applications. This is so, because a 1sec update

rate could be too slow to track a person if their movements are fast and complex. Given the

offline nature of tracking in this application, it is assumed that estimating speaker positions

every 1sec gives a sufficient representation of the motion trajectory to enable the speaker’s

position to be determined at any point in time by spline interpolation. In order to account for

discontinuities in the active speaker path due to speaker switches a shape preserving method of

spline interpolation is employed [52].
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6.2 Determining Candidate Speaker Positions

Possible speaker positions are estimated by head detection through a voxel based analysis in 3D

space and skin colour detection in multiple camera views. This detection process is described

in the following sections.

6.2.1 Extracting Connected Skin Regions

Determining candidate speaker positions relies heavily on accurately detecting skin regions

within each of the camera views. To detect head positions in 3D space, a skin colour mask

needs to be determined for each camera view. V-VAST employs the deterministic technique for

skin colour detection which models for the non-linear dependence of skin-tone on luminance, as

introduced in section 2.2.3.

Using this method of skin detection, a skin mask Si for the ith camera view can be obtained

using equation 2.57. The obtained skin mask Si can be equivalently defined as the set of pixels

p which correspond to skin regions as

Si = {p ; C1(p) = true, C2(p) = true} (6.21)

where C1 and C2 are as defined in equation 2.57. This definition is useful in analysing the

problem of extracting connected skin regions. Connected skin regions are extracted by a 2D

connected component analysis on the skin mask of each view. This in effect partitions the set

of skin colour pixels Si into,

Si = {Si1, ..,SiNi} (6.22)

where Sij , j = 1, .., Ni are disjoint sets of connected skin pixel regions and Ni is the total number

of connected pixel regions. Knowing the relation of pixel locations p to that of sets of connected

skin colour regions enables an indexing function Mi(p) to be defined as,

Mi(p) = {Sij ; p ∈ Sij , j = 1, .., Ni} (6.23)

which returns the set of skin colour pixels connected to pixel site p.

6.2.2 3D Voxel-based Head Detection

The proposed approach for head detection determines likely head positions through a voxel-

based analysis of the lecture room. The voxels represent hypotheses for head positions which

are confirmed as occupied or unoccupied based on their relation to the skin colour masks obtained

from the multiple camera views. The result of this analysis is a 3D foreground indicating volumes

of skin regions in 3D space.

The voxelization of the room is performed by defining a uniform grid in 3D space. For the

results presented in this chapter V-VAST employed a grid with a fixed resolution of 0.05m in
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each dimension. The 3D grid is defined to fully occupy the width and depth of the lecture

room but only the height region between 0.8m and 2.0m. This grid represents the likely head

positions of both seated and standing people in a lecture scenario.

A voxel is represented by its centre position x
′

in the room. The 2D pixel location p
′
i

corresponding to the voxel’s centre in the ith view can be determined using the camera projection

matrix Pi by,

p̃
′
i = Pix̃

′
. (6.24)

where p̃
′
i and x̃

′
are the equivalent representations of p

′
i and x

′
in homogeneous space (See

section 2.2.4). In the actual implementation of V-VAST, the images of the pixel centres as

obtained from equation 6.24 are rounded to integer pixel locations within the frame. Also, in an

effort to reduce the computational complexity, pixel-to-voxel centre relations are maintained in

a look-up table and calculated as a pre-process. This is possible because the cameras are fixed.

The number of views indicating that a voxel is occupied by a skin region is defined as,

C3(x
′
) =

Ncam∑

k=1

Si(p
′
i). (6.25)

Given this measure of voxel occupancy, a set of voxels V corresponding to the 3D foreground

can be defined as,

V = {x′ ;C3 = ncam}. (6.26)

The minimum requirement for extracting a 3D foreground uses two views (i.e. ncam =

2), however the more views which are used the more accurately the estimated 3D foreground

represents the object’s true form in 3D space. This is assuming that the camera views are

positioned at relatively different angles about the object from each other. Since skin regions

are typically not visible from every viewed angle of a head, using all cameras (i.e. ncam =

Ncam) is likely to result in a poor 3D foreground estimate. To address this issue the algorithm

determines multiple 3D foreground estimates from all combinations of two or more views (i.e.

ncam = [2, .., Ncam]).

6.2.3 Extracting Connected Voxel Regions

Similar to the manner in which connected skin pixel regions are extracted within the skin mask of

each view, occupied connected voxel regions in 3D space are also determined. This is achieved

using a connected component analysis in 3D space. This enables the partitioning of the 3D

foreground V into

V = {V1, ..,VN} (6.27)

consisting of disjoint subsets Vi, where i = 1, .., N and N is the number of detected connected

regions in the 3D foreground.
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6.2.4 Ellipsoid Fitting

In the detection of head regions, the head is assumed to be an ellipsoid with four degrees of

freedom. The four degrees of freedom correspond to a 3D translation and a rotation in the xy

plane. This model is then fitted to each 3D foreground region and also to its corresponding 2D

region in the skin mask of each camera view.

The parameters of the head model to be fitted to each of the j = 1, .., N voxels region consist

of the ellipsoid centre Cj and a rotation matrix

Rj =

⎡
⎢⎣

cos � sin � 0

− sin � cos � 0

0 0 1

⎤
⎥⎦ , (6.28)

where � denotes the angle of head rotation. It is not the aim of the head fitting process to

inherently estimate head pose. The incorporation of a head rotation is modelled so as not to

overly constrain the fitting process. The size of the ellipsoid and hence the assumed size of the

head is defined by a covariance matrix ΣH
0 . This covariance matrix is chosen such that its 95

percentile ellisoid has x, y and z axis dimensions of 194mm, 145mm and 241mm respectively.

These dimensions are in-line with reported head size statistics [77]. The covariance of the head

associated with a connected 3D foreground region Vj therefore is ΣH
j = RjΣ

H
0 .

The fitting of the head model is driven by two error functions. The first of these enforces

a weak constraint on the head fitting in that the head is loosely constrained to within the 3D

foreground region Vj . This error function is defined as,

E0j = min
x′∈Vj

((x
′ −Cj)

TΣH
j (X

′ −Cj)) (6.29)

where x
′
jk is the kth voxel of the jth 3D foreground region. This energy function is minimum if

the centre of the ellipsoid is equal to that of a voxel location.

The second error function aims at enforcing the requirement that the position of the head

within the 3D foreground region should also satisfy the projected view of the head in all camera

views. This energy function is defined as follows,

Eij =
∑

pi∈Mi(cij)

(pi − cij)
TΣH

ij (pi − cij) (6.30)

where ΣH
ij is the projection of ΣH

j into the ith view, cij is the pixel location of the ellipsoid

centre Cj projected into the ith view and pi is a skin pixel location in the ith view. Given these

two error functions, the overall error function for the fitting is,

Ej =

Ncam∑

i=0

Eji. (6.31)
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S12

S11

S13

S21

S22

S23

Camera View 1 Camera View 2

V1 V2

(a) An example of head detection for a two view scenario with connected skin regions S1 = {S11, S12, S13}
in camera view 1 and S2 = {S21, S22, S23} in camera view 2. A 3D foreground V = {V1,V2} consisting
of two connected voxel regions V1 and V2 is also shown.

M1(c11))
M2(c21)

Camera View 1Camera View 1 Camera View 2Camera View 2

V1

{C1,Σ
H
1 }

{c11,ΣH
11}

{c21,ΣH
21}

(b) Fitting the ellipsoidal head model {C1,Σ
H
1 } to connected voxel region V1. The projections of the

head model into camera views 1 and 2 are denoted {c11,ΣH11} and {c21,ΣH21} respectively. M1(c11) = S13

identifies the connected skin region in camera view 1 which pixel location c11 occupies and M2(c21) = S23

identifies the connected skin region in camera view 2 which c21 occupies.

Figure 6.4: Illustrative example of fitting an ellipsoial head model to the detected 3D foreground.
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(a) Camera 1: Skin colour mask with example detected
heads.
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(b) Camera 2: Skin colour mask with example detected
heads.
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(c) Camera 3: Skin colour mask with example detected
heads.
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(d) Camera 4: Skin colour mask with example detected
heads.
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(e) 3D foreground region corresponding to the example
detected heads.
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(f) Ellpsoid head model fitted to each 3D foreground
region.

Figure 6.5: Head detection example using detected skin colour regions in four views and an
ellipsoidal head model. The heads labelled 1, 2 and 3 are visible in four views, three views and
two views respectively. Note that for clarity in this figure, only three of the detected head are
shown.
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The process of fitting the ellipsoidal head model to voxel regions is illustrated in figure 6.4. In

fitting the head model, V-VAST employs the simplex algorithm.

Some example results of the head detection process are shown in figure 6.5. In this example

camera view one, two, three and four are shown in figure 6.5a, 6.5b, 6.5c and 6.5d respectively.

In these views, three examples of detected heads within the CHIL lecture room are shown. The

three detected heads labelled 1, 2 and 3 represent three different detection scenarios. Head 1 is

visible in four views but heads 2 and 3 are only visible in three and two views respectively. The

resulting 3D foreground corresponding to the detected heads is shown in figure 6.5e. The result

of the ellipsoidal head model fitting to the detected 3D foreground is shown in figure 6.5f. The

fitted ellipsoids to each detected head is projected back into the four views of figure 6.5a, 6.5b,

6.5c and 6.5d.

6.3 Joint MAP Estimation using the Viterbi Algorithm

As described in section 6.1, determining the speaker activity path requires estimating the joint

state sequence [x0:K , s0:K ]. V-VAST applies the Viterbi algorithm to this estimation problem.

This is possible since the position of an active speaker is constrained to a discrete set of possible

speaker positions xik through head detection using the video data. In addition to this, by its

definition in this work, the speaker activity state sk is also discrete.

If only the positional state sequence was to be estimated, the function of the Viterbi algorithm

would be to navigate the optimal path through the trellis structure defined by the discrete

positional states xik. In the joint estimation problem, where the speaker activity state sk is

also to be estimated, the trellis structure is three-dimensional. An illustration of the 3D trellis

diagram for the joint tracking problem and an example path through the trellis is presented in

figure 6.6a.

In this diagram, some states in the Viterbi trellis are illustrated in a light blue colour.

These correspond to estimated head positions which have disappeared due to failed detection

or occlusion. Since the likelihood function is defined over three time steps, if a detected head

position disappears at time k, an estimate of the head position at k must still be made in order

to evaluate the likelihood. This is achieved by propagating the estimated head position at the

previous time k − 1 forward to time k and evaluating the likelihood function based on this

approximate head position. Therefore, if a head is occluded or head detection fails, the current

head position estimate is taken as the closest head position estimated at the previous time step.

An example of the likelihood function and prior in relation to the 3D Viterbi trellis is illustrated

in figure 6.6b. The complete Viterbi algorithm for determining the optimal path through the

3D trellis in the joint tracking problem is presented in Algorithm 2.
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(a) Illustration of the 3D trellis structure navigated by the Viterbi algorithm. Also shown is an example path through
the trellis corresponding to the state sequence, [xck−1, sk−1 = s6],[xbk, sk = s2],[xck+1, sk = s4],[xek+2, sk+2 = s7]
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(b) Example of the prior probability density and likelihood function in relation to the 3D trellis. The light blue
states correspond to cases where estimate head positions appear and disappear over time due to detection failure
or occlusion. For example, the position xb exists at time step k and k + 1 but is not present at time step k − 1.

Figure 6.6: Illustration of the joint trellis structure of the Viterbi tracking problem in V-VAST.
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The Viterbi Algorithm

Initialization: For i = 1, .., N0

�0(i) = log(p(y0∣xi0)) + log(p(xi0)) (6.32)

Recursion: For 2 ≤ k ≤ t and 1 ≤ j ≤ Nk

Φk(j, n) = max
i,m

[�k−1(i, n) + log(p(xjk∣xik−1, sk−1 = sm, sk = sn)] (6.33)

Ψk(j, n) = argmax
i,m

[�k−1(i, n) + log(p(xjk∣xik−1, sk−1 = sm, sk = sn)] (6.34)

�k(j, n) = log(p(yk−1:k+1∣xjk, sk = sn)) + Φk(j, n) (6.35)

(6.36)

Termnation:

[jk, nk] = argmax
j,n

[�k(j, n)] (6.37)

xMAP
k = xjkk (6.38)

sMAP
k = snk (6.39)

Back-Tracking: For k = t− 1, .., 1

[jk, nk] = Ψk+1(jk+1, nk+1) (6.40)

xMAP
k = xjkk (6.41)

sMAP
k = snk (6.42)

Algorithm 2: Joint Viterbi Algorithm which returns the MAP estimate of both the speaker
position xk and speaker activity state sk.

6.4 Visually Segmenting the Active Speaker

The second task which is examined in the evaluation of V-VAST is that of visually segmenting

the best view of the active speaker from the available camera views. The aim in doing so, is to

compose a composite video sequence consisting of a user defined main view of the lecture and

an automatically inserted view of the active speaker.

6.4.1 Determining the Best Camera View

Determining the best camera view of the active speaker is based on a simple but effective

measure of the amount of visible skin in the head view. The estimation of the active speaker’s

head position by the technique described in section 6.2.4 results in an estimate of ellipses defined
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by {cij ,ΣH
ij } in each view where j denotes the index of the active speaker’s head position and

i = 1, .., Ncam. The ellipses define the region in each view where the active speaker’s head is

contained. An example of the estimated 2D ellipses for an active speaker head position in four

views in shown in figure 6.7a to figure 6.7d.

Given the 2D ellipses in each view corresponding to the active speaker, the criteria for

determining the best view examines the total area of detected skin within the area of the ellipse

in relation to the total area of the ellipse. More formally this can be defined as follows. Let

the set of pixels within the ellipse defined in the ith view be denoted by Ai and let the total

number of pixels in this set be ni. The measure of the visibility of the head for the ith view is

then defined as,

Bi =
1

ni

∑

p∈Ai

Si(p) (6.43)

where Si(p) is the skin mask at pixel location p as defined in equation 2.57. In essence, what

Bi measures is the ratio of the area of skin within the 2D ellipse of the head in the ith view to

the total area of the ellipse. Given this measure of visibility the best view of the active speaker

is defined as the view in which the speaker is most visible. This corresponds to the view,

i = arg max
i

[Bi]. (6.44)

An example of the effectiveness of this measure for determining the most suitable camera view

is shown in figure 6.7e to figure 6.7l.

6.5 Evaluation of Tracking Accuracy

This section presents an evaluation of the accuracy of V-VAST for tracking the presenter in a

lecture presentation. For this, the database of seminar recordings from the 2005 CHIL evaluation

package as described in section 1.1 is used [171]. Even though the 2005 evaluation package

contains both multi-channel audio and multi-channel video recordings it was not specifically

designed for the evaluation of joint audio-visual based tracking algorithms 2. Instead it was

designed for the separate evaluation of tracking tasks such as the visual tracking of the presenter

and also acoustic based person tracking. For the evaluation of acoustic based person tracking,

the package contains the complete set of audio recordings for all seminars. For the evaluation

of the visual tracking of the presenter however, only segments of the seminar recordings are

provided. Therefore the package contains multi-channel audio recordings for which there is no

2The evaluation of joint-audio video based tracking algorithms was the focus of later CHIL evaluations in both
2006 and 2007. Evaluation workshops were held in conjunction with these evaluations complete with published
proceedings. In addition to the seminar recordings contained in the 2005 evaluation package, additional recordings
were included in the 2006 and 2007 packages of interactive meetings and presentations. At the time of this
work however only the 2005 evaluation package was available through European Language Resource Association
(ELRA).
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(a) Active speaker located in camera 1 (b) Active speaker located in camera 2

(c) Active speaker located in camera 3 (d) Active speaker located in camera 4

(e) Camera view 1
zoom

(f) Camera view 2 zoom (g) Camera view 3 zoom (h) Camera view 4 zoom

(i) Camera view 1 with
skin mask

(j) Camera view 2 with
skin mask

(k) Camera view 3 with
skin mask

(l) Camera view 4 with
skin mask

Figure 6.7: Example of the criteria for determining the best view of the active speaker from the
available camera views. In this example camera view 1 is determined as the best camera view
using equation 6.44
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corresponding video data. As a result, since V-VAST requires both audio and video data, it can

only be evaluated on the visual tracking task. The algorithm is firstly evaluated on the visual

tracking task outlined in the CHIL 2005 evaluation and secondly in relation to general active

speaker tracking and segmenting the best view of the speaker.

The visual tracking task of the CHIL 2005 evaluation is that of tracking the position of a

presenter giving a presentation in front of an audience in the CHIL room. The ground truth of

the speaker’s position which is defined as the centroid location of the head in 3D is provided for

evaluation purposes. This ground truth data was extracted by human annotators by locating

the head centroid in each view in which the face was visible in every 10th frame of each sequence.

A face is defined as visible only if the nose of the face can be seen. A script file is provided with

the CHIL 2005 Evaluation package which evaluates tracking results against the ground truth

for different metrics. The proposed metrics for consideration in the evaluation are,

• The 2D global mean error: Mean of the Euclidean distance in millimetres between the

estimated position of the head centre and the ground truth. The mean is only determined

over frames which are positively labelled with a ground truth position. In the evaluation,

only 2D distances are examined and the height of the head from the ground is not included

in the metric.

• Percentage of Misses: Percentage of frames where no estimate of the head position is

given by the algorithm even though a positively labelled frame with ground truth exists.

• Percentage of False Positives: Percentage of frames where a position estimate is given

by the algorithm even though the frame is not positively labelled and has no ground truth.

In the test sequences provided for the presenter tracking task, it is predominantly the case

that the presenter is the only active speaker. Tracking the speaker activity path using V-VAST

therefore is equivalent to that of tracking the presenter. Some of the test sequences however

contain some periods where the presenter is not the active speaker such as during periods where

an audience member asks a question. Despite this V-VAST, will be examined on the task

of tracking the presenter only. Later analysis will examine the problem of tracking both the

presenter and questions from audience members.

Shown in table 6.2 is an overview of the performance of V-VAST evaluated on the visual

tracking task of the 2005 CHIL evaluation. In the implementation of the tracking algorithm for

the single speaker case, the Gaussian motion prior of equation 6.18 is used with Σ = I[�2
x, �

2
y , �

2
z ]
T

where �x = 0.5m, �y = 0.5m, �z = 0.08m and I is a 3 × 3 identity matrix. Also, in all of the

presented results, TDEs were obtained using the GCC-PHAT algorithm. Only the 4 inverted

T-shaped microphone arrays of the CHIL room were used. The time-delays were obtained from

all inner-array microphone pair combinations. Pair combinations between different arrays were

not used. Therefore in total the 4 inverted T-shape arrays yielded 24 TDEs.
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Since no proceedings were published or are available for the CHIL 2005 evaluation3, direct

comparison of the proposed algorithm against different tracking approaches on the same evalu-

ation task can not be made. The results however are presented so as to be consistent with the

guidelines of the evaluation package and so as to be comparable with other tracking algorithms

evaluated on the same dataset.

Table 6.2 provides a good insight into the performance of the proposed tracking algorithm.

From this table, it can be seen that estimated head positions can be highly accurate with a

minimum error no greater than 0.02m in any seminar sequence and in the majority of sequences

it is less than 0.01m. This level of performance is seen to be consistent over the total duration of

the track sequences with the results showing an overall mean error of 0.20m on approximately

53mins of recorded seminar footage. To put the overall mean error into context it can be

compared to the head model of size 0.194m× 0.145m× 0.241m used in detecting head locations

within the room. The tracking error therefore corresponds on average to slightly over one head

width against the true position of the head.

The metric of the percentage of false positives as quoted in the evaluation can be misleading.

The ground truth data only positively labels a frame if the nose position of the head is visible

in two or more camera views. Therefore, if an estimate of a head position is given at negatively

labelled frames it is regarded as a false positive. This would be reasonable if V-VAST required

the nose to be visible in two or more views to provide a head position estimate, but this is not

the case. The quoted false positive rate in the evaluation therefore has little meaning and can

only be interpreted as the percentage of frames where V-VAST provided an estimate of the head

position even though a frontal view of the presenter’s face was not visible in two or more views.

The 2D global mean cannot give any indication as to the accuracy of the tracking algorithm

in estimating the 3D position of the presenter within the room. To address this, an additional

metric of the 3D global mean is presented in table 6.3. This incorporates the estimated height

of the head from the ground in the mean error analysis. From this table it can be seen that

including the estimated height of the head from the ground into the error analysis increases the

overall mean error from 0.20m to 0.23m. What this indicates is that the largest component of

the error occurs in the 2D x− y plane. This seems reasonable since it is in this plane where the

most significant motion is observed. There is little variation in the height of the presenter’s head

from the ground over the duration of the seminar. This is because the presenter remains standing

throughout the seminar and the only variation in head height from the ground occurs at a few

points in the sequence when the presenter is stooping to operate a laptop or placing/removing

objects from a table.

The worst performance of the tracking algorithm occurs for sequence seminar 2004-11-

12 segment2. This is due to the occurrence of a number of significant active speaker switches

where the presenter is not talking but some other person in the room is. As previously stated

V-VAST is designed to track the speaker activity path and use of the motion prior of equation

3Personal communication with Keni Bernardin, Universität Karlsruhe, Germany.
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Presenter Tracking Results using the 2D Global Mean Metric

Seminar 2004-11-11 A duration min (m) max (m) avg (m) % misses % % false pos. %

Segment1 5m 07s 0.02 0.51 0.11 0.00 0.00

Segment2 5m 04s 0.00 0.53 0.13 0.00 0.00

Seminar 2004-11-11 B duration min (m) max (m) avg (m) % misses % % false pos. %

Segment1 6m 49s 0.01 1.70 0.29 0.00 0.00

Segment2 5m 58s 0.01 2.39 0.35 0.00 1.30

Seminar 2004-11-11 C duration min (m) max (m) avg (m) % misses % % false pos. %

Segment1 5m 00s 0.01 1.02 0.17 0.00 23.06

Segment2 5m 03s 0.00 1.97 0.15 0.00 6.97

Seminar 2004-11-12 A duration min (m) max (m) avg (m) % misses % % false pos. %

Segment1 3m 49s 0.00 0.60 0.06 0.00 1.16

Segment2 5m 40s 0.00 0.14 0.04 0.00 0.00

Seminar 2004-11-12 B duration min (m) max (m) avg (m) % misses % % false pos. %

Segment1 4m 44s 0.00 0.17 0.04 0.00 0.70

Segment2 5m 46s 0.00 3.55 0.51 0.00 4.43

Overall
duration min (m) max (m) avg (m) % misses % % false pos. %
53m 00s 0.00 3.55 0.20 0.00 3.63

Table 6.2: Results corresponding to the visual person tracking task of the CHIL 2005 evaluation
campaign using the 2D global mean metric as proposed in the evaluation package.

6.18 therefore does not suppress active speaker switches. This sequence is examined later in

tracking speaker activity in the presence of speaker switches.

A more detailed presentation on the accuracy of the proposed tracking algorithm is given

in appendix C where tracking results in terms of the x, y and z axes are plotted for each

of the 10 seminar segments used in the evaluation. In analysing this data it is clear that a

consistent negative standard error is present in the estimated z position in relation to the true

speaker position. This is attributed to a slight bias in the fitting of the head model when skin

is detected at exposed neck regions as well as face regions. Detected skin at the neck position

below the head results in the head model being fitted to this region as well as the head.

6.6 Visual Segmentation Results

In this section the complete V-VAST algorithm with its best view selection criteria as described

in section 6.4.1 is applied to visually segment the current active speaker over the duration of the

lecture presentation. The presented results examine two different classes of presentations. The

first examines the single speaker tracking case such as the task of tracking the presenter as de-

scribed in section 6.5. The second class of presentation examined is the more interactive scenario

with switches in speaker activity between lecture participants. The video sequences created by

V-VAST which are described in the following sections can be found on the accompanying DVD.
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Presenter Tracking Results using the 3D Global Mean Metric

Seminar 2004-11-11 A duration min (m) max (m) avg (m) % misses % % false pos. %

Segment1 5m 07s 0.06 0.53 0.13 0.00 0.00

Segment2 5m 04s 0.06 0.54 0.17 0.00 0.00

Seminar 2004-11-11 B duration min (m) max (m) avg (m) % misses % % false pos. %

Segment1 6m 49s 0.02 1.71 0.36 0.00 0.00

Segment2 5m 58s 0.04 2.40 0.42 0.00 1.30

Seminar 2004-11-11 C duration min (m) max (m) avg (m) % misses % % false pos. %

Segment1 5m 00s 0.01 1.02 0.20 0.00 23.06

Segment2 5m 03s 0.00 1.98 0.18 0.00 6.97

Seminar 2004-11-12 A duration min (m) max (m) avg (m) % misses % % false pos. %

Segment1 3m 49s 0.00 0.61 0.07 0.00 1.16

Segment2 5m 40s 0.01 0.14 0.05 0.00 0.00

Seminar 2004-11-12 B duration min (m) max (m) avg (m) % misses % % false pos. %

Segment1 4m 44s 0.01 0.17 0.05 0.00 0.70

Segment2 5m 46s 0.00 3.57 0.54 0.00 4.43

Overall
duration min (m) max (m) avg (m) % misses % % false pos. %
53m 00s 0.00 3.57 0.23 0.00 3.63

Table 6.3: Results corresponding to the visual person tracking task of the CHIL 2005 evaluation
campaign where the average error examined is the 3D global mean.

6.6.1 Single Speaker Case

In the single active speaker case, the visual segmentation results examined correspond to the se-

quences seminar 2004-11-12 A segment2, seminar 2004-11-12 B segment1 and sem-

inar 2004-11-11 C segment1. The extracted best view of the active speaker over the dura-

tion of each of these sequences is shown in figure 6.8, figure 6.9 and figure 6.10 respectively. The

results presented in this section relate directly to the tracking accuracy evaluation as presented

in table 6.2 and table 6.3. In the figures both the tracking results in x, y and z coordinates

together with the ground truth and the extracted best view of the active speaker are shown.

The regions highlighted in green in these figures correspond to points in the sequence where the

presenter’s head is not visible in two or more views as is given in the ground truth of the CHIL

database described in section 6.5.

Figure 6.8 shows the results for sequence seminar 2004-11-12 A segment2. In this par-

ticular sequence over the duration of the seminar, the presenter undergoes little motion and

remains within an area of approximately 1m2. This does not represent a challenging tracking

scenario and as expected the tracking is highly accurate with table 6.3 showing a mean 3D

positional error of 0.05m. Although this sequence does not represent a difficult tracking prob-

lem it does enable the performance of the best view selection to be examined. The criteria for

best view selection as defined in 6.4.1 is reliant on an accurate estimate of the head position.

Therefore, under known accurate tracking, the performance of the best view selection criteria
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can be evaluated in isolation to that of the tracking performance.

The segmented best view of the speaker over the duration of the seminar is shown in figure

6.8b. The choice of the best camera view for viewing the active speaker is largely subjective.

There are few objective measures on which to determine the performance of the proposed view

selection criteria. Two simple conditions which can be referred to in relation to the best view of

a speaker are firstly, whether the face of the speaker is visible and secondly, whether the head

is framed in the centre of the segmented view. In this regard, the results of figure 6.8b show

that the proposed best view selection criteria is effective in choosing a suitable view of the active

speaker. Of the presented sample frames, due to the high tracking accuracy, there are no poorly

framed head views. In most cases, the view of the head is a frontal face view although some

occurrences of profile face views can be seen in frame 1540, 1625 and 3410. Although these

particular frames are not visually poor as a head view, they do show the limitations of a purely

skin based best view selection criteria. Using skin only cannot guarantee a frontal face view.

The results for the sequence seminar 2004-11-12 B segment1 shown in figure 6.9 rep-

resent a more difficult tracking scenario. In this sequence the observed motion is relatively more

complex and the speaker moves within an area of approximately 9m2. Even with the increase

in the range of the observed motion, the algorithm maintains a tracking accuracy of 0.05m as

seen in table 6.3.

In this example the benefits of camera view switching can be seen clearly in frames 0791;

0933; 1643; 2353; 2566; 3276; 3489; 3560 and 3844. At these particular frames the presenter

turns from the audience towards the projector screen. The best view determined before these

points is from camera 1 showing a frontal face view. When the presenter turns towards the

projector screen he is facing camera 2. In this case, the best view selection criteria appropriately

determines the frontal face view now in camera 2 as the being best view.

In the majority of the presented frames, the best view selection criteria produces favourable

results in ensuring a framed and frontal view of the speaker’s face. Again however, as in the

previous example there is some evidence as to the limitations of using the visibility of skin in

the head region as a best view selection criteria. This is evident in frames 0578, 2069 and 3347.

The sequence examined in figure 6.10 presents a complex tracking scenario where the pre-

senter moves over an area of 12m2. In this particular sequence, there is also an interesting

occurrence of head occlusion where the presenter’s head is only visible in one view. This oc-

curs at the point in the frame sequence illustrated by the light blue coloured bar at the top of

the plot in figure 6.10a. Even though the head over this period can not be located due to the

occlusion, V-VAST is still able to provide a reasonably accurate estimate of the head position

and maintain track. This is achieved through the occlusion handling process employed in the

Viterbi algorithm as described in section 6.3. In essence, the handling of occlusions is managed

by maintaining the last visible head location in the set of head candidates at the point at which

the occlusion occurs. For instance, if a candidate head is not located close to a previous head

location at the current time instance, then the previous location is set to be current head posi-
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(a) Tracking results for seminar 2004-11-12 A segment2 in x, y and z coordinates (red) against
ground truth (blue).

0010 0095 0180 0265 0350 0435 0520 0605 0690 0775

0860 0945 1030 1115 1200 1285 1370 1455 1540 1625

1710 1795 1880 1965 2050 2135 2220 2305 2390 2475

2560 2645 2730 2815 2900 2985 3070 3155 3240 3325

3410 3495 3580 3665 3750 3835 3920 4005 4090 4175

4260 4345 4430 4515 4600 4685 4770 4855 4940 5025

(b) Segmented active speaker for uniform sample of 60 frames over the sequence. The progression of
the frames is shown from top to bottom and from left to right.

Figure 6.8: Visually segmenting the active speaker in the seminar 2004-11-12 A segment2
sequence of the CHIL database.
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(a) Tracking results for seminar 2004-11-12 B segment1 in x, y and z coordinates (red) against
ground truth (blue).

0010 0081 0152 0223 0294 0365 0436 0507 0578 0649

0720 0791 0862 0933 1004 1075 1146 1217 1288 1359

1430 1501 1572 1643 1714 1785 1856 1927 1998 2069

2140 2211 2282 2353 2424 2495 2566 2637 2708 2779

2850 2921 2992 3063 3134 3205 3276 3347 3418 3489

3560 3631 3702 3773 3844 3915 3986 4057 4128 4199

(b) Segmented active speaker for uniform sample of 60 frames over the sequence. The progression of
the frames is shown from top to bottom and from left to right.

Figure 6.9: Visually segmenting the active speaker in the seminar 2004-11-12 B segment1
sequence.
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tion. An example frame where the presenter is occluded is shown in figure 6.11. In this figure

the presenter is only visible in camera views 3 and 4, but the head is only visible in camera view

4. The ellipses in both camera views in this figure correspond to the previously detected head

location as introduced by the occlusion handling process.

Although the handling of the occlusion results in an estimate of the head position which

is close to the true head position, it is not accurate enough to determine a best view of the

presenter’s head. Clearly, from figure 6.11 the best view is that of camera 4 since the head

is not visible in camera 3. In this case however, the measure of the visibility of the head as

defined by equation 6.44 for each view is, B3 = B4 = 0. Therefore, both views are considered

equal. By default, the camera view with the lowest camera index (i.e. camera 3), is chosen by

V-VAST as the best view. During such periods of occlusion, V-VAST fails to return a best view

of the presenter. This can be seen in figure 6.10b where frames over periods of occlusion are

highlighted by a light blue border.

6.6.2 Speaker Switching Case

In this section tracking the path of speaker activity where speaker switches occur is exam-

ined. The presented results relate to seminar sequences seminar 2004-11-11 A segment4,

seminar 2004-11-12 B segment3 and seminar 2004-11-12 B segment2. The seminar se-

quence seminar 2004-11-12 B segment2 was previously examined in the presenter tracking

evaluation of section 6.5 and resulted in the worst performance. This was due to the presence

of numerous speaker switches where the presenter was not speaking. The sequence is therefore

re-examined in this section to track the speaker activity path.

The results of tracking the speaker activity path and extracting the best view of the speaker

for each of the seminars, are presented in figure 6.12, figure 6.13 and figure 6.14. Shown in each of

the figures are the tracking results in x, y and z coordinates together with the ground truth and

the extracted best view of the active speaker. In the cases presented in this section, the ground

truth has been re-evaluated to correspond to the position of the active speaker and not only the

presenter. In the implementation of V-VAST in this evaluation, the motion prior of equation

6.19 is used with � = 1.2 and Σ = I[�2
x, �

2
y , �

2
z ]
T where �x = 0.5m,�y = 0.5m,�z = 0.08m and I

is a 3× 3 identity matrix.

Figure 6.12 and figure 6.13 show the results for V-VAST in tracking the speaker activity path

for the sequences seminar 2004-11-11 A segment4 and seminar 2004-11-12 B segment3.

Both of these sequences have periods where the presenter takes a question from an audience mem-

ber. These periods are illustrated by orange coloured bars at the top of the plots in figure 6.12a

and 6.13a. Over these periods in the sequences, there are many quick conversational exchanges

between the presenter and the audience member.

V-VAST however, is insensitive to temporally brief speech utterances and tends to follow a

path of temporally smooth dominant speaker activity. This can be seen to be the case in the
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(a) Tracking results for seminar 2004-11-11 C segment1 in x, y and z coordinates (red) against
ground truth (blue).

0010 0085 0160 0235 0310 0385 0460 0535 0610 0685

0760 0835 0910 0985 1060 1135 1210 1285 1360 1435

1510 1585 1660 1735 1810 1885 1960 2035 2110 2185

2260 2335 2410 2485 2560 2635 2710 2785 2860 2935

3010 3085 3160 3235 3310 3385 3460 3535 3610 3685

3760 3835 3910 3985 4060 4135 4210 4285 4360 4435

(b) Segmented active speaker for uniform sample of 60 frames over the sequence. The progression of
the frames is shown from top to bottom and from left to right.

Figure 6.10: Visually segmenting the active speaker in the seminar 2004-11-11 C segment1
sequence of the CHIL database.
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(a) Camera view 3 with skin mask. (b) Camera view 4 with skin mask.

Figure 6.11: Frame 3825 from the sequence seminar 2004-11-11 C segment1. The head
of the active speaker is only visible in one view and therefore no head position is detected. The
estimated head position is the last visible location of the head corresponding to the candidate head
position introduced by occlusion handling in the Viterbi algorithm. In this case, the measure of
visibility of the head for each view as defined in equation 6.43 is B3 = B4 = 0. With the
visibility of the head in each view equal, the best view returned by default is that corresponding
to the camera view with the lowest camera index which is camera view 3. Over this period in the
sequence therefore, V-VAST can not determine the best view of the presenter as can be seen in
figure 6.10b at the frames highlighted with a light blue border.

estimated speaker activity path in both of the sequences. It is particularly evident at frame

4100 in figure 6.13a where the audience member is actively speaking for less than three time

instances. V-VAST in this case smoothes over this brief period of speaker activity. This reflects

the effect of the prior as defined in equation 6.20 which enforces temporal smoothness on the

speaker activity path.

The consequence is that the number of switches between the audience member and presenter

are fewer which results in a more visually pleasing video sequence of the extracted active speaker.

The extracted sequence of frames is more visually pleasing in the sense that visual switching

does not occur abruptly at each speech utterance or for very short time instances. This can be

seen in the extracted view of the active speaker shown in figure 6.12b and figure 6.13b where

the active speaker switches are indicated for each frame by an orange coloured border. The

accuracy of the head position estimate can also be seen in these examples where the head in

each view is accurately framed in the centre.

The sequence of seminar 2004-11-12 B segment2 represents a more complex active

speaker tracking problem than the previous examples. In this sequence there are conversa-

tional exchanges of short and long duration between the presenter and an audience member

including at one point, the motion of two speakers. The periods over which the algorithm de-

tected the audience member as the active speaker are shown by an orange coloured bar over the

plot in figure 6.14a. Shown in figure 6.14b is the extracted view of the active speaker where the
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(a) Tracking results with switches for seminar 2004-11-11 A segment4 in x, y and z coordinates
(red) against ground truth (blue).

0015 0090 0165 0239 0314 0389 0464 0538 0613 0688

0763 0837 0912 0987 1062 1136 1211 1286 1361 1435

1510 1585 1660 1734 1809 1884 1959 2033 2108 2183

2258 2332 2407 2482 2557 2631 2706 2781 2856 2930

3005 3080 3155 3229 3304 3379 3454 3528 3603 3678

3753 3827 3902 3977 4052 4126 4201 4276 4351 4425

(b) Segmented active speaker for uniform sample of 60 frames over the sequence. The progression of
the frames is shown from top to bottom and from left to right. Speaker switches are shown in yellow.

Figure 6.12: Visually segmenting the active speaker in the seminar 2004-11-11 A segment4
sequence of the CHIL database.
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(a) Tracking results with switches for seminar 2004-11-12 B segment3 in x, y and z coordinates
(red) against ground truth (blue).

0001 0076 0151 0226 0301 0376 0451 0526 0601 0676

0751 0826 0901 0976 1051 1126 1201 1276 1351 1426

1501 1576 1651 1726 1801 1876 1951 2026 2101 2176

2251 2326 2401 2476 2551 2626 2701 2776 2851 2926

3001 3076 3151 3226 3301 3376 3451 3526 3601 3676

3751 3826 3901 3976 4051 4126 4201 4276 4351 4426

(b) Segmented active speaker for uniform sample of 60 frames over the sequence. The progression of
the frames is shown from top to bottom and from left to right. Speaker switches are shown in yellow.

Figure 6.13: Visually segmenting the active speaker in the seminar 2004-11-12 B segment3
sequence of the CHIL database.
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audience member, when active, is indicated in the frames by an orange coloured border. Again

in this example the smoothness on the estimated speaker activity path is evident at frame 3500

where a brief period of speech activity is not estimated in the speaker activity path.

The majority of the extracted views of the active speaker’s head are seen to be correctly

framed in figure 6.14b. This indicates the accuracy of the head detection process which is

consistent throughout the sequence. This is notably the case in frames 3844 to 3930 where the

audience member stands up and moves towards the projector screen while speaking.

There is a period from frame 4017 to frame 4534 where head detection fails and the algorithm

returns a poor estimate of the best head view. This period of the sequence is illustrated by the

light blue coloured bar at the top of the plot in figure 6.14a. During this time the presenter is

actively speaking however the head detection process fails due to a failure to detect skin in the

head region. This occurs as a result of the presenter moving into the path of the projector. Due

to the colour of the slide, the skin colour is distorted. A frame from this period in the sequence

in shown in figure 6.15.

In normal circumstances the algorithm would attempt to correct this occlusion using the

occlusion handling scheme as described in figure 6.15. In this instance however the presenter

moves into a large region of the room where skin detection fails due to colour distortion from the

projector. The last visible head location therefore is at the boundary of this region and far away

from the presenter’s current position. In this case, an erroneous estimate of the head is made

which corresponds to the presenter’s hand position. The extracted best view over this period of

anomalous head estimates in the sequence is shown in figure 6.8b with a light blue border.

6.7 Final Comments

This chapter presented V-VAST, an algorithm for composing a composite video sequence of the

current active speaker from multiple camera recordings of a lecture. The algorithm relies on

both multi-camera video data to determine likely speaker positions and multi-channel audio to

monitor speaker activity. Using this information V-VAST estimates the speaker activity path

between speakers and segments the best view of the speaker from the available cameras.

V-VAST is focused towards extracting a temporally smooth speaker activity path over the

duration of the lecture recording. Therefore, the estimated path does not strictly adhere to

speaker activity but rather to a smoother path which is more suited to its visual presentation.

By smoothing the speaker activity path, the algorithm is also robust to the occurrence of noise.

It is not only this aspect which contributes to the robustness of the algorithm, but also the

nature in which active speaker positions are constrained to detected head locations. Reliable

head detection therefore is an important aspect of the algorithm.

The process of head detection employs a voxelization of the space of the lecture room from

which a 3D foreground is extracted. This 3D foreground is extracted using skin colour masks

obtained in each available camera view. In detecting head locations, an ellipsoidal model of the
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(a) Tracking results with switches for seminar 2004-11-12 B segment2 in x, y and z coordinates
(red) against ground truth (blue).
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(b) Segmented active speaker for uniform sample of 60 frames over the sequence. The progression of
the frames is shown from top to bottom and from left to right. Speaker switches are shown in yellow.

Figure 6.14: Visually segmenting the active speaker in the seminar 2004-11-12 B segment2
sequence of the CHIL database.
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(a) Camera view 1 with skin mask. (b) Camera view 3 with skin mask.

Figure 6.15: Frame 4425 from the sequence seminar 2004-11-12 B segment2. The presen-
ter’s head is in the path of the projector. The colour of the projected slide distorts the skin colour
and no skin is detected in the head region. Therefore no head is detected. An erroneous estimate
for the head is given at the position of the presenter’s hand.

head is assumed which is fitted to connected voxel regions and to their corresponding connected

skin regions in each view. In order to improve the reliability of the head detection process,

the algorithm also examines multiple 3D foregrounds from every combination of two or more

camera views. In this way, the detection of head positions does not require that skin regions of

the head are visible in every view. Although this greatly increases the computational demands

of the algorithm it was found to increase the robustness of head detection to anomalies and

inaccuracies in the skin colour masks. This process of head detection was found to locate all

heads visible in at least two views in the majority of the examined cases. However, only using

the visual cue of skin colour in locating heads introduced a lot of false positives in the detection

process. Typically these occurred at other visible skin regions such as hand and arm locations.

These falsely detected head locations were found to only introduce anomalies in the speaker

activity path when they corresponded to noise source locations. Eradicating falsely detected

head locations using additional cues such as face detection could possibly improve the reliability

of the algorithm. This would also reduce the number of candidate speaker locations and therefore

reduce the algorithm’s computational complexity.

The accuracy by which heads can be estimated is also an important aspect of the algorithm

since it determines how well the active speaker is framed in the segmented view. The use of a

strong ellipsoidal model for the head and also the fitting of the model in both the 3D space of

the room and 2D space of the camera views was shown to resolve 3D head locations to a high

degree of accuracy. In the evaluation of the algorithm positively detected head locations were

found to be accurate to less than 0.06m at best. This level of accuracy was found to be sufficient

to accurately segment a well framed view of the speaker.

The process of detecting head locations relies heavily on skin colour detection to obtain a
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skin mask from each view. This is achieved through a deterministic approach to skin colour

modelling. The determination of the best view of the active speaker also uses the extracted skin

colour masks in each view. The criteria for selecting the best view aims to determine the view of

the active speaker in which the face is most visible. The underlying assumption in the approach

is that the face is the region of head with the most visible skin. Of course, in some cases this

assumption is not true and in these situations the proposed best view selection criteria was seen

to fail. It was also seen however, that this simple criteria is effective in producing the view in

which the face is most visible. The incorporation of face detection in addition to the proposed

best view selection criteria would clearly improve the algorithm’s performance.
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7
Discussion & Conclusion

This thesis examined the problem of applying joint audio and video based techniques for local-

ising and tracking an active speaker in a lecture room environment. The main focus in the work

was towards the evaluation of the accuracy of both audio and video techniques for localisation,

the factors that limit their performance and how they can be best combined in their current

state of development to the problem of tracking an active speaker.

Chapter 2 focused on the localisation problem through the extraction of audio and video

based features. In the audio domain, both TDE and DOA based localisation techniques were

introduced. These were examined in relation to their suitability in the lecture room environment.

The nature of lecture room acoustics was discussed and how it affects localisation was quantified.

In particular, measures for characterising the level of reverberation in a room were established

and it was described how reverberation affects signal coherence enforcing a lower limit on the

achievable localisation accuracy.

In the video domain features for localisation such as faces and foreground detection through

background modelling were introduced and the challenges facing their successful application

in a multicamera lecture room environment were analysed. Spatially varying illumination was

identified as a significant problem and a new model for skin colour was presented which models

for the nonlinear dependence of skin colour on luminance. The suitability of the new skin colour

model in detecting skin regions under low illumination was demonstrated.

Within a Bayesian tracking framework, audio-based active speaker tracking techniques were

explored in chapter 3 and it was shown how these techniques can be extended to include video

based observations. The assumption of independent audio and video measurements was iden-
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tified as the key component facilitating the combination of both modalities in existing joint

audio-visual tracking systems. A review of existing systems based on KFs and PFs was pre-

sented. The occurrence of filter divergence due to poor motion modelling was highlighted as a

persistent problem which can significantly affect tracking performance not helping in the task

of fusing audio and video measurements.

Chapter 4 was dedicated to the evaluation of a multi-camera and multi-microphone joint

audio-video based source localisation system in a typical lecture room environment. Motivated

by the lack of clarity in existing literature as to the improvement in accuracy through joint

audio-video based techniques, this chapter examined localising a moving audio-visual source in

3D using audio only, video only and different audio-video fusion strategies. Fusion was examined

as applied in the audio domain, the video domain and the positional domain with the latter found

to be most accurate for the evaluated system. Within this analysis, the ML localisation problem

was evaluated to remove any motion modelling errors from the analysis. It was found that little

accuracy beyond the accuracy obtained through video alone could be achieved through the fusion

of both modalities. It was concluded therefore that audio contributed little to the accuracy of

a video based location estimate. Existing techniques for the joint calibration of both audio

and video tracking spaces, together with the lack of appropriate techniques for measuring the

uncertainty associated with TDEs, contributed significantly to this observation. The accuracy of

audio localisation in comparison to that of video was found to be the limiting factor in achieving

improved accuracy through fusion.

The problem of optimising the positions of microphone arrays within a room so as to minimise

localisation uncertainty was analysed in chapter 5. This followed the direction of chapter 4 that

audio-based localisation accuracy must be improved in order to justify its fusion with video

to improve localisation accuracy. This analysis brought together existing bounds theory on

time-delay estimation performance in a reverberant environment with that of the framework

for uncertainty estimation developed in chapter 4. The employed bounds better reflected TDE-

based localisation in a realistic reverberant room in the optimal microphone placement problem

in comparison to existing approaches in the literature. The directionality characteristics of both

the speaker and microphones were also accounted for in optimising the microphone arrays. A

theoretical evaluation of localisation accuracy was performed on the CHIL lecture room under

this analysis. It was found that for the given microphone array positions in the lecture room,

the expected performance of audio-based localisation would be poor. A simulated annealing

algorithm was proposed for automatically optimising the microphone array positions within the

room to minimise localisation uncertainty. Under the employed bounds theory, the algorithm

was seen to automatically determine positions significantly improving the overall localisation

accuracy. This highlighted the sub-optimal microphone array positions in the CHIL lecture

room.

Building on the analysis of previous chapters, an algorithm for tracking the current active

speaker in the multi-camera and multi-microphone recording of a lecture in the CHIL room was
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proposed. Given the analysis of joint audio-visual localisation accuracy in chapter 4 and the

sub-optimal placement of microphone arrays in the CHIL room as established in chapter 5, it

was concluded that audio-based localisation would contribute little to the expected accuracy of a

video-based location estimate. Therefore, the statistical fusion of both audio and video location

estimates was rejected in favour of a different strategy.

Voxel-based head detection using the new skin detection algorithm as proposed in chapter

2 was used to determine likely speaker positions. TDEs from the microphone arrays were then

used to assign a state of speaker activity to detected speaker locations. The Viterbi algorithm

was employed to determine a joint MAP estimate of the active speaker position and speaker

activity state over the duration of the recorded lecture. A prior on the speaker activity states

enabled positions of temporally significant speaker activity to be weighted highly in the returned

estimate. This tracking algorithm was proposed within a system called V-VAST which used the

estimated active speaker position over the duration of the recorded lecture to extract the best

view of the speaker from the available camera views. This was then used by the system to create

a composite view video sequence output consisting of a user defined view and an automatically

inserted view of the active speaker. The system was evaluated on 10 segments from different

lecture recordings totalling over 53min and was found to reliably estimate the active speaker

position with an average 3D Euclidean error of 0.2m.

7.1 Future Work

The future success of joint audio video based tracking systems relies on the continuing efforts

of researchers in each individual domain to strive towards improvements in tracking reliability

and accuracy.

In the audio domain, significant challenges prevail. The most dominant of these is the

detrimental effect of reverberation on TDE-based localisation. Continuous efforts in developing

methods to evaluate the reliability of TDEs are essential since this is what currently limits the

contribution of audio in joint audio-video tracking systems. The importance of optimising the

positions of microphone arrays for improving audio-based localisation accuracy was highlighted

in this thesis. It is believed that this will become an important requirement for joint audio-video

based systems. The technique proposed in chapter 5 for optimising microphone array positions

has the limitation that it does not incorporate any measure of early reflections in the employed

model of reverberation. Future work on optimising microphone positions which does consider

this problem is necessary.

In the video-tracking domain, conditions of temporally and spatially varying illumination

together with the problem of detecting faces at various poses still represent significant difficulties.

These issues are strongly voiced in the video tracking literature and continuous efforts in regard

to these will contribute to improvement in the multi-modal tracking problem.

Although there is much work to be done in both the individual research domains of audio
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and video based tracking, it is important that there is a communication of ideas and technologies

between each of the domains. At present, there is an obvious divide between the audio-based

tracking and video-based tracking research communities. As a result, significant barriers face

researchers wishing to develop joint audio-video based systems. Experts in one domain may

not have the required expertise in the other domain to achieve their goal. There is a clear

trend in much of the current literature which reflects this. Research originating from experts

in video-based tracking tend to use sophisticated state-of-the-art video-based tracking systems

but relatively primitive audio-based tracking techniques. Contrary trends are observed with

research originating for audio-based experts.

As was highlighted in chapter 4, it is common for proposed joint audio-video tracking systems

to be shown to improve upon single modality trackers. If primitive single modality trackers are

being used, the significance of this observation is lessened. The evaluation of joint audio-visual

tracking using state-of-the-art techniques from each domain would give a greater indication as to

whether joint audio video fusion has an application beyond that of just improving the reliability

of primitive trackers. Therefore, there is a need for the transfer of state-of-the-art technologies

between the audio-based tracking and video-based tracking research communities. It is felt that

without this, progress towards improving both accuracy and not only reliability through joint

audio-video based tracking techniques will be hindered significantly.

There is much potential to extend the capabilities of the V-VAST system for the post-

production of recorded lectures. A natural extension of the system would be to evaluate the

best audio stream from the available microphones within the lecture room. Since the system

provides a 3D estimate of the active speaker’s head position, the relative distance of the speaker

to microphones within the lecture room can be determined. A simple criterion for choosing

the best audio stream could be to select the output of the microphone which is closest to the

speaker. This would improve the overall quality of the audio in the created lecture presentation

and increase the intelligibility of the recorded speech.

A completely understated problem in relation to the implementation of audio and video

based tracking systems, is the relative calibration between the audio and video tracking spaces.

There is no adequate treatment of this topic in the existing literature. Currently, sophisticated

semi-automated to fully automated techniques exist for the calibration of multiple cameras in

3D space. There are no existing equivalent techniques for calibrating multiple microphones. At

present in audio-video based systems, highly sophisticated calibration techniques are employed

for cameras however the calibration of microphones is generally achieved by manual measure-

ments of the microphone positions. The author’s experience in relation to this through the

experimental analysis in chapter 4 is that minute errors in manually measuring microphone po-

sitions can introduce significant resultant localisation errors. This arises since small measurement

errors when propagated over multiple microphones will translate into significant localisation in-

accuracies. The strategy employed in chapter 4 to address this was to localise the microphones

within the tracking space of the cameras, effectively using the cameras to calibrate the micro-
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phone positions. This was implemented by minimising the relative error between audio-based

localisation over a trajectory in 3D to that of the estimated trajectory obtained through video-

based localisation. Ideally, the development of more appropriate, more accurate and automated

techniques is desired.

An interesting recent development which could facilitate this is through the use of array

geometries which enforce the same epipolar constraints on measurements as observed by cameras

[8]. This offers the potential to view microphone arrays as generalised cameras meaning that

existing camera calibration techniques can be used for calibrating microphone arrays. Further

studies into the feasibility of this could see the seamless integration of both microphones and

cameras sensors for audio-visual tracking.
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A
Approximation of the First Order Derivative of the

Inverse Time-Delay Measurement Function

In this appendix, it is described how the implicit functions theorem can be used to determine

the first order derivative of the inverse time-delay measurement function. Given G(�,x) and Cg

as defined in Sec. 4.2 in equation 4.10 the implicit functions theorem implies [138, chapter 5],
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and H is derived as,
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Substituting (A.7) and (A.12) into (A.1), ∂g−1(�)
∂� is determined as,
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where † is used to denote the pseudo inverse.



B
Audio-Video Localisation: Experimental Setup

This appendix presents some additional details in relation to the experimental setup used in

chapter 5 for analysing the accuracy of audio-visual source localisation. Section B.1 documents

the model numbers of both the video cameras and the microphones used in the experimental

analysis together with their positions within the room. Also included in section B.1 are the

calibration points used to calibrate the video cameras in the experiment. Presented in section

B.2 is a brief note which considers the optimality of the microphone positions which were used

in the analysis.

B.1 Video Cameras and Microphones

Three video cameras and six microphones were used in the experimental setup. The positioning

of the microphones and the video cameras is given below in table B.1. In relation to the

microphones, the quoted positions refer to the position of the centre of the microphone capsule

within the room. The quoted video camera positions refer to the camera centres as obtained

through the calibration procedures. Also documented in table B.1 are the model details of the

equipment used. A list of both the calibration training points and calibration test points are

presented in table B.2.

B.2 Note on the Optimality of the Experimental Setup

This section presents a retrospective note which considers the optimality of the microphone array

placement used in the experiment. The main point of the experiment was to examine what the
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Equipment
Position

Model
x (mm) y (mm) z (mm)

Camera 1 1416.3 38.0 2340.8 Canon DM-XM2

Camera 2 2741.6 157.8 2312.7 Canon DM-XM2

Camera 3 3976.1 101.1 2242.1 Panasonic NV GS250EB

Microphone 1 1037.6 5550.7 1304.7 Rode NT5

Microphone 2 1019.6 5204.9 1310.1 Rode NT5

Microphone 3 1016.8 5381.5 1614.7 Rode NT5

Microphone 4 3997.4 5557.4 1301.7 Rode NT5

Microphone 5 4000.0 5210.8 1315.0 Rode NT5

Microphone 6 4001.3 5394.3 1603.4 Rode NT5

Table B.1: Description and positions of the six microphones and three video cameras used in the
analysis of audio-visual source localisation.

expected accuracy of audio-visual source localisation is in the absence of any consideration for

optimal sensor placement. Using the algorithm for optimising the placement of microphone

arrays as presented in algorithm 1 however, it is possible to determine the optimal placement of

the microphones for the given experimental scenario.

Shown in figure B.1a is the original configuration of the six microphones used in experiment

together with a visual illustration of the localisation error associated with this configuration.

The optimised microphone positions are illustrated in figure B.1b and listed in figure B.1c.

Comparing both figure B.1a and figure B.1b it is clear that there is a significant improvement in

the expected localisation accuracy where the microphone positions are optimised. This further

motivates the need for optimising the positions of microphones for localisation when considering

joint audio-visual fusion for tracking.
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Calibration Points

Training Points Test Points
x (mm) y (mm) z (mm) x (mm) y (mm) z (mm)

1220 6980 2369 1517 6980 2159
1620 6980 2369 1917 6980 2159
2020 6980 2369 2317 6980 2159
2420 6980 2369 2717 6980 2159
2820 6980 2369 3117 6980 2159
3220 6980 2369 3517 6980 2159
3620 6980 2369 3917 6980 2159
1220 6980 1969 1517 6980 1759
1620 6980 1969 1917 6980 1759
2020 6980 1969 2317 6980 1759
2420 6980 1969 2717 6980 1759
2820 6980 1969 3117 6980 1759
3220 6980 1969 3517 6980 1759
3620 6980 1969 3917 6980 1759
1220 6980 1569 1517 6980 1359
1620 6980 1569 1917 6980 1359
2020 6980 1569 2317 6980 1359
2420 6980 1569 2717 6980 1359
2820 6980 1569 3117 6980 1359
3220 6980 1569 3517 6980 1359
3620 6980 1569 3917 6980 1359
1220 6980 1169 1517 6980 959
1620 6980 1169 1917 6980 959
2020 6980 1169 2317 6980 959
2420 6980 1169 2717 6980 959
2820 6980 1169 3117 6980 959
3220 6980 1169 3517 6980 959
3620 6980 1169 3917 6980 959
1822 5795 9 2119 5585 9
2172 5795 9 2469 5585 9
2522 5795 9 2819 5585 9
1822 5545 9 2119 5335 9
2172 5545 9 2469 5335 9
2522 5545 9 2819 5335 9
1822 5295 9 2119 5085 9
2172 5295 9 2469 5085 9
2522 5295 9 2819 5085 9

Table B.2: Positions of both the calibration training points and test points used in calibrating
the video cameras
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(a) Original microphone array positions of the ex-
perimental setup. The 95 percentile error ellipsoids
representing localisation error are shown in green.
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(b) Optimised microphone array positions using the
optimisation algorithm described in chapter 5. The
95 percentile error ellipsoids representing localisa-
tion error are shown in green.

Microphone
Position

x (mm) y (mm) z (mm)

Microphone 1 2082.6 5755.0 1172.1
Microphone 2 2063.0 5414.6 1232.6
Microphone 3 2154.3 5630.5 1495.3
Microphone 4 3156.1 5519.2 1648.0
Microphone 5 3123.3 5182.6 1571.0
Microphone 6 2870.6 5348.2 1731.0

(c) Optimised x, y and z positions of the microphones
for the experimental setup.

Figure B.1: Illustration of the unoptimised
(a) and optimised microphone array posi-
tions (b) for the experimental setup used in
chapter 5. Shown in (c) are the optimised x,
y and z locations of the microphones in the
room for the given experimental setup. The
optimisation algorithm used in this analysis
corresponds to that of algorithm 1.



C
Complete Set of Seminar Tracking Results

This appendix presents the complete set of results obtained for the visual tracking task of the

CHIL 2005 evaluation. These results give a more detailed view of the tracking results which

yielded tables 6.2 and 6.3 in chapter 6. As was outlined in chapter 6, the green in the following

figures corresponds to points in the video sequence where the presenter’s face was not visible

in at least two views. The plotted results correspond to the ground truth shown in blue and

the V-VAST tracking results shown in red. In these results the V-VAST algorithm is applied

to the single speaker tracking scenario (see section 6.6.1 for more information on the particular

configuration of the V-VAST algorithm used to generate these results).

The results of table 6.3 show the overall performance of the V-VAST algorithm on the visual

tracking task of the CHIL 2005 evaluation package. From this table it can be seen that on

average the algorithm accurately tracks the speaker with a mean 3D global error of 0.24m.

From the complete set of results presented in figures C.1 to C.10 however it can be seen that

some of the results have a consistent bias along the z axis. This bias is particularly noticeable in

figures C.1, C.2, C.3 and C.4 where although the x and y tracking results are accurate, there is

a clear offset in the tracking results along the z axis in relation to the ground truth. This offset

reveals that at times, heads are tracked by the V-VAST algorithm at positions slightly lower

than their true positions. It can also be seen in figures C.1, C.2, C.3 and C.4 that this offset

is most often small and not greater than 0.25m. Given that V-VAST models heads as having

a height of 0.241m, the apparent offset in z corresponds to just over 1 head height. This offset

effects the quality of framing the speaker in the best view output of the V-VAST algorithm.

Effectively, when the offset occurs the view of the speaker is framed about a point which is 1
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head height below the true head position. This was not deemed to significantly affect the visual

quality of the results.

The observed tracking bias in the results is attributed to the primitive head model which

the V-VAST algorithm employs. Tracking using such a primitive model can be affected by the

presence of exposed neck regions. V-VAST fits a head model to detected skin regions. If skin

is detected at exposed neck regions below a head position, then the head model fitting process

will be distorted. Under such circumstances V-VAST will fit the head model to a region below

the true head position. The offset in the z axis is attributed mainly to this tracking distortion.

The head model which V-VAST employs has further limitations. By only considering skin

colour in detecting head regions, V-VAST is unable to discern skin regions corresponding to a

face from that of skin colour regions relating to hands and arms. This can lead to inaccurate

tracking results where hand or arm positions occur at locations close to head positions.

The results shown in this appendix evaluate the ability of V-VAST to track the presenter in

various seminar recordings. Figures C.4 and C.10 reveal some large discrepancies between the V-

VAST tracking results and the ground truth. The ground truth corresponds to the presenter’s

position only, irrespective of whether they are speaking or not. There are some instances in

these particular recordings however where the active speaker is not the presenter but that of an

audience member. The large divergences in figures C.4 and C.10 between the V-VAST tracking

results and the ground truth arise at points in the recording where an audience member begins

talking. These large divergences show V-VAST tracking the conversational switches between

active speakers. The seminar recording corresponding to C.10 is examined in section 6.6.2 where

the results are examined against ground truth which does incorporate conversational switches

between different speakers. Direct comparison between figures C.10 and 6.14 respectively show

the tracking results of V-VAST on the same seminar recording configured for single speaker

tracking and the tracking of conversational switches.
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Figure C.1: Tracking results for seminar 2004-11-11 A segment1 in x, y and z coordinates
(red) against ground truth (blue).

Figure C.2: Tracking results for seminar 2004-11-11 A segment2 in x, y and z coordinates
(red) against ground truth (blue).
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Figure C.3: Tracking results for seminar 2004-11-11 B segment1 in x, y and z coordinates
(red) against ground truth (blue).

Figure C.4: Tracking results for seminar 2004-11-11 B segment2 in x, y and z coordinates
(red) against ground truth (blue).
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Figure C.5: Tracking results for seminar 2004-11-11 C segment1 in x, y and z coordinates
(red) against ground truth (blue).

Figure C.6: Tracking results for seminar 2004-11-11 C segment2 in x, y and z coordinates
(red) against ground truth (blue).
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Figure C.7: Tracking results for seminar 2004-11-12 A segment1 in x, y and z coordinates
(red) against ground truth (blue).

Figure C.8: Tracking results for seminar 2004-11-12 A segment2 in x, y and z coordinates
(red) against ground truth (blue).
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Figure C.9: Tracking results for seminar 2004-11-12 B segment1 in x, y and z coordinates
(red) against ground truth (blue).

Figure C.10: Tracking results for seminar 2004-11-12 B segment2 in x, y and z coordinates
(red) against ground truth (blue).
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D
Multi-camera Calibration Procedure

This appendix is provided to present the reader with more details relating to the multi-camera

calibration technique employed in the analysis of chapter 4. It is assumed in this presentation

that the reader has some familiarity with multi-view geometry and camera calibration methods.

Background to the various multi-view signal processing techniques described in this appendix

can be found in the textbooks of O. Faugeras [138] and Hartley et al. [154].

Chapter 4 required the calibration of three video cameras for the purpose of localising points

in 3D space. This appendix briefly outlines the calibration procedure which was implemented in

achieving this. A stratified approach [154, pg. 267] to reconstructing a set of 3D points x̃ from

a set of image point correspondences was used to fully calibrate the three cameras. Both the

intrinsic and extrinsic camera parameters were obtained using manual measurements of the 3D

points x̃ and their extracted images p̃, p̃
′

and p̃
′′

in cameras 1, 2 and 3 respectively. Recall that

in this thesis, p̃ refers to the homogeneous representation of an image point. In the following, it is

described how this information can be used to obtain the set of camera matrices {PE ,P
′
E ,P

′′
E},

corresponding to the three cameras which is necessary for localising imaged points in 3D space.

The first procedure in the calibration process required obtaining two fundamental matrices

F12 and F23, from the point correspondences {p̃ ↔ p̃
′ ↔ p̃

′′} across the three camera views

[154, Chapter 11]. The fundamental matrix F12 was obtained using the point correspondence

{p̃ ↔ p̃
′} and F23 was obtained using point correspondences {p̃′ ↔ p̃

′′}. Two sets of camera

matrices {P,P′} and {P′ ,P′′} were obtained from F12 and F23 respectively [154, pg. 253]. Using

these camera matrices, two projective reconstructions x̃12 and x̃23 were respectively obtained

from the point correspondences {p̃′ ↔ p̃
′′} and {p̃′ ↔ p̃

′′}. The reconstructions x̃12 and x̃23
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as well as the camera matrices {P,P′ , ,P′′} are obtained through this approach with projective

ambiguity. This projective ambiguity was corrected using manual measurements of the 3D

points x̃.

Given x̃, two 3D homographies H1 and H2 were obtained using the Direct Linear Transfor-

mation (DLT) algorithm [154, pg. 88] such that x̃ = H1x̃12 and x̃ = H2x̃23. These homogra-

phies were then applied to correct the projective ambiguity in the camera matrices {P,P′ ,P′′}
to determine the set of camera matrices {PE ,P

′
E ,P

′′
E} where PE = PH−1

1 , P
′
E = P

′
H−1

1 and

P
′′
E = P

′′
H−1

2 [154, pg. 266]. From the new set of camera matrices {PE ,P
′
E ,P

′′
E} and point

correspondences {p̃ ↔ p̃
′ ↔ p̃

′′}, linear triangulation [154, pg. 312] was then employed to

estimate a Euclidean reconstruction ˆ̃x of the points x̃.

In order to refine the estimates of the camera matrices, bundle adjustment was applied

over the camera matrices {PE ,P
′
E ,P

′′
E} and estimated reconstruction ˆ̃x [154, pg. 434]. This

required projecting ˆ̃x back into each camera view to determine the set of backprojected point

correspondences {ˆ̃p ↔ ˆ̃p
′ ↔ ˆ̃p

′′}. Bundle adjustment was then performed by minimising the

geometric error between the point correspondences {p̃ ↔ p̃
′ ↔ p̃

′′} and the backprojected

point correspondences {ˆ̃p↔ ˆ̃p
′ ↔ ˆ̃p

′′}. An overview of the described calibration procedure for

obtaining the set of camera matrices {PE ,P
′
E ,P

′′
E} is illustrated in figure D.1.
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Step 1: Obtain fundamental matrix F12 from image point correspondences {p̃ ↔ p̃
′} and fundamental

matrix F23 from image point correspondences {p̃′ ↔ p̃
′′}.
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Step 2: Determine camera matrices {P,P
′} from F12 and {P′

,P
′′} from F23 with P

′
= [I∣0].
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Step 3. Determine the projective reconstruction x̃12 from {p̃ ↔ p̃
′} and {P,P

′}. Also
determine a projective reconstruction x̃23 using {p̃′ ↔ p̃

′′} and {P′
,P

′′}.

x̃ = H1x̃12 x̃ = H2x̃23

Known 3D points x̃.

Step 4: Calculate the 3D homographies H1 and H2 where x̃ = H1x̃12 and x̃ = H2x̃23.

Step 5: Correct projective ambiguity in camera matrices through PE = PH−1
1 , P

′
E = P

′
H−1

1 and

P
′′
E = P

′′
H−1

2 .

Step 6: Using point correspondences {p̃ ↔ p̃
′ ↔ p̃

′′} and camera matrices {PE,P
′
E,P

′′
E} determine

ˆ̃x an estimate of x̃ by triangulation.

Step 7: Reproject ˆ̃x back into each view to define ˆ̃p = PE
ˆ̃x, ˆ̃p

′
= P

′
E
ˆ̃x and ˆ̃p

′′
= P

′′
E
ˆ̃x.

Step 8: Bundle Adjustment: Minimize
∑

i d(p̃i, ˆ̃pi)
2 + d(p̃i, ˆ̃p

′

i)
2 + d(p̃i, ˆ̃p

′′

i )
2 over {PE,P

′
E,P

′′
E} and

ˆ̃x where d(a,b) denotes the Euclidean distance between points a and b.

Figure D.1: Flow diagram of the steps towards reconstructing 3D points from image point corre-
spondences. The process describes a stratified approach to 3D reconstruction where a projective
reconstruction of points is refined to a Euclidean reconstruction. This technique is uses to obtain
the set of cameras matrices {PE ,P

′
E ,P

′′
E} required for the 3D reconstruction of imaged points.
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Immersive Audio Applications Using Robust Adaptive Beamforming and Joint Audio-

Video Source Localization. EURASIP Journal on Applied Signal Processing, 2006:1–12,

2006. 3

[81] J. A. Brotherton, G. A. Abowd. Lessons Learned for eClass: Assessing Automated Cap-

ture and Access in the Classroom. ACM Transactions on Computer-Human Interaction,

11(12):121–155, 2004. 1

[82] J. B. Allen, D. A. Berkley. Image Method for Efficiently Simulating Small-room Acoustics.

Journal of the Acoustical Society of America, 65(4):943–950, 1979. 5.4

[83] J. Brand, J. S. Mason. A Comparative Assessment of Three Approaches to Pixel-Level

Human Skin Detection. In 15th Int. Conf. on Pattern Recognition, volume 1, pages 1056–

1059, 2000. 2.2.3

[84] J. C. Spall. Introduction to Stochastic Search and Optimization: Estimation, Simulation

and Control. Wiley-Interscience, New York, 2003. 5.3

[85] J. Chen, J. Benesty, Y. A. Huang. Time Delay Estimation in Room Acoustic Environments:

An Overview. EURASIP Journal on Applied Signal Processing, 2006:1–19, 2006. 2.1.3.1

http://www.hfetag.com/docs/pocket_guide.doc


192 BIBLIOGRAPHY

[86] J. Chen, Y. A. Huang, J. Benesty. A Comparative Study on Time Delay Estimation in Re-

verberant and Noisy Environments. IEEE Workshop on Applications of Signal Processing

to Audio and Acoustics, pages 21–24, Oct. 16-19 2005. 2.1.3.1

[87] J. DiBiase, H. Silverman, M. Brandstein. Robust Localization in Reverberant Rooms. In

M. Brandstein and D. Ward, editor, Microphone Arrays: Signal Processing Techniques

and Applications, pages 157–180. Springer-Verlag, 2001. 2.1.5

[88] J. H. DiBiase. A High Accuracy, Low-Latency Technique for Talker Localization in Rever-

berant Environments using Microphone Arrays. PhD thesis, Brown University, Providence

RI, USA, May 2000. 2.1.3.1, 2.1.5, 4.4

[89] J. Huopaniemi, K. Kettunen, J. Rahkonen. Measurement and Modeling Techniques for

Directional Sound Radiation from the Mouth. In IEEE Workshop on Applications of

Signal Processing to Audio and Acoustics, pages 183–186, Oct. 17-20 1999. 2.1.1, 5.2.2,

5.2.2

[90] J. J. Wang, S. Singh. Video Analysis of Human Dynamics - A Survey. Real-Time Imaging,

9(5):321–346, 2003. 3

[91] J. Jaffe, S. Feldstein. Rhythms of Dialogue, chapter Chapter 2. Academic Press, New

York, 1970. 6.1.2.3

[92] J. K. Aggarwal, Q. Cai. Human Motion Analysis: A Review. Computer Vision and Image

Understanding, 73(3):428–440, Mar. 1999. 3

[93] J. L. Flanagan. Analog Measurements of Sound Radiation from the Mouth. The Journal

of the Acoustical Society of America, 32(12):1613–1620, Dec. 1960. 2.1.1, 5.2.2, 5.2.2

[94] J. Manyika, H. Durrant-Whyte. Data Fusion and Sensor Management, A Decentralized

Information Theoretic Approach. Ellis Horwood Series in Electrical and Electronic Engi-

neering, Ellis Horwood, 1994. 3.2.3

[95] J. Neering, M. Bordier, N. Maizi. Optimal Passive Source Localization. In Int. Conf. on

Sensor Technologies and Applications, pages 295–300, Oct 2007. 5, 5.1.2

[96] J. O. Berger. Statistical Decision Theory and Bayesian Analysis. Springer-Verlag, second

edition, 1985. 3.2.3, 3.2.3

[97] J. P. Ianniello. Time Delay Estimation via Cross-Correlation in the Presence of Large

Estimation Errors. IEEE Transactions on Acoustics, Speech and Signal Processing, ASSP-

30(6), December 1982. 5.2, 5.2.1

[98] J. S. Abel. Optimal Sensor Placement for Passive Source Localization. International

Coference on Acoustics Speech and Signal Processing (ICASSP), 5:2927–2930, 1990. 5



BIBLIOGRAPHY 193

[99] J. S. Bendat, A. G. Piersol. Random Data: Analysis and Measurement Procedures. Wiley,

Third edition, 2000. 5.2.1

[100] J. Vermaak, A. Blake. Nonlinear Filtering for Speaker Tracking in Noisy and Reverberant

Environments. In International Conference on Acoustics, Speech and Signal Processing

(ICASSP), volume 5, pages 3021–3024, 2001. 3.1.4, 3.2.3

[101] J. Vermaak, M. Gagnet, A. Blake, P. Perez. Sequential Monte Carlo Fusion of Sound

and Vision for Speaker Tracking. In IEEE International Conference on Computer Vision

(ICCV), volume 1, pages 741–746, 2001. 3.2.3, 3.2.3, 3.2.3

[102] J. Yang, A. Waibel. A Real-Time Face Tracker. In Third IEEE Workshop on Applications

of Computer Vision, pages 142–147, 1996. 2.2.3

[103] K. Bernardin, T. Gehrig, R. Stiefelhagen. Multi-level Particle Filter Fusion of Features

and Cues for Audio-Visual Person Tracking. In Workshop on Classification of Events,

Actions and Relations (CLEAR), Baltimore, MD, USA, May 2007. 3.2.1, 3.2.3

[104] K. C. Yow, R. Cipolla. A probabilistic Framework for Perceptual Grouping of Features. In

International Conference on Automatic Face and Gesture Recognition, pages 16–21, 1996.

2.2.2

[105] K. Nickel, T. Gehrig, H. K. Ekenel, J. McDonough, R. Stiefelhagen. An Audio-Visual

Particle Filter for Speaker Tracking on the CLEAR’06 Evaluation Dataset. In Workshop

on Classification of Events, Actions and Relations (CLEAR), Southampton, U.K., April

2006. 3.2.3, 3.2.3, 3.2.3

[106] K. Nickel, T. Gehrig, R. Steifelhagen, J. McDonough. A Joint Particle Filter for Audio-

visual Speaker Tracking. In International Conference on Multimodal Interfaces (ICMI),

pages 61–68, 2005. 3.2.3, 3.2.3, 3.2.3, 3.3c, 3.2.3

[107] K. Rohr. Extraction of 3D Anatomical Point Landmarks based on Invariance Principles.

Pattern Recognition, 32:3–15, 1999. 5.1.1

[108] K. Wilson, T. Darrell. Improving Audio Source Localization by Learning the Precedence

Effect. In International Conference on Acoustics, Speech and Signal Processing, volume 4,

pages 1125–1128, 2005. 2.1.3.2

[109] G. Lathoud. Spatio-Temporal Analysis of Spontaneous Speech with Microphone Arrays.
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