
High Performance Scientific

Computing Using FPGAs for Lattice

QCD

Owen Callanan

A thesis submitted to the University of Dublin, Trinity College in fulfilment of the

requirements for the degree of Doctor of Philosophy (Computer Science)

October 2006

ii

iii

Declaration

I, the undersigned, declare that this work has not been previously submitted to this or

any other University, and that unless otherwise stated, it is entirely my own work.

Owen Callanan

Dated: 31 October 2006

iv

v

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis

upon request.

Owen Callanan

Dated: 31 October 2006

vi

vii

Summary

The recent development of large FPGAs combined with the availability of a variety

of FPGA-based non-integer arithmetic cores has made it possible to implement high-

performance matrix kernel operations on FPGAs. This thesis seeks to evaluate the

performance of FPGAs for real scientific computations by implementing lattice

Quantum Chromodynamics (lattice QCD), which is one of the classic scientific

computing problems. Lattice QCD computing machinery is the focus of considerable

research work worldwide, including two custom ASIC based solutions and a variety

of custom built PC cluster machines. This wide variety of highly optimised lattice

QCD computing machinery permits comparison with the state of the art for high

performance computing machinery.

The results presented in this thesis give significant insights into the usefulness of

FPGAs for scientific computing. This thesis also evaluates two different number

systems available for running scientific computing applications on FPGAs. FPGA

based lattice QCD processors are implemented using both double precision IEEE

floating point and logarithmic arithmetic cores with precision equivalent to IEEE

single precision floating point. The performance of the FPGA based lattice QCD

processors is compared with that of two lattice QCD targeted custom ASIC based

supercomputers, with that of commercial supercomputers and with that of some

highly optimised PC cluster based machines.

The logarithmic arithmetic designs return per FPGA performance of 1320 MFLOPS

for the performance critical lattice QCD Dirac operator, and they return 1050

MFLOPS for the full conjugate gradient solver application. The latest generation of

PC clusters return per processor performance of about 1300 MFLOPS for the Dirac

operator using single precision arithmetic. Thus the logarithmic arithmetic designs

are competitive with the latest PC cluster machines, which are the main platform for

single precision lattice QCD calculations.

The double precision designs return performance of 1200 MFLOPS for the core

viii

Dirac operator and 940 MFLOPS for the conjugate gradient solver application. This

compares very well with the double-precision per-processor performance of the latest

PC clusters at 650 MFLOPS and with the performance of the IBM BlueGene/L

supercomputer at 1100 MFLOPS per processor. BlueGene/L processors consist of an

ASIC with two CPU cores, so the per-core performance of the BlueGene/L is 550

MFLOPS. The double precision FPGA design’s performance also compares very

well with the per-processor performance of the two custom ASIC supercomputers

that have been constructed specifically for lattice QCD. The QCDOC machine has

per-processor performance of 396 MFLOPS, whilst the apeNEXT system has per-

processor performance of 894 MFLOPS. All figures are for the Dirac operator.

All current lattice QCD machines are constructed using many processors. The

computational requirements of lattice QCD are so great that they can never be met by

a single processor. To investigate the viability of multiple-FPGA based systems, a

dual FPGA version of the Dirac operator was implemented. Lattice QCD is a highly

parallelisable problem and can be implemented efficiently on multiple processor

machines. The dual-FPGA Dirac operator, which is based on the logarithmic Dirac

operator, uses a low latency communications system to allow two FPGAs to work

together on a single application of the Dirac operator. A speedup of 1.98 times is

delivered over the single FPGA design, by parallelising computation and calculation

in the dual FPGA design. This result strongly indicates that FPGAs have the

potential to form a scalable multiple processor platform for high performance

computing applications such as lattice QCD.

These three sets of results demonstrate that FPGAs can return excellent performance

for a typical high performance computing application, lattice QCD, using two

different arithmetic systems. Double precision floating point is the most commonly

used arithmetic system for high performance computing applications. This makes the

results from the double precision designs particularly significant since they

demonstrate that FPGAs can return highly competitive performance for real

scientific computing applications using double precision arithmetic. Finally the dual-

FPGA Dirac operator demonstrates that FPGAs have the potential to form a scalable

ix

multiple processor platform for high performance computing.

x

xi

Acknowledgements

Many people helped me complete this thesis, but no one did more than my supervisor

David Gregg. His advice and guidance was vital to the completion of this work, and

for this I owe him many thanks.

I would also like to thank Mike Peardon and Jim Sexton for their invaluable expert

advice and information on lattice QCD and for providing the algorithms that

provided the basis of this work. Thanks are also due to my initial supervisor, Andy

Nisbet, for seeing me through the first 2 years of my PhD.

I shared an office with several people over the last four years, and, along the way,

they helped me in many ways with my research. I would like to thank Emre Ozër for

helping me greatly in my initial efforts at publication, and also Milan Tichy for

giving me the benefit of his considerable FPGA design expertise and knowledge.

Their assistance was invaluable. I would also like to thank Ross Brennan and Eoin

Creedon for many interesting discussions and for helping me solve many tricky

problems.

I could not have started this work without the support of my parents and family, and I

certainly would never have finished it. Their support and patience helped my through

many obstacles and kept me going through difficult times. Simple thanks are not

enough, but they will have to suffice (at least for now).

Finally, above all, thanks to Eadaoin Boyle-Tobin, for everything.

xii

xiii

Contents

List of Figures xxii

List of Tables xxvi

Chapter 1 Introduction 1

1.1 FPGAs for Scientific Computing 2

1.2 Lattice QCD & Lattice QCD Machines 3

1.3 Arithmetic Systems 4

1.4 Contributions 4

1.5 Publications Related to this Thesis 5

1.6 Guide to this Thesis 6

Chapter 2 Technologies 11

2.1 FPGAs 11

2.1.1 The Alpha Data ADM-XRC II Prototyping Board 14

2.1.2 ADM-XRC-II Board Support Package 15

2.2 Hardware design languages 17

2.2.1 Handel-C 18

2.2.2 Basic use of Handel-C 19

2.2.3 Data Storage in Handel-C 21

2.3 Number Representations 22

2.3.1 Single Precision Log and Floating Point 22

xiv

2.3.2 Double Precision IEEE Floating Point 25

2.4 Summary 28

Chapter 3 Literature Survey 29

3.1 QCD and Lattice QCD 30

3.1.1 Quantum Chromodynamics 30

3.1.2 Lattice QCD 32

3.1.3 Lattice QCD Dirac operator 35

3.1.4 The conjugate gradient method 35

3.1.5 Conjugate gradient in lattice QCD 36

3.1.6 Operations and data for the lattice QCD conjugate gradient solver 38

3.2 Lattice QCD Computing Machines 40

3.2.1 Commercial Supercomputers 41

3.2.2 PC Clusters 43

3.2.3 Custom ASIC based machines – QCDOC & apeNEXT 45

3.3 IEEE Floating Point 50

3.3.1 Early History 50

3.3.2 The IEEE Floating Point Standard 51

3.3.3 Early Implementations of Floating point on FPGAs 52

3.3.4 Current State of the Art for Floating Point on FPGAs 54

3.3.5 The Future of Floating Point on FPGAs 60

xv

3.4 Logarithmic Arithmetic 65

3.4.1 Early investigations of logarithmic number systems 65

3.4.2 Towards a hardware implementation 66

3.4.3 Hardware Implementations of Logarithmic Arithmetic 68

3.4.4 HSLA Multiplication and Division 70

3.4.5 Addition and Subtraction 71

3.4.6 Accuracy and Performance of the HSLA System 72

3.4.7 Comparing LNS and IEEE floating point 72

3.5 Summary 73

Chapter 4 Algorithm Analysis 75

4.1 Performance Metrics and Considerations 75

4.2 Clock Rate and Path Delay 76

4.3 Exploiting Low Level Parallelism 78

4.4 Analysis Techniques 79

4.5 Analysis Results 79

4.6 Parallelism in the Dirac operator 81

4.7 Parallelism in the Dot Product Operator 82

4.8 Parallelism in the Matrix Add-Scale Operator 83

4.9 Summary 84

Chapter 5 Lattice QCD Using Logarithmic Arithmetic 85

xvi

5.1 Log arithmetic Dirac operator implementation 85

5.1.1 LNS arithmetic unit analysis 86

5.1.2 LNS arithmetic use in the Dirac operator 87

5.1.3 Gamma-Mul Block Design 88

5.1.4 Matrix Addition, Matrix Subtraction and Matrix Scale Designs 91

5.1.5 Dirac Operator Pipeline 92

5.2 Log arithmetic conjugate gradient solver 96

5.2.1 LNS Matrix Add-Scale and Dot Product operators 96

5.2.2 Memory Layout 97

5.2.3 Log arithmetic dot product operator 99

5.2.4 Log arithmetic matrix add-scale operator 100

5.3 Summary 101

Chapter 6 Lattice QCD Using IEEE Double Precision Arithmetic 103

6.1 Design Constraints for Double Precision Arithmetic 104

6.2 Double precision IEEE arithmetic unit analysis 105

6.3 Double precision Dirac operator implementation 106

6.3.1 Use of On-Chip Block RAM memory 107

6.3.2 The gamma-mul pipeline stage 108

6.3.3 Addition stage 111

6.3.4 Data storage and layout 114

xvii

6.3.5 Resource utilisation reduction 115

6.4 Double precision conjugate gradient solver 116

6.4.1 Double precision matrix add-scale operator 116

6.4.2 Double precision dot-product operator 116

6.5 Summary 117

Chapter 7 Dual FPGA Dirac Operator 119

7.1 Partitioning the Dirac operator algorithm 119

7.2 Communications requirements of the Dirac operator 120

7.3 Hardware Infrastructure 122

7.4 Existing Inter-FPGA Communications Systems 122

7.5 Source Synchronous Communications 124

7.6 Implementing the design 126

7.6.1 FIFO queues and Handel-C 126

7.7 Communications protocol 129

7.8 Communication difficulties 131

7.8.1 Errors in the communication system 131

7.8.2 Solving the communication problems 132

7.9 Summary 134

Chapter 8 Results 135

8.1 Correctness testing 135

xviii

8.2 Performance measurement methodology 136

8.3 Log arithmetic implementation results 139

8.4 Double precision implementation results 141

8.4.1 Effect of problem size on double precision FPGA performance 145

8.5 Dual FPGA implementation results 146

8.5.1 Measuring performance for the dual FPGA Dirac operator 146

8.5.2 Performance Results 147

8.5.3 Scalability Comparisons 148

8.6 Notes on comparing performance of lattice QCD machines 151

8.7 Summary 153

Chapter 9 Final Thoughts 155

9.1 The Suitability of FPGAs for High Performance Computing 155

9.2 Contributions of this Thesis 156

9.3 Limitations of This Work and Suggestions for Future Work 158

9.4 Conclusion 160

Appendix A Pipelined Use of Arithmetic Units A-1

A.1 Gamma Functions A-1

A.2 Multiply Functions A-4

A.3 Combining Gamma and Multiply Functions A-8

Appendix B Clock Rate Improvement Example B-1

B.1 Sources of Delay B-1

xix

B.2 Delay in the Dirac Pipeline Control Structure B-2

B.3 Pipelining the SITE Calculation B-4

B.4 Modulus Operator Elimination B-5

B.5 Changing to DK3 B-6

B.6 Final Clock Rate Optimisation B-7

Appendix C Conjugate Gradient Operator Source Code C-1

C.1 Main.c C-3

C.2 Latops.c C-5

C.3 Ops.c C-9

C.4 Gamma.c C-16

C.5 Ran.c C-27

C.6 Qcddefs.h C-38

C.7 Qcdtypes.h C-39

Appendix D Handel-C code for double precision conjugate gradient

implementation D-1

D.1 Main.hcc D-3

D.2 Gamma.hcc D-11

D.3 CG_ops.hcc D-41

D.4 SRAM_functions.hcc D-53

D.5 Types.hch D-80

D.6 Variables.hch D-82

xx

Appendix E Layout on FPGA of double precision Dirac operator E-1

References I

xxi

xxii

List of Figures

Figure 2-a. Logical diagram of the ADM-XRC-II development board showing the

connection of the Virtex-II FPGA to the PCI bus, off-ship SRAM memory and other

off-chip components [Alpha-Data '05]... 12

Figure 2-b. The ADC-PMC carrier card used in this work, with a single ADM-XRC-

II development card fitted. ... 14

Figure 2-c. Use of Handel-C par{} block to specify parallelism 19

Figure 2-d. A complex expression causing a low clock rate...................................... 19

Figure 2-e. Pipelined and parallelized Handel-C loop ... 20

Figure 3-a. The three types of hadrons that can exist in nature; Mesons, Baryons and

Glueballs [Davies '00]. ... 31

Figure 3-b. A lattice calculation showing how the strength of force develops as you

pull a quark and an anti-quark apart, which prevents them escaping from one another

[Davies '03]. ... 32

Figure 3-c. Diagram showing how a lattice is used to simulate space and time around

a hadron. The lattice must be larger than the hadron in all dimensions. A lattice with

more points (the lattice on the right) will give a more accurate result but will take

more computer time to simulate... 33

Figure 3-d. Main loop of lattice QCD conjugate gradient solver............................... 37

Figure 3-e. SGI Altix Architecture [Wettig '05] .. 42

Figure 3-f. The construction of a large BlueGene/L supercomputer 43

Figure 3-g. The design of a single QCDOC processor .. 46

Figure 3-h. The structure of a large apeNEXT machine. ... 48

xxiii

Figure 3-i. Structure of the IEEE floating point word ... 51

Figure 3-j. A diagram of the embedded floating point FPGA architecture proposed by

Beauchamp et al [Beauchamp '06a]. .. 62

Figure 3-k. A diagram of the new CLB structure proposed by Beachamp et al

[Beauchamp '06b]. A 4:1 MUX has been added to the CLB to improve performance

of the variable shifters required for floating point arithmetic 64

Figure 4-a. An example of an un-pipelined circuit with a large logic delay.............. 77

Figure 4-b Pipelined version of the circuit shown in Figure 4-a. 78

Figure 5-a. Source code for a complex number matrix multiply routine. This code,

combined with a gamma operation makes up a gamma-mul block 89

Figure 5-c. Operand issue and result retrieval function used to implement matrix

addition in the Dirac operator pipeline... 91

Figure 6-a. The architecture of the double precision Dirac operator. A diagram of the

design of the gamma-mul blocks is inset. .. 109

Figure 8-a. Performance of log arithmetic FPGA design and comparable systems 140

Figure 8-b. Performance of double precision Dirac operator and comparable systems

.. 143

Figure 8-c. Floating Point operations performed per cycle by various lattice QCD

systems ... 144

Figure 8-d. Effect on performance of increasing problem size for the double

precision FPGA designs. Performance is constant for problem sizes larger than 64.

.. 145

Figure 8-e. Performance of single & dual FPGA Dirac operators........................... 147

Figure 8-f. Scaling properties of lattice QCD targeted PC clusters. Performance is for

xxiv

single precision arithmetic. Reproduced from [Holmgren '06]................................ 148

Figure 8-g. Scalability of the QCDOC machine .. 150

Figure 9-a. Layout of FPGA when programmed with the double precision Dirac

operator design from Chapter 6. Each of the blocks of colour is one of the arithmetic

units, the light green colour is the general application logic. Any grey areas represent

logic that is not used in the design. .. E-2

xxv

xxvi

List of Tables

Table 2-a. Comparison of the resource requirements of two log arithmetic adder

pipelines and a comparable IEEE floating point adder pipeline 23

Table 2-b. Comparison of the log arithmetic multiplier and a comparable IEEE

floating point multiplier ... 24

Table 2-c. Comparison of the resource requirements of the log arithmetic divider and

a comparable IEEE floating point divider.. 25

Table 2-d. Comparison of double precision adders.. 27

Table 2-e. Comparison of double precision multipliers ... 27

Table 2-f. Comparison of selected dividers ... 27

Table 3-a. Area in silicon of three FPGA components. One unit is the area required

for a single FPGA slice. ... 72

Table 4-a. Arithmetic operations per site for lattice QCD operations 79

Table 4-b. Memory characteristics and arithmetic operation distribution for lattice

QCD operations.. 80

Table 5-a. Memory bandwidth requirements per site update for Dirac operator 94

Table 8-a. Floating point operations per site for the lattice QCD operators. 138

Table 8-b. Performance of the log arithmetic designs ... 139

xxvii

Table 8-c. Performance of the double precision FPGA implementations 142

1

Chapter 1

Introduction

Scientific computing has an insatiable appetite for processing power. For several

decades computers have been used to investigate natural phenomena such as fluid

dynamics, particle simulations and even the weather. By simulating these phenomena

using computer simulations we can gain a greater understanding of how the

underlying systems work, and predict the future behaviour of these systems.

The use of computers in science is not restricted to simulating the known behaviour

of natural phenomena. A significant branch of scientific computing has developed

where computer simulations are used to test mathematically expressed scientific

theories that are too complex to be proven by solving the equations of the theory, and

which cannot be proven by experimental observation.

This technique is used heavily in a particular branch of sub-atomic particle physics

theory called quantum chromodynamics, or QCD. QCD theory attempts to explain

the behaviour of sub-atomic particles called quarks, which are the basic components

of particles like protons and neutrons. However quarks can never actually be

observed on their own as they are always bound together inside a larger particle. This

makes QCD theory impossible to verify through experimental observation alone.

As a result, physicists have turned to using computer simulations to simulate their

theories about how quarks behave. By comparing the results of these simulations to

the results obtained from experiments conducted using large particle colliders, such

as those at CERN and Fermilab, physicists can test QCD theory. This use of

2

computer simulations to test QCD theory is commonly referred to as lattice QCD.

The computational requirements of these lattice QCD simulations are very large. The

latest generation of dedicated lattice QCD computing machines have sustained

performance for a single problem of several Teraflops (1012 floating point operations

per second). With these machines physicists are able to test QCD theory more

rigorously than ever before. Yet even these machines are not enough; the lattice

QCD community is already discussing how to build Petaflop (1015 floating point

operations per second) scale machines.

Lattice QCD is only just one of many scientific computing applications which have

huge computational requirements, but it provides an excellent example application

for testing the performance of a new computing platform for scientific computing. In

common with many scientific computing applications, it is matrix based, and is

highly parallelisable. Also a significant amount of research effort has been spent on

developing dedicated lattice QCD computing machinery, including two custom-

ASIC based supercomputers [Belletti '06][P A. Boyle '05]. Commercial

supercomputers and PC clusters are also used extensively for lattice QCD. These

lattice QCD machines represent the state of the art of scientific computing

machinery.

1.1 FPGAs for Scientific Computing

FPGAs, or field programmable gate arrays, are dynamically reprogrammable

microchips that can be programmed to take on the behaviour of any digital circuit.

They can be used to implement processors that are customised to the specific needs

of an application, without the prohibitive expense and design complexity of

producing a custom application specific integrated circuit (ASIC). FPGA based

processors have been used successfully for some time for integer and fixed-point

arithmetic domain applications such as digital signal processing. Designers are able

to exploit the inherent parallelism available on an FPGA to implement processors

that return excellent performance for these applications.

Historically FPGAs have not been large enough to support a significant number of

3

floating arithmetic units on a single FPGA, which has limited the use of FPGAs for

scientific computing. However recent multi-million gate equivalent FPGAs make it

possible to implement complex, high-performance designs incorporating floating

point arithmetic. Investigating the use of FPGAs for high performance scientific

computing is now a significant branch of reconfigurable computing research

[Underwood '04b][Zhuo '04].

This thesis investigates the performance of FPGAs for full floating-point based

scientific applications by implementing the lattice QCD Dirac operator, which is the

performance critical part of nearly all lattice QCD simulations. The operator is used

to implement a full lattice QCD conjugate gradient solver. The performance results

of these implementations are compared with the performance of a number of

platforms currently used for lattice QCD simulations.

1.2 Lattice QCD & Lattice QCD Machines

Improving the performance of lattice QCD is the focus of considerable research work

worldwide [Wettig '05], including two competing custom ASIC supercomputers

targeted solely at lattice QCD simulations [Belletti '06][P A. Boyle '05]. Several

groups are also investigating optimizing PC clusters for lattice QCD, [Gellrich

'03][Holmgren '05a][Holmgren '05b][Holmgren '06]. Lattice QCD has also been

implemented on the latest generation of commercial supercomputers including the

IBM BlueGene/L and the SGI Altix machines [Wettig '05]. This considerable body

of research allows a comparison of the performance of the FPGA based solution with

the state of the art for scientific computing.

The core of lattice QCD is the Dirac operator, a large complex floating-point

intensive matrix computation. Although the performance of the Dirac operator is

central, lattice QCD involves other operations which can have a significant impact on

performance. The impact of these operations is investigated by implementing a full

example application, a lattice QCD conjugate gradient solver which uses the Dirac

operator.

The computational requirements of lattice QCD are too great to be met by a single

4

processor. Machines used for lattice QCD consist of many processors connected

together to work on the same problem. For example one QCDOC machine, an

example of the custom ASIC supercomputers mentioned previously, consists of

12,288 interconnected custom ASIC processors, which can all work together on the

same problem. Such a machine can sustain over five teraflops (1012 floating point

operations per second) on actual lattice QCD simulations. Consequently a single

FPGA will never be sufficient to meet the demands of a full lattice QCD simulation.

I have implemented a dual-FPGA version of the core Dirac operator to investigate

whether multiple FPGA based systems are good for lattice QCD.

1.3 Arithmetic Systems

This thesis also aims to compare the suitability of different non-integer arithmetic

systems for high performance computing applications on FPGAs. A comparison of

logarithmic arithmetic and IEEE double precision floating point is presented. This

comparison is used to identify the strengths and weaknesses of both arithmetic

systems when used for real high performance scientific computing applications.

Logarithmic arithmetic is very different to conventional IEEE floating point, and

thus has very different constraints when used for real applications.

Performance results are presented for both log arithmetic and IEEE double precision

arithmetic versions of the full conjugate gradient solver along with results for the

component parts of the conjugate gradient application. These results include

performance data for the performance critical Dirac operation. A quantitative

comparison is also presented with three categories of lattice QCD systems: ASIC-

based processors designed exclusively for lattice QCD, highly optimised PC cluster

systems and finally commercial supercomputers. Finally results are presented for a

dual-FPGA Dirac operator. These results show that parallelisation of calculation and

inter-FPGA communication can maximise performance for multiple-FPGA systems.

1.4 Contributions

This thesis evaluates the viability of FPGAs for real scientific computing

applications by implementing FPGA designs that are customised to the needs of a

5

specific, highly demanding, application, lattice QCD.

• Performance of FPGAs for Scientific Computing

The performance of FPGAs is evaluated for a typical, full scientific

computing application, lattice QCD. Lattice QCD computing machinery is

the focus of a substantial amount of research effort worldwide. By comparing

the results obtained from the work described in this thesis with this body of

research I am able to give significant insights into the performance of FPGAs

for scientific computing.

• Arithmetic Systems for FPGAs

In this thesis performance critical lattice QCD algorithms are implemented

for both single precision equivalent logarithmic arithmetic and IEEE

compliant double precision floating point. The results of these

implementations show the advantages and disadvantages of each arithmetic

system when applied to scientific computing applications. Also the double

precision implementations are amongst the first FPGA-based

implementations of double precision scientific computing applications whilst

the logarithmic arithmetic designs are the first successful use of log

arithmetic for scientific computing.

• Multiple FPGA processing for scientific computing

The final stage of this work implements a dual FPGA version of the

performance critical Dirac operator. This work demonstrates that two FPGAs

can work together on the same problem, and can return excellent

performance. The result shows that FPGAs have the potential to be used as

the basis for highly parallel scientific computing machines that consist of

multiple FPGAs.

1.5 Publications Related to this Thesis

The work presented in this thesis has been published in IEEE sponsored international

6

conferences. The implementation of the logarithmic arithmetic Dirac operator,

described in Chapter 5, was previously presented at the 12th Reconfigurable

Architectures Workshop, which was held as part of the 19th IEEE International

Symposium on Parallel and Distributed Processing in 2005 [Callanan '05]. The work

described in this paper is the authors own work. The other authors contributed to the

paper in the following ways: Jim Sexton provided the original lattice QCD algorithm

along with information and expertise on lattice QCD, Emre Ozër aided the work at

the design stages and played a significant role in writing the final paper, whilst Andy

Nisbet and David Gregg both supervised my PhD studies. Andy Nisbet was my

original supervisor when this work commenced, however after Andy Nisbet left his

position in Trinity College, David Gregg took over as supervisor.

The double precision Dirac operator and conjugate gradient solvers detailed in

Chapter 6 were presented at the IEEE sponsored 16th International Conference on

Field Programmable Logic and Applications in 2006 [Callanan '06]. The logarithmic

arithmetic conjugate gradient solver, along with an improved version of the

logarithmic arithmetic Dirac operator, was also presented at this conference. The

work described in this paper is the authors own. The contributions of the credited

authors are as follows: Mike Peardon provided the conjugate gradient application

along with lattice QCD expertise, and once again David Gregg and Andy Nisbet are

credited for their roles in supervising the PhD work.

1.6 Guide to this Thesis

Chapter 2

This chapter presents background information on the systems and technologies used

in the work. This information is presented to aid understanding of the work

performed for this thesis. An overview of FPGA technology is presented, together

with a description of the FPGA development boards used to implement the designs I

created for this thesis. Also presented are details of the two arithmetic systems used,

logarithmic arithmetic and IEEE floating point arithmetic.

Chapter 3

7

A comprehensive review of the literature is contained in this chapter, starting with a

discussion of what quantum chromodynamics (QCD) theory attempts to explain and

why computer simulations must be used to test this theory. The application of

computer simulations to test QCD theory is called lattice QCD. A number of articles,

written for a general audience by QCD experts, are used to help with this

explanation.

 A survey of the state of the art of lattice QCD machinery is then presented. Three

categories of machine are used for lattice QCD simulations; custom ASIC based

supercomputers, commercial supercomputers and PC clusters. All three categories

are discussed in detail.

The chapter concludes with a detailed history of the two arithmetic systems used in

this work, combined with a review of recent FPGA research into both systems. The

first system reviewed is IEEE double precision floating point arithmetic. The history

of floating point arithmetic is presented together with a description of the IEEE

floating point standard. The development of FPGA based floating point arithmetic is

then presented, up to the most recent investigations of common scientific computing

kernels for FPGAs using double precision arithmetic.

The second arithmetic system reviewed is logarithmic arithmetic, which is used as an

alternative arithmetic system in this work. The concept of logarithmic arithmetic has

existed for some time; however it is only now with the availability of FPGA

implementations of the system that it is viable for use on real applications. The

history of the logarithmic arithmetic system is described, up to the latest FPGA

implementation of the logarithmic arithmetic system that is used in this work.

Chapter 4

A detailed algorithm analysis is the subject of this chapter. The analysis is presented

separately since it is relevant to all three implementation chapters that follow. The

core lattice QCD Dirac operator is analysed in detail, opportunities for parallelisation

are identified, and the memory bandwidth requirements of the operator are described.

The analysis is then repeated for the conjugate gradient solver application, and for

8

the extra operations that it requires. This analysis formed a vital input to the designs

presented in the next three chapters.

Chapter 5

The design and implementation of the first of the three main components of this

thesis is discussed in this chapter. This part of the work consists of an FPGA based

Dirac operator implementation which uses logarithmic arithmetic for all non-integer

arithmetic. This work was then used to produce a full lattice QCD conjugate gradient

solver on an FPGA. These implementations are the first use of logarithmic arithmetic

on FPGAs for high performance computing problems. Consequently the performance

of these designs offers significant insight into the suitability of FPGA based

logarithmic arithmetic for scientific computing.

Chapter 6

The initial stage of this work, detailed in Chapter 5 used logarithmic arithmetic to

handle all non-integer arithmetic. Logarithmic arithmetic was partly chosen because

of the limited availability of conventional IEEE floating point arithmetic cores at the

start of the project. However during the project double precision floating point cores

became available for FPGAs. Users of lattice QCD prefer double precision

arithmetic since it gives a more accurate result, however single precision arithmetic

can be used, with some algorithmic adjustments to compensate for the lower

precision.

Double precision is the standard arithmetic system for scientific computing, single

precision does not have sufficient range or precision for many scientific computing

applications. Thus the results of an investigation of double precision floating point

are applicable to the full range of scientific computing applications. To investigate

the performance of double precision floating point arithmetic on FPGAs, double

precision versions of the lattice QCD algorithms were implemented.

The designs detailed in this chapter provide important insights into the performance

of double precision floating point arithmetic on FPGAs when used for complete

9

applications. The prior work on double precision floating point arithmetic on FPGAs

has been primarily concerned with matrix kernel operations, and there has been little

work on full applications.

Chapter 7

Lattice QCD calculations have massive computational requirements which cannot be

met by single processor machines. However lattice QCD simulations are highly

parallelisable and can be run successfully on massively parallel machines. All

machines currently used for lattice QCD simulations are highly parallel multiple

processor machines, which can use many processors on a single calculation. It is

highly unlikely that a single FPGA lattice QCD machine will ever have sufficient

computational power for full lattice QCD simulations.

This chapter details the design and implementation of a bi-directional FPGA

communication system, and its use to implement a dual FPGA version of the

logarithmic arithmetic Dirac operator that was presented in Chapter 5. This dual

FPGA Dirac operator has nearly twice the performance of the single FPGA version.

The performance critical Dirac operator takes up over 90% of the time in lattice

QCD simulations and requires only nearest neighbour communications when

implemented on multiple processor machines. Consequently the results for this part

of the work demonstrated that FPGAs have the potential to be a scalable platform for

lattice QCD simulations

Chapter 8

This chapter presents performance results for the three parts of this work and

compares these results with the performance of each of the three categories of

machines that are used for lattice QCD simulations, which are described in Chapter

3. Much research effort is devoted to developing computing machinery for lattice

QCD simulations and, as a result, these machines can be taken to represent the state

of the art for scientific computing machinery. By comparing the performance of my

FPGA based designs with these systems I am able to offer significant insights into

10

the performance of FPGAs for scientific computing applications.

Chapter 9

In the last chapter a number of issues raised by the results presented in this thesis are

discussed, and the thesis concludes with a summary of the contributions of my work,

and together with an outline of some interesting areas for future work.

11

Chapter 2

Technologies

This chapter presents background information on the technologies and tools that

were used to complete this work. A brief overview of FPGAs and the specific

architectural features of the FPGAs used in this work are presented. This is followed

by a description of the FPGA development platforms used to implement the designs

in hardware. The designs in this thesis were implemented using Handel-C which is a

hardware design language that offers a higher level of abstraction than existing

FPGA design tools such as VHDL or Verilog. The development and history of

Handel-C is discussed, along with its advantages over more conventional hardware

design tools. Some basic examples of Handel-C code are included to show how

Handel-C is used for FPGA design. Finally the two packages of non-integer

arithmetic cores that are used are discussed, and they are compared with examples of

equivalent floating point units that are taken from the literature.

2.1 FPGAs

FPGA stands for field programmable gate array. FPGAs are a category of

programmable logic devices, or PLDs, that can be programmed in the field (hence

the name) after manufacture. The devices themselves consist of an array of logic

cells which can be programmed and connected together to implement complex

digital circuits in hardware. There are a number of different types of logic cell on

current FPGAs. They are:

12

• Slices (containing two flip flops and two small look up tables)

• Block RAMs

• Hardware Multipliers

• IO Blocks

Figure 2-a. Logical diagram of the ADM-XRC-II development board showing the
connection of the Virtex-II FPGA to the PCI bus, off-ship SRAM memory and other

off-chip components [Alpha-Data '05]

13

 Slices are the most basic type of logic cell and are the foundation of FPGA

technology. The flip-flops in a slice are used to implement register storage and the

look-up tables are mainly used to implement logic, such as multipliers, adders or

shifters. On recent generations of FPGAs the small look up tables can also be used to

construct small on-chip RAMs called distributed RAMs. These distributed RAMs are

an efficient storage mechanism for small arrays of data in an FPGA based design.

Recent FPGAs, such as the Xilinx Virtex-II used in this thesis, include two other

types of logic cell; 18×18 bit hardware multipliers, and dual-ported RAMs, called

block RAMs. Integer multipliers consume a lot of FPGA resources when constructed

using conventional slices. The hardware multipliers provide a more efficient way to

multiply integers on-chip. The block RAM cells are small 18 kilobit RAMs that are

available for on-chip storage of data, and they substantially improve the data storage

capacity of modern FPGAs. Sophisticated Input/Output blocks are the final type of

logic cells. These cells connect the pins of the FPGA chip to the FPGA logic, and

They support many different IO standards allowing FPGAs to communicate with

many different devices.

FPGAs allow system designers to get the benefits of customising their processor

architecture to the needs of their application, without the significant cost and risk of

producing their own custom application specific integrated circuit (ASIC) chip. The

non-recoverable engineering costs associated with a designing and producing a new

ASIC chip grow with each new generation of silicon technology. The non-

recoverable engineering cost for the latest 65nm silicon fabrication technology is

now in the order of millions of dollars. For a chip using this technology to be

commercially successful the manufacturer must sell a very significant number. So for

small volume production custom ASIC chips are getting less and less attractive.

Meanwhile these improvements in process technologies are making FPGAs larger,

faster, cheaper and more capable than ever. Consequently FPGAs are becoming more

and more attractive for a wide variety of fields where a custom ASIC processor

would be technically beneficial but not financially viable. One such area is high

performance computing.

14

FPGAs give system designers access to significant levels of fine-grain instruction

level parallelism and this parallelism has long been used to improve performance for

application areas such as digital signal processing (DSP). FPGAs have been widely

used to accelerate integer and fixed-point domain applications for some time.

However, due to the significant device resources required by floating point

arithmetic units, FPGAs have previously been too small to use for floating point

calculations. FPGAs are now available that are large enough to support a significant

quantity of floating-point arithmetic units on a single-chip. This raises the possibility

of exploiting the parallelism of FPGAs for high performance computing applications.

2.1.1 The Alpha Data ADM-XRC II Prototyping Board

The designs in this work are implemented in hardware using FPGA prototyping

boards supplied by Alpha-Data [Alpha-Data '05]. The boards used are Alpha-Data

Figure 2-b. The ADC-PMC carrier card used in this work, with a single ADM-XRC-
II development card fitted.

15

ADM-XRC II boards. The ADM-XRC II board is also re-sold by Celoxica as the

RC2000 prototyping board [Celoxica '06]. The ADM-XRC II board provides a large

FPGA along with up to eight banks of off-chip SRAM memory for storing

application data. The boards used in this thesis have six banks of SRAM memory

each, providing a total of 12 or 24 Mega-Bytes of memory.

The boards themselves fit on to a ADC-PMC carrier card, which is a 64-bit PCI card

that fits into a standard PCI slot in a PC computer. Figure 2-b shows an ADC-PMC

card with one ADM-XRC-II card fitted to it. The ADC-PMC card can hold two

ADM-XRC-II cards; the spare location can be seen at the front end of the card shown

in Figure 2-b marked with “PMC 2”. A second ADM-XRC-II card was fitted to this

location for the dual FPGA part of this work. The dual FPGA implementation is

detailed in Chapter 7. The carrier card can accept up to two ADM-XRC II boards,

each with their own FPGA and memory banks. Both boards connect to the host

computer’s PCI bus through the carrier card. The ADM-XRC II boards used for this

work have 6 banks of SRAM memory, and have a six million gate equivalent Xilinx

Virtex II FPGA, a XC2V6000FF1152.

The carrier card provides an interconnection between two boards mounted on it. This

interconnect was used to build the dual FPGA implementation of the FPGA based

Dirac operator. The interconnection consists of 64 wires which can be used by a

number of different communications protocols. The choice of communications

protocol, which is made by the application designer, depends on the requirements of

the application.

2.1.2 ADM-XRC-II Board Support Package

A package consisting of a software application programming interface (API) and a

set of hardware macros is supplied with the ADM-XRC-II prototyping board. This

gives the designer the ability to do the following:

• Transfer data between the host computer and the SRAM banks.

• Access the SRAM banks from within an FPGA design.

16

• Perform a blocking transfer of 32-bit data words between the FPGA and

the host computer. This can be used to synchronise the host computer

program with the FPGA design, since neither FPGA nor host can

continue until the transfer is complete.

The API is used to write a software program - the host program - that runs on the

host computer. The host computer programs the FPGA and manages data transfer to

and from the FPGA and its SRAM banks. Hardware macros are included in the

FPGA design that allow the host program to access the SRAM banks attached to the

FPGA.

All FPGA to host communication is performed over the host computer’s PCI bus, to

which the ADM-XRC II FPGA board is connected through the carrier card. The

ADM-XRC II board includes a PLXPCI chip which handles the complex logic

required to interface to a PCI bus. The PLXPCI chip then interfaces with the FPGA

design. This eliminates any need for an on-FPGA PCI controller, saving significant

FPGA resources. The FPGA to PLXPCI interface logic is quite simple, and is

included in the board support package. The Handel-C board support package ensures

that the SRAM banks are clocked correctly and handles all data transfer between the

host computer and the FPGA and its software.

The SRAM banks cannot be accessed simultaneously by both the host computer and

the FPGA design. The status register must be used to synchronise the host and FPGA

so that only one accesses the SRAMs at any given time. The following is an outline

of the steps taken by a host program running an FPGA design on an ADM-XRC II

board:

• Host program sets clocks and loads FPGA design.

• FPGA design performs a blocking status register read, stalling until the host

writes to the status register. The FPGA does not access the SRAMs until after

it has performed a successful read of the status register.

• Host transfers data to SRAM banks and then writes to the status register.

17

• FPGA reads the status registers and then begins calculation.

• Meanwhile, host performs a blocking status register read stalling the host

until the FPGA writes to the status register

• Once the calculation is completed the FPGA writes to status register, the host

is now free to read the result from SRAM

This basic scheme prevents simultaneous access to the SRAMs and is the scheme

used for the designs in my work. My designs require little FPGA to host

communication once the calculation is running making the simple host program

sufficient for my needs.

2.2 Hardware design languages

In recent years, a number of higher level hardware description languages have been

developed as an alternative to the traditional languages of Verilog and VHDL. Each

type of tool has a domain of design types to which it is suited. High level languages

are better suited to algorithmic hardware implementations whereas conventional

HDLs are better suited to lower level more structural designs. This gives high level

tools a number of advantages:

• Support for Rapid Prototyping. The time required to generate a working

prototype design in a higher level language is significantly less than for

conventional tools.

• Higher Level of Abstraction. Conventional HDLs such as VHDL are very

detailed which is very useful for structural designs. Algorithmic

implementations are more difficult in these tools as the design rapidly

becomes unwieldy and complex. Higher level hardware languages help

designers manage complexity in such designs.

These benefits lead to some disadvantages however. The main disadvantage is the

relative immaturity of the tools; higher level hardware design languages are quite

new and the quality of their development environments is far behind the

18

development tools for VHDL or Verilog. A good example is the difficulties

designers face when trying to use third party Intellectual Property (IP) with Handel-C

designs. It is very common for FPGA designs to include a number of precompiled

pieces of logic called hardware macros. These hardware macros give designers

access to a large library of highly optimised designs.

A very large number of “black box” hardware macros with associated simulation

files are available for VHDL/Verilog design tools, however whilst the hardware

macros can be easily integrated into a Handel-C design, the Handel-C simulator

cannot use the VHDL/Verilog simulation files. It is thus very difficult to simulate

Handel-C designs that make use of external hardware macros. The DK environment

provides a proprietary simulation mechanism for simulating external hardware

macros, but since Handel-C is new, very few hardware macros supply accompanying

Handel-C simulator files.

2.2.1 Handel-C

Handel-C is a hardware development language based on the concept of

communicating sequential processes (CSP) [Hoare '85]. CSP allows the description

of systems that consist of multiple sequential components which are executed in

parallel. Communication and synchronisation between the processes are provided by

a synchronous message passing system.

Occam is a programming language that is based around the CSP model [INMOS.

'84]. Occam provides channels that are used to communicate between parallel

processes. Handel-C is a development of the Occam language and its structure is

derived from that of Occam. Handel-C provides synchronous communication

channels and the ability to specify that code segments be performed sequentially or

in parallel.

The syntax of Handel-C is heavily derived from that of the C language. C syntax was

chosen as a base for Handel-C syntax since it is a popular and familiar language. The

syntax is adapted with some additions that allow it to address the specific

architecture of FPGAs. The most significant additions are the ability to specify

19

parallelism, the ability to specify the size in bits of all variables used in the design

and the provision of synchronous channels for communicating between parallel parts

of the design. Handel-C can be compiled for the cycle accurate Handel-C simulator

or for hardware by compiling it into an EDIF net-list, which is placed and routed for

an FPGA using the FPGA manufacturer’s place and route tools. The Handel-C

compiler can also convert Handel-C source code to VHDL or Verilog source code.

2.2.2 Basic use of Handel-C

unsigned int 13 a, b, c, d, e, f, z;

par{

 a=a*b;

 y=c*d;

 z=e*f;

}

Figure 2-c. Use of Handel-C par{} block to specify parallelism

 This section introduces the most important aspects of Handel-C and demonstrates

how they are used for FPGA design. The designer must the width in bits of all

variables in Handel-C at compile time. This allows the designer to save significant

FPGA resources by keeping variables as small as possible. For example Boolean

values can be stored using one bit variables, instead of the full 32 bits that are used in

software. Distinct FPGA hardware is created for each variable declared in a Handel-

C design; they are not automatically reused like a processor register. The code in

Figure 2-c shows the declaration of several thirteen bit wide unsigned integer

variables.

unsigned 64 a[1000], b[1000], c[1000];

unsigned 16 beta;

unisgned 8 x;

for(x=0; x<1000; x++){

 a[x] = a[x] + (b[x] * (c[x] * (unsigned 32)(0 @ beta)));

}

Figure 2-d. A complex expression causing a low clock rate

 Every assignment in Handel-C requires one clock cycle to execute. The exception is

when statements are placed within a par block. The Handel-C par construct is the

20

principal tool for exploiting parallelism in a Handel-C design. Statements grouped

within a par block are performed in parallel with each statement using separate

hardware. Figure 2-c shows three multiplications performed in parallel in a single

clock cycle using a par block. In essence, a par block specifies a fork-join model of

parallel computation.

If the par block were removed from Figure 2-c the multiplications would take three

cycles to complete. Removing the par block would not reduce resource requirements

however since separate hardware would still be used for each of the three

multiplications. A function or a shared expression could be used to perform the three

multiplications using the same hardware on three subsequent cycles. This would

lower the resource requirements of the design.

unsigned 64 a[1000], b[1000], c[1000];

unsigned 64 ct, bt;

unsigned 16 beta;

unisgned 8 x;

ct = c[0] * (unsigned 64)(0 @ beta);

par{

 bt = b[0] * ct;

 ct = c[0] * (unsigned 64)(0 @ beta);

}

x=0;

while(x<1000){

 par{

 a[x] = a[x] + bt;

 bt = b[x+1] * ct;

 ct = c[x+2] * (unsigned 64)(0 @ beta);

 x++;

 }

}

Figure 2-e. Pipelined and parallelized Handel-C loop

 Figure 2-d shows a code fragment where every item in an array must be updated.

However the update logic is complex, and causing a slow clock rate. The poor clock

rate can be improved by splitting the update into several steps. These steps can be

parallelised using pipelining, as shown in Figure 2-e. By splitting the single complex

assignment into three stages the clock rate of the design has improved significantly,

and since the three stages are pipelined, the number of cycles required to update the

array has not increased significantly. The code in Figure 2-e has also significantly

21

improved performance by updating the loop counter in parallel with the loop body,

whereas in Figure 2-d it is updated sequentially.

2.2.3 Data Storage in Handel-C

Most FPGA designs cannot store all their data in register type storage; usually some

form of array type storage is required. FPGAs provide three types of array storage;

arrays of registers, distributed RAM and block RAM.

Register arrays

Register arrays are constructed from sets of registers and are the most flexible type of

array storage, since there are no parallel access restrictions except that only one write

can be made to each element in a single clock cycle. However they also consume far

more resources than either of the RAM storage types, due to the multiplexers

required to control access to the array. Arrays of registers should not be used except

when absolutely necessary, or when the arrays involved are very small (around four

to six elements).

Distributed RAM

Distributed RAM is constructed only from LUTs and uses no flip flops at all (see

section 2.1 for an explanation of FPGA technology). Distributed RAM uses

substantially less FPGA resources compared with register arrays, but at the cost of a

restricted number of possible parallel accesses. Distributed RAM can be either single

or dual ported. Single ported RAM only allows one access (either a read or a write)

to the entire RAM per clock cycle. Dual ported RAM is created using two identical

parallel distributed RAMs, so it is a less efficient storage mechanism than single

ported RAM. Dual ported distributed RAM allows two reads or one read and a write

per cycle. It is not possible perform two writes to a dual ported distributed RAM in a

single clock cycle.

Block RAM

Block RAM is constructed using the on-chip 18-kilobit block RAMs that are part of

recent Xilinx FPGAs, starting with the Virtex II family. Block RAM is true dual

ported RAM, in that it allows two operations of any type, including two writes, per

22

cycle. The dual porting of block RAM has no extra cost, as is the case for dual ported

distributed RAM.

Access to block RAM is through a one cycle pipeline. To read data from a block

RAM the data address is presented to the block RAM, which then writes the data into

output registers attached to the block RAM ports. Thus the data is available for use in

the next clock period. This one cycle pipeline makes block RAM access more

complicated than accessing distributed RAM, which has single cycle access

characteristics. To hide this complexity Handel-C clocks block RAMs using a double

speed clock, which makes the block RAMs seem to have single cycle access

characteristics. Unfortunately this tends to severely limit the clock rate of Handel-C

designs that use block RAMs. Later versions of Handel-C include a compiler

optimisation that converts block RAMs to pipelined access if data is only read from a

block RAM into a single register that is not written to from anywhere else in the

design. This optimisation improves clock rate significantly for Handel-C designs that

use block RAM.

2.3 Number Representations

IEEE floating point is the standard approach for performing non-integer calculations

and is implemented on most commodity processors. Log arithmetic, also frequently

referred to as the Logarithmic Number System (LNS), is an alternative approach to

these calculations that uses fixed point logarithms to represent non-integer numbers.

Log arithmetic requires vastly fewer resources for multiplication and division

compared with IEEE floating point but addition and subtraction become significantly

more complicated. When this project began there were no available options for

performing conventional floating point on FPGAs, however log arithmetic was

available for use on the project. Consequently it was decided to investigate this

system.

2.3.1 Single Precision Log and Floating Point

The logarithmic arithmetic designs use commercial LNS cores from the High-Speed

Logarithmic Arithmetic system (HSLA) by Matousek et al [Matousek '02]. These are

32-bit logarithmic cores, which support the full range of exceptions from the IEEE

23

floating point standard. The cores are highly-optimized for both performance and

space.

Table 2-a, Table 2-b and Table 2-c show the resource requirements of the LNS

adder, multiplier and divider respectively compared with the requirements for

comparable IEEE arithmetic units published by Underwood [Underwood '04a]. The

pipeline latencies of the Underwood cores are variable. The cores are designed so

that the pipeline latency can be reduced however this also reduces the maximum

clock rate the cores can run at. Short pipeline latencies are desirable for designs

where there are a lot of dependencies between calculations. Using arithmetic cores

with long pipeline latencies for such designs can hurt overall performance since the

arithmetic pipelines will spend a lot of time waiting for the results of previous

calculations.

Logarithmic arithmetic has a clear advantage for multiplication and division. The

LNS multiplier is substantially smaller than Underwood’s multiplier and has a lower

latency. In addition the fully pipelined LNS divider returns similar performance to

Underwood’s divider but uses less than 5% of the resources and has a much lower

 LNS Adder Underwood Adder

Slices 1648 496

Multipliers 8 0

Block RAM 28 0

Latency (Clock cycles) 8 13

Clock Rate (MHz) 90 165

Pipes per FPGA

(Xilinx Virtex-II-6000)

10 68

Table 2-a. Comparison of the resource requirements of two log arithmetic adder
pipelines and a comparable IEEE floating point adder pipeline

24

latency.

The penalty for the small and low latency LNS multiplier and divider is that a pair of

log adders requires 66% more slices than a pair of IEEE adders, and a significant

quantity of block RAM and hardware multipliers. This block RAM requirement

means a maximum of 10 log adder pipelines can fit on the Xilinx Virtex-II-6000

FPGA used in this thesis. However ten log adder pipelines use only 25% of slices on

the Xilinx Virtex-II-6000 FPGA, leaving plenty of space for control logic and other

arithmetic units.

The resource requirements for the LNS cores favour applications that have a high

proportion of multiplications compared with additions. Also the very small size of

the divider is a particular advantage for applications which use division only rarely.

The lattice QCD conjugate gradient solver implemented in this thesis is an example

of such an application. A large IEEE divider is a waste of resources in such designs.

Section 3.4 gives an overview of the history and development of logarithmic

arithmetic, and compares the current state of the art for floating point and log

arithmetic cores.

 LNS Multiplier Underwood Multiplier

Slices 83 598

Multipliers 0 4

Block RAM 0 0

Latency (Clock cycles) 1 16

Clock Rate (MHz) 250 124

Pipes per FPGA

(Xilinx Virtex-II-6000)

407 36

Table 2-b. Comparison of the log arithmetic multiplier and a comparable IEEE
floating point multiplier

25

The Matousek cores were chosen to implement the logarithmic arithmetic FPGA

implementations of the lattice QCD Dirac operator and the logarithmic arithmetic

conjugate gradient application that are described in Chapter 5. The above comparison

of the Matousek cores with floating point arithmetic cores and the comparison

between the Matousek cores and alternative logarithmic arithmetic cores in section

3.4.7 show that they are competitive with alternative systems. When the work

described in this thesis started the Matousek cores were the only non-integer

arithmetic cores available to the project, consequently they were chosen as the best

option. During the project single precision floating point arithmetic cores became

available however work on the logarithmic arithmetic cores was well advanced by

this time. Upon completion of the log arithmetic designs described in Chapter 5, the

Moloney double precision floating point cores became available [Moloney '04].

Since double precision arithmetic is the standard arithmetic system for high

performance computing applications, these cores were chosen for further work,

instead of investigating single precision floating point arithmetic cores.

2.3.2 Double Precision IEEE Floating Point

The IEEE double precision implementations in this work use Moloney’s cores

 LNS Divider Underwood Divider

Slices 82 1929

Multipliers 0 0

Block RAM 0 0

Latency (Clock cycles) 1 37

Clock Rate (MHz) 250 100

Pipes per FPGA

(Xilinx Virtex-II-6000)

412 17

Table 2-c. Comparison of the resource requirements of the log arithmetic divider and
a comparable IEEE floating point divider

26

[Moloney '04]. The cores are IEEE compliant, fully pipelined and highly optimized.

They achieve good clock rates with short pipeline latencies, which is particularly

important for applications with long chains of data dependencies. In such

applications arithmetic units must often wait for operands which are the output of

previous operations. This causes the arithmetic units to lie idle for a significant

portion of the time. If the arithmetic pipeline latencies are long then the waiting time

is increased, causing a loss in performance.

Table 2-d, Table 2-e and Table 2-f show performance comparisons for the double

precision adder, multiplier and divider compared with cores published by

Underwood [Underwood '04a]. In each case, the Moloney units compare well with

the Underwood units. The Moloney adder has a slower clock rate than the

Underwood adder, however its pipeline is significantly shorter and it uses fewer

resources. Similarly the Moloney multiplier has a shorter pipeline latency and a

slower clock rate than the Underwood cores. The Moloney core also uses

significantly fewer FGA resources.

The Underwood cores implement de-normalised number handling which requires

significant quantities of FPGA resources. I use a version of the Moloney cores that

do not handle de-normalised numbers which reduces resource requirements

compared with other versions that do handle de-normalised numbers. De-normalised

number handling is not needed for lattice QCD calculations, since the range of the

numbers used is limited. De-normalised number handling is important in applications

where very small numbers are involved; without de-normalised number handling,

any results smaller than the smallest represent-able normalised value will underflow,

that is they will be set to zero. De-normalised numbers fill in the “gap” between the

smallest normalised number and zero and reduce the incidence of underflow where

calculations are performed involving numbers with very small magnitudes.

The two divider cores are very different in their implementations. The Moloney core

is designed for systems where division is used very infrequently, so it was designed

to be small and to be able to perform a single divide within a small number of cycles.

However it is not pipelined so it can only perform one divide at a time. In contrast

27

the Underwood divider is designed for systems where there is a high demand for

divide operations. The Underwood divider is fully pipelined, which is unusual for a

floating point divider. It has a long pipeline latency so it takes twice as long to

perform a single divide operation, but being fully pipelined it has a throughput over

30 times greater than the Moloney core. The cost of this performance is that it is

nearly 4 times larger than the Moloney divider.

 Moloney Underwood

Slices 937 1090

MHz 110 (Speed grade 6) 125 (Speed Grade 5)

Latency 6 14

Table 2-d. Comparison of double precision adders

 Moloney Underwood

Slices 825 1607

Mult 18x18 9 9

MHz 114 (Speed grade 6) 105 (Speed grade 5)

Latency 7 20

Table 2-e. Comparison of double precision multipliers

 Moloney Underwood

Slices 1789 6858

MHz 95 (Speed grade 6) 83 (Speed grade 5)

Latency 36 (Not Piped) 67 (Pipelined)

Table 2-f. Comparison of selected dividers

28

The Moloney divider was used to implement a double precision version of the lattice

QCD conjugate gradient solver. Divides constitute a tiny fraction of the floating

point operations in this application. Two divides are issued per iteration of the main

application loop, and several thousand cycles separate each issue. Thus a small

divider with relatively poor performance is far better suited to the needs of the

application that a large divider with unnecessarily high performance. Consequently

the Moloney divider is far better suited to the needs of the conjugate gradient

applications.

2.4 Summary

This chapter has introduced the most important technologies that have been used in

this work, including FPGAs, FPGA development boards, high level hardware design

languages and the non-integer arithmetic FPGA cores used in my designs. The next

chapter introduces lattice QCD, the application that is studied in this work, together

with an extensive survey of the literature relating to lattice QCD computing

machinery and to non-integer arithmetic on FPGAs.

29

Chapter 3

Literature Survey

Lattice QCD is a significant high profile high performance computing application,

making it an ideal example application for evaluating a platform's suitability for high

performance computing. Creating computing machinery for lattice QCD is the focus

of significant world-wide research effort. By comparing my results with this body of

research, I am able to draw comparisons between FPGAs and the state of the art for

high performance computing.

This chapter begins with a description of quantum chromodynamics (QCD) theory

and an explanation of why computer simulations must be used to help validate this

theory. This use of computer simulations is called lattice QCD. The chapter then

continues with a survey of the current state of the art for lattice QCD computing

machinery. This survey examines three categories of machine; custom ASIC based

supercomputers, commercial supercomputers and PC clusters.

The use of FPGAs for high performance computing is only possible due to the recent

availability of FPGA based non-integer arithmetic cores. Two non-integer arithmetic

systems are used in this project. They are single precision equivalent logarithmic

arithmetic and IEEE double precision floating point. The development of both of

these arithmetic systems is described in this chapter, including the recent

development of FPGA based implementations of the two systems. Finally, recent

research into the use of FPGAs for high performance computing is described in

detail.

30

3.1 QCD and Lattice QCD

3.1.1 Quantum Chromodynamics

All of the matter in the universe is made of atoms. There are many different types of

atoms and all are constructed from some combination of electrons, protons and

neutrons. However these subatomic particles are themselves constructed from other

particles that are even smaller, called quarks. There are several different types of

quark which are combined together to form larger particles called hadrons. Protons

and neutrons are both examples of hadrons. The quarks themselves are not stationary

within a hadron however. They move at nearly light speed making up a “hazy

buzzing cloud of action” [Davies '98]. An important question is what holds these

quarks together within a hadron. The answer lies with something called “The Strong

Force of Nature”.

Physicists already have an excellent understanding of electrodynamic force. This

force is described by quantum electrodynamic theory or QED for short. QED

describes how electrodynamic force is caused by two particles, for example two

electrons, exchanging a photon. This exchange photons causes attraction or repulsion

between magnetic objects. In a similar fashion to QED theory, quarks interact by

exchanging gluons and it is this exchange of gluons that causes the force which binds

quarks together within a hadron.

Quantum Chromodynamics or QCD is the quantum theory that describes how this

exchange of gluons occurs. It is based on QED which is well established and has

been shown to be very accurate. In QCD both the quarks and the gluons carry a

charge; in comparison, photons in QED have no charge. Also charge in QCD comes

in one of three “colours”; red, green or blue. QED has only one type of charge. It is

the presence of the three colours of charge that gives quantum chromodynamics its

name. Each of the three colours of charge can be either the colour charge or the anti-

colour charge, for example a particle may have a “red” charge which would be

attracted to a particle with an “anti-red” charge. This is similar to charge in QED

where the single types of charge can be positive or negative.

31

Proving the accuracy of QCD is very difficult however; not least because quarks

cannot exist in an unbound state, they can only exist when bound in colourless

hadrons. This is a phenomenon called confinement which is just one of the things

that QCD is believed to explain.

 Figure 3-a shows the three types of hadrons that can exist in nature.

• Mesons (particle a) are made of a quark with a particular colour charge and

an anti-quark with the opposite anti-charge.

• Baryons (particle b) are constructed from three quarks, each with different

colour to the others.

• Glueballs (particle c) are made from a collection of gluons, which have no

overall net charge.

In QCD the strength of the force between quarks grows as the quarks move further

apart. In comparison in QED theory the electrodynamic force between the particles

becomes weaker when you pull two electrons away from each other. This is because

it is more difficult for the electrons to exchange photons thus weakening the force

between the two particles. If the distance between them is large enough then their

electric fields become completely separate and no force at all exists between the two

particles.

In QCD it is not only the quarks that can exchange gluons; the gluons themselves

also carry a charge meaning that a pair of gluons can also exchange gluons.

Figure 3-a. The three types of hadrons that can exist in nature; Mesons, Baryons and
Glueballs [Davies '00].

32

Furthermore these exchanged gluons can exchange still more gluons and so on. As

the quarks are pulled further apart the number of gluon exchanges increases making

the strength of the force increase with distance, confining the quarks within hadrons.

This phenomenon is known as confinement. Figure 3-b shows graphically how the

force between two QCD particles grows as the two particles are pulled apart.

3.1.2 Lattice QCD

Confinement means that no free quarks or gluons have ever been observed

experimentally. As a result numerical simulations of QCD performed on high-

performance computers have been used for over thirty years in an attempt to make ab

initio predictions about experimental results using QCD theory. The predictions can

then be compared with the hadrons observed from experiment in order to test QCD

theory. This is done because the mathematical complexity of QCD, caused by the

ability of the gluons to exchange charge, makes it impossible to solve using

traditional methods. Consequently the only way physicists can test QCD theory is to

use massive computer simulations to compare the theory with experimental results.

Figure 3-b. A lattice calculation showing how the strength of force develops as you
pull a quark and an anti-quark apart, which prevents them escaping from one

another [Davies '03].

33

The application of computer simulations to QCD in this way is called lattice QCD.

Lattice QCD simulations provide vital inputs into experimental searches for new

physics at ever-increasing energy scales in the world's largest particle collider

experiments. It helps physicists predict how and where new types of particles are

likely to be found. The simulations also attempt to explain the mechanism for

confinement in QCD and so bring us to a better understanding of the fundamental

nature of matter itself.

In practise lattice QCD simulates a small continuous region of space-time using a

discrete grid or lattice. This lattice represents a very small portion of space and time

that is about twice the width of a proton. Figure 3-c shows a graphical representation

of two dimensions of two lattices. The left hand lattice has fewer points than the right

hand lattice and so will be faster to solve, but will give a less accurate result.

The quark gluon interactions are simulated by placing the quarks on the sites in the

lattice and the gluons on the links between these sites. A lattice QCD simulation

randomly places a few quarks and gluons on the lattice and then uses the rules of

QCD to simulate their behaviour. These simulations are repeated many times so that

the results show what the average behaviour of the quarks is. The complexity of the

quark to quark interactions means that these simulations are extremely

Figure 3-c. Diagram showing how a lattice is used to simulate space and time around
a hadron. The lattice must be larger than the hadron in all dimensions. A lattice with

more points (the lattice on the right) will give a more accurate result but will take
more computer time to simulate.

34

computationally intensive.

Indeed current lattice QCD simulations mostly use the quenched approximation

where only quark to quark interactions are simulated. This reduces the computational

complexity of the simulations to a more manageable size. Unfortunately it is

impossible to investigate the internal structure of light hadrons, such as protons,

using the quenched approximation. Gluon to gluon interactions are far more

important for these lighter hadrons so physicists need a new generation of machines

that can supply enough processing power to perform simulations that include these

interactions.

Lattice QCD belongs to a general class of high performance computing algorithms

called sparse matrix solvers. Other examples of sparse matrix solvers include

Computational Fluid Dynamics, Finite Element Solvers and certain astrophysics

applications. However lattice QCD is crucially different to these applications because

in lattice QCD the matrix is constant whereas it must be re-formulated for every

calculation in other applications. This allows the matrix representation to be built

into the algorithm itself and so it is not explicitly represented. This allows lattice

QCD calculations to sustain much higher performance compared with other sparse

matrix solvers. Also the complexity of the quark to quark interactions dramatically

increases the computational requirements of lattice QCD compared with other sparse

matrix solvers.

The lattice for a lattice QCD calculation is represented by a set of large matrices.

These matrices are hyper-cubes of four dimensions. The number of elements in these

matrices is determined by (1).

NTNZNYNXNS ×××=
(1)

The four values, NX, NY, NZ and NT, dictate the number of points to be simulated

in each of the three dimensions of space and also the dimension of time. These four

quantities determine the number of points in a lattice QCD application. Current

lattice QCD simulations simulate over two million points in space-time. Obtaining a

single scientific result for such a simulation using the quenched approximation needs

35

approximately 6.6×1015 floating-point operations [Gellrich '03]. As such the

computational requirements for lattice QCD are very significant and will continue to

grow in the future. Physicists need to stop using the quenched approximation in order

to get more accurate results and will need ever more powerful machinery for this

task.

3.1.3 Lattice QCD Dirac operator

The Dirac operator is the most significant part of a lattice QCD calculation.

Mathematically it multiplies a sparse matrix by a vector; however the actual code for

the algorithm has little in common with conventional matrix-times-vector

multiplication codes. The matrix in lattice QCD is constant for all calculations so, to

improve performance, the matrix representation is built into the algorithm itself.

Consequently memory access in the Dirac operator is completely predictable, which

delivers a substantial performance improvement over conventional sparse matrix-

times-vector multiplication. In comparison other sparse matrix solvers, such as Finite

Element Solvers, must be able take any matrix as an input. Consequently their

memory access patterns are unpredictable, resulting in performance that is limited by

memory bandwidth and cache behaviour.

The complexity of the quark to quark interactions that lattice QCD models means

that both the dataset for the application and the calculation itself are much more

complicated than for other sparse matrix solvers. The vectors for lattice QCD are

represented using arrays of small matrices of complex numbers; consequently the

computational complexity is much higher than for other sparse matrix solvers where

the vectors consist of simple arrays of numbers.

3.1.4 The conjugate gradient method

Conjugate gradient solvers are one of the main types of application used in lattice

QCD. Conjugate gradient methods are iterative solvers which start with an

approximate solution to a system of equations, which is then refined over multiple

iterations until it is equal, or at least sufficiently close, to the true solution. Conjugate

gradient methods provide a general means of solving systems of linear equations,

such as that shown in (2), where A is the system of equations expressed in matrix

36

form, y is a known vector and x is the unknown solution to the system.

A·x = y (2)

xyxAxxf ⋅−⋅⋅=
2

1
)(

(3)

yxAf −⋅=∇ (4)

The idea of conjugate gradient is to minimise the function (3). This function is

minimised when its gradient, calculated using (4), is zero. In order to minimise (3), a

succession of search directions p(i), and improved minimisers x(i), are generated. This

process will iteratively find the solution to (2) [Press '92].

)()()1()1(iiii

i Apprr
T −−== αα

(5)

)()1()(iii pxx α+= − (6)

)()1()(iii qrr α−= − where)()(ii Apq = (7)

)1()1()()(−−= iiii

i rrrr
TT

β (8)

)1(

1

)()(−

−+= i

i

ii
prp β (9)

The conjugate gradient method generates successive approximate solutions, x
(i),

using (6). Also generated are residuals that correspond to these approximations, r(i),

suing (7) and search directions, p
(i), using (9) that are used to update both the

approximate solutions and the residuals. Two update scalars, αi and βi, are computed,

using (5) (8) respectively, on every iteration of the method; these scalars are used to

make the successive vectors obey certain orthogonality conditions. The sequence of

vectors generated by the method is a conjugate (or orthogonal) sequence; this is what

gives the conjugate gradient method its name [Barrett '94].

3.1.5 Conjugate gradient in lattice QCD

The conjugate gradient method is used extensively in lattice QCD. The source code

37

for the main loop of the conjugate gradient solver that is the basis of the conjugate

gradient designs described in this thesis is shown in Figure 3-d. Comments in the

code show which mathematical equation the segments of code in the main loop are

equivalent to. The names of the operators used have been renamed for clarity. The

original names are used in the full source code, which can be found in Appendix C.

 t_gl3 g[NS][4];

 t_wfv x[NS], y[NS], r[NS], p[NS], tmp1[NS], tmp2[NS];

 kappa = 0.124;

 GenGl3Vector(g, 1);

 GenZeroWfvVector(x);

 GenZeroWfvVector(y);

 y[0][0][0].r = 1.0;

 CopyWfvVector(r,y);

 CopyWfvVector(p,y);

 res_old = LatDotWfv(r,r);

 while (res_old > 1.0e-6)

 {

 //Calculate alpha – Equation (5)

 Dirac(tmp1, kappa, g, p);

 alpha = res_old / DotProduct(tmp1, tmp1);

 //Update x – Equation (6)

 AddScaledVector(x, alpha, p);

 //Update r – Equation (7)

 Dirac (tmp2, kappa, g,tmp1);

 AddScaledVector (r, -alpha, tmp2);

 //Calculate beta – Equation (8)

 res_new = DotProduct(r,r);

 beta = res_new / res_old;

 //Update p – Equation (9)

 ScaleAndAddVector(p, beta, r);

 res_old = res_new;

 }

Figure 3-d. Main loop of lattice QCD conjugate gradient solver

Thus calculating alpha requires a call of the Dirac operator (which is a matrix-times-

vector multiplication) and a call of the dot product operator on the result. This is

equivalent to equation (5) above. Updating x, equivalent to (6), involves scaling the

vector p by alpha and adding it to x; this is done using the AddScaledVector operator.

38

Updating r, which is equivalent to (7), is done through a call to the Dirac operator

and the result is scaled by minus alpha and added to the existing value for the r

vector. The new value for beta is calculated by dividing the result of a dot-product

operation on r by the previous residual sum; this is equivalent to (8). Finally the new

value for p is calculated by scaling the vector p by beta and then adding the vector r

to it; this operation is equivalent to (9).

3.1.6 Operations and data for the lattice QCD conjugate gradient solver

The dataset for conjugate gradient is made up of large matrices of small complex

number matrices. There are two types of small matrix, gl3 (3×3 elements) and wfv

(4×3 elements). These are used to construct two different types of larger matrix. The

first type is a matrix of NS×4 gl3 matrices, which will be called the g type matrix,

and the second is a matrix of NS wfv matrices, which will be called y matrices. The

conjugate gradient dataset consists of one g matrix along with several y matrices.

The conjugate gradient solver uses three operations, which are:

• Dirac operator

• AddScaledVector and ScaleAndAddVector

• Dot Product

The Dirac operator is the most computationally intensive operation. The Dirac

operator updates each point in a y type matrix taking another y type matrix and a g

type matrix as operands. The dataset for a single call of the Dirac operator therefore

consists of a g type matrix, two y type matrices and a single scaling value called

kappa. It is constructed from 4 operations, which operate on the gl3 (3×3) and wfv

(4×3) matrices. They are:

• Gamma operators

• Matrix-multiply; wfv × gl3= wfv

• Matrix addition/subtraction; wfv + wfv = wfv

39

• Matrix scale; wfv × value = wfv

The gamma operators multiply a wfv matrix by a pre-defined constant matrix to

produce a wfv matrix. The pre-defined matrices are constant for all runs of the

application. The structure of the constant matrices is similar to an identity matrix,

with only one number on each matrix row, and each number is either one or minus

one. Consequently instead of implementing a full matrix multiply, the gamma

function is instead implemented using a short series of additions and subtractions.

This is why lattice QCD has higher performance than other sparse matrix solver

based applications such as Computational Fluid Dynamics. In these other

applications the matrix must be reformulated for every run making it impossible to

build the multiplication into the algorithm in the manner of lattice QCD.

The Dirac operator uses 8 slightly different versions of gamma operators. The wfv ×

gl3 complex number matrix multiply is the most compute intensive part of the

calculation needing 264 floating point calculations to multiply a single pair of

matrices. The matrix addition is a straightforward matrix addition. The matrix scale

scales every element in a wfv matrix by a particular value. Internally each of these

blocks has exploitable parallelism. The matrices are matrices of complex numbers, so

each number has a real and imaginary component. The real and imaginary

components of the numbers can be calculated in parallel. Also many of the blocks are

independent and thus can be parallelized.

The gamma and matrix multiply blocks are paired and are referred to here as gamma-

mul pairs. The eight pairs are independent and can be performed in parallel given

sufficient resources. The wfv add blocks accumulate the eight results of the gamma-

mul blocks into one wfv matrix. Parallelism is possible here by using a binary tree

type reduction operation to perform the accumulation. A reduction operation can be

completed in log2(n) stages, where n is the number of components to be added

together. There are 8 gamma-mul results, which can be added together in 3 (i.e.

log2(8)) steps.

The Matrix Add-Scale and Matrix Scale-Add operations are very similar and are

shown in equations (10) and (11). Both operators scale both the real and imaginary

40

component of each number in a y type matrix and then add the result to the real and

imaginary components of the same point in another y type matrix. The result of this

is then stored in one of the two operand matrices depending on which operation is

performed. The operations can be expressed by the following equations.

xryy +×=)(
(10)

)(rxyy ×+=
(11)

Dot product as used in this version of conjugate gradient separately squares the real

and imaginary components of each number in a matrix of wfv matrices and

accumulates the results onto a running total. This is done for the every iteration's

result and the result is compared with that from the previous iteration. This gives a

guide to how quickly the algorithm is converging; the greater the difference the

greater the rate of convergence. Once the difference drops below a certain threshold

the calculation is complete.

3.2 Lattice QCD Computing Machines

The massive and increasing computational demands of lattice QCD simulations have

made the design and construction of computing machinery for lattice QCD an area of

considerable research effort. The main priority for the designers of these machines is

to maximise performance for the money available. Generally researchers have

limited funds when they purchase a dedicated lattice QCD machine and they want to

get the greatest performance for their money.

Commercial supercomputers give excellent performance for lattice QCD simulations,

but they are usually expensive and are usually owned by large research institutions

who share access between large numbers of research interests, limiting the amount of

time available for lattice QCD simulations. However they are used for lattice QCD

and some research groups have bought commercial supercomputers, such as IBM’s

BlueGene/L system, specifically for lattice QCD simulations. The performance of

two types of commercial supercomputer, the SGI Altix and IBM’s BlueGene/L are

discussed by Wettig [Wettig '05].

41

As an alternative to commercial supercomputers two separate groups have developed

systems which are both customised to the requirements of lattice QCD. Both of these

projects aim to deliver performance that rivals commercial supercomputers, but at a

much lower cost. By customising the systems, performance is improved and

researchers can get more performance for their money. The most recent versions of

these machines are apeNEXT [Belletti '06] and QCDOC [P. A. Boyle '05].

More recently PC processors have seen substantial improvements in their floating-

point capabilities and these improvements have made PC type processors a viable

platform for lattice QCD simulations. Significant research effort has been expended

on investigating the use of PC hardware for lattice QCD, with excellent results

[Holmgren '05b] [Gellrich '03]. A significant amount of this effort has been directed

towards making use of the floating point vector processing capabilities of modern PC

processors.

3.2.1 Commercial Supercomputers

Commercial supercomputers are generally bought by large research institutions for

users from a wide variety of research areas; consequently they are optimised to give

good performance for a wide variety of applications. Lattice QCD has been

implemented on two of the latest commercial supercomputers, the SGI Altix and

IBM’s BlueGene/L [Wettig '05].

The SGI Altix is based on the Intel Itanium 2 processor, which is a VLIW processor

[Ellis '86]. The architecture of the system is shown in Figure 3-e and consists of a

large number of compute nodes, each of which has two processors connected to

memory, communications and IO sub-systems through a custom built super hub chip

(SHUB). The nodes are connected together using SGI’s NUMAlink system, which is

based on the ccNUMA (cache coherent Non-Uniform Memory Access) architecture,

which allows shared memory domains of up to 512 CPUs. This allows SGI Altix

systems consisting of thousands of processors to be built.

42

Benchmark results quoted by Wettig show that for a small global problem size SGI

Altix nodes can sustain 28% of peak performance for a system of 32 dual-core CPUs

on the core Dirac operator, which translates to about 6 GFLOPs per dual-core CPU.

This figure is expected to be halved for a larger number of nodes, giving a figure of 3

GFLOPS per dual-core CPU [Wettig '05]. These figures are impressive, however the

per-processor problem size used to collect these figures is very small, which allows

the entire dataset for each node to fit in the processor cache. It is likely that the

performance for a larger per node problem size that does not fit in the cache would

be much worse, since memory bandwidth, not processor performance, would be the

limiting factor. Cache misses have a significant detrimental effect on performance

for lattice QCD codes, however careful use of the cache pre-fetch capabilities of

modern processors can largely eliminate these effects. Another disadvantage of the

SGI Altix is its cost; a figure of €5 per MFLOP is quoted by Wettig which is

substantially higher than competing systems [Wettig '05].

IBM’s BlueGene system consists of a large number of processing nodes connected in

a 3-dimensional toroidal network with nearest neighbour communications [A. Gara

'05]. Each node consists of an ASIC chip with two IBM PowerPC 440 processor

cores, with two floating point multiply-accumulate units attached to each one. The

processors share access to memory and to the communications network. The system

can run in one of two modes: co-processor mode, where one processor handles

Figure 3-e. SGI Altix Architecture [Wettig '05]

43

communication and the other computation, and virtual-node mode where both cores

are used for communication and computation. The virtual-node mode has twice the

peak performance of the co-processor mode; however communication cannot be

parallelised with computation as effectively for this mode.

BlueGene sustains about 20% of peak performance for the Dirac operator, when run

in virtual-node mode, which translates to 1.12 GFLOPS per node, or about 560

MFLOPS per CPU core [Bhanot '05]. Price information for BlueGene systems is not

publicly available however it is estimated that BlueGene has a price to performance

ratio of around €2 per MFLOPS [Wettig '05].

3.2.2 PC Clusters

In the last few years clusters of PCs have become a significant source of computing

power for high performance computing. In particular a significant amount of

research effort has been directed at optimising PC clusters for lattice QCD [Wettig

'05], [Gellrich '03], [Holmgren '06]. This effort has been very successful and there

are now PC cluster machines, consisting of hundreds of nodes, dedicated to lattice

Figure 3-f. The construction of a large BlueGene/L supercomputer

44

QCD, which can sustain over 650 GFLOPs for the core Dirac operator.

One of the key developments in applying PC clusters to lattice QCD has been the use

of the SIMD processing capabilities of the latest PC processors. The SIMD

instructions operate on short vectors of floating point numbers performing 4 single

precision, or 2 double precision, operations per cycle, and have enabled dramatic

improvements in performance. Luscher proposed this approach and published

performance results for a single 1.5 GHz Intel Pentium 4, using a small problem size

with single precision arithmetic and a single PC, of 1.5 GFLOPS [Luscher '02]. In

comparison Gottlieb published results in the previous year showing performance of

186 MFLOPS, at single precision, for a 533 MHz Pentium III under similar

conditions [Gottlieb '01]. Thus the use of the SIMD extensions, as proposed by

Luscher, delivered a three-fold improvement in performance per MHz.

Generally the performance of PC clusters for single precision arithmetic is much

better than for double precision arithmetic. There are two reasons for this: the SIMD

pipelines can process twice as many single precision operations per cycle compared

with double precision operations, and memory bandwidth requirements for double

precision are twice that of single precision. For a significant problem size, where the

dataset is too large to fit in the processor’s cache, PC processor performance is

limited by memory bandwidth and not floating point processing capabilities [Wettig

'05].

The end users of lattice QCD prefer to run their calculations using double precision

since it gives more accurate results, however it is possible to run a calculation in

single precision. Double precision is regarded by lattice QCD users as being safer at

the simulation parameters that are more interesting from a scientific perspective. The

penalty for using single precision, instead of double is that it introduces uncertainty

about the accuracy of the simulation result. For PC based platforms single precision

is usually twice as fast as double precision since memory bandwidth usually

dominates the speed of calculations on these machines. Single precision is usually

used on PC clusters since it allows a given simulation to be completed in half the

time, when compared with double precision, or alternatively the number of sites in

45

the lattice can be increased to take advantage of the extra performance.

Algorithmic improvements, when combined with improvements in processor speeds,

memory buses, and peripheral buses and interconnect technologies, have

dramatically improved the performance of PC based lattice QCD machines in recent

years. PC based machines can now sustain around 2 GFLOPS for a single processor

working on its own, and around 1 GFLOPS per processor in clusters of over 500

processors. PC clusters are now very price-competitive for smaller installations of

less than around one thousand processors, with a price performance ratio of

approximately $1 per MFLOPS [Wettig '05].

The challenge facing PC cluster designers now is not improving per node

performance, but improving the performance of interconnection systems.

Interconnects for lattice QCD clusters must have low latencies. Systems that use high

latency interconnects have poorer per node performance than systems that use low

latency interconnects. Lattice QCD machines send many small messages which

makes latency more important than bandwidth. PC clusters are constructed using

either Gigabit Ethernet [IEEE '99], which is low cost but has a high latency, or a

more specialised interconnect, such as Infiniband [Infiniband '06], which has much

lower latency but is significantly more expensive. Infiniband gives better per node

performance, but the low cost of Gigabit Ethernet means that more processing nodes

can be purchased for a given amount of money, which can compensate for the poorer

per node performance of Gigabit Ethernet, based systems.

Some groups are looking to optimise PC interconnect technology to the needs of

lattice QCD. The apeNET project, associated with the apeNEXT group, has

developed an FPGA based interconnect system with very low latency targeted

specifically at lattice QCD PC clusters [Ammendola '05].

3.2.3 Custom ASIC based machines – QCDOC & apeNEXT

QCD researchers are now reaching the limits of the “quenched” approximation,

discussed in section 3.1.2. The quenched approximation ignores gluon to gluon

interactions, and only simulates quark to gluon interactions, however the quenched

46

approximation can only be used to investigate the heaviest particles. Lighter

particles, such as protons, can only be investigated using full QCD where the gluon

to gluon interactions are included.

Full QCD requires very significant computing resources however, which can only be

met by a new generation of massively parallel computing machines capable of

performing lattice QCD calculations at the rate of several teraFLOPS, or 1012 floating

point operations per second. Two research collaborations, QCDOC [P. A. Boyle '05]

and apeNEXT [Belletti '06], have produced massively parallel machines targeted at

lattice QCD calculations to meet this requirement for teraflops scale computing

power.

QCDOC

QCDOC machines are massively parallel machines, consisting of up to 12,288

processing nodes which can all be used on a single lattice QCD simulation. QCDOC

stands for QCD On-Chip, since each processing node consists of a single chip into

Figure 3-g. The design of a single QCDOC processor

47

which all the components of the node are built. This chip contains all the components

of the processing node, including the processor and the network controller. The chip

contains a PowerPC 440 processor, with an attached floating point unit, along with a

custom communications system.

The communications system consists of 12 bi-directional serial communications

links which can connect the processing node to its 12 nearest neighbours in a 6-

dimensional toroidal network. This system provides significant levels of bandwidth

between large numbers of nodes along with a very low latency interconnect, which is

critical for performance of lattice QCD codes. It is this sophisticated communications

system that allows QCDOC machines consisting of over ten thousand processors to

be built. Figure 3-g shows the structure of a single QCDOC processor including the

off-chip communications systems, floating point processing units and the off-chip

memory interfaces.

The individual QCDOC processors have relatively modest performance. They are

currently running at 450 MHz and return sustained per node performance of 396

MFLOPS for the Dirac operator, which is the most computationally expensive part of

lattice QCD. Consequently the QCDOC machines deliver their performance by

applying a massive number of nodes to a single problem, and not through the

individual performance of the processing nodes.

Two separate QCDOC systems of 12,288 nodes each have been installed in the

Brookhaven National Laboratory, in the USA. Each of these systems is capable of

sustaining nearly 5 TeraFLOPS on a single lattice QCD simulation. Another similar

machine has been installed in the University of Edinburgh. Between them these three

machines, along with the apeNEXT installations are enabling physicists to run

massively more detailed simulations than ever before, which is testing QCD theory

more and more intensively. QCDOC is also a very cost effective platform, since it

costs around $1.1 per MFLOP. This is a similar cost to PC cluster based machinery,

however the running costs of QCDOC are much lower with power consumption of

less than 10 Watts per processor, including memory and communication systems. In

comparison a PC based machine would consume at least 100 Watts per processor

48

(including communication and memory). This makes the QCDOC machine

substantially cheaper to run [Wettig '05].

ApeNEXT

The apeNEXT machines are the latest in a series of machines from the APE (Array

Processor Experiment) collaboration. In a similar fashion to QCDOC, the aim of the

apeNEXT machine is to place all of the functionality of each processing node onto a

single custom ASIC chip. These processing nodes are then connected up in large

Figure 3-h. The structure of a large apeNEXT machine.

49

clusters, which can be dedicated to lattice QCD simulations. The designers of

apeNEXT took a different approach to the QCDOC machine by giving each

processing node significant floating point processing capabilities. The apeNEXT

processors can perform eight floating point operations per cycle by implementing a

complex-number multiply accumulate operation in hardware, which is the most

common and computationally expensive operation in lattice QCD codes. The

arithmetic unit is designed so that it can also perform other operations such as

additions and subtractions, albeit with lower efficiency. ApeNEXT nodes can sustain

performance of 896 MFLOPS for the core Dirac operator from a clock rate of only

160 MHz by using this complex number multiply accumulate unit.

Each processing node has 12 uni-directional communications links, which allow the

node to be connected to all of its nearest neighbours in a 3-dimensional toroidal

network [Belletti '06]. The links have very low latencies and good bandwidth;

messages in lattice QCD are small, so low latency is far more important than high

bandwidth. The high per-node performance of the apeNEXT system means that

apeNEXT systems are smaller than the QCDOC systems at about three thousand

nodes. Consequently interconnect performance is not as critical to overall system

performance as it is for the QCDOC system.

To improve performance the processors can pre-fetch data from main memory. Data

access patterns are very predictable in lattice QCD, so all application data can be pre-

fetched, eliminating delays caused by the high access latencies of main memory.

ApeNEXT’s combination of a low latency interconnect network and memory pre-

fetch capabilities, when combined with the customised arithmetic of the individual

nodes, allows each apeNEXT node to return excellent performance within systems

consisting of several thousands nodes. As of late 2006, several apeNEXT systems are

planned, or already installed, including a 6,656 node system for the National Institute

of Nuclear Physics in Rome, Italy. The sustained performance of this system for

lattice QCD calculations will be nearly 6 teraflops, all of which can be brought to

bear on a single simulation. This system will enable simulations of far higher detail

than has previously been possible.

50

The apeNEXT system delivers performance at a cost of about 1.2 Euro per MFLOP.

This is comparable with the cost of both QCDOC and PC clusters. The apeNEXT

processor consumes about seven Watts when running under load so it benefits from

significant reductions in running costs when compared with PC based clusters.

3.3 IEEE Floating Point

This section describes the history and development of the two arithmetic systems that

are used in this project; log arithmetic and IEEE double precision floating point.

3.3.1 Early History

IEEE standard 754 defines a standard approach for performing arithmetic on real

numbers [IEEE '85]. Prior to the introduction of the standard there was many

different systems for handling floating point arithmetic, which are detailed in an

interview with W Kahan, conducted by C Severance [Severance '98]. The IEEE

floating point arithmetic standard is heavily inspired by Kahan’s work on computer

arithmetic. Kahan was heavily involved in the standardisation process and was

ultimately awarded the Turing prize for his work on floating point [Hennessy '90].

Different systems had different levels of precision, different ranges of represent-able

numbers and each used its own rounding system. These differences were minor

compared with the difficulties faced by programmers of some earlier floating point

systems. For example many systems could return zero for X minus Y when X and Y

were different. One system had numbers that behaved as non-zero numbers for

addition and subtraction but as zero for multiplication and division. On another

system some numbers, when multiplied by one, would result in an overflow, even

though the number should not have changed.

The critical problem however was that, since each computer manufacturer had their

own approach to floating point, the same code would return different results when

run on different computers. Consequently it was becoming more and more expensive

to develop reliable floating point domain applications since programmers had to

spend inordinate amounts of time ensuring that their code ran correctly on any

architecture it was used on. The IEEE standard for floating point arithmetic gives a

51

standard approach to floating point, including precision, range, rounding modes,

exception handling, overflow and underflow. Nearly all modern processors conform

to this standard, or at least to most of the standard, giving much more consistent

behaviour across compliant processors.

3.3.2 The IEEE Floating Point Standard

IEEE floating point is analogous to the scientific notation commonly used to

represent very large or very small numbers, for example, in scientific notation, the

speed of light would be written as 2.99792 × 108 ms-1 with 6 significant digits.

Floating point numbers are in base 2, not base 10, so the speed of light written in

binary scientific notation would be 1.00011101111001111000010 × 228 ms-1. There

are three parts to the scientific notation; the significand, the exponent and the sign.

For the base 10 representation of the speed of light shown above, the significand is

2.99792, the exponent is 8 and the sign is positive. Similarly floating point

representations have three parts, the sign, the exponent and the significand.

The terms significand and mantissa are often interchanged, however the IEEE

standard recommends the use of the term significand when referring to the fractional

part of a floating point number. This is because the term mantissa has a pre-existing

mathematical meaning referring to the fractional part of a logarithm. Thus the IEEE

prefers the term significand to avoid confusion. However designers of early

implementations of floating point used the term mantissa to describe the fractional

component of a floating point number, and this usage has persisted.

Figure 3-i shows the structure of a floating point word when stored in computer

memory. The total number of bits in the word is e+f+1; f is the number of bits used

for the significand, e is the number used for the exponent and a single bit is used for

Figure 3-i. Structure of the IEEE floating point word

52

the sign. The value of f determines how precise the format can be, whilst the e

determines the range. Larger values of f give more accurate calculations and larger

values of e allow larger and smaller numbers to be represented. For IEEE single

precision e is 8 and f is 23 and for IEEE double precision e is 11 and f is 52.

The significand is always normalised so that the first digit is always one (except in

the case of de-normalized numbers which are discussed later). To increase precision

this leading one is not stored in the floating point word, but is added automatically by

the arithmetic units. Only the remainder of the significand to the right of the binary

point is stored.

The value of the exponent can be positive for numbers larger than one or negative for

numbers smaller than one. The value of the exponent is stored using a biased

representation, where the actual value of the exponent has a bias added to it before

storage. For single precision the bias is 127 and for double precision it is 1023. Thus

for single precision an exponent value of zero is stored as 127 (in binary), an

exponent of -43 would be 84 and an exponent of 110 would be 237. The biased

representation is used instead of a format with an explicit sign because it simplifies

the exponent comparison required for the addition operation. Finally a single bit

stored in the most significant bit position of the data word specifies the sign of the

number, zero for a positive number one for a negative number.

3.3.3 Early Implementations of Floating point on FPGAs

Fagin and Renard detail a very early implementation of IEEE single precision

floating point on FPGAs [Fagin '94]. Fagin and Renard implemented a single

precision adder and a single precision multiplier over four Actel A1280 FPGAs.

Their adder used a three stage pipeline and could run at 4 MHz. Meanwhile their

multiplier was not pipelined and required six cycles to produce a single result. Fagin

and Renard also present a comparison of the resources required for arithmetic units

to handle the rounding modes of the IEEE standard including handling de-normalised

numbers. It is clear from the results presented by Fagin and Renard that, in 1994,

FPGAs were not yet a viable platform for floating point arithmetic units. The FPGA

based floating point units did allow the authors to explore interesting design trade-

53

offs with regards to the cost of including the various rounding modes and handling of

de-normalized numbers.

Shirazi et al took a different approach to tackling the lack of resources on the FPGAs

available at the time [Shirazi '95]. They described an implementation of 16-bit and

18-bit floating point arithmetic units for a Xilinx 4010 FPGA. These formats are

considerably smaller than the single (32 bit) and double (64 bit) precision formats of

the IEEE standard. The small formats allowed a single FPGA to host one of these

units. The 16-bit and 18-bit formats provide about half the range and precision of

single precision floating point, which rules them out for many calculations, but they

provide a possible alternative to fixed point arithmetic which is commonly used for

digital signal processing applications. The authors determined that one single

precision floating point multiplier would need the resources of two of the Xilinx

4010 FPGAs used by the authors for their half precision implementations.

Consequently FPGAs were still not a viable platform for floating point calculations.

Louca et al described an implementation of an IEEE single precision adder and

multiplier [Louca '96]. Their adder is fully pipelined, and their multiplier uses a

digit-serial multiplication to multiply the mantissas. As a result the multiplier

requires 12 cycles to produce a single result. Implementing the integer multipliers

required for floating point multiplication uses a lot of FPGA resources. Consequently

a number of options are described for performing digit-serial multiplication of the

mantissas and the resource requirements for these options are presented. It is clear

from Louca et al, and from the multi-cycle multiplier described by Fagin and Renard,

that the sheer size of the significand multipliers was a major obstacle to performing

floating point arithmetic on FPGAs. The FPGAs available were too small to fit the

24 by 24 bit multiplier required for single precision floating point onto a single

FPGA.

Ligon et al described FPGA implementations of a fully pipelined adder, and for the

first time, a fully pipelined multiplier [Ligon '98]. The fully pipelined multiplier was

made possible by the availability of larger FPGAs, combined with the use of a fully

pipelined digit-serial integer multiplier for multiplying the mantissas. Ligon at al

54

described a number of options for performing the mantissa multiplication, including

fully pipelined digit-serial multipliers, bit-serial multipliers and booth recoding

multipliers. They also presented multi-cycle bit-serial and booth recoding multipliers.

Ligon et al showed that floating point on FPGAs was becoming a viable possibility

however the resources required for the mantissa multiplication were still a significant

problem.

Belanovic and Leeser published details of a parameterised floating point arithmetic

library, and illustrated its use with an imaging algorithm [Belanovic '02]. They

published performance and area results for a number of floating point formats, from

an 8 bit format which uses 2 bits for the exponent and 5 bits for the significand, to an

IEEE single precision equivalent format consisting of 32 bits, with 23 bits for the

significand and 8 bits for the exponent. Belanovic and Leeser used a 12 bit wide

version of the floating point cores to implement a K-means clustering algorithm

which is applied to some satellite imagery. The implementation is a hybrid approach

where some of the algorithm is performed in floating point and some in fixed point.

They demonstrated satisfactory performance for this algorithm using their floating

point cores.

Using non-standard floating point formats allows the arithmetic to be tailored to the

numerical needs of the application, which can be useful in application fields such as

digital signal processing or imaging. The numerical requirements of such fields can

often be met using fixed point arithmetic; one example is Belanovic and Leeser's

FPGA implementation of an imaging algorithm [Belanovic '02]. However only a few

scientific applications can be run on single precision equivalent arithmetic; most

require at least double precision equivalent arithmetic. Consequently small

customisable floating point formats that are smaller than single precision are

generally not useful for scientific applications.

3.3.4 Current State of the Art for Floating Point on FPGAs

The Impact of the Xilinx Virtex-II

The release of the Xilinx Virtex II FPGA [Xilinx '05a] was a major breakthrough for

55

floating point on FPGAs. The Virtex II was the first FPGA to include hardware

multipliers as part of the FPGA fabric. These multipliers can be used for integer

multiplication inside an FPGA design. The multipliers can multiply two 18-bit

integers in a single cycle at clock rates of over 100 MHz for even the slowest speed

grade Virtex II FPGAs. Details of a number of floating point cores that take

advantage of these hardware multipliers have been published in the literature. These

cores are discussed in this section.

Roesler and Nelson published details of a number of optimisations for floating point

units implemented on FPGAs [Roesler '02]. They were specifically interested in

optimisations that make use of the Virtex-II hardware multipliers. Roesler and

Nelson used the hardware multipliers to perform the significand multiplication

required in floating point multiplication. Their results show a 77% reduction in

resource requirements using this method when compared with a floating point

multiplier that used a significand multiplier constructed from conventional FPGA

resources. In addition Roesler and Nelson propose the use of the hardware

multipliers to divide the significands in the floating point division algorithm.

Performance and resource utilisation results are presented for a variety of floating

point formats, including IEEE single precision format. In common with other

published work, which is discussed later in this chapter, Roesler and Nelson

published results for non-standard floating point formats. The idea is that the floating

point format can be tailored to better suit the numerical requirements of an algorithm,

and so reduce the resource requirements of a design for that algorithm. Results are

presented for arithmetic units that take advantage of the Virtex-II’s novel

architectural features. Results are also presented for units that are implemented using

only basic FPGA resources, such as flip flops and look up tables.

The use of these units for a matrix based heat transfer application is also described;

however no firm performance data is presented. The solution is based around a

processing element that performs all processing required for the application. The

authors speculate that 13 of these processing elements would fit on a six million gate

equivalent Virtex-II FPGA. They predict performance of 2.2 GFLOPS, at single

56

precision, for such a design. This, however, appears to be only an educated guess,

and it is not clear whether this figure could be obtained for an actual implementation.

If it were achievable then it would be an impressive result for an FPGA at that time.

IEEE Double Precision Arithmetic Becomes Possible

Prior to the introduction of the Xilinx Virtex-II, with its hardware multipliers, double

precision arithmetic was not really viable on FPGAs. The significand multiplier for

double precision was simply too large. FPGAs were available that could support a

small number of floating point units, however their performance was poor. The

limited availability of floating point units on these FPGAs restricted parallelism, and

the achievable clock rates were very low. The Virtex-II was the first FPGA that

could fit a substantial number of double precision units on a single chip, which,

combined with the higher clock rates that the Virtex-II family FPGAs are capable of,

made FPGAs a viable double-precision floating point platform.

After the introduction of the Virtex-II, FPGA based double precision floating point

units began to appear. One of the first examples of these double precision units was

published by Govindu et al [Govindu '02]. Govindu et al published area and

performance data for both single and double precision, IEEE type floating point units

and they presented a preliminary analysis of the double precision units when applied

to a basic matrix multiplication application. The matrix multiplication algorithm is

performed using specially designed processing elements. These elements perform the

necessary steps for a matrix multiply on an FPGA, with each element using a single

adder and a single multiplier. Performance data of 7 GFLOPS is published for a

design that uses 29 of these units on a single, very large, Virtex-II Pro FPGA.

However it is unclear whether this design was actually implemented in hardware.

Such a design would require substantial memory bandwidth if it were to be used on a

large problem size, and this issue is not addressed in this paper.

Performance Trends for FPGAs

Underwood published a significant paper in early 2004 which investigated the

development of floating point arithmetic on FPGAs and made predictions for the

future performance of FPGAs for floating point arithmetic [Underwood '04a].

57

Underwood developed a fully IEEE compliant floating point library which he

implemented on a series of example FPGAs. The series of FPGAs was chosen to

represent the development of FPGA technology over a six year period. The series

starts with the first FPGA capable of supporting a single double precision IEEE

floating point unit, the Xilinx XC4085XLA. An example FPGA from each

successive Xilinx model range is included. Starting with the oldest they are XC4000

series, Virtex, Virtex-E, Virtex-II and Virtex-II Pro. Underwood charted

improvements in peak floating point performance for this series of FPGAs and used

the results to predict the future performance of FPGAs. He also presents comparisons

with the performance of commodity processors, by comparing the performance of

three of the FPGAs with the performance of commodity processors contemporary to

those FPGAs.

Underwood’s results show that the peak performance of FPGAs at both single and

double precision was, at the time of publication, better than commodity CPUs for all

three principal operations (addition, multiplication and division). In fact according to

the results, the peak performance of FPGAs for addition has been superior since

about the year 2000. The results also show that FPGA multiplication performance

reached parity with commodity processors by 2003 and they show the performance

of FPGAs for division to be substantially better than division on commodity CPUs.

Using these results to extrapolate future performance, Underwood went on to predict

the future peak performance of both commodity CPUs and FPGAs. He concluded

that, if current trends continue, then FPGAs will continue to gain a substantial

performance advantage over commodity processors in the future.

Peak performance figures only show the raw processing power of a device however.

For commodity processors it is very difficult to get sustained performance for real

applications equal to the processor’s peak performance. Some highly optimised

dense matrix computational kernels can obtain significant proportions of peak

performance; in the best cases proportions of peak of nearly 90% are possible.

However for real world applications, with large datasets the obtainable proportion of

peak generally drops to about 50%, and for some applications the obtainable

performance is even lower, sometimes dropping as low as 5% of peak. Scientific

58

applications usually have large datasets that are far too large to fit in the processors

cache, which means that such applications are often limited by memory bandwidth.

Building on the work published in his earlier paper, Underwood, in collaboration

with Hemmert, published a second paper in 2004 which investigated the sustained

performance of FPGAs for some core basic linear algebra subroutine libraries

[Underwood '04b]. These libraries are commonly known as BLAS libraries. BLAS

libraries are used in many scientific computing applications, so the performance of

these libraries for a platform is strongly indicative of a platform’s performance for

full scientific applications. Underwood and Hemmert chose to implement some of

the most common BLAS operations for a series of FPGAs and FPGA development

platforms, which are used to represent the development of FPGA technology over a

period of six years. In similar fashion to Underwood’s earlier paper [Underwood

'04a], Underwood and Hemmert then used these past performance trends to

extrapolate future sustained performance trends for both FPGAs and commodity

CPUs.

Underwood and Hemmert implemented three operations from the BLAS library; dot-

product, dense-matrix-times-vector multiplication, and dense matrix-times-matrix

multiplication. The operations were implemented for the same five FPGAs as used in

Underwood’s earlier paper [Underwood '04a], which is described previously in this

section. The performance data for the five FPGA chips quoted by Underwood and

Hemmert assumes that all the pins on the FPGAs are available for accessing off-chip

memory. This is unrealistic however, since in a real FPGA based system a significant

number of FPGA pins will be required for non-memory related purposes. So to

gauge the effect of limited memory bandwidth on FPGA based BLAS routines, the

designs were also implemented on three FPGA development platforms. The memory

bandwidth of these platforms is limited by their design, so by implementing the

BLAS operations on these platforms the authors were able to make a more valid

comparison between FPGA and commodity processor performance.

Underwood and Hemmert found that the performance of the FPGA using all pins for

memory was limited by processing capability for all three operations, whilst the

59

performance of the FPGA development boards was limited by memory bandwidth

for the dot-product operator and by processing power for the dense-matrix-times-

vector and dense-matrix-times-matrix operations. In comparison the performance of

the commodity processors was limited by memory bandwidth for the dot-product and

dense-matrix-times-vector operations and by processing power for the dense-matrix-

times-matrix operation.

The analysis performed by Underwood and Hemmert showed the performance of

FPGAs and FPGA based reconfigurable platforms, in 2003, to be superior to

commodity processors for both the dot-product and dense-matrix-times-vector

operations. It also showed that the performance of FPGAs and FPGA reconfigurable

platforms to be nearly equal to that of commodity processors for the dense matrix

multiply operation. The author’s performance extrapolation predicts that the

performance advantage of the FPGA and FPGA based reconfigurable platforms over

commodity processors should continue to widen for both the dot product and matrix-

times-vector operations. Meanwhile the performance of FPGAs for dense matrix

multiplication was predicted to continue to match that of commodity processors.

Moloney et al published detailed resource utilisation and performance data for a

library of fully IEEE compliant floating point cores [Moloney '04]. This paper is

included here since the double precision cores used for the double precision lattice

QCD designs described in this thesis are the cores described in Moloney et al’s

paper. The double precision lattice QCD designs are discussed in Chapter 6. The

library provides both single and double precision formats and it implements the full

IEEE standard [IEEE '85].

In this section I have described a number of papers that take advantage of the Xilinx

Virtex-II FPGAs to improve the performance of floating point on FPGAs. The FPGA

based floating point units all took advantage of the combination of the large size of

the Xilinx Virtex-II FPGAs and the hardware multipliers that first appeared on the

Virtex-II to show that FPGAs had become a potentially viable computing platform

for applications requiring floating point arithmetic.

The results published by Underwood showing FPGAs outperforming commodity

60

processors in terms of peak performance for the three principal arithmetic operators

(addition, multiplication and division) [Underwood '04a], and the results published

by Underwood and Hemmert showing FPGAs outperforming commodity processors

for two important basic linear algebra subroutines [Underwood '04b] are particularly

important. These two papers indicate that FPGAs have considerable potential for

accelerating scientific computing applications. However neither paper shows whether

or not the instruction level parallelism provided by FPGAs is exploitable for real

scientific computing applications. The floating point performance of FPGAs

demonstrated in Underwood’s paper comes from having a large number of floating

point units working in parallel at modest clock rates. Real scientific computing

applications must be able to exploit this parallelism to have good performance on

FPGA based platforms.

3.3.5 The Future of Floating Point on FPGAs

Architectural Improvements in the latest FPGAs

The Virtex-II made FPGA floating point arithmetic viable. However FPGA

technology has advanced considerably since the release of the Virtex-II FPGA

family. Since then Xilinx has released three generations of FPGA, the Virtex-II Pro,

the Virtex-4 and the Virtex-5 [Xilinx '06a][Xilinx '06b]. Each successive generation

allows higher clock rates than the previous generations, which for designs requiring

floating point arithmetic translates into higher performance. For example the

hardware multipliers in the fastest Virtex-5 FPGA can run at over twice the clock

rate of the hardware multipliers on the fastest Virtex-II FPGA. The hardware

multipliers are often a bottleneck to increasing clock rate in floating point FPGA

designs, so this could have a significant effect on performance. Virtex-5 also

includes a number of other architectural modifications, including diagonal routing,

which aim to reduce routing delay, and so improve performance.

The Virtex-5 also includes a new type of hardware multiplier that multiplies a 25-bit

number by an 18-bit number. This is an innovation targeted at reducing the resource

requirements of Virtex-5 based single precision floating point multipliers. The

multiplication of mantissas (24 bit by 24 bit integer multiplication) for single

61

precision is usually implemented using four hardware multipliers, enabling a fully

pipelined operation. The mantissas are multiplied in four chunks, one 18-bit by 18-

bit multiply, two 18-bit by 6-bit multiplies and a 6-bit by 6-bit multiply. The results

of these multiplies are then added together in a particular pattern. See [Koren '93] for

details on this operation. By increasing the width of the hardware multipliers to 25-

bits by 18-bits then the number of hardware multipliers required for a single

precision floating point core is halved to two. Indeed since the second multiplier is a

24-bit by 5-bit multiply, it could also be reasonably efficiently implemented using

LUT based multipliers. Consequently the resource requirements of single precision

floating point are much lower on the Virtex-5 family than on previous FPGA device

families.

Possible Future Architectural Improvements

Beauchamp et al investigated the potential for embedded floating point units on a

hypothetical FPGA which could be used to implement FPGA designs requiring

floating point arithmetic [Beauchamp '06a]. A diagram of the proposed architecture

is shown in Figure 3-j which is taken from the published paper. This idea takes its

inspiration from the inclusion of specialised hardware such as hardware multipliers

and block RAM in many FPGAs and the inclusion of the PowerPC processors in the

Xilinx Virtex-II Pro [Xilinx '05b] and Virtex-4 FX FPGAs [Xilinx '06a]. The authors

gathered information about the silicon area and delay characteristics of the logic

blocks of a Virtex-II Pro FPGA. They then used this information to construct models

of two hypothetical FPGAs. One of these hypothetical FPGAs has a similar structure

to a Virtex-II FPGA, with configurable logic blocks, or CLBs, which are the basis of

any FPGA, combined with embedded multipliers and on-chip RAMs. The other

design replaces the embedded multipliers with embedded double precision floating

point units.

A number of common high performance computing kernels, including matrix

multiplication, matrix times vector multiplication, dot-product, and a fast Fourier

transform, were then implemented using double precision floating point arithmetic

for both of the hypothetical FPGAs. These kernels represent a good cross section of

typical high performance computing workloads. It was found that the designs

62

implemented on the FPGA with embedded floating point units required, on average,

66% fewer slices than the same designs implemented on the FPGA with embedded

multipliers. The authors also analysed the silicon area requirements and operating

frequency of the two sets of designs and found that the designs implemented on the

embedded floating point unit FPGA required, on average, 55% less silicon area and

had clock rates 40% higher than the same designs implemented on the embedded

multiplier FPGA. The authors conclude that an FPGA incorporating embedded

floating point units would have very significant benefits for scientific computing

applications that require double precision floating point arithmetic.

Unfortunately an FPGA incorporating embedded floating point units would only be

Figure 3-j. A diagram of the embedded floating point FPGA architecture proposed by
Beauchamp et al [Beauchamp '06a].

63

suitable for applications requiring double precision floating point. The market for

such an FPGA is small compared with other markets such as telecommunications,

and consequently it is unlikely that such an FPGA will be produced in the near

future. As a result of this constraint, Beauchamp et al proposed an alternative

approach to embedding entire floating point units in an FPGA [Beauchamp '06b].

Floating point adders and multipliers both require barrel shifters to shift the

significands during the calculation. Barrel shifters are normally implemented using

the look up table (LUT) components of standard FPGA slices. Implementing shifters

in this fashion requires a significant amount of FPGA resources, and make up nearly

30% of the adder and 25% of the multiplier used by the authors.

In order to reduce the resource requirements of FPGA based floating point cores,

Beauchamp et al proposed two more efficient ways of implementing the barrel

shifters required for floating point arithmetic. One approach is to embed shifter

blocks into the FPGA fabric. This is a similar, but more general, concept to the

embedded floating point concept proposed in their earlier paper [Beauchamp '06a].

Embedded shifters would only be useful for applications that had a significant

requirement for such shifters. These shifters would be wasted for any application that

did not require them.

In order to address this drawback the authors proposed including extra functionality

in the basic configurable logic blocks of the FPGA. Each CLB in a Virtex-II type

FPGA contains two flip-flops for storing data and two four-input look-up tables

(LUT), which are used for implementing logic, including the variable shifters

required for floating point . The authors proposed that two 4:1 multiplexers be added

to the CLBs of an FPGA. The architecture of the proposed CLBs is shown in Figure

3-k, which is taken from the published paper. These multiplexers could then be used

instead of the LUTs to implement logic such as barrel shifters. Barrel shifters

implemented using multiplexers are much more resource efficient than those

implemented using LUTs.

64

Results presented for the two concepts show that both methods show a substantial

reduction in FPGA resource requirements and increase in clock rate for a suite of

typical high performance computing kernels. The inclusion of embedded shifters is

shown to reduce resource requirements by 14.6% and increase clock rate by 3.3%.

The inclusion of 4:1 multiplexers in the CLBs is shown to reduce resource

requirements by 7.3% and to improve clock rate by 11.6%. Furthermore the use of

the multiplexers was restricted to within the floating point units. Most FPGA designs

include a number of substantial multiplexers, and the small 4:1 multiplexers could be

used to implement any multiplexing logic within a design. Consequently the overall

resource savings for an FPGA that includes multiplexers in the CLBs could be even

larger than is suggested by the presented results.

Figure 3-k. A diagram of the new CLB structure proposed by Beachamp et al

[Beauchamp '06b]. A 4:1 MUX has been added to the CLB to improve performance

of the variable shifters required for floating point arithmetic

65

3.4 Logarithmic Arithmetic

Logarithmic arithmetic is an arithmetic system that provides an alternative to

conventional IEEE floating point for handling non-integer arithmetic. By

representing numbers as fixed point logarithms, multiplication and division become

very simple when using logarithmic arithmetic. In comparison IEEE floating point

multiplication and division are more complex. However logarithmic arithmetic

addition is more complex than floating point addition, and consequently a hardware

implementation of logarithmic addition requires substantial hardware resources. Thus

logarithmic arithmetic can be an excellent choice for algorithms which involve a

significant amount of multiplication and division. This section describes the

development of logarithmic arithmetic, from when it was first proposed as a method

for handling non-integer arithmetic, up to the development of the FPGA arithmetic

cores that are used in the lattice QCD designs described in Chapter 5.

3.4.1 Early investigations of logarithmic number systems

Some of the earliest work on logarithmic arithmetic was performed in 1962 by

Mitchell, who described algorithms for computer multiplication and division which

used binary logarithms [Mitchell '62]. Combet et al. expanded on Mitchell’s work

and described a method of computing the base two logarithm of binary numbers

[Combet '65]. The result was a method for handling binary non-integer arithmetic,

which provided a simple fast way of multiplying non-integer numbers, along with a

way of converting binary numbers to binary logarithms. Thus the method provided a

way to multiply binary numbers by converting them to binary logarithms,

multiplying them and then converting them back to binary numbers again.

Unfortunately the accuracy of this method was modest, which limited its application

to fields such as digital filtering, where the accuracy of individual calculations is not

important. In such fields it is the accumulated error over the entire calculation that

matters most, and the lack of rounding error when multiplying binary logarithms

means that logarithmic arithmetic has a very low accumulated error. Multiplication

of log arithmetic numbers is performed by adding the two logarithms using an

integer add operation. This operation never has a remainder, which means no

66

rounding is required. Thus there is no accumulated rounding error for log arithmetic

multiplication.

Several years later, in 1970, Hall et al described the application of binary logarithms

to such digital filtering applications [Hall '70]. They concluded that the error rates of

binary logarithms rule them out as an arithmetic system for general purpose

computer applications. However they concluded that they could be used for

applications that are less sensitive to high error rates, such as digital filtering.

3.4.2 Towards a hardware implementation

Building on the work of Mitchell and of Combet et al, Kingsbury presented a full

logarithmic arithmetic system which was capable of performing all the basic

arithmetic operations (addition, subtraction, multiplication and division) in the

logarithmic domain [Kingsbury '71]. The significant contribution of this work is that

it described a method for native addition and subtraction of binary logarithms, which

eliminated the conversion steps that were required in earlier work. Kingsbury and

Rayner proposed logarithmic arithmetic as an alternative arithmetic system for

implementing digital filters, and they compared its performance with fixed point

arithmetic, which is the conventional system for digital filters.

Fixed-point arithmetic is commonly used in digital filters and digital signal

processing because it is a simple and fast way of handling non-integer arithmetic on

computer systems which lack floating point processing capability. Fixed point

arithmetic can only operate accurately on numbers that are within a limited range,

which can cause poor performance for digital filters, because signals with small

amplitudes are often lost after being passed through the filter. Log arithmetic was

presented by Kingsbury and Rayner as an alternative arithmetic system which, owing

to its substantially better dynamic range, could give much better performance for

digital filtering algorithms. They proposed a 16-bit log arithmetic format which they

calculated to have a dynamic range of 9000:1, which is far better than the dynamic

range of 16-bit fixed point at 32:1.

Kingsbury and Rayner also described a storage format for logarithmic numbers,

67

including how to deal with sign and zero. In order to represent a non-integer number,

say x, in the logarithmic domain, the fixed-point value i=log2|x| is calculated. This

gives a fixed point value, i, in the logarithmic domain which represents the value of

the number. However the sign of the number is not represented in i since it is not

possible to find the log of a negative number. Consequently the sign must be

represented explicitly. Kingsbury and Rayner represented the sign by appending an

extra bit to the start of the log value. This bit is set to zero for a positive number and

to one for a negative number. Also since the log of zero is minus infinity, zero must

also be represented separately. Kingsbury and Rayner proposed using a bit in the

data word for this purpose, which is set if the number is zero.

A significant advantage of the proposed logarithmic number system is that

multiplication and division are very simple and can be achieved by simply adding, or

subtracting, respectively, the two binary logarithms involved in the operation.

Unfortunately this simplicity comes at the price of complex and expensive addition

and subtraction. The equation for logarithmic addition, shown below in equation

(12), requires a method to calculate power to the base-2 as well as log to the base-2.

Both of these functions are difficult to implement at high speed in hardware.

log2(x+y) = i + log2(1 + 2
j-i

) where i=log2x and j=log2y (12)

Kingsbury and Rayner proposed two methods for solving equation (12). The first

approach, which they call the direct method, involves solving equation (12) directly

using dedicated hardware circuitry designed for the task. The other approach is the

read-only memory method, which uses look-up tables of pre-calculated values to

compute the result. The look-up tables are quite large however, so Kingsbury and

Rayner proposed storing a subset of the tables, and then using interpolation to

calculate the result. They concluded that this approach was likely to have the best

performance for an actual hardware implementation. They also demonstrated a

digital filter based on their logarithmic arithmetic system which has significantly

better filtering performance than the same filter implemented using fixed point

arithmetic.

In 1975 Swartzlander and Alexopoulos presented detailed algorithms for all the

68

major log arithmetic operations [Swartzlander '75]. Their implementation of the

addition/subtraction algorithm uses the look-up table method previously proposed by

Kingsbury and Rayner [Kingsbury '71]. They concluded, given the state of the art for

read only memory at that time, that the maximum word size for a hardware

implementation of logarithmic arithmetic was twelve bits. This word size is small

and meant that the proposed logarithmic arithmetic system was only suitable for a

number of specialised fields including digital filtering and image enhancement. Thus

at this stage, in 1975, hardware implementations of logarithmic arithmetic were

substantially limited by the technology available.

Five years later, 1980, Kurokawa, Payne, and Lee analysed the error introduced for

recursive digital filters when implemented using logarithmic arithmetic [Kurokawa

'80]. They concluded that the signal-to-error ratio from LNS arithmetic was lower

than that produced by conventional floating point arithmetic, assuming both systems

use the same word size. These results demonstrated that the numerical capabilities of

logarithmic arithmetic are at least the equal of the more conventional floating point

arithmetic system.

Three years later two papers were published which took advantage of the numerical

advantages of logarithmic arithmetic to implement a 2 dimensional digital filter and a

fast Fourier transform (FFT) filter. Sicuranza [Sicuranza '83] used the logarithmic

arithmetic system to implement 2-D digital filters. He also outlined a method to alter

the range and precision of a logarithmic number system, which allows the system to

be customised to the numerical requirements of a particular application. Meanwhile

Swartzlander et al implemented a fast Fourier transform using logarithmic arithmetic

which, owing to the superior numerical performance of the logarithmic system,

returned better numerical performance than FFT filters implemented using either

floating-point or fixed-point arithmetic [Swartzlander '83].

3.4.3 Hardware Implementations of Logarithmic Arithmetic

All of the work described in the previous section was implemented using software

arithmetic systems; the operations were performed using software algorithms on a

conventional processor. This was the most common way of implementing any non-

69

integer arithmetic system at that time, since most processors lacked dedicated non-

integer processing facilities. However the development of the IEEE standard for

binary floating point arithmetic in 1985 signalled widespread availability of

hardware-based floating point arithmetic on commodity processors. Thus software

based logarithmic arithmetic systems no longer had sufficient performance to be

competitive with the more widely used floating point arithmetic system.

Coleman et al proposed a logarithmic arithmetic microprocessor as part of the High

Speed Logarithmic Arithmetic (HSLA) project which would provide a hardware

implementation of 32-bit logarithmic arithmetic with equivalent numerical

performance to single precision floating point arithmetic [Coleman '00]. This

implementation took the form of a dedicated silicon chip with a peak performance of

650 MFLOPS at a clock rate of 166 MHz [Matousek '03]. However by the time this

chip was developed commodity processors were capable of returning much better

performance and the potential for a dedicated logarithmic microprocessor was

limited. A major difficulty is the complexity and expense of the latest chip

fabrication technologies which effectively rule out mass production of a dedicated

logarithmic microprocessor.

FPGAs are an alternative platform for implementing dedicated hardware such as

logarithmic arithmetic systems. FPGAs allow high speed implementations of

hardware designs without the high costs and complexity of creating a dedicated

silicon design. Matousek et al presented an FPGA based logarithmic arithmetic

system which provides an alternative to conventional floating point arithmetic for

FPGA designs [Matousek '02]. Their work is part of the HSLA project that produced

the logarithmic microprocessor described previously in this section. This system is

used to implement the logarithmic arithmetic designs described in Chapter 5.

The arrival of the Xilinx Virtex-II FPGA made FPGA based implementations of the

logarithmic arithmetic system possible [Xilinx '05a]. The logarithmic adders in the

HSLA project use a set of look-up tables to perform their calculation and these look-

up tables are stored in the on-chip block RAM of the Virtex-II FPGA. Without these

block RAMs, the FPGA implementation would not be possible. The HSLA

70

logarithmic arithmetic units are described in the following sections.

3.4.4 HSLA Multiplication and Division

Floating point multiplication and division are difficult to handle efficiently in FPGA

logic. The hardware logic required for multiplication and division of the mantissas

consumes a lot of FPGA resources. The introduction of hardware multipliers on the

Xilinx Virtex-II FPGA has made floating point multiplication much more practical

since the hardware multipliers can be used to multiply the significands. However

division still remains a problem. The resource requirements of a library of IEEE

compliant floating point units developed by Underwood show that floating point

adders and multipliers require a similar number of slices (the multiplier also requires

a number of hardware multipliers), whilst fully pipelined division units require over

four times as many slices as either the adder or multiplier [Underwood '04a].

The HSLA log arithmetic cores provide an alternative to high cost floating point

multiplication and division. Multiplication and division in log arithmetic can be

performed in minimal computation time and without rounding errors since they have

the same level of complexity as a fixed-point addition. Assuming i=log2|x| and

j=log2|y|, the calculations are performed using equations (13) and (14).

log2 (x × y) = i + j
(13)

log2 (x / y) = i - j (14)

The multiplication operation is shown in equation (13) above, and shows that

multiplying two binary logarithms is as simple as an integer addition. The sign of a

logarithmic number is represented separately to the number, as explained in the

previous section, section 3.4.3. However in a change to the scheme proposed by

Kingsbury and Rayner [Kingsbury '71], a single special value, instead of a dedicated

bit, is used to represent zero. Using a special value provides extra precision

compared with the system proposed by Kingsbury and Rayner, since an extra bit in

every data word is available for representing the binary logarithm.

As a result a small amount of extra logic is required to handle the sign bits and to

71

check for zeroes in the calculation. However the multiplication operation is still very

simple. In comparison floating point multiplication requires a large integer multiplier

(for multiplying the significands) and o, which makes floating point multiplication

much more complex than log arithmetic multiplication.

The division operation is shown in equation (14) above. It can be seen that log

arithmetic division requires only an integer subtraction, along with logic to handle

the sign bit and to check for zeroes. In comparison floating point division requires

division of the significands and the circuitry for such a divider is very large and

complex. The size of the floating point division circuitry gives log arithmetic a clear

advantage over floating point division.

3.4.5 Addition and Subtraction

Unfortunately the small size and high efficiency of the log arithmetic multipliers and

dividers comes at a price; addition is comparatively expensive. Once again, assuming

i = log2|x| and j = log2|y|, addition may be evaluated as shown in (12). The equation

for logarithmic addition requires a method to calculate power to the base-2 as well as

log to the base-2. These are non-linear operators, and as such are difficult to

implement efficiently. For this reason, all practical implementations use a Taylor

series approximation in conjunction with a pre-calculated lookup value. The pre-

calculated lookup values are stored in look-up tables, the size of which increases

exponentially as the number of bits used in the log arithmetic word increases.

The sheer size of the look-up tables makes log arithmetic difficult to implement. In

order to reduce the size of the look-up table’s interpolation between values is

generally used along with smaller look-up tables. However, these smaller tables

come at the expense of accuracy. Coleman and Chester observed that “this function

is irrational and thereby subject to a half-bit rounding error, the interpolation

procedure tends to introduce additional error, and the entire process is time

consuming” [Coleman '99]. They proposed a novel error-correction algorithm, which

gives equivalent performance and accuracy to floating point at 32-bit precision. Their

design involves the use of some additional lookup tables for interpolation, but

crucially, the error correction steps may be performed in parallel with the rest of the

72

calculation, thereby causing no degradation in performance.

3.4.6 Accuracy and Performance of the HSLA System

In July 2000, Coleman et al used detailed simulations to compare the error produced

by 32-bit floating point against 32-bit LNS [Coleman '00]. The paper concluded that

the logarithmic addition algorithm had substantially the same error as floating point.

Coleman et al also presented a number of large scale case studies testing the

effectiveness of the LNS system in three different numeric-intensive applications;

digital signal processing, graphics, and numerical methods. The log arithmetic cores

were used as if they were floating point cores; their use was not tailored to the

specific advantages and disadvantages of LNS. This provided an objective, and

hopefully realistic, test environment. All three cases described by Coleman et al

show a substantial performance improvement for the LNS version, requiring between

41% and 69% of the original time to execute.

3.4.7 Comparing LNS and IEEE floating point

One of the main barriers to the acceptance of logarithmic arithmetic is the lack of a

suitable metric for comparison with IEEE floating point. To address this problem

Haselman et al presented a comparison of log arithmetic cores with IEEE floating

point arithmetic cores. A system of “normalised slices” was used to compare the

resource requirements of log arithmetic and floating point cores [Haselman '05]. By

examining pictures of the silicon of a Xilinx Virtex II FPGA they calculated the

relative area of three components of the Virtex-II architecture; 18-kilobit block

FPGA Component Normalised Area

(1 unit = Area of 1 slice)

Slice 1

18 kilobit block RAM 27.9

Hardware Multiplier 17.9

Table 3-a. Area in silicon of three FPGA components. One unit is the area required
for a single FPGA slice.

73

RAMs, hardware multipliers, and slices. The calculated values are shown in Table

3-a. See section 2.1 for an introduction to FPGA architectures.

This comparison metric allowed the authors to compare the resource requirements of

floating point cores to the resource requirements of log arithmetic cores in two ways;

by the number of units that a particular FPGA can support and by the number of

“normalised slices” that each unit requires. Haselman et al go on to present an

evaluation of what mix of arithmetic operations an algorithm requires for it to benefit

from the use of log arithmetic instead of IEEE floating point arithmetic.

The authors determined that arithmetic operations required by an algorithm needs to

consist of more than 70% multiplies by volume for a log arithmetic implementation

to be smaller than a floating point implementation. However they found that if more

than 45% of the operations on the critical path of the algorithm are multiplies then,

owing to the shorter latency of the LNS multiplier, the performance of a log

arithmetic implementation would be better than a floating point implementation.

Thus the short latency of log arithmetic multipliers can offset the comparatively large

size of the adders.

Interestingly, whilst the log arithmetic cores described by Haselman et al are quite

different in construction to those used in this work, which were developed by

Matousek et al, the normalised area for both systems adder pipelines is virtually the

same. The Matousek cores require 1286 normalized slices per adder pipeline, and the

Haselman cores require 1291 normalised slices per adder pipeline [Haselman

'05][Matousek '02]. The Haselman cores use a large number of the on-FPGA

hardware multipliers provided by Xilinx Virtex-II FPGAs and they use a

comparatively small number of block RAMs. Conversely the Matousek cores use a

large number of block RAMs and comparatively few hardware multipliers.

Consequently the conclusions that Haselman et al draw for their logarithmic cores

are equally valid for the Matousek cores used in this work.

3.5 Summary

This chapter introduced quantum chromodynamics (QCD) theory and explained why

74

scientists must use computer simulations to test this theory. The use of computer

simulations for this purpose, called lattice QCD, is the focus of a significant amount

of worldwide research work. Part of this work focuses on developing computing

machinery that is dedicated to the needs of lattice QCD simulations, including a

series of PC clusters and two custom ASIC based supercomputers. In addition some

groups have investigated the use of commercial supercomputers for lattice QCD.

These machines provide a view of the state of the art of high performance scientific

computing machinery, and by comparing the performance of the FPGA designs

described in this thesis with these machines I can draw significant comparisons about

the suitability of FPGAs for high performance scientific computing.

For several years FPGAs have been successfully used to implement applications that

use integer or fixed point domain arithmetic. Recent developments in FPGA

technology mean that FPGAs can now support a significant number of non-integer

arithmetic units on a single FPGA. Consequently FPGAs are now a potentially viable

platform for high performance computing applications. This chapter charts the

development of the two non-integer arithmetic systems used in this work.

The first system, single precision equivalent logarithmic arithmetic, is an alternative

to conventional IEEE floating point, which provides low cost multiplication and

division by representing real numbers as fixed point logarithms. The development of

the logarithmic arithmetic system is described up to the most recent FPGA based

implementations of the system. The second arithmetic system is IEEE double

precision floating point. This is the standard arithmetic system for high performance

computing applications and is only recently available for FPGAs. Implementing

floating point arithmetic for FPGAs has been the focus of substantial research over

several years, and this research is described in detail. The following chapters

describe the design and implementation of FPGA based lattice QCD designs using

both single precision log arithmetic and double precision floating point arithmetic.

75

Chapter 4

Algorithm Analysis

Careful and extensive algorithm analysis is an essential step in developing a high

performance implementation of any algorithm. This chapter presents a detailed and

comprehensive analysis of the lattice QCD algorithms that are implemented in this

thesis. The analysis is presented separately since it is applicable to the designs

described in both Chapter 5 and Chapter 6. The algorithms analysed are: the

performance critical Dirac operator, the dot-product operator and the matrix add-

scale operator. These three operators are used to construct the conjugate gradient

solver application. The analysis evaluates a number of constraints to performance,

including memory bandwidth, maximum clock rate and exploitable parallelism.

4.1 Performance Metrics and Considerations

Performance of an FPGA design that requires non-integer arithmetic may be limited

by a number of factors, including non-integer arithmetic performance, memory

bandwidth requirements and the maximum clock rate of the designs. Performance in

high performance computing machines is usually measured in floating point

operations per second (FLOPS).

The number of floating point operations performed per second is determined by the

number of floating point operations performed per cycle and by the system clock

rate. Exploiting low level parallelism increases floating point operations per cycle.

Efficient design and using highly pipelined arithmetic units improves clock rate.

Unfortunately most applications involve dependant operations, where the result of

76

one operation is the operand for another operation. Long pipeline latencies are a

significant problem for such applications since the arithmetic pipelines may be

forced to stall frequently while waiting for operands to be produced. Consequently

there is a significant trade-off between parallelism and clock rate for many FPGA

designs. The key is not to attempt to maximise either clock rate or parallelism but to

maximise the product of the two.

The latencies of the arithmetic cores used for the designs in this thesis are fixed. The

logarithmic cores are discussed in section 2.3.1, and the double precision floating

point cores are discussed in section 2.3.2. Briefly, the logarithmic adder has a

relatively long pipeline latency of 9 cycles whilst the multiplier has a very short

latency of only one cycle. The cores can run at clock rates of around 90 MHz.

Furthermore the logarithmic adder requires significant FPGA resources whilst the

logarithmic multiplier requires very few. Consequently the availability and use of the

adders is the performance constraint for designs using logarithmic arithmetic.

The double precision arithmetic units have latencies of 6 cycles for the adder and 7

cycles for the multiplier. These latencies are low for double precision floating point

units, however as a result their maximum clock rate is also comparatively low. This,

however, can be an advantage for many algorithms since short latencies make it

easier to exploit parallelism for applications with dependent operations. Meanwhile

the lower clock rate does not affect performance since it is difficult to get large

complex designs such as those described in this thesis to run at high clock rates.

4.2 Clock Rate and Path Delay

A design’s maximum clock rate is determined by the delay of the longest path in the

design. Path delay has two components; logic delay and routing delay. Logic delay is

determined by the complexity of the logic in the path. For example if two 64 bit

numbers are added in a single clock cycle and then multiplied by a third number, as

shown in Figure 4-a, a significant logic delay will result, leading to a slow clock rate.

This delay can be reduced by pipelining the operation over two or more cycles,

which is shown in Figure 4-b. Logic delay can also be caused by having long logic

delays in the condition checks of if-statements and loops. The condition check must

77

be evaluated in sequence with the expression, leading to long delay. It is usually

possible to pipeline the evaluation of the condition check, thus reducing logic delay.

Routing delay is the delay caused by the wire delays in the internal wiring of the

FPGA. Logic in an FPGA design is implemented using the internal logic blocks of

the FPGA. The basic logic cells of the FPGA (see section 2.1) are very small and

must be connected to together to construct the complex logic involved in an FPGA

design. These connections are implemented using the internal wiring fabric of the

FPGA. However this wiring causes a delay in the logic path and the longer the

wiring the greater the delay. Long wire delays can be reduced by reducing sharing of

on chip resources. For example if a component such as an IO pin is connected to a

location on chip that is some distance away then a long wiring delay will be created.

Heavy sharing of resources, such as arithmetic units, should be avoided since the

multiplexer logic required to manage access to the resource adds significant delay to

the logic path.

These are not the only considerations for a hardware designer, they are just some

examples. Hardware design is complex and care must be taken to avoid introducing

unnecessary delays into a design.

Figure 4-a. An example of an un-pipelined circuit with a large logic delay.

78

4.3 Exploiting Low Level Parallelism

FPGAs provide considerable instruction level parallelism, which can be exploited for

a particular application by using a design that is customised to the needs of that

application. Parallelism for a design requiring non-integer arithmetic is obtained by

performing as many arithmetic operations per cycle as possible. The designs

described in this thesis use multiple arithmetic units to exploit this kind of fine-grain

parallelism.

Significant FPGA resources are required to implement the application logic required

to control use of the arithmetic units. One cannot simply fill the chip with as many

arithmetic units as possible and hope for the best, it necessary to consider a number

of other factors, including the memory bandwidth requirements of the design. There

is no point creating a design with excellent potential performance if the available

memory bandwidth is insufficient.

Consequently the focus of the algorithm analysis was to establish the floating point

arithmetic and memory bandwidth requirements of the algorithms. FPGAs provide a

lot of low-level parallelism, but this parallelism can only be exploited for

applications that have a high ratio of floating point operations to memory bandwidth,

since performance is determined by the memory architecture of the system, and not

Figure 4-b Pipelined version of the circuit shown in Figure 4-a.

79

by the design the system runs. A low ratio means the application’s performance will

be memory bound, which limits the potential for exploiting instruction level

parallelism for such a design.

4.4 Analysis Techniques

Most applications are heavily dependent on unpredictable inputs, often from the end

user, which affect the computational load for the application. Thus it is often very

difficult to analyse the algorithm with source code analysis alone. A common

alternative analysis technique is to use profiling tools to measure the time spent in

each part of the application. This information can then be used to assess where in the

application the computational load lies.

The lattice QCD algorithms, in common with many matrix based scientific

computing algorithms, are completely loop based. For example the core Dirac

operator source code has no if statements or while loops of any sort making the

computational requirements of the code completely predictable. Consequently it was

possible to manually examine the source code and extract very detailed information

about the computational and memory bandwidth requirements of the application.

4.5 Analysis Results

 Table 4-a shows the number of additions and multiplications required per site for

each of the three operations that are used in the conjugate gradient application. Also

 Addition Multiplication

Dirac Operator 1440 1176

Matrix Add Scale 24 24

Dot Product 24 24

Conjugate Gradient 3000 2472

Conjugate gradient also requires 2 divisions per main loop iteration.

Table 4-a. Arithmetic operations per site for lattice QCD operations

80

shown is the total number of operations for the conjugate gradient application, which

is performed using a number of applications of each of the three operators. The

operations themselves are discussed in detail in section 3.1.3. The figure for

additions includes subtraction operations. Subtractions are performed using addition

units by inverting the sign bit of the second operand. Conjugate gradient also

requires 2 divisions per iteration of the main loop. A normal problem size uses fifty

million floating point operations per iteration so division constitutes only a tiny

fraction of the arithmetic operations required for conjugate gradient. As a result I

concentrated on the allocation of addition and multiplication resources.

It can be seen from Table 4-a that the Dirac operator is by far the most

computationally intensive of the lattice QCD operations used to implement the

conjugate gradient application, requiring nearly 55 times more operations per site

compared with either the dot product or matrix-add scale operation.

Table 4-b shows what percentage of the conjugate gradient calculation each

operation represents. The ratio of arithmetic operations to memory accesses for each

of the lattice QCD operations is also shown, along with the percentage of arithmetic

operations that are additions and multiplications. The Dirac operator is used twice

per iteration of the main loop of conjugate gradient algorithm whilst the matrix add-

scale is used three times and the dot product is used twice. Consequently the Dirac

operator forms over 95% of the computational load of the conjugate gradient

algorithm.

 Proportion of

Conj Grad

FP Ops/

Mem Ops

Add

Percentage

Multiply

Percentage

Dirac 95.6% 6.81 55% 45%

Dot Product 1.8% 1 50% 50%

Add-Scale 2.6% 0.66 50% 50%

Table 4-b. Memory characteristics and arithmetic operation distribution for lattice
QCD operations

81

It was determined that the Dirac operator is potentially amenable to an FPGA

implementation since it has a high ratio of calculation to memory operations. This

indicates that the application is bound by computational performance and not

memory bandwidth. Further analysis of the algorithm was required to determine

what parallelism is available in the algorithm, and to determine how to exploit this

parallelism.

Unfortunately the other operations are limited by memory bandwidth, making it

difficult to exploit any available parallelism. This is not a significant barrier to

performance since they form only a small part of the overall calculation load for the

conjugate gradient application.

4.6 Parallelism in the Dirac operator

The memory access characteristics of the Dirac operator show the potential for

extensive exploitation of parallelism within the Dirac operator, assuming that the

operator has exploitable parallelism. The dependencies within the operator were

analysed to find exploitable parallelism in the Dirac operator.

A dependency diagram of the components of the Dirac operator is shown in Figure

4-c. This diagram shows that the algorithm involves a series of steps and that some

of these steps consist of a set of independent operations. See section 3.1.3 for an

explanation of what each of the function types involves. The first stage is the

gamma-mul pairs. There are eight gamma-mul pairs and each is independent of the

other seven, making them parallelisable. The gamma-mul pairs are the most compute

intensive part of the Dirac operator making it possible to dramatically improve

performance through parallelisation of these gamma-mul pairs.

The second stage in the Dirac operator adds the results of all the eight gamma-mul

components, which are small matrices of complex numbers, together into one matrix.

Seven matrix additions are required to do this. This is a reduction operation so some,

but not all, of these additions are independent. The reduction is performed in three

steps; the eight results are added together to make four intermediate results, these

four are added to make two and then the two are added to make one. The matrix adds

82

within each of these steps are independent, however the adds between steps are

dependent. Thus parallelism is possible within the steps, but there is not as much

potential as in the first stage.

This analysis has shown that the Dirac operator has low memory bandwidth

requirements compared with its arithmetic processing requirements. Also internally

the operator has a considerable amount of exploitable parallelism. These two

characteristics indicate that the Dirac operator is compatible with the FPGA

environment.

4.7 Parallelism in the Dot Product Operator

The dot-product operator is primarily memory bandwidth bound. Table 4-b shows

Operand Retrieval

Result Storage

Gamma/Mul

functions

Add Wfv

Functions

Figure 4-c. Diagram of the dependencies between operations in the Dirac
operator

83

that one memory operation is needed for each floating point operation in the dot-

product operator. Consequently performance of the dot-product operator is memory

bandwidth bound on most platforms. Since memory bandwidth is determined by the

architecture of the FPGA board there is little scope to improve performance through

efficient design on the FPGA.

The ADM-XRC II board used in this work provides 6 banks of 32-bit memory,

which are clocked using the main FPGA clock. The theoretical maximum

performance for the dot-product on this board is 6 floating point operations per cycle

for single precision and 3 floating point operations per cycle for double precision.

These figures are dependent on data layout in memory being optimal for the dot

product operator. The Dirac operator is the dominant part of the conjugate gradient

application however so data layout will be optimised for this part of the application.

Consequently the performance of the dot product operator may be adversely affected.

4.8 Parallelism in the Matrix Add-Scale Operator

The matrix add-scale operator is even more memory bandwidth bound than the dot-

product operator. This is because two separate operand matrices must be read and

one of them must be updated with the result, making for a ratio of three memory

operations to every two arithmetic operations.

The matrix add-scale operates by scaling the value for a point in one matrix by a

fixed value. The result is added to the value for the same point in a second matrix.

The result of this is then written over the previous value for the current point in the

second matrix. The high memory bandwidth requirements for this operator mean that

the theoretical maximum performance for the ADM-XRC-II FPGA board is 4

floating point operations per cycle for single precision and 2 operations per cycle for

double precision. This assumes that the data layout in memory is optimised to the

requirements of the matrix add-scale operator. However data layout will likely be

optimised for the Dirac operator, which would adversely affect performance for the

matrix add-scale operator.

84

4.9 Summary

The analysis presented in this chapter has shown that the most important part of

lattice QCD calculations, the Dirac operator, is computationally bound and has low

memory bandwidth requirements compared with computational requirements. The

analysis has also shown that the Dirac operator has a substantial amount of

exploitable fine-grain parallelism. These characteristics indicated that the Dirac

operator can be efficiently implemented on an FPGA. The analysis also examined a

full lattice QCD application called a conjugate gradient solver. This application uses

the Dirac operator along with two other operators, the dot-product and matrix add-

scale operators. These two operators are less well suited to an FPGA implementation

since they are both memory bandwidth bound with comparatively low requirements

for computational resources. However they only form a small part of the total load of

the conjugate gradient algorithm. The result of this analysis was used to guide the

implementation of the designs detailed in the next three chapters.

85

Chapter 5

Lattice QCD Using Logarithmic

Arithmetic

The previous chapter presented a detailed analysis of the lattice QCD algorithms that

are implemented in this work. The analysis showed that the performance critical

Dirac operator has a lot of exploitable fine-grain parallelism, and that it has low

memory bandwidth requirements compared with its computational requirements.

Consequently an FPGA implementation of the Dirac operator has significant

potential for good performance. This chapter begins by discussing the

implementation, using logarithmic arithmetic, of the Dirac operator for FPGAs.

Whilst the Dirac operator is the most significant part of lattice QCD simulations, a

full application uses a number of other operations that can have a significant effect in

performance. To evaluate the effect of these operations a full conjugate gradient

solver application was implemented for FPGAs and this is described in this chapter.

5.1 Log arithmetic Dirac operator implementation

This section begins with analysis of the resource requirements of logarithmic

arithmetic cores. The analysis is used to determine how many units can fit on the

FPGA used in this work. This information is then used to determine how to allocate

the available units within the final Dirac operator design, and this design is discussed

in detail. The design discussion starts with a description of the design of the small

matrix operators that the Dirac operator is built from. These operators are used to

86

create an “application pipeline”. This pipeline parallelises all memory operations

with a calculation step and it parallelises the gamma-mul blocks with the matrix

addition stages. These stages are discussed in detail in the previous chapter, Chapter

4.

Two appendices which describe two aspects of the logarithmic Dirac operator design

process are attached to this thesis. Appendix A describes in detail how the arithmetic

unit pipelines are used within the log arithmetic Dirac operator design. Appendix B

describes the process used to improve the clock rates of the designs. Initial versions

of the designs had quite poor clock rates which were improved through an iterative

process of clock rate improvement. The appendices are included to illustrate two

important aspects of the design process used in this work and are complementary to

the design description contained in this chapter.

5.1.1 LNS arithmetic unit analysis

Table 2-a, Table 2-b and Table 2-c in Chapter 2 show the resource requirements for

the logarithmic arithmetic units. Logarithmic multipliers and dividers are very small

and have short pipeline latencies. Consequently the supply of multiplication

resources was not a constraint for the designs. The logarithmic adders are much

larger, and they have a significant requirement for block RAM. Logarithmic adders

must be instantiated in pairs and a pair of adders requires 28 block RAMs. Thus no

more than ten adder pipelines can fit on the FPGA used in this work, because the

FPGA available has 144 block RAM elements.

The characteristics of the lattice QCD operators, shown in Table 4-a show that the

operators have a reasonably balanced requirement for additions and multiplications,

with the requirement for addition being slightly higher. This makes the availability of

addition resources the critical performance constraint for the Dirac operator. The

ratio of adds to multiplications for the core Dirac operator is 11 adds to 9

multiplications. Ten adders are available on-chip so no more than an average of nine

multiplications per cycle can be performed, giving a possible peak throughput of

nineteen operations per cycle for the core Dirac operator. The multipliers are small

allowing use of a significant number to ensure that the adder pipelines are used

87

efficiently within the designs. As discussed in Chapter 4 the other operators in the

conjugate gradient algorithm are limited by memory bandwidth so availability of

arithmetic units is not a limiting factor for these operators.

5.1.2 LNS arithmetic use in the Dirac operator

The eight gamma-mul operations are the dominant part of the Dirac operator.

Multiplication of the 4×3 by the 3×3 complex number matrices (introduced in section

3.1.3) requires 264 floating point operations per matrix multiplication. The gamma

preconditioning takes a further 12 operations. Internally the result of the gamma

operation is an operand to the matrix multiplication.

The gamma-mul operations are independent, so they can be parallelised given

sufficient resources. One adder can be dedicated to each gamma-mul operation with

each adder performing 126 operations. This will only work if the gamma-mul block

can be implemented efficiently using a single adder. The multipliers are small so

several could be used with each adder pipe, even if they are underutilised, to ensure

that the adders are used to the maximum extent in each gamma-mul block.

In this scheme, with a single adder dedicated to each of the 8 gamma-mul blocks 2

adders are not used by the gamma-mul blocks. These two adders are used to sum the

results of the gamma-mul blocks in parallel with the gamma-mul blocks. Using two

adders for the addition section works well; 192 additions and subtractions must be

performed so each pipe performs 96 operations. Thus these adders have similar

computational loads to those adders used for the gamma-mul blocks. In this scheme

the computational loads on the adders are well balanced and there is less resource

sharing within the design, which helps to maximise clock rate.

Operand data for the gamma-mul blocks is used several times after it has been read in

from off-chip RAM. Streaming data directly from off-chip RAM to the arithmetic

units is not practical since the data will need to be read multiple times, inflating

memory bandwidth requirements. Thus for the designs operand data is stored in on-

chip distributed RAM (all block RAM is used by the LNS adders), making it

impossible to issue more than two operations per cycle that involve any single

88

operand matrix. Thus dedicating an adder block to each gamma-mul block was

determined to be the best strategy.

5.1.3 Gamma-Mul Block Design

This section describes the design of the hardware used to perform the gamma-mul

block calculations. One adder and two multipliers are used to implement each block.

There are eight blocks in total which are all structurally identical. There are some

small differences between the blocks, for some blocks numbers are added but in

other blocks the equivalent numbers are subtracted. However the same design can be

used for all eight blocks with some small adjustments. Figure 5-b shows the structure

of a log arithmetic gamma-mul block.

The gamma-mul blocks have two parts. The first part is the gamma calculation. Each

gamma operation consists of 12 additions or subtractions, and the operands for these

additions and subtractions are elements from a single complex number matrix. The

result of each of these additions is stored into two locations in the result matrix. The

operands for the gamma operator are stored in 12-element distributed RAMs (one

each for the real and imaginary halves of the matrix). Data is then read from these

RAMs, processed by the adder pipeline and stored in another pair of distributed

RAMs.

Each gamma operator is paired with a matrix multiply operator. The results from the

gamma operator are the operands for the matrix multiply operator. Thus the matrix

multiply operators read their operands from the distributed RAMs (see section 2.1)

used to store the results of the gamma operator, once the gamma operator has

completed.

Figure 5-a shows the source code for a complex number matrix multiply routine

which forms part of a gamma-mul block. Most of computational load in the Dirac

operator is in these matrix multiply routines. Each component of each point in the

result matrix requires 6 multiplications and at least 5 additions. The value for each

component is calculated by summing the results of 6 multiplications in a reduction

type operation.

89

The summation has three levels of dependency for each component:

• The six multiplications are independent

• The results of the multiplications are added in to 3 partial results

• The partial results can then be summed in two dependent stages

When used with a single adder pipeline, the code in Figure 5-a causes dependent

operations to be scheduled sequentially. No-ops must be issued to the adder pipeline

for the code to execute correctly. Re-ordering the loops so that the b loop is the

outermost loop reduces the impact of the data dependencies. Instead of performing

all the operations for each point before moving on to the next, an operation is

performed for each point and then a second operation is performed for each point and

so on. This replaces the no-ops with useful operations, improving performance

significantly.

Two multipliers are used to process the multiplications. The results of the

multiplications are sent directly into the adder to perform the first stage addition for

the point, allowing the multiplications and first stage additions to be streamed

through the two multipliers and the adder. This creates three partial results for each

component which are stored in temporary storage. Two 36 element dual port

distributed RAMs (see section 2.1) are used to store the partial results for the real and

imaginary halves of the matrix.

Once all of the multiply results have issued to the adder, the adder pipeline is

available to start adding the partial results stored in the two 36 element distributed

RAMs. The RAMs are dual ported so the partial results retrieved and then issued to

for (d = 0; d < 4; d++)

 for (c = 0; c < 3; c++){

 for (b = 0; b < 3; b++){

 b[d][c].r += g[b][c].r*a[d][b].r + g[b][c].i*a[d][b].i

 b[d][c].i += g[b][c].r*a[d][b].i - g[b][c].i*a[d][b].r

Figure 5-a. Source code for a complex number matrix multiply routine. This code,
combined with a gamma operation makes up a gamma-mul block

90

the adder, at the same time as the last of the partial results are stored from the adder

output into the distributed RAMs. The architecture of the logarithmic gamma-mul

block is shown in Figure 5-b.

The addition of the partial products is performed using an accumulate type operation.

There are 24 sets of 3 numbers to be added together, and since the pipeline latency is

9 cycles, these sets of partial results can be accumulated into the result matrix

without any stalls on the adder pipeline.

Gl3

operands

Wfv

operands

× ×

Intermediate result

storage

+

Result

Add all multiply

results, then

accumulate the

addition results

Store intermediate add results

in temp storage; then store full

results in result storage

Figure 5-b. Logarithmic arithmetic gamma-mul block

91

5.1.4 Matrix Addition, Matrix Subtraction and Matrix Scale Designs

The matrix addition operations are much simpler than the gamma-mul sections.

Addition of two complex number matrices requires that the equivalent values for

each point in the two operand matrices be added together. The hardware

implementation of this operation is quite straightforward. As previously discussed in

section 5.1.2 two adder pipelines are used for this part of the Dirac operator. The

additions are streamed through the two available adder pipelines, by issuing the

operands to the pipelines and then retrieving the results when they become available.

The results are then stored in temporary storage. The matrix subtraction and matrix

macro proc IssueSD(ra, rb, ia, ib){

 par{

 IssueSDX=0;

 doIssueSDX = 1;

 }

 do{

 par{

 if(IssueSDX == 11){

 doIssueSDX = 0;

 } else {

 IssueSDX++;

 }

 la9(ra[IssueSDX], rb[IssueSDX]);

 la10(ia[IssueSDX], ib[IssueSDX]);

 }

 }while(doIssueSDX);

}

macro proc RetrieveSD(rr, ir){

 par{

 retrieveSDX = 0;

 doRetrieveSDX = 1;

 }

 do{

 par{

 if(retrieveSDX == 11){

 doRetrieveSDX = 0;

 } else {

 retrieveSDX++;

 }

 rr[retrieveSDX] = las_res9;

 ir[retrieveSDX] = las_res10;

 }

 }while(doRetrieveSDX);

}

Figure 5-c. Operand issue and result retrieval function used to implement matrix
addition in the Dirac operator pipeline.

92

scale operators are implemented using the same approach.

Initial implementations of these operators used a single operator block which issued

operands to the arithmetic pipeline and then retrieved the results and stored them in

temporary storage. The design was later changed to separate the issuing of operands

and the retrieval of results into two separate operations. Performance for the Dirac

operator pipeline (discussed in the next section) was limited by the addition of the

results of the gamma-mul stage of the algorithm. In the Dirac operator pipeline the

addition operator is used several times in succession, and using a single operator

block meant that the adder pipelines were being flushed unnecessarily. Separation of

operand issue and result retrieval, as shown in Figure 5-a, reduced flushing of the

adder pipeline significantly, and improved performance for the Dirac pipeline.

5.1.5 Dirac Operator Pipeline

Lattice QCD represents a very small section of 4-dimensional space-time using a

matrix. As part of a lattice QCD calculation the Dirac operator updates each point in

the matrix once to complete what is termed a sweep of the matrix. Each point update

within a sweep is independent of any other update in that sweep. The application of

the Dirac operator to a point in the matrix depends only on the results from the

previous sweep.

Consequently it is possible to perform the gamma-mul operations for one site at the

same time as the addition operations for another site. A pipeline is used to exploit

this, which performs the addition stage for site n at the same time as the gamma-mul

section for n+1, creating a two stage pipeline which parallelises the gamma-mul and

addition stages.

Operand Retrieval and Result Storage

All the operand and result data for the Dirac operator design is stored in off-chip

memory. When needed the data is read into on-chip temporary storage. Small

distributed RAMs are used to implement this storage. Reading in this data takes time

however and this can adversely affect performance of the entire design, unless it is

parallelised with other parts of the operators.

93

Two extra stages were added to the Dirac operator pipeline. These two stages read in

operand data and write out result data in parallel with the two computation stages.

This created an application pipeline with four stages which processes 4 sites at once.

The stages, and the number of cycles each stage takes to complete, are shown in

Figure 5-d

To apply the Dirac operator to a site requires 8 gl3 type matrices and 9 wfv type

matrices to be retrieved from memory (the wfv and gl3 matrices are described in

section 3.1). A single wfv matrix, the result, must be stored to memory also. The gl3

matrices are retrieved from a large g type matrix which, I will call H, whilst the wfv

matrices are retrieved from a large y type matrix which will be called A. The result

wfv matrix is stored into another large y type matrix, which will be called B. The g

Operand Retrieval

Gamma-mul Stage

Addition Stage

Result Write

Read operands for site n

Requires 167 cycles

Perform gamma-mul

operations on site n-1

Requires 168 cycles

Perform addition

operations for site n-2

Requires 115 cycles

Write result for site n-3

Requires 15 cycles

Arrows represent inter-

stage storage

Figure 5-d. Diagram of the logarithmic arithmetic Dirac operator pipeline,

including cycle count information for each stage

94

and y type matrices are described in section 3.1.3.

Table 5-a shows the number of reads and write for each of the large operand

matrices, along with the total number of operations required per site. The Alpha-Data

ADM-XRC II development board used in this work can perform up to six 32-bit

memory operations per cycle. 384 operations must be performed per site, at a

maximum rate of 6 operations per cycle so, including the 4 cycle latency of the

SRAMs, a minimum of 68 cycles are required to perform all the memory operations

for a single site.

Achieving this would require the data for each of the three matrices to be stored

across all six banks. This is a complex layout and would be difficult to manage; it is

better if the data for each large matrix is stored in as few banks as possible. The

simplest approach, which is used in this design, is to store each matrix, (H, A and B)

in a dedicated pair of memory banks, putting the real component of each number in

one bank and the imaginary component in the other. This data layout requires a

minimum of 112 cycles to read in all the operand data.

The cycle count for the actual implementation is higher at 167 cycles, since the

operand retrieval stage must wait until the first calculations stage has read all of the

data for the previous site, before operand retrieval can commence. However the

operand retrieval requires fewer cycles than the first calculation stage, so this does

 Number of

Matrices

Number of 32-bit data

words

Reads from H 8 144

Reads from A 9 216

Writes to B 1 24

Total Ops 18 384

Table 5-a. Memory bandwidth requirements per site update for Dirac operator

95

not restrict performance.

The Gamma-mul Stage

The first calculation stage consists of eight gamma-mul blocks. All eight gamma-mul

operators are independent and are run in parallel. Each of the blocks reads its

operands from small distributed RAMs and writes its result to another set of

distributed RAMs. The operands were written to the input RAMs by the operand

retrieval stage on the previous iteration of the application pipeline. The results are

read from the output RAMs by the addition stage on the next iteration of the pipeline.

The gamma-mul blocks are the most computationally intensive part of the Dirac

operator and parallelising them improves performance dramatically.

The Addition Stage

The addition stage has a dedicated pair of adders. It is constructed using the matrix

add, subtract and scale blocks described in section 5.1.4. This stage accumulates the

eight results produced by the gamma-mul stage into a single result matrix. This result

is then subtracted from another matrix and the result of that is scaled by a value.

Early implementations of the design flushed the two adder pipelines used in this

stage between each use of the matrix add operator. Each flush took 10 cycles which

caused the add-wfv stage to take longer to complete than the gamma-mul stage. The

flushes were eliminated by separating the issue and retrieval into two separate

operators, as previously discussed in section 5.1.4. This allowed all the arithmetic

operations to be issued to the adder pipelines without any pipeline flushes. The issue

operators are called in parallel with the retrieval operators, with the retrieval

operators delayed so that they start retrieving results from the adder pipelines as soon

as they are available.

The results of all the additions are stored in one of seven pairs of distributed RAM

arrays. Some of these arrays are dual port RAMs because their contents need to be

read by the issue operators whilst results are still being written to them by the result

retrieval operators. The matrix scale and matrix subtract operators are combined to

reduce the number of cycles required for these two operations. The results of the

96

matrix scale operation are fed directly from the multiplier pipeline outputs into the

adder pipelines, which eliminates any need for temporary storage.

Result Write Stage

The result write stage is very simple, it writes out the result from the previous

iteration of the pipeline, stored in a small distributed RAM, into off-chip memory. A

total of 24 32-bit words must be written into two memory banks, and the memory

banks have three cycle latency for write operations so a total of 15 cycles are

required for this stage. The result must be written to memory before it is overwritten

with the next result by the previous pipeline stage, but this is easily achieved since

there is a period of the order of one hundred cycles before the previous stage starts

writing to the distributed RAM.

5.2 Log arithmetic conjugate gradient solver

5.2.1 LNS Matrix Add-Scale and Dot Product operators

The dot-product is the sum of the square of all the real and imaginary components of

all the values in one of the large matrices that are part of a lattice QCD dataset. The

dot-product is used to determine if the conjugate gradient solver has reached a

solution. During each iteration, the solver calculates the dot product and compares

the result to the dot product result from the last iteration of the solver. A solution has

been reached when the difference between the two dot product results drops below a

predetermined threshold. The dot product operation is shown in equation (15) below.

)(i

n

mi i YXd ×=∑ =
 (15)

The dot product operator used in the version of the conjugate gradient solver that was

implemented uses the same matrix for both operand matrices, which reduces memory

bandwidth requirements. The operand matrices are the large Y type matrices from the

calculation dataset (described in section 3.1), which are actually matrices of small

complex number matrices. However for the purposes of the dot product and matrix

add scale operators they can considered as vectors of complex numbers.

97

iii yxky +×=)((16)

iii xyky +×=)((17)

The scale-add operation has two forms which are shown in (16) and (17). In both

forms every value from one matrix is multiplied by a constant value, and the result is

added to the equivalent point in another matrix. The difference between the two

forms is in where the result is stored. Any implementation of this algorithm will have

high memory bandwidth requirements compared with computational requirements.

Three memory operations and two arithmetic operations are required to calculate the

result for each location in the result matrix, which makes performance for this

operation memory bandwidth bound for most platforms.

5.2.2 Memory Layout

The dot product and matrix add-scale operators are both memory bandwidth bound

for the FPGA development boards used for this work. This is the case for most

computing platforms used for lattice QCD. For single precision arithmetic the Alpha-

Data ADM-XRC II board used here can sustain a maximum of 6 floating point

operations per cycle for the dot-product and a maximum of 4 operations per cycle for

the matrix add-scale. To put the lack of memory bandwidth in context, the FPGA

used here has sufficient arithmetic resources to sustain 20 operations per cycle for

either of these operators.

The dataset for the Dirac operator is a subset of the conjugate gradient solver dataset.

The difference between the two is that the conjugate gradient solver has five Y type

matrices, where the Dirac operator has only two. See section 3.1 for details on the

large matrices that form the Dirac operator dataset. Maximum performance for the

dot-product and matrix-scale operators can only be achieved using a very complex

memory layout pattern that spreads all the Y type matrices across all six memory

banks. Unfortunately such a memory layout would make memory access logic very

complex for the performance critical Dirac operator.

The data layout used for the Dirac operator stores each Y type matrix in a pair of

98

SRAM banks. The real components of each number are stored in one bank and the

imaginary components are stored in the other bank. This limits memory bandwidth

for the dot product and matrix add-scale operators. However the Dirac operator was

already complete before work started on the full conjugate gradient application.

Changing the data layout would have required substantial re-engineering of the

completed Dirac operator and it was decided that the performance improvement from

doing this would not be significant enough to justify the work involved.

The conjugate gradient operator dataset includes five Y type matrices. Each of these

is stored in a pair of SRAM banks. Two pairs of SRAM banks are dedicated to

storing the Y type matrices. If possible no two matrices used by one call of any of the

operators should be stored in the same bank. If two matrices are stored in the same

bank then memory bandwidth would be substantially decreased for that operator.

Figure 5-e describes the relationships between the Y-type matrices used in the

conjugate gradient application as a graph colouring problem. When two matrices are

used by the same call of an operator they are connected by a line. No two matrices

that are connected by a line can have the same colour. The graph can be coloured

with two colours so two pairs of banks are required to store all the matrices. This

means that any unconnected matrices can be stored in the same SRAM bank

Tmp1

x

Tmp2 r

p

Figure 5-e. Usage of the Y type matrices used by the conjugate gradient
solver shown as a graph colouring problem

blue

blue

blue

red

red

99

Therefore p and temp2 are stored in SRAM banks 4 and 5 and the other three

matrices are stored in banks 2 and 3.

5.2.3 Log arithmetic dot product operator

Figure 5-f shows the architecture of the implementation of the dot-product operation.

The real and imaginary components of each number in the matrices are stored in

separate banks. This allows two of the architectures to be run in parallel and the

results can then be added at the very end. One adder and one multiplier are dedicated

to each instance of the dot-product operator.

The architecture streams data in from memory and issues it directly to the multiplier

to square it. The result of the multiply is then added to one of n running totals, where

n is the latency of the adder (9 cycles for the log arithmetic adder). This is achieved

by issuing the multiply result to the adder along with a zero for the first n multiply

results. After n results have been issued to the adder the result of the first addition is

available from the adder’s output. This result is re-issued to the adder along with the

current multiply result. This is continued until all the numbers in the matrix have

been squared and added to one of the n running totals.

Two of these architectures are run in parallel so two sets of n running totals are left

once the matrix has been processed. These are added using the following method:

• On the cycle after the last multiply result is issued to the adder, the first of

Figure 5-f. Dot product architecture

Memory Bank

Multiply

I < N

Add

Zero

Result

100

each set of running totals from each instance of the architecture is available

from each adder.

• These results added by issuing them to one of the adders. All elements of the

two sets of running totals are added in this way.

• Now there are n running totals to be added. There are 9 running totals for the

log arithmetic implementation so this is done in 4 stages using a reduction

type operation. First 8 results are added to leave 5 totals. Then 4 are added to

leave 3, then 2 are added to leave 2 and finally the last 2 are added to give the

final result.

• This requires about 50 cycles to complete.

The architecture is very efficient, although it would complete 9 cycles faster if the

latency of the adder pipeline latency was 8 cycles instead of 9 because the last add

would be eliminated. The matrices that form the input to the operator have tens of

thousands of elements so that the final summation forms only a very small portion of

the time spent in the operator.

5.2.4 Log arithmetic matrix add-scale operator

There are two different operations that are quite similar so they were treated them as

one operation. The operations are described by equations (16) and (17) in section

5.2.1. It was determined that if three parameters were passed to the operator then a

single operator could perform both operations easily. The parameters are: the address

of the matrix to be multiplied, the address of the matrix to be added and the address

of the matrix where the result is to be stored. This unified operator is used by simply

passing the appropriate addresses for the two operands and the result to the one

operator. For a matrix scale-add operation the multiply and result addresses are the

same whilst for a matrix add-scale the add and result addresses are the same.

The Y type matrices are stored in the off-chip memory banks, as described in 5.2.2.

Unfortunately data must be both read from and written to one of the matrices which

restricts throughput on the arithmetic units. It was decided to stream data from the

101

off-chip memory, reading operand data every second cycle. The results were then

was then stored in these spare cycles. The operands arrive at the relevant arithmetic

units in the correct cycle and are used straight away.

This approach processes the entire matrix without stopping, thus maximising

performance. The design uses a single adder and a single multiplier. The calculations

of the real and imaginary components of each number for the matrix are alternated

onto these arithmetic units. The alternative approach was to buffer the results and

write them out to off-chip memory in batches, however no block RAMs were

available to buffer the data so this approach was not viable.

5.3 Summary

This chapter has described the design and implementation of an FPGA based Dirac

operator using logarithmic arithmetic. This is the most important part of most lattice

QCD calculations, and if a platform has good performance for this operator than it is

likely to have good performance for complete lattice QCD applications. However a

full application includes a number of other operations which can have a significant

effect on performance. To evaluate the effect of these operations, a full lattice QCD

conjugate gradient solver application was implemented using logarithmic arithmetic.

The design of this application and the operators it requires are described in this

chapter.

As described in section 3.2.2 either single or double precision arithmetic can be used

for lattice QCD. However double precision is preferred since there are some

uncertainties over the stability of single precision for lattice QCD simulations that

are run at the most physically interesting parameters. During this project double

precision IEEE arithmetic cores became available. The next chapter details the

design and implementation of the Dirac operator and the conjugate gradient solver

application using these double precision cores.

102

103

Chapter 6

Lattice QCD Using IEEE Double

Precision Arithmetic

This chapter describes implementations of the lattice QCD Dirac operator and

conjugate gradient application that use IEEE compliant double precision arithmetic

cores. The use of double precision arithmetic on FPGAs presents a significantly

different challenge to the use of logarithmic arithmetic, as used in the designs

described in the previous chapter, Chapter 5. This chapter starts with a discussion of

the extra performance constraints that double precision designs are subject to,

compared with logarithmic arithmetic designs.

The chapter continues with an analysis of the resource requirements of the double

precision arithmetic cores that were used in this work. This analysis is used along

with the application analysis from Chapter 4 to determine what mix of arithmetic

units would best suit the lattice QCD algorithms. The design of a Dirac operator and

conjugate gradient solver application using these cores is then described. Whilst this

design has some similarities to the logarithmic designs, it is much more complex and

is more heavily constrained than the logarithmic designs.

Double precision arithmetic is the preferred arithmetic system for lattice QCD

simulations, as detailed in 3.2.2. Consequently the designs described in this chapter

are more significant than the logarithmic arithmetic based designs described in the

104

previous chapter. Furthermore since double precision arithmetic is the most

commonly used non-integer arithmetic system for high performance computing,

applications the results of the designs in this chapter offer significant insights into the

suitability of FPGAs for general scientific computing.

6.1 Design Constraints for Double Precision Arithmetic

The double precision implementations are designed to maximise parallelism whilst

maintaining a high clock rate in order to maximise performance. Performance for the

log arithmetic designs is limited by the number of available adders. The limited

number of adders keeps the demand for memory bandwidth low. Meanwhile the log

arithmetic multipliers are very small compared with the adders so it was not

important that the multipliers be efficiently used in the designs. The logarithmic

designs take advantage of the small multiplier size, by using more multipliers than

strictly required by the balance of arithmetic operations in the Dirac operator, thus

ensuring maximum utilisation of the adders. Essentially the target when designing

with the logarithmic cores was to make best use of the adders.

The resource requirements of the double precision arithmetic units are much more

balanced than for the log arithmetic units. The double precision adders and

multipliers require similar amounts of FPGA slices and the multiplier also requires

nine hardware multipliers, see Table 2-d and Table 2-e for details. As a result, high

performance for the double precision designs could only be obtained through

efficient use of both types of unit. Also, since double precision floating point data

words are twice the width of single precision equivalent log arithmetic data words,

memory bandwidth and data storage requirements are doubled compared with the log

arithmetic implementations. This caused on-chip data storage and retrieval of data

from off-chip memory to become critical performance constraints for the double

precision applications. Therefore the critical design constraints for the double

precision designs were:

• Limited availability of both multipliers and adders

• High memory bandwidth requirements

105

• Layout of memory in off-chip RAMs

• Shortage of resources on the FPGA

6.2 Double precision IEEE arithmetic unit analysis

The double precision designs used the Moloney cores [Moloney '04]. The

characteristics of the adder and multiplier cores are shown in Table 2-d and Table

2-e. The resource requirements of the divider are not considered in this analysis since

division is a necessary but insignificant part of the lattice QCD algorithms. These

tables show that the resource requirements of the double precision cores are quite

different to the resource requirements of the log arithmetic cores. The double

precision multiplier and adder require a similar number of slices each (about 900),

and the multiplier also requires 9 on-chip hardware multipliers. Finally the pipeline

latencies are similar, at 6 cycles for the adder and 7 cycles for the multiplier.

Consequently the best mix of arithmetic units is one which reflects the computational

mix of the algorithm, shown in Table 4-a. This is quite different to the log arithmetic

implementations where the best mix is to have as many adders as possible and then

sufficient multipliers to ensure that the adders are used efficiently. The Dirac

operator is 55% addition and 45% multiplication. The dot product and matrix add-

scale operators have an equal requirement for both multiplication and addition but

are limited by memory bandwidth and not arithmetic resources.

To determine the optimal number and mix of arithmetic units, a number of factors

were considered including the requirement for FPGA resources for the application

control logic, and also the requirement for division in the conjugate gradient

application. The resource requirements of double precision dividers are substantial

and are shown in Table 2-f. The Moloney core used here is small for a double

precision divider but still requires nearly 1800 slices, which is 5% of the available

slices on the FPGA used in this work. Only one divider is required by the conjugate

gradient application but it still requires a substantial amount of resources.

Many of the issues involved in exploiting fine-grain parallelism in an FPGA are

already discussed in section 4.3. All data for lattice QCD applications are small

106

complex number matrices. These matrices are stored on-chip using single or dual

ported RAM. These RAMs limit exploitable parallelism within operations on these

small matrices since no more than two operands can be retrieved from any matrix on

a given cycle. Parallelism can be more effectively exploited by performing multiple

matrix operations in parallel. This approach was successfully employed for the

logarithmic implementations and it was successfully used for the double precision

implementations as well.

The Dirac operator consumes 9 additions for every 8 multiplications (see Chapter 4)

so the ideal balance of arithmetic units is in this ratio. Using 8 multipliers and 10

adders for the design gives a balance of units broadly in line with this, using 51% of

the available slices. This leaves sufficient chip resources for application control logic

and so is the balance chosen for the design.

If more arithmetic units were included in the design then there would be very little

space for the control logic for the application. For example if 10 adders and 16

multipliers, the same balance as the log arithmetic Dirac operator, were instantiated

then over 67% of the FPGA resources would be taken. This would leave little usable

space for application logic. Having, say, 12 adders and 10 multipliers would give

little advantage either since it would be difficult to use the extra units effectively

across the entire application.

6.3 Double precision Dirac operator implementation

There are some similarities between the log arithmetic and double precision

implementations. Parts of the log arithmetic implementations were used as a base for

the equivalent parts of the double precision implementations. Many of the simpler

components were converted with reasonable ease. The matrix addition operations are

similar for both implementations and were converted by adjusting for the size of the

floating point data words and for the different latencies of the arithmetic units.

The more complex and performance critical components of the double precision

Dirac operator are very significantly different. For example the gamma-mul blocks

needed to be completely redesigned to allow for the new mix of arithmetic units.

107

Also the off-chip memory control needed to be completely re-built to meet the

memory bandwidth requirements of the double precision application. Finally a

shortage of FPGA resources was a very significant problem for the double precision

implementations; the size of the arithmetic units combined with the size of the

double precision data meant that significantly more resources were required for the

double precision implementations.

6.3.1 Use of On-Chip Block RAM memory

In the log arithmetic implementations nearly all the on-chip block RAMs are

occupied by the adder pipelines so all on-chip storage was implemented using

registers or distributed RAM. However for the double precision implementations all

the block RAMs are available since none are used by the arithmetic units. The use of

double precision arithmetic doubles on-chip storage requirements compared with

single precision arithmetic. Consequently considerable effort was spent on ensuring

efficient use of the on-chip block RAMs.

Access to block RAM is through a one cycle pipeline. In order to read data from the

block RAM the address in the block RAM is presented to the address port of the

RAM. The block RAM data outputs have attached registers and the result of the read

is written into this register on the next clock edge. In order to maintain simplicity

Handel-C, by default, clocks block RAMs at twice the system clock rate. This allows

block RAMs used in a Handel-C design to be accessed in a single cycle.

Unfortunately running the block RAMs at twice the system clock tends to severely

limit clock rate for Handel-C designs that use block RAM.

To address this problem Celoxica, the producers of the Handel-C design tools,

provide a compiler transformation (first introduced in version 3.0 of their tools) that

can automatically pipeline block RAM use in a design. The transformation is applied

if all data read from a block RAM is written into a single register, which cannot be

written to from anywhere else in the design. The transformation implements the

register using the registers attached to the block RAM outputs. Registering the output

of the block RAMs for the double precision Dirac operator added complexity to an

already complex design. However without this the clock rate of the design would

108

have been severely limited.

6.3.2 The gamma-mul pipeline stage

The analysis of the double precision arithmetic units in section 6.2 showed that using

10 adders and 8 multipliers best reflected the computational needs of the algorithm.

This was sufficient to implement an application pipeline similar to that used for the

logarithmic arithmetic Dirac operator described in Chapter 5. The design of this

double precision Dirac operator is described in this section.

Gamma Operations

The gamma operations consist of 12 additions or subtractions whose result is a wfv

matrix. The result of each addition is stored in two locations in the result wfv matrix.

The wfv result matrix is stored in a dual ported on-chip RAM so these result stores

would occupy both ports of the RAM if performed on a single cycle, preventing

overlapping of the matrix multiply and gamma parts of the gamma-mul block.

This problem existed for the log arithmetic implementation also where it was solved

using a multidimensional array of registers to store the gamma result. A register

array of size n can support up to n parallel writes but requires a lot of FPGA

resources. Every register in the array is connected to every point in the design from

which the array is accessed. This creates a massive amount of multiplexing logic,

which can be reduced to more manageable levels by using multidimensional arrays.

The multiplexing logic for four 3-element arrays is much smaller than for a single 12

element array but it is still substantial. This was not a significant problem since was a

lot of was plenty of spare resources available on the FPGA in the logarithmic

designs.

A multi-dimensional register array could not be used for the double precision Dirac

operator because FPGA resources were at a premium. Analysis of the access patterns

for the gamma and mul sections of each of the eight gamma-mul blocks showed that

the problem only occurred for half the gamma operations. By delaying one of the two

writes to the gamma result RAMs by one cycle for the problem gamma operations,

block RAMs could be used to store the gamma results with no loss of performance.

109

Figure 6-a. The architecture of the double precision Dirac operator. A diagram of
the design of the gamma-mul blocks is inset.

Matrix Storage

Vector Storage (Striped across all banks)

Bank 0

Gl3

Operand

Wfv

Operand

Multiply

Add

Operand

Control

Bank 1 Bank 2 Bank 3 Bank 4 Bank 5

Add Add Add Add

Add Add

Add

Scl

Sub

Result

Gamma-Mul Opera Block

8 of these are run in parallel

The results are stored in 8

LUT RAMs and accumulated

into one RAM (below)

Result is stored back to

off-chip memory banks

2 to 5

110

Multiply operations

Since only 8 multipliers are available for the double precision Dirac operator the

gamma-mul blocks had to be completely redesigned. The design of the gamma

operations is discussed in the previous section. The gamma operations are combined

with a complex number matrix multiply operation to give what are called the

gamma-mul blocks. Using the two operations separately would incur a delay.

Combining them eliminates this delay and improves performance.

Figure 6-a shows the structure of the double precision Dirac operator and inset is the

structure of the gamma-mul block implementation. Each gamma-mul block uses 1

adder and 1 multiplier to multiply a 3x3 gl3 matrix by a 4x3 wfv matrix to produce a

wfv result matrix. The implementation uses the multiplier to produce 6 partial

products for each component (real and imaginary) of each number in the result wfv

matrix. The partial products must then be summed, giving the result for each

component of each number. The issue order of the multiply operations is set so that

the multiply results can be efficiently fed into the adder with minimal requirement

for extra on-chip storage. The first two multiply results are partial products of site

[0,0], the next two are of site [0,1] and so on up to site [3,2]. This sequence is

repeated three times.

Since only one multiply result is produced per cycle, the multiply results can only be

added on every second cycle. To handle this, the first result from the multiplier is

registered and then issued to the adder in the next cycle; along with the current

multiply result. These additions are referred to here as the stage-one additions. This

process is continued until all the stage-one additions have been issued to the adder

pipeline. At this stage two sets of three matrices remain; one set for the r-components

of the result and the other set is for the i-components of the result. The three matrices

in each of these sets must then be added together to get the real and imaginary

components of the result matrix.

The summation of these result sets is overlapped with the stage one additions. As

soon as the first stage one addition result is produced by the adder pipeline, it is

111

accumulated to the correct location in the result matrix. The contents of the result

matrix are set to zero beforehand. The free slots on the adder are used to perform

these additions. Once the addition of the multiplication results has been completed

then the accumulation additions are issued on every cycle thus making better use of

the adder pipeline.

This operation is complex but it extracts excellent performance from both the adder

and multiplier and requires minimal temporary storage for any intermediate results.

Elimination of the temporary storage was important since resources are at a premium

in this design. This scheme heavily utilises both the adder and multiplier pipelines

and so returns excellent performance. Performance is further improved by the low

latency of both the adder and multiplier. Low latencies reduce the pipeline fill time

which improves performance.

6.3.3 Addition stage

Addition operations

The add/subtract wfv blocks are implemented by streaming data from the result

RAMs of the gamma-mul blocks into two adder pipes; one pipe handles the real

components and the other pipe handles the imaginary components of each number.

This is the same approach as used in the log arithmetic implementation. However it

is more complicated here because some of the data is stored in block RAMs and

reads from these block RAMs need to be registered. The results from the gamma-mul

stage are the input of this stage.

The eight results from the gamma-mul stage are added into four intermediate result

matrices using four matrix-addition operations. These four matrix additions are

processed within 48 cycles. However the gamma-mul stage begins writing to its

result RAMs after 34 cycles, so the operands for the third and fourth matrix additions

are copied into temporary storage to avoid a write before read data conflict between

the two pipeline stages. Single ported distributed RAM is used for this temporary

storage. Figure 6-b shows a diagram of how data is retrieved from the temporary

storage RAMs, issued to the adders for addition, and the results stored back to the

112

temporary RAMs.

The matrix additions are performed using two separate operations. The first

operation reads data from the operand storage and issues it to the pair of adder pipes

used for this stage. There are two versions of this operation; one registers the output

from the operand storage the other does not. The registered version is used when the

operands are stored in block RAM the other for when the operands are stored in

distributed RAM. Registering the output of the block RAMs takes an extra cycle to

complete so the results are produced by the adder pipeline a cycle later. The retrieve

operation includes an option to delay retrieval for a cycle which is used when

operations are issued by the registered version of the issue operation.

Scale and subtract and the G5 operation

The results of the addition operations are scaled by a value called kappa, which is

Operands retrieved

from RAMs and issued

to adders

Results from adders

stored back to RAMs

Small distributed RAMs

used for temporary

storage

Figure 6-b. Diagram showing the operation of the matrix addition functions

113

constant for a run of the application. The value of kappa determines how quickly the

algorithm converges on a solution. The scale operation is performed by multiplying

each number in the addition result matrix by kappa. The result is then subtracted

from the data for the current site in the lattice, which has been pre-conditioned using

the G5 operation. The G5 operation is very simple and does not require any

arithmetic operations. To perform the G5 operation the operand matrix is copied

directly into the result matrix, changing the sign of half the values. The sign of a

number on a conventional processor is normally changed by subtracting it from zero,

however it is possible to simplify this operation on an FPGA by simply flipping the

sign bit of the floating point word. This is significantly faster than using a floating

point operation.

The G5 operation is performed in parallel with the gamma-mul stage of the Dirac

pipeline and the result is passed on to the addition stage. The result of the scale

operation is then subtracted from the G5 result. The subtraction result is the final

result for the current site in the lattice and is stored to off-chip memory in the next

stage of the application pipeline.

Since the scale and subtract operations are always used together they are combined

into a single operation. This operation issues the multiplications for the scale

operation to a pair of multipliers. The multiplication results are then issued directly

to the adder pipelines to perform the subtraction operation, eliminating any need for

intermediate storage of the multiplication result data. The results of the subtraction

are retrieved and stored in temporary storage using the same retrieve operation used

by the addition operation.

To reduce the resource requirements of the design the scale operation is performed

using the multipliers that are used for the gamma-mul blocks in the previous pipeline

stage. Multipliers dedicated to the scale operation (as is done in the log arithmetic

Dirac operator) would be a poor use of resources since they would be underutilised

and would occupy a significant amount of FPGA resources. The multipliers used in

the gamma-mul blocks are not used for the final 35 or so cycles of that pipeline stage,

so they are available for use in the scale operation. To control use of these multipliers

114

for the scale operation, the gamma-mul stage signals the addition stage once its use

of the multipliers is complete. Thus the entire design uses ten adders and eight

multipliers in total.

Putting the addition stage together

The addition issue and retrieve operations are combined with the scale-subtract

operation inside a larger operation that runs the second stage of the application

pipeline. This second stage operation has two parallel parts. The first runs the issues

operations and the second runs the retrieve operations. The retrieve operations are

delayed so that they retrieve data from the adder pipelines on the correct cycle. The

second stage operation also ensures that no conflicts occur on the multiplier pipes

shared between the scale-subtract operator and the gamma-mul blocks of the first

stage.

6.3.4 Data storage and layout

Double Buffering of gl3 Operands

Off-chip data storage is a significant issue for the double precision Dirac operator.

384 64-bit floating point data words need to be read from or written to the off-chip

memory for each site update. This must be done in a window of 180 cycles (the

number of cycles taken by the gamma-mul stage). In order to avoid write before read

conflicts on the gl3 inputs to the gamma-mul stage, the gl3 inputs must be double

buffered.

Double buffering was not necessary in the logarithmic Dirac operator since all

accesses by the gamma-mul stage to the gl3 matrices are complete by cycle 72. This

leaves a long window of nearly 100 cycles in which to read all the operands into the

RAMs used by the gamma-mul stage. For the double precision Dirac operator this

window is much smaller at only 27 cycles, which is insufficient to read in all the gl3

operands. Only one multiplier, not two, is used in each gamma-mul block so it takes

twice as many cycles to process all the operations involving the gl3 operands.

In the double precision Dirac operator pipeline the gl3 operands are buffered in on-

chip block RAMs. These block RAMs are much larger than a gl3 matrix, so there is a

115

considerable amount of free space in the RAMs. The RAMs are dual ported and only

one of these ports is required by the gamma-mul blocks. To double buffer the gl3

inputs the block RAMs are divided into two logic spaces; “low space” and “high

space”. The operand read pipeline stage uses one block RAM port and the gamma-

mul stage uses the other port. Both pipeline stages alternate between the two spaces,

and never use the same stage on the same pipeline iteration. This scheme double

buffers the gl3 inputs without using any extra FPGA resources.

Data Layout in Off-Chip Memory

Double buffering of the gl3 operands allows all the gl3 data to be retrieved within the

available time whilst using a simple layout of the gl3 matrices in off-chip memory.

The gl3 matrices are stored in two banks of SRAM with each 64-bit datum split in

two. One half of each datum is stored in one bank and the other half is stored in the

other bank. The real components of each number in the gl3 matrices are stored in the

evenly numbered memory addresses of the two banks and the imaginary components

are stored in the odd numbered memory locations.

The bandwidth requirements for the wfv matrices are not as constrained as for the gl3

operands. All accesses to the wfv operand matrices by the gamma-mul stage are

complete by cycle 12 leaving 168 cycles in which to read all the operands in from

off-chip memory. As a result double buffering was not required for the wfv operands.

216 64-bit words need to be read from one of the Y type matrices and 24 64-bit

words written to another of the Y type matrices. Each of these matrices may be stored

across 2, 4 or 6 SRAM banks. If stored across two then 216 cycles are required to

read all the operands. If stored across 4 then 108 cycles are required and if stored

across 6 banks then 72 cycles are required. The large Y type matrices are stored

across four banks of off-chip memory, since only 168 cycles are available to retrieve

the data.

6.3.5 Resource utilisation reduction

In the Xilinx Virtex-II FPGA that was used for this work the hardware multipliers

and block RAMs are located in the same logic cell in the device. As a result they

share the same ports to transfer data in and out of that cell. When a hardware

116

multiplier in a cell is used in a design then the block RAM at that cell can only be

used as a 16 bit wide RAM, because the ports are configured to be the width of the

hardware multiplier’s input, which is 18 bits. 72 hardware multipliers are used in the

design by the floating point multipliers, so that meant that 72 of the available block

RAMs could only be used as 16 bit wide block RAMs. A specially designed Handel-

C struct was used to aggregate 4 of these 16-bit block RAMs into a single 64-bit

block RAM. A set of macros were designed to handle reads and writes to these

aggregated block RAMs.

6.4 Double precision conjugate gradient solver

The double precision conjugate gradient solver requires double precision versions of

the dot-product and matrix scale-add operations. Data layout in memory determines

how the operations are implemented. Double precision variables are 64 bits wide, so

the ratio of memory bandwidth to calculation is doubled compared with single

precision, making data layout very important. The wfv matrices are stored across 4

memory banks, using all six would increase bandwidth but would make the memory

access hardware unfeasibly complex.

6.4.1 Double precision matrix add-scale operator

The matrix add-scale implementation streams data for one operand matrix from

memory into a multiplier where it is scaled by a fixed value. The result is then added

to the equivalent value from other operand matrix. Both matrices are stored in the

same four off-chip memory banks so retrievals must be alternated between the two

input matrices. The results of the operation are buffered into a set of block RAMs

and the results are written out to memory when the block RAM buffers are full.

Block RAMs at sites where the multipliers were already used were used for the

buffer RAMs. These block RAMs were not used elsewhere in the design allowing a

simple and efficient implementation of the matrix add-scale operator.

6.4.2 Double precision dot-product operator

The double precision dot-product operator uses a similar architecture to the one

employed successfully for the logarithmic arithmetic version. Data is streamed

directly from external RAMs into the multiplier to square it. The results of these

117

squares are then accumulated using the architecture shown in Figure 5-f. The shorter

latency of the double precision adder compared with the log arithmetic adder means

there are fewer partial products to be accumulated which improves performance

slightly compared with the logarithmic implementation. There are fewer partial

products to be added together at the end, which reduces the depth of the reduction

operation by one level.

6.5 Summary

The chapter has described the design and implementation of an FPGA based Dirac

operator and conjugate gradient application using IEEE double precision floating

point arithmetic. The double precision FPGA designs were subject to many more

design constraints than the designs that used logarithmic arithmetic. The logarithmic

adders are large and have long pipeline latencies and the logarithmic multipliers are

very small and have short latencies. Consequently the design priority for logarithmic

designs is to make good use of the available adders. In comparison the IEEE double

precision adder and multiplier are similar in size and have similar pipeline latencies.

Thus it is important to make good use of both types of unit. Also since double

precision data words are twice the size of single precision data words the data

bandwidth requirements of the double precision designs are doubled compared with

the single precision logarithmic designs.

As a result of these design constraints the double precision designs are much more

constrained than the logarithmic designs. Nonetheless the designs are efficient and

return excellent performance for both the Dirac operator and for the full conjugate

gradient solver application. These designs show that FPGAs can be used successfully

for lattice QCD applications using double precision arithmetic.

The computational requirements of lattice QCD are very significant and can not be

met by a single processor or FPGA. Consequently it was decided to investigate the

possibility of multiple FPGA systems for lattice QCD. I did this by implementing a

dual-FPGA version of the logarithmic arithmetic Dirac operator described in Chapter

5. This dual-FPGA Dirac operator is the subject of the next chapter.

118

119

Chapter 7

Dual FPGA Dirac Operator

The previous two chapters have described FPGA designs that implement key lattice

QCD algorithms on FPGAs using both logarithmic arithmetic and IEEE double

precision floating point arithmetic. These implementations show that FPGAs can

return good performance for lattice QCD simulations. However neither set of designs

use more than a single FPGA. Generating a single scientific result using lattice QCD

simulations requires in the order of 6.6 × 1015 floating point operations. It would take

over two months to do this using double precision FPGA designs described in the

previous chapter, and given that many such scientific results need to be generated for

a single problem, it can be seen that a single FPGA will never be sufficient to meet

the computational requirements of lattice QCD.

In order to demonstrate whether an FPGA based solution has potential to meet the

demands of lattice QCD a multiple FPGA version of the Dirac operator was

implemented. This dual FPGA Dirac operator demonstrates that two FPGAs can be

successfully applied to one use of the Dirac operator. This result shows that multiple

FPGA systems have potential for lattice QCD. The dual FPGA Dirac operator is

based on the log arithmetic Dirac operator detailed in Chapter 5.

7.1 Partitioning the Dirac operator algorithm

The log arithmetic Dirac operator is implemented across two FPGAs. The Dirac

operator is highly parallelizable. Each site update within a single sweep is

independent of the other updates, but the sweeps are dependent, so one sweep cannot

120

begin until the previous one has finished. Consequently the site updates for a sweep

can be performed easily on multiple processors. After the sweep has finished, or

during the sweep, the results for each site update are sent to the other processors for

use in the next sweep of the lattice. Half the site updates are performed by each

FPGA, with the lattice split in two along the time axis. One FPGA updates the lower

half of the sites and the other FPGA updates the upper half.

The operator pipeline for the Dirac operator is unchanged for the multiple-FPGA

version, except that the result-write now obtains the SRAM semaphore before

writing out any results to the SRAM banks. Thus, when the Dirac operator pipeline is

not writing data to the SRAM banks, the communications package can write data

received from the other FPGA. Consequently calculation never needs to wait for data

to be sent from the other FPGA and communication and calculation are fully

parallelised.

For the dual Dirac operator it is assumed that all the results produced by one FPGA

must be sent to the other FPGA. This is the case for small problem sizes. For large

problem sizes only a subset of the results calculated must be sent to the other FPGA.

However by assuming that all results must be sent for all problem sizes the

scalability of the dual-FPGA system is more rigorously tested.

The Dirac operator pipeline produces one result every 168 cycles. Each result

consists of 24 words, which is 96 bytes when single precision arithmetic is used.

Therefore minimum bandwidth of 0.57 bytes per cycle is required to transmit the

data, ignoring signalling overhead. However the flow of data between the FPGAs

must be controlled, which requires extra bandwidth and it may not be possible to

transmit data on every clock cycle. Therefore some extra bandwidth is required so

available bandwidth of 2 bytes per cycle should be sufficient.

7.2 Communications requirements of the Dirac operator

Using multiple processors for a single lattice QCD calculation is a well established

technique. The core Dirac operator algorithm is very well suited to such

architectures: it is highly parallelizable, it has reasonable communications bandwidth

121

requirements and, importantly, requires only nearest neighbour communication

between processing nodes. Nearest neighbour communication is simpler to

implement than any-to-any communication and is more efficient as it eliminates the

complexity of any-to-any communication systems.

A multiple processor lattice QCD machine needs a number of things to have good

performance for a large number of processors. They are:

• Very low latency communications

• Good bandwidth

• Ability to parallelise computation and communication

• Ability to pre-fetch data from memory

Bandwidth is important for multiple processor lattice QCD systems but low latency

is more important. Communications latency determines the scalability of a system

when applied to lattice QCD problems. Scalable systems can apply many processors

to a single problem. If communications latency is high then performance can be lost

since the processing nodes spend a lot of time waiting for data to arrive from other

processors. Scalable systems, such as the QCDOC system (see section 3.2.3) avoid

such performance loss through a combination of low latency communications

systems and parallelised communications.

Scalable systems allow the lattice to be divided into very small portions so that each

node performs the calculation for a small number of lattice sites. Systems such as

QCDOC [P. A. Boyle '05] and apeNEXT [Belletti '06] are custom ASIC based

systems with communications architectures tailored to the requirements of lattice

QCD. The systems are very scalable; each node in the QCDOC can operate

effectively on as few as 16 sites in a lattice.

PC based clusters, as described in [Holmgren '05b], are generally not as scalable

since they suffer from higher communications latencies. Each PC cluster node needs

to operate on at least one thousand sites or overall performance for the system is

122

poor. Performance is improved significantly by having each node operate on at least

several thousand sites. The priority in designing the communications system for the

dual FPGA implementation was to minimise latency in the system whilst preserving

bandwidth.

7.3 Hardware Infrastructure

The Alpha-Data ADM-XRC II prototyping boards that were used for the log

arithmetic and double precision applications are described in section 2.1.1. The

ADM-XRC II boards consist of a PCI carrier card which can accept up two PCI

Mezzanine Cards (PMCs). The PCI carrier card connects the PMC cards to the host

computers PCI bus. The carrier card also connects the FPGAs on the two PMCs with

64 pin to pin wires. For the dual FPGA implementation a carrier card with two

ADM-XRC II PMC cards mounted on it was used. A low latency architecture was

designed which uses the interconnection provided by the carrier card to communicate

data between the two FPGAs.

7.4 Existing Inter-FPGA Communications Systems

A variety of different systems exist for communicating data between two FPGAs. An

example of such systems is the Xilinx SelectLink system, which is discussed here.

The full name of this system is the Virtex-II SelectLink Communications Channel. It

is a freely available system for communicating data between two Xilinx FPGAs

[Logue '05]. The system provides a low latency, high bandwidth, unidirectional,

communication system that transmits data from one FPGA to another. Xilinx provide

an internet tool that generates VHDL or Verilog source for the system that is

customised to a designer’s requirements.

The SelectLink system is a source synchronous communications package that

appears, to the user logic on the transmitting and receiving FPGAs, to be a single

FIFO between the two FPGAs. Two of these channels can be used to provide

bidirectional communications between the two FPGAs. This is shown in Figure 7-a.

The user logic writes data to be transmitted to a FIFO in the transmitter block. The

SelectLink transmitter logic then reads the data from this FIFO and transmits it to the

other FPGA. The data is transmitted along with the clock of the transmitter. The

123

receiver logic on the receiving FPGA is clocked using this clock, ensuring that the

receiver logic stays in phase with the transmitter. The receiver then writes the

received data to a FIFO. The user logic on the receiving FPGA can then read the data

from this FIFO.

The SelectLink system allows the designer to choose one of a number of data

transmission standards to handle transmission of data across the wires. Which signal

standard is chosen depends on the nature of the electrical connection between the

FPGAs and on the data bandwidth requirements of the design. If the interconnect

consists of short on-circuit board wires with good signal integrity, then a simple,

single ended protocol is sufficient for moderate data rates. If longer wires are used,

perhaps between circuit boards, or if higher data rates are required, then a more

sophisticated signalling standard is needed. Using sophisticated signalling standards

with short on-circuit board wiring allows the system to achieve very high clock rates

and hence achieve very high bandwidth.

The analysis of the bandwidth requirements of the logarithmic arithmetic Dirac

Figure 7-a. Xilinx Virtex-II Communications Channel [Logue '05]

124

operator, see section 7.1, showed that the SelectLink system would be sufficient for

the bandwidth requirements of a dual-FPGA version of the operator. Unfortunately

the SelectLink system proved to be incompatible with the off-chip memory access

logic in the Dirac operator design. The SelectLink system is intended to be used as

part of a VHDL or Verilog design and it proved to be incompatible with parts of the

Handel-C design.

No other communications system was available that met the needs of a dual FPGA

based Dirac operator. Consequently a Handel-C based system was developed. This

design is a simplified version of the SelectLink architecture; it does not implement

some unnecessary and complex aspects of the SelectLink architecture. In particular,

the SelectLink architecture transmits data using Double Data Rate (DDR) signalling,

where data is transmitted on both the rising and falling edges of the clock, to improve

bandwidth. DDR is efficient but very complex to implement and so it was omitted

since the extra bandwidth was not needed.

7.5 Source Synchronous Communications

The overall architecture of the uni-directional communications system is shown in

Figure 7-b. I decided against a bi-directional system since both FPGAs need to send

a similar amount of data, so it makes more sense to have two simple uni-directional

systems instead of one, complex, bi-directional system. In a bi-directional system

only one FPGA may communicate at a time, and controlling which FPGA gets

access to the communications is a complex task. Having two uni-directional systems

gives bi-directional communication with less complexity and sufficient performance

for the Dirac operator. Another useful benefit of using two uni-directional

FIFO FIFO

Data

Transmitter Clock

Output Enable signal

Buffer nearly full signal

Write data for

transmission to

block RAM

Read data

from block

RAM FIFO

Receiver

Clock

Figure 7-b. Diagram of source synchronous communications system

125

communications systems is that data may be sent in both directions at the same time.

Communications systems can be either synchronous or asynchronous; synchronous

systems use a clock to determine when to sample the data bus whilst asynchronous

systems use output enable and acknowledge signals to handshake data across the data

bus. Asynchronous systems are quite simple but they have poor bandwidth since they

require several cycles to transmit a single datum. Synchronous systems can usually

transmit one datum per cycle, but they must ensure that the receiver’s clock stays in

phase with transmitter’s clock. There are a number of ways to do this including:

sending the transmitter’s clock with the data, clocking both FPGAs using the same

clock or encoding the clock into the data in some way.

The low bandwidth of asynchronous communications systems makes them

unsuitable for the needs of a dual FPGA Dirac operator. It is not possible to clock

both PMC cards on the PCI carrier card using the same clock, so a synchronous

protocol where both FPGAs are clocked by the same clock was not possible. It was

decided to implement a source synchronous system where the transmitter’s clock is

transmitted along with the data.

The uni-directional communications system, like the Xilinx SelectLink system, is a

source synchronous system where the transmitter’s clock is transmitted with the data.

The receiver is clocked using this transmitted clock, ensuring that the data is read

correctly from the transmission lines. The clock and data arrive at the receiver of the

other FPGA in phase allowing more reliable operation of the communications

system. This is a well established technique that is used for the DDR SDRAM

(Double Data Rate Synchronous Dynamic RAM) found in most current PC machines

[JEDEC '05]. A further advantage is that this system can easily be extended to

systems with more than two FPGAs.

In the system the transmitter transmits data to the other FPGA over a 16-bit wide

data bus. It also transmits an Output Enable signal to tell the receiver that there is

valid data on the bus. The receiver samples the data bus only when Output Enable is

asserted. The transmitter also transmits its clock to the receiver. The receiver is

clocked using this clock ensuring the data is sampled correctly. One 16-bit data word

126

can be transmitted on every cycle thus ensuring excellent bandwidth.

The actual operation of the system is similar to the operation of the SelectLink

system. The application logic on the transmitting FPGA writes data to a transmit

FIFO queue. The transmitter then reads the data from the FIFO and transmits it to the

receiving logic on the receiving FPGA. The receiving logic then writes the data to a

receive FIFO. The user logic can then read the data from this FIFO at any stage. This

system appears, to the FPGA designer, to be a FIFO between the two FPGAs.

If a lot of data is transmitted to the receiver but not read by the application logic on

the receiving FPGA then the FIFO queues can get backed up. To prevent data loss

the receiving FPGA transmits an almost full flag back to the transmitter. The receiver

flag asserts this flag when the receiver FIFO is three quarters full. When this flag is

asserted the transmitter stops reading data from the FIFO connected to the

application logic but sends any data that has already been read from this FIFO. The

almost full flag is cleared when the receiver FIFO is less than three quarters full;

when this happens the transmitter can start transmitting data again. When the

transmit FIFO is nearly full the application logic is prevented from writing to it so

the application design cannot rely on the FIFO being available. These two

mechanisms control the flow of data from the transmitting FPGA to the receiving

FPGA.

7.6 Implementing the design

7.6.1 FIFO queues and Handel-C

Handel-C FIFO

The FIFO queues themselves were a major obstacle to implementing the

communications system. Handel-C provides a FIFO construct which is based on the

blocking communications channels that are used for cross clock domain

communication and for synchronising two parallel sections of a Handel-C design.

These channels can be made non-blocking by adding a fifolength = x specification to

them, where x is greater than zero. Such channels are non-blocking for both reads

and writes, except when reading an empty FIFO, or writing to a full FIFO.

127

Unfortunately, these FIFO channels do not provide any indication of when the FIFO

is nearly full. They merely block when they are full. This is a major drawback, since

the communications system is pipelined and if the receiver FIFO blocks then any

data in the pipeline is lost.

To solve this problem, whilst still using the Handel-C FIFO, I created logic to

generate almost full flags for the Handel-C FIFO by tracking the number of reads

and writes to the FIFO. In order to fully pipeline communications system I needed to

ensure that FIFO reads never blocked. Handel-C also provides an ability to test a

channels readiness using the prialt statement. I used prialt to test the channels before

reading from them to ensure that the communications system never blocked due to an

empty FIFO. Unfortunately I found that the prialt statement does not work for

channels that cross clock domains, as the FIFO channels in the communications

Block
RAM indexR indexW

lastRead

lastWrite

Non-blocking channel

Non-blocking channel

Write the current
value for indexW

& index R on
each cycle

Compare
indexW &

lastRead to
generate

almostFull
signal

Compare
indexR &
lastWrite

pointers to see
if FIFO is

empty

Read Side clock domain Write Side clock domain

Figure 7-c. Diagram of FIFO used in the source synchronous

communications system

128

system do. Consequently I had to abandon using the Handel-C channels and write the

own FIFO instead. In earlier versions of the Handel-C tools prialt did not work for

channels that cross clock domains, however Celoxica claims that this problem has

been fixed. Unfortunately this was found not to be the case.

FIFO in the Source Synchronous Communications System

A FIFO is a well established hardware construct and there are several solutions

available including one from the OpenCores initiative and one in the Xilinx Core-

Generator library. The development environment for Handel-C, the DK suite, can

use third party IP cores for hardware designs. However, simulating designs that use

these cores is very difficult; DK cannot use the simulation files that are supplied with

the cores since they are targeted at VHDL or Verilog simulators. Instead users must

write their own simulator libraries which, assuming one can find how to do this, is as

much trouble as implementing the core from scratch in Handel-C. It is extremely

difficult to create Handel-C designs without using the simulator so I decided to write

the own FIFO from scratch in Handel-C, which allowed comprehensive debugging

of the designs using the simulator.

Figure 7-c shows the design of the FIFO implementation. The FIFO needs to be able

to cross clock domain boundaries with the read side in one domain and the write side

in the other domain. Block RAMs can easily transfer data between clock domains

simply by writing data to the block RAM in one domain using one port and reading

in the other domain using the other port. Each side of the FIFO needs to know when

it is able to read or write data, so each side needs to know the index in the block

RAM of both the last read and write. The read side sends the current value of indexR

(the read index) to the write side on every cycle using a non-blocking channel.

Likewise the write side sends the latest value for the write pointer to the read side.

The channels transmit the values across the clock domain boundary with a minimal

chance of data corruption.

Before performing a read, the read side checks indexR and lastWrite to ensure that

the block RAM location to be read holds valid data. If indexR is less than lastWrite

then the data to be read is valid. Wrap around within the FIFO, where new data

129

overwrites older unread data is prevented since the FIFO will not accept new data if

it is more than 75% full. Before performing a write, the write side checks the

almostFull flag. If this flag is asserted then a write may not be attempted. The

almostFull flag is updated on every cycle, and is set if the gap between indexW and

lastRead is greater than three quarters of the size of the FIFO. Leaving a quarter of

the FIFO empty ensures that there is always space to store any data in the pipeline

supplying the FIFO.

7.7 Communications protocol

In order to use the communications system for a dual FPGA Dirac operator a

communications protocol implemented to manage data transfer between the two

FPGAs. The protocol also provides the ability to synchronise the two FPGAs.

Synchronisation is necessary to ensure that the two FPGAs are both working on the

same part of the algorithm at the same time.

The system is designed to be extendable, allowing it to be used to implement other

operators, such as the dot-product operator, over two FPGAs. All messages begin

with a control word. The control word is shown in Figure 7-d. Each command type

has a unique message-type number. The control word also provides extra space to

send a small amount of data along with the message type number.

The receiving FPGA’s application logic uses a state machine that reads the received

data from the receiver FIFO. When a control word is read from the FIFO, the state

machine inspects the control word and starts the appropriate handler for the message

type. This handler then processes the remainder of the message. Different message

types have different lengths, however all messages of a given type are the same

length. Two message types are implemented, but more types could be added.

Message type Extra Data

15 10 9 0

Figure 7-d. Communications protocol control word

130

• Send wfv matrix

• Send synchronise message

Sending and Receiving wfv Matrices

The send wfv message allows a single wfv matrix to be sent from one FPGA to the

other. Information about which pair of SRAM banks the wfv matrix should be stored

in is sent in the spare space in the command word. The first eight bits of the address

offset into these banks is also included with the code word. The next datum in the

message contains the site number of the wfv matrix. The receiving FPGA uses this

information to decide where to store the incoming wfv matrix. The wfv matrix is

packed into the message body after the two control data. Each communications data

word is 16-bits wide so the 32-bit wide elements of the matrix are split in two with

the higher 16-bits sent first followed by the lower 16-bits.

On receiving a send wfv message the receiving FPGA decodes the memory bank,

address offset and site number information. The wfv matrix is then read from the

receiver FIFO and written to the appropriate location in the off-chip SRAM.

Synchronising the FPGAs

A synchronisation mechanism is required to ensure that the two FPGAs only work on

the same iteration of an operation at any given time. The two FPGAs synchronise at

the beginning and end use of the Dirac operator. The dual FPGA Dirac operator is

run many times in succession in order to collect valid performance data for it, and the

two FPGAs must always work on the same iteration of the Dirac operator for the

performance results to be valid. When the operator is used in a full application it is

used in conjunction with other operations. Each call of the Dirac operator must

complete before any other operator may be called.

In order to synchronise, a barrier type synchronisation point is implemented by both

FPGAs sending a synchronise message (either StartCalc or EndCalc depending on

whether the critical section is starting or finishing). Immediately after sending a

synchronisation message the user logic reads from a blocking channel connected to

the receiver state machine. This forces the user logic to stall until an equivalent

131

synchronisation message is received from the other FPGA. When a synchronisation

message is received, the receiver’s state machine writes to this blocking channel,

allowing the application logic to continue. The blocking channels ensure that one

FPGA cannot pass a synchronisation point until the other FPGA has reached that

same point.

Controlling access to the SRAM banks

Access to the pairs of SRAM banks used to store the large Y type matrices is

controlled using semaphores. No part of the application accesses the SRAM banks

without first possessing the semaphore for the appropriate bank pair. Handel-C

includes a semaphore construct which is used here. Only one part of the design may

hold a particular semaphore at any given time. Any requests for a held semaphore

will stall until the semaphore is released. This prevents the communications package

conflicting with the result write of the Dirac operator and permits each FPGA to send

results to the other FPGA during the calculation. The other FPGA can then write the

results to the SRAM during the calculation, when the SRAMs are not being used by

the application logic, allowing full parallelisation of calculation and communication.

7.8 Communication difficulties

7.8.1 Errors in the communication system

It was not possible to fully eliminate all transmission errors from the

communications package; a very, very small fraction of data is transmitted

incorrectly. It was very difficult to trace the cause of the error due to the limitations

of using Handel-C for this type of design work. The Handel-C simulator cannot

simulate inter-FPGA communication accurately, so the only way to diagnose the

problem was to repeatedly place and route designs, using the results to try and

determine where any problems lie. This is a clumsy approach, and since it was not

possible to inspect the internal signals in the FPGA, it was not a very good way of

finding the problem with the dual-FPGA design.

After much investigation I decided that the transmission errors are caused by a

timing problem; if a design is placed and routed twice, and the two resulting bit files

132

run, then errors displayed by the two runs are different. This behaviour is consistent

with a design suffering from timing errors. Further evidence that the problem was

timing related was that the problem only appeared on large complex designs; simple

designs worked perfectly. This is consistent with a timing related error.

With the current system, if the messages involved in a synchronisation are

transmitted incorrectly then the system will stall while one of the FPGAs waits for a

message that will never be received. The unreliability of the communications system

therefore limits how long the dual-FPGA system can run for; if the system is too

unreliable then the system will stall before valid performance data can be collected.

By repeatedly placing-and-routing the design I was able to create a version of the

communications system that runs the dual-FPGA Dirac operator for several seconds

without error. By sending an inverted clock with the data I found that the system was

sufficiently stable to allow performance results for the dual-FPGA Dirac operator to

be collected.

Since the purpose of the dual-FPGA operator is to prove the scalability of FPGA

based systems, I decided that this result would be sufficient. The aim was not to

produce a fully reliable production quality system, but was to show the scalability of

a dual-FPGA based system for lattice QCD calculations. All potential solutions to the

problem would involve a very significant amount of work, given that it had taken

several months to create a design that could be used to get performance results, I

decided that this design was sufficient.

7.8.2 Solving the communication problems

A possible solution to this problem is to use a Digital Clock Manager (DCM) to

ensure that the receiver’s rising clock edge falls in the middle of the stable window

of the incoming data. The data window is the portion of the clock cycle where the

incoming data is stable and can be correctly sampled. To ensure that the clock is

phased correctly the DCM monitors the data transmission lines, then, when the

system is started, the transmitter transmits a “training pattern” on the data lines

which the DCM on the receiver uses to determine where the middle of the data

window is. The DCM then phase shifts the receiver’s clock to fall in the middle of

133

this data window.

VHDL and Verilog development environments can perform timing accurate

simulations of designs that use features, such as DCMs, that are embedded in modern

FPGAs. VHDL or Verilog simulators allow designers to inspect any signal in a

design, and then accurately compare the signal’s transitions to other signals in the

design. Such a simulation can be repeated after each of the place and route stages

(translate, map and place-and-route) to ensure that the design remains correct.

Debugging DCMs, and similar components, without such a sophisticated simulator is

extremely difficult. It is impossible to simulate DCMs in Handel-C; a design using a

DCM can only be tested in hardware, where it is not possible to inspect the signals

attached to the DCM. The DCM either works or it does not. The Handel-C simulator

is targeted at on-chip algorithmic designs; it is not suited to designing complex off-

chip communications systems that require complex clocking logic. The only viable

debugging option available was to test the designs in hardware, using the relative

correctness of the results to gauge whether the change was a success.

For this solution to work the communications system would need to be re-

implemented using a different hardware design language, such as VHDL. Also the

Dirac operator would require substantial redesign to eliminate conflicts between the

off-chip SRAM logic and the communications package which prevented the

SelectLink system from working.

An alternative solution would be to change the communication system so that it is

tolerant of unreliable data transmission. This could be done by adding parity bits to

the data wires. The parity of each data word to be sent would be calculated by the

transmitter before transmission. The receiver could then use this parity information

to detect when data has been transmitted incorrectly, and request re-transmission of

that data. However this system would require a significant amount of work. The

transmission protocol used for the dual-FPGA operator is very simple, and has no

ability to request retransmission of data. Adding this functionality would be complex

and would require a significant redesign of the communications system.

134

7.9 Summary

The dual-FPGA Dirac operator described in this chapter demonstrates that FPGAs

have the potential to be a scalable platform for lattice QCD simulations. The

communications system used here is a widely used mechanism which delivers

sufficient bandwidth and, more importantly, low latency inter-FPGA

communications. This system is used to implement a dual-FPGA version of the log

arithmetic Dirac operator that is described in Chapter 5. The dual-FPGA version

delivers performance that is nearly twice the performance of the single FPGA

version, by parallelising nearly all communication with calculation.

The next chapter presents performance results for the three categories of design

presented in this work, including the single FPGA logarithmic arithmetic designs, the

IEEE double precision designs, and the dual FPGA Dirac operator described in this

chapter. The performance of these designs is discussed and compared with the

performance of a range of existing lattice QCD machinery.

135

Chapter 8

Results

This chapter presents results for the logarithmic arithmetic designs described in

Chapter 5, the IEEE double precision arithmetic designs described in Chapter 6, and

the dual-FPGA Dirac operator described in Chapter 7. The results of these designs

are compared with a variety of systems that are used for lattice QCD simulations.

These lattice QCD systems are described in detail in section 3.2. Many of these

systems, including the two custom ASIC based supercomputers, are the result of

significant research effort. The performance of the FPGA based lattice QCD

operators is compared with these machines. This comparison delivers significant

insights into the usefulness of FPGAs for high performance computing machinery.

8.1 Correctness testing

All the single FPGA designs presented in this thesis have passed extensive testing for

correctness. The procedure is as follows.

• An adapted version of the original application is used to randomly generate

input data and a corresponding correct result for the FPGA designs.

• The input data is used to run the FPGA design, and the results are saved.

• Then a small program is used to compare the FPGA result to the correct

result. This program compares each element of the correct result with the

equivalent FPGA result. If the difference between any two results is greater

136

than a certain threshold then the FPGA design is incorrect.

The lattice QCD designs do not require the input data to conform to any specific

rules; randomly generated input sets are sufficient to test the designs. This was

determined after discussions with application experts, who were satisfied that

randomly generated input data is sufficient to rigorously test the application.

The results from the correct application rarely exactly match the results from the

FPGA. The correct results are calculated on an Intel Pentium 4 processor using

double precision floating point, whilst the FPGA designs use 32-bit single precision

logarithmic arithmetic or 64-bit double precision floating point arithmetic. Internally

the Pentium 4 converts all floating point numbers to an 80-bit extended double

precision format to increase the accuracy of its floating point calculations. The

results are then converted back to standard double precision floating point for

storage. As a result of this extra precision the Pentium 4 results usually differ from

those generated by either class of FPGA design.

For the Dirac operator designs the difference between correct FPGA results and the

correct results is not large; approximately 1×10-7 for the logarithmic designs, and

1×10-13 for the double precision designs. In both cases the difference is very small.

The differences for a full run of the conjugate gradient application are larger since

the data is reused many times. However each component of the conjugate gradient

application was extensively tested individually and found to be correct. The full

applications were also tested by only iterating the main loop once, which reduced the

accumulative effect of the lower precision used in the FPGA designs. Finally the

conjugate gradient applications were tested for full runs involving many iterations of

the main loop, and the results were found to be close to the correct results.

8.2 Performance measurement methodology

The performance results quoted in this chapter do not include the time required to

load the application data on to the FPGA prototype board, nor do they include the

time required to convert the input data to the logarithmic domain for the logarithmic

arithmetic designs. The designs described in this work are intended to investigate the

137

viability of FPGAs for high performance computing applications. They are not

proposed as lattice QCD accelerators for a PC type machine.

All results that I present here are for fully placed and routed designs, running in

hardware, on the Alpha-Data ADM-XRC II board. All the designs have been placed

and routed at high effort levels, and have been extensively optimised to maximise

clock rate. The clock rate figures shown for each design are the maximum possible

clock rates for these designs, as reported by the Xilinx place and route tools.

The Xilinx place and route tools output an FPGA configuration file, called a bit file,

which when downloaded to the FPGA determines the FPGA’s behaviour. I have

written software code, using the application programming interface supplied with the

card by Alpha-Data, which runs on the computer hosting the ADM-XRC II card.

This code downloads the bit file to the FPGA and, using the PCI bus, transfers all the

operand data for the application to the card’s SRAM banks. Once the data transfer is

complete the FPGA design is ready to start. The host computer signals the FPGA,

using the status register, to start it running. The status register is a blocking

communications system, between the host and the FPGA, that can be used to

synchronise the host and FPGA. Immediately before signalling the FPGA the host

computer records the current value of the system clock. Once the FPGA has finished

running, it signals the host program, and immediately after receiving the signal the

host program records the value of the system clock for a second time; the difference

in the recorded times is the execution time of the program, which is used to calculate

the performance figure.

The run-time of a single call of the Dirac operator is too short to measure accurately

since it runs for in the order of 20ms. In order to get an accurate measurement the

operator is run for at least several thousand iterations, so the overall run time is in the

order of two to three minutes. This also reduces the time spent signalling the start

and end of the calculation to a small fraction of the overall run time. The number of

iterations used depends on the problem size; to maintain a reasonable overall run

time, larger problem sizes run for fewer iterations.

The conjugate gradient application runs for long enough on its own so this technique

138

is not necessary when measuring its performance. The conjugate gradient application

applies each operator to the lattice a number of times: twice for the Dirac operator,

three times for the matrix add-scale operator and twice for the dot-product operator.

The operators are applied repeatedly in a particular sequence, see Figure 3-d, until

the difference between the results of the last and second last iterations falls beneath a

pre-set threshold; the difference is evaluated by comparing the results of the

applications of the dot-product operator. Consequently, the number of iterations of

the conjugate gradient operator is variable, so the FPGA design counts the number of

iterations and returns this value to the host computer when the solution has been

reached.

T

INF
P

××
= (18)

Performance figures for lattice QCD machines are normally quoted in Floating Point

Operations per Second (FLOPS). Most machines used for lattice QCD are capable of

several hundred MegaFLOPS (MFLOPS), or even over one GigaFLOPS (GFLOPS)

per processor. All the implemented lattice QCD operations - the Dirac, dot-product

and matrix add-scale operators - perform a fixed number of floating point operations

per site, shown in Table 8-a. In order to determine the floating-point performance of

the operators, the number of floating point operations that each operator performs for

each site was counted. This data was used with (18) to calculate the floating point

performance of each operator, where P is the performance, F is the number of

Table 8-a. Floating point operations per site for the lattice QCD operators.

Operator Floating point operations per site

Dirac Operator 2616

Matrix Add-Scale 48

Dot-Product 48

Conjugate Gradient 5472

139

arithmetic operations performed per site, N is the number of sites and I the number of

iterations performed.

8.3 Log arithmetic implementation results

Table 8-b shows the performance for the Dirac operator and the conjugate gradient

solver implemented using log arithmetic. The results shown in Table 8-b are for

designs placed and routed for a Xilinx Virtex-II XCV6000 speed-grade 6 device. The

performance for the core Dirac operator is very strong at 1320 MFLOPS and the

performance for the conjugate gradient application is similarly strong at over one

thousand MLFOPS.

Clusters of PC based computers are popular for lattice QCD simulations; this field of

research is described in section 3.2.2. Generally lattice QCD simulations on PC

clusters are run using single precision arithmetic since a PC’s single precision

performance is usually twice its double precision performance for lattice QCD. Log

arithmetic is equivalent to single precision IEEE floating point so I compare the log

arithmetic designs to the performance of PC processors. Other systems currently

used for lattice QCD, such as QCDOC and apeNEXT, run double precision

arithmetic. The log arithmetic implementations are not compared to these systems as

it would not make a valid comparison.

The performance of PC machines for lattice QCD is very much a moving target, new

processor designs, interconnect systems and memory buses are constantly improving

performance for these systems. Consequently I present results for two systems. The

Operation Clock Rate

(MHz)

MFLOPS FP Ops per

Cycle

Dirac Operator 85 1320 15.5

Conjugate

Gradient

85 1050 12.35

Table 8-b. Performance of the log arithmetic designs

140

per-processor performance of PC’s is much higher for single processor systems than

for multiple processor clusters. Since the high single node performance cannot be

obtained for real calculations I compare the performance of the designs with the

performance of PC processors used within clusters of 16 CPUs, for a moderate per-

CPU problem size of around 1000 sites per node. The delays caused by the

communications systems can degrade performance by as much as half, although

more recent communications technologies have reduced this effect [Wettig '05].

There are many different PC clusters used for lattice QCD; I compare my results

with the Pion cluster described in [Holmgren '05a], which was commissioned in

June, 2005. Pion consists of 520 nodes and each node consists of a 3.2 GHz Intel

Pentium 4 processor with an 800MHz bus to main system memory. The nodes are

connected using the Infiniband interconnect system, which is a recently available

0

200

400

600

800

1000

1200

1400
M

F
L

O
P

S

Dirac 1320 1300 300

FPGA Pion DESY

Figure 8-a. Performance of log arithmetic FPGA design and comparable systems

141

high bandwidth, low latency interconnect. Pion is, at the time of writing, the most

sophisticated PC cluster used solely for lattice QCD calculations. Results are also

shown for an older system, the DESY system, constructed using Intel Xeon 1.7 GHz

processors and Myrinet interconnect, described in by Gellrich et al [Gellrich '03].

This system is about 4 years older than the Pion system, and is used to illustrate the

improvements in performance over the last few years for PC cluster systems.

Figure 8-a shows the performance of my logarithmic FPGA implementation of the

Dirac operator, compared with the performance of a single Intel Pentium 4 3.2 GHz

processor from the Pion machine, and a single Intel Xeon 1.7 GHz from the DESY

system; both PC processors are running as part of a small cluster of 16 nodes. It can

be seen that the performance of the FPGA solution rivals that of the Pion machine’s

processors, and is several times better than the performance of the DESY machine’s

processors.

It also can be seen that PC clusters have seen dramatic improvements in performance

over the past few years. These improvements have derived from both improvements

to the hardware and from improved use of this hardware. Processors, memory buses

and communications systems have all increased dramatically in speed and this has

had a significant effect on performance. Also users of PC clusters are using the cache

pre-fetch instructions to pre-fetch operand data into the processors cache, minimising

delays due to memory access. In light of this pace of technological change the

performance of my FPGA solution compares well.

8.4 Double precision implementation results

Table 8-c shows the performance for the Dirac operator implemented using IEEE

double precision, along with the results for the IEEE double precision based

conjugate gradient application. The results shown in Table 8-c are for designs placed

and routed for a Xilinx Virtex-II XCV6000 speed grade 6 device. The performance

for the core Dirac operator is very strong at 1200 MFLOPS and the performance for

the conjugate gradient application is similarly good at 940 MFLOPS. The percentage

utilisation of the floating point units is very good for both designs and in particular

for the Dirac operator. Achieving 78% utilisation of the arithmetic units used in the

142

Dirac operator demonstrates the efficiency of the Dirac operator design.

Many more lattice QCD systems use double precision floating point, than use single

precision. Both of the custom ASIC solutions, apeNEXT and QCDOC [Belletti

'06][P. A. Boyle '05], use double precision floating point, as do commercial

supercomputers such as IBM’s BlueGene [A. Gara '05]. Performance figures for the

BlueGene system were published by Bhanot et al [Bhanot '05]. The performance

figures for the BlueGene system are for two CPUs. Each processing node in a

BlueGene machine consists of a dual-core ASIC chip which has two CPUs. The two

CPUs work co-operatively on the same problem. Consequently, performance is

shown for the combined performance of the two CPUs (see section 3.2.1 for details).

PC clusters can also used for double precision lattice QCD simulations and I

compare the FPGA version to double precision results published by Holmgren

[Holmgren '05a].

Performance of PC clusters is generally halved at double precision when compared

with single precision, since memory bandwidth requirements are doubled for double

precision. Consequently PC clusters are not as important for double precision

simulations as they are for single precision simulations. Commercial supercomputers

such as IBM’s BlueGene return excellent performance for lattice QCD, but are quite

expensive when compared with the custom ASIC systems, so it is relatively rare that

a commercial supercomputer is used solely for lattice QCD.

Operator Clock

Rate

(MHz)

Performance

(MFLOPS)

FP Ops

per

cycle

% FP

unit

utilisation

Dirac 85 1200 14.1 78.3%

Conjugate

Gradient

85 940 11.1 58.4%

Table 8-c. Performance of the double precision FPGA
implementations

143

The purpose of both custom ASIC machines is to provide as many MFLOPS for as

few euro (or dollars) as possible. Both can be used to construct systems of thousands

of processors, all of which can work on a single problem. The systems use highly

customised low latency interconnection technology to minimise communications

delay. Also both systems allow the communication of data between processors to be

parallelised with calculation which minimises performance loss in multiple

processors systems.

The apeNEXT systems takes the customisation a step further by implementing the

complex-number multiply-accumulate operation in hardware. This operation is the

0

200

400

600

800

1000

1200

1400

M
F

L
O

P
S

Dirac 1200 396 894 650 1100

FPGA QCDOC apeNEXT PC

BlueGene

/L (2

CPUs)

Figure 8-b. Performance of double precision Dirac operator and comparable systems

144

most common operation in lattice QCD codes and by implementing it directly in

hardware the apeNEXT system obtains excellent performance of nearly 900

MFLOPS per processor from a clock rate of only 160 MHz. The QCDOC processor

consists of an IBM PowerPC processor combined with a floating point arithmetic

unit running at 460 MHz, which returns performance of nearly 400 MFLOPS per

processor. Consequently the QCDOC system relies on using many more processors

on a single problem than the apeNEXT system, and to this end it has a more highly

optimised communications system.

Figure 8-b shows the performance of my double precision FPGA Dirac operator

compared with the performance of several other competing systems. It can be seen

that the performance of the FPGA implementation is significantly higher than any of

the other solutions shown. The performance of the FPGA version is particularly

impressive when compared with that of the PC processor, a 3.2 GHz Pentium 4. The

FPGA design has by far the lowest clock rate of any of the systems shown at 85

0

2

4

6

8

10

12

14

16
F

P
 O

p
s
 p

e
r

c
y

c
le

Dirac 14.1 0.8 5.6 0.2 0.8

FPGA QCDOC apeNEXT PC BlueGene/L

Figure 8-c. Floating Point operations performed per cycle by various lattice QCD
systems

145

MHz. The other systems clock rates are: 500MHz for QCDOC, 160 MHz for

apeNEXT, 3.2 GHz for the PC and 700 MHz for BlueGene/L. Figure 8-c shows the

number of floating point operations per cycle that each system can sustain for a

lattice QCD simulation. This chart shows the extent to which parallelism is exploited

in the FPGA designs.

8.4.1 Effect of problem size on double precision FPGA performance

Figure 8-d shows the effect on performance of increasing the problem size for the

double precision Dirac operator and conjugate gradient solver FPGA designs. It can

be seen that the performance of both designs is constant for all problem sizes above

64 and is almost constant for problem sizes above 44. The smallest problem size of 24

shows slightly lower performance than the larger problem sizes since the efficiency

of the Dirac operator pipeline is lowered by the small problem size. The Dirac

operator pipeline must be filled and flushed on each use and when the problem size is

small these fills and flushes have a noticeable effect on performance. The effect of

the fills and flushes diminishes with increasing problem size as the pipeline is full for

0

500

1000

1500

Lattice Dimensions

P
e
rf

o
rm

a
n

c
e
 M

F
L

O
P

S
Dirac

Conj
Grad

Dirac 1141 1193 1200 1202 1201

Conj Grad 905 923 925 924

2^4 4^4 6^4 8^4 10^

Figure 8-d. Effect on performance of increasing problem size for the double precision
FPGA designs. Performance is constant for problem sizes larger than 64.

146

more of the calculation time. These results demonstrate that by pre-fetching data into

temporary storage on the FPGA, memory operations and computation can be

parallelised, maintaining maximum performance with increasing problem size.

The 24MB of memory available on the FPGA board used to test the designs limited

the maximum problem size to 104. If a board with more memory had been available

then the performance for larger problem sizes could have been easily tested. No

results for the conjugate gradient solver running at a problem size of 24 are presented

since the run time of the solver at this problem size was too short to measure

accurately. Large problem sizes require more iterations to find a solution using the

conjugate gradient solver. For a problem size of 24, in the order of ten iterations are

needed to find a solution, and the small problem size means each iteration takes very

little time. Consequently it was not possible to accurately measure the performance

of the conjugate gradient solver for a problem size of 24.

8.5 Dual FPGA implementation results

8.5.1 Measuring performance for the dual FPGA Dirac operator

To run the dual-FPGA design I modified the original host program used for the

single-FPGA Dirac operator to run the dual-FPGA version. In order to ensure correct

operation of the communications the host program first downloads the appropriate bit

file to each FPGA, and then once the download is complete the receivers on each

FPGA are started. Once the receivers are up and running both transmitters are

started. The communications system does not work correctly if it is not started up in

this order since the transmitter does not test to see if the receiver is ready to receive

data.

The communications system is not completely reliable, as described in section 7.8.

However it is sufficiently reliable to allow the dual-FPGA Dirac operator to run for

several seconds without error. This is a sufficiently long period of time to collect

valid performance results for the dual-FPGA system. Results are collected in the

same fashion as for the single node versions by using the host computers system

clock to measure the run time of the FPGA design for several thousand iterations.

147

8.5.2 Performance Results

Figure 8-e shows the performance of the dual FPGA Dirac operator compared with

the performance of a single FPGA. Performance is shown for the dual-FPGA with

parallelised communications (where result data is transmitted during calculation),

and with sequential communications (where calculation waits while the results are

communicated).

The sequential dual-FPGA version shows only a small performance improvement of

18% over the single FPGA; in this version the arithmetic units are idle for a large

portion of the time whilst the results of an iteration of the Dirac operator are

communicated between the FPGAs. By parallelising the communication of data with

the calculation, as detailed in section Chapter 7, the performance of the dual-FPGA

version is almost double that of a single FPGA. Synchronisation of the two FPGAs

0

500

1000

1500

2000

2500

3000

M
F

L
O

P
S

Dirac 1320 1560 2612

Speedup 1 1.18 1.98

Single

FPGA

Dual, Seq

Comms

Dual,

Parallel

Comms

Figure 8-e. Performance of single & dual FPGA Dirac operators

148

causes the slight reduction; both FPGAs must stop running any calculation during a

synchronisation causing the reduction in performance. However since the

synchronisation mechanism is very efficient the slowdown is small. The

synchronisation mechanism is essential for the dual FPGA Dirac operator to be used

for a larger application. In such an application the result of an iteration of the Dirac

operator will be used by another operation. Thus the Dirac operator is not run

continuously; it must be possible to control its use so both FPGAs work on the same

iteration.

8.5.3 Scalability Comparisons

Having demonstrated that the dual FPGA shows excellent scalability, it is useful to

show how its scalability compares to that of other lattice QCD systems, and it is

useful to consider whether this scalability could be continued for a larger number of

FPGAs. Figure 8-f, reproduced from [Holmgren '06], shows the scaling properties of

two PC clusters dedicated to lattice QCD at the Fermi National Accelerator

Figure 8-f. Scaling properties of lattice QCD targeted PC clusters. Performance is for
single precision arithmetic. Reproduced from [Holmgren '06]

149

Laboratory, or Fermilab, in the USA. Performance figures are for single precision

arithmetic. The Pion machine is the machine used for comparison in both the log

arithmetic and double precision results sections of this thesis. The QCD system is

slightly older than Pion, with slightly lower performance, and it uses Myrinet for

interconnect, whereas the Pion system uses Infiniband.

We can see that both systems have excellent performance for a single node; however

performance is degraded badly when more than one node is used. In the case of the

QCD cluster, per-node performance using two nodes is only 65% of the performance

of a single node for a problem size of 104 sites per node. This degradation continues

as more nodes are used on a single problem space; the per-node performance of a 16

node QCD system is only 36% of the single-node performance. This is the critical

problem with using PC clusters for lattice QCD; the performance for a single node is

excellent, but much of this performance disappears when PCs are used in a cluster.

The priority, therefore, for designers of lattice QCD machines is to improve the

scalability of the systems so that more of the single node performance is preserved

when the PC processors are used in a cluster.

The results in Figure 8-f for the Pion system show that improvements in interconnect

technology are improving the scalability of PC clusters. The nodes in the Pion

system retain 66% of the performance of a single node for a 16 node cluster with a

problem size of 104 sites per node, compared with only 36% for the same conditions

on the QCD machine. Consequently the scalability of PC clusters for lattice QCD is

improving, but high speed interconnects are expensive and make up a significant

portion of the total system cost, reducing the cost effectiveness of systems that use

these interconnects. Gigabit Ethernet is a lower cost alternative to Infiniband or

Myrinet, however it suffers from much high latencies which restricts the scalability

of systems that use Gigabit Ethernet for their interconnect. Building PC clusters for

lattice QCD is a complex process with a lot of variables that affect the performance;

a lot of care is needed to choose the best components.

Low latency is the key to scalability for lattice QCD systems. Infiniband has lower

latency than Myrinet; hence the Pion system shows better scaling than the QCD

150

system. Infiniband has a typical latency of about 3.5µs, whereas Myrinet's latency is

about 5 µs and Gigabit Ethernet is about 12 µs, [Wettig '05]. The most scalable

systems for lattice QCD are the custom ASIC systems, apeNEXT and QCDOC.

Communications latency for both of these systems is about 0.5 µs which is very low

and is partly responsible for the scalability of these systems. Both systems also allow

communications to be “hidden” by performing communication in parallel with

computation, which, when combined with the low latency communications, gives

excellent scalability for both of these systems.

Both apeNEXT and QCDOC can sustain excellent per node performance on systems

consisting of thousands of nodes. Figure 8-g, reproduced from [Wettig '05] shows the

total system performance for a fixed total problem size and a variable number of

nodes for the QCDOC system. There is a linear relationship between the number of

nodes used and the total system performance, which shows that the QCDOC system

has excellent scalability for large systems.

The dual-FPGA communications system has very low latency, and allows

parallelisation of communication and computation. These two factors are the key to

Figure 8-g. Scalability of the QCDOC machine

151

the scalability of the custom ASIC systems. Latency for the dual-FPGA system is

less than 0.25 µs for small message sizes, which easily matches that of the custom

ASIC machines. This low latency, when combined with the parallelisation of

computation and communication for the Dirac operator strongly suggests that the

FPGA system would scale to a significant size.

8.6 Notes on comparing performance of lattice QCD machines

In the previous sections the FPGA designs were compared with performance data for

three classes of computing machines; PC-based clusters, commercial supercomputers

and custom ASIC based supercomputers. The PC clusters and the custom ASIC

supercomputers are built specifically for lattice QCD calculations. All the data used

for comparison is taken from the literature. The performance figures for these three

classes of machine are heavily influenced by two factors; memory access and inter-

processor communication performance.

The performance data for the commercial supercomputers and for the custom ASIC

supercomputers is limited in detail. Generally performance data for these machines is

only published for one processor running as part of a multiple processor machine.

These machines have the ability to pre-fetch data into on-chip cache memory before

it is required. Thus the performance of these processors is not sensitive to cache

effects. Combined with the predictable access patterns of lattice QCD applications,

this means that changing the per-processor problem size has relatively little effect on

the processor’s performance.

The performance of multi-processor machines used for lattice QCD is sensitive to the

latency of the inter-processor communication system; this is discussed in detail in

8.5.3. The supercomputer machines also have very low latency communication

systems; as a result communication delay has little effect on per processor

performance for these machines. The custom ASIC supercomputers can further

improve performance by parallelising communication and calculation which helps

prevent communication delays from degrading performance, Figure 8-g shows that

total performance for the QCDOC machine is a linear function of the number of

processors used in the machine, which demonstrates the excellent scalability of this

152

class of machines.

The situation for the performance of lattice QCD on PC clusters is quite different. PC

processors show multi-GFLOP single precision performance for a small problem.

However much of this performance is lost if multiple processors are used on a single

problem. The communication systems used for PC clusters have improved

significantly in recent years, however the effect of communications latency is still

significant compared with commercial supercomputers. Also it is still not possible to

effectively parallelise computation and communication on PC clusters. Consequently

PC clusters show sub-linear scalability, with per-processor performance degrading

steadily with increasing cluster size. At the time of writing no lattice QCD

performance results for multi-core PC processors is available. Thus it is only possible

to compare the FPGA designs with single core PC processors.

Figure 8-f shows how the per-processor performance of two PC clusters falls as the

number of processors used on a single problem is increased. The Pion system, which

is one of the most advanced PC clusters used for lattice QCD, suffers a 35% loss in

per-processor performance when the number of processors used is increased from

one to sixteen for a moderate per-processor problem size of 84. For a large system of

256 processors the per-processor performance drops by 60%, compared with the

single processor system.

It is impossible to generate a significant scientific result for lattice QCD with a single

processor; the problems are simply too large. Consequently the high performance of

a single PC processor system is not very relevant to lattice QCD. It is far more

relevant to discuss the performance of PC processors when used in a small cluster,

since this is the environment in which they will actually be used. Also since

performance data for other solutions is generally quoted for a single processor

running in a multiple processor system, it is the most valid metric for comparison.

Only quoting PC performance for a single processor machine would give the

misleading impression that PC clusters are far better than any other machine for

lattice QCD, when in fact they not, owing to the significant loss of per-processor

performance when used within a large cluster.

153

It was not possible to investigate the performance of an FPGA based lattice QCD

system consisting of many FPGAs, since suitable equipment was not available.

However the per-FPGA performance of the dual FPGA system is 99% of the

performance of the performance of the single FPGA. In comparison the performance

of the latest PC cluster, shown in Figure 8-f, drops by between 12.5% and 25% when

two processors are used instead of one. This indicates that an FPGA based system

would have significantly better scalability than a PC cluster based system.

For large systems the communications pattern for the Dirac operator is a nearest

neighbour pattern where each processor only communicates with its nearest

neighbour in the system. The only operator that does not have a nearest neighbour

communications pattern is the global sum or dot-product operator, where each

processor sums its portion of data and the results of each processors sum must be

summed together. A low latency network is the key to performing this operation

efficiently.

The FPGA based system has very low latency communications, and it is capable of

completely parallelising communication and computation. These characteristics are

the key to the linear scaling properties of both the QCDOC and apeNEXT custom

ASIC supercomputers, which suggests that a system using many FPGAs would

potentially have similar scaling characteristics to these custom ASIC

supercomputers.

8.7 Summary

This chapter has presented results for both log arithmetic and double precision

floating point based FPGA implementations of the Dirac operator and a conjugate

gradient solver. The per-processor performance of the log arithmetic designs

compares well to that of PC cluster based machines at 1320 MFLOPS for the FPGA,

compared with the latest PC cluster at 1300 MFLOPS. The performance of the

double precision designs compares even more favourably with alternative machines,

at 1200 MFLOPS for the FPGA compared with 894 MFLOPS for the apeNEXT

custom ASIC supercomputer, 650 MFLOPS for the latest PC cluster and 396

MFLOPS for the QCDOC custom ASIC supercomputer. This result demonstrates

154

that FPGAs can return competitive performance for a typical high performance

computing application, using IEEE double precision arithmetic.

The results for the dual-FPGA Dirac operator based on the log arithmetic Dirac

operator demonstrate that two FPGAs can be used effectively together on a single

lattice QCD problem. The low latency interconnects used for this design allows the

dual FPGA design to deliver performance that is 1.98 times better than a single

FPGA. Furthermore an analysis of the latency of the communications system used

for the dual FPGA Dirac operator shows that it has a latency that is lower than highly

scalable systems such as QCDOC or apeNEXT. The performance of the dual FPGA

Dirac operator, combined with the analysis of communications latencies of lattice

QCD systems, shows that FPGAs have the potential to make a scalable multiple

processor platform for lattice QCD.

155

Chapter 9

Final Thoughts

In this thesis I have presented a number of designs that perform lattice QCD

calculations using FPGAs. The thesis describes these designs and presents

performance results for these designs running lattice QCD simulations. These

performance results are compared with a number of highly optimised state of the art

computing machines that are used for lattice QCD simulations. This chapter presents

final reflections on the results presented and draws conclusions from the work.

9.1 The Suitability of FPGAs for High Performance Computing

In recent years large FPGAs and the availability of non-integer arithmetic cores have

made FPGAs a potentially viable platform for high-performance scientific computing

applications. Research has shown that the peak performance of FPGAs has grown

very quickly in recent years [Underwood '04a]. A single FPGA can now support a

significant number of non-integer arithmetic units, which when used in parallel can

deliver very high peak performance. However exploiting this fine grain parallelism is

difficult for real applications.

There is a substantial body of research that is concerned with FPGA implementations

of common kernels such as dense matrix multiplication, dot product operators, and

matrix by vector multiplication [Dou '05][Underwood '04b][Zhuo '04]. This research

has shown that FPGAs can return excellent performance for these kernels and this

result is very valuable.

156

Despite this, there has been little study of how well FPGAs perform for real complete

scientific computing applications. The existing research on important kernel

operations does not examine how these kernels can be used to implement full

scientific computing applications. Much of this research does not consider memory

bandwidth constraints for realistic FPGA platforms, and it does not consider whether

multiple on-FPGA processing units can be usefully exploited for real applications.

9.2 Contributions of this Thesis

Lattice QCD is an important scientific application and is the focus of considerable

research work worldwide. A substantial amount of research effort has been expended

on producing computing machinery for lattice QCD including two competing custom

ASIC based supercomputers and a variety of specially designed PC clusters.

Commercial supercomputers, such as the IBM BlueGene/L machine, are also used

for lattice QCD. This makes lattice QCD an excellent application for evaluating a

computing platform’s suitability for scientific computing.

I have presented the design and implementation, for FPGAs, of the core Dirac

operator and a full lattice QCD application using IEEE double-precision floating-

point. I have also presented a version of the log arithmetic Dirac operator that uses

two FPGAs in parallel on a single problem.

As discussed in Section 3.2.2, either single or double precision can be used for lattice

QCD, however double precision is preferred because it is more accurate. If a system

has significantly higher performance for single precision compared with double, then

single precision will be used on that system. This is the case for PC clusters where

double precision performance is usually half that of single precision, however all of

the other systems use double precision arithmetic. Consequently the IEEE double

precision implementations are compared with all the other solutions but the LNS

implementation is only compared with the performance of PC clusters. Floating point

operations per second (FLOPS) is used as the metric for comparison; this is the

standard measure for lattice QCD machines.

Log arithmetic cores were used in this work because floating point cores were not

157

available at the start of the project. The log arithmetic designs perform well,

achieving 1320 MFLOPS for the Dirac operator and 1050 MFLOPS for the full

conjugate gradient application. This compares well with the single precision

performance of a PC cluster node of 1100 MFLOPS for the Dirac operator.

Nonetheless, Lattice QCD, like most scientific applications that operate on matrices,

has roughly the same numbers of additions and multiplications, and it has few

divisions. The large block RAM tables required by LNS adders were always the

limiting factor in the log arithmetic design.

IEEE format floating point units have no such limitations, so it was possible to build

IEEE double precision floating point implementations that achieve 1200 MFLOPS

for the Dirac operator and 940 MFLOPS for the full application using ten double

precision adders and eight multipliers. The double precision implementations are far

more complex, however, because fewer multipliers are available compared with the

logarithmic arithmetic designs and because the multiplier pipelines are deeper. For

the double precision designs memory bandwidth, available block RAMs and

available slices are all critical constraints on the performance of the designs.

The per processor performance results for the double precision implementations

compare extremely well with both the ASIC solutions, and also with the performance

of a PC cluster at double precision. QCDOC prototypes return 535 MFLOPS per

node whilst apeNEXT nodes return about 896 MFLOPS per node. PC cluster nodes

return about 550 MFLOPS at double precision for the Pion system described by

Holmgren [Holmgren '05a].

The double precision implementations also compare well with the per node

performance of commercial supercomputers. The IBM BlueGene/L returns

performance of 1100 MFLOPS per processing node. Each processing node consists

of two PowerPC CPU cores, so the average per core performance of the BlueGene is

550 MFLOPS. Once again the performance of the FPGA implementations compares

well. All figures are for the performance critical Dirac operator.

The results show that FPGAs can be competitive with general purpose processors

and even custom ASIC processors for scientific computing applications such as

158

lattice QCD. To my knowledge this is the first FPGA implementation of lattice QCD

and one of the first full implementations of a large scientific application using IEEE

double precision arithmetic.

A single FPGA will never be able to meet the performance requirements of lattice

QCD. All the machines currently used for lattice QCD calculations are massively

parallel machines that use many processors on a single problem. An FPGA based

machine for lattice QCD, or for any significant scientific computing application,

would be no different. Consequently I developed an inter-FPGA communications

system and used it to create a version of the logarithmic arithmetic Dirac operator

which runs on two FPGAs.

This dual-FPGA version of the Dirac operator shows a speed up of 1.98 times over

the performance of the single FPGA version of the Dirac operator. Data

communication for the dual FPGA version is completely parallelised with

computation so computation never has to stop whilst waiting for communication to

complete. This result demonstrates that FPGAs have the potential to be used to create

scalable multiple FPGA machines for scientific computing.

The communications system used for the dual FPGA Dirac operator has a lower

latency (0.25 µs) than the communications systems used in highly scalable systems

such as QCDOC or apeNEXT (0.5 µs). The FPGA communications system’s latency

is substantially lower than that of Infiniband, which is the best interconnect available

for PC clusters, at (3.5 µs). The performance of the dual FPGA Dirac operator,

combined with the analysis of communications latencies of lattice QCD systems,

shows that FPGAs have the potential to make a scalable multiple processor platform

for lattice QCD.

9.3 Limitations of This Work and Suggestions for Future Work

The intention of this thesis is to investigate the technical feasibility of using FPGAs

for scientific computing applications, and it has been shown that FPGAs can return

excellent performance for a real scientific computing application. However FPGAs

are very expensive when compared with commodity CPUs like those used in PC

159

cluster machines. It is difficult to obtain exact pricing for FPGAs but the Xilinx

Virtex-II FPGA used here costs several times the price of a good PC processor.

Smaller cheaper FPGAs are available, but these have significantly lower

performance. Thus, currently, cost is a significant barrier to real-world use of FPGAs

for scientific computing. However new generations of FPGAs may change this cost

relationship by delivering more performance for the money.

The FPGA used in this project is now somewhat out of date. Two successive

generations of FPGAs have been released since the release of the FPGA used here;

the Virtex-4 and Virtex-5 families. Each of these generations has delivered very

substantial improvements in clock rate over the previous generation, which would

translate to considerably improved performance for the designs described in this

thesis. Also these new FPGAs have different combinations of conventional FPGA

slice logic, hardware multipliers and block RAMs, which could improve the

performance of non-integer arithmetic on these new FPGAs. However the

performance of these FPGAs for scientific computing applications has not yet been

analysed and this would be an area worthy of future work.

Recent publications have made predictions for the future floating point performance

of FPGAs and commodity CPUs. The predictions (based on recent trends) predict

that the peak and sustained performance of FPGAs will soon be superior to that of

commodity desktop processors [Underwood '04b]. These predictions are now less

certain since they do not account for the latest, very significant, innovations in both

FPGAs and commodity processors. These predictions do not consider the Virtex-4 or

the Virtex-5 FPGAs nor do they consider the latest developments in multi-core

commodity processors.

Multi-core processors have significant potential for scientific computing. Multi-core

processors consist of multiple processors integrated onto a single processor die, often

sharing memory bandwidth and caches. Traditionally, the performance of commodity

CPUs has been improved by raising the clock rate at which the chips run. However

recently it has become very difficult for processor designers to continue to raise the

clock speeds of their processors. Multi-core processors were conceived as a way of

160

improving the performance of commodity CPUs, without having to raise clock rates

to very high levels. This provides a low-cost and power efficient way of improving

the processing power of commodity processors.

The cores in multi-core processors share memory bandwidth, which could cripple

their performance for many applications. However the multiple on-chip cores share

cache facilities which, if data is handled carefully to maximise reuse between the two

cores, could allow these multi-core processors to return excellent performance for

scientific computing applications. Thus an interesting area of future work would be

to compare the performance of multi-core commodity processors with that of the

latest generations of FPGAs, to determine how both platforms compare for scientific

computing.

Another limitation of this thesis is the approach taken to implementing the FPGA

designs described here. In order to achieve maximum possible performance for the

FPGA designs, I decided to implement highly specialised designs that are tailored to

the precise requirements of lattice QCD. This is an acceptable approach for lattice

QCD since the performance critical code components are well established and do not

change. However the disadvantage of this approach is that a substantial redesign is

required in order to implement a different algorithm. A hybrid design consisting of a

processor running software code, attached to dedicated hardware running on an

FPGA would provide a more flexible approach. The processor could be part of the

FPGA fabric, as in the Virtex-II Pro FPGA, or it could be a conventional processor

which is closely coupled to the FPGA. This approach would likely return poorer

performance than dedicated hardware for a particular application, however the

flexibility and shorter design times of the system could compensate for this.

9.4 Conclusion

This thesis builds on the existing work on common scientific computing kernels to

show that FPGAs can be a viable platform for real scientific computing applications.

Designs have been implemented that show FPGAs can return performance that is

competitive with state of the art computing machinery for a real and significant high

performance computing application. Also the dual FPGA implementation of the

161

Dirac operator demonstrates that the customisable nature of FPGAs allows inter-

FPGA communication to be nearly completely parallelised with computation. This

allows the dual-FPGA design to run at nearly twice the speed of the single FPGA

version. A comparison of the latencies of the FPGA communication system

compared with that of various alternative lattice QCD systems shows that the FPGA

system has the lowest latency, father supporting FPGAs as a viable, scalable, high

performance computing platform. These results show that FPGAs have considerable

potential as a platform for high performance computing applications.

A-1

Appendix A

Pipelined Use of Arithmetic Units

This appendix describes how the logarithmic arithmetic pipelines are used in the

logarithmic Dirac operator. This appendix is not required to understand the

logarithmic Dirac operator; it is included to complement the design description

contained in Chapter 5. The lattice QCD algorithms implemented in this work were

supplied as C source code. To create the highly optimised designs described in this

thesis, I first created a very basic FPGA implementation of the Dirac operator. This

operator exploited very little parallelism, and consequently had poor performance.

However it formed the basis for later versions of the Dirac operator. The final

versions of logarithmic operator were created by incrementally improving this basic

Dirac operator. One of the most significant improvements was to make pipelined use

of the arithmetic units assigned to each part of the algorithm. The assignments are

described in section 5.1.2.

A.1 Gamma Functions

The code in Example A-i shows the structure of a basic version of a gamma

operation. Each call to ladd1 or lsub1 takes 10 cycles to complete, there is

considerable scope for performance improvement through pipelining use of the adder

arithmetic unit. The Flip function is a zero cycle function which inverts the sign of

the number passed to it, checking first that the number is not zero. Unlike IEEE

floating point the LNS system used in this project has no negative zero thus if the

sign of zero is flipped then the number becomes a Not a Number exception. This is

A-2

prevented by only flipping the sign of numbers that are not zero.

All the 8 gamma functions are identical in structure. They all have a loop with three

iterations and each iteration consists of four additions or subtractions followed by a

set of assignments of the results of those operations to other points in the results

matrix. The locations in the matrix that are operated on, and whether they are added

or subtracted, differ with different versions of the function but the structure remains

the same. This means that optimisations that work for one version of the function,

will work equally well for all versions.

Example A-i. Gamma function before pipelining

void HG5pG5Gy(l_real (*rr)[3], l_real (*ir)[3], l_real

(*ra)[3], l_real (*ia)[3])

{

 unsigned c;

 c=0;

 while(c<3){

 rr[0][c] = ladd1(ra[0][c] , ia[3][c]);

 ir[0][c] = lsub1(ia[0][c] , ra[3][c]);

 rr[1][c] = lsub1(ra[1][c] , ia[2][c]);

 ir[1][c] = ladd1(ia[1][c] , ra[2][c]);

 par{

 rr[2][c] = Flip[0](ir[1][c]);

 ir[2][c] = rr[1][c];

 rr[3][c] = ir[0][c];

 ir[3][c] = Flip[1](rr[0][c]);

 seq{

 c++;

 }

 }

 }

}

In Example A-i the issuing and retrieval of operands to and from the adder pipes is

encapsulated within a 10 cycle function called ladd1 (or lsub1). To improve adder

performance, issue of operands and retrieval of results was separated to allow the 12

operands to be issued on 12 sequential cycles, instead of the issues being separated

by 9 cycles. This was done by breaking the single loop into two loops; one to issue

the operands and the other to retrieve and store the results. The retrieval loop stores

each result in two locations in the result matrix. The sign bit of some of the results

A-3

needs to be flipped. This is performed by the Flip macro, seen in the code example.

The converted code is shown in Example A-ii.

Example A-ii - Pipelined Gamma Function

void HG5pG5Gy(l_real (*rr)[3], l_real (*ir)[3], l_real

(*ra)[3], l_real (*ia)[3])

{

 unsigned int 4 c, d;

 unsigned 5 cycles;

 signal l_real res;

 /* Issue the 12 add/subs to a single pipe

 This will take twelve cycles

 Need to delay for 9 cycles before collecting first result

 And continue for 12 cycles

 */

 par{

 c=0;

 d=0;

 cycles = 0;

 }

 while(cycles<21){

 par{

 cycles++;

 if(cycles < 12){

 par{

 if(c<-2 == 0){

 la1(ra[0][c[3:2]] , ia[3][c[3:2]]);

 } else if(c<-2 == 1){

 ls1(ia[0][c[3:2]] , ra[3][c[3:2]]);

 } else if(c<-2 == 2){

 ls1(ra[1][c[3:2]] , ia[2][c[3:2]]);

 } else if (c<-2 == 3){

 la1(ia[1][c[3:2]] , ra[2][c[3:2]]);

 } else {

 delay;

 }

 c++;

 }

 } else {

 delay;

 }

 //Now in 9th cycle, first pair of results are ready

 //for collection

 if(cycles > 8){

 if (d<-2 == 0){

 par{

 //Assign reults to a signal; it

 //will hold the value for this

 //clock cycle

 res = lret1();

 //Store results in return array

 rr[0][d[3:2]] = res;

 //Flip returned results

A-4

 ir[3][d[3:2]] = Flip[0](res);

 d++;

 }

 } else if (d<-2 == 1) {

 par{

 res = lret1();

 ir[0][d[3:2]] = res;

 rr[3][d[3:2]] = res;

 d++;

 } else if (d<-2 == 2) {

 par{

 res = lret1();

 rr[1][d[3:2]] = res;

 ir[2][d[3:2]] = res;

 d++;

 }

 } else if (d<-2 == 3) {

 par{

 res = lret1();

 ir[1][d[3:2]] = res;

 rr[2][d[3:2]] = Flip[0](res);

 d++;

 }

 } else {

 delay;

 }

 } else {

 delay;

 }

 }

 }

 return;

}

A.2 Multiply Functions

The code contained in Example A-iii shows one of the two multiply functions before

arithmetic unit use was pipelined. The function uses two multiplier units and one

adder unit to perform its calculation. The operand matrices ra and ia are the results

of one of the gamma functions.

Example A-iii - Non-Pipelined Multiply Function

void HMulGl3Wfv(l_real (*rr)[3], l_real (*ir)[3],

 l_real (*rg)[3], l_real (*ig)[3],

 l_real (*ra)[3], l_real (*ia)[3])

{

 unsigned 2 c, z;

 unsigned 3 d;

 l_real rtemp, itemp, zero, flag;

 l_real rtemp1, itemp1, rtemp2, itemp2;

 for (d = 0; d < 4; d++){

A-5

 for (c = 0; c < 3; c++){

 par{

 rr[d<-2][c] = ZERO;

 ir[d<-2][c] = ZERO;

 }

 for(z =0; z<3; z++) {

 //Part One

 par{

 rtemp1 = lm[0](rg[c][z], ra[d<-2][z]);

 rtemp2 = lm[1](ig[c][z], ia[d<-2][z]);

 }

 par{

 itemp1 = lm[0](rg[c][z], ia[d<-2][z]);

 itemp2 = lm[1](ig[c][z], ra[d<-2][z]);

 }

 rtemp = lsub1(rtemp1, rtemp2);

 itemp = ladd1(itemp1, itemp2);

 //Part Two

 rr[d<-2][c] = ladd1(rtemp, rr[d<-2][c]);

 ir[d<-2][c] = ladd1(itemp, ir[d<-2][c]);

 }

 }

 }

}

Performing a matrix multiply with only one adder pipe is non-trivial since the results

of the three multiplications performed for each component of each point must be

added together, leading to dependencies between some of the addition operations.

No-ops must be issued to the adder pipelines to manage these dependencies. The no-

ops are implicit in the multi-cycle ladd1 arithmetic functions. However by

calculating all 12 points in parallel the no-ops can be eliminated, and replaced with

useful calculations.

The calculation for each point is broken into two stages. The first stage multiplies the

real and imaginary parts of the data from a pair of points in the two operand matrices

and then adds the results of the two multiplications together. The second stage

accumulates the result of this addition to the correct point in the result matrix.

The calculations for the points were parallelised by performing all of the first stage

additions, before starting the second stage additions. The first stage multiplications

are performed using a pair of multipliers and the results from the two multipliers are

A-6

issued directly to the adder to be added or subtracted. The results of these additions

fall into one of two sets of 36, one set is for the real components of the result matrix

and the other set is for the imaginary components. Each of these sets contains 12 sub-

sets; the three datum from each sub-set must be added together to calculate the result

for each component of each point in the result matrix.

These data are added by first setting the values for the result points to zero, and the

three data from each sub-set are then accumulated to the result storage.

Accumulating the results in this way works well since the size of the Example

A-ivresult matrix is greater than the latency of the adder pipes. This means that once

the last add of the first round of accumulate additions has been performed the result

of the first add of that round is already complete, so the second round can be started

immediately. This eliminates all no-op instructions from the adder pipeline schedule.

The code for the optimised matrix multiply function is shown in Example A-v.

The results of the first stage are stored in two 36 element distributed RAMs called

rstore and istore. Once all the additions of the first stage have been issued then

second stage additions can begin. All of the elements in rstore and istore are added

to the appropriate positions in the result arrays rr and ir. This pipelining strategy

ensures that the adder pipe is busy from the first issue to the last, there are no idle

cycles. This pipelining strategy is used for all 8 multiply functions and each one has

exclusive use of an adder and so the utilization of eight of the ten adders available is

very high.

Example A-v - Pipelined Multiply Function Code

void HMulGl3Wfv(l_real (*rr)[3], l_real (*ir)[3],

 l_real (*rg)[3], l_real (*ig)[3],

 l_real (*ra)[3], l_real (*ia)[3])

{

 unsigned 8 cycles;

 unsigned 4 d, e, h;

 unsigned 6 f, g;

 unsigned 2 z;

 l_real istore[36], rstore[36];

 par{

 cycles = 0;

 d=0;

 e=0;

 f=0;

 g=0;

A-7

 h=0;

 z=0;

 par(a=0; a<12; a++){

 rr[a[1:0]][a[3:2]] = ZERO;

 ir[a[1:0]][a[3:2]] = ZERO;

 }

 }

 while(cycles < 154){

 par{

 cycles++;

 //Issue multiplies; increment d then z, this makes

 //the final additions easier

 if(cycles < 72){

 par{

 if (cycles[0] == 0){

 par{

 lmstage1[0](0, rg[d[3:2]][z], ra[d[1:0]][z]);

 lmstage1[1](1, ig[d[3:2]][z], ia[d[1:0]][z]);

 }

 } else {

 par{

 lmstage1[0](2, rg[d[3:2]][z], ia[d[1:0]][z]);

 lmstage1[1](3, ig[d[3:2]][z], ra[d[1:0]][z]);

 if(d==11){

 par{

 d=0;

 z++;

 }

 } else {

 d++;

 }

 }

 }

 }

 } else {

 delay;

}

 //Retrieve results of multiplies and issue to adders

 if ((cycles > 0) && (cycles < 73)){

 if(cycles[0] == 1){

 ls1(lmstage20, lmstage21);

 } else {

 la1(lmstage2[0](2), lmstage2[1](3));

 }

 } else {

 delay;

 }

 //Retrieve results of first set of adds and store

 if ((cycles > 9) && (cycles <82)){

 if(cycles[0] == 0){

 rstore[f] = lret1();

 } else {

 par{

 istore[f] = lret1();

 f++;

 }

A-8

 }

 } else {

 delay;

 }

 if ((cycles > 72) && (cycles < 145)){

 if(cycles[0] == 1){

 la1(rr[e[1:0]][e[3:2]], rstore[g]);

 } else {

 par{

 la1(ir[e[1:0]][e[3:2]], istore[g]);

 g++;

 if(e == 11){

 e=0;

 } else {

 e++;

 }

 }

 }

 } else {

 delay;

 }

 if ((cycles > 81) && (cycles < 154)){

 if(cycles[0] == 0){

 rr[h[1:0]][h[3:2]] = lret1();

 } else {

 par{

 ir[h[1:0]][h[3:2]] = lret1();

 if(h==11){

 h=0;

 } else {

 h++;

 }

 }

 }

 } else {

 delay;

 }

 }

 }

}

A.3 Combining Gamma and Multiply Functions

The gamma and multiply functions are used in pairs; there are eight gamma

operators, and the result of each of these operators is processed by a dedicated mul

block. The paired gamma and mul functions share an adder pipeline. When the

gamma and mul functions are separate, the adder pipeline must be flushed by the

gamma operator before the mul operator can be called. Combining the gamma and

mul operators into a single operator, which I will call the gamma-mul operator,

A-9

allows the pipeline flush to be eliminated. By combining the two operators into one

single operator, the mul section can begin issuing operations to the adder pipeline as

soon as the gamma operator has finished issuing operations to the pipeline. Each of

the gamma operators was combined with its paired mul block to form eight gamma-

mul blocks.

B-1

Appendix B

Clock Rate Improvement

Example

This appendix describes how the clock rate of the logarithmic Dirac operator was

improved through repeated place and routes and timing analysis. This appendix

shows some common sources of delay in FPGA designs, and it shows how they were

eliminated for the logarithmic Dirac operator.

The first step in clock rate improvement is to find the longest delay in the design.

Visual inspection of the code can highlight some obvious sources of delay; however

it is not sufficient on its own. A much more comprehensive method is required to

ensure that clock rate is maximised. The method described in this chapter involves

placing and routing the design and then using Xilinx Timing Analyser to find the

longest delay in the design. This delay is then traced back to the source code, which

can then be altered to reduce the delay.

B.1 Sources of Delay

The single cycle timing model used in Handel-C means that any single line of code

must be completed within a single cycle. However if a single line of code contains a

very complex operation then it will cause a long delay, resulting in a low clock rate

for the whole design. For example the following code could be clocked at a high

B-2

frequency, since the logical and operator is simple:

unsigned 64 a, b, c;

c = a & b;

In comparison the code below is complex and must be clocked with a slower clock.

Integer multiplication is far more complex than a logical and, and is a common

source of low clock rates in FPGA designs.

unsigned 64 a, b, c;

c = a * b;

Condition checks on if statements and while loops are another common source of

delay; the condition check must be performed in sequence with the body of the

statement or loop within a single clock cycle. Thus the condition check needs to be

as simple as possible. The best way to do this is to evaluate the condition on the

previous cycle, saving the result in a one bit register. This register is then used to

control the loop or if- statement.

Delay can also be introduced in less apparent ways. If a resource is heavily shared

throughout a design then multiplexers must be constructed to control access to the

resource. Heavy use of a single resource also leads to a lot of long wiring. Thus

duplicating resources can often make significant improvements in clock rate by

reducing multiplexer delay and by reducing the length of wiring.

B.2 Delay in the Dirac Pipeline Control Structure

The first phase of timing analysis revealed that the longest paths in the design were

all related to the control structure used to control access to the pipelined arithmetic

units. A complex structure of nested if statements and for loops was used to control

issue of operands to and retrieval of results from the arithmetic units. Nested if

statements must be evaluated sequentially, causing a long logic delay. The following

code shows how nested if statements were used in the design.

while(cycles < 155){

 if(cyclesG < 12){

B-3

 if(c == 0)

 // one cycle of code

 else if(c == 1)

 // one cycle of code

 else if(c == 2)

 // one cycle of code

 else if(c == 3)

 // one cycle of code

 else

 delay;

 }

}

Example B-i - Complex Control Code

The nested if statements in Example B-i contribute to a long logic delay for this part

of the design. Other causes of delay in the example are the conditions on the loop and

the first if statement. Example B-ii shows an improved version of the code in

Example B-i. The four parts of the nested if-statement are evaluated in parallel and

the condition checks of the loop and the first if statement is now evaluated during the

previous cycle. These two improvements significantly reduce the delay of the code

section shown.

while(loopDone == 1){

 if(cycles == 154)

 loopDone = 0;

 if(issueGamma == 1){

 par{

 if(cyclesG == 11)

 issueGamma = 0;

 if(c == 0)

 //one cycle operation

 if(c == 1)

 //one cycle operation

 if(c == 2)

 //one cycle operation

 if(c == 3)

 //one cycle operation

 }

 }

}

Example B-ii - Optimized Control Structure

The improved control structure was applied to all eight gamma-mul blocks by

integrating the eight blocks into a single operator. This reduced the resources

required by the control structure and simplified the process of optimizing the control

B-4

structure.

B.3 Pipelining the SITE Calculation

The SITE calculation is used to calculate the memory address of data in off-chip

memory given the co-ordinates of a site in the lattice data set. The SITE calculation

is shown Example B-iii below.

macro proc SITE(x, y, z, t) = ((t * NZ + z) * NY + y) * NX + x;

Example B-iii - The SITE calculation

The SITE calculation consists of a series of 6 additions and multiplies of 15 bit

numbers that must be performed in sequence. All the operations were performed in a

single cycle and the resulting logic had a very long delay. The delay was reduced by

splitting the calculation over several cycles. The SITE macro is used nine times on

each iteration of the Dirac operator pipeline, so pipelining the macro was the best

approach to reducing delay. The macro was split into three stages and pipelined.

Each stage performed one addition and one multiply giving well balanced stages.

Further examination of the variables and the values involved revealed that the size of

the variables involved in the calculation could be reduced. All of the operands are

four bit variables and thus their maximum value is 15. Given that this is the case then

the first stage needs to be performed with 8 bit variables, the second with 12 bit

variables and the third with 16 bit variables. This reduces the resource requirements

of the design.

shared expr siteCalc1(x, y, z, t) = (((unsigned 8)(0 @ t) *

(unsigned 8)(0 @ NZ)) + (unsigned 8)(0 @ z));

shared expr siteCalc2() = (((unsigned 12)(0 @ res1) * (unsigned

12)(0 @ NY)) + (unsigned 12)(0 @ yS2));

shared expr siteCalc3() = (((unsigned 16)(0 @ res2) * (unsigned

16)(0 @ NX)) + (unsigned 16)(0 @ xS3));

macro proc siteStage1(x, y, z, t){

 par{

 yS2 = y;

 xS2 = x;

 res1 = siteCalc1(x, y, z, t);

 }

}

macro proc siteStage2(){

B-5

 par{

 xS3 = xS2;

 res2 = siteCalc2();

 }

}

macro proc siteStage3(){

 res3 = siteCalc3();

}

macro proc sitePiped(x, y, z, t){

 par{

 siteStage1(x, y, z, t);

 siteStage2();

 siteStage3();

 }

}

Example B-iv - Pipelined SITE Calculation

Example B-iv shows the pipelined version of the SITE calculation. To operate,

sitePiped is called nine times on nine successive cycles and then the pipeline is

flushed with two more calls to sitePiped, passing any variables as parameters. Only

the results on the first nine issues are collected so it is not necessary for the final two

calls to have meaningful parameters. The results are collected from res3 on the

appropriate cycles and stored. The pipeline breaks the large delay into three smaller

delays whilst only 2 more cycles are required to perform all the SITE calculations for

a single point in the lattice.

B.4 Modulus Operator Elimination

The modulus operator is logically complex and incurs a very long logic delay when it

is used. It is evaluated using the division operator returning the remainder instead of

the division result. FPGA implementations of division are very complex and have

very long logic delays. The modulus operator was originally used in the design to

calculate the co-ordinates of a lattice point’s neighbour. The lattice is wrapped so it is

not enough to merely add one or subtract one from a dimension to get a neighbouring

point. In the original application the modulus operator was used to handle of this

boundary condition.

shared expr p1(xIn, NXIn) = (xIn+1) % NXIn;

shared expr m1(xIn, NXIn) = ((xIn+NXIn)-1) % NXIn;

Example B-v - Neighbouring Site Calculation Operators

B-6

The code in Example B-v shows the original code used to calculate the value of a co-

ordinate of plus one or minus one in a single direction within a lattice. Both use a 4

bit modulus operator and were limiting the clock rate of the design to 36 MHz.

Eliminating the use of the modulus operator was essential to improve clock rate.

The variables passed to the two expressions conform to a certain rule; that NXIn will

always be greater than xIn. Thus instead of using the modulus operator it was

possible to use an if-statement to determine the result. For the p1 expression the

result is xIn+1 except when xIn+1 is equal to NxIn. In this case the result is zero. For

the m1 expression the result is always xIn-1 unless xIn is zero, in which case the

result is NxIn-1. In this way if statements were used to eliminate the modulus

operator as shown in Example B-vi.

macro proc p1(out, xIn, NXIn){

 if((xIn + 1) == NXIn)

 out = 0;

 else

 out = xIn + 1;

macro proc m1(out, xIn, NXIn){

 if(xIn == 0)

 out = NXIn -1;

 else

 out = xIn -1;

 Example B-vi -P1 and M1 Expressions with Modulus Eliminated

The design could now run at a clock rate of 50 MHz which was a significant

improvement over the clock rate of 33 MHz that was possible before the clock rate

optimisations were begun.

B.5 Changing to DK3

During the clock rate improvement process a new version of the Handel-C

development suite became available. The new version included a retiming

optimisation which can dramatically improve the clock rate of a design. Retiming

moves logic between cycles in a design in order to balance the delay of adjacent

cycles. Retiming does not change the behaviour of the design, but can give

significant improvements in clock rate. Retiming improved the clock rate of the log

arithmetic Dirac operator design by 30% from 50 MHz to 65 MHz.

B-7

B.6 Final Clock Rate Optimisation

At this stage timing analysis indicated that the longest path delay in the design

consisted mostly of routing and not logic delay. Routing delay is caused primarily by

having long wires between connected parts of the design. It was found that many

different distributed RAMs in the design had long routing delays associated with

them. These arrays had little to do with each other except that they all shared index

variables. Further timing analysis showed that the variable used to index the

distributed RAMs had the highest wiring fan-outs in the design.

This indicated that the heavy sharing of the index variables was causing long routing

delays. Specifically the variable had to be located centrally on the chip and then

connected to many different locations often with long wires. Creating multiple copies

of the index variables, each connected to a small number of the RAMs, eliminated

the wiring delay.

This optimisation improved the clock rate from a previous 65 MHz to 70 MHz.

Timing analysis showed that all the longest paths in the design were now within the

log arithmetic units. This indicated that no further clock rate improvements would be

possible through optimising the Handel-C code. Discussions with the designer of log

arithmetic cores confirmed that 70 MHz is very close to the maximum obtainable

clock rate for the cores. At this stage I placed and routed the design for the fastest

speed grade FPGA and with a resulting maximum clock rate for the design of

85MHz.

C-1

Appendix C

Conjugate Gradient Operator

Source Code

This appendix presents the source code for the original C version of the conjugate

gradient application, including the source code for the core Dirac operator, which is

used in the conjugate gradient application. The source code for the dot-product and

vector add-scale operators is also presented along with the main loop that

implements the conjugate gradient application. This purpose of this appendix is to

illustrate both the conjugate gradient application and the Dirac operator.

The source code is contained in a number of C files; main.c, latops.c, ops.c gamma.c,

ran.c, qcddefs.h and qcdtypes.h. Each file is contained in its own section.

• Main.c - Holds the main conjugate gradient application loop

• Latops.c – Defines the lattice operations, which are those functions that

operate on the entire lattice using the functions in ops.c and gamma.c

• Ops.c – Functions that add, subtract, scale and multiply small complex

number matrices.

• Gamma.c – All of the gamma operators are contained in this file

• Ran.c – Functions to generate random numbers for initialising the application

C-2

data

• Qcddefs.h - The size of the lattice is defined in this file

• Qcdtypes.h – The various types used in the application are defined here

The names for the various functions in the source code are different from those used

in the thesis. The Dirac operator performed by the LatMulM5Wfv function, the

matrix add-scale operator is performed by the LatAddSclWfvWfv function, the

matrix scale-add operator is performed by the LatSclWfvAddWfv function and the

dot-product operator is performed by the LatDotWfv function.

C-3

C.1 Main.c

#include <stdio.h>

#include <math.h>

#include "qcdtypes.h"

#include "qcddefs.h"

#include "latops.h"

/*

 * main()

 */

main(int argc, char *argv[])

{

 int seqn;

 t_real alpha,beta,res_new,res_old,kappa;

 t_gl3 g[NS][4];

 t_wfv x[NS], y[NS], r[NS], p[NS], tmp1[NS], tmp2[NS];

 /*

 * Initialization.

 */

 InitOffsetArrays();

 RanSetSeed(1);

 kappa = 0.124;

 LatGenGl3(g, 1);

 LatGenZeroWfv(x);

 LatGenZeroWfv(y);

 y[0][0][0].r = 1.0;

/* START */

 LatCopyWfv(r,y);

 LatCopyWfv(p,y);

 res_old = LatDotWfv(r,r);

 printf("Residual = %e\n",res_old);

 while (res_old > 1.0e-6)

 {

 LatMulM5Wfv(tmp1, kappa, g, p);

 LatMulM5Wfv(tmp2, kappa, g,tmp1);

 alpha = res_old / LatDotWfv(tmp1, tmp1);

 LatAddSclWfvWfv(r, -alpha, tmp2);

 LatAddSclWfvWfv(x, alpha, p);

 res_new = LatDotWfv(r,r);

C-4

 printf("Residual = %e\n",res_new);

 beta = res_new / res_old;

 LatSclWfvAddWfv(p, beta, r);

 res_old = res_new;

 }

/* END */

 /*

 * All done.

 */

 LatMulM5Wfv(tmp1, kappa, g, x);

 LatMulM5Wfv(tmp2, kappa, g,tmp1);

 LatAddSclWfvWfv(tmp2, -1.0, y);

 printf("TEST: %e\n",LatDotWfv(tmp2,tmp2));

 exit(0);

}

C-5

C.2 Latops.c

/*

 * File: "latops.c"

 *

 * Routines which evaluate lattice wide operations.

 *

 *

 */

#include <math.h>

#include "qcdtypes.h"

#include "qcddefs.h"

#include "ops.h"

#include "gamma.h"

#include "offsets.h"

#include "latops.h"

/*

 * LatGenGaussWfv()

 */

void LatGenGaussWfv(t_wfv a[NS])

{

 int s;

 for (s = 0; s < NS; s++)

 GenGaussWfv(a[s]);

 return;

}

/*

 * GenGl3()

 */

void LatGenGl3(t_gl3 g[NS][4], int start_type)

{

 int s, d;

 switch (start_type)

 {

 case 1: /* Cold Start. */

 {

 for (s = 0; s < NS; s++)

 {

 for (d = 0; d < 4; d++)

 {

 GenUnitGl3(g[s][d]);

 }

 }

 }

 break;

 case 2: /* Mixed Start. */

C-6

 {

 for (s = 0; s < NS/2; s++)

 {

 for (d = 0; d < 4; d++)

 {

 GenUnitGl3(g[s][d]);

 }

 }

 for (s = NS/2; s < NS; s++)

 {

 for (d = 0; d < 4; d++)

 {

 GenRandSu3(g[s][d]);

 }

 }

 }

 break;

 case 3: /* Hot Start */

 default:

 {

 for (s = 0; s < NS; s++)

 {

 for (d = 0; d < 4; d++)

 {

 GenRandSu3(g[s][d]);

 }

 }

 }

 break;

 }

 return;

}

/*

 * void LatMulM5Wfv(r, kappa, g, a)

 */

void LatMulM5Wfv(t_wfv r[NS],

 t_real kappa,

 t_gl3 g[NS][4],

 t_wfv a[NS])

{

 int s;

 t_wfv a_spx, a_smx, ga_spx, ga_smx;

 t_wfv a_spy, a_smy, ga_spy, ga_smy;

 t_wfv a_spz, a_smz, ga_spz, ga_smz;

 t_wfv a_spt, a_smt, ga_spt, ga_smt;

 t_wfv tx, ty, tz, tt;

 t_wfv txy, tzt;

 t_wfv tsum, k_tsum;

 t_wfv g5a_s;

C-7

 for (s = 0; s < NS; s++)

 {

 G5mG5Gx(a_spx, a[Spx[s]]);

 MulGl3Wfv(ga_spx, g[s][0], a_spx);

 G5pG5Gx(a_smx, a[Smx[s]]);

 MulGl3dWfv(ga_smx, g[Smx[s]][0], a_smx);

 G5mG5Gy(a_spy, a[Spy[s]]);

 MulGl3Wfv(ga_spy, g[s][1], a_spy);

 G5pG5Gy(a_smy, a[Smy[s]]);

 MulGl3dWfv(ga_smy, g[Smy[s]][1], a_smy);

 G5mG5Gz(a_spz, a[Spz[s]]);

 MulGl3Wfv(ga_spz, g[s][2], a_spz);

 G5pG5Gz(a_smz, a[Smz[s]]);

 MulGl3dWfv(ga_smz, g[Smz[s]][2], a_smz);

 G5mG5Gt(a_spt, a[Spt[s]]);

 MulGl3Wfv(ga_spt, g[s][3], a_spt);

 G5pG5Gt(a_smt, a[Smt[s]]);

 MulGl3dWfv(ga_smt, g[Smt[s]][3], a_smt);

 AddWfvWfv(tx, ga_spx, ga_smx);

 AddWfvWfv(ty, ga_spy, ga_smy);

 AddWfvWfv(tz, ga_spz, ga_smz);

 AddWfvWfv(tt, ga_spt, ga_smt);

 AddWfvWfv(txy, tx, ty);

 AddWfvWfv(tzt, tz, tt);

 AddWfvWfv(tsum, txy, tzt);

 MulSclWfv(k_tsum, kappa, tsum);

 G5(g5a_s, a[s]);

 SubWfvWfv(r[s], g5a_s, k_tsum);

 }

 return;

}

/*

 * void LatGenZeroWfv

 */

void LatGenZeroWfv(t_wfv a[NS])

{

 int s;

 for (s = 0; s < NS; s++)

 GenZeroWfv(a[s]);

C-8

}

/*

 * LatCopyWfv

 * a = b

 */

void LatCopyWfv(t_wfv a[NS], t_wfv b[NS])

{

 int s;

 for (s = 0; s < NS; s++)

 CopyWfv(a[s], b[s]);

}

/*

 * LatDotWfv

 * dot product of two Wilson fermion vectors: a* . b

 */

t_real LatDotWfv(t_wfv a[NS], t_wfv b[NS])

{

 int s;

 t_real dot = 0.0;

 for (s = 0; s < NS; s++)

 dot += DotWfv(a[s], b[s]);

 return dot;

}

/*

 * LatAddSclWfvWfv

 * a = a + r * b

 */

void LatAddSclWfvWfv(t_wfv a[NS], t_real r, t_wfv b[NS])

{

 int s;

 for (s = 0; s < NS; s++)

 AddSclWfvWfv(a[s],r,b[s]);

}

/*

 * LatSclWfvAddWfv

 * a = r * a + b

 */

void LatSclWfvAddWfv(t_wfv a[NS], t_real r, t_wfv b[NS])

{

 int s;

 for (s = 0; s < NS; s++)

 SclWfvAddWfv(a[s],r,b[s]);

}

C-9

C.3 Ops.c

/*

 * File: "ops.c"

 *

 * Routines defining operations on the various primative data

 * structures used in QCD programs.

 *

 *

 * Change Log:

 *

 *

 */

#include <stdio.h>

#include <stdarg.h>

#include <math.h>

#include "qcdtypes.h"

#include "ops.h"

/*

 * Macro definitions.

 */

#define ONE_ON_SQRT3 ((t_real) 0.57735026918962576451)

/*

 * void RandGauss(x_p, count)

 *

 * Fills the array pointed to by "x_p" with "count" gaussian

random

 * variables.

 * Each variable will have varience 1/2 (i.e. <x^2> = 1/2).

 */

void RandGauss(t_real *x_p,

 int count)

{

 int i;

 t_real theta, r;

 if (count % 2 != 0)

 Err("RandGauss: odd count passed as argument.\n");

 for (i = 0; i < count; i += 2)

 {

 theta = 2.0 * M_PI * RanD();

 r = sqrt(- log(RanD()));

 *x_p++ = r * cos(theta);

 *x_p++ = r * sin(theta);

 }

 return;

C-10

}

/*

 * Gl3 Generation, Print, and Diff Routines.

 */

/*

 * void GenZeroGl3()

 *

 * Generate a zero 3x3 complex matrix;

 */

void GenZeroGl3(t_gl3 a)

{

 int ci, cj;

 for (ci = 0; ci < 3; ci++)

 for (cj = 0; cj < 3; cj++)

 {

 a[ci][cj].r = 0.0;

 a[ci][cj].i = 0.0;

 }

 return;

}

/*

 * void GenUnitGl3()

 *

 * Generate a unit 3x3 complex matrix;

 */

void GenUnitGl3(t_gl3 a)

{

 int ci, cj;

 for (ci = 0; ci < 3; ci++)

 for (cj = 0; cj < 3; cj++)

 {

 a[ci][cj].r = 0.0;

 a[ci][cj].i = 0.0;

 }

 a[0][0].r = (1.0e0);

 a[1][1].r = (1.0e0);

 a[2][2].r = (1.0e0);

 return;

}

C-11

/*

 * void GenRandGl3()

 *

 * Generate a random SU(3) matrix;

 */

void GenRandGl3(t_gl3 a)

{

 int ci, cj;

 for (ci = 0; ci < 3; ci++)

 for (cj = 0; cj < 3; cj++)

 {

 a[ci][cj].r = (t_real) (2.0*RanD() - 1.0);

 a[ci][cj].i = (t_real) (2.0*RanD() - 1.0);

 }

 return;

}

/*

 * Wilson Fermion Vector Operations.

 */

/*

 * void GenZeroWfv()

 *

 * Generate a zero Wilson Fermion vector.

 */

void GenZeroWfv(t_wfv a)

{

 int d, c;

 for (d = 0; d < 4; d++)

 for (c = 0; c < 3; c++)

 {

 a[d][c].r = 0.0;

 a[d][c].i = 0.0;

 }

 return;

}

/*

 * void GenGaussWfv()

 *

 * Generate a Wilson fermion vector with gaussian random

variables.

 */

C-12

void GenGaussWfv(t_wfv a)

{

 RandGauss(&a[0][0].r, (4*3*2));

 return;

}

/*

 * void AddWfvWfv()

 */

void AddWfvWfv(t_wfv r,

 t_wfv a,

 t_wfv b)

{

 int d, c;

 for (d = 0; d < 4; d++)

 for (c = 0; c < 3; c++)

 {

 r[d][c].r = a[d][c].r + b[d][c].r;

 r[d][c].i = a[d][c].i + b[d][c].i;

 }

 return;

}

/*

 * void SubWfvWfv()

 */

void SubWfvWfv(t_wfv r,

 t_wfv a,

 t_wfv b)

{

 int d, c;

 for (d = 0; d < 4; d++)

 for (c = 0; c < 3; c++)

 {

 r[d][c].r = a[d][c].r - b[d][c].r;

 r[d][c].i = a[d][c].i - b[d][c].i;

 }

 return;

}

/*

 * void MulGl3Wfv()

 */

void MulGl3Wfv(t_wfv b,

 t_gl3 g,

 t_wfv a)

{

 int c, d;

C-13

 for (d = 0; d < 4; d++)

 for (c = 0; c < 3; c++)

 {

 b[d][c].r = g[c][0].r * a[d][0].r

 - g[c][0].i * a[d][0].i

 + g[c][1].r * a[d][1].r

 - g[c][1].i * a[d][1].i

 + g[c][2].r * a[d][2].r

 - g[c][2].i * a[d][2].i;

 b[d][c].i = g[c][0].r * a[d][0].i

 + g[c][0].i * a[d][0].r

 + g[c][1].r * a[d][1].i

 + g[c][1].i * a[d][1].r

 + g[c][2].r * a[d][2].i

 + g[c][2].i * a[d][2].r;

 }

 return;

}

/*

 * void MulGl3dWfv()

 */

void MulGl3dWfv(t_wfv b,

 t_gl3 g,

 t_wfv a)

{

 int c, d;

 for (d = 0; d < 4; d++)

 for (c = 0; c < 3; c++)

 {

 b[d][c].r = g[0][c].r * a[d][0].r

 + g[0][c].i * a[d][0].i

 + g[1][c].r * a[d][1].r

 + g[1][c].i * a[d][1].i

 + g[2][c].r * a[d][2].r

 + g[2][c].i * a[d][2].i;

 b[d][c].i = g[0][c].r * a[d][0].i

 - g[0][c].i * a[d][0].r

 + g[1][c].r * a[d][1].i

 - g[1][c].i * a[d][1].r

 + g[2][c].r * a[d][2].i

 - g[2][c].i * a[d][2].r;

 }

 return;

}

/*

 * void MulSclWfv()

C-14

 */

void MulSclWfv(t_wfv b,

 t_real k,

 t_wfv a)

{

 int c, d;

 for (d = 0; d < 4; d++)

 for (c = 0; c < 3; c++)

 {

 b[d][c].r = k * a[d][c].r;

 b[d][c].i = k * a[d][c].i;

 }

 return;

}

/* ==

*/

/*

 * Copy

 * a = b

 */

void CopyWfv(t_wfv a, t_wfv b)

{

 int d, c;

 for (d = 0; d < 4; d++)

 for (c = 0; c < 3; c++)

 {

 a[d][c].r = b[d][c].r;

 a[d][c].i = b[d][c].i;

 }

}

/*

 * DotWfv

 */

t_real DotWfv(t_wfv a, t_wfv b)

{

 t_real dot = 0.0;

 int d, c;

 for (d = 0; d < 4; d++)

 for (c = 0; c < 3; c++)

 dot += a[d][c].r * b[d][c].r + a[d][c].i * b[d][c].i;

 return dot;

}

/*

C-15

 * AddSclWfvWfv

 * a = a + r * b

 */

void AddSclWfvWfv(t_wfv a, t_real r, t_wfv b)

{

 int d, c;

 for (d = 0; d < 4; d++)

 for (c = 0; c < 3; c++)

 {

 a[d][c].r += r * b[d][c].r;

 a[d][c].i += r * b[d][c].i;

 }

}

/*

 * SclWfvAddWfv

 * a = r * a + b

 */

void SclWfvAddWfv(t_wfv a, t_real r, t_wfv b)

{

 int d, c;

 for (d = 0; d < 4; d++)

 for (c = 0; c < 3; c++)

 {

 a[d][c].r = r * a[d][c].r + b[d][c].r;

 a[d][c].i = r * a[d][c].i + b[d][c].i;

 }

}

C-16

C.4 Gamma.c

/*

 * File: "gamma.c"

 *

 * Gamma matrix operations.

 *

 *

 * Change Log:

 *

 *

 */

#include "qcdtypes.h"

#include "gamma.h"

/*

 * Gamma matrix conventions:

 *

 * Gx = \rho_1 \sigma_1 = | 1 |

 * | 1 |

 * | 1 |

 * | 1 |

 *

 * Gy = \rho_1 \sigma_2 = | -i |

 * | i |

 * | -i |

 * | i |

 *

 * Gz = \rho_1 \sigma_3 = | 1 |

 * | -1 |

 * | 1 |

 * | -1 |

 *

 * Gt = \rho_2 = | -i |

 * | -i |

 * | i |

 * | i |

 *

 * G5 = \rho_3 = | 1 |

 * | 1 |

 * | -1 |

 * | -1 |

 */

/*

 * void Gx()

 */

void Gx(t_wfv r,

 t_wfv a)

{

 int c;

C-17

 for (c = 0; c < 3; c++)

 {

 r[0][c].r = + a[3][c].r;

 r[0][c].i = + a[3][c].i;

 r[1][c].r = + a[2][c].r;

 r[1][c].i = + a[2][c].i;

 r[2][c].r = + a[1][c].r;

 r[2][c].i = + a[1][c].i;

 r[3][c].r = + a[0][c].r;

 r[3][c].i = + a[0][c].i;

 }

 return;

}

/*

 * void Gy()

 */

void Gy(t_wfv r,

 t_wfv a)

{

 int c;

 for (c = 0; c < 3; c++)

 {

 r[0][c].r = + a[3][c].i;

 r[0][c].i = - a[3][c].r;

 r[1][c].r = - a[2][c].i;

 r[1][c].i = + a[2][c].r;

 r[2][c].r = + a[1][c].i;

 r[2][c].i = - a[1][c].r;

 r[3][c].r = - a[0][c].i;

 r[3][c].i = + a[0][c].r;

 }

 return;

}

/*

 * void Gz()

 */

void Gz(t_wfv r,

 t_wfv a)

{

 int c;

 for (c = 0; c < 3; c++)

 {

 r[0][c].r = + a[2][c].r;

 r[0][c].i = + a[2][c].i;

 r[1][c].r = - a[3][c].r;

 r[1][c].i = - a[3][c].i;

C-18

 r[2][c].r = + a[0][c].r;

 r[2][c].i = + a[0][c].i;

 r[3][c].r = - a[1][c].r;

 r[3][c].i = - a[1][c].i;

 }

 return;

}

/*

 * void Gt()

 */

void Gt(t_wfv r,

 t_wfv a)

{

 int c;

 for (c = 0; c < 3; c++)

 {

 r[0][c].r = + a[2][c].i;

 r[0][c].i = - a[2][c].r;

 r[1][c].r = + a[3][c].i;

 r[1][c].i = - a[3][c].r;

 r[2][c].r = - a[0][c].i;

 r[2][c].i = + a[0][c].r;

 r[3][c].r = - a[1][c].i;

 r[3][c].i = + a[1][c].r;

 }

 return;

}

/*

 * void G5()

 */

void G5(t_wfv r,

 t_wfv a)

{

 int d, c;

 for (c = 0; c < 3; c++)

 {

 r[0][c].r = + a[0][c].r;

 r[0][c].i = + a[0][c].i;

 r[1][c].r = + a[1][c].r;

 r[1][c].i = + a[1][c].i;

 r[2][c].r = - a[2][c].r;

 r[2][c].i = - a[2][c].i;

 r[3][c].r = - a[3][c].r;

 r[3][c].i = - a[3][c].i;

 }

C-19

 return;

}

/*

 * void IpGx()

 */

void IpGx(t_wfv r,

 t_wfv a)

{

 int c;

 for (c = 0; c < 3; c++)

 {

 r[0][c].r = a[0][c].r + a[3][c].r;

 r[0][c].i = a[0][c].i + a[3][c].i;

 r[1][c].r = a[1][c].r + a[2][c].r;

 r[1][c].i = a[1][c].i + a[2][c].i;

 r[2][c].r = +r[1][c].r;

 r[2][c].i = +r[1][c].i;

 r[3][c].r = +r[0][c].r;

 r[3][c].i = +r[0][c].i;

 }

 return;

}

/*

 * void ImGx()

 */

void ImGx(t_wfv r,

 t_wfv a)

{

 int c;

 for (c = 0; c < 3; c++)

 {

 r[0][c].r = a[0][c].r - a[3][c].r;

 r[0][c].i = a[0][c].i - a[3][c].i;

 r[1][c].r = a[1][c].r - a[2][c].r;

 r[1][c].i = a[1][c].i - a[2][c].i;

 r[2][c].r = -r[1][c].r;

 r[2][c].i = -r[1][c].i;

 r[3][c].r = -r[0][c].r;

 r[3][c].i = -r[0][c].i;

 }

 return;

}

C-20

/*

 * void IpGy()

 */

void IpGy(t_wfv r,

 t_wfv a)

{

 int c;

 for (c = 0; c < 3; c++)

 {

 r[0][c].r = a[0][c].r + a[3][c].i;

 r[0][c].i = a[0][c].i - a[3][c].r;

 r[1][c].r = a[1][c].r - a[2][c].i;

 r[1][c].i = a[1][c].i + a[2][c].r;

 r[2][c].r = +r[1][c].i;

 r[2][c].i = -r[1][c].r;

 r[3][c].r = -r[0][c].i;

 r[3][c].i = +r[0][c].r;

 }

 return;

}

/*

 * void ImGy()

 */

void ImGy(t_wfv r,

 t_wfv a)

{

 int c;

 for (c = 0; c < 3; c++)

 {

 r[0][c].r = a[0][c].r - a[3][c].i;

 r[0][c].i = a[0][c].i + a[3][c].r;

 r[1][c].r = a[1][c].r + a[2][c].i;

 r[1][c].i = a[1][c].i - a[2][c].r;

 r[2][c].r = -r[1][c].i;

 r[2][c].i = +r[1][c].r;

 r[3][c].r = +r[0][c].i;

 r[3][c].i = -r[0][c].r;

 }

 return;

}

/*

 * void IpGz()

 */

C-21

void IpGz(t_wfv r,

 t_wfv a)

{

 int c;

 for (c = 0; c < 3; c++)

 {

 r[0][c].r = a[0][c].r + a[2][c].r;

 r[0][c].i = a[0][c].i + a[2][c].i;

 r[1][c].r = a[1][c].r - a[3][c].r;

 r[1][c].i = a[1][c].i - a[3][c].i;

 r[2][c].r = +r[0][c].r;

 r[2][c].i = +r[0][c].i;

 r[3][c].r = -r[1][c].r;

 r[3][c].i = -r[1][c].i;

 }

 return;

}

/*

 * void ImGz()

 */

void ImGz(t_wfv r,

 t_wfv a)

{

 int c;

 for (c = 0; c < 3; c++)

 {

 r[0][c].r = a[0][c].r - a[2][c].r;

 r[0][c].i = a[0][c].i - a[2][c].i;

 r[1][c].r = a[1][c].r + a[3][c].r;

 r[1][c].i = a[1][c].i + a[3][c].i;

 r[2][c].r = -r[0][c].r;

 r[2][c].i = -r[0][c].i;

 r[3][c].r = +r[1][c].r;

 r[3][c].i = +r[1][c].i;

 }

 return;

}

/*

 * void IpGt()

 */

void IpGt(t_wfv r,

 t_wfv a)

{

 int c;

C-22

 for (c = 0; c < 3; c++)

 {

 r[0][c].r = a[0][c].r + a[2][c].i;

 r[0][c].i = a[0][c].i - a[2][c].r;

 r[1][c].r = a[1][c].r + a[3][c].i;

 r[1][c].i = a[1][c].i - a[3][c].r;

 r[2][c].r = -r[0][c].i;

 r[2][c].i = +r[0][c].r;

 r[3][c].r = -r[1][c].i;

 r[3][c].i = +r[1][c].r;

 }

 return;

}

/*

 * void ImGt()

 */

void ImGt(t_wfv r,

 t_wfv a)

{

 int c;

 for (c = 0; c < 3; c++)

 {

 r[0][c].r = a[0][c].r - a[2][c].i;

 r[0][c].i = a[0][c].i + a[2][c].r;

 r[1][c].r = a[1][c].r - a[3][c].i;

 r[1][c].i = a[1][c].i + a[3][c].r;

 r[2][c].r = +r[0][c].i;

 r[2][c].i = -r[0][c].r;

 r[3][c].r = +r[1][c].i;

 r[3][c].i = -r[1][c].r;

 }

 return;

}

/*

 * void G5pG5Gx()

 */

void G5pG5Gx(t_wfv r,

 t_wfv a)

{

 int c;

 for (c = 0; c < 3; c++)

 {

 r[0][c].r = a[0][c].r + a[3][c].r;

 r[0][c].i = a[0][c].i + a[3][c].i;

 r[1][c].r = a[1][c].r + a[2][c].r;

C-23

 r[1][c].i = a[1][c].i + a[2][c].i;

 r[2][c].r = -r[1][c].r;

 r[2][c].i = -r[1][c].i;

 r[3][c].r = -r[0][c].r;

 r[3][c].i = -r[0][c].i;

 }

 return;

}

/*

 * void G5mG5Gx()

 */

void G5mG5Gx(t_wfv r,

 t_wfv a)

{

 int c;

 for (c = 0; c < 3; c++)

 {

 r[0][c].r = a[0][c].r - a[3][c].r;

 r[0][c].i = a[0][c].i - a[3][c].i;

 r[1][c].r = a[1][c].r - a[2][c].r;

 r[1][c].i = a[1][c].i - a[2][c].i;

 r[2][c].r = +r[1][c].r;

 r[2][c].i = +r[1][c].i;

 r[3][c].r = +r[0][c].r;

 r[3][c].i = +r[0][c].i;

 }

 return;

}

/*

 * void G5pG5Gy()

 */

void G5pG5Gy(t_wfv r,

 t_wfv a)

{

 int c;

 for (c = 0; c < 3; c++)

 {

 r[0][c].r = a[0][c].r + a[3][c].i;

 r[0][c].i = a[0][c].i - a[3][c].r;

 r[1][c].r = a[1][c].r - a[2][c].i;

 r[1][c].i = a[1][c].i + a[2][c].r;

 r[2][c].r = -r[1][c].i;

 r[2][c].i = +r[1][c].r;

 r[3][c].r = +r[0][c].i;

C-24

 r[3][c].i = -r[0][c].r;

 }

 return;

}

/*

 * void G5mG5Gy()

 */

void G5mG5Gy(t_wfv r,

 t_wfv a)

{

 int c;

 for (c = 0; c < 3; c++)

 {

 r[0][c].r = a[0][c].r - a[3][c].i;

 r[0][c].i = a[0][c].i + a[3][c].r;

 r[1][c].r = a[1][c].r + a[2][c].i;

 r[1][c].i = a[1][c].i - a[2][c].r;

 r[2][c].r = +r[1][c].i;

 r[2][c].i = -r[1][c].r;

 r[3][c].r = -r[0][c].i;

 r[3][c].i = +r[0][c].r;

 }

 return;

}

/*

 * void G5pG5Gz()

 */

void G5pG5Gz(t_wfv r,

 t_wfv a)

{

 int c;

 for (c = 0; c < 3; c++)

 {

 r[0][c].r = a[0][c].r + a[2][c].r;

 r[0][c].i = a[0][c].i + a[2][c].i;

 r[1][c].r = a[1][c].r - a[3][c].r;

 r[1][c].i = a[1][c].i - a[3][c].i;

 r[2][c].r = -r[0][c].r;

 r[2][c].i = -r[0][c].i;

 r[3][c].r = +r[1][c].r;

 r[3][c].i = +r[1][c].i;

 }

 return;

}

C-25

/*

 * void G5mG5Gz()

 */

void G5mG5Gz(t_wfv r,

 t_wfv a)

{

 int c;

 for (c = 0; c < 3; c++)

 {

 r[0][c].r = a[0][c].r - a[2][c].r;

 r[0][c].i = a[0][c].i - a[2][c].i;

 r[1][c].r = a[1][c].r + a[3][c].r;

 r[1][c].i = a[1][c].i + a[3][c].i;

 r[2][c].r = +r[0][c].r;

 r[2][c].i = +r[0][c].i;

 r[3][c].r = -r[1][c].r;

 r[3][c].i = -r[1][c].i;

 }

 return;

}

/*

 * void G5pG5Gt()

 */

void G5pG5Gt(t_wfv r,

 t_wfv a)

{

 int c;

 for (c = 0; c < 3; c++)

 {

 r[0][c].r = a[0][c].r + a[2][c].i;

 r[0][c].i = a[0][c].i - a[2][c].r;

 r[1][c].r = a[1][c].r + a[3][c].i;

 r[1][c].i = a[1][c].i - a[3][c].r;

 r[2][c].r = +r[0][c].i;

 r[2][c].i = -r[0][c].r;

 r[3][c].r = +r[1][c].i;

 r[3][c].i = -r[1][c].r;

 }

 return;

}

/*

 * void G5mG5Gt()

C-26

 */

void G5mG5Gt(t_wfv r,

 t_wfv a)

{

 int c;

 for (c = 0; c < 3; c++)

 {

 r[0][c].r = a[0][c].r - a[2][c].i;

 r[0][c].i = a[0][c].i + a[2][c].r;

 r[1][c].r = a[1][c].r - a[3][c].i;

 r[1][c].i = a[1][c].i + a[3][c].r;

 r[2][c].r = -r[0][c].i;

 r[2][c].i = +r[0][c].r;

 r[3][c].r = -r[1][c].i;

 r[3][c].i = +r[1][c].r;

 }

 return;

}

C-27

C.5 Ran.c

/*

 * File: "sys/libutl/ran.c"

 *

 * Random number routines.

 *

 *

 * Change Log:

 *

 *

 */

#include <stdio.h>

#include <time.h>

#include <stdlib.h>

#include "misc.h"

#include "err.h"

#include "ran.h"

/*

 * Specify Random Number Generator to use

 *

 * Define Ran_USE_DRAND48 to use system supplied drand48() routines

 * Define Ran_USE_RAN32 to use portable Ran32 generator

 */

#define Ran_USE_DRAND48

/*

 * void RanSetSeed(int use_clock)

 *

 * Sets the current value of the random number seed.

 *

 */

void RanSetSeed(int use_clock)

{

 time_t time_in_secs;

 unsigned int secs, num1, num2, pattern1, pattern2;

 unsigned int i;

 t_seed seed;

 /*

 * Check that an int contains 4 bytes, and that type t_time

contains 4 bytes

 */

 if (sizeof(int) < 4 || sizeof(time_t) < 4)

 {

C-28

 Err("RanSetSeed: int, time_t byte size is too small.\n");

 }

 /*

 * First step is to generate a 32 bit pattern in variable

"pattern1",

 * either from the clock or from a predefined pattern.

 *

 * We then generate a second pattern, "pattern2" using a mod 32

 * linear congruential generator from "pattern1" for when we need

 * more than 32 bits of seed.

 */

 if (use_clock)

 {

 /*

 * Initialization from clock.

 *

 * When seed is taken from the clock, the original 32-bit

 * sequence from the clock in num1

 *

 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 *

 * is reversed in order to produce num2:

 *

 * 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 * 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

 *

 * num1 and num2 are then combined to produce num3:

 *

 * 31 1 29 3 4 26 6 24 23 9 21 11 12 18 14 16

 * 15 17 13 19 20 10 22 8 7 25 5 27 28 2 30 0

 */

 time_in_secs = time((void *) 0);

 secs = ((unsigned int) time_in_secs) & 0xffffffff;

 num1 = secs;

 num2 = secs & 0x00000001;

 for (i = 1; i < 32; i++)

 {

 num2 <<= 1;

 secs >>= 1;

 num2 |= secs & 0x00000001;

 }

 pattern1 = (num1 & (0xa5a5a5a5)) | (num2 & ~(0xa5a5a5a5));

 }

 else

 {

 pattern1 = 0x9876abcd;

 }

 pattern2 = (pattern1*1021021 + 345897122) & 0xffffffff;

C-29

 /*

 * Now, use pattern1 and pattern2 to store the seed.

 */

#ifdef Ran_USE_DRAND48

 seed.data_s[0] = pattern1 & 0xffff;

 seed.data_s[1] = pattern2 & 0xffff;

 seed.data_s[2] = (pattern1 >> 16) & 0xffff;

 seed.data_s[3] = 0;

#else

#ifdef Ran_USE_RAN32

 seed.data_i[0] = pattern1;

 seed.data_i[1] = 0;

#else

 Err("No seed generator specified.\n");

#endif

#endif

 /*

 * Now set the value of the seed.

 */

 RanResetSeed(&seed);

 return;

}

/*

 * void RanResetSeed(t_seed *seed_p)

 *

 * Resets the random number seed to the value passed in in

"seed_p".

 */

void RanResetSeed(t_seed *seed_p)

{

 unsigned short *data_p;

 /*

 * Do the reset.

 */

#ifdef Ran_USE_DRAND48

 seed48(seed_p->data_s);

#else

#ifdef Ran_USE_RAN32

C-30

 Ran32_SetSeed(seed_p->data_i[0]);

#else

 Err("No seed generator specified.\n");

#endif

#endif

}

/*

 * void RanGetSeed(t_seed *seed_p)

 *

 * Fetch the current random number seed and return it in the

structure

 * pointed to by "seed_p". This routine makes no change to the

current

 * seed.

 */

void RanGetSeed(t_seed *seed_p)

{

 unsigned short *data_p;

 int i;

 /*

 * Get the current value of the seed.

 */

#ifdef Ran_USE_DRAND48

 /*

 * NOTE, for drand48, getting the seed changes it, so must reset

after

 */

 data_p = seed48(seed_p->data_s);

 for (i = 0; i < 3; i ++)

 seed_p->data_s[i] = data_p[i];

 seed_p->data_s[3] = 0;

 data_p = seed48(seed_p->data_s);

#else

#ifdef Ran_USE_RAN32

 seed_p->data_i[0] = Ran32_GetSeed();

 seed_p->data_i[1] = 0;

#else

 Err("No seed generator specified.\n");

C-31

#endif

#endif

 return;

}

/*

 * void RanCopySeed()

 *

 * Copies a random number seed.

 */

void RanCopySeed(t_seed *dst_seed_p, t_seed *src_seed_p)

{

 int i;

#ifdef Ran_USE_DRAND48

 dst_seed_p->data_s[0] = src_seed_p->data_s[0];

 dst_seed_p->data_s[1] = src_seed_p->data_s[1];

 dst_seed_p->data_s[2] = src_seed_p->data_s[2];

 dst_seed_p->data_s[3] = 0;

#else

#ifdef Ran_USE_RAN32

 dst_seed_p->data_i[0] = src_seed_p->data_i[0];

 dst_seed_p->data_i[1] = 0;

#else

 Err("No seed generator specified.\n");

#endif

#endif

 return;

}

/*

 * char *RanSeedText(seed)

 *

 * Formats its argument as a random number seed and returns a

pointer

 * to the formatted string. Designed to be used as an argument

in a

 * printf statement.

 */

char *RanSeedText(t_seed *seed_p)

{

C-32

 static char RanSeedString[64];

#ifdef Ran_USE_DRAND48

 sprintf(RanSeedString, "%4.4x %4.4x %4.4x",

 seed_p->data_s[0], seed_p->data_s[1], seed_p->data_s[2]);

#else

#ifdef Ran_USE_RAN32

 sprintf(RanSeedString, "%8.8x",

 seed_p->data_i[0]);

#else

 Err("No seed generator specified.\n");

#endif

#endif

 return RanSeedString;

}

/*

 * unsigned int RanU()

 *

 * Returns an unsigned int uniformly distributed in range [0,

2^31-1]

 */

unsigned int RanU()

{

#ifdef Ran_USE_DRAND48

 return ((unsigned int) lrand48());

#else

#ifdef Ran_USE_RAN32

 return Ran32_UInt();

#else

 Err("No seed generator specified.\n");

#endif

#endif

}

/*

 * int RanModN()

 *

C-33

 * Returns an int uniformly in range [0, n-1]

 */

int RanModN(int n)

{

 return RanU() % n;

}

/*

 * int RanF()

 *

 * Returns a float uniformly distributed in range [0.0, 1.0]

 */

float RanF()

{

#ifdef Ran_USE_DRAND48

 return (float) drand48();

#else

#ifdef Ran_USE_RAN32

 return (float) Ran32_Double();

#else

 Err("No seed generator specified.\n");

#endif

#endif

}

/*

 * int RanD()

 *

 * Returns a double uniformly distributed in range [0.0, 1.0]

 */

double RanD()

{

#ifdef Ran_USE_DRAND48

 return drand48();

#else

#ifdef Ran_USE_RAN32

 return Ran32_Double();

C-34

#else

 Err("No seed generator specified.\n");

#endif

#endif

}

/*

 * 32 Bit Random Number Generator

 *

 * Linear Congruential Generator

 * x -> (a x + c) % m

 * where

 * m = 2^32

 * a = (4*3*5*7*11*13*17*19+1)

 * c = (23*29*37)

 * Notes: (a-1) must be a multiple of 4

 * c must be relatively prime to m

 */

#define Ran32_M_A 19399381

#define Ran32_M_C 24679

#define Ran32_M_Scale ((double) 1.0)/((double)

4294967295.0)

#define Ran32_M_Start_Seed 0x1324acbd

static unsigned int Ran32_Seed = Ran32_M_Start_Seed;

/*

 * unsigned int Ran32_UInt()

 *

 * returns a random integer in the range [0, 2^31-1] inclusive

 */

unsigned int Ran32_UInt()

{

 Ran32_Seed = (Ran32_M_A * Ran32_Seed + Ran32_M_C) & 0xffffffff;

 return Ran32_Seed % 0x7fffffff;

}

/*

 * double Ran32_Double()

 *

 * returns a double in the range [0.0, 1.0] inclusive

 */

double Ran32_Double()

{

 Ran32_Seed = (Ran32_M_A * Ran32_Seed + Ran32_M_C) & 0xffffffff;

C-35

 return ((double) Ran32_Seed) * Ran32_M_Scale;

}

/*

 * void Ran32_SetSeed(unsigned int seed)

 *

 * Sets the random number seed.

 */

void Ran32_SetSeed(unsigned int seed)

{

 Ran32_Seed = (seed & 0xffffffff);

}

/*

 * unsigned int Ran32_GetSeed()

 *

 * Returns the current Ran32 seed.

 */

unsigned int Ran32_GetSeed()

{

 return Ran32_Seed;

}

/*

 * void Ran32_TestFns()

 *

 * A routine which tests Ran32 random number seed functions.

 */

#define Ran32_M_MomentCnt 20

#define Ran32_M_MomentIters 100000

void Ran32_TestFns()

{

 unsigned int i, m;

 double r, t, x[Ran32_M_MomentCnt];

#ifdef Ran_USE_DRAND48

 return;

#endif

 /*

 * Banner

 */

 printf("=== Test of Ran32 Functions\n\n");

 /*

C-36

 * unsigned int type must be exactly 32 bits.

 */

 if (sizeof(unsigned int) < 4)

 {

 Err(" Unsigned int must be at least 4 bytes, 32 bits.\n");

 }

 /*

 * Test Ran32_M_Scale is correct.

 */

 i = 0xffffffff;

 r = ((double) i) * ((double) Ran32_M_Scale);

 printf(" largest int random number should be: 4294967295\n");

 printf(" largest int random number is: %u\n", i);

 printf("\n");

 printf(" (largest int random number * Ran32_M_Scale - 1.0) should

be: %le\n", 0.0);

 printf(" (largest int random number * Ran32_M_Scale - 1.0) is:

%le\n", r-1.0);

 printf("\n");

 if (r != ((double) 1.0))

 {

 Err(" Ran32_M_Scale factor incorrect.\n");

 }

 /*

 * Generate Some Random Integers

 */

 printf(" Random Integers\n");

 for (i = 0; i < 10; i++)

 printf(" %8.8x\n", Ran32_UInt());

 printf("\n");

 /*

 * Generate Some Random Doubles

 */

 printf(" Random Doubles\n");

 for (i = 0; i < 10; i++)

 printf(" %lf\n", Ran32_Double());

 printf("\n");

 /*

 * Calculate Moments

 */

 for (m = 0; m < Ran32_M_MomentCnt; m++)

 x[m] = 0.0;

C-37

 for (i = 0; i < Ran32_M_MomentIters; i++)

 {

 t = r = Ran32_Double();

 for (m = 0; m < 10; m++)

 {

 x[m] += t;

 t *= r;

 }

 }

 for (m = 0; m < 10; m++)

 x[m] /= Ran32_M_MomentIters;

 printf(" Moment test: \n");

 for (m = 0; m < 10; m++)

 {

 printf(" %2d <x^%2d>: %lf, should be 1.0\n", m+2, m+1,

(m+2)*x[m]);

 }

 printf("\n");

 /*

 * If we get to here then everything is ok.

 */

 printf(" Tests successful.\n\n");

 fflush(stdout);

 return;

}

C-38

C.6 Qcddefs.h

/*

 * File: "qcddefs.h"

 *

 * Macro definitions defining lattice sizes and other compile

time

 * parameters defining simulations to be run.

 *

 *

 * Change Log:

 *

 *

 */

#define NX 4

#define NY 4

#define NZ 4

#define NT 4

#define NS (NX*NY*NZ*NT)

/*

 * End of "qcddefs.h"

 */

C-39

C.7 Qcdtypes.h

/*

 * File: "qcdtypes.h"

 *

 * Basic QCD data type definitions.

 *

 *

 * Change Log:

 *

 *

 */

/*

 * Primitive types used in QCD programs:

 *

 * t_char Character data.

 * t_int Integer Numbers.

 * t_real Real Numbers.

 *

 * t_complex Complex Numbers.

 *

 * t_su2 SU(2) matrix.

 * t_gl3 3x3 complex matrix, or SU(3) matrix.

 * t_wfv Wilson Fermion vector.

 * t_mom Momentum vector for Hybrid MC.

 *

 * The following typedefs are needed to generate fast code.

 *

 * t_fcomplex Complex Numbers.

 * t_fgl3 3x3 complex matrix, or SU(3) matrix.

 * t_fwfv Wilson Fermion vector.

 */

typedef char t_char;

typedef int t_int;

typedef double t_real;

typedef struct s_complex

{

 double r;

 double i;

}

t_complex;

typedef t_real t_su2 [4];

typedef t_real t_mom [8];

typedef t_complex t_gl3 [3][3];

typedef t_complex t_wfv [4][3];

typedef t_real t_fcomplex [2];

typedef t_real t_fgl3 [18];

typedef t_real t_fwfv [24];

C-40

/*

 * Macros to cast between different forms of equal types.

 */

#define GL3(a) ((t_complex (*)[3]) a)

#define FGL3(a) ((t_real *) a)

#define WFV(a) ((t_complex (*)[3]) a)

#define FWFV(a) ((t_real *) a)

/*

 * End of "qcdtypes.h"

 */

D-1

Appendix D

Handel-C code for double

precision conjugate gradient

implementation

This appendix contains the Handel-C source code for the double precision Dirac

operator designs. The source code is included to illustrate the double precision Dirac

operator design, and to illustrate how Handel-C can be used to create FPGA based

hardware using external floating point arithmetic cores.

The source code is split in several files.

• Main.hcc – The main loop that runs the conjugate gradient application.

• Gamma.hcc – The combined gamma-mul operator is defined in this file along

with operators to efficiently add, subtract and scale small complex number

matrices. Three operators the run three of the four stages in the Dirac operator

pipeline, using operators defined in gamma.hcc are also defined here.

• CG_ops.hcc – The dot-product and vector add-scale operators used by the

main conjugate gradient application loop are defined here.

D-2

• SRAM_functions.hcc - All operators related to moving data to and from

memory are defined here, including an operator that retrieves all data

required for a single iteration of the Dirac operator pipeline.

• Types.hch - The various types of on-chip RAMs used in the design are

defined in this file.

• Variables.hch – For easy access all the global variables used in the conjugate

gradient application are defined in this file. This file is included once in the

main.hcc file.

D-3

D.1 Main.hcc

#include "defs.h"

#include "types.hch"

#ifndef SIMULATE

#define TARGET_EDIF

#include "plxpci.h"

extern interface BUFG (unsigned 1 O) mclkBUFG1X (unsigned 1 I);

set clock = internal mclkBUFG1X.O with{rate = 80};

#else

set clock = external("D");

#endif

//#define PERF_COUNTERS

#include "sram0.h"

#include "sram1.h"

#include "sram2.h"

#include "sram3.h"

#include "sram4.h"

#include "sram5.h"

#include "sramaccess.c"

#include "ops.hcc"

//Global application variables

unsigned 1 runLoops;

macro expr SITE(x, y, z, t) =

 ((((unsigned NSWIDTH)(0 @t) *

 (unsigned NSWIDTH)(0 @ NZ) + (unsigned NSWIDTH)(0 @ z))

 * (unsigned NSWIDTH)(0 @ NY) + (unsigned NSWIDTH)(0 @ y))

 * (unsigned NSWIDTH)(0 @ NX) + (unsigned NSWIDTH)(0 @ x));

macro expr LOWERDOUBLE(a) = (a<-32);

macro expr UPPERDOUBLE(a) = (a\\32);

macro expr LOWERINT(a) = (a<-32);

macro expr UPPERINT(a) = (a\\32);

macro expr BUILDINT64(x, y) = (unsigned 64)(x @ y);

macro expr G_ADDRESS(s, t, a) =

 (((s * 36) + (t * 9) + (unsigned 20)(0 @ a)) * 2);

macro expr Y_ADDRESS(wfv, element) =

 (((wfv * 12) + (unsigned 20)(0 @ element)) * 2);

macro expr G_ADDRESS_P1(s, t, a) =

D-4

 (G_ADDRESS(s, t, (unsigned 20)(0 @ a)) + 1);

macro expr Y_ADDRESS_P1(wfv, element) =

 ((Y_ADDRESS(wfv, element)) + 1);

#include "variables.hch"

#include "gamma.hcc"

#include "sramfunctions.hcc"

#include "cg ops.hcc"

macro proc CalculateOffsets()

{

 s = SITE(x, y, z, t);

 Spx = SITE(xp1, y, z, t);

 Spy = SITE(x, yp1, z, t);

 Spz = SITE(x, y, zp1, t);

 Spt = SITE(x, y, z, tp1);

 Smx = SITE(xm1, y, z, t);

 Smy = SITE(x, ym1, z, t);

 Smz = SITE(x, y, zm1, t);

 Smt = SITE(x, y, z, tm1);

}

shared expr GetParmsMult(s, t) = (s * (unsigned NSWIDTH)(0 @ t));

shared expr IncOperands(op) = op + 1;

macro proc GetParameters()

{

 unsigned 32 h, l;

 unsigned 20 operands;

 operands = PARMS_BASE;

 l = ReadBank2((unsigned 20)(0 @ (operands)));

 operands = IncOperands(operands);

 h = ReadBank2((unsigned 20)(0 @ operands));

 kappa = BUILDINT64(h, l);

 NS = 1; //Init to one

 operands = IncOperands(operands);

 h = ReadBank2((unsigned 20)(0 @ operands));

 NX = h<-XWIDTH;

 NS = GetParmsMult(NS, NX);

 operands = IncOperands(operands);

 h = ReadBank2((unsigned 20)(0 @ operands));

 NY = h<-YWIDTH;

 NS = GetParmsMult(NS, NY);

 operands = IncOperands(operands);

 h = ReadBank2((unsigned 20)(0 @ operands));

 NZ = h<-ZWIDTH;

 NS = GetParmsMult(NS, NZ);

 operands = IncOperands(operands);

D-5

 h = ReadBank2((unsigned 20)(0 @ operands));

 NT = h<-TWIDTH;

 NS = GetParmsMult(NS, NT);

 operands = IncOperands(operands);

 numIter = ReadBank2((unsigned 20)(0 @ operands));

 operands = IncOperands(operands);

 l = ReadBank2((unsigned 20)(0 @ (operands)));

 operands = IncOperands(operands);

 h = ReadBank2((unsigned 20)(0 @ operands));

 threshold = BUILDINT64(h, l);

}

macro proc WriteParameters()

{

 unsigned 20 operands;

 operands = PARMS_BASE;

 WriteBank5((unsigned 20)(0 @ (operands)), kappa<-32);

 operands = IncOperands(operands);

 WriteBank5((unsigned 20)(0 @ operands), kappa\\32);

 operands = IncOperands(operands);

 WriteBank5((unsigned 20)(0 @ operands), (unsigned 32)(0 @ NX));

 operands = IncOperands(operands);

 WriteBank5((unsigned 20)(0 @ operands), (unsigned 32)(0 @ NY));

 operands = IncOperands(operands);

 WriteBank5((unsigned 20)(0 @ operands), (unsigned 32)(0 @ NZ));

 operands = IncOperands(operands);

 WriteBank5((unsigned 20)(0 @ operands), (unsigned 32)(0 @ NT));

 operands = IncOperands(operands);

 WriteBank5((unsigned 20)(0 @ operands), numIter);

 operands = IncOperands(operands);

 WriteBank5((unsigned 20)(0 @ (operands)), threshold<-32);

 operands = IncOperands(operands);

 WriteBank5((unsigned 20)(0 @ operands), threshold\\32);

 operands = IncOperands(operands);

 WriteBank5((unsigned 20)(0 @ (operands)), res_old<-32);

 operands = IncOperands(operands);

 WriteBank5((unsigned 20)(0 @ operands), res_old\\32);

 operands = IncOperands(operands);

 WriteBank5((unsigned 20)(0 @ (operands)), alpha<-32);

 operands = IncOperands(operands);

 WriteBank5((unsigned 20)(0 @ operands), alpha\\32);

 operands = IncOperands(operands);

 WriteBank5((unsigned 20)(0 @ (operands)), beta<-32);

 operands = IncOperands(operands);

 WriteBank5((unsigned 20)(0 @ operands), beta\\32);

D-6

 operands = IncOperands(operands);

 WriteBank5((unsigned 20)(0 @ (operands)),

 res_new<-32);

 operands = IncOperands(operands);

 WriteBank5((unsigned 20)(0 @ operands), res_new\\32);

}

void LatMulM5Wfv_Piped(unsigned 20 rOffset, unsigned 20 oOffset){

 unsigned 1 runStage1Loop, runStage2Loop, runStage3Loop;

 unsigned 1 delayStage1Loop, delayStage2Loop, delayStage3Loop;

 unsigned 1 doneReadOp, doneStage1, doneStage2, doneStage3;

 signal unsigned 1 iterationComplete;

 unsigned 1 stage1Active, stage2Active, stage3Active;

 unsigned 20 resOffset, opOffset;

 //piped running

 par{

 runReadOpLoop = 1;

 runStage1Loop = 1;

 runStage2Loop = 1;

 runStage3Loop = 1;

 delayStage1Loop = 1;

 delayStage2Loop = 1;

 delayStage3Loop = 1;

 doneReadOp = 1;

 doneStage1 = 1;

 doneStage2 = 1;

 doneStage3 = 1;

 opOffset = oOffset;

 resOffset = rOffset;

 x = 0; y = 0; z = 0; t = 0; iter = 0;

 stage1Active = 0; stage2Active = 0; stage3Active = 0;

 }

 par{

 seq{

 do{

 iterationComplete = !(doneReadOp & doneStage1 & doneStage2 &

doneStage3);

 }while(runStage3Loop);

 }

 do{

 par{

 ReadOperandsPiped(opOffset);

 doneReadOp = 0;

 }

 par{

 delayStage1Loop = 0;

 doneReadOp = 1;

 }

 //don't go to next iteration

 //until other loops are finished

 while(iterationComplete){ delay; }

 }while(runReadOpLoop);

D-7

 seq{

 while(delayStage1Loop){

 delay;

 }

 do{

 if(delayStage1Loop){

 delay;

 } else {

 par{

 HLatMulM5Wfv_Stage1();

 rSite_Stage1 = rSite;

 stage2Active = 1;

 runStage1Loop = runReadOpLoop;

 doneStage1 = 0;

 }

 par{

 delayStage2Loop = 0;

 doneStage1 = 1;

 }

 }

 //don't go to next iteration until other loops are finished

 while(iterationComplete){ delay; }

 }while(runStage1Loop);

 }

 seq{

 do{

 if(delayStage2Loop){

 delay;

 } else {

 par{

 HLatMulM5Wfv_Stage2();

 rSite_Stage2 = rSite_Stage1;

 stage3Active = 1;

 runStage2Loop = runStage1Loop;

 doneStage2 = 0;

 }

 par{

 delayStage3Loop = 0;

 doneStage2 = 1;

 }

 }

 //don't go to next iteration until other loops are finished

 while(iterationComplete){ delay; }

 }while(runStage2Loop);

 }

 seq{

 do{

 if(delayStage3Loop){

 delay;

 } else {

 par{

 rSite_Stage3 = rSite_Stage2;

 doneStage3 = 0;

D-8

 runStage3Loop = runStage2Loop;

 stage3_running = 1;

 }

 HLatMulM5Wfv_Stage3(resOffset);

 par{

 doneStage3 = 1;

 stage3_running = 0;

 }

 }

 //don't go to next iteration until other loops are finished

 while(iterationComplete){ delay; }

 }while(runStage3Loop);

 }

 }

 //Make sure that loop will run next time!

 runMainLoop = 1;

}

#endif

unsigned 1 runConj;

unsigned 15 CGIterations;

macro proc ConjugateGradient(){

 par{

 runConj = 1;

 CGIterations = 0;

 }

 res_old = OptimisedLatDotWfv(R_OFFSET);

 do{ //while(runConj){

 LatMulM5Wfv_Piped(TMP1_OFFSET, P_OFFSET);

 LatMulM5Wfv_Piped(TMP2_OFFSET, TMP1_OFFSET);

 dot_res = OptimisedLatDotWfv(TMP1_OFFSET);

 ldivide1(res_old, dot_res, &alpha);

 alpha_minus = FLIP(alpha);

 OptimisedLatAddSclWfvWfv(TMP2_OFFSET, R_OFFSET, 0, alpha_minus);

 OptimisedLatAddSclWfvWfv(P_OFFSET, X_OFFSET, 0, alpha);

 res_new = OptimisedLatDotWfv(R_OFFSET);

 ldivide1(res_new, res_old, &beta);

 OptimisedLatAddSclWfvWfv(R_OFFSET, P_OFFSET, 1, beta);

 res_old = res_new;

 ls1(res_old, threshold);

 delay;delay;delay;delay;delay;delay;delay;delay;

 checkConjCond = las_res1;

 if((checkConjCond[31] == 1) || (threshold == ZERO)){

D-9

 runConj = 0;

 } else {

 CGIterations++;

 }

 }while(runConj);

}

void usermain()

{

 unsigned 32 datatemp, datatemp2;

 f_real product;

 unsigned 20 s, t;

 unsigned 4 indexR, indexI;

 ram f_real divOut[50] with {block = "BlockRAM"};

 unsigned 6 divIndex;

 #ifdef SIMULATE

 chanout unsigned 64 gOut with {base = 16, outfile = "gOut.txt"};

 #endif

 #ifndef SIMULATE

 readStatus(datatemp);

 #else

 ReadInDataToSRAM();

 datatemp = 1;

 #endif

 GetParameters();

 #ifdef PERF_COUNTERS

 ZeroPerfCounters();

 #endif

 ConjugateGradient();

 WriteParameters();

 #ifndef SIMULATE

 writeStatus(datatemp);

 #else

 WriteOutResult();

 #endif

}

void main(void){

 delay;

 delay;

 delay;

 par{

 usermain();

#ifndef SIMULATE

 SRAMcontroller();

 sram0();

 sram1();

 sram2();

 sram3();

 sram4();

D-10

 sram5();

#endif

 }

 delay;

}

D-11

D.2 Gamma.hcc

macro expr FLIP(a) = (a ^ (1<<63));

#define EXPAND_ONE_A_S(r, p, l)

 r ## l ## p

#define EXPAND_A_S(r, p)

EXPAND_ONE_A_S(r, p, .HH) , EXPAND_ONE_A_S(r, p, .HL) ,

EXPAND_ONE_A_S(r, p, .LH) , EXPAND_ONE_A_S(r, p, .LL)

macro proc a_s_Read_Stage1(HH, HL, LH, LL, regStruct, index){

 par{

 regStruct.HH = HH[index];

 regStruct.HL = HL[index];

 regStruct.LH = LH[index];

 regStruct.LL = LL[index];

 }

}

macro expr a_s_Read_Stage2(regStruct) =

regStruct.HH @ regStruct.HL @

regStruct.LH @ regStruct.LL;

macro proc a_s_Write(HH, HL, LH, LL, data, index){

 par{

 HH[index] = data[63:48];

 HL[index] = data[47:32];

 LH[index] = data[31:16];

 LL[index] = data[15:0];

 }

}

void RetrieveSD(f_real *rr, f_real *ir, unsigned 1

input_registered){

 unsigned 4 retrieveSDX;

 unsigned 1 doRetrieveSDX;

 par{

 retrieveSDX = 0;

 doRetrieveSDX = 1;

 if(input_registered){

 delay;

 delay;

 } else {delay;}

 }

 do{

 par{

 if(retrieveSDX == 11){

 doRetrieveSDX = 0;

 } else {

 retrieveSDX++;

 }

 rr[retrieveSDX] = las_res9;

D-12

 ir[retrieveSDX] = las_res10;

 }

 }while(doRetrieveSDX);

}

unsigned 4 IssueSDX;

unsigned 1 doIssueSDX, IssueSDAdd, IssueSDRet;

macro proc IssueSD(ra, rb, ia, ib){

 par{

 IssueSDX=0;

 doIssueSDX = 1;

 IssueSDAdd = 1;

 IssueSDRet = 1;

 }

 do{

 par{

 IssueSDX++;

 if(IssueSDX == 11){

 doIssueSDX = 0;

 } else {delay;}

 la9(ra[IssueSDX], rb[IssueSDX]);

 la10(ia[IssueSDX], ib[IssueSDX]);

 }

 }while(doIssueSDX);

}

macro proc IssueSD_Registered(ra, raReg, rb, rbReg, ia, iaReg, ib,

ibReg){

 par{

 IssueSDX=0;

 doIssueSDX = 1;

 IssueSDAdd = 1;

 IssueSDRet = 1;

 }

 do{

 par{

 IssueSDX++;

 doIssueSDX = IssueSDRet;

 if(IssueSDX == 11){

 IssueSDRet = 0;

 } else {delay;}

 if(IssueSDRet){

 par{

 raReg = ra[IssueSDX];

 rbReg = rb[IssueSDX];

 iaReg = ia[IssueSDX];

 ibReg = ib[IssueSDX];

 }

 } else {delay;}

D-13

 //always issue adds, only the

//relevent results will be collected

 la9(raReg, rbReg);

 la10(iaReg, ibReg);

 }

 }while(doIssueSDX);

}

macro proc IssueMulSclSub(rmul, imul, rSub, iSub, k){

 unsigned 1 issueMulSclSub_MainLoop;

unsigned 1 issueMulSclSub_Sub;

uuunsigned 1 issueMulSclSub_Mul;

 unsigned 5 issueMulSclSub_Count;

 unsigned 4 issueMulSclSub_MulCount;

unsigned 4 issueMulSclSub_SubCount;

 unsigned 1 cycle1, cycle2, cycle3, cycle4;

unsigned 1 cycle5, cycle6, cycle7;

 //Delay 7 cycles so it procedure can be called

//in parallel with 7th add issue

 //procedure will then pick up add results and

 //issue to the multiplier on the correct cycle

 par{

 issueMulSclSub_MainLoop = 1;

 issueMulSclSub_Sub = 0;

 issueMulSclSub_Mul = 1;

 issueMulSclSub_Count = 0;

 issueMulSclSub_MulCount = 0;

 issueMulSclSub_SubCount = 0;

 }

 do{ //while(issueMulSclSub_MainLoop)

 par{

 cycle1 = issueMulSclSub_Mul;

 cycle2 = cycle1;

 cycle3 = cycle2;

 cycle4 = cycle3;

 cycle5 = cycle4;

 cycle6 = cycle5;

 cycle7 = cycle6;

 issueMulSclSub_Sub = cycle7;

 if(issueMulSclSub_MulCount == 11){

 issueMulSclSub_Mul = 0;

 } else {

 delay;

 }

 if(issueMulSclSub_Mul){

 par{

 lmul7(rmul[issueMulSclSub_MulCount], k);

 lmul8(imul[issueMulSclSub_MulCount], k);

 issueMulSclSub_MulCount++;

 }

 } else {

 delay;

 }

D-14

 //Issue the results to the subtractor

 //Subtract from the existing values

//at the point (yLat[8])

 if(issueMulSclSub_Sub){

 par{

 ls9(rSub[issueMulSclSub_SubCount], lm_res7);

 ls10(iSub[issueMulSclSub_SubCount], lm_res8);

 issueMulSclSub_SubCount++;

 }

 } else {

 delay;

 }

 }

 //run loop while either muls or sub are issuing

 } while(issueMulSclSub_Mul | issueMulSclSub_Sub);

}

unsigned 4 retMulScl_Count;

unsigned 1 retMulScl_MainLoop;

unsigned 4 retMulScl_Index;

macro proc RetrieveMulSclSubSD(rOut, iOut){

 par{

 retMulScl_Count = 0;

 retMulScl_MainLoop = 1;

 }

 do{

 par{

 rOut[retMulScl_Count] = las_res9;

 iOut[retMulScl_Count] = las_res10;

 if(retMulScl_Count == 11){

 retMulScl_MainLoop = 0;

 } else {

 par{

 retMulScl_Count++;

 }

 }

 }

 }while(retMulScl_MainLoop);

}

unsigned 4 hg5c;

f_real hg5Temp;

unsigned 1 runHG5Loop, hg5FirstHalf;

macro proc G5(rr, ir, ra, ia){

 par{

 runHG5Loop = 1;

 hg5FirstHalf = 0;

 hg5c = 0;

 }

 do{

 if(hg5FirstHalf == 0){

 par{

 rr[hg5c] = ra[hg5c];

D-15

 ir[hg5c] = ia[hg5c];

 }

 } else {

 hg5Temp = ra[hg5c];

 rr[hg5c] = FLIP(hg5Temp);

 hg5Temp = ia[hg5c];

 ir[hg5c] = FLIP(hg5Temp);

 }

 par{

 if(hg5c == 5){

 hg5FirstHalf = 1;

 } else {delay;}

 if(hg5c == 11){

 runHG5Loop = 0;

 } else {delay;}

 hg5c++;

 }

 } while(runHG5Loop);

}

#if 1

unsigned 8 cycles;

//Control Registers - control issuing and retrieval inside control

blocks

unsigned 2 controlGamma, controlGammaStore, controlGammaFlipStore;

unsigned 2 controlGammaIssue;

unsigned 2 controlGammaRetrieve;

unsigned 2 controlGLatRetrieve;

unsigned 2 control_GLat1_Mul_Issue;

unsigned 2 control_GLat1_IRAdd_Issue;

unsigned 2 control_GLat1_IRAdd_Retrieve;

unsigned 1 control_GLat1_AccAddS1_Issue;

unsigned 1 control_GLat1_AccAddS1_AddZero;

unsigned 2 control_GLat1_Acc_Retrieve;

//Run registers - control when control blocks run

unsigned 1 run_Main_Gamma_Loop, run_Gamma_Control_Loop;

unsigned 1 run_Gamma_Op_Retrieve;

unsigned 1 run_Gamma_Op_Issue;

unsigned 1 run_Gamma_Res_Retrieve;

unsigned 1 run_Gamma_Res_Store;

unsigned 1 run_Gamma_Flip_Store;

unsigned 1 run_Mul_Op_Retrieve;

unsigned 1 run_Mul_Op_Issue;

unsigned 1 run_IRAdd_Issue;

unsigned 1 run_Acc_Issue;

unsigned 1 run_Acc_Retrieve;

/*

Registers to allow memory pipelining

transformations to work.

Need a seperate registers for reading

and writing to arrays

D-16

Naming Convention:

Single Port <<array name>>_<<Direction>>

Multi Port <<array name>>_<<Port Name>>_<<Direction>>

*/

//Registers for G5pG5Gx

f_real flipped_pGx;

f_real temp_GLat1_IRAdd;

//Registers for G5mG5Gx

f_real flipped_mGx;

f_real temp_GLat0_IRAdd;

//Registers for G5pG5Gy

f_real flipped_pGy;

f_real temp_GLat3_IRAdd;

//Registers for G5mG5Gy

f_real flipped_mGy;

f_real temp_GLat2_IRAdd;

//Registers for G5pG5Gz

f_real flipped_pGz;

f_real temp_GLat5_IRAdd;

//Registers for G5mG5Gz

f_real flipped_mGz;

f_real temp_GLat4_IRAdd;

//Registers for G5pG5Gt

f_real flipped_pGt;

f_real temp_GLat7_IRAdd;

//Registers for G5mG5Gt

f_real flipped_mGt;

f_real temp_GLat6_IRAdd;

unsigned 4 zeroIndex_pGx, oneIndex_pGx, twoIndex_pGx;

unsigned 4 threeIndex_pGx;

unsigned 4 zeroIndexStore_pGx, oneIndexStore_pGx, twoIndexStore_pGx,

threeIndexStore_pGx;

unsigned 4 twoIndexStore_pGy, threeIndexStore_pGy;

unsigned 2 c_gLat1, d_gLat1;

unsigned 4 ga_smx_Index_Ret, ga_smx_Index_Store;

f_real la1_Res_For_Acc;

D-17

void GammaFunc(unsigned 1 highSpace)

{

 /*~~*/

 par

 {

 //c = 0;

 cycles = 0;

 run_Main_Gamma_Loop = 1;

 run_Gamma_Control_Loop = 1;

 zeroIndex_pGx = 0;

 oneIndex_pGx = 3;

 twoIndex_pGx = 6;

 threeIndex_pGx = 9;

 controlGamma = 0;

 controlGammaIssue = 0;

 controlGammaRetrieve = 0;

 controlGammaStore = 0;

 controlGammaFlipStore = 0;

 zeroIndexStore_pGx = 0;

 oneIndexStore_pGx = 3;

 twoIndexStore_pGx = 6;

 threeIndexStore_pGx = 9;

 twoIndexStore_pGy = 6;

 threeIndexStore_pGy = 9;

 controlGLatRetrieve = 0;

 if(highSpace == 0){

 gLat1_Index = 0;

 gLat0_Index = 0;

 } else {

 gLat1_Index = 9;

 gLat0_Index = 9;

 }

 a_smx_Index = 0;

 ga_smx_Index = 0;

 a_spx_Index = 0;

 ga_spx_Index = 0;

 c_gLat1 = 0;

 d_gLat1 = 0;

 control_GLat1_Mul_Issue = 0;

 control_GLat1_IRAdd_Issue = 0;

 control_GLat1_IRAdd_Retrieve = 0;

 control_GLat1_AccAddS1_Issue = 0;

D-18

 control_GLat1_AccAddS1_AddZero = 0;

 ga_smx_Index_Ret = 0;

 ga_smx_Index_Store = 0;

 control_GLat1_Acc_Retrieve = 0;

 ga_smx_Index_Store = 0;

 run_Gamma_Op_Retrieve = 1;

 run_Gamma_Op_Issue = 0;

 run_Gamma_Res_Retrieve = 0;

 run_Gamma_Res_Store = 0;

 run_Gamma_Flip_Store = 0;

 run_Mul_Op_Retrieve = 0;

 run_Mul_Op_Issue = 0;

 run_IRAdd_Issue = 0;

 run_Acc_Issue = 0;

 run_Acc_Retrieve = 0;

 }

 par{

 do

 //while(cycles <179)

 {

 par

 {

 cycles++;

 //Put all control register

 //updates into one loop

 //controlled by it's own

 //register

 if(cycles == 178){

 par{

 run_Main_Gamma_Loop = 0;

 run_Gamma_Control_Loop = 0;

 }

 } else {delay;}

 /*

 Retrieve yLat operands from RAM

 Read from RAM into a dedicated array to enable

 RAM pipelining

 Start issuing gamma adds/subs one cycle later

 Some of these retrieves are duplicated (the

 register already holds the correct value)

 These can be elimated once all the gamma/mul

 functions are integrated into one

 */

 if(cycles == 11)

 {

 run_Gamma_Op_Retrieve = 0;

 } else { delay;}

D-19

 if(cycles == 6)

 {

 run_Gamma_Res_Store = 1;

 } else { delay;}

 if(cycles == 18)

 {

 run_Gamma_Res_Store = 0;

 } else {delay;}

 if(cycles == 7){

 run_Gamma_Flip_Store = 1;

 } else {delay;}

 if(cycles == 19){

 run_Gamma_Flip_Store = 0;

 } else {delay;}

 if(cycles == 8){

 run_Mul_Op_Retrieve = 1;

 } else {delay;}

 if(cycles == 152){

 run_Mul_Op_Retrieve = 0;

 } else {delay;}

 if(cycles == 9){

 run_Mul_Op_Issue = 1;

 } else {delay;}

 if(cycles == 153){

 run_Mul_Op_Issue = 0;

 } else {delay;}

 if(cycles == 17){

 run_IRAdd_Issue = 1;

 } else {delay;}

 if(cycles == 161){

 run_IRAdd_Issue = 0;

 } else {delay;}

 //Issue add of result of IR add to zero for

 //first set of accumulates

 if(cycles == 24){

 run_Acc_Issue = 1;

 } else {delay;}

 if(cycles == 168){

 run_Acc_Issue = 0;

 } else {delay;}

 /*

 After cycle 49 all locations in RAM will be

 zero'd by saving

 IR result + zero to each location, start

 issuing accumlate ops after this

 */

 if(cycles == 72)

 {

 control_GLat1_AccAddS1_AddZero = 1;

 } else { delay; }

 if(cycles == 32){

 run_Acc_Retrieve = 1;

D-20

 } else {delay;}

 if(cycles == 176){

 run_Acc_Retrieve = 0;

 } else {delay;}

 }

 } while(run_Gamma_Control_Loop);

 do{

 par{

 //if(cycles < 12)

 if(run_Gamma_Op_Retrieve == 1)

 {

 par

 {

 if(controlGamma == 0)

 {

 par

 {

 la1(yLat1R.read[zeroIndex_pGx],

 yLat1R.write[threeIndex_pGx]);

 ls2(yLat0R.read[zeroIndex_pGx],

 yLat0R.write[threeIndex_pGx]);

 la3(yLat3R[zeroIndex_pGx],

 yLat3I[threeIndex_pGx]);

 ls4(yLat2R[zeroIndex_pGx],

 yLat2I[threeIndex_pGx]);

 la5(yLat5R.read[zeroIndex_pGx],

 yLat5R.write[twoIndex_pGx]);

 ls6(yLat4R.read[zeroIndex_pGx],

 yLat4R.write[twoIndex_pGx]);

 la7(yLat7R[zeroIndex_pGx],

 yLat7I[twoIndex_pGx]);

 ls8(yLat6R[zeroIndex_pGx],

 yLat6I[twoIndex_pGx]);

 }

 } else { delay; }

 if(controlGamma == 1)

 {

 par

 {

 la1(yLat1I.read[zeroIndex_pGx],

 yLat1I.write[threeIndex_pGx]);

 ls2(yLat0I.read[zeroIndex_pGx],

 yLat0I.write[threeIndex_pGx]);

 ls3(yLat3I[zeroIndex_pGx],

 yLat3R[threeIndex_pGx]);

 la4(yLat2I[zeroIndex_pGx],

 yLat2R[threeIndex_pGx]);

 la5(yLat5I.read[zeroIndex_pGx],

 yLat5I.write[twoIndex_pGx]);

 ls6(yLat4I.read[zeroIndex_pGx],

 yLat4I.write[twoIndex_pGx]);

 ls7(yLat7I[zeroIndex_pGx],

 yLat7R[twoIndex_pGx]);

 la8(yLat6I[zeroIndex_pGx],

 yLat6R[twoIndex_pGx]);

 }

D-21

 } else { delay; }

 if(controlGamma == 2)

 {

 par

 {

 la1(yLat1R.read[oneIndex_pGx],

 yLat1R.write[twoIndex_pGx]);

 ls2(yLat0R.read[oneIndex_pGx],

 yLat0R.write[twoIndex_pGx]);

 ls3(yLat3R[oneIndex_pGx],

 yLat3I[twoIndex_pGx]);

 la4(yLat2R[oneIndex_pGx],

 yLat2I[twoIndex_pGx]);

 ls5(yLat5R.read[oneIndex_pGx],

 yLat5R.write[threeIndex_pGx]);

 la6(yLat4R.read[oneIndex_pGx],

 yLat4R.write[threeIndex_pGx]);

 la7(yLat7R[oneIndex_pGx],

 yLat7I[threeIndex_pGx]);

 ls8(yLat6R[oneIndex_pGx],

 yLat6I[threeIndex_pGx]);

 }

 } else { delay; }

 if(controlGamma == 3)

 {

 par

 {

 la1(yLat1I.read[oneIndex_pGx],

 yLat1I.write[twoIndex_pGx]);

 ls2(yLat0I.read[oneIndex_pGx],

 yLat0I.write[twoIndex_pGx]);

 la3(yLat3I[oneIndex_pGx],

 yLat3R[twoIndex_pGx]);

 ls4(yLat2I[oneIndex_pGx],

 yLat2R[twoIndex_pGx]);

 ls5(yLat5I.read[oneIndex_pGx],

 yLat5I.write[threeIndex_pGx]);

 la6(yLat4I.read[oneIndex_pGx],

 yLat4I.write[threeIndex_pGx]);

 ls7(yLat7I[oneIndex_pGx],

 yLat7R[threeIndex_pGx]);

 la8(yLat6I[oneIndex_pGx],

 yLat6R[threeIndex_pGx]);

 zeroIndex_pGx++;

 oneIndex_pGx++;

 twoIndex_pGx++;

 threeIndex_pGx++;

 }

 } else { delay; }

 controlGamma++;

 }

 } else { delay; }

 }

 }while(run_Main_Gamma_Loop);

 do{

D-22

 par{

 /*

 Store Gamma addition results

 Storage of sign flipped results will need to be

 pipelined for half of the gamma functions

 because of lack of memory ports

 The other half will need to store the flipped

 results on the same cycle as the non-flipped

 because the the flipped results are stored to

 different arrays than the non flipped.

 */

 if(run_Gamma_Res_Store == 1)

 {

 par{

 controlGammaStore++;

 if(controlGammaStore == 0)

 {

 par

 {

 //a_smxR.write[zeroIndexStore_pGx] =

 las_res1;

 a_s_Write(EXPAND_A_S(a_smxR, .write),

 las_res1, zeroIndexStore_pGx);

 a_s_Write(EXPAND_A_S(a_spxR, .write),

 las_res2, zeroIndexStore_pGx);

 a_s_Write(EXPAND_A_S(a_smyR, .write),

 las_res3, zeroIndexStore_pGx);

 a_s_Write(EXPAND_A_S(a_spyR, .write),

 las_res4, zeroIndexStore_pGx);

 a_s_Write(EXPAND_A_S(a_smzR, .write),

 las_res5, zeroIndexStore_pGx);

 a_s_Write(EXPAND_A_S(a_spzR, .write),

 las_res6, zeroIndexStore_pGx);

 a_s_Write(EXPAND_A_S(a_smtR, .write),

 las_res7, zeroIndexStore_pGx);

 a_s_Write(EXPAND_A_S(a_sptR, .write),

 las_res8, zeroIndexStore_pGx);

 //Store flipped results that don't need

 //to be delayed

 a_smxR_Write_In = FLIP(las_res1);

 a_spxR_Write_In = las_res2;

 a_s_Write(EXPAND_A_S(a_smyI, .write),

 FLIP(las_res3), threeIndexStore_pGy);

 a_s_Write(EXPAND_A_S(a_spyI, .write),

 las_res4, threeIndexStore_pGy);

 a_smzR_Write_In = FLIP(las_res5);

 a_spzR_Write_In = las_res6;

 a_s_Write(EXPAND_A_S(a_smtI, .write),

 FLIP(las_res7), twoIndexStore_pGy);

 a_s_Write(EXPAND_A_S(a_sptI, .write),

 las_res8, twoIndexStore_pGy);

 }

D-23

 } else { delay; }

 if(controlGammaStore == 1)

 {

 par

 {

 a_s_Write(EXPAND_A_S(a_smxI, .write),

 las_res1, zeroIndexStore_pGx);

 a_s_Write(EXPAND_A_S(a_spxI, .write),

 las_res2, zeroIndexStore_pGx);

 a_s_Write(EXPAND_A_S(a_smyI, .write),

 las_res3, zeroIndexStore_pGx);

 a_s_Write(EXPAND_A_S(a_spyI, .write),

 las_res4, zeroIndexStore_pGx);

 a_s_Write(EXPAND_A_S(a_smzI, .write),

 las_res5, zeroIndexStore_pGx);

 a_s_Write(EXPAND_A_S(a_spzI, .write),

 las_res6, zeroIndexStore_pGx);

 a_s_Write(EXPAND_A_S(a_smtI, .write),

 las_res7, zeroIndexStore_pGx);

 a_s_Write(EXPAND_A_S(a_sptI, .write),

 las_res8, zeroIndexStore_pGx);

 //Store flipped results that don't need

 //to be delayed

 a_smxI_Write_In = FLIP(las_res1);

 a_spxI_Write_In = las_res2;

 a_s_Write(EXPAND_A_S(a_smyR, .write),

 las_res3, threeIndexStore_pGy);

 a_s_Write(EXPAND_A_S(a_spyR, .write),

 FLIP(las_res4), threeIndexStore_pGy);

 a_smzI_Write_In = FLIP(las_res5);

 a_spzI_Write_In = las_res6;

 a_s_Write(EXPAND_A_S(a_smtR, .write),

 las_res7, twoIndexStore_pGy);

 a_s_Write(EXPAND_A_S(a_sptR, .write),

 FLIP(las_res8), twoIndexStore_pGy);

 }

 } else { delay; }

 if(controlGammaStore == 2)

 {

 par{

 a_s_Write(EXPAND_A_S(a_smxR, .write),

 las_res1, oneIndexStore_pGx);

 a_s_Write(EXPAND_A_S(a_spxR, .write),

 las_res2, oneIndexStore_pGx);

 a_s_Write(EXPAND_A_S(a_smyR, .write),

 las_res3, oneIndexStore_pGx);

 a_s_Write(EXPAND_A_S(a_spyR, .write),

 las_res4, oneIndexStore_pGx);

 a_s_Write(EXPAND_A_S(a_smzR, .write),

 las_res5, oneIndexStore_pGx);

 a_s_Write(EXPAND_A_S(a_spzR, .write),

 las_res6, oneIndexStore_pGx);

 a_s_Write(EXPAND_A_S(a_smtR, .write),

 las_res7, oneIndexStore_pGx);

 a_s_Write(EXPAND_A_S(a_sptR, .write),

D-24

 las_res8, oneIndexStore_pGx);

 //Store flipped results that don't need

 //to be delayed

 a_smxR_Write_In = FLIP(las_res1);

 a_spxR_Write_In = las_res2;

 a_s_Write(EXPAND_A_S(a_smyI, .write),

 las_res3, twoIndexStore_pGy);

 a_s_Write(EXPAND_A_S(a_spyI, .write),

 FLIP(las_res4), twoIndexStore_pGy);

 a_smzR_Write_In = las_res5;

 a_spzR_Write_In = FLIP(las_res6);

 a_s_Write(EXPAND_A_S(a_smtI, .write),

 FLIP(las_res7), threeIndexStore_pGy);

 a_s_Write(EXPAND_A_S(a_sptI, .write),

 las_res8, threeIndexStore_pGy);

 }

 } else { delay; }

 if(controlGammaStore == 3)

 {

 par

 {

 a_s_Write(EXPAND_A_S(a_smxI, .write),

 las_res1, oneIndexStore_pGx);

 a_s_Write(EXPAND_A_S(a_spxI, .write),

 las_res2, oneIndexStore_pGx);

 a_s_Write(EXPAND_A_S(a_smyI, .write),

 las_res3, oneIndexStore_pGx);

 a_s_Write(EXPAND_A_S(a_spyI, .write),

 las_res4, oneIndexStore_pGx);

 a_s_Write(EXPAND_A_S(a_smzI, .write),

 las_res5, oneIndexStore_pGx);

 a_s_Write(EXPAND_A_S(a_spzI, .write),

 las_res6, oneIndexStore_pGx);

 a_s_Write(EXPAND_A_S(a_smtI, .write),

 las_res7, oneIndexStore_pGx);

 a_s_Write(EXPAND_A_S(a_sptI, .write),

 las_res8, oneIndexStore_pGx);

 //Store flipped results that don't need

 //to be delayed

 a_smxI_Write_In = FLIP(las_res1);

 a_spxI_Write_In = las_res2;

 a_s_Write(EXPAND_A_S(a_smyR, .write),

 FLIP(las_res3), twoIndexStore_pGy);

 a_s_Write(EXPAND_A_S(a_spyR, .write),

 las_res4, twoIndexStore_pGy);

 a_smzI_Write_In = las_res5;

 a_spzI_Write_In = FLIP(las_res6);

 a_s_Write(EXPAND_A_S(a_smtR, .write),

 las_res7, threeIndexStore_pGy);

 a_s_Write(EXPAND_A_S(a_sptR, .write),

 FLIP(las_res8), threeIndexStore_pGy);

 zeroIndexStore_pGx++;

 oneIndexStore_pGx++;

 twoIndexStore_pGy++;

D-25

 threeIndexStore_pGy++;

 }

 } else { delay; }

 }

 } else { delay; }

 }

 }while(run_Main_Gamma_Loop);

 do{

 par{

 //Finish pipelining of flipped results

 if(cycles == 19)

 {

 par{

 a_smxI_Write_In = FLIP(las_res1);

 a_spxI_Write_In = las_res2;

 a_smzI_Write_In = FLIP(las_res5);

 a_spzI_Write_In = las_res6;

 }

 } else { delay; }

 }

 }while(run_Main_Gamma_Loop);

 do{

 par{

 /*

 Store the sign flipped gamma results

 For some gamma functions these have been

 carried over from earlier cycles

 */

 if(run_Gamma_Flip_Store == 1)

 {

 par{

 controlGammaFlipStore++;

 if(controlGammaFlipStore == 0)

 {

 par{

 a_s_Write(EXPAND_A_S(a_smxR, .write),

 a_smxR_Write_In,

 threeIndexStore_pGx);

 a_s_Write(EXPAND_A_S(a_spxR, .write),

 a_spxR_Write_In,

 threeIndexStore_pGx);

 a_s_Write(EXPAND_A_S(a_smzR, .write),

 a_smzR_Write_In, twoIndexStore_pGx);

 a_s_Write(EXPAND_A_S(a_spzR, .write),

 a_spzR_Write_In, twoIndexStore_pGx);

 }

 } else { delay; }

 if(controlGammaFlipStore == 1)

 {

 par

 {

 a_s_Write(EXPAND_A_S(a_smxI, .write),

 a_smxI_Write_In,

D-26

 threeIndexStore_pGx);

 a_s_Write(EXPAND_A_S(a_spxI, .write),

 a_spxI_Write_In,

 threeIndexStore_pGx);

 a_s_Write(EXPAND_A_S(a_smzI, .write),

 a_smzI_Write_In, twoIndexStore_pGx);

 a_s_Write(EXPAND_A_S(a_spzI, .write),

 a_spzI_Write_In, twoIndexStore_pGx);

 }

 } else { delay; }

 if(controlGammaFlipStore == 2)

 {

 par{

 a_s_Write(EXPAND_A_S(a_smxR, .write),

 a_smxR_Write_In, twoIndexStore_pGx);

 a_s_Write(EXPAND_A_S(a_spxR, .write),

 a_spxR_Write_In, twoIndexStore_pGx);

 a_s_Write(EXPAND_A_S(a_smzR, .write),

 a_smzR_Write_In,

 threeIndexStore_pGx);

 a_s_Write(EXPAND_A_S(a_spzR, .write),

 a_spzR_Write_In,

 threeIndexStore_pGx);

 }

 } else { delay; }

 if(controlGammaFlipStore == 3)

 {

 par

 {

 a_s_Write(EXPAND_A_S(a_smxI, .write),

 a_smxI_Write_In, twoIndexStore_pGx);

 a_s_Write(EXPAND_A_S(a_spxI, .write),

 a_spxI_Write_In, twoIndexStore_pGx);

 a_s_Write(EXPAND_A_S(a_smzI, .write),

 a_smzI_Write_In,

 threeIndexStore_pGx);

 a_s_Write(EXPAND_A_S(a_spzI, .write),

 a_spzI_Write_In,

 threeIndexStore_pGx);

 threeIndexStore_pGx++;

 twoIndexStore_pGx++;

 }

 } else { delay; }

 }

 } else { delay; }

 }

 }while(run_Main_Gamma_Loop);

 do{

 par{

 //Mul section of pipe

 //Retrieve operands for multiply from gLat

 //First store to a_smx will be available in

 //cycle 10 (stored in 9)

D-27

 if(run_Mul_Op_Retrieve == 1)

 {

 par{

 controlGLatRetrieve++;

 if(controlGLatRetrieve == 0)

 {

 par

 {

 gLat1R_Out =

 gLat1R.readWrite[gLat1_Index];

 a_s_Read_Stage1(EXPAND_A_S

 (a_smxR, .readWrite),

 a_smxR_Read_Out, a_smx_Index);

 gLat0R_Out =

 gLat0R.readWrite[gLat0_Index];

 a_s_Read_Stage1(EXPAND_A_S(a_spxR,

 .readWrite), a_spxR_Read_Out,

 a_spx_Index);

 gLat3R_Out =

 gLat3R.readWrite[gLat1_Index];

 a_s_Read_Stage1(EXPAND_A_S(a_smyR,

 .readWrite), a_smyR_Read_Out,

 a_smx_Index);

 gLat2R_Out =

 gLat2R.readWrite[gLat0_Index];

 a_s_Read_Stage1(EXPAND_A_S(a_spyR,

 .readWrite), a_spyR_Read_Out,

 a_spx_Index);

 gLat5R_Out =

 gLat5R.readWrite[gLat1_Index];

 a_s_Read_Stage1(EXPAND_A_S(a_smzR,

 .readWrite), a_smzR_Read_Out,

 a_smx_Index);

 gLat4R_Out =

 gLat4R.readWrite[gLat0_Index];

 a_s_Read_Stage1(EXPAND_A_S(a_spzR,

 .readWrite), a_spzR_Read_Out,

 a_spx_Index);

 gLat7R_Out =

 gLat7R.readWrite[gLat1_Index];

 a_s_Read_Stage1(EXPAND_A_S(a_smtR,

 .readWrite), a_smtR_Read_Out,

 a_smx_Index);

 gLat6R_Out =

 gLat6R.readWrite[gLat0_Index];

 a_s_Read_Stage1(EXPAND_A_S(a_sptR,

 .readWrite), a_sptR_Read_Out,

 a_spx_Index);

 }

 } else { delay; }

D-28

 if(controlGLatRetrieve == 1)

 {

 par

 {

 gLat1I_Out =

 gLat1I.readWrite[gLat1_Index];

 a_s_Read_Stage1(EXPAND_A_S(a_smxI,

 .readWrite), a_smxI_Read_Out,

 a_smx_Index);

 gLat0I_Out =

 gLat0I.readWrite[gLat0_Index];

 a_s_Read_Stage1(EXPAND_A_S(a_spxI,

 .readWrite), a_spxI_Read_Out,

 a_spx_Index);

 gLat3I_Out =

 gLat3I.readWrite[gLat1_Index];

 a_s_Read_Stage1(EXPAND_A_S(a_smyI,

 .readWrite), a_smyI_Read_Out,

 a_smx_Index);

 gLat2I_Out =

 gLat2I.readWrite[gLat0_Index];

 a_s_Read_Stage1(EXPAND_A_S(a_spyI,

 .readWrite), a_spyI_Read_Out,

 a_spx_Index);

 gLat5I_Out =

 gLat5I.readWrite[gLat1_Index];

 a_s_Read_Stage1(EXPAND_A_S(a_smzI,

 .readWrite), a_smzI_Read_Out,

 a_smx_Index);

 gLat4I_Out =

 gLat4I.readWrite[gLat0_Index];

 a_s_Read_Stage1(EXPAND_A_S(a_spzI,

 .readWrite), a_spzI_Read_Out,

 a_spx_Index);

 gLat7I_Out =

 gLat7I.readWrite[gLat1_Index];

 a_s_Read_Stage1(EXPAND_A_S(a_smtI,

 .readWrite), a_smtI_Read_Out,

 a_smx_Index);

 gLat6I_Out =

 gLat6I.readWrite[gLat0_Index];

 a_s_Read_Stage1(EXPAND_A_S(a_sptI,

 .readWrite), a_sptI_Read_Out,

 a_spx_Index);

 }

 } else { delay; }

 if(controlGLatRetrieve == 2)

 {

 par

 {

 gLat1R_Out =

D-29

 gLat1R.readWrite[gLat1_Index];

 a_s_Read_Stage1(EXPAND_A_S(a_smxI,

 .readWrite), a_smxI_Read_Out,

 a_smx_Index);

 gLat0R_Out =

 gLat0R.readWrite[gLat0_Index];

 a_s_Read_Stage1(EXPAND_A_S(a_spxI,

 .readWrite), a_spxI_Read_Out,

 a_spx_Index);

 gLat3R_Out =

 gLat3R.readWrite[gLat1_Index];

 a_s_Read_Stage1(EXPAND_A_S(a_smyI,

 .readWrite), a_smyI_Read_Out,

 a_smx_Index);

 gLat2R_Out =

 gLat2R.readWrite[gLat0_Index];

 a_s_Read_Stage1(EXPAND_A_S(a_spyI,

 .readWrite), a_spyI_Read_Out,

 a_spx_Index);

 gLat5R_Out =

 gLat5R.readWrite[gLat1_Index];

 a_s_Read_Stage1(EXPAND_A_S(a_smzR,

 .readWrite), a_smzR_Read_Out,

 a_smx_Index);

 gLat4R_Out =

 gLat4R.readWrite[gLat0_Index];

 a_s_Read_Stage1(EXPAND_A_S(a_spzI,

 .readWrite), a_spzI_Read_Out,

 a_spx_Index);

 gLat7R_Out =

 gLat7R.readWrite[gLat1_Index];

 a_s_Read_Stage1(EXPAND_A_S(a_smtR,

 .readWrite), a_smtR_Read_Out,

 a_smx_Index);

 gLat6R_Out =

 gLat6R.readWrite[gLat0_Index];

 a_s_Read_Stage1(EXPAND_A_S(a_sptI,

 .readWrite), a_sptI_Read_Out,

 a_spx_Index);

 }

 } else { delay; }

 if(controlGLatRetrieve == 3)

 {

 par

 {

 gLat1I_Out =

 gLat1I.readWrite[gLat1_Index];

 a_s_Read_Stage1(EXPAND_A_S(a_smxR,

 .readWrite), a_smxR_Read_Out,

 a_smx_Index);

D-30

 gLat0I_Out =

 gLat0I.readWrite[gLat0_Index];

 a_s_Read_Stage1(EXPAND_A_S(a_spxR,

 .readWrite), a_spxR_Read_Out,

 a_spx_Index);

 gLat3I_Out =

 gLat3I.readWrite[gLat1_Index];

 a_s_Read_Stage1(EXPAND_A_S(a_smyR,

 .readWrite), a_smyR_Read_Out,

 a_smx_Index);

 gLat2I_Out =

 gLat2I.readWrite[gLat0_Index];

 a_s_Read_Stage1(EXPAND_A_S(a_spyR,

 .readWrite), a_spyR_Read_Out,

 a_spx_Index);

 gLat5I_Out =

 gLat5I.readWrite[gLat1_Index];

 a_s_Read_Stage1(EXPAND_A_S(a_smzR,

 .readWrite), a_smzR_Read_Out,

 a_smx_Index);

 gLat4I_Out =

 gLat4I.readWrite[gLat0_Index];

 a_s_Read_Stage1(EXPAND_A_S(a_spzR,

 .readWrite), a_spzR_Read_Out,

 a_spx_Index);

 gLat7I_Out =

 gLat7I.readWrite[gLat1_Index];

 a_s_Read_Stage1(EXPAND_A_S(a_smtR,

 .readWrite), a_smtR_Read_Out,

 a_smx_Index);

 gLat6I_Out =

 gLat6I.readWrite[gLat0_Index];

 a_s_Read_Stage1(EXPAND_A_S(a_sptR,

 .readWrite), a_sptR_Read_Out,

 a_spx_Index);

 if ((d_gLat1 == 3) && (c_gLat1 == 2)){

 par{

 d_gLat1=0;

 c_gLat1=0;

 gLat1_Index++;

 gLat0_Index -= 5;

 a_smx_Index -= 8;

 a_spx_Index -= 8;

 }

 } else if(c_gLat1==2){

 par{

 c_gLat1=0;

 d_gLat1++;

 a_smx_Index += 3;

 a_spx_Index += 3;

 gLat1_Index -= 2;

 gLat0_Index -= 6;

D-31

 }

 } else {

 par{

 c_gLat1++;

 gLat1_Index++;

 gLat0_Index += 3;

 }

 }

 }

 } else { delay; }

 }

 } else { delay; }

 }

 }while(run_Main_Gamma_Loop);

 do{

 par{

 //Issue retrieved operands to multiplier unit

 if(run_Mul_Op_Issue == 1)

 {

 par

 {

 control_GLat1_Mul_Issue++;

 if(control_GLat1_Mul_Issue == 0)

 {

 par{

 lmul1(gLat1R_Out,

 a_s_Read_Stage2(a_smxR_Read_Out));

 lmul2(gLat0R_Out,

 a_s_Read_Stage2(a_spxR_Read_Out));

 lmul3(gLat3R_Out,

 a_s_Read_Stage2(a_smyR_Read_Out));

 lmul4(gLat2R_Out,

 a_s_Read_Stage2(a_spyR_Read_Out));

 lmul5(gLat5R_Out,

 a_s_Read_Stage2(a_smzR_Read_Out));

 lmul6(gLat4R_Out,

 a_s_Read_Stage2(a_spzR_Read_Out));

 lmul7(gLat7R_Out,

 a_s_Read_Stage2(a_smtR_Read_Out));

 lmul8(gLat6R_Out,

 a_s_Read_Stage2(a_sptR_Read_Out));

 }

 } else { delay; }

 if(control_GLat1_Mul_Issue == 1)

 {

 par{

 lmul1(gLat1I_Out,

 a_s_Read_Stage2(a_smxI_Read_Out));

 lmul2(gLat0I_Out,

 a_s_Read_Stage2(a_spxI_Read_Out));

 lmul3(gLat3I_Out,

 a_s_Read_Stage2(a_smyI_Read_Out));

 lmul4(gLat2I_Out,

 a_s_Read_Stage2(a_spyI_Read_Out));

 lmul5(gLat5I_Out,

D-32

 a_s_Read_Stage2(a_smzI_Read_Out));

 lmul6(gLat4I_Out,

 a_s_Read_Stage2(a_spzI_Read_Out));

 lmul7(gLat7I_Out,

 a_s_Read_Stage2(a_smtI_Read_Out));

 lmul8(gLat6I_Out,

 a_s_Read_Stage2(a_sptI_Read_Out));

 }

 } else { delay;}

 if(control_GLat1_Mul_Issue == 2)

 {

 par{

 lmul1(gLat1R_Out,

 a_s_Read_Stage2(a_smxI_Read_Out));

 lmul2(gLat0R_Out,

 a_s_Read_Stage2(a_spxI_Read_Out));

 lmul3(gLat3R_Out,

 a_s_Read_Stage2(a_smyI_Read_Out));

 lmul4(gLat2R_Out,

 a_s_Read_Stage2(a_spyI_Read_Out));

 lmul5(gLat5R_Out,

 a_s_Read_Stage2(a_smzI_Read_Out));

 lmul6(gLat4R_Out,

 a_s_Read_Stage2(a_spzI_Read_Out));

 lmul7(gLat7R_Out,

 a_s_Read_Stage2(a_smtI_Read_Out));

 lmul8(gLat6R_Out,

 a_s_Read_Stage2(a_sptI_Read_Out));

 }

 } else { delay; }

 if(control_GLat1_Mul_Issue == 3)

 {

 par{

 lmul1(gLat1I_Out,

 a_s_Read_Stage2(a_smxR_Read_Out));

 lmul2(gLat0I_Out,

 a_s_Read_Stage2(a_spxR_Read_Out));

 lmul3(gLat3I_Out,

 a_s_Read_Stage2(a_smyR_Read_Out));

 lmul4(gLat2I_Out,

 a_s_Read_Stage2(a_spyR_Read_Out));

 lmul5(gLat5I_Out,

 a_s_Read_Stage2(a_smzR_Read_Out));

 lmul6(gLat4I_Out,

 a_s_Read_Stage2(a_spzR_Read_Out));

 lmul7(gLat7I_Out,

 a_s_Read_Stage2(a_smtR_Read_Out));

 lmul8(gLat6I_Out,

 a_s_Read_Stage2(a_sptR_Read_Out));

 }

 } else { delay; }

 }

 } else { delay; }

 }

 }while(run_Main_Gamma_Loop);

 do{

D-33

 par{

 //Issue IR Adds on every second cycle

 if(run_IRAdd_Issue == 1)

 {

 par

 {

 control_GLat1_IRAdd_Issue++;

 if((control_GLat1_IRAdd_Issue == 0) ||

(control_GLat1_IRAdd_Issue == 2))

 {

 par{

 temp_GLat1_IRAdd = lm_res1;

 temp_GLat0_IRAdd = lm_res2;

 temp_GLat3_IRAdd = lm_res3;

 temp_GLat2_IRAdd = lm_res4;

 temp_GLat5_IRAdd = lm_res5;

 temp_GLat4_IRAdd = lm_res6;

 temp_GLat7_IRAdd = lm_res7;

 temp_GLat6_IRAdd = lm_res8;

 }

 } else { delay; }

 if(control_GLat1_IRAdd_Issue == 1)

 {

 par{

 la1(temp_GLat1_IRAdd, lm_res1);

 ls2(temp_GLat0_IRAdd, lm_res2);

 la3(temp_GLat3_IRAdd, lm_res3);

 ls4(temp_GLat2_IRAdd, lm_res4);

 la5(temp_GLat5_IRAdd, lm_res5);

 ls6(temp_GLat4_IRAdd, lm_res6);

 la7(temp_GLat7_IRAdd, lm_res7);

 ls8(temp_GLat6_IRAdd, lm_res8);

 }

 } else {delay;}

 if(control_GLat1_IRAdd_Issue == 3)

 {

 par{

 ls1(temp_GLat1_IRAdd, lm_res1);

 la2(temp_GLat0_IRAdd, lm_res2);

 ls3(temp_GLat3_IRAdd, lm_res3);

 la4(temp_GLat2_IRAdd, lm_res4);

 ls5(temp_GLat5_IRAdd, lm_res5);

 la6(temp_GLat4_IRAdd, lm_res6);

 ls7(temp_GLat7_IRAdd, lm_res7);

 la8(temp_GLat6_IRAdd, lm_res8);

 }

 } else {delay;}

 }

 } else { delay; }

 }

 }while(run_Main_Gamma_Loop);

 do{

 par{

D-34

 if(run_Acc_Issue == 1)

 {

 par

 {

 control_GLat1_IRAdd_Retrieve++;

 /*

 Add IR result to zero for the 1st 24

 accumulates

 (avoids the need for a seperate loop to

 zero the result RAM

 */

 if((control_GLat1_IRAdd_Retrieve[0] == 1)

 && (control_GLat1_AccAddS1_AddZero == 0))

 {

 par{

 la1(0, las_res1);

 la2(0, las_res2);

 la3(0, las_res3);

 la4(0, las_res4);

 la5(0, las_res5);

 la6(0, las_res6);

 la7(0, las_res7);

 la8(0, las_res8);

 }

 } else { delay; }

 // Controls issuing of accumulates

 if(control_GLat1_AccAddS1_AddZero == 1)

 {

 par

 {

 //Retrieve ga_spxR value for accumulate

 if(control_GLat1_IRAdd_Retrieve == 0)

 {

 par{

 ga_smxR_Read_Out =

 ga_smxR.read[ga_smx_Index_Ret];

 ga_spxR_Read_Out =

 ga_spxR.read[ga_smx_Index_Ret];

 ga_smyR_Read_Out =

 ga_smyR.read[ga_smx_Index_Ret];

 ga_spyR_Read_Out =

 ga_spyR.read[ga_smx_Index_Ret];

 ga_smzR_Read_Out =

 ga_smzR.read[ga_smx_Index_Ret];

 ga_spzR_Read_Out =

 ga_spzR.read[ga_smx_Index_Ret];

 ga_smtR_Read_Out =

 ga_smtR.read[ga_smx_Index_Ret];

 ga_sptR_Read_Out =

 ga_sptR.read[ga_smx_Index_Ret];

 }

 } else { delay; }

 if(control_GLat1_IRAdd_Retrieve == 1)

 {

 par{

D-35

 la1(ga_smxR_Read_Out, las_res1);

 la2(ga_spxR_Read_Out, las_res2);

 la3(ga_smyR_Read_Out, las_res3);

 la4(ga_spyR_Read_Out, las_res4);

 la5(ga_smzR_Read_Out, las_res5);

 la6(ga_spzR_Read_Out, las_res6);

 la7(ga_smtR_Read_Out, las_res7);

 la8(ga_sptR_Read_Out, las_res8);

 }

 } else {delay;}

 if(control_GLat1_IRAdd_Retrieve == 2)

 {

 par

 {

 ga_smxI_Read_Out =

 ga_smxI.read[ga_smx_Index_Ret];

 ga_spxI_Read_Out =

 ga_spxI.read[ga_smx_Index_Ret];

 ga_smyI_Read_Out =

 ga_smyI.read[ga_smx_Index_Ret];

 ga_spyI_Read_Out =

 ga_spyI.read[ga_smx_Index_Ret];

 ga_smzI_Read_Out =

 ga_smzI.read[ga_smx_Index_Ret];

 ga_spzI_Read_Out =

 ga_spzI.read[ga_smx_Index_Ret];

 ga_smtI_Read_Out =

 ga_smtI.read[ga_smx_Index_Ret];

 ga_sptI_Read_Out =

 ga_sptI.read[ga_smx_Index_Ret];

 if(ga_smx_Index_Ret == 11)

 {

 ga_smx_Index_Ret = 0;

 } else {

 ga_smx_Index_Ret++;

 }

 }

 } else {delay;}

 if(control_GLat1_IRAdd_Retrieve == 3)

 {

 par{

 la1(ga_smxI_Read_Out, las_res1);

 la2(ga_spxI_Read_Out, las_res2);

 la3(ga_smyI_Read_Out, las_res3);

 la4(ga_spyI_Read_Out, las_res4);

 la5(ga_smzI_Read_Out, las_res5);

 la6(ga_spzI_Read_Out, las_res6);

 la7(ga_smtI_Read_Out, las_res7);

 la8(ga_sptI_Read_Out, las_res8);

 }

 } else {delay;}

 }

 }else { delay; }

 }

 } else { delay; }

D-36

 }

 }while(run_Main_Gamma_Loop);

 do{

 par{

 if(run_Acc_Retrieve == 1)

 {

 par{

 control_GLat1_Acc_Retrieve++;

 if(control_GLat1_Acc_Retrieve == 0)

 {

 par{

 ga_smxR.write[ga_smx_Index_Store] = las_res1;

 ga_spxR.write[ga_smx_Index_Store] = las_res2;

 ga_smyR.write[ga_smx_Index_Store] = las_res3;

 ga_spyR.write[ga_smx_Index_Store] = las_res4;

 ga_smzR.write[ga_smx_Index_Store] = las_res5;

 ga_spzR.write[ga_smx_Index_Store] = las_res6;

 ga_smtR.write[ga_smx_Index_Store] = las_res7;

 ga_sptR.write[ga_smx_Index_Store] = las_res8;

 }

 } else {delay;}

 if(control_GLat1_Acc_Retrieve == 2)

 {

 par{

 ga_smxI.write[ga_smx_Index_Store] = las_res1;

 ga_spxI.write[ga_smx_Index_Store] = las_res2;

 ga_smyI.write[ga_smx_Index_Store] = las_res3;

 ga_spyI.write[ga_smx_Index_Store] = las_res4;

 ga_smzI.write[ga_smx_Index_Store] = las_res5;

 ga_spzI.write[ga_smx_Index_Store] = las_res6;

 ga_smtI.write[ga_smx_Index_Store] = las_res7;

 ga_sptI.write[ga_smx_Index_Store] = las_res8;

 }

 } else {delay;}

 if(control_GLat1_Acc_Retrieve == 3)

 {

 par

 {

 if(ga_smx_Index_Store == 11)

 {

 ga_smx_Index_Store = 0;

 } else {

 ga_smx_Index_Store++;

 }

 }

 } else {delay;}

 }

 } else {delay;}

 }

 }while(run_Main_Gamma_Loop);

 }

D-37

}

#endif

/*

macro proc CopyWfvSeq(to, from){

 seq{

 to[0] = from[0];

 to[1] = from[1];

 to[2] = from[2];

 to[3] = from[3];

 to[4] = from[4];

 to[5] = from[5];

 to[6] = from[6];

 to[7] = from[7];

 to[8] = from[8];

 to[9] = from[9];

 to[10] = from[10];

 to[11] = from[11];

 }

}

*/

ram f_real ga_spzR_Stage2[12], ga_spzI_Stage2[12],

ga_smzR_Stage2[12], ga_smzI_Stage2[12];

ram f_real ga_sptR_Stage2[12], ga_sptI_Stage2[12],

ga_smtR_Stage2[12], ga_smtI_Stage2[12];

f_real ga_spzR_Stage2_Read_Out, ga_spzI_Stage2_Read_Out,

ga_smzR_Stage2_Read_Out, ga_smzI_Stage2_Read_Out;

f_real ga_sptR_Stage2_Read_Out, ga_sptI_Stage2_Read_Out,

ga_smtR_Stage2_Read_Out, ga_smtI_Stage2_Read_Out;

ram f_real g5R_Stage2[12], g5I_Stage2[12];

macro proc CopyWfvSeq(){

 unsigned 4 indexRet1, indexRet2, indexRet3, indexRet4, indexRet5;

 unsigned 4 indexStore1, indexStore2, indexStore3, indexStore4;

 unsigned 1 runRet, runStore;

 signal unsigned 4 incIndex;

 par{

 indexRet1 = 0;

 indexRet2 = 0;

 indexRet3 = 0;

 indexRet4 = 0;

 indexRet5 = 0;

 indexStore1 = 0;

 indexStore2 = 0;

 indexStore3 = 0;

 indexStore4 = 0;

 runRet = 1;

 runStore = 0;

 }

 do{

 par{

 incIndex = indexRet1 + 1;

 indexRet1 = incIndex;

D-38

 indexRet2 = incIndex;

 indexRet3 = incIndex;

 indexRet4 = incIndex;

 indexRet5 = incIndex;

 indexStore1 = indexRet1;

 indexStore2 = indexRet2;

 indexStore3 = indexRet3;

 indexStore4 = indexRet4;

 runStore = runRet;

 if(indexRet1 == 11){

 runRet = 0;

 } else {delay;}

 if(runRet){

 par{

 ga_spzR_Read_Out = ga_spzR.read[indexRet1];

 ga_smzR_Read_Out = ga_smzR.read[indexRet1];

 ga_sptR_Read_Out = ga_sptR.read[indexRet2];

 ga_smtR_Read_Out = ga_smtR.read[indexRet2];

 ga_spzI_Read_Out = ga_spzI.read[indexRet3];

 ga_smzI_Read_Out = ga_smzI.read[indexRet3];

 ga_sptI_Read_Out = ga_sptI.read[indexRet4];

 ga_smtI_Read_Out = ga_smtI.read[indexRet4];

 g5R_Stage2[indexRet5] = g5a_sR[indexRet5];

 g5I_Stage2[indexRet5] = g5a_sI[indexRet5];

 }

 } else {delay;}

 if(runStore){

 par{

 ga_spzR_Stage2[indexStore1] = ga_spzR_Read_Out;

 ga_smzR_Stage2[indexStore1] = ga_smzR_Read_Out;

 ga_sptR_Stage2[indexStore2] = ga_sptR_Read_Out;

 ga_smtR_Stage2[indexStore2] = ga_smtR_Read_Out;

 ga_spzI_Stage2[indexStore3] = ga_spzI_Read_Out;

 ga_smzI_Stage2[indexStore3] = ga_smzI_Read_Out;

 ga_sptI_Stage2[indexStore4] = ga_sptI_Read_Out;

 ga_smtI_Stage2[indexStore4] = ga_smtI_Read_Out;

 }

 } else {delay;}

 }

 } while(runRet | runStore);

}

macro proc HLatMulM5Wfv_Stage1(){

 par{

 GammaFunc(ReadGl3AltRamHalf_Stage1);

 seq{

 delay;delay;delay;delay;delay;delay;

 delay;delay;delay;delay;delay;delay;

 G5(g5a_sR, g5a_sI, yLat8R, yLat8I);

 }

 }

}

D-39

macro proc HLatMulM5Wfv_Stage2(){

 unsigned 1 startMulSclIssue;

 //Need to start retrieving the results fo the adds in the ninth

cycle after the first is issued

 //To do this, call the pairs of real & imaginary functions in

sequence

 //In parallel, wait 9 cycles then call the retrieve functions.

 par{

 startMulSclIssue = 0;

 /*

 CopyWfvSeq(ga_spzR_Stage2, ga_spzR.read);

 CopyWfvSeq(ga_smzR_Stage2, ga_smzR.read);

 CopyWfvSeq(ga_sptR_Stage2, ga_sptR.read);

 CopyWfvSeq(ga_smtR_Stage2, ga_smtR.read);

 CopyWfvSeq(ga_spzI_Stage2, ga_spzI.read);

 CopyWfvSeq(ga_smzI_Stage2, ga_smzI.read);

 CopyWfvSeq(ga_sptI_Stage2, ga_sptI.read);

 CopyWfvSeq(ga_smtI_Stage2, ga_smtI.read);*/

 CopyWfvSeq();

 //Copy results of previous stage G5 calculation

 //CopyWfvSeq(g5R_Stage2, g5a_sR);

 //CopyWfvSeq(g5I_Stage2, g5a_sI);

 //Call issue functions

 seq{

 //Add up the results of the 8 Gamma/Mul functions

 IssueSD_Registered(ga_spxR.read, ga_spxR_Read_Out,

 ga_smxR.read, ga_smxR_Read_Out, ga_spxI.read,

 ga_spxI_Read_Out, ga_smxI.read, ga_smxI_Read_Out);

 IssueSD_Registered(ga_spyR.read, ga_spyR_Read_Out,

 ga_smyR.read, ga_smyR_Read_Out, ga_spyI.read,

 ga_spyI_Read_Out, ga_smyI.read, ga_smyI_Read_Out);

 IssueSD(ga_spzR_Stage2, ga_smzR_Stage2,

 ga_spzI_Stage2, ga_smzI_Stage2);

 IssueSD(ga_sptR_Stage2, ga_smtR_Stage2,

 ga_sptI_Stage2, ga_smtI_Stage2);

 //Issue the second sets of adds, operands for these

 //adds have all been retrieved

 //The next one is complete by now, only ~9 operands

 //going into add4 are still to be calculated

 IssueSD(radd1, radd2, iadd1, iadd2);

 //This set's operands have all been retrieved, the

 //previous set of issues are in the pipe now

 IssueSD(radd3, radd4, iadd3, iadd4);

 IssueSD(radd5, radd6.read, iadd5, iadd6.read);

 delay;

 while(run_Mul_Op_Issue | !startMulSclIssue){delay;}

 IssueMulSclSub(radd7.read, iadd7.read, g5R_Stage2,

 g5I_Stage2, kappa);

D-40

 }

 seq{

 //Need to wait X cycles before beginning to retrieve

 //results from the adder pipe

 //Where x is the latency of the adder pipe

 //Currently the zeroing of the counters cancel each

 //other out between functions

 delay;

 delay;

 delay;

 delay;

 delay;

 delay;

 delay;

 //Retrieve the results of the first four adder

 //functions

 //First 2 Issue functions were registered, the

 //others not.

 RetrieveSD(radd1, iadd1, 1);

 RetrieveSD(radd2, iadd2, 1);

 RetrieveSD(radd3, iadd3, 0);

 RetrieveSD(radd4, iadd4, 0);

 RetrieveSD(radd5, iadd5, 0);

 RetrieveSD(radd6.write, iadd6.write, 0);

 RetrieveSD(radd7.write, iadd7.write, 0);

 startMulSclIssue = 1;

 while(run_Mul_Op_Issue){delay;}

 delay;

 delay;

 delay;

 delay;

 delay;

 delay;

 delay;

 delay;

 delay;

 delay;

 delay;

 delay;

 delay;

 delay;

 delay; // this cycle will be needed once read from

//radd7 is registered

 RetrieveSD(xLatR, xLatI, 0);

 }

 }

}

void HLatMulM5Wfv_Stage3(unsigned 20 offset);

D-41

D.3 CG_ops.hcc

#define MUL_LATENCY 7

#define ADD_LATENCY 6

#define SRAM_LATENCY 4

#define DOT_MUL_WAIT (SRAM_LATENCY +

#define DOT_ADD_WAIT (MUL_LATENCY + 1 + SRAM_LATENCY)

unsigned 18 halfLatticeVolume(){

 return (unsigned 18)(0 @ (NS * 12));

}

void IssueSRAMAddress(unsigned 20 address){

 par{

 zbt2_read = 1;

 zbt2_a = address;

 zbt2_c = 16;

 zbt3_read = 1;

 zbt3_a = address;

 zbt3_c = 16;

 zbt4_read = 1;

 zbt4_a = address;

 zbt4_c = 16;

 zbt5_read = 1;

 zbt5_a = address;

 zbt5_c = 16;

 }

}

void IssueSRAMFlush(){

 par{

 zbt2_c = 48;

 zbt3_c = 48;

 zbt4_c = 48;

 zbt5_c = 48;

 }

}

macro proc issueSRAMAddressesDot

 (activate, bank, address, endAddress, flush){

 par{

 if(activate){

 par{

 IssueSRAMAddress(address);

 if (address == endAddress) {

 activate = 0;

 } else {

 address++;

 }

 }

 } else {

D-42

 if(flush != 4){

 par{

 IssueSRAMFlush();

 flush++;

 }

 } else {delay;}

 }

 }

}

f_real OptimisedLatDotWfv(unsigned 20 startAddress){

 unsigned 20 dotAddress;

 unsigned 20 endAddress;

 unsigned 20 count;

 unsigned 18 operations;

 unsigned 1 runDotLoop;

 unsigned 1 issueActivate;

 unsigned 1 issueBank;

 mpram dotRAM dotResultR, dotResultI;

 unsigned 4 storeIndex;

 unsigned 32 ramIndex;

 unsigned 1 initRams, mulActivate;

 unsigned 1 addActivate, storeActivate;

 unsigned 1 addRIActivate, accActivate;

 usigned 1 accAlternate;

 unsigned 3 issueFlush;

 f_real mulOpR, mulOpI;

 //Dot product is only used with the same lattice for

 //both parameters

 f_real dotR, dotI;

 par{

 dotAddress = startAddress;

 count = 0;

 mulActivate = 0;

 addActivate = 0;

 storeActivate = 0;

 issueActivate = 1;

 addRIActivate = 0;

 accActivate = 0;

 accAlternate = 0;

 runDotLoop = 1;

 issueFlush = 0;

 ramIndex = 0;

 storeIndex = 0;

 initRams = 1;

 operations = halfLatticeVolume();

 }

 endAddress = (unsigned 20)(0 @ operations);

 endAddress += startAddress;

 do

 {

D-43

 par{

 count++;

 par{

 mulOpR = zbt2_q @ zbt3_q;

 mulOpI = zbt4_q @ zbt5_q;

 }

 //Issue Read addresses

 issueSRAMAddressesDot(issueActivate, issueBank, startAddress,

endAddress, issueFlush);

 if(count == (unsigned 20)(0 @ operations)){

 issueActivate = 0;

 } else {delay;}

 if(count == 3){

 mulActivate = 1;

 } else {delay;}

 if(count == (unsigned 20)(0 @ operations)+ 4){

 mulActivate = 0;

 } else {delay;}

 if(mulActivate){

 par{

 lmul5(mulOpR, mulOpR);

 lmul6(mulOpI, mulOpI);

 }

 } else { delay;}

 //if(count == (SRAM_LATENCY + MUL_LATENCY)){

 if(count == 11){

 addActivate = 1;

 } else {delay;}

 if(addActivate){

 par{

 if(initRams){

 par{

 la9(lm_res5, 0);

 la10(lm_res6, 0);

 }

 } else {

 par{

 //Result is ready on this cycle

 la9(lm_res5, las_res9);

 la10(lm_res6, las_res10);

 }

 }

 if(ramIndex == 6){

 par{

 initRams = 0;

 ramIndex++;

 }

 } else {

 ramIndex++;

 }

D-44

 }

 } else {delay;}

 if(count == ((unsigned 20)(0 @ operations) + 11)){

 par{

 addRIActivate = 1;

 addActivate = 0;

 }

 } else {delay;}

 if(addRIActivate){

 la9(las_res9, las_res10);

 } else {delay;}

 if(count == ((unsigned 20)(0 @ operations) + 18)){

 par{

 addRIActivate = 0;

 storeActivate = 1;

 }

 } else {delay;}

 if(count == ((unsigned 20)(0 @ operations) + 25)){

 par{

 storeActivate = 0;

 runDotLoop = 0;

 }

 } else {delay;}

 if(storeActivate){

 par{

 dotResultR.write[storeIndex] = las_res9;

 storeIndex++;

 }

 } else {delay;}

 }

 }while(runDotLoop == 1);

 la9(dotResultR.read[0], dotResultR.write[1]);

 la9(dotResultR.read[2], dotResultR.write[3]);

 la9(dotResultR.read[4], dotResultR.write[5]);

 la9(dotResultR.read[6], 0);

 delay;delay;delay;

 dotR = las_res9;

 la9(las_res9, dotR);

 dotR = las_res9;

 la9(las_res9, dotR);

 delay;delay;delay;delay;

 dotR = las_res9;

 delay;

 la9(las_res9, dotR);

 delay;delay;delay;delay;delay;delay;

 dotR = las_res9;

 return dotR;

D-45

}

macro proc IssueSclAddress(activate, address, numOps, count, alt){

 par{

 alt = !alt;

 if(activate){

 if(alt == 0){

 par{

 IssueSRAMAddress(address);

 count++;

 address++;

 }

 } else {

 par{

 if(count == numOps){

 par{

 activate = 0;

 count = 0;

 }

 } else {

 delay;

 }

 }

 }

 } else {

 if(alt == 0){

 IssueSRAMFlush();

 } else {

 delay;

 }

 }

 }

}

macro proc IssueAddAddress(activate, address, numOps, count, alt){

 par{

 alt = !alt;

 if(activate){

 if(alt == 1){

 par{

 IssueSRAMAddress(address);

 count++;

 address++;

 }

 } else {

 par{

 if(count == numOps){

 par{

 activate = 0;

 count = 0;

 }

 } else {

 delay;

 }

 }

 }

D-46

 } else {

 if(alt == 0){

 delay;

 } else {

 IssueSRAMFlush();

 }

 }

 }

}

macro proc addSclStoreIntoBRAM(activate, storeRamR, storeRamI,

ramSize, wholeLoopActivate, count){

 if(activate){

 par{

 storeRamR[count<-9] = las_res9;

 storeRamI[count<-9] = las_res10;

 count++;

 }

 par{

 if(count == ramSize){

 par{

 count = 0;

 wholeLoopActivate = 0;

 }

 } else {delay;}

 }

 } else {delay;}

}

macro proc IssueWriteAddress(address, flush){

 if(flush == 0){

 par{

 zbt2_a = address;

 zbt2_c = 0;

 zbt3_a = address;

 zbt3_c = 0;

 zbt4_a = address;

 zbt4_c = 0;

 zbt5_a = address;

 zbt5_c = 0;

 }

 } else {

 IssueSRAMFlush();

 }

}

macro proc IssueWriteData(storeRamRHH_Reg,

 storeRamRHL_Reg, storeRamRLH_Reg,

 storeRamRLL_Reg, storeRamIHH_Reg,

 storeRamIHL_Reg, storeRamILH_Reg,

 storeRamILL_Reg, doIssue){

 if(doIssue){

 par{

 zbt2_oe = 1;

 zbt2_d = storeRamRHH_Reg @ storeRamRHL_Reg;

D-47

 zbt3_oe = 1;

 zbt3_d = storeRamRLH_Reg @ storeRamRLL_Reg;

 zbt4_oe = 1;

 zbt4_d = storeRamIHH_Reg @ storeRamIHL_Reg;

 zbt5_oe = 1;

 zbt5_d = storeRamILH_Reg @ storeRamILL_Reg;

 }

 } else {delay;}

}

macro proc storeBuffer(address, numOps, storeRamRHH,

 storeRamRHH_Reg, storeRamRHL, storeRamRHL_Reg,

 storeRamRLH, storeRamRLH_Reg, storeRamRLL,

 storeRamRLL_Reg, storeRamIHH, storeRamIHH_Reg,

 storeRamIHL, storeRamIHL_Reg, storeRamILH,

 storeRamILH_Reg, storeRamILL, storeRamILL_Reg){

 unsigned 1 doDataIssue, flushPipes, doStoreLoop;

 unsigned 1 doGetDataFromRams, stage2;

 unsigned 11 count;

 unsigned 10 index;

 par{

 doDataIssue = 0;

 flushPipes = 0;

 doStoreLoop = 1;

 index = 0;

 count = 1;

 stage2 = 0;

 }

 par{

 do{

 par{

 IssueWriteAddress(address, flushPipes);

 count++;

 }

 } while(doStoreLoop);

 do{

 par{

 if(doGetDataFromRams){

 par{

 index++;

 storeRamRHH_Reg = storeRamRHH[index];

 storeRamRHL_Reg = storeRamRHL[index];

 storeRamRLH_Reg = storeRamRLH[index];

 storeRamRLL_Reg = storeRamRLL[index];

 storeRamIHH_Reg = storeRamIHH[index];

 storeRamIHL_Reg = storeRamIHL[index];

 storeRamILH_Reg = storeRamILH[index];

 storeRamILL_Reg = storeRamILL[index];

 }

 } else {

D-48

 delay;

 }

 }

 } while(doStoreLoop);

 do{

 par{

 IssueWriteData(storeRamRHH_Reg, storeRamRHL_Reg,

storeRamRLH_Reg, storeRamRLL_Reg,

 storeRamIHH_Reg, storeRamIHL_Reg, storeRamILH_Reg,

storeRamILL_Reg,

 doDataIssue);

 }

 }while(doStoreLoop);

 do{

 par{

 doGetDataFromRams = !flushPipes;

 doDataIssue = doGetDataFromRams;

 if((doDataIssue == 0) && (count[10] == 1)){

 doStoreLoop = 0;

 } else {delay;}

 //if(count == 1024) --- This can be done by testing bit 9 of

count instead

 if(count == numOps){

 flushPipes = 1;

 } else {

 delay;

 }

 if(!flushPipes){

 address++;

 } else {delay;}

 }

 } while(doStoreLoop);

 }

}

unsigned 11 GetIterationCount

 (unsigned 12 mainCount, unsigned 18 operations,

 unsigned 11 blockRamSize){

 if((mainCount == 1) && (operations<-10 != 0)){

 return (unsigned 11)(0 @ operations<-10);

 } else {

 return blockRamSize;

 }

}

void OptimisedLatAddSclWfvWfv

 (unsigned 20 startOpAddress,

 unsigned 20 startResAddress,

 unsigned 1 functionType,

 f_real scl){

 unsigned 20 sclAddress, addAddress, storeAddress;

D-49

 unsigned 1 runMainLoop, activeSclAddress, activeAddAddress;

 unsigned 1 runAddSclLoop, runStoreLoop;

 unsigned 1 ramOutActivate;

 unsigned 1 issueSclAlt, issueAddAlt;

 f_real banks2n3, banks4n5;

 f_real banks2n3Piped, banks4n5Piped;

 f_real las_res10_reg, las_res9_reg;

 ram unsigned 16 storeRamRHH[1024], storeRamRHL[1024]

 with {block = "BlockRAM"};

 ram unsigned 16 storeRamRLH[1024], storeRamRLL[1024]

 with {block = "BlockRAM"};

 ram unsigned 16 storeRamIHH[1024], storeRamIHL[1024]

 with {block = "BlockRAM"};

 ram unsigned 16 storeRamILH[1024], storeRamILL[1024]

 with {block = "BlockRAM"};

 unsigned 16 storeRamRHH_Reg, storeRamRHL_Reg;

 unsigned 16 storeRamRLH_Reg, storeRamRLL_Reg;

 unsigned 16 storeRamIHH_Reg, storeRamIHL_Reg;

 unsigned 16 storeRamILH_Reg, storeRamILL_Reg;

 unsigned 11 countSclIssue, countAddIssue;

 unsigned 11 countRamStore;

 unsigned 18 operations;

 unsigned 12 count, mainCount;

 const unsigned 11 blockRamSize = 1024;

 unsigned 11 iterationCount;

 par{

 if(functionType == 0){ //LatAddSclWfvWfv

 par{

 sclAddress = startOpAddress;

 addAddress = startResAddress;

 }

 } else { //LatSclWfvAddWfv

 par{

 sclAddress = startResAddress;

 addAddress = startOpAddress;

 }

 }

 storeAddress = startResAddress;

 operations = halfLatticeVolume();

 count = 0;

 countSclIssue = 0;

 countAddIssue = 0;

 countRamStore = 0;

 runMainLoop = 1;

 runAddSclLoop = 1;

 activeSclAddress = 1;

 activeAddAddress = 0;

 ramOutActivate = 0;

D-50

 issueSclAlt = 0;

 issueAddAlt = 0;

 runStoreLoop = 0;

 }

 mainCount = (unsigned 12)(0 @ operations\\10) –

 (unsigned 12)(0 @ (operations<-10 == 0));

 iterationCount = GetIterationCount

 (mainCount, operations, blockRamSize);

 do{

 par{

 do{

 par{

 count++;

 if(count == 6){

 activeAddAddress = 1;

 } else {delay;}

 if(count == 20){

 ramOutActivate = 1;

 } else {delay;}

 }

 } while(runAddSclLoop);

 do{

 IssueSclAddress

 (activeSclAddress, sclAddress, iterationCount,

 countSclIssue, issueSclAlt);

 }while(runAddSclLoop);

 do{

 IssueAddAddress

 (activeAddAddress, addAddress, iterationCount,

 countAddIssue, issueAddAlt);

 }while(runAddSclLoop);

 do{

 par{

 ReadVar2 = zbt2_q;

 ReadVar3 = zbt3_q;

 ReadVar4 = zbt4_q;

 ReadVar5 = zbt5_q;

 }

 } while(runAddSclLoop);

 do{

 par{

 banks2n3 = ReadVar2 @ ReadVar3;

 banks4n5 = ReadVar4 @ ReadVar5;

 }

 } while (runAddSclLoop);

 do{

 par{

D-51

 banks4n5Piped = banks4n5;

 banks2n3Piped = banks2n3;

 }

 } while(runAddSclLoop);

 do{

 par{

 lmul3(scl, banks2n3);

 lmul4(scl, banks4n5);

 }

 } while (runAddSclLoop);

 do{

 par{

 la9(lm_res3, banks2n3Piped);

 la10(lm_res4, banks4n5Piped);

 }

 } while(runAddSclLoop);

 do{

 par{

 las_res9_reg = las_res9;

 las_res10_reg = las_res10;

 }

 } while(runAddSclLoop);

 do{

 if(ramOutActivate){

 par{

 storeRamRHH[countRamStore<-10] =

 las_res9_reg[63:48];

 storeRamRHL[countRamStore<-10] =

 las_res9_reg[47:32];

 storeRamRLH[countRamStore<-10] =

 las_res9_reg[31:16];

 storeRamRLL[countRamStore<-10] =

 las_res9_reg[15:0];

 storeRamIHH[countRamStore<-10] =

 las_res10_reg[63:48];

 storeRamIHL[countRamStore<-10] =

 las_res10_reg[47:32];

 storeRamILH[countRamStore<-10] =

 las_res10_reg[31:16];

 storeRamILL[countRamStore<-10] =

 las_res10_reg[15:0];

 countRamStore++;

 }

 par{

 if(countRamStore == iterationCount){

 par{

 countRamStore = 0;

 runAddSclLoop = 0;

 }

 } else {delay;}

 }

D-52

 } else {delay;}

 } while(runAddSclLoop);

 }

 storeBuffer(storeAddress, iterationCount,

 storeRamRHH, storeRamRHH_Reg, storeRamRHL,

 storeRamRHL_Reg, storeRamRLH, storeRamRLH_Reg,

 storeRamRLL, storeRamRLL_Reg, storeRamIHH,

 storeRamIHH_Reg, storeRamIHL, storeRamIHL_Reg,

 storeRamILH, storeRamILH_Reg, storeRamILL,

 storeRamILL_Reg);

 if(mainCount == 0){

 runMainLoop = 0;

 } else {

 par{

 iterationCount = GetIterationCount

 (mainCount, operations, blockRamSize);

 mainCount--;

 count = 0;

 countSclIssue = 0;

 countAddIssue = 0;

 countRamStore = 0;

 runMainLoop = 1;

 runAddSclLoop = 1;

 activeSclAddress = 1;

 activeAddAddress = 0;

 ramOutActivate = 0;

 issueSclAlt = 0;

 issueAddAlt = 0;

 runStoreLoop = 0;

 }

 }

 } while(runMainLoop);

D-53

D.4 SRAM_functions.hcc

//qcdlog32

//Variables for SRAM macro procs

unsigned 32 ReadVar0, ReadVar1, ReadVar2, ReadVar3, ReadVar4,

ReadVar5;

unsigned 32 WriteVar0, WriteVar1, WriteVar2, WriteVar3, WriteVar4,

WriteVar5;

//Contents of Srams.hcc

unsigned 32 ReadBank0(unsigned 20 address){

 par{

 zbt0_read = 1;

 zbt0_a = address;

 zbt0_c = 16;

 }

 par{

 zbt0_c = 48;

 }

 par{

 zbt0_c = 48;

 }

 par{

 zbt0_c = 48;

 ReadVar0 = zbt0_q;

 }

 return ReadVar0;

}

void WriteBank0(unsigned 20 address, unsigned 32 out){

 par{

 zbt0_a = address;

 zbt0_c = 0;

 }

 par{

 zbt0_c = 48;

 }

 par{

 zbt0_c = 48;

 zbt0_oe = 1;

 zbt0_d = (unsigned 32)(0 @ out);

 }

 //Insert delay to prevent an attempted read

 // before SRAM has read and updated value

 par{

 delay;

 }

}

unsigned 32 ReadBank1(unsigned 20 address){

D-54

 par{

 zbt1_read = 1;

 zbt1_a = address;

 zbt1_c = 16;

 }

 par{

 zbt1_c = 48;

 }

 par{

 zbt1_c = 48;

 }

 par{

 zbt1_c = 48;

 ReadVar1 = zbt1_q;

 }

 return ReadVar1;

}

void WriteBank1(unsigned 20 address, unsigned 32 out){

 par{

 zbt1_a = address;

 zbt1_c = 0;

 }

 par{

 zbt1_c = 48;

 }

 par{

 zbt1_c = 48;

 zbt1_oe = 1;

 zbt1_d = (unsigned 32)(0 @ out);

 }

 //Insert delay to prevent an attempted read

 // before SRAM has read and updated value

 par{

 delay;

 }

}

unsigned 32 ReadBank2(unsigned 20 address){

 par{

 zbt2_read = 1;

 zbt2_a = address;

 zbt2_c = 16;

 }

 par{

 zbt2_c = 48;

 }

 par{

 zbt2_c = 48;

 }

D-55

 par{

 zbt2_c = 48;

 ReadVar2 = zbt2_q;

 }

 return ReadVar2;

}

void WriteBank2(unsigned 20 address, unsigned 32 out){

 par{

 zbt2_a = address;

 zbt2_c = 0;

 }

 par{

 zbt2_c = 48;

 }

 par{

 zbt2_c = 48;

 zbt2_oe = 1;

 zbt2_d = (unsigned 32)(0 @ out);

 }

 //Insert delay to prevent an attempted read

 // before SRAM has read and updated value

 par{

 delay;

 }

}

unsigned 32 ReadBank3(unsigned 20 address){

 par{

 zbt3_read = 1;

 zbt3_a = address;

 zbt3_c = 16;

 }

 par{

 zbt3_c = 48;

 }

 par{

 zbt3_c = 48;

 }

 par{

 zbt3_c = 48;

 ReadVar3 = zbt3_q;

 }

 return ReadVar3;

}

void WriteBank3(unsigned 20 address, unsigned 32 out){

 par{

 zbt3_a = address;

 zbt3_c = 0;

 }

D-56

 par{

 zbt3_c = 48;

 }

 par{

 zbt3_c = 48;

 zbt3_oe = 1;

 zbt3_d = (unsigned 32)(0 @ out);

 }

 //Insert delay to prevent an attempted read

 // before SRAM has read and updated value

 par{

 delay;

 }

}

unsigned 32 ReadBank4(unsigned 20 address){

 par{

 zbt4_read = 1;

 zbt4_a = address;

 zbt4_c = 16;

 }

 par{

 zbt4_c = 48;

 }

 par{

 zbt4_c = 48;

 }

 par{

 zbt4_c = 48;

 ReadVar4 = zbt4_q;

 }

 return ReadVar4;

}

void WriteBank4(unsigned 20 address, unsigned 32 out){

 par{

 zbt4_a = address;

 zbt4_c = 0;

 }

 par{

 zbt4_c = 48;

 }

 par{

 zbt4_c = 48;

 zbt4_oe = 1;

 zbt4_d = (unsigned 32)(0 @ out);

 }

 //Insert delay to prevent an attempted read

 // before SRAM has read and updated value

 par{

D-57

 delay;

 }

}

unsigned 32 ReadBank5(unsigned 20 address){

 par{

 zbt5_read = 1;

 zbt5_a = address;

 zbt5_c = 16;

 }

 par{

 zbt5_c = 48;

 }

 par{

 zbt5_c = 48;

 }

 par{

 zbt5_c = 48;

 ReadVar5 = zbt5_q;

 }

 return ReadVar5;

}

void WriteBank5(unsigned 20 address, unsigned 32 out){

 par{

 zbt5_a = address;

 zbt5_c = 0;

 }

 par{

 zbt5_c = 48;

 }

 par{

 zbt5_c = 48;

 zbt5_oe = 1;

 zbt5_d = (unsigned 32)(0 @ out);

 }

 //Insert delay to prevent an attempted read

 // before SRAM has read and updated value

 par{

 delay;

 }

}

unsigned 32 ReadWfv0, ReadWfv1, ReadWfv2, ReadWfv3, ReadWfv4,

ReadWfv5;

unsigned 1 ReadWfvLoop;

unsigned 1 ReadWfvAlt;

unsigned 4 ReadWfvA;

unsigned 20 ReadWfvAddress;

D-58

unsigned 1 ReadGl3Loop;

unsigned 1 ReadGl3Alt;

unsigned 5 ReadGl3A;

unsigned 20 ReadGl3Address;

void ReadGl3(unsigned 20 offset, unsigned 20 s, unsigned 2 t, f_real

*rout, unsigned 4 *rIndex, f_real *rReg,

 f_real *iout, unsigned 4 *iIndex, f_real *iReg){

 //unsigned 20 rIndex, iIndex;

 //f_real rReg, iReg;

 par{

 ReadGl3Address = (unsigned 20)(0 @ offset) + ((unsigned 20)(0 @ s)

* 72) + ((unsigned 20)(0 @ t) * 18);

 ReadGl3A = 0;

 *iIndex = 0;

 *rIndex = 0;

 ReadGl3Loop = 1;

 }

 while(ReadGl3Loop){

 par{

 ReadWfv0 = ReadBank0(ReadGl3Address);

 ReadWfv1 = ReadBank1(ReadGl3Address);

 }

 par{

 *rReg = ReadWfv0 @ ReadWfv1;

 ReadGl3Address++;

 }

 par{

 ReadWfv0 = ReadBank0(ReadGl3Address);

 ReadWfv1 = ReadBank1(ReadGl3Address);

 }

 par{

 *iReg = ReadWfv0 @ ReadWfv1;

 ReadGl3Address++;

 }

 par{

 if(ReadGl3A == 8){

 ReadGl3Loop = 0;

 } else {

 par{

 ReadGl3A++;

 }

 }

 rout[*rIndex] = *rReg;

 iout[*iIndex] = *iReg;

 *rIndex = *rIndex+1;

 *iIndex = *iIndex+1;

 }

 }

}

unsigned 20 WriteGl3Address;

D-59

unsigned 5 WriteGl3Count;

unsigned 1 WriteGl3Loop;

unsigned 1 WriteGl3Alt;

//s is the site number of the wfv being written

//multiply by 4 to get the bank 0 address for it

void WriteGl3(unsigned 20 offset, unsigned 20 s,

 unsigned 2 t, f_real *rout, unsigned 4 *rIndex,

 f_real *rReg, f_real *iout, unsigned 4 *iIndex,

 f_real *iReg){

 par{

 WriteGl3Address = (unsigned 20)(0 @ offset) +

 ((unsigned 20)(0 @ s) * 72) +

 ((unsigned 20)(0 @ t) * 18);

 WriteGl3Count = 0;

 WriteGl3Loop = 1;

 *rIndex = 0;

 *iIndex = 0;

 }

 while(WriteGl3Loop){

 par{

 *rReg = rout[*rIndex];

 *iReg = iout[*iIndex];

 *rIndex = *rIndex+1;

 *iIndex = *iIndex+1;

 }

 par{

 ReadWfv0 = *rReg\\32;

 ReadWfv1 = *rReg<-32;

 }

 par{

 WriteBank0(WriteGl3Address, ReadWfv0);

 WriteBank1(WriteGl3Address, ReadWfv1);

 }

 par{

 WriteGl3Address++;

 ReadWfv0 = *iReg\\32;

 ReadWfv1 = *iReg<-32;

 }

 par{

 WriteBank0(WriteGl3Address, ReadWfv0);

 WriteBank1(WriteGl3Address, ReadWfv1);

 }

 if(WriteGl3Count == 8){

 WriteGl3Loop = 0;

 } else {

 par{

 WriteGl3Address++;

 WriteGl3Count++;

 }

 }

 }

}

D-60

unsigned 5 RGcycles;

unsigned 5 RGa;

unsigned 20 RGaddress;

unsigned 1 RGaloop, RGbloop, RGIssue;

unsigned 1 RGFlush, RGRet, RGArrDone;

unsigned 17 interGl3;

void calcGl3AddressStage1(unsigned 16 s){

 interGl3 = (unsigned 17)(0 @ s) * 9;

}

void calcGl3AddressStage2(unsigned 20 t){

 const unsigned 3 threeBitZero = 0;

 RGaddress = ((interGl3 @ threeBitZero) + t);

}

void RGl3setup(unsigned 16 s, unsigned 20 t){

 par{

 calcGl3AddressStage1(s);

 RGa = 0;

 RGaloop = 1;

 RGbloop = 0;

 RGArrDone = 0;

 }

 calcGl3AddressStage2(t);

}

void RGl3flush(){

 par{

 zbt0_c = 48;

 zbt1_c = 48;

 }

 par{

 zbt0_c = 48;

 zbt1_c = 48;

 }

 par{

 zbt0_c = 48;

 zbt1_c = 48;

 }

}

void IssueRGl3(unsigned 16 snext,

 unsigned 20 tnext, unsigned 1 odd){

 unsigned 1 RGodd;

 do{

 par{

 zbt0_read = 1;

 zbt0_a = RGaddress;

 zbt0_c = 16;

 zbt1_read = 1;

 zbt1_a = RGaddress;

 zbt1_c = 16;

 if(RGa == 16){

 par{

D-61

 RGArrDone = 1;

 calcGl3AddressStage1(snext);

 }

 } else {

 delay;

 }

 if(RGArrDone){

 par{

 RGa = 0;

 RGaloop = !RGaloop;

 RGArrDone = 0;

 calcGl3AddressStage2(tnext);

 }

 } else {

 par{

 RGodd = odd;

 RGaddress++;

 RGa++;

 }

 }

 }

 }while (RGaloop == RGodd);

}

unsigned 5 retRGa;

unsigned 5 retRGaInit;

unsigned 5 retRGCount;

unsigned 1 retRGaloop, retRGbloop;

unsigned 1 retGl3Alt;

void setupRetRGl3(unsigned 1 highSpace){

 par{

 if(highSpace == 0){

 par{

 retRGa = 0;

 retRGaInit = 0;

 }

 } else {

 par{

 retRGa = 9;

 retRGaInit = 9;

 }

 }

 retRGCount = 0;

 retRGaloop = 1;

 retRGbloop = 0;

 retGl3Alt = 0;

 }

}

void RetRGl3(f_real *rout, f_real *iout,

 unsigned 1 odd){

 unsigned 1 retRGodd;

 do{

 par{

 if(retGl3Alt == 0){

 rout[retRGa] = ReadVar0 @ ReadVar1;

 } else {

D-62

 iout[retRGa] = ReadVar0 @ ReadVar1;

 }

 retGl3Alt = !retGl3Alt;

 if(retRGCount == 17){

 par{

 retRGa = retRGaInit;

 retRGaloop = !retRGaloop;

 retRGCount = 0;

 }

 } else {

 par{

 if(retGl3Alt == 1){

 retRGa++;

 } else {delay;}

 retRGCount++;

 retRGodd = odd;

 }

 }

 }

 }while (retRGaloop == retRGodd);

}

void ReadWfv(unsigned 20 offset, unsigned 20 s, f_real

 *rout, unsigned 4 *rIndex, f_real *rReg, f_real

 *iout, unsigned 4 *iIndex, f_real *iReg){

 par{

 ReadWfvAddress = (unsigned 20)(0 @ offset) +

 ((unsigned 20)(0 @ (s<-18 * 12)));

 ReadWfvA = 0;

 *iIndex = 0;

 *rIndex = 0;

 ReadWfvLoop = 1;

 }

 while(ReadWfvLoop){

 par{

 ReadWfv2 = ReadBank2(ReadWfvAddress);

 ReadWfv3 = ReadBank3(ReadWfvAddress);

 ReadWfv4 = ReadBank4(ReadWfvAddress);

 ReadWfv5 = ReadBank5(ReadWfvAddress);

 }

 par{

 *rReg = ReadWfv2 @ ReadWfv3;

 *iReg = ReadWfv4 @ ReadWfv5;

 }

 par{

 rout[*rIndex] = *rReg;

 iout[*iIndex] = *iReg;

 *rIndex = *rIndex+1;

 *iIndex = *iIndex+1;

 }

 par{

D-63

 if(ReadWfvA == 11){

 ReadWfvLoop = 0;

 } else {

 par{

 ReadWfvA++;

 ReadWfvAddress++;

 }

 }

 }

 }

}

unsigned 20 WriteWfvAddress;

unsigned 4 WriteWfvCount;

unsigned 1 WriteWfvLoop;

void WriteWfv(unsigned 20 offset, unsigned 20 s,

 f_real *rout, unsigned 4 *rIndex, f_real *rReg,

 f_real *iout, unsigned 4 *iIndex, f_real *iReg){

 par{

 WriteWfvAddress = (unsigned 20)(0 @ offset) +

 ((unsigned 20)(0 @ (s<-18 * 12)));

 WriteWfvCount = 0;

 WriteWfvLoop = 1;

 *rIndex = 0;

 *iIndex = 0;

 }

 while(WriteWfvLoop){

 par{

 *rReg = rout[*rIndex];

 *iReg = iout[*iIndex];

 *rIndex = *rIndex+1;

 *iIndex = *iIndex+1;

 }

 par{

 ReadWfv2 = *rReg\\32;

 ReadWfv3 = *rReg<-32;

 ReadWfv4 = *iReg\\32;

 ReadWfv5 = *iReg<-32;

 }

 par{

 WriteBank2(WriteWfvAddress, ReadWfv2);

 WriteBank3(WriteWfvAddress, ReadWfv3);

 WriteBank4(WriteWfvAddress, ReadWfv4);

 WriteBank5(WriteWfvAddress, ReadWfv5);

 }

 par{

 if(WriteWfvCount == 11){

 WriteWfvLoop = 0;

 }

 WriteWfvAddress++;

 WriteWfvCount++;

D-64

 }

 }

}

unsigned 20 RWaddress;

unsigned 1 RWaloop, RWbloop, RWIssue, RWFlush;

unsigned 1 RWRet, RWArrDone;

unsigned 4 RWa;

unsigned 17 interWfv;

void calcWfvAddressStage1(unsigned address){

 interWfv = (unsigned 17)(0 @ address) * 12;

}

unsigned 20 calcWfvAddressStage2(unsigned 20 offset){

 return (unsigned 20)(0 @ interWfv) + offset;

}

void RWfvsetup(unsigned 16 address, unsigned 20 offset){

 par{

 calcWfvAddressStage1(address);

 RWa = 0;

 RWaloop = 1;

 RWbloop = 0;

 RWArrDone = 0;

 }

 RWaddress = calcWfvAddressStage2(offset);

}

void flushWfvPipes(){

 par{

 zbt2_c = 48;

 zbt3_c = 48;

 zbt4_c = 48;

 zbt5_c = 48;

 }

}

void RWfvflush(){

 flushWfvPipes();

 flushWfvPipes();

 flushWfvPipes();

}

void IssueRWfv(unsigned 16 anext, unsigned 20 offset,

 unsigned 1 odd){

 unsigned 1 RWodd;

 do{

 par{

 par{

 zbt2_read = 1;

 zbt2_a = RWaddress;

 zbt2_c = 16;

 zbt3_read = 1;

 zbt3_a = RWaddress;

 zbt3_c = 16;

 zbt4_read = 1;

D-65

 zbt4_a = RWaddress;

 zbt4_c = 16;

 zbt5_read = 1;

 zbt5_a = RWaddress;

 zbt5_c = 16;

 }

 if(RWa == 10){

 par{

 RWArrDone = 1;

 calcWfvAddressStage1(anext);

 }

 } else {delay;}

 if(RWArrDone){

 par{

 RWa = 0;

 RWaloop = !RWaloop;

 RWArrDone = 0;

 RWaddress = calcWfvAddressStage2(offset);

 }

 } else {

 par{

 RWaddress++;

 RWa++;

 RWodd = odd;

 }

 }

 }

 }while (RWaloop == RWodd);

}

unsigned 4 retRWa;

unsigned 1 retRWaloop, retRWbloop;

void setupRetRWfv(){

 par{

 retRWa = 0;

 retRWaloop = 1;

 retRWbloop = 0;

 }

}

void RetRWfv(f_real *rout, f_real *iout,

 unsigned 1 odd){

 unsigned 1 retRWodd;

 do{

 par{

 rout[retRWa] = ReadVar2 @ ReadVar3;

 iout[retRWa] = ReadVar4 @ ReadVar5;

 if(retRWa == 11){

 par{

 retRWa = 0;

 retRWaloop = !retRWaloop;

 }

 } else {

D-66

 par{

 retRWa++;

 retRWodd = odd;

 }

 }

 }

 }while (retRWaloop == retRWodd);

}

unsigned XWIDTH zS2, yS2, yS3, yS4, xS2, xS3, xS4, xS5, xS6;

unsigned 8 res1, res2;

unsigned 12 res3, res4;

unsigned 16 res5, res6;

shared expr siteCalc1(x, y, z, t) =

 ((unsigned 8)(0 @ t) * (unsigned 8)(0 @ NZ));

shared expr siteCalc2() =

 res1 + (unsigned 8)(0 @ zS2);

shared expr siteCalc3() =

 ((unsigned 12)(0 @ res2) * (unsigned 12)(0 @ NY));

shared expr siteCalc4() =

 res3 + (unsigned 12)(0 @ yS4);

shared expr siteCalc5() =

 ((unsigned 16)(0 @ res4) * (unsigned 16)(0 @ NX));

shared expr siteCalc6() =

 res5 + (unsigned 16)(0 @ xS6);

/*Originals used the mod operator (very slow) could be replaced

using if statements

 much faster

*/

//shared expr p1(xIn, NXIn) = (xIn+1) % NXIn;

unsigned 4 p1(unsigned 4 xIn, unsigned 4 NXIn){

 if((xIn + 1) == NXIn) {

 return 0;

 } else {

 return xIn + 1;

 }

}

//shared expr m1(xIn, NXIn) = ((xIn+NXIn)-1) % NXIn;

unsigned 4 m1(unsigned 4 xIn, unsigned 4 NXIn){

 if(xIn == 0) {

 return NXIn -1;

 } else {

 return xIn -1;

 }

}

void siteStage1(unsigned XWIDTH x, unsigned XWIDTH y, unsigned

XWIDTH z, unsigned XWIDTH t){

 par{

 zS2 = z;

 yS2 = y;

D-67

 xS2 = x;

 res1 = siteCalc1(x, y, z, t);

 }

}

void siteStage2(){

 par{

 yS3 = yS2;

 xS3 = xS2;

 res2 = siteCalc2();

 }

}

void siteStage3(){

 par{

 yS4 = yS3;

 xS4 = xS3;

 res3 = siteCalc3();

 }

}

void siteStage4(){

 par{

 xS5 = xS4;

 res4 = siteCalc4();

 }

}

void siteStage5(){

 par{

 xS6 = xS5;

 res5 = siteCalc5();

 }

}

void siteStage6(){

 par{

 res6 = siteCalc6();

 }

}

void sitePiped(unsigned XWIDTH x, unsigned XWIDTH y,

 unsigned XWIDTH z, unsigned XWIDTH t){

 par{

 siteStage1(x, y, z, t);

 siteStage2();

 siteStage3();

 siteStage4();

 siteStage5();

 siteStage6();

 }

}

shared expr CastRes6() = (unsigned 16)(0 @ res6);

void CalculateOffsetsPiped(){

 par{

 xp1 = p1(x, NX);

D-68

 xm1 = m1(x, NX);

 sitePiped(x, y, z, t);

 }

 par{

 yp1 = p1(y, NY);

 ym1 = m1(y, NY);

 sitePiped(xm1, y, z, t);

 }

 par{

 zp1 = p1(z, NZ);

 zm1 = m1(z, NZ);

 sitePiped(x, ym1, z, t);

 }

 par{

 tp1 = p1(t, NT);

 tm1 = m1(t, NT);

 sitePiped(x, y, zm1, t);

 }

 par{

 seq{

 sitePiped(x, y, z, tm1);

 sitePiped(xp1, y, z, t);

 sitePiped(x, yp1, z, t);

 sitePiped(x, y, zp1, t);

 sitePiped(x, y, z, tp1);

 par{

 siteStage2();

 siteStage3();

 siteStage4();

 siteStage5();

 siteStage6();

 }

 par{

 siteStage3();

 siteStage4();

 siteStage5();

 siteStage6();

 }

 par{

 siteStage4();

 siteStage5();

 siteStage6();

 }

 par{

 siteStage5();

 siteStage6();

 }

 siteStage6();

 }

 seq{

 delay;

 delay;

 rSite = CastRes6();

 smx = CastRes6();

 smy = CastRes6();

 smz = CastRes6();

 smt = CastRes6();

D-69

 spx = CastRes6();

 spy = CastRes6();

 spz = CastRes6();

 spt = CastRes6();

 }

 }

 delay;

}

void UpdateLoopCounters(){

 numNS++;

 if(x==(NX-1)){

 x=0;

 if(y==(NY-1)) {

 y=0;

 if(z==(NZ-1)){

 z=0;

 if(t==(NT-1)){

 t=0;

 iter++;

 } else {

 t++;

 }

 } else {

 z++;

 }

 } else {

 y++;

 }

 } else {

 x++;

 }

}

unsigned 1 wfvAllDone;

void ReadWfvAll(unsigned 20 offset_P){

 unsigned 20 offset;

 par{

 wfvAllDone=0;

 offset = offset_P;

 }

 par{

 do{

 par{

 ReadVar2 = zbt2_q;

 ReadVar3 = zbt3_q;

 ReadVar4 = zbt4_q;

 ReadVar5 = zbt5_q;

 }

 }while(wfvAllDone == 0);

 //Issue addresses to RAMS

 seq{

 RWfvsetup(smx, offset);

 IssueRWfv(smy, offset, 1);

 IssueRWfv(smz, offset, 0);

D-70

 IssueRWfv(smt, offset, 1);

 IssueRWfv(spx, offset, 0);

 IssueRWfv(spy, offset, 1);

 IssueRWfv(spz, offset, 0);

 IssueRWfv(spt, offset, 1);

 IssueRWfv(rSite, offset, 0);

 IssueRWfv(smx, offset, 1);

 RWfvflush();

 }

 seq{

 setupRetRWfv();

 delay; //To compensate for the 2 cycle addres calculation

 delay;delay;delay;delay;

 RetRWfv(yLat1R.write, yLat1I.write, 1);

 RetRWfv(yLat3R, yLat3I, 0);

 RetRWfv(yLat5R.write, yLat5I.write, 1);

 RetRWfv(yLat7R, yLat7I, 0);

 RetRWfv(yLat0R.write, yLat0I.write, 1);

 RetRWfv(yLat2R, yLat2I, 0);

 RetRWfv(yLat4R.write, yLat4I.write, 1);

 RetRWfv(yLat6R, yLat6I, 0);

 RetRWfv(yLat8R, yLat8I, 1);

 wfvAllDone = 1;

 }

 }

}

unsigned 4 gLat0R_Index, gLat0I_Index;

unsigned 4 gLat1R_Index, gLat1I_Index;

//These constants are the amount to be addres for none,

//one two and three gl3 matrices

const unsigned 20 oneC = 18, two = 36;

const unsigned 20 three = 54, zero = 0;

unsigned 1 gl3alldone;

void ReadGl3All(){

 gl3alldone =0;

 par{

 do{

 par{

 ReadVar0 = zbt0_q;

 ReadVar1 = zbt1_q;

 }

 }while(gl3alldone == 0);

 //Issue addresses to RAMS

 seq{

 RGl3setup(smx, zero);

 IssueRGl3(smy, oneC, 1);

 IssueRGl3(smz, two, 0);

 IssueRGl3(smt, three, 1);

 IssueRGl3(rSite, zero, 0);

 IssueRGl3(rSite, oneC, 1);

 IssueRGl3(rSite, two, 0);

 IssueRGl3(rSite, three, 1);

 IssueRGl3(smz, two, 0);

 RGl3flush();

 }

D-71

 seq{

 setupRetRGl3(ReadGl3AltRamHalf);

 delay; //Compensate for 2 cycle addres calculation

 delay;delay;delay;delay;

 RetRGl3(gLat1R.write, gLat1I.write, 1);

 RetRGl3(gLat3R.write, gLat3I.write, 0);

 RetRGl3(gLat5R.write, gLat5I.write, 1);

 RetRGl3(gLat7R.write, gLat7I.write, 0);

 RetRGl3(gLat0R.write, gLat0I.write, 1);

 RetRGl3(gLat2R.write, gLat2I.write, 0);

 RetRGl3(gLat4R.write, gLat4I.write, 1);

 RetRGl3(gLat6R.write, gLat6I.write, 0);

 par{

 gl3alldone = 1;

 ReadGl3AltRamHalf = !ReadGl3AltRamHalf;

 ReadGl3AltRamHalf_Stage1 = ReadGl3AltRamHalf;

 }

 }

 }

}

macro proc ReadOperands(offset){

 ReadWfv(offset, (unsigned 20)(0 @ spx), yLat0R.write,

 &yLatR_Index, &yLat0R_Write_In, yLat0I.write,

 &yLatI_Index, &yLat0I_Write_In);

 ReadWfv(offset, (unsigned 20)(0 @ smx), yLat1R.write,

 &yLatR_Index, &yLat1R_Write_In, yLat1I.write,

 &yLatI_Index, &yLat1I_Write_In);

 ReadWfv(offset, (unsigned 20)(0 @ spy), yLat2R,

 &yLatR_Index, &yLat2R_Read_In, yLat2I, &yLatI_Index,

 &yLat2I_Read_In);

 ReadWfv(offset, (unsigned 20)(0 @ smy), yLat3R,

 &yLatR_Index, &yLat3R_Read_In, yLat3I, &yLatI_Index,

 &yLat3I_Read_In);

 ReadWfv(offset, (unsigned 20)(0 @ spz), yLat4R.write,

 &yLatR_Index, &yLat4R_Write_In, yLat4I.write,

 &yLatI_Index, &yLat4I_Write_In);

 ReadWfv(offset, (unsigned 20)(0 @ smz), yLat5R.write,

 &yLatR_Index, &yLat5R_Write_In, yLat5I.write,

 &yLatI_Index, &yLat5I_Write_In);

 ReadWfv(offset, (unsigned 20)(0 @ spt), yLat6R,

 &yLatR_Index, &yLat6R_Read_In, yLat6I, &yLatI_Index,

 &yLat6I_Read_In);

 ReadWfv(offset, (unsigned 20)(0 @ smt), yLat7R,

 &yLatR_Index, &yLat7R_Read_In, yLat7I, &yLatI_Index,

 &yLat7I_Read_In);

 ReadWfv(offset, (unsigned 20)(0 @ rSite), yLat8R,

 &yLatR_Index, &yLat8R_In, yLat8I, &yLatI_Index,

 &yLat8I_In);

 ReadGl3(G_OFFSET, (unsigned 20)(0 @ rSite), G_ZERO,

 gLat0R.write, &gLat0R_Index, &gLat0R_In,

 gLat0I.write, &gLat0I_Index, &gLat0I_In);

 ReadGl3(G_OFFSET, (unsigned 20)(0 @ smx), G_ZERO,

 gLat1R.write, &gLat1R_Index, &gLat1R_In,

 gLat1I.write, &gLat1I_Index, &gLat1I_In);

 ReadGl3(G_OFFSET, (unsigned 20)(0 @ rSite), G_ONE,

 gLat2R.write, &gLat0R_Index, &gLat2R_In,

 gLat2I.write, &gLat0I_Index, &gLat2I_In);

D-72

 ReadGl3(G_OFFSET, (unsigned 20)(0 @ smy), G_ONE,

 gLat3R.write, &gLat1R_Index, &gLat3R_In,

 gLat3I.write, &gLat1I_Index, &gLat3I_In);

 ReadGl3(G_OFFSET, (unsigned 20)(0 @ rSite), G_TWO,

 gLat4R.write, &gLat0R_Index, &gLat4R_In,

 gLat4I.write, &gLat0I_Index, &gLat4I_In);

 ReadGl3(G_OFFSET, (unsigned 20)(0 @ smz), G_TWO,

 gLat5R.write, &gLat1R_Index, &gLat5R_In,

 gLat5I.write, &gLat1I_Index, &gLat5I_In);

 ReadGl3(G_OFFSET, (unsigned 20)(0 @ rSite), G_THREE,

 gLat6R.write, &gLat0R_Index, &gLat6R_In,

 gLat6I.write, &gLat0I_Index, &gLat6I_In);

 ReadGl3(G_OFFSET, (unsigned 20)(0 @ smt), G_THREE,

 gLat7R.write, &gLat1R_Index, &gLat7R_In,

 gLat7I.write, &gLat1I_Index, &gLat7I_In);

}

unsigned 6 ROPcount;

unsigned 1 runMainLoop;

//use to signal to ReadOperands that

//resultwrite has completed

unsigned 1 stage3_running;

unsigned 20 ROPoffset;

void ReadOperandsPiped(unsigned 20 offset){

 //must wait 12 cycles for

 //gamma functions to use all y operands

par{

 ROPcount = 0;

 ROPoffset = offset;

 }

 CalculateOffsetsPiped();

 do{

 delay;

 }while(stage3_running);

 //Calculate offsets takes 12 cycles to complete

 par{

 seq{

 ReadWfvAll(offset);

 }

 seq{

 ReadGl3All();

 }

 }

 UpdateLoopCounters();

 if(iter == numIter){

 par{

 runReadOpLoop = 0;

 runMainLoop = 0;

 }

 } else {

D-73

 delay;

 }

}

void WriteWfvPiped(unsigned 20 offset, unsigned 16 s,

 f_real *rout, unsigned 4 *rIndex, f_real *rReg,

 f_real *iout, unsigned 4 *iIndex, f_real *iReg){

 unsigned 1 WriteWfvIssueAddr, WriteWfvIssueData,

WriteWfvReadFromRam;

 unsigned 4 WriteWfvIndex;

 unsigned 32 WriteWfvIssueDataOut;

 unsigned 20 WriteWfvAddressSD;

 unsigned 4 WriteWfvCountSD;

 unsigned 1 tempBank;

 par{

 //reuse address calculator from readWfv routines

 calcWfvAddressStage1(s);

 WriteWfvLoop = 1;

 WriteWfvCountSD = 0;

 *rIndex = 0;

 *iIndex = 0;

 WriteWfvIssueAddr = 1;

 WriteWfvIssueData = 0;

 }

 WriteWfvAddressSD = calcWfvAddressStage2(offset);

 do{

 par{

 if(WriteWfvCountSD == 11){

 WriteWfvIssueAddr = 0;

 } else { delay; }

 WriteWfvReadFromRam = WriteWfvIssueAddr;

 WriteWfvIssueData = WriteWfvReadFromRam;

 WriteWfvCountSD++;

 if(WriteWfvIssueAddr){

 par{

 WriteWfvAddressSD++;

 zbt2_a = WriteWfvAddressSD;

 zbt2_c = 0;

 zbt3_a = WriteWfvAddressSD;

 zbt3_c = 0;

 zbt4_a = WriteWfvAddressSD;

 zbt4_c = 0;

 zbt5_a = WriteWfvAddressSD;

 zbt5_c = 0;

 }

 } else {

 par{

 zbt2_c = 48;

 zbt3_c = 48;

D-74

 zbt4_c = 48;

 zbt5_c = 48;

 }

 }

 if(WriteWfvReadFromRam){

 par{

 delay;

 /*

 *rIndex = *rIndex+1;

 *iIndex = *iIndex+1;

 *rReg = rout[*rIndex];

 *iReg = iout[*iIndex];

 */

 }

 } else {delay;}

 if(WriteWfvIssueData){

 par{

 *rIndex = *rIndex+1;

 *iIndex = *iIndex+1;

 zbt2_oe = 1;

 zbt2_d = rout[*rIndex]\\32;

 zbt3_oe = 1;

 zbt3_d = rout[*rIndex]<-32;

 zbt4_oe = 1;

 zbt4_d = iout[*rIndex]\\32;

 zbt5_oe = 1;

 zbt5_d = iout[*rIndex]<-32;

 }

 } else {delay;}

 }

 }while(WriteWfvReadFromRam | WriteWfvIssueData);

}

void HLatMulM5Wfv_Stage3(unsigned 20 offset){

 WriteWfvPiped(offset, rSite_Stage3,

 xLatR, &xLatR_Index, &xLatR_Out,

 xLatI, &xLatI_Index, &xLatI_Out);

}

#ifdef SIMULATE

chanin unsigned 64 gIn with

 {infile = "g.txt", base = 16};

chanin unsigned 64 rIn with

 {infile = "rIn.txt", base = 16};

chanin unsigned 64 xIn with

 {infile = "xIn.txt", base = 16};

chanin unsigned 64 pIn with

 {infile = "pIn.txt", base = 16};

chanin unsigned 64 kappaIn with

 {infile = "kappa.txt", base = 16};

chanin unsigned 32 nsIn with

 {infile = "ns.txt", base = 10};

D-75

chanin unsigned 64 thresholdIn with

 {infile = "threshold.txt", base = 16};

unsigned 1 return_value;

unsigned 1 WriteVectorToSRAM(unsigned 20 startAddress, chanin f_real

(*ch), unsigned NSWIDTH NS_Val){

 f_real tempR, tempI;

 f_real rReg, iReg;

 ram f_real rWfv[12], iWfv[12];

 unsigned 20 i;

 unsigned 4 index;

 unsigned 4 rIndex, iIndex;

 unsigned 1 runLoop, alt;

 par{

 index = 0;

 i = 0;

 }

 while((i<-NSWIDTH) < (NS_Val)){

 while(index<12){

 *ch ? tempR;

 par{

 rWfv[index] = tempR;

 *ch ? tempI;

 }

 par{

 iWfv[index] = tempI;

 index++;

 }

 }

 WriteWfv(startAddress, i, rWfv, &rIndex, &rReg, iWfv, &iIndex,

&iReg);

 par{

 index = 0;

 i++;

 }

 }

 return 1;

}

macro proc ZeroGl3(gl3, i){

 i=0;

 do{

 par{

 gl3[i] = 0;

 i++;

 }

 }while(i<9);

}

unsigned 1 WriteMatrixToSRAM(unsigned 20 startAddress, chanin f_real

(*ch), unsigned NSWIDTH NS_Val){

D-76

 f_real tempR, tempI;

 f_real rReg, iReg;

 ram f_real rGl3[9], iGl3[9];

 unsigned NSWIDTH i;

 unsigned 3 j;

 unsigned 4 indexR, indexI, index;

 unsigned 4 rIndex, iIndex;

 unsigned 1 runLoop, alt;

 par{

 i = 0;

 index = 0;

 j = 0;

 }

 while(i < (NS_Val)){

 while(j < 4){

 while(index<9){

 *ch ? tempR;

 par{

 rGl3[index] = tempR;

 *ch ? tempI;

 }

 par{

 iGl3[index] = tempI;

 index++;

 }

 }

 WriteGl3(startAddress, (unsigned 20)(0 @ i),

 j<-2, rGl3, &rIndex, &rReg, iGl3, &iIndex, &iReg);

 par{

 index = 0;

 j++;

 }

 }

 par{

 i++;

 j = 0;

 }

 }

 return i<-1;

}

unsigned 32 RIDNS_Val;

void ReadInDataToSRAM(){

 f_real readTemp;

 unsigned 32 nsTemp;

 unsigned 20 pAddr;

 RIDNS_Val = 1;

 pAddr = PARMS_BASE;

 kappaIn ? readTemp;

 WriteBank2(pAddr, readTemp<-32);

 pAddr++;

D-77

 WriteBank2(pAddr, readTemp\\32);

 pAddr++;

 nsIn ? nsTemp;

 RIDNS_Val *= nsTemp;

 WriteBank2(pAddr, nsTemp);

 pAddr++;

 nsIn ? nsTemp;

 RIDNS_Val *= nsTemp;

 WriteBank2(pAddr, nsTemp);

 pAddr++;

 nsIn ? nsTemp;

 RIDNS_Val *= nsTemp;

 WriteBank2(pAddr, nsTemp);

 pAddr++;

 nsIn ? nsTemp;

 RIDNS_Val *= nsTemp;

 WriteBank2(pAddr, nsTemp);

 //set number of iterations, always one for simulation

 pAddr++;

 nsTemp = 1;

 WriteBank2(pAddr, nsTemp);

 thresholdIn ? readTemp;

 pAddr++;

 WriteBank2(pAddr, readTemp<-32);

 pAddr++;

 WriteBank2(pAddr, readTemp\\32);

 return_value = WriteVectorToSRAM

 (P_OFFSET, &pIn, RIDNS_Val<-14);

 return_value = WriteVectorToSRAM

 (R_OFFSET, &rIn, RIDNS_Val<-14);

 return_value = WriteVectorToSRAM

 (X_OFFSET, &xIn, RIDNS_Val<-14);

 return_value = WriteMatrixToSRAM

 (G_OFFSET, &gIn, RIDNS_Val<-14);

}

chanout unsigned 64 pOut with

 {outfile = "pOut.txt", base = 16};

chanout unsigned 64 rOut with

 {outfile = "rOut.txt", base = 16};

chanout unsigned 64 xOut with

 {outfile = "xOut.txt", base = 16};

chanout unsigned 64 tmp1Out with

 {outfile = "tmp1Out.txt", base = 16};

chanout unsigned 64 tmp2Out with

 {outfile = "tmp2Out.txt", base = 16};

chanout unsigned 64 othersOut with

 {outfile = "others.txt", base = 16};

unsigned 1 WriteMatrixToFile(unsigned 20 startAddress,

 chanout unsigned 64 (*ch), unsigned NSWIDTH NS_Val){

D-78

 unsigned NSWIDTH i;

 unsigned 3 j;

 f_real rReg, iReg;

 ram f_real tempR[9], tempI[9];

 unsigned 4 indexR, indexI, index;

 par{

 i = 0;

 index = 0;

 }

 while(i<NS_Val){

 while(j<4){

 ReadGl3(startAddress, (unsigned 20)(0 @ i), j<-2,

 tempR, &indexR, &rReg, tempI, &indexI, &iReg);

 while(index < 9){

 par{

 rReg = tempR[index];

 iReg = tempI[index];

 }

 *ch ! rReg;

 *ch ! iReg;

 index++;

 }

 par{

 j++;

 index = 0;

 }

 }

 par{

 j=0;

 i++;

 }

 }

 return i<-1;

}

unsigned 1 WriteVectorToFile(unsigned 20 startAddress,

 chanout unsigned 64 (*ch), unsigned NSWIDTH NS_Val){

 unsigned NSWIDTH i;

 f_real rReg, iReg;

 ram f_real tempR[12], tempI[12];

 unsigned 4 indexR, indexI, index;

 par{

 i = 0;

 index = 0;

 }

 while(i<NS_Val){

 ReadWfv(startAddress, (unsigned 20)(0 @ i), tempR,

 &indexR, &rReg, tempI, &indexI, &iReg);

 while(index < 12){

 par{

 rReg = tempR[index];

D-79

 iReg = tempI[index];

 }

 *ch ! rReg;

 *ch ! iReg;

 index++;

 }

 par{

 i++;

 index = 0;

 }

 }

 return i<-1;

}

void WriteOutResult(){

 return_value = WriteVectorToFile

 (P_OFFSET, &pOut, RIDNS_Val<-14);

 return_value = WriteVectorToFile

 (R_OFFSET, &rOut, RIDNS_Val<-14);

 return_value = WriteVectorToFile

 (X_OFFSET, &xOut, RIDNS_Val<-14);

 return_value = WriteVectorToFile

 (TMP1_OFFSET, &tmp1Out, RIDNS_Val<-14);

 return_value = WriteVectorToFile

 (TMP2_OFFSET, &tmp2Out, RIDNS_Val<-14);

 othersOut ! res_old;

 othersOut ! alpha;

 othersOut ! beta;

 othersOut ! res_new;

}

#endif

}

D-80

D.5 Types.hch

typedef unsigned 64 f_real;

typedef f_real half_gl3[9];

typedef f_real half_wfv[12];

typedef f_real ram half_gl3_ram[9];

typedef f_real ram half_wfv_ram[12];

typedef mpram hlf_gl3_mpram

{

 ram f_real write[9];

 rom f_real read[9];

} half_gl3_mpram;

typedef mpram hlf_wfv_mpram

{

 ram f_real write[12];

 rom f_real read[12];

} half_wfv_mpram;

mpram half_gl3_mpram_block {

 ram f_real write[18];

 ram f_real readWrite[18];

};

mpram half_wfv_mpram_block

{

 ram f_real write[12];

 ram f_real read[12];

};

mpram dotRAM{

 ram f_real write[9];

 rom f_real read[9];

};

typedef mpram hlf_a_s_mpram

{

 ram unsigned 16 write[12];

 ram unsigned 16 readWrite[12];

}half_a_s_mpram;

typedef struct a_s_half_16bitRams

{

 half_a_s_mpram HH with {block = "BlockRAM"};

 half_a_s_mpram HL with {block = "BlockRAM"};

 half_a_s_mpram LH with {block = "BlockRAM"};

 half_a_s_mpram LL with {block = "BlockRAM"};

} a_s_ram;

typedef struct a_s_16bitRegisters

{

 unsigned 16 HH;

D-81

 unsigned 16 HL;

 unsigned 16 LH;

 unsigned 16 LL;

} a_s_reg;

typedef struct a_gl3

{

 half_gl3 r;

 half_gl3 i;

} f_gl3;

typedef struct b_gl3

{

 half_gl3_ram r;

 half_gl3_ram i;

} f_gl3_ram;

typedef struct c_gl3

{

 mpram half_gl3_mpram r;

 mpram half_gl3_mpram i;

} f_gl3_mpram;

typedef struct a_wfv

{

 half_wfv r;

 half_wfv i;

} f_wfv;

typedef struct b_wfv

{

 half_wfv_ram r;

 half_wfv_ram i;

} f_wfv_ram;

typedef struct c_wfv

{

 mpram half_wfv_mpram r;

 mpram half_wfv_mpram i;

} f_wfv_mpram;

macro proc Int2FP(a, r);

macro expr FP2Int(a);

D-82

D.6 Variables.hch

f_real alpha, alpha_minus, beta, res_old, res_new;

f_real dot_res, checkConjCond;

unsigned XWIDTH NX, NY, NZ, NT;

unsigned NSWIDTH NS;

f_real kappa, threshold;

unsigned 16 smx, spx;

unsigned 16 smy, spy;

unsigned 16 smz, spz;

unsigned 16 smt, spt;

unsigned 16 rSite, rSite_Result, rSite_Stage1;

unsigned 16 rSite_Stage2, rSite_Stage3;

unsigned XWIDTH x, xp1, xm1, NX;

unsigned YWIDTH y, yp1, ym1, NY;

unsigned ZWIDTH z, zp1, zm1, NZ;

unsigned TWIDTH t, tp1, tm1, NT;

unsigned NSWIDTH NS;

unsigned 32 numIter, iter;

unsigned NSWIDTH numNS;

half_wfv_ram xLatR, xLatI;

unsigned 4 xLatR_Index, xLatI_Index;

f_real xLatR_In, xLatR_Out, xLatI_In, xLatI_Out;

f_real a_spxR_Write_In, a_spxI_Write_In;

a_s_reg a_spxR_Write_Out, a_spxI_Write_Out, a_spxR_Read_Out,

a_spxI_Read_Out;

f_real gLat0R_In, gLat0I_In, gLat0R_Out, gLat0I_Out;

f_real ga_spxR_Write_In, ga_spxI_Write_In, ga_spxR_Write_Out,

ga_spxI_Write_Out;

f_real ga_spxR_Read_Out, ga_spxI_Read_Out;

//G5pG5Gx & MulGl3dWfv

half_wfv_mpram yLat1R, yLat1I;

a_s_ram a_smxR, a_smxI;

half_wfv_mpram ga_smxR, ga_smxI with

 {block = "BlockRAM"};

mpram half_gl3_mpram_block gLat1R, gLat1I with

 {block = "BlockRAM"};

f_real a_smxR_Write_In, a_smxI_Write_In;

a_s_reg a_smxR_Write_Out, a_smxI_Write_Out, a_smxR_Read_Out,

a_smxI_Read_Out;

f_real gLat1R_In, gLat1I_In, gLat1R_Out, gLat1I_Out;

f_real ga_smxR_Write_In, ga_smxI_Write_In;

D-83

f_real ga_smxR_Write_Out, ga_smxI_Write_Out;

f_real ga_smxR_Read_Out, ga_smxI_Read_Out;

//G5mG5Gy & MulGl3Wfv

half_wfv_ram yLat2R, yLat2I;

a_s_ram a_spyR, a_spyI;

half_wfv_mpram ga_spyR, ga_spyI with

 {block = "BlockRAM"};

mpram half_gl3_mpram_block gLat2R, gLat2I with

 {block = "BlockRAM"};

a_s_reg a_spyR_Write_Out, a_spyI_Write_Out;

a_s_reg a_spyR_Read_Out, a_spyI_Read_Out;

f_real gLat2R_In, gLat2I_In, gLat2R_Out, gLat2I_Out;

f_real ga_spyR_Write_In, ga_spyI_Write_In;

f_real ga_spyR_Write_Out, ga_spyI_Write_Out;

f_real ga_spyR_Read_Out, ga_spyI_Read_Out;

//G5pG5Gy & MulGl3dWfv

half_wfv_ram yLat3R, yLat3I;

a_s_ram a_smyR, a_smyI;

half_wfv_mpram ga_smyR, ga_smyI with

 {block = "BlockRAM"};

mpram half_gl3_mpram_block gLat3R, gLat3I with

 {block = "BlockRAM"};

a_s_reg a_smyR_Write_Out, a_smyI_Write_Out, a_smyR_Read_Out,

a_smyI_Read_Out;

f_real gLat3R_In, gLat3I_In, gLat3R_Out, gLat3I_Out;

f_real ga_smyR_Write_In, ga_smyI_Write_In, ga_smyR_Write_Out,

ga_smyI_Write_Out;

f_real ga_smyR_Read_Out, ga_smyI_Read_Out;

//G5mG5Gz & MulGl3Wfv

half_wfv_mpram yLat4R, yLat4I;

a_s_ram a_spzR, a_spzI;

half_wfv_mpram ga_spzR, ga_spzI with

 {block = "BlockRAM"};

mpram half_gl3_mpram_block gLat4R, gLat4I with

 {block = "BlockRAM"};

a_s_reg a_spzR_Write_Out, a_spzI_Write_Out, a_spzR_Read_Out,

a_spzI_Read_Out;

f_real a_spzR_Write_In, a_spzI_Write_In;

f_real gLat4R_In, gLat4I_In, gLat4R_Out, gLat4I_Out;

f_real ga_spzR_Write_In, ga_spzI_Write_In, ga_spzR_Write_Out,

ga_spzI_Write_Out;

f_real ga_spzR_Read_Out, ga_spzI_Read_Out;

//G5pG5Gz & MulGl3dWfv

half_wfv_mpram yLat5R, yLat5I;

a_s_ram a_smzR, a_smzI;

half_wfv_mpram ga_smzR, ga_smzI with

D-84

 {block = "BlockRAM"};

mpram half_gl3_mpram_block gLat5R, gLat5I with

 {block = "BlockRAM"};

a_s_reg a_smzR_Write_Out, a_smzI_Write_Out, a_smzR_Read_Out,

a_smzI_Read_Out;

f_real a_smzR_Write_In, a_smzI_Write_In;

f_real gLat5R_In, gLat5I_In, gLat5R_Out, gLat5I_Out;

f_real ga_smzR_Write_In, ga_smzI_Write_In, ga_smzR_Write_Out,

ga_smzI_Write_Out;

f_real ga_smzR_Read_Out, ga_smzI_Read_Out;

//G5mG5Gt & MulGl3Wfv

half_wfv_ram yLat6R, yLat6I ;

a_s_ram a_sptR, a_sptI;

half_wfv_mpram ga_sptR, ga_sptI with

 {block = "BlockRAM"};

mpram half_gl3_mpram_block gLat6R, gLat6I with

 {block = "BlockRAM"};

a_s_reg a_sptR_Write_Out, a_sptI_Write_Out, a_sptR_Read_Out,

a_sptI_Read_Out;

f_real gLat6R_In, gLat6I_In, gLat6R_Out, gLat6I_Out;

f_real ga_sptR_Write_In, ga_sptI_Write_In, ga_sptR_Write_Out,

ga_sptI_Write_Out;

f_real ga_sptR_Read_Out, ga_sptI_Read_Out;

//G5pG5Gt & MulGl3dWfv

half_wfv_ram yLat7R, yLat7I;

a_s_ram a_smtR, a_smtI;

half_wfv_mpram ga_smtR, ga_smtI with

 {block = "BlockRAM"};

mpram half_gl3_mpram_block gLat7R, gLat7I with

 {block = "BlockRAM"};

a_s_reg a_smtR_Write_Out, a_smtI_Write_Out, a_smtR_Read_Out,

a_smtI_Read_Out;

f_real gLat7R_In, gLat7I_In, gLat7R_Out, gLat7I_Out;

f_real ga_smtR_Write_In, ga_smtI_Write_In, ga_smtR_Write_Out,

ga_smtI_Write_Out;

f_real ga_smtR_Read_Out, ga_smtI_Read_Out;

//G5 rams and variables

half_wfv_ram yLat8R, yLat8I;

E-1

Appendix E

Layout on FPGA of double

precision Dirac operator

Figure 2-a shows that FPGA layout of the double precision Dirac operator. The

image shows where the logic for different parts of the design is placed in the FPGA.

The image was obtained from the Xilinx FloorPlannner tool. The blocks of colour

each represent a separate arithmetic unit, whilst the light green colour spread over the

whole FPGA is the application logic that uses these arithmetic units. Any grey areas

represent FPGA logic that is not used in the design.

E-2

Figure 9-a. Layout of FPGA when programmed with the double precision Dirac
operator design from Chapter 6. Each of the blocks of colour is one of the arithmetic
units, the light green colour is the general application logic. Any grey areas represent

logic that is not used in the design.

I

References

[A. Gara '05] A. Gara, M. A. Blumrich, D. Chen, G. L.-T. Chiu, P. Coteus, M. E.
Giampapa, R. A. Haring, P. Heidelberger, D. Hoenicke, G. V. Kopcsay, T. A.
Liebsch, M. Ohmacht, B. D. Steinmacher-Burow, T. Takken and a. P. Vranas.
Overview of the Blue Gene/L system architecture. IBM Journal of Research and
Development, 49 195-212, 2005.

[Alpha-Data '05] Alpha-Data. Alpha-Data ADM-XRC-II Users Guide. 2005.
http://www.alpha-data.co.uk/adm-xrc-ii.html

[Ammendola '05] R. Ammendola, M. Guagnelli, G. Mazza, F. Palombi, R.
Petronzio, D. Rossetti, A. Salamon and P. Vicini. APENet: LQCD clusters a la APE.
Nuclear Physics B - Proceedings Supplements, 140 826-828, 2005.

[Barrett '94] R. a. B. Barrett, M. and Chan, T. F. and Demmel, J. and Donato, J. M.
and Dongarra, Jack and Eijkhout, V. and Pozo, R. and Romine, C. and der Vorst, H.
V. Templates for the Solution of Linear Systems: Building Blocks for Iterative
Methods. Philadalphia: Society for Industrial and Applied Mathematics. Also
available as postscript file on http://www.netlib.org\/templates\/Templates.html,
1994.

[Beauchamp '06a] M. J. Beauchamp, S. Hauck, K. D. Underwood and K. S.
Hemmert. Embedded floating-point units in FPGAs. Proceedings of the international
symposium on Field programmable gate arrays, 2006a.

[Beauchamp '06b] M. J. H. Beauchamp, Scott;, Underwood, Keith; Hemmert, K
Scott;. Architectural Modifications to Improve Floating-Point Efficiency in FPGAs.
16th Int Conf on Field Programmable Logic and Applications, 515-520, 2006b.

[Belanovic '02] P. L. Belanovic, Miriam;. A Library of Parameterized
Floating-Point Modules and Their Use. Field-Programmable Logic and Applications.
Reconfigurable Computing Is Going Mainstream 12th International Conference, FPL
2002 657, 2002.

[Belletti '06] F. Belletti, S. F. Schifano, R. Tripiccione, F. Bodin, P. Boucaud, J.
Micheli, O. Pene, N. Cabibbo, S. de Luca, A. Lonardo, D. Rossetti, P. Vicini, M.
Lukyanov, L. Morin, N. Paschedag, H. Simma, V. Morenas, D. Pleiter and F.
Rapuano. Computing for LQCD: apeNEXT. Computing in Science & Engineering, 8

II

18-29, 2006.

[Bhanot '05] G. Bhanot, D. Chen, A. Gara, J. Sexton and P. Vranas. QCD on the
BlueGene/L Supercomputer. Nuclear Physics B - Proceedings Supplements, 140
823-825, 2005.

[Callanan '05] O. Callanan, A. Nisbet, E. Ozer, J. Sexton and D. Gregg. FPGA
Implementation of a Lattice Quantum Chromodynamics Algorithm Using
Logarithmic Arithmetic. Parallel and Distributed Processing Symposium, 2005.
Proceedings. 19th IEEE International, 146b-146b, 2005.

[Callanan '06] O. Callanan, Peardon Mike, Nisbet Andy, Gregg David High
performance scientific computing using FPGAs with IEEE floating point and
logarithmic arithmetic for lattice QCD. 16 Int Conf on Field Programmable Logic
and Applications, 2006.

[Celoxica '06] Celoxica. Celoxica RC2000 development board. 2006.
http://www.celoxica.com/products/rc2000/default.asp

[Coleman '99] J. N. Coleman and E. I. Chester. A 32 bit logarithmic arithmetic unit
and its performance compared to floating-point. 142-151, 1999.

[Coleman '00] J. N. Coleman, E. I. Chester, C. I. Softley and J. Kadlec. Arithmetic
on the European logarithmic microprocessor. Computers, IEEE Transactions on, 49
702-715, 2000.

[Combet '65] M. V. Z. Combet, H;Verbeek, L;. Computation of the Base Two
Logarithm of Binary Numbers. IEEE Trans. Electronic Computers, vol. EC-14 863-
867, 1965.

[Davies '98] C. Davies. Let's Play Quantum Chess. New Scientist, 2137 pp 32-35 6
June 1998

[Davies '03] C. Davies. Teraflop computing tackles the strong force. Frontiers, 22-
24, 2003.

[Davies '00] C. C. Davies, Sara;. Physicists get to grips with the strong force.
Physics WOrld, 8 pp August 2000 2000

[Dou '05] Y. Dou, S. Vassiliadis, G. K. Kuzmanov and G. N. Gaydadjiev. 64-bit
floating-point FPGA matrix multiplication. Proceedings of the 2005 ACM/SIGDA
13th international symposium on Field-programmable gate arrays, 2005.

[Ellis '86] J. R. Ellis. Bulldog : a compiler for VLIW architectures. ACM
doctoral dissertation award ; 1985, MIT Press, 1986.

[Fagin '94] B. Fagin and C. Renard. Field programmable gate arrays and floating
point arithmetic. Very Large Scale Integration (VLSI) Systems, IEEE Transactions

III

on, 2 365-367, 1994.

[Gellrich '03] A. e. a. Gellrich. Lattice QCD calculations on commodity clusters at
DESY. Proceedings of Computing in High Energy Physics 2003. Publushed by
eConf ref C0303241., 2003.

[Gottlieb '01] S. Gottlieb. Comparing clusters and supercomputers for lattice QCD.
Nuclear Physics B - Proceedings Supplements, 94 833-840, 2001.

[Govindu '02] G. Z. Govindu, Ling; Choi, S; Gundala, Padma; Prasanna, Viktor K;.
Area and Power Performance Analysis of a Floating-point based Application on
FPGAs. Seventh Annual Workshop on High Performance Embedded Computing,
HPEC 2002, 2002.

[Hall '70] E. L. Hall, D. D. Lynch and S. J. Dwyer. Generation of Products and
Quotients Using Approximate Binary Logarithms for Digital Filtering Applications.
Computers, IEEE Transactions on, C-19 97-105, 1970.

[Haselman '05] M. Haselman, M. Beauchamp, A. Wood, S. Hauck, K.
Underwood and K. S. Hemmert. A comparison of floating point and logarithmic
number systems for FPGAs. Field-Programmable Custom Computing Machines,
2005. FCCM 2005. 13th Annual IEEE Symposium on, 181-190, 2005.

[Hennessy '90] J. L. Hennessy, D. A. Patterson and D. Goldberg. Computer
architecture : a quantitative approach. Morgan Kaufman Publishers, 1990.

[Hoare '85] C. A. R. Hoare. Communicating sequential processes. Prentice-Hall
International, 1985.

[Holmgren '05a] D. Holmgren. Cluster Development at Fermilab. 2005a.
http://lqcd.fnal.gov/allhands_holmgren.pdf

[Holmgren '05b] D. J. Holmgren. PC Clusters for Lattice QCD. Nuclear Physics
B - Proceedings Supplements, 140 183-189, 2005b.

[Holmgren '06] D. M. Holmgren, Paul; Simone, Jim; Singh, Amitoj;. Lattice
QCD Clusters at Fermilab. Computing in High Energy Physics, 2006.

[IEEE '85] IEEE. IEEE Standard for binary floating-point arithmetic. 1985.

[IEEE '99] IEEE. Information technology - telecommunications and information
exchange between systems - local and metropolitan area networks - specific
requirements. Supplement to Carrier Sense Multiple Access with Collision Detection
(CSMA/CD) access method and physical layer specifications - physical layer
parameters and specifications for 1000 Mb/s operation over 4-pair of category 5
balanced copper cabling, type 1000BASE-T. IEEE Std 802.3ab-1999, 1999.

[Infiniband '06] Inifiband Technology Overview;

IV

http://www.infinibandta.org/about/
[INMOS. '84] INMOS. OCCAM programming manual. Prentice-Hall International,
1984.

[JEDEC '05] JEDEC. JEDEC Standard 79, Double Data Rate (DDR) SDRAM
Specification. 2005. http://www.jedec.org/

[Kingsbury '71] N. R. Kingsbury, PJW;. Digital FIltering Using Logarithmic
Arithmetic. Electronics Letters, 7 56-58, 1971.

[Koren '93] I. Koren. Computer arithmetic algorithms. Prentice-Hall ;
Prentice-Hall International (UK), 1993.

[Kurokawa '80] T. Kurokawa, J. Payne and S. Lee. Error analysis of recursive
digital filters implemented with logarithmic number systems. Acoustics, Speech, and
Signal Processing [see also IEEE Transactions on Signal Processing], IEEE
Transactions on, 28 706-715, 1980.

[Ligon '98] W. B. Ligon, III, S. McMillan, G. Monn, K. Schoonover, F. Stivers
and K. D. Underwood. A re-evaluation of the practicality of floating-point operations
on FPGAs. 206-215, 1998.

[Logue '05] J. Logue. Virtex-II SelectLink Communications Channel, XAPP263.
Xilinx Application Notes, 2005.
[Louca '96] L. Louca, T. A. Cook and W. H. Johnson. Implementation of IEEE
single precision floating point addition and multiplication on FPGAs. 107-116, 1996.

[Luscher '02] M. Luscher. Lattice QCD on PCs? Nuclear Physics B - Proceedings
Supplements, 106-107 21-28, 2002.

[Matousek '02] R. Matousek, M. Tichy, Z. Pohl, J. Kadlec, C. Softley and N.
Coleman. Logarithmic Number System and Floating-Point Arithmetics on FPGA.
12th International Conference on Field Programmable Logic and Applications.
LNCS Vol 2438., 627, 2002.

[Matousek '03] European Logarithmic Microprocessor Project;
http://www.utia.cas.cz/ZS/projects/hsla/elm.pdf
[Mitchell '62] J. Mitchell. Computer Multiplication and Division using Binary
Logarithms. IEEE Transactions on Electronic Computers, vol.EC- 11 512-517, 1962.

[Moloney '04] D. Moloney, D. Geraghty and F. Connor. The performance of IEEE
floating-point operators on FPGAs. Irish Signals and Systems Conference, 601-606,
2004.

[OpenCores '06] OpenCores Initiative; http://www.opencores.org
[P A. Boyle '05] P A. Boyle, D. Chen, N H. Christ, M A. Clark, S. D. Cohen,
C. Cristian, Z. Dong, A. Gara, B. Joó, C. Jung, C. Kim, L. A. Levkova, X. Liao, G.
Liu, R. D. Mawhinney, S. Ohta, K. Petrov, T. Wettig and A. Yamaguchi. Overview

V

of the QCDSP and QCDOC computers. IBM Journal of Research and Development,
49 351, 2005.

[P. A. Boyle '05] P. A. Boyle, D. Chen, N. H. Christ, M. A. Clark, S. D. Cohen,
C. Cristian, Z. Dong, A. Gara, B. Joó, C. Jung, C. Kim, L. A. Levkova, X. Liao, G.
Liu, R. D. Mawhinney, S. Ohta, K. Petrov, T. Wettig and A. Yamaguchi. Overview
of the QCDSP and QCDOC computers. IBM Journal of Research and Development,
49 351, 2005.

[Press '92] W. H. Press. Numerical recipes in C : the art of scientific computing.
Cambridge University Press, 1992.

[Roesler '02] E. Roesler and B. Nelson. Novel Optimizations for Hardware
Floating-Point Units in a Modern FPGA Architecture. Lecture Notes in Computer
Science, 2002.

[Severance '98] C. Severance. IEEE 754: An Interview with William Kahan.
IEEE Computer, 31 114-115, 1998.

[Shirazi '95] N. Shirazi, A. Walters and P. Athanas. Quantitative analysis of
floating point arithmetic on FPGA based custom computing machines. IEEE
Symposium on FPGAs for Custom Computing Machines (FCCM), 155-162, 1995.

[Sicuranza '83] G. Sicuranza. On efficient implementations of 2-D digital
filters using logarithmic number systems. Acoustics, Speech, and Signal Processing
[see also IEEE Transactions on Signal Processing], IEEE Transactions on, 31 877-
885, 1983.

[Swartzlander '75] E. E. Swartzlander, Jr. and A. G. Alexopoulos. The
Sign/Logarithm Number System. Computers, IEEE Transactions on, C-24 1238-
1242, 1975.

[Swartzlander '83] E. E. J. C. Swartzlander, D V Satish; Nagle, H Troy Jr; Starks,
Scott A;. Sign/Logarithm Arithmetic for FFT Implementation. IEEE Trans.
Computers, 32 526-534, 1983.

[Underwood '04a] K. Underwood. FPGAs vs. CPUs: trends in peak floating-point
performance. Proceedings of the 2004 ACM/SIGDA 12th international symposium
on Field programmable gate arrays, 2004a.

[Underwood '04b] K. D. Underwood and K. S. Hemmert. Closing the gap: CPU
and FPGA trends in sustainable floating-point BLAS performance. Field-
Programmable Custom Computing Machines, 2005. FCCM 2004. 12th Annual IEEE
Symposium on, 219-228, 2004b.

[Wettig '05] T. Wettig. Performance of Machines for Lattice QCD SImulations.
Lattice 2005. Proceedings of Science ref. PoS(LAT2005)019., 2005.

VI

[Xilinx '05a] Xilinx. Xilinx Virtex-II FPGA Datasheet. 2005a.
http://direct.xilinx.com/bvdocs/publications/ds031.pdf

[Xilinx '05b] Xilinx. Xilinx Virtex-II Pro Datasheet. 2005b.
http://direct.xilinx.com/bvdocs/publications/ds083.pdf

[Xilinx '06a] Xilinx. Xilinx Virtex-4 Family Overview. 2006a.
http://direct.xilinx.com/bvdocs/publications/ds112.pdf

[Xilinx '06b] Xilinx. Xilinx Virtex-5 Datasheet. 2006b.
http://direct.xilinx.com/bvdocs/publications/ds100.pdf

[Zhuo '04] L. Zhuo and V. K. Prasanna. Scalable and modular algorithms for
floating-point matrix multiplication on FPGAs. Proceedings of 18th International
Parallel and Distributed Processing Symposium, 92, 2004.

